]> Git Repo - linux.git/blame - mm/slab.h
mm: add optional close() to struct vm_special_mapping
[linux.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
89c2d061
VB
4
5#include <linux/reciprocal_div.h>
6#include <linux/list_lru.h>
7#include <linux/local_lock.h>
8#include <linux/random.h>
9#include <linux/kobject.h>
10#include <linux/sched/mm.h>
11#include <linux/memcontrol.h>
89c2d061
VB
12#include <linux/kfence.h>
13#include <linux/kasan.h>
14
97d06609
CL
15/*
16 * Internal slab definitions
17 */
18
6801be4f
PZ
19#ifdef CONFIG_64BIT
20# ifdef system_has_cmpxchg128
21# define system_has_freelist_aba() system_has_cmpxchg128()
22# define try_cmpxchg_freelist try_cmpxchg128
23# endif
24#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
25typedef u128 freelist_full_t;
26#else /* CONFIG_64BIT */
27# ifdef system_has_cmpxchg64
28# define system_has_freelist_aba() system_has_cmpxchg64()
29# define try_cmpxchg_freelist try_cmpxchg64
30# endif
31#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
32typedef u64 freelist_full_t;
33#endif /* CONFIG_64BIT */
34
35#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36#undef system_has_freelist_aba
37#endif
38
39/*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43typedef union {
44 struct {
45 void *freelist;
46 unsigned long counter;
47 };
48 freelist_full_t full;
49} freelist_aba_t;
50
d122019b
MWO
51/* Reuses the bits in struct page */
52struct slab {
53 unsigned long __page_flags;
401fb12c 54
401fb12c 55 struct kmem_cache *slab_cache;
d122019b 56 union {
401fb12c 57 struct {
130d4df5
VB
58 union {
59 struct list_head slab_list;
60#ifdef CONFIG_SLUB_CPU_PARTIAL
61 struct {
62 struct slab *next;
63 int slabs; /* Nr of slabs left */
64 };
65#endif
66 };
67 /* Double-word boundary */
130d4df5 68 union {
130d4df5 69 struct {
6801be4f
PZ
70 void *freelist; /* first free object */
71 union {
72 unsigned long counters;
73 struct {
74 unsigned inuse:16;
75 unsigned objects:15;
76 unsigned frozen:1;
77 };
78 };
130d4df5 79 };
6801be4f
PZ
80#ifdef system_has_freelist_aba
81 freelist_aba_t freelist_counter;
82#endif
130d4df5 83 };
d122019b 84 };
130d4df5 85 struct rcu_head rcu_head;
d122019b 86 };
401fb12c 87
46df8e73 88 unsigned int __page_type;
d122019b 89 atomic_t __page_refcount;
21c690a3
SB
90#ifdef CONFIG_SLAB_OBJ_EXT
91 unsigned long obj_exts;
d122019b
MWO
92#endif
93};
94
95#define SLAB_MATCH(pg, sl) \
96 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
97SLAB_MATCH(flags, __page_flags);
130d4df5 98SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
d122019b 99SLAB_MATCH(_refcount, __page_refcount);
a52c6330 100#ifdef CONFIG_MEMCG
21c690a3 101SLAB_MATCH(memcg_data, obj_exts);
a52c6330
AST
102#elif defined(CONFIG_SLAB_OBJ_EXT)
103SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
d122019b
MWO
104#endif
105#undef SLAB_MATCH
106static_assert(sizeof(struct slab) <= sizeof(struct page));
a9e0b9f2 107#if defined(system_has_freelist_aba)
6801be4f 108static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
130d4df5 109#endif
d122019b
MWO
110
111/**
112 * folio_slab - Converts from folio to slab.
113 * @folio: The folio.
114 *
115 * Currently struct slab is a different representation of a folio where
116 * folio_test_slab() is true.
117 *
118 * Return: The slab which contains this folio.
119 */
120#define folio_slab(folio) (_Generic((folio), \
121 const struct folio *: (const struct slab *)(folio), \
122 struct folio *: (struct slab *)(folio)))
123
124/**
125 * slab_folio - The folio allocated for a slab
126 * @slab: The slab.
127 *
128 * Slabs are allocated as folios that contain the individual objects and are
129 * using some fields in the first struct page of the folio - those fields are
130 * now accessed by struct slab. It is occasionally necessary to convert back to
131 * a folio in order to communicate with the rest of the mm. Please use this
132 * helper function instead of casting yourself, as the implementation may change
133 * in the future.
134 */
135#define slab_folio(s) (_Generic((s), \
136 const struct slab *: (const struct folio *)s, \
137 struct slab *: (struct folio *)s))
138
139/**
140 * page_slab - Converts from first struct page to slab.
141 * @p: The first (either head of compound or single) page of slab.
142 *
143 * A temporary wrapper to convert struct page to struct slab in situations where
144 * we know the page is the compound head, or single order-0 page.
145 *
146 * Long-term ideally everything would work with struct slab directly or go
147 * through folio to struct slab.
148 *
149 * Return: The slab which contains this page
150 */
151#define page_slab(p) (_Generic((p), \
152 const struct page *: (const struct slab *)(p), \
153 struct page *: (struct slab *)(p)))
154
155/**
156 * slab_page - The first struct page allocated for a slab
157 * @slab: The slab.
158 *
159 * A convenience wrapper for converting slab to the first struct page of the
160 * underlying folio, to communicate with code not yet converted to folio or
161 * struct slab.
162 */
163#define slab_page(s) folio_page(slab_folio(s), 0)
164
165/*
166 * If network-based swap is enabled, sl*b must keep track of whether pages
167 * were allocated from pfmemalloc reserves.
168 */
169static inline bool slab_test_pfmemalloc(const struct slab *slab)
170{
4d2bcefa 171 return folio_test_active(slab_folio(slab));
d122019b
MWO
172}
173
174static inline void slab_set_pfmemalloc(struct slab *slab)
175{
176 folio_set_active(slab_folio(slab));
177}
178
179static inline void slab_clear_pfmemalloc(struct slab *slab)
180{
181 folio_clear_active(slab_folio(slab));
182}
183
184static inline void __slab_clear_pfmemalloc(struct slab *slab)
185{
186 __folio_clear_active(slab_folio(slab));
187}
188
189static inline void *slab_address(const struct slab *slab)
190{
191 return folio_address(slab_folio(slab));
192}
193
194static inline int slab_nid(const struct slab *slab)
195{
196 return folio_nid(slab_folio(slab));
197}
198
199static inline pg_data_t *slab_pgdat(const struct slab *slab)
200{
201 return folio_pgdat(slab_folio(slab));
202}
203
204static inline struct slab *virt_to_slab(const void *addr)
205{
206 struct folio *folio = virt_to_folio(addr);
207
208 if (!folio_test_slab(folio))
209 return NULL;
210
211 return folio_slab(folio);
212}
213
214static inline int slab_order(const struct slab *slab)
215{
4d2bcefa 216 return folio_order(slab_folio(slab));
d122019b
MWO
217}
218
219static inline size_t slab_size(const struct slab *slab)
220{
221 return PAGE_SIZE << slab_order(slab);
222}
223
19975f83
VB
224#ifdef CONFIG_SLUB_CPU_PARTIAL
225#define slub_percpu_partial(c) ((c)->partial)
226
227#define slub_set_percpu_partial(c, p) \
228({ \
229 slub_percpu_partial(c) = (p)->next; \
230})
231
232#define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
233#else
234#define slub_percpu_partial(c) NULL
235
236#define slub_set_percpu_partial(c, p)
237
238#define slub_percpu_partial_read_once(c) NULL
239#endif // CONFIG_SLUB_CPU_PARTIAL
240
241/*
242 * Word size structure that can be atomically updated or read and that
243 * contains both the order and the number of objects that a slab of the
244 * given order would contain.
245 */
246struct kmem_cache_order_objects {
247 unsigned int x;
248};
249
250/*
251 * Slab cache management.
252 */
253struct kmem_cache {
254#ifndef CONFIG_SLUB_TINY
255 struct kmem_cache_cpu __percpu *cpu_slab;
256#endif
257 /* Used for retrieving partial slabs, etc. */
258 slab_flags_t flags;
259 unsigned long min_partial;
260 unsigned int size; /* Object size including metadata */
261 unsigned int object_size; /* Object size without metadata */
262 struct reciprocal_value reciprocal_size;
263 unsigned int offset; /* Free pointer offset */
264#ifdef CONFIG_SLUB_CPU_PARTIAL
265 /* Number of per cpu partial objects to keep around */
266 unsigned int cpu_partial;
267 /* Number of per cpu partial slabs to keep around */
268 unsigned int cpu_partial_slabs;
269#endif
270 struct kmem_cache_order_objects oo;
271
272 /* Allocation and freeing of slabs */
273 struct kmem_cache_order_objects min;
274 gfp_t allocflags; /* gfp flags to use on each alloc */
275 int refcount; /* Refcount for slab cache destroy */
276 void (*ctor)(void *object); /* Object constructor */
277 unsigned int inuse; /* Offset to metadata */
278 unsigned int align; /* Alignment */
279 unsigned int red_left_pad; /* Left redzone padding size */
280 const char *name; /* Name (only for display!) */
281 struct list_head list; /* List of slab caches */
282#ifdef CONFIG_SYSFS
283 struct kobject kobj; /* For sysfs */
284#endif
285#ifdef CONFIG_SLAB_FREELIST_HARDENED
286 unsigned long random;
287#endif
288
289#ifdef CONFIG_NUMA
290 /*
291 * Defragmentation by allocating from a remote node.
292 */
293 unsigned int remote_node_defrag_ratio;
294#endif
295
296#ifdef CONFIG_SLAB_FREELIST_RANDOM
297 unsigned int *random_seq;
298#endif
299
300#ifdef CONFIG_KASAN_GENERIC
301 struct kasan_cache kasan_info;
302#endif
303
304#ifdef CONFIG_HARDENED_USERCOPY
305 unsigned int useroffset; /* Usercopy region offset */
306 unsigned int usersize; /* Usercopy region size */
307#endif
308
309 struct kmem_cache_node *node[MAX_NUMNODES];
310};
311
312#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
313#define SLAB_SUPPORTS_SYSFS
314void sysfs_slab_unlink(struct kmem_cache *s);
315void sysfs_slab_release(struct kmem_cache *s);
316#else
317static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
318static inline void sysfs_slab_release(struct kmem_cache *s) { }
319#endif
320
321void *fixup_red_left(struct kmem_cache *s, void *p);
322
323static inline void *nearest_obj(struct kmem_cache *cache,
324 const struct slab *slab, void *x)
325{
326 void *object = x - (x - slab_address(slab)) % cache->size;
327 void *last_object = slab_address(slab) +
328 (slab->objects - 1) * cache->size;
329 void *result = (unlikely(object > last_object)) ? last_object : object;
330
331 result = fixup_red_left(cache, result);
332 return result;
333}
334
335/* Determine object index from a given position */
336static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
337 void *addr, void *obj)
338{
339 return reciprocal_divide(kasan_reset_tag(obj) - addr,
340 cache->reciprocal_size);
341}
342
343static inline unsigned int obj_to_index(const struct kmem_cache *cache,
344 const struct slab *slab, void *obj)
345{
346 if (is_kfence_address(obj))
347 return 0;
348 return __obj_to_index(cache, slab_address(slab), obj);
349}
350
351static inline int objs_per_slab(const struct kmem_cache *cache,
352 const struct slab *slab)
353{
354 return slab->objects;
355}
07f361b2 356
97d06609
CL
357/*
358 * State of the slab allocator.
359 *
360 * This is used to describe the states of the allocator during bootup.
361 * Allocators use this to gradually bootstrap themselves. Most allocators
362 * have the problem that the structures used for managing slab caches are
363 * allocated from slab caches themselves.
364 */
365enum slab_state {
366 DOWN, /* No slab functionality yet */
367 PARTIAL, /* SLUB: kmem_cache_node available */
97d06609
CL
368 UP, /* Slab caches usable but not all extras yet */
369 FULL /* Everything is working */
370};
371
372extern enum slab_state slab_state;
373
18004c5d
CL
374/* The slab cache mutex protects the management structures during changes */
375extern struct mutex slab_mutex;
9b030cb8
CL
376
377/* The list of all slab caches on the system */
18004c5d
CL
378extern struct list_head slab_caches;
379
9b030cb8
CL
380/* The slab cache that manages slab cache information */
381extern struct kmem_cache *kmem_cache;
382
af3b5f87
VB
383/* A table of kmalloc cache names and sizes */
384extern const struct kmalloc_info_struct {
cb5d9fb3 385 const char *name[NR_KMALLOC_TYPES];
55de8b9c 386 unsigned int size;
af3b5f87
VB
387} kmalloc_info[];
388
f97d5f63 389/* Kmalloc array related functions */
34cc6990 390void setup_kmalloc_cache_index_table(void);
66b3dc1f 391void create_kmalloc_caches(void);
2c59dd65 392
5a9d31d9
VB
393extern u8 kmalloc_size_index[24];
394
395static inline unsigned int size_index_elem(unsigned int bytes)
396{
397 return (bytes - 1) / 8;
398}
399
400/*
401 * Find the kmem_cache structure that serves a given size of
402 * allocation
403 *
404 * This assumes size is larger than zero and not larger than
405 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
406 */
407static inline struct kmem_cache *
67f2df3b 408kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
5a9d31d9
VB
409{
410 unsigned int index;
411
67f2df3b
KC
412 if (!b)
413 b = &kmalloc_caches[kmalloc_type(flags, caller)];
5a9d31d9
VB
414 if (size <= 192)
415 index = kmalloc_size_index[size_index_elem(size)];
416 else
417 index = fls(size - 1);
418
67f2df3b 419 return (*b)[index];
5a9d31d9 420}
ed4cd17e 421
44405099 422gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 423
9b030cb8 424/* Functions provided by the slab allocators */
d50112ed 425int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 426
89c2d061 427void __init kmem_cache_init(void);
45530c44 428extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
429 unsigned int size, slab_flags_t flags,
430 unsigned int useroffset, unsigned int usersize);
45530c44 431
423c929c 432int slab_unmergeable(struct kmem_cache *s);
f4957d5b 433struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 434 slab_flags_t flags, const char *name, void (*ctor)(void *));
2633d7a0 435struct kmem_cache *
f4957d5b 436__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 437 slab_flags_t flags, void (*ctor)(void *));
423c929c 438
303cd693 439slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
cbb79694 440
bb944290
FT
441static inline bool is_kmalloc_cache(struct kmem_cache *s)
442{
bb944290 443 return (s->flags & SLAB_KMALLOC);
bb944290 444}
cbb79694 445
d8843922 446/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
447#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
448 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 449 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922 450
a9e0b9f2 451#ifdef CONFIG_SLUB_DEBUG
d8843922 452#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 453 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
454#else
455#define SLAB_DEBUG_FLAGS (0)
456#endif
457
d8843922 458#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
6cd6d33c 459 SLAB_TEMPORARY | SLAB_ACCOUNT | \
d0bf7d57 460 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
d8843922 461
e70954fd 462/* Common flags available with current configuration */
d8843922
GC
463#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
464
e70954fd
TG
465/* Common flags permitted for kmem_cache_create */
466#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
467 SLAB_RED_ZONE | \
468 SLAB_POISON | \
469 SLAB_STORE_USER | \
470 SLAB_TRACE | \
471 SLAB_CONSISTENCY_CHECKS | \
e70954fd
TG
472 SLAB_NOLEAKTRACE | \
473 SLAB_RECLAIM_ACCOUNT | \
474 SLAB_TEMPORARY | \
a285909f 475 SLAB_ACCOUNT | \
6cd6d33c 476 SLAB_KMALLOC | \
d0bf7d57 477 SLAB_NO_MERGE | \
a285909f 478 SLAB_NO_USER_FLAGS)
e70954fd 479
f9e13c0a 480bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 481int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 482void __kmem_cache_release(struct kmem_cache *);
c9fc5864 483int __kmem_cache_shrink(struct kmem_cache *);
41a21285 484void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 485
b7454ad3
GC
486struct seq_file;
487struct file;
b7454ad3 488
0d7561c6
GC
489struct slabinfo {
490 unsigned long active_objs;
491 unsigned long num_objs;
492 unsigned long active_slabs;
493 unsigned long num_slabs;
494 unsigned long shared_avail;
495 unsigned int limit;
496 unsigned int batchcount;
497 unsigned int shared;
498 unsigned int objects_per_slab;
499 unsigned int cache_order;
500};
501
502void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
ba6c496e 503
e42f174e
VB
504#ifdef CONFIG_SLUB_DEBUG
505#ifdef CONFIG_SLUB_DEBUG_ON
506DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
507#else
508DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
509#endif
510extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 511long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
512static inline bool __slub_debug_enabled(void)
513{
514 return static_branch_unlikely(&slub_debug_enabled);
515}
e42f174e
VB
516#else
517static inline void print_tracking(struct kmem_cache *s, void *object)
518{
519}
0d4a062a
ME
520static inline bool __slub_debug_enabled(void)
521{
522 return false;
523}
e42f174e
VB
524#endif
525
526/*
671776b3 527 * Returns true if any of the specified slab_debug flags is enabled for the
e42f174e
VB
528 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
529 * the static key.
530 */
531static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
532{
0d4a062a
ME
533 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
534 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
535 if (__slub_debug_enabled())
e42f174e 536 return s->flags & flags;
e42f174e
VB
537 return false;
538}
539
21c690a3
SB
540#ifdef CONFIG_SLAB_OBJ_EXT
541
4b5f8d9a 542/*
21c690a3
SB
543 * slab_obj_exts - get the pointer to the slab object extension vector
544 * associated with a slab.
4b5f8d9a
VB
545 * @slab: a pointer to the slab struct
546 *
21c690a3 547 * Returns a pointer to the object extension vector associated with the slab,
4b5f8d9a
VB
548 * or NULL if no such vector has been associated yet.
549 */
21c690a3 550static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a 551{
21c690a3 552 unsigned long obj_exts = READ_ONCE(slab->obj_exts);
4b5f8d9a 553
21c690a3
SB
554#ifdef CONFIG_MEMCG
555 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
4b5f8d9a 556 slab_page(slab));
21c690a3 557 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
21c690a3 558#endif
53ce7203 559 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
4b5f8d9a
VB
560}
561
e6100a45
VB
562int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
563 gfp_t gfp, bool new_slab);
564
21c690a3
SB
565#else /* CONFIG_SLAB_OBJ_EXT */
566
567static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a
VB
568{
569 return NULL;
570}
571
21c690a3
SB
572#endif /* CONFIG_SLAB_OBJ_EXT */
573
e6100a45 574static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
286e04b8 575{
e6100a45
VB
576 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
577 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
286e04b8 578}
e6100a45 579
3a3b7fec 580#ifdef CONFIG_MEMCG
e6100a45
VB
581bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
582 gfp_t flags, size_t size, void **p);
583void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
584 void **p, int objects, struct slabobj_ext *obj_exts);
21c690a3 585#endif
b9ce5ef4 586
8dfa9d55
HY
587size_t __ksize(const void *objp);
588
11c7aec2
JDB
589static inline size_t slab_ksize(const struct kmem_cache *s)
590{
a9e0b9f2 591#ifdef CONFIG_SLUB_DEBUG
11c7aec2
JDB
592 /*
593 * Debugging requires use of the padding between object
594 * and whatever may come after it.
595 */
596 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
597 return s->object_size;
a9e0b9f2 598#endif
80a9201a
AP
599 if (s->flags & SLAB_KASAN)
600 return s->object_size;
11c7aec2
JDB
601 /*
602 * If we have the need to store the freelist pointer
603 * back there or track user information then we can
604 * only use the space before that information.
605 */
5f0d5a3a 606 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
607 return s->inuse;
608 /*
609 * Else we can use all the padding etc for the allocation
610 */
611 return s->size;
11c7aec2
JDB
612}
613
a9e0b9f2 614#ifdef CONFIG_SLUB_DEBUG
852d8be0
YS
615void dump_unreclaimable_slab(void);
616#else
617static inline void dump_unreclaimable_slab(void)
618{
619}
620#endif
621
55834c59
AP
622void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
623
7c00fce9
TG
624#ifdef CONFIG_SLAB_FREELIST_RANDOM
625int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
626 gfp_t gfp);
627void cache_random_seq_destroy(struct kmem_cache *cachep);
628#else
629static inline int cache_random_seq_create(struct kmem_cache *cachep,
630 unsigned int count, gfp_t gfp)
631{
632 return 0;
633}
634static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
635#endif /* CONFIG_SLAB_FREELIST_RANDOM */
636
6471384a
AP
637static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
638{
51cba1eb
KC
639 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
640 &init_on_alloc)) {
6471384a
AP
641 if (c->ctor)
642 return false;
643 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
644 return flags & __GFP_ZERO;
645 return true;
646 }
647 return flags & __GFP_ZERO;
648}
649
650static inline bool slab_want_init_on_free(struct kmem_cache *c)
651{
51cba1eb
KC
652 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
653 &init_on_free))
6471384a
AP
654 return !(c->ctor ||
655 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
656 return false;
657}
658
64dd6849
FM
659#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
660void debugfs_slab_release(struct kmem_cache *);
661#else
662static inline void debugfs_slab_release(struct kmem_cache *s) { }
663#endif
664
5bb1bb35 665#ifdef CONFIG_PRINTK
8e7f37f2
PM
666#define KS_ADDRS_COUNT 16
667struct kmem_obj_info {
668 void *kp_ptr;
7213230a 669 struct slab *kp_slab;
8e7f37f2
PM
670 void *kp_objp;
671 unsigned long kp_data_offset;
672 struct kmem_cache *kp_slab_cache;
673 void *kp_ret;
674 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 675 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 676};
2dfe63e6 677void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 678#endif
8e7f37f2 679
0b3eb091
MWO
680void __check_heap_object(const void *ptr, unsigned long n,
681 const struct slab *slab, bool to_user);
0b3eb091 682
946fa0db
FT
683#ifdef CONFIG_SLUB_DEBUG
684void skip_orig_size_check(struct kmem_cache *s, const void *object);
685#endif
686
5240ab40 687#endif /* MM_SLAB_H */
This page took 0.667352 seconds and 4 git commands to generate.