]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
97fb7a0a IM |
2 | /* |
3 | * Scheduler internal types and methods: | |
4 | */ | |
95458477 IM |
5 | #ifndef _KERNEL_SCHED_SCHED_H |
6 | #define _KERNEL_SCHED_SCHED_H | |
325ea10c | 7 | |
801c1419 | 8 | #include <linux/sched/affinity.h> |
dfc3401a | 9 | #include <linux/sched/autogroup.h> |
55687da1 | 10 | #include <linux/sched/cpufreq.h> |
325ea10c | 11 | #include <linux/sched/deadline.h> |
4ff8f2ca | 12 | #include <linux/sched.h> |
325ea10c IM |
13 | #include <linux/sched/loadavg.h> |
14 | #include <linux/sched/mm.h> | |
801c1419 | 15 | #include <linux/sched/rseq_api.h> |
325ea10c | 16 | #include <linux/sched/signal.h> |
321a874a | 17 | #include <linux/sched/smt.h> |
325ea10c IM |
18 | #include <linux/sched/stat.h> |
19 | #include <linux/sched/sysctl.h> | |
4ff8f2ca | 20 | #include <linux/sched/task_flags.h> |
29930025 | 21 | #include <linux/sched/task.h> |
325ea10c | 22 | #include <linux/sched/topology.h> |
ef8bd77f | 23 | |
4ff8f2ca | 24 | #include <linux/atomic.h> |
801c1419 | 25 | #include <linux/bitmap.h> |
4ff8f2ca | 26 | #include <linux/bug.h> |
801c1419 | 27 | #include <linux/capability.h> |
4ff8f2ca | 28 | #include <linux/cgroup_api.h> |
801c1419 | 29 | #include <linux/cgroup.h> |
e67198cc | 30 | #include <linux/context_tracking.h> |
325ea10c | 31 | #include <linux/cpufreq.h> |
801c1419 | 32 | #include <linux/cpumask_api.h> |
325ea10c | 33 | #include <linux/ctype.h> |
801c1419 | 34 | #include <linux/file.h> |
4ff8f2ca | 35 | #include <linux/fs_api.h> |
f96eca43 IM |
36 | #include <linux/hrtimer_api.h> |
37 | #include <linux/interrupt.h> | |
4ff8f2ca | 38 | #include <linux/irq_work.h> |
801c1419 IM |
39 | #include <linux/jiffies.h> |
40 | #include <linux/kref_api.h> | |
325ea10c | 41 | #include <linux/kthread.h> |
f96eca43 | 42 | #include <linux/ktime_api.h> |
801c1419 | 43 | #include <linux/lockdep_api.h> |
4ff8f2ca IM |
44 | #include <linux/lockdep.h> |
45 | #include <linux/minmax.h> | |
46 | #include <linux/mm.h> | |
801c1419 IM |
47 | #include <linux/module.h> |
48 | #include <linux/mutex_api.h> | |
4ff8f2ca | 49 | #include <linux/plist.h> |
801c1419 | 50 | #include <linux/poll.h> |
325ea10c | 51 | #include <linux/proc_fs.h> |
325ea10c | 52 | #include <linux/profile.h> |
eb414681 | 53 | #include <linux/psi.h> |
4ff8f2ca | 54 | #include <linux/rcupdate.h> |
801c1419 IM |
55 | #include <linux/seq_file.h> |
56 | #include <linux/seqlock.h> | |
f96eca43 IM |
57 | #include <linux/softirq.h> |
58 | #include <linux/spinlock_api.h> | |
4ff8f2ca | 59 | #include <linux/static_key.h> |
029632fb | 60 | #include <linux/stop_machine.h> |
801c1419 | 61 | #include <linux/syscalls_api.h> |
325ea10c | 62 | #include <linux/syscalls.h> |
4ff8f2ca | 63 | #include <linux/tick.h> |
801c1419 IM |
64 | #include <linux/topology.h> |
65 | #include <linux/types.h> | |
f96eca43 | 66 | #include <linux/u64_stats_sync_api.h> |
801c1419 IM |
67 | #include <linux/uaccess.h> |
68 | #include <linux/wait_api.h> | |
4ff8f2ca | 69 | #include <linux/wait_bit.h> |
801c1419 IM |
70 | #include <linux/workqueue_api.h> |
71 | ||
72 | #include <trace/events/power.h> | |
4ff8f2ca | 73 | #include <trace/events/sched.h> |
801c1419 IM |
74 | |
75 | #include "../workqueue_internal.h" | |
76 | ||
4ff8f2ca IM |
77 | #ifdef CONFIG_CGROUP_SCHED |
78 | #include <linux/cgroup.h> | |
79 | #include <linux/psi.h> | |
80 | #endif | |
325ea10c | 81 | |
4ff8f2ca IM |
82 | #ifdef CONFIG_SCHED_DEBUG |
83 | # include <linux/static_key.h> | |
84 | #endif | |
029632fb | 85 | |
7fce777c | 86 | #ifdef CONFIG_PARAVIRT |
325ea10c | 87 | # include <asm/paravirt.h> |
4ff8f2ca | 88 | # include <asm/paravirt_api_clock.h> |
7fce777c IM |
89 | #endif |
90 | ||
391e43da | 91 | #include "cpupri.h" |
6bfd6d72 | 92 | #include "cpudeadline.h" |
029632fb | 93 | |
9148a3a1 | 94 | #ifdef CONFIG_SCHED_DEBUG |
4ff8f2ca | 95 | # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) |
9148a3a1 | 96 | #else |
4ff8f2ca | 97 | # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) |
9148a3a1 PZ |
98 | #endif |
99 | ||
45ceebf7 | 100 | struct rq; |
442bf3aa | 101 | struct cpuidle_state; |
45ceebf7 | 102 | |
da0c1e65 KT |
103 | /* task_struct::on_rq states: */ |
104 | #define TASK_ON_RQ_QUEUED 1 | |
cca26e80 | 105 | #define TASK_ON_RQ_MIGRATING 2 |
da0c1e65 | 106 | |
029632fb PZ |
107 | extern __read_mostly int scheduler_running; |
108 | ||
45ceebf7 PG |
109 | extern unsigned long calc_load_update; |
110 | extern atomic_long_t calc_load_tasks; | |
111 | ||
a60707d7 ZN |
112 | extern unsigned int sysctl_sched_child_runs_first; |
113 | ||
3289bdb4 | 114 | extern void calc_global_load_tick(struct rq *this_rq); |
d60585c5 | 115 | extern long calc_load_fold_active(struct rq *this_rq, long adjust); |
3289bdb4 | 116 | |
9d246053 | 117 | extern void call_trace_sched_update_nr_running(struct rq *rq, int count); |
d9ab0e63 ZN |
118 | |
119 | extern unsigned int sysctl_sched_rt_period; | |
120 | extern int sysctl_sched_rt_runtime; | |
dafd7a9d | 121 | extern int sched_rr_timeslice; |
d9ab0e63 | 122 | |
029632fb PZ |
123 | /* |
124 | * Helpers for converting nanosecond timing to jiffy resolution | |
125 | */ | |
126 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | |
127 | ||
cc1f4b1f LZ |
128 | /* |
129 | * Increase resolution of nice-level calculations for 64-bit architectures. | |
130 | * The extra resolution improves shares distribution and load balancing of | |
131 | * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup | |
132 | * hierarchies, especially on larger systems. This is not a user-visible change | |
133 | * and does not change the user-interface for setting shares/weights. | |
134 | * | |
135 | * We increase resolution only if we have enough bits to allow this increased | |
97fb7a0a IM |
136 | * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit |
137 | * are pretty high and the returns do not justify the increased costs. | |
2159197d | 138 | * |
97fb7a0a IM |
139 | * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to |
140 | * increase coverage and consistency always enable it on 64-bit platforms. | |
cc1f4b1f | 141 | */ |
2159197d | 142 | #ifdef CONFIG_64BIT |
172895e6 | 143 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) |
6ecdd749 | 144 | # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) |
26cf5222 MW |
145 | # define scale_load_down(w) \ |
146 | ({ \ | |
147 | unsigned long __w = (w); \ | |
148 | if (__w) \ | |
149 | __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ | |
150 | __w; \ | |
151 | }) | |
cc1f4b1f | 152 | #else |
172895e6 | 153 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) |
cc1f4b1f LZ |
154 | # define scale_load(w) (w) |
155 | # define scale_load_down(w) (w) | |
156 | #endif | |
157 | ||
6ecdd749 | 158 | /* |
172895e6 YD |
159 | * Task weight (visible to users) and its load (invisible to users) have |
160 | * independent resolution, but they should be well calibrated. We use | |
161 | * scale_load() and scale_load_down(w) to convert between them. The | |
162 | * following must be true: | |
163 | * | |
9d061ba6 | 164 | * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD |
172895e6 | 165 | * |
6ecdd749 | 166 | */ |
172895e6 | 167 | #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) |
029632fb | 168 | |
332ac17e DF |
169 | /* |
170 | * Single value that decides SCHED_DEADLINE internal math precision. | |
171 | * 10 -> just above 1us | |
172 | * 9 -> just above 0.5us | |
173 | */ | |
97fb7a0a | 174 | #define DL_SCALE 10 |
029632fb PZ |
175 | |
176 | /* | |
97fb7a0a | 177 | * Single value that denotes runtime == period, ie unlimited time. |
029632fb | 178 | */ |
97fb7a0a | 179 | #define RUNTIME_INF ((u64)~0ULL) |
029632fb | 180 | |
20f9cd2a HA |
181 | static inline int idle_policy(int policy) |
182 | { | |
183 | return policy == SCHED_IDLE; | |
184 | } | |
d50dde5a DF |
185 | static inline int fair_policy(int policy) |
186 | { | |
187 | return policy == SCHED_NORMAL || policy == SCHED_BATCH; | |
188 | } | |
189 | ||
029632fb PZ |
190 | static inline int rt_policy(int policy) |
191 | { | |
d50dde5a | 192 | return policy == SCHED_FIFO || policy == SCHED_RR; |
029632fb PZ |
193 | } |
194 | ||
aab03e05 DF |
195 | static inline int dl_policy(int policy) |
196 | { | |
197 | return policy == SCHED_DEADLINE; | |
198 | } | |
20f9cd2a HA |
199 | static inline bool valid_policy(int policy) |
200 | { | |
201 | return idle_policy(policy) || fair_policy(policy) || | |
202 | rt_policy(policy) || dl_policy(policy); | |
203 | } | |
aab03e05 | 204 | |
1da1843f VK |
205 | static inline int task_has_idle_policy(struct task_struct *p) |
206 | { | |
207 | return idle_policy(p->policy); | |
208 | } | |
209 | ||
029632fb PZ |
210 | static inline int task_has_rt_policy(struct task_struct *p) |
211 | { | |
212 | return rt_policy(p->policy); | |
213 | } | |
214 | ||
aab03e05 DF |
215 | static inline int task_has_dl_policy(struct task_struct *p) |
216 | { | |
217 | return dl_policy(p->policy); | |
218 | } | |
219 | ||
07881166 JL |
220 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
221 | ||
d76343c6 VS |
222 | static inline void update_avg(u64 *avg, u64 sample) |
223 | { | |
224 | s64 diff = sample - *avg; | |
225 | *avg += diff / 8; | |
226 | } | |
227 | ||
39a2a6eb VS |
228 | /* |
229 | * Shifting a value by an exponent greater *or equal* to the size of said value | |
230 | * is UB; cap at size-1. | |
231 | */ | |
232 | #define shr_bound(val, shift) \ | |
233 | (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) | |
234 | ||
794a56eb JL |
235 | /* |
236 | * !! For sched_setattr_nocheck() (kernel) only !! | |
237 | * | |
238 | * This is actually gross. :( | |
239 | * | |
240 | * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE | |
241 | * tasks, but still be able to sleep. We need this on platforms that cannot | |
242 | * atomically change clock frequency. Remove once fast switching will be | |
243 | * available on such platforms. | |
244 | * | |
245 | * SUGOV stands for SchedUtil GOVernor. | |
246 | */ | |
247 | #define SCHED_FLAG_SUGOV 0x10000000 | |
248 | ||
f9509153 QP |
249 | #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) |
250 | ||
904cbab7 | 251 | static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) |
794a56eb JL |
252 | { |
253 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL | |
254 | return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); | |
255 | #else | |
256 | return false; | |
257 | #endif | |
258 | } | |
259 | ||
2d3d891d DF |
260 | /* |
261 | * Tells if entity @a should preempt entity @b. | |
262 | */ | |
904cbab7 MWO |
263 | static inline bool dl_entity_preempt(const struct sched_dl_entity *a, |
264 | const struct sched_dl_entity *b) | |
2d3d891d | 265 | { |
794a56eb JL |
266 | return dl_entity_is_special(a) || |
267 | dl_time_before(a->deadline, b->deadline); | |
2d3d891d DF |
268 | } |
269 | ||
029632fb PZ |
270 | /* |
271 | * This is the priority-queue data structure of the RT scheduling class: | |
272 | */ | |
273 | struct rt_prio_array { | |
274 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
275 | struct list_head queue[MAX_RT_PRIO]; | |
276 | }; | |
277 | ||
278 | struct rt_bandwidth { | |
279 | /* nests inside the rq lock: */ | |
280 | raw_spinlock_t rt_runtime_lock; | |
281 | ktime_t rt_period; | |
282 | u64 rt_runtime; | |
283 | struct hrtimer rt_period_timer; | |
4cfafd30 | 284 | unsigned int rt_period_active; |
029632fb | 285 | }; |
a5e7be3b JL |
286 | |
287 | void __dl_clear_params(struct task_struct *p); | |
288 | ||
332ac17e | 289 | struct dl_bandwidth { |
97fb7a0a IM |
290 | raw_spinlock_t dl_runtime_lock; |
291 | u64 dl_runtime; | |
292 | u64 dl_period; | |
332ac17e DF |
293 | }; |
294 | ||
295 | static inline int dl_bandwidth_enabled(void) | |
296 | { | |
1724813d | 297 | return sysctl_sched_rt_runtime >= 0; |
332ac17e DF |
298 | } |
299 | ||
a57415f5 PL |
300 | /* |
301 | * To keep the bandwidth of -deadline tasks under control | |
302 | * we need some place where: | |
303 | * - store the maximum -deadline bandwidth of each cpu; | |
304 | * - cache the fraction of bandwidth that is currently allocated in | |
305 | * each root domain; | |
306 | * | |
307 | * This is all done in the data structure below. It is similar to the | |
308 | * one used for RT-throttling (rt_bandwidth), with the main difference | |
309 | * that, since here we are only interested in admission control, we | |
310 | * do not decrease any runtime while the group "executes", neither we | |
311 | * need a timer to replenish it. | |
312 | * | |
313 | * With respect to SMP, bandwidth is given on a per root domain basis, | |
314 | * meaning that: | |
315 | * - bw (< 100%) is the deadline bandwidth of each CPU; | |
316 | * - total_bw is the currently allocated bandwidth in each root domain; | |
317 | */ | |
332ac17e | 318 | struct dl_bw { |
97fb7a0a IM |
319 | raw_spinlock_t lock; |
320 | u64 bw; | |
321 | u64 total_bw; | |
332ac17e DF |
322 | }; |
323 | ||
f2cb1360 | 324 | extern void init_dl_bw(struct dl_bw *dl_b); |
97fb7a0a | 325 | extern int sched_dl_global_validate(void); |
06a76fe0 | 326 | extern void sched_dl_do_global(void); |
97fb7a0a | 327 | extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); |
06a76fe0 NP |
328 | extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); |
329 | extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); | |
330 | extern bool __checkparam_dl(const struct sched_attr *attr); | |
06a76fe0 | 331 | extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); |
97fb7a0a | 332 | extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
772b6539 | 333 | extern int dl_cpu_busy(int cpu, struct task_struct *p); |
029632fb PZ |
334 | |
335 | #ifdef CONFIG_CGROUP_SCHED | |
336 | ||
029632fb PZ |
337 | struct cfs_rq; |
338 | struct rt_rq; | |
339 | ||
35cf4e50 | 340 | extern struct list_head task_groups; |
029632fb PZ |
341 | |
342 | struct cfs_bandwidth { | |
343 | #ifdef CONFIG_CFS_BANDWIDTH | |
97fb7a0a IM |
344 | raw_spinlock_t lock; |
345 | ktime_t period; | |
346 | u64 quota; | |
347 | u64 runtime; | |
f4183717 | 348 | u64 burst; |
bcb1704a | 349 | u64 runtime_snap; |
97fb7a0a | 350 | s64 hierarchical_quota; |
97fb7a0a | 351 | |
66567fcb | 352 | u8 idle; |
353 | u8 period_active; | |
66567fcb | 354 | u8 slack_started; |
97fb7a0a IM |
355 | struct hrtimer period_timer; |
356 | struct hrtimer slack_timer; | |
357 | struct list_head throttled_cfs_rq; | |
358 | ||
359 | /* Statistics: */ | |
360 | int nr_periods; | |
361 | int nr_throttled; | |
bcb1704a | 362 | int nr_burst; |
97fb7a0a | 363 | u64 throttled_time; |
bcb1704a | 364 | u64 burst_time; |
029632fb PZ |
365 | #endif |
366 | }; | |
367 | ||
97fb7a0a | 368 | /* Task group related information */ |
029632fb PZ |
369 | struct task_group { |
370 | struct cgroup_subsys_state css; | |
371 | ||
372 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
97fb7a0a IM |
373 | /* schedulable entities of this group on each CPU */ |
374 | struct sched_entity **se; | |
375 | /* runqueue "owned" by this group on each CPU */ | |
376 | struct cfs_rq **cfs_rq; | |
377 | unsigned long shares; | |
029632fb | 378 | |
30400039 JD |
379 | /* A positive value indicates that this is a SCHED_IDLE group. */ |
380 | int idle; | |
381 | ||
fa6bddeb | 382 | #ifdef CONFIG_SMP |
b0367629 WL |
383 | /* |
384 | * load_avg can be heavily contended at clock tick time, so put | |
385 | * it in its own cacheline separated from the fields above which | |
386 | * will also be accessed at each tick. | |
387 | */ | |
97fb7a0a | 388 | atomic_long_t load_avg ____cacheline_aligned; |
029632fb | 389 | #endif |
fa6bddeb | 390 | #endif |
029632fb PZ |
391 | |
392 | #ifdef CONFIG_RT_GROUP_SCHED | |
97fb7a0a IM |
393 | struct sched_rt_entity **rt_se; |
394 | struct rt_rq **rt_rq; | |
029632fb | 395 | |
97fb7a0a | 396 | struct rt_bandwidth rt_bandwidth; |
029632fb PZ |
397 | #endif |
398 | ||
97fb7a0a IM |
399 | struct rcu_head rcu; |
400 | struct list_head list; | |
029632fb | 401 | |
97fb7a0a IM |
402 | struct task_group *parent; |
403 | struct list_head siblings; | |
404 | struct list_head children; | |
029632fb PZ |
405 | |
406 | #ifdef CONFIG_SCHED_AUTOGROUP | |
97fb7a0a | 407 | struct autogroup *autogroup; |
029632fb PZ |
408 | #endif |
409 | ||
97fb7a0a | 410 | struct cfs_bandwidth cfs_bandwidth; |
2480c093 PB |
411 | |
412 | #ifdef CONFIG_UCLAMP_TASK_GROUP | |
413 | /* The two decimal precision [%] value requested from user-space */ | |
414 | unsigned int uclamp_pct[UCLAMP_CNT]; | |
415 | /* Clamp values requested for a task group */ | |
416 | struct uclamp_se uclamp_req[UCLAMP_CNT]; | |
0b60ba2d PB |
417 | /* Effective clamp values used for a task group */ |
418 | struct uclamp_se uclamp[UCLAMP_CNT]; | |
2480c093 PB |
419 | #endif |
420 | ||
029632fb PZ |
421 | }; |
422 | ||
423 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
424 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | |
425 | ||
426 | /* | |
427 | * A weight of 0 or 1 can cause arithmetics problems. | |
428 | * A weight of a cfs_rq is the sum of weights of which entities | |
429 | * are queued on this cfs_rq, so a weight of a entity should not be | |
430 | * too large, so as the shares value of a task group. | |
431 | * (The default weight is 1024 - so there's no practical | |
432 | * limitation from this.) | |
433 | */ | |
97fb7a0a IM |
434 | #define MIN_SHARES (1UL << 1) |
435 | #define MAX_SHARES (1UL << 18) | |
029632fb PZ |
436 | #endif |
437 | ||
029632fb PZ |
438 | typedef int (*tg_visitor)(struct task_group *, void *); |
439 | ||
440 | extern int walk_tg_tree_from(struct task_group *from, | |
441 | tg_visitor down, tg_visitor up, void *data); | |
442 | ||
443 | /* | |
444 | * Iterate the full tree, calling @down when first entering a node and @up when | |
445 | * leaving it for the final time. | |
446 | * | |
447 | * Caller must hold rcu_lock or sufficient equivalent. | |
448 | */ | |
449 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | |
450 | { | |
451 | return walk_tg_tree_from(&root_task_group, down, up, data); | |
452 | } | |
453 | ||
454 | extern int tg_nop(struct task_group *tg, void *data); | |
455 | ||
456 | extern void free_fair_sched_group(struct task_group *tg); | |
457 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | |
8663e24d | 458 | extern void online_fair_sched_group(struct task_group *tg); |
6fe1f348 | 459 | extern void unregister_fair_sched_group(struct task_group *tg); |
029632fb PZ |
460 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
461 | struct sched_entity *se, int cpu, | |
462 | struct sched_entity *parent); | |
463 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | |
029632fb PZ |
464 | |
465 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | |
77a4d1a1 | 466 | extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
029632fb PZ |
467 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
468 | ||
029632fb PZ |
469 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
470 | struct sched_rt_entity *rt_se, int cpu, | |
471 | struct sched_rt_entity *parent); | |
8887cd99 NP |
472 | extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); |
473 | extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); | |
474 | extern long sched_group_rt_runtime(struct task_group *tg); | |
475 | extern long sched_group_rt_period(struct task_group *tg); | |
476 | extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); | |
029632fb | 477 | |
25cc7da7 LZ |
478 | extern struct task_group *sched_create_group(struct task_group *parent); |
479 | extern void sched_online_group(struct task_group *tg, | |
480 | struct task_group *parent); | |
481 | extern void sched_destroy_group(struct task_group *tg); | |
b027789e | 482 | extern void sched_release_group(struct task_group *tg); |
25cc7da7 LZ |
483 | |
484 | extern void sched_move_task(struct task_struct *tsk); | |
485 | ||
486 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
487 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | |
ad936d86 | 488 | |
30400039 JD |
489 | extern int sched_group_set_idle(struct task_group *tg, long idle); |
490 | ||
ad936d86 BP |
491 | #ifdef CONFIG_SMP |
492 | extern void set_task_rq_fair(struct sched_entity *se, | |
493 | struct cfs_rq *prev, struct cfs_rq *next); | |
494 | #else /* !CONFIG_SMP */ | |
495 | static inline void set_task_rq_fair(struct sched_entity *se, | |
496 | struct cfs_rq *prev, struct cfs_rq *next) { } | |
497 | #endif /* CONFIG_SMP */ | |
498 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
25cc7da7 | 499 | |
029632fb PZ |
500 | #else /* CONFIG_CGROUP_SCHED */ |
501 | ||
502 | struct cfs_bandwidth { }; | |
503 | ||
504 | #endif /* CONFIG_CGROUP_SCHED */ | |
505 | ||
87514b2c BD |
506 | extern void unregister_rt_sched_group(struct task_group *tg); |
507 | extern void free_rt_sched_group(struct task_group *tg); | |
508 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | |
509 | ||
d05b4305 VD |
510 | /* |
511 | * u64_u32_load/u64_u32_store | |
512 | * | |
513 | * Use a copy of a u64 value to protect against data race. This is only | |
514 | * applicable for 32-bits architectures. | |
515 | */ | |
516 | #ifdef CONFIG_64BIT | |
517 | # define u64_u32_load_copy(var, copy) var | |
518 | # define u64_u32_store_copy(var, copy, val) (var = val) | |
519 | #else | |
520 | # define u64_u32_load_copy(var, copy) \ | |
521 | ({ \ | |
522 | u64 __val, __val_copy; \ | |
523 | do { \ | |
524 | __val_copy = copy; \ | |
525 | /* \ | |
526 | * paired with u64_u32_store_copy(), ordering access \ | |
527 | * to var and copy. \ | |
528 | */ \ | |
529 | smp_rmb(); \ | |
530 | __val = var; \ | |
531 | } while (__val != __val_copy); \ | |
532 | __val; \ | |
533 | }) | |
534 | # define u64_u32_store_copy(var, copy, val) \ | |
535 | do { \ | |
536 | typeof(val) __val = (val); \ | |
537 | var = __val; \ | |
538 | /* \ | |
539 | * paired with u64_u32_load_copy(), ordering access to var and \ | |
540 | * copy. \ | |
541 | */ \ | |
542 | smp_wmb(); \ | |
543 | copy = __val; \ | |
544 | } while (0) | |
545 | #endif | |
546 | # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) | |
547 | # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) | |
548 | ||
029632fb PZ |
549 | /* CFS-related fields in a runqueue */ |
550 | struct cfs_rq { | |
97fb7a0a | 551 | struct load_weight load; |
97fb7a0a | 552 | unsigned int nr_running; |
43e9f7f2 | 553 | unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ |
a480adde | 554 | unsigned int idle_nr_running; /* SCHED_IDLE */ |
43e9f7f2 | 555 | unsigned int idle_h_nr_running; /* SCHED_IDLE */ |
029632fb | 556 | |
97fb7a0a IM |
557 | u64 exec_clock; |
558 | u64 min_vruntime; | |
c6047c2e JFG |
559 | #ifdef CONFIG_SCHED_CORE |
560 | unsigned int forceidle_seq; | |
561 | u64 min_vruntime_fi; | |
562 | #endif | |
563 | ||
029632fb | 564 | #ifndef CONFIG_64BIT |
97fb7a0a | 565 | u64 min_vruntime_copy; |
029632fb PZ |
566 | #endif |
567 | ||
97fb7a0a | 568 | struct rb_root_cached tasks_timeline; |
029632fb | 569 | |
029632fb PZ |
570 | /* |
571 | * 'curr' points to currently running entity on this cfs_rq. | |
572 | * It is set to NULL otherwise (i.e when none are currently running). | |
573 | */ | |
97fb7a0a IM |
574 | struct sched_entity *curr; |
575 | struct sched_entity *next; | |
576 | struct sched_entity *last; | |
577 | struct sched_entity *skip; | |
029632fb PZ |
578 | |
579 | #ifdef CONFIG_SCHED_DEBUG | |
97fb7a0a | 580 | unsigned int nr_spread_over; |
029632fb PZ |
581 | #endif |
582 | ||
2dac754e PT |
583 | #ifdef CONFIG_SMP |
584 | /* | |
9d89c257 | 585 | * CFS load tracking |
2dac754e | 586 | */ |
97fb7a0a | 587 | struct sched_avg avg; |
2a2f5d4e | 588 | #ifndef CONFIG_64BIT |
d05b4305 | 589 | u64 last_update_time_copy; |
9d89c257 | 590 | #endif |
2a2f5d4e PZ |
591 | struct { |
592 | raw_spinlock_t lock ____cacheline_aligned; | |
593 | int nr; | |
594 | unsigned long load_avg; | |
595 | unsigned long util_avg; | |
9f683953 | 596 | unsigned long runnable_avg; |
2a2f5d4e | 597 | } removed; |
82958366 | 598 | |
9d89c257 | 599 | #ifdef CONFIG_FAIR_GROUP_SCHED |
97fb7a0a IM |
600 | unsigned long tg_load_avg_contrib; |
601 | long propagate; | |
602 | long prop_runnable_sum; | |
0e2d2aaa | 603 | |
82958366 PT |
604 | /* |
605 | * h_load = weight * f(tg) | |
606 | * | |
607 | * Where f(tg) is the recursive weight fraction assigned to | |
608 | * this group. | |
609 | */ | |
97fb7a0a IM |
610 | unsigned long h_load; |
611 | u64 last_h_load_update; | |
612 | struct sched_entity *h_load_next; | |
68520796 | 613 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
82958366 PT |
614 | #endif /* CONFIG_SMP */ |
615 | ||
029632fb | 616 | #ifdef CONFIG_FAIR_GROUP_SCHED |
97fb7a0a | 617 | struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ |
029632fb PZ |
618 | |
619 | /* | |
620 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
621 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | |
622 | * (like users, containers etc.) | |
623 | * | |
97fb7a0a IM |
624 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. |
625 | * This list is used during load balance. | |
029632fb | 626 | */ |
97fb7a0a IM |
627 | int on_list; |
628 | struct list_head leaf_cfs_rq_list; | |
629 | struct task_group *tg; /* group that "owns" this runqueue */ | |
029632fb | 630 | |
30400039 JD |
631 | /* Locally cached copy of our task_group's idle value */ |
632 | int idle; | |
633 | ||
029632fb | 634 | #ifdef CONFIG_CFS_BANDWIDTH |
97fb7a0a | 635 | int runtime_enabled; |
97fb7a0a IM |
636 | s64 runtime_remaining; |
637 | ||
e2f3e35f VD |
638 | u64 throttled_pelt_idle; |
639 | #ifndef CONFIG_64BIT | |
640 | u64 throttled_pelt_idle_copy; | |
641 | #endif | |
97fb7a0a | 642 | u64 throttled_clock; |
64eaf507 CZ |
643 | u64 throttled_clock_pelt; |
644 | u64 throttled_clock_pelt_time; | |
97fb7a0a IM |
645 | int throttled; |
646 | int throttle_count; | |
647 | struct list_head throttled_list; | |
8ad075c2 JD |
648 | #ifdef CONFIG_SMP |
649 | struct list_head throttled_csd_list; | |
650 | #endif | |
029632fb PZ |
651 | #endif /* CONFIG_CFS_BANDWIDTH */ |
652 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
653 | }; | |
654 | ||
655 | static inline int rt_bandwidth_enabled(void) | |
656 | { | |
657 | return sysctl_sched_rt_runtime >= 0; | |
658 | } | |
659 | ||
b6366f04 | 660 | /* RT IPI pull logic requires IRQ_WORK */ |
4bdced5c | 661 | #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) |
b6366f04 SR |
662 | # define HAVE_RT_PUSH_IPI |
663 | #endif | |
664 | ||
029632fb PZ |
665 | /* Real-Time classes' related field in a runqueue: */ |
666 | struct rt_rq { | |
97fb7a0a IM |
667 | struct rt_prio_array active; |
668 | unsigned int rt_nr_running; | |
669 | unsigned int rr_nr_running; | |
029632fb PZ |
670 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
671 | struct { | |
97fb7a0a | 672 | int curr; /* highest queued rt task prio */ |
029632fb | 673 | #ifdef CONFIG_SMP |
97fb7a0a | 674 | int next; /* next highest */ |
029632fb PZ |
675 | #endif |
676 | } highest_prio; | |
677 | #endif | |
678 | #ifdef CONFIG_SMP | |
e6fe3f42 AD |
679 | unsigned int rt_nr_migratory; |
680 | unsigned int rt_nr_total; | |
97fb7a0a IM |
681 | int overloaded; |
682 | struct plist_head pushable_tasks; | |
371bf427 | 683 | |
b6366f04 | 684 | #endif /* CONFIG_SMP */ |
97fb7a0a | 685 | int rt_queued; |
f4ebcbc0 | 686 | |
97fb7a0a IM |
687 | int rt_throttled; |
688 | u64 rt_time; | |
689 | u64 rt_runtime; | |
029632fb | 690 | /* Nests inside the rq lock: */ |
97fb7a0a | 691 | raw_spinlock_t rt_runtime_lock; |
029632fb PZ |
692 | |
693 | #ifdef CONFIG_RT_GROUP_SCHED | |
e6fe3f42 | 694 | unsigned int rt_nr_boosted; |
029632fb | 695 | |
97fb7a0a IM |
696 | struct rq *rq; |
697 | struct task_group *tg; | |
029632fb PZ |
698 | #endif |
699 | }; | |
700 | ||
296b2ffe VG |
701 | static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) |
702 | { | |
703 | return rt_rq->rt_queued && rt_rq->rt_nr_running; | |
704 | } | |
705 | ||
aab03e05 DF |
706 | /* Deadline class' related fields in a runqueue */ |
707 | struct dl_rq { | |
708 | /* runqueue is an rbtree, ordered by deadline */ | |
97fb7a0a | 709 | struct rb_root_cached root; |
aab03e05 | 710 | |
e6fe3f42 | 711 | unsigned int dl_nr_running; |
1baca4ce JL |
712 | |
713 | #ifdef CONFIG_SMP | |
714 | /* | |
715 | * Deadline values of the currently executing and the | |
716 | * earliest ready task on this rq. Caching these facilitates | |
dfcb245e | 717 | * the decision whether or not a ready but not running task |
1baca4ce JL |
718 | * should migrate somewhere else. |
719 | */ | |
720 | struct { | |
97fb7a0a IM |
721 | u64 curr; |
722 | u64 next; | |
1baca4ce JL |
723 | } earliest_dl; |
724 | ||
e6fe3f42 | 725 | unsigned int dl_nr_migratory; |
97fb7a0a | 726 | int overloaded; |
1baca4ce JL |
727 | |
728 | /* | |
729 | * Tasks on this rq that can be pushed away. They are kept in | |
730 | * an rb-tree, ordered by tasks' deadlines, with caching | |
731 | * of the leftmost (earliest deadline) element. | |
732 | */ | |
97fb7a0a | 733 | struct rb_root_cached pushable_dl_tasks_root; |
332ac17e | 734 | #else |
97fb7a0a | 735 | struct dl_bw dl_bw; |
1baca4ce | 736 | #endif |
e36d8677 LA |
737 | /* |
738 | * "Active utilization" for this runqueue: increased when a | |
739 | * task wakes up (becomes TASK_RUNNING) and decreased when a | |
740 | * task blocks | |
741 | */ | |
97fb7a0a | 742 | u64 running_bw; |
4da3abce | 743 | |
8fd27231 LA |
744 | /* |
745 | * Utilization of the tasks "assigned" to this runqueue (including | |
746 | * the tasks that are in runqueue and the tasks that executed on this | |
747 | * CPU and blocked). Increased when a task moves to this runqueue, and | |
748 | * decreased when the task moves away (migrates, changes scheduling | |
749 | * policy, or terminates). | |
750 | * This is needed to compute the "inactive utilization" for the | |
751 | * runqueue (inactive utilization = this_bw - running_bw). | |
752 | */ | |
97fb7a0a IM |
753 | u64 this_bw; |
754 | u64 extra_bw; | |
8fd27231 | 755 | |
4da3abce LA |
756 | /* |
757 | * Inverse of the fraction of CPU utilization that can be reclaimed | |
758 | * by the GRUB algorithm. | |
759 | */ | |
97fb7a0a | 760 | u64 bw_ratio; |
aab03e05 DF |
761 | }; |
762 | ||
c0796298 VG |
763 | #ifdef CONFIG_FAIR_GROUP_SCHED |
764 | /* An entity is a task if it doesn't "own" a runqueue */ | |
765 | #define entity_is_task(se) (!se->my_q) | |
0dacee1b | 766 | |
9f683953 VG |
767 | static inline void se_update_runnable(struct sched_entity *se) |
768 | { | |
769 | if (!entity_is_task(se)) | |
770 | se->runnable_weight = se->my_q->h_nr_running; | |
771 | } | |
772 | ||
773 | static inline long se_runnable(struct sched_entity *se) | |
774 | { | |
775 | if (entity_is_task(se)) | |
776 | return !!se->on_rq; | |
777 | else | |
778 | return se->runnable_weight; | |
779 | } | |
780 | ||
c0796298 VG |
781 | #else |
782 | #define entity_is_task(se) 1 | |
0dacee1b | 783 | |
9f683953 VG |
784 | static inline void se_update_runnable(struct sched_entity *se) {} |
785 | ||
786 | static inline long se_runnable(struct sched_entity *se) | |
787 | { | |
788 | return !!se->on_rq; | |
789 | } | |
c0796298 VG |
790 | #endif |
791 | ||
029632fb | 792 | #ifdef CONFIG_SMP |
c0796298 VG |
793 | /* |
794 | * XXX we want to get rid of these helpers and use the full load resolution. | |
795 | */ | |
796 | static inline long se_weight(struct sched_entity *se) | |
797 | { | |
798 | return scale_load_down(se->load.weight); | |
799 | } | |
800 | ||
029632fb | 801 | |
afe06efd TC |
802 | static inline bool sched_asym_prefer(int a, int b) |
803 | { | |
804 | return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); | |
805 | } | |
806 | ||
6aa140fa QP |
807 | struct perf_domain { |
808 | struct em_perf_domain *em_pd; | |
809 | struct perf_domain *next; | |
810 | struct rcu_head rcu; | |
811 | }; | |
812 | ||
630246a0 QP |
813 | /* Scheduling group status flags */ |
814 | #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ | |
2802bf3c | 815 | #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ |
630246a0 | 816 | |
029632fb PZ |
817 | /* |
818 | * We add the notion of a root-domain which will be used to define per-domain | |
819 | * variables. Each exclusive cpuset essentially defines an island domain by | |
97fb7a0a | 820 | * fully partitioning the member CPUs from any other cpuset. Whenever a new |
029632fb PZ |
821 | * exclusive cpuset is created, we also create and attach a new root-domain |
822 | * object. | |
823 | * | |
824 | */ | |
825 | struct root_domain { | |
97fb7a0a IM |
826 | atomic_t refcount; |
827 | atomic_t rto_count; | |
828 | struct rcu_head rcu; | |
829 | cpumask_var_t span; | |
830 | cpumask_var_t online; | |
029632fb | 831 | |
757ffdd7 VS |
832 | /* |
833 | * Indicate pullable load on at least one CPU, e.g: | |
834 | * - More than one runnable task | |
835 | * - Running task is misfit | |
836 | */ | |
575638d1 | 837 | int overload; |
4486edd1 | 838 | |
2802bf3c MR |
839 | /* Indicate one or more cpus over-utilized (tipping point) */ |
840 | int overutilized; | |
841 | ||
1baca4ce JL |
842 | /* |
843 | * The bit corresponding to a CPU gets set here if such CPU has more | |
844 | * than one runnable -deadline task (as it is below for RT tasks). | |
845 | */ | |
97fb7a0a IM |
846 | cpumask_var_t dlo_mask; |
847 | atomic_t dlo_count; | |
848 | struct dl_bw dl_bw; | |
849 | struct cpudl cpudl; | |
1baca4ce | 850 | |
26762423 PL |
851 | /* |
852 | * Indicate whether a root_domain's dl_bw has been checked or | |
853 | * updated. It's monotonously increasing value. | |
854 | * | |
855 | * Also, some corner cases, like 'wrap around' is dangerous, but given | |
856 | * that u64 is 'big enough'. So that shouldn't be a concern. | |
857 | */ | |
858 | u64 visit_gen; | |
859 | ||
4bdced5c SRRH |
860 | #ifdef HAVE_RT_PUSH_IPI |
861 | /* | |
862 | * For IPI pull requests, loop across the rto_mask. | |
863 | */ | |
97fb7a0a IM |
864 | struct irq_work rto_push_work; |
865 | raw_spinlock_t rto_lock; | |
4bdced5c | 866 | /* These are only updated and read within rto_lock */ |
97fb7a0a IM |
867 | int rto_loop; |
868 | int rto_cpu; | |
4bdced5c | 869 | /* These atomics are updated outside of a lock */ |
97fb7a0a IM |
870 | atomic_t rto_loop_next; |
871 | atomic_t rto_loop_start; | |
4bdced5c | 872 | #endif |
029632fb PZ |
873 | /* |
874 | * The "RT overload" flag: it gets set if a CPU has more than | |
875 | * one runnable RT task. | |
876 | */ | |
97fb7a0a IM |
877 | cpumask_var_t rto_mask; |
878 | struct cpupri cpupri; | |
cd92bfd3 | 879 | |
97fb7a0a | 880 | unsigned long max_cpu_capacity; |
6aa140fa QP |
881 | |
882 | /* | |
883 | * NULL-terminated list of performance domains intersecting with the | |
884 | * CPUs of the rd. Protected by RCU. | |
885 | */ | |
7ba7319f | 886 | struct perf_domain __rcu *pd; |
029632fb PZ |
887 | }; |
888 | ||
f2cb1360 | 889 | extern void init_defrootdomain(void); |
8d5dc512 | 890 | extern int sched_init_domains(const struct cpumask *cpu_map); |
f2cb1360 | 891 | extern void rq_attach_root(struct rq *rq, struct root_domain *rd); |
364f5665 SRV |
892 | extern void sched_get_rd(struct root_domain *rd); |
893 | extern void sched_put_rd(struct root_domain *rd); | |
029632fb | 894 | |
4bdced5c SRRH |
895 | #ifdef HAVE_RT_PUSH_IPI |
896 | extern void rto_push_irq_work_func(struct irq_work *work); | |
897 | #endif | |
029632fb PZ |
898 | #endif /* CONFIG_SMP */ |
899 | ||
69842cba PB |
900 | #ifdef CONFIG_UCLAMP_TASK |
901 | /* | |
902 | * struct uclamp_bucket - Utilization clamp bucket | |
903 | * @value: utilization clamp value for tasks on this clamp bucket | |
904 | * @tasks: number of RUNNABLE tasks on this clamp bucket | |
905 | * | |
906 | * Keep track of how many tasks are RUNNABLE for a given utilization | |
907 | * clamp value. | |
908 | */ | |
909 | struct uclamp_bucket { | |
910 | unsigned long value : bits_per(SCHED_CAPACITY_SCALE); | |
911 | unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); | |
912 | }; | |
913 | ||
914 | /* | |
915 | * struct uclamp_rq - rq's utilization clamp | |
916 | * @value: currently active clamp values for a rq | |
917 | * @bucket: utilization clamp buckets affecting a rq | |
918 | * | |
919 | * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. | |
920 | * A clamp value is affecting a rq when there is at least one task RUNNABLE | |
921 | * (or actually running) with that value. | |
922 | * | |
923 | * There are up to UCLAMP_CNT possible different clamp values, currently there | |
924 | * are only two: minimum utilization and maximum utilization. | |
925 | * | |
926 | * All utilization clamping values are MAX aggregated, since: | |
927 | * - for util_min: we want to run the CPU at least at the max of the minimum | |
928 | * utilization required by its currently RUNNABLE tasks. | |
929 | * - for util_max: we want to allow the CPU to run up to the max of the | |
930 | * maximum utilization allowed by its currently RUNNABLE tasks. | |
931 | * | |
932 | * Since on each system we expect only a limited number of different | |
933 | * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track | |
934 | * the metrics required to compute all the per-rq utilization clamp values. | |
935 | */ | |
936 | struct uclamp_rq { | |
937 | unsigned int value; | |
938 | struct uclamp_bucket bucket[UCLAMP_BUCKETS]; | |
939 | }; | |
46609ce2 QY |
940 | |
941 | DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); | |
69842cba PB |
942 | #endif /* CONFIG_UCLAMP_TASK */ |
943 | ||
8e5bad7d KC |
944 | struct rq; |
945 | struct balance_callback { | |
946 | struct balance_callback *next; | |
947 | void (*func)(struct rq *rq); | |
948 | }; | |
949 | ||
029632fb PZ |
950 | /* |
951 | * This is the main, per-CPU runqueue data structure. | |
952 | * | |
953 | * Locking rule: those places that want to lock multiple runqueues | |
954 | * (such as the load balancing or the thread migration code), lock | |
955 | * acquire operations must be ordered by ascending &runqueue. | |
956 | */ | |
957 | struct rq { | |
958 | /* runqueue lock: */ | |
5cb9eaa3 | 959 | raw_spinlock_t __lock; |
029632fb PZ |
960 | |
961 | /* | |
962 | * nr_running and cpu_load should be in the same cacheline because | |
963 | * remote CPUs use both these fields when doing load calculation. | |
964 | */ | |
97fb7a0a | 965 | unsigned int nr_running; |
0ec8aa00 | 966 | #ifdef CONFIG_NUMA_BALANCING |
97fb7a0a IM |
967 | unsigned int nr_numa_running; |
968 | unsigned int nr_preferred_running; | |
a4739eca | 969 | unsigned int numa_migrate_on; |
0ec8aa00 | 970 | #endif |
3451d024 | 971 | #ifdef CONFIG_NO_HZ_COMMON |
9fd81dd5 | 972 | #ifdef CONFIG_SMP |
e022e0d3 | 973 | unsigned long last_blocked_load_update_tick; |
f643ea22 | 974 | unsigned int has_blocked_load; |
90b5363a | 975 | call_single_data_t nohz_csd; |
9fd81dd5 | 976 | #endif /* CONFIG_SMP */ |
00357f5e | 977 | unsigned int nohz_tick_stopped; |
90b5363a | 978 | atomic_t nohz_flags; |
9fd81dd5 | 979 | #endif /* CONFIG_NO_HZ_COMMON */ |
dcdedb24 | 980 | |
126c2092 PZ |
981 | #ifdef CONFIG_SMP |
982 | unsigned int ttwu_pending; | |
983 | #endif | |
97fb7a0a | 984 | u64 nr_switches; |
029632fb | 985 | |
69842cba PB |
986 | #ifdef CONFIG_UCLAMP_TASK |
987 | /* Utilization clamp values based on CPU's RUNNABLE tasks */ | |
988 | struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; | |
e496187d PB |
989 | unsigned int uclamp_flags; |
990 | #define UCLAMP_FLAG_IDLE 0x01 | |
69842cba PB |
991 | #endif |
992 | ||
97fb7a0a IM |
993 | struct cfs_rq cfs; |
994 | struct rt_rq rt; | |
995 | struct dl_rq dl; | |
029632fb PZ |
996 | |
997 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
97fb7a0a IM |
998 | /* list of leaf cfs_rq on this CPU: */ |
999 | struct list_head leaf_cfs_rq_list; | |
1000 | struct list_head *tmp_alone_branch; | |
a35b6466 PZ |
1001 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
1002 | ||
029632fb PZ |
1003 | /* |
1004 | * This is part of a global counter where only the total sum | |
1005 | * over all CPUs matters. A task can increase this counter on | |
1006 | * one CPU and if it got migrated afterwards it may decrease | |
1007 | * it on another CPU. Always updated under the runqueue lock: | |
1008 | */ | |
e6fe3f42 | 1009 | unsigned int nr_uninterruptible; |
029632fb | 1010 | |
4104a562 | 1011 | struct task_struct __rcu *curr; |
97fb7a0a IM |
1012 | struct task_struct *idle; |
1013 | struct task_struct *stop; | |
1014 | unsigned long next_balance; | |
1015 | struct mm_struct *prev_mm; | |
029632fb | 1016 | |
97fb7a0a IM |
1017 | unsigned int clock_update_flags; |
1018 | u64 clock; | |
23127296 VG |
1019 | /* Ensure that all clocks are in the same cache line */ |
1020 | u64 clock_task ____cacheline_aligned; | |
1021 | u64 clock_pelt; | |
1022 | unsigned long lost_idle_time; | |
e2f3e35f VD |
1023 | u64 clock_pelt_idle; |
1024 | u64 clock_idle; | |
1025 | #ifndef CONFIG_64BIT | |
1026 | u64 clock_pelt_idle_copy; | |
1027 | u64 clock_idle_copy; | |
1028 | #endif | |
029632fb | 1029 | |
97fb7a0a | 1030 | atomic_t nr_iowait; |
029632fb | 1031 | |
c006fac5 PT |
1032 | #ifdef CONFIG_SCHED_DEBUG |
1033 | u64 last_seen_need_resched_ns; | |
1034 | int ticks_without_resched; | |
1035 | #endif | |
1036 | ||
227a4aad MD |
1037 | #ifdef CONFIG_MEMBARRIER |
1038 | int membarrier_state; | |
1039 | #endif | |
1040 | ||
029632fb | 1041 | #ifdef CONFIG_SMP |
994aeb7a JFG |
1042 | struct root_domain *rd; |
1043 | struct sched_domain __rcu *sd; | |
97fb7a0a IM |
1044 | |
1045 | unsigned long cpu_capacity; | |
1046 | unsigned long cpu_capacity_orig; | |
029632fb | 1047 | |
8e5bad7d | 1048 | struct balance_callback *balance_callback; |
029632fb | 1049 | |
19a1f5ec | 1050 | unsigned char nohz_idle_balance; |
97fb7a0a | 1051 | unsigned char idle_balance; |
e3fca9e7 | 1052 | |
3b1baa64 MR |
1053 | unsigned long misfit_task_load; |
1054 | ||
029632fb | 1055 | /* For active balancing */ |
97fb7a0a IM |
1056 | int active_balance; |
1057 | int push_cpu; | |
1058 | struct cpu_stop_work active_balance_work; | |
1059 | ||
1060 | /* CPU of this runqueue: */ | |
1061 | int cpu; | |
1062 | int online; | |
029632fb | 1063 | |
367456c7 PZ |
1064 | struct list_head cfs_tasks; |
1065 | ||
371bf427 | 1066 | struct sched_avg avg_rt; |
3727e0e1 | 1067 | struct sched_avg avg_dl; |
11d4afd4 | 1068 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
91c27493 | 1069 | struct sched_avg avg_irq; |
76504793 TG |
1070 | #endif |
1071 | #ifdef CONFIG_SCHED_THERMAL_PRESSURE | |
1072 | struct sched_avg avg_thermal; | |
91c27493 | 1073 | #endif |
97fb7a0a IM |
1074 | u64 idle_stamp; |
1075 | u64 avg_idle; | |
9bd721c5 | 1076 | |
94aafc3e PZ |
1077 | unsigned long wake_stamp; |
1078 | u64 wake_avg_idle; | |
1079 | ||
9bd721c5 | 1080 | /* This is used to determine avg_idle's max value */ |
97fb7a0a | 1081 | u64 max_idle_balance_cost; |
f2469a1f TG |
1082 | |
1083 | #ifdef CONFIG_HOTPLUG_CPU | |
1084 | struct rcuwait hotplug_wait; | |
1085 | #endif | |
90b5363a | 1086 | #endif /* CONFIG_SMP */ |
029632fb PZ |
1087 | |
1088 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | |
97fb7a0a | 1089 | u64 prev_irq_time; |
029632fb PZ |
1090 | #endif |
1091 | #ifdef CONFIG_PARAVIRT | |
97fb7a0a | 1092 | u64 prev_steal_time; |
029632fb PZ |
1093 | #endif |
1094 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | |
97fb7a0a | 1095 | u64 prev_steal_time_rq; |
029632fb PZ |
1096 | #endif |
1097 | ||
1098 | /* calc_load related fields */ | |
97fb7a0a IM |
1099 | unsigned long calc_load_update; |
1100 | long calc_load_active; | |
029632fb PZ |
1101 | |
1102 | #ifdef CONFIG_SCHED_HRTICK | |
1103 | #ifdef CONFIG_SMP | |
97fb7a0a | 1104 | call_single_data_t hrtick_csd; |
029632fb | 1105 | #endif |
97fb7a0a | 1106 | struct hrtimer hrtick_timer; |
156ec6f4 | 1107 | ktime_t hrtick_time; |
029632fb PZ |
1108 | #endif |
1109 | ||
1110 | #ifdef CONFIG_SCHEDSTATS | |
1111 | /* latency stats */ | |
97fb7a0a IM |
1112 | struct sched_info rq_sched_info; |
1113 | unsigned long long rq_cpu_time; | |
029632fb PZ |
1114 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
1115 | ||
1116 | /* sys_sched_yield() stats */ | |
97fb7a0a | 1117 | unsigned int yld_count; |
029632fb PZ |
1118 | |
1119 | /* schedule() stats */ | |
97fb7a0a IM |
1120 | unsigned int sched_count; |
1121 | unsigned int sched_goidle; | |
029632fb PZ |
1122 | |
1123 | /* try_to_wake_up() stats */ | |
97fb7a0a IM |
1124 | unsigned int ttwu_count; |
1125 | unsigned int ttwu_local; | |
029632fb PZ |
1126 | #endif |
1127 | ||
442bf3aa DL |
1128 | #ifdef CONFIG_CPU_IDLE |
1129 | /* Must be inspected within a rcu lock section */ | |
97fb7a0a | 1130 | struct cpuidle_state *idle_state; |
442bf3aa | 1131 | #endif |
3015ef4b | 1132 | |
74d862b6 | 1133 | #ifdef CONFIG_SMP |
3015ef4b TG |
1134 | unsigned int nr_pinned; |
1135 | #endif | |
a7c81556 PZ |
1136 | unsigned int push_busy; |
1137 | struct cpu_stop_work push_work; | |
9edeaea1 PZ |
1138 | |
1139 | #ifdef CONFIG_SCHED_CORE | |
1140 | /* per rq */ | |
1141 | struct rq *core; | |
539f6512 | 1142 | struct task_struct *core_pick; |
9edeaea1 | 1143 | unsigned int core_enabled; |
539f6512 | 1144 | unsigned int core_sched_seq; |
8a311c74 PZ |
1145 | struct rb_root core_tree; |
1146 | ||
3c474b32 | 1147 | /* shared state -- careful with sched_core_cpu_deactivate() */ |
8a311c74 | 1148 | unsigned int core_task_seq; |
539f6512 PZ |
1149 | unsigned int core_pick_seq; |
1150 | unsigned long core_cookie; | |
4feee7d1 | 1151 | unsigned int core_forceidle_count; |
c6047c2e | 1152 | unsigned int core_forceidle_seq; |
4feee7d1 JD |
1153 | unsigned int core_forceidle_occupation; |
1154 | u64 core_forceidle_start; | |
9edeaea1 | 1155 | #endif |
da019032 WL |
1156 | |
1157 | /* Scratch cpumask to be temporarily used under rq_lock */ | |
1158 | cpumask_var_t scratch_mask; | |
8ad075c2 JD |
1159 | |
1160 | #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) | |
1161 | call_single_data_t cfsb_csd; | |
1162 | struct list_head cfsb_csd_list; | |
1163 | #endif | |
029632fb PZ |
1164 | }; |
1165 | ||
62478d99 VG |
1166 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1167 | ||
1168 | /* CPU runqueue to which this cfs_rq is attached */ | |
1169 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | |
1170 | { | |
1171 | return cfs_rq->rq; | |
1172 | } | |
1173 | ||
1174 | #else | |
1175 | ||
1176 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | |
1177 | { | |
1178 | return container_of(cfs_rq, struct rq, cfs); | |
1179 | } | |
1180 | #endif | |
1181 | ||
029632fb PZ |
1182 | static inline int cpu_of(struct rq *rq) |
1183 | { | |
1184 | #ifdef CONFIG_SMP | |
1185 | return rq->cpu; | |
1186 | #else | |
1187 | return 0; | |
1188 | #endif | |
1189 | } | |
1190 | ||
a7c81556 PZ |
1191 | #define MDF_PUSH 0x01 |
1192 | ||
1193 | static inline bool is_migration_disabled(struct task_struct *p) | |
1194 | { | |
74d862b6 | 1195 | #ifdef CONFIG_SMP |
a7c81556 PZ |
1196 | return p->migration_disabled; |
1197 | #else | |
1198 | return false; | |
1199 | #endif | |
1200 | } | |
1b568f0a | 1201 | |
e705968d LS |
1202 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1203 | ||
1204 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
1205 | #define this_rq() this_cpu_ptr(&runqueues) | |
1206 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
1207 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
1208 | #define raw_rq() raw_cpu_ptr(&runqueues) | |
1209 | ||
97886d9d | 1210 | struct sched_group; |
9edeaea1 | 1211 | #ifdef CONFIG_SCHED_CORE |
97886d9d | 1212 | static inline struct cpumask *sched_group_span(struct sched_group *sg); |
9edeaea1 PZ |
1213 | |
1214 | DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); | |
1215 | ||
1216 | static inline bool sched_core_enabled(struct rq *rq) | |
1217 | { | |
1218 | return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; | |
1219 | } | |
1220 | ||
1221 | static inline bool sched_core_disabled(void) | |
1222 | { | |
1223 | return !static_branch_unlikely(&__sched_core_enabled); | |
1224 | } | |
1225 | ||
9ef7e7e3 PZ |
1226 | /* |
1227 | * Be careful with this function; not for general use. The return value isn't | |
1228 | * stable unless you actually hold a relevant rq->__lock. | |
1229 | */ | |
9edeaea1 PZ |
1230 | static inline raw_spinlock_t *rq_lockp(struct rq *rq) |
1231 | { | |
1232 | if (sched_core_enabled(rq)) | |
1233 | return &rq->core->__lock; | |
1234 | ||
1235 | return &rq->__lock; | |
1236 | } | |
1237 | ||
9ef7e7e3 PZ |
1238 | static inline raw_spinlock_t *__rq_lockp(struct rq *rq) |
1239 | { | |
1240 | if (rq->core_enabled) | |
1241 | return &rq->core->__lock; | |
1242 | ||
1243 | return &rq->__lock; | |
1244 | } | |
1245 | ||
904cbab7 MWO |
1246 | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, |
1247 | bool fi); | |
c6047c2e | 1248 | |
97886d9d AL |
1249 | /* |
1250 | * Helpers to check if the CPU's core cookie matches with the task's cookie | |
1251 | * when core scheduling is enabled. | |
1252 | * A special case is that the task's cookie always matches with CPU's core | |
1253 | * cookie if the CPU is in an idle core. | |
1254 | */ | |
1255 | static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) | |
1256 | { | |
1257 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ | |
1258 | if (!sched_core_enabled(rq)) | |
1259 | return true; | |
1260 | ||
1261 | return rq->core->core_cookie == p->core_cookie; | |
1262 | } | |
1263 | ||
1264 | static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) | |
1265 | { | |
1266 | bool idle_core = true; | |
1267 | int cpu; | |
1268 | ||
1269 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ | |
1270 | if (!sched_core_enabled(rq)) | |
1271 | return true; | |
1272 | ||
1273 | for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { | |
1274 | if (!available_idle_cpu(cpu)) { | |
1275 | idle_core = false; | |
1276 | break; | |
1277 | } | |
1278 | } | |
1279 | ||
1280 | /* | |
1281 | * A CPU in an idle core is always the best choice for tasks with | |
1282 | * cookies. | |
1283 | */ | |
1284 | return idle_core || rq->core->core_cookie == p->core_cookie; | |
1285 | } | |
1286 | ||
1287 | static inline bool sched_group_cookie_match(struct rq *rq, | |
1288 | struct task_struct *p, | |
1289 | struct sched_group *group) | |
1290 | { | |
1291 | int cpu; | |
1292 | ||
1293 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ | |
1294 | if (!sched_core_enabled(rq)) | |
1295 | return true; | |
1296 | ||
1297 | for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { | |
e705968d | 1298 | if (sched_core_cookie_match(cpu_rq(cpu), p)) |
97886d9d AL |
1299 | return true; |
1300 | } | |
1301 | return false; | |
1302 | } | |
1303 | ||
6e33cad0 PZ |
1304 | static inline bool sched_core_enqueued(struct task_struct *p) |
1305 | { | |
1306 | return !RB_EMPTY_NODE(&p->core_node); | |
1307 | } | |
1308 | ||
1309 | extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); | |
4feee7d1 | 1310 | extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); |
6e33cad0 PZ |
1311 | |
1312 | extern void sched_core_get(void); | |
1313 | extern void sched_core_put(void); | |
1314 | ||
9edeaea1 PZ |
1315 | #else /* !CONFIG_SCHED_CORE */ |
1316 | ||
1317 | static inline bool sched_core_enabled(struct rq *rq) | |
1318 | { | |
1319 | return false; | |
1320 | } | |
1321 | ||
d66f1b06 PZ |
1322 | static inline bool sched_core_disabled(void) |
1323 | { | |
1324 | return true; | |
1325 | } | |
1326 | ||
39d371b7 PZ |
1327 | static inline raw_spinlock_t *rq_lockp(struct rq *rq) |
1328 | { | |
5cb9eaa3 | 1329 | return &rq->__lock; |
39d371b7 PZ |
1330 | } |
1331 | ||
9ef7e7e3 PZ |
1332 | static inline raw_spinlock_t *__rq_lockp(struct rq *rq) |
1333 | { | |
1334 | return &rq->__lock; | |
1335 | } | |
1336 | ||
97886d9d AL |
1337 | static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) |
1338 | { | |
1339 | return true; | |
1340 | } | |
1341 | ||
1342 | static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) | |
1343 | { | |
1344 | return true; | |
1345 | } | |
1346 | ||
1347 | static inline bool sched_group_cookie_match(struct rq *rq, | |
1348 | struct task_struct *p, | |
1349 | struct sched_group *group) | |
1350 | { | |
1351 | return true; | |
1352 | } | |
9edeaea1 PZ |
1353 | #endif /* CONFIG_SCHED_CORE */ |
1354 | ||
39d371b7 PZ |
1355 | static inline void lockdep_assert_rq_held(struct rq *rq) |
1356 | { | |
9ef7e7e3 | 1357 | lockdep_assert_held(__rq_lockp(rq)); |
39d371b7 PZ |
1358 | } |
1359 | ||
1360 | extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); | |
1361 | extern bool raw_spin_rq_trylock(struct rq *rq); | |
1362 | extern void raw_spin_rq_unlock(struct rq *rq); | |
1363 | ||
1364 | static inline void raw_spin_rq_lock(struct rq *rq) | |
1365 | { | |
1366 | raw_spin_rq_lock_nested(rq, 0); | |
1367 | } | |
1368 | ||
1369 | static inline void raw_spin_rq_lock_irq(struct rq *rq) | |
1370 | { | |
1371 | local_irq_disable(); | |
1372 | raw_spin_rq_lock(rq); | |
1373 | } | |
1374 | ||
1375 | static inline void raw_spin_rq_unlock_irq(struct rq *rq) | |
1376 | { | |
1377 | raw_spin_rq_unlock(rq); | |
1378 | local_irq_enable(); | |
1379 | } | |
1380 | ||
1381 | static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) | |
1382 | { | |
1383 | unsigned long flags; | |
1384 | local_irq_save(flags); | |
1385 | raw_spin_rq_lock(rq); | |
1386 | return flags; | |
1387 | } | |
1388 | ||
1389 | static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) | |
1390 | { | |
1391 | raw_spin_rq_unlock(rq); | |
1392 | local_irq_restore(flags); | |
1393 | } | |
1394 | ||
1395 | #define raw_spin_rq_lock_irqsave(rq, flags) \ | |
1396 | do { \ | |
1397 | flags = _raw_spin_rq_lock_irqsave(rq); \ | |
1398 | } while (0) | |
1399 | ||
1b568f0a | 1400 | #ifdef CONFIG_SCHED_SMT |
1b568f0a PZ |
1401 | extern void __update_idle_core(struct rq *rq); |
1402 | ||
1403 | static inline void update_idle_core(struct rq *rq) | |
1404 | { | |
1405 | if (static_branch_unlikely(&sched_smt_present)) | |
1406 | __update_idle_core(rq); | |
1407 | } | |
1408 | ||
1409 | #else | |
1410 | static inline void update_idle_core(struct rq *rq) { } | |
1411 | #endif | |
1412 | ||
8a311c74 PZ |
1413 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1414 | static inline struct task_struct *task_of(struct sched_entity *se) | |
1415 | { | |
1416 | SCHED_WARN_ON(!entity_is_task(se)); | |
1417 | return container_of(se, struct task_struct, se); | |
1418 | } | |
1419 | ||
1420 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
1421 | { | |
1422 | return p->se.cfs_rq; | |
1423 | } | |
1424 | ||
1425 | /* runqueue on which this entity is (to be) queued */ | |
904cbab7 | 1426 | static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) |
8a311c74 PZ |
1427 | { |
1428 | return se->cfs_rq; | |
1429 | } | |
1430 | ||
1431 | /* runqueue "owned" by this group */ | |
1432 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
1433 | { | |
1434 | return grp->my_q; | |
1435 | } | |
1436 | ||
1437 | #else | |
1438 | ||
904cbab7 | 1439 | #define task_of(_se) container_of(_se, struct task_struct, se) |
8a311c74 | 1440 | |
904cbab7 | 1441 | static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) |
8a311c74 PZ |
1442 | { |
1443 | return &task_rq(p)->cfs; | |
1444 | } | |
1445 | ||
904cbab7 | 1446 | static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) |
8a311c74 | 1447 | { |
904cbab7 | 1448 | const struct task_struct *p = task_of(se); |
8a311c74 PZ |
1449 | struct rq *rq = task_rq(p); |
1450 | ||
1451 | return &rq->cfs; | |
1452 | } | |
1453 | ||
1454 | /* runqueue "owned" by this group */ | |
1455 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
1456 | { | |
1457 | return NULL; | |
1458 | } | |
1459 | #endif | |
1460 | ||
1f351d7f JW |
1461 | extern void update_rq_clock(struct rq *rq); |
1462 | ||
cb42c9a3 MF |
1463 | /* |
1464 | * rq::clock_update_flags bits | |
1465 | * | |
1466 | * %RQCF_REQ_SKIP - will request skipping of clock update on the next | |
1467 | * call to __schedule(). This is an optimisation to avoid | |
1468 | * neighbouring rq clock updates. | |
1469 | * | |
1470 | * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is | |
1471 | * in effect and calls to update_rq_clock() are being ignored. | |
1472 | * | |
1473 | * %RQCF_UPDATED - is a debug flag that indicates whether a call has been | |
1474 | * made to update_rq_clock() since the last time rq::lock was pinned. | |
1475 | * | |
1476 | * If inside of __schedule(), clock_update_flags will have been | |
1477 | * shifted left (a left shift is a cheap operation for the fast path | |
1478 | * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, | |
1479 | * | |
1480 | * if (rq-clock_update_flags >= RQCF_UPDATED) | |
1481 | * | |
3b03706f | 1482 | * to check if %RQCF_UPDATED is set. It'll never be shifted more than |
cb42c9a3 MF |
1483 | * one position though, because the next rq_unpin_lock() will shift it |
1484 | * back. | |
1485 | */ | |
97fb7a0a IM |
1486 | #define RQCF_REQ_SKIP 0x01 |
1487 | #define RQCF_ACT_SKIP 0x02 | |
1488 | #define RQCF_UPDATED 0x04 | |
cb42c9a3 MF |
1489 | |
1490 | static inline void assert_clock_updated(struct rq *rq) | |
1491 | { | |
1492 | /* | |
1493 | * The only reason for not seeing a clock update since the | |
1494 | * last rq_pin_lock() is if we're currently skipping updates. | |
1495 | */ | |
1496 | SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); | |
1497 | } | |
1498 | ||
78becc27 FW |
1499 | static inline u64 rq_clock(struct rq *rq) |
1500 | { | |
5cb9eaa3 | 1501 | lockdep_assert_rq_held(rq); |
cb42c9a3 MF |
1502 | assert_clock_updated(rq); |
1503 | ||
78becc27 FW |
1504 | return rq->clock; |
1505 | } | |
1506 | ||
1507 | static inline u64 rq_clock_task(struct rq *rq) | |
1508 | { | |
5cb9eaa3 | 1509 | lockdep_assert_rq_held(rq); |
cb42c9a3 MF |
1510 | assert_clock_updated(rq); |
1511 | ||
78becc27 FW |
1512 | return rq->clock_task; |
1513 | } | |
1514 | ||
05289b90 TG |
1515 | /** |
1516 | * By default the decay is the default pelt decay period. | |
1517 | * The decay shift can change the decay period in | |
1518 | * multiples of 32. | |
1519 | * Decay shift Decay period(ms) | |
1520 | * 0 32 | |
1521 | * 1 64 | |
1522 | * 2 128 | |
1523 | * 3 256 | |
1524 | * 4 512 | |
1525 | */ | |
1526 | extern int sched_thermal_decay_shift; | |
1527 | ||
1528 | static inline u64 rq_clock_thermal(struct rq *rq) | |
1529 | { | |
1530 | return rq_clock_task(rq) >> sched_thermal_decay_shift; | |
1531 | } | |
1532 | ||
adcc8da8 | 1533 | static inline void rq_clock_skip_update(struct rq *rq) |
9edfbfed | 1534 | { |
5cb9eaa3 | 1535 | lockdep_assert_rq_held(rq); |
adcc8da8 DB |
1536 | rq->clock_update_flags |= RQCF_REQ_SKIP; |
1537 | } | |
1538 | ||
1539 | /* | |
595058b6 | 1540 | * See rt task throttling, which is the only time a skip |
3b03706f | 1541 | * request is canceled. |
adcc8da8 DB |
1542 | */ |
1543 | static inline void rq_clock_cancel_skipupdate(struct rq *rq) | |
1544 | { | |
5cb9eaa3 | 1545 | lockdep_assert_rq_held(rq); |
adcc8da8 | 1546 | rq->clock_update_flags &= ~RQCF_REQ_SKIP; |
9edfbfed PZ |
1547 | } |
1548 | ||
d8ac8971 MF |
1549 | struct rq_flags { |
1550 | unsigned long flags; | |
1551 | struct pin_cookie cookie; | |
cb42c9a3 MF |
1552 | #ifdef CONFIG_SCHED_DEBUG |
1553 | /* | |
1554 | * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the | |
1555 | * current pin context is stashed here in case it needs to be | |
1556 | * restored in rq_repin_lock(). | |
1557 | */ | |
1558 | unsigned int clock_update_flags; | |
1559 | #endif | |
d8ac8971 MF |
1560 | }; |
1561 | ||
8e5bad7d | 1562 | extern struct balance_callback balance_push_callback; |
ae792702 | 1563 | |
58877d34 PZ |
1564 | /* |
1565 | * Lockdep annotation that avoids accidental unlocks; it's like a | |
1566 | * sticky/continuous lockdep_assert_held(). | |
1567 | * | |
1568 | * This avoids code that has access to 'struct rq *rq' (basically everything in | |
1569 | * the scheduler) from accidentally unlocking the rq if they do not also have a | |
1570 | * copy of the (on-stack) 'struct rq_flags rf'. | |
1571 | * | |
1572 | * Also see Documentation/locking/lockdep-design.rst. | |
1573 | */ | |
d8ac8971 MF |
1574 | static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) |
1575 | { | |
9ef7e7e3 | 1576 | rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); |
cb42c9a3 MF |
1577 | |
1578 | #ifdef CONFIG_SCHED_DEBUG | |
1579 | rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); | |
1580 | rf->clock_update_flags = 0; | |
565790d2 | 1581 | #ifdef CONFIG_SMP |
ae792702 PZ |
1582 | SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); |
1583 | #endif | |
565790d2 | 1584 | #endif |
d8ac8971 MF |
1585 | } |
1586 | ||
1587 | static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) | |
1588 | { | |
cb42c9a3 MF |
1589 | #ifdef CONFIG_SCHED_DEBUG |
1590 | if (rq->clock_update_flags > RQCF_ACT_SKIP) | |
1591 | rf->clock_update_flags = RQCF_UPDATED; | |
1592 | #endif | |
1593 | ||
9ef7e7e3 | 1594 | lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); |
d8ac8971 MF |
1595 | } |
1596 | ||
1597 | static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) | |
1598 | { | |
9ef7e7e3 | 1599 | lockdep_repin_lock(__rq_lockp(rq), rf->cookie); |
cb42c9a3 MF |
1600 | |
1601 | #ifdef CONFIG_SCHED_DEBUG | |
1602 | /* | |
1603 | * Restore the value we stashed in @rf for this pin context. | |
1604 | */ | |
1605 | rq->clock_update_flags |= rf->clock_update_flags; | |
1606 | #endif | |
d8ac8971 MF |
1607 | } |
1608 | ||
1f351d7f JW |
1609 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
1610 | __acquires(rq->lock); | |
1611 | ||
1612 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) | |
1613 | __acquires(p->pi_lock) | |
1614 | __acquires(rq->lock); | |
1615 | ||
1616 | static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) | |
1617 | __releases(rq->lock) | |
1618 | { | |
1619 | rq_unpin_lock(rq, rf); | |
5cb9eaa3 | 1620 | raw_spin_rq_unlock(rq); |
1f351d7f JW |
1621 | } |
1622 | ||
1623 | static inline void | |
1624 | task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) | |
1625 | __releases(rq->lock) | |
1626 | __releases(p->pi_lock) | |
1627 | { | |
1628 | rq_unpin_lock(rq, rf); | |
5cb9eaa3 | 1629 | raw_spin_rq_unlock(rq); |
1f351d7f JW |
1630 | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
1631 | } | |
1632 | ||
1633 | static inline void | |
1634 | rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) | |
1635 | __acquires(rq->lock) | |
1636 | { | |
5cb9eaa3 | 1637 | raw_spin_rq_lock_irqsave(rq, rf->flags); |
1f351d7f JW |
1638 | rq_pin_lock(rq, rf); |
1639 | } | |
1640 | ||
1641 | static inline void | |
1642 | rq_lock_irq(struct rq *rq, struct rq_flags *rf) | |
1643 | __acquires(rq->lock) | |
1644 | { | |
5cb9eaa3 | 1645 | raw_spin_rq_lock_irq(rq); |
1f351d7f JW |
1646 | rq_pin_lock(rq, rf); |
1647 | } | |
1648 | ||
1649 | static inline void | |
1650 | rq_lock(struct rq *rq, struct rq_flags *rf) | |
1651 | __acquires(rq->lock) | |
1652 | { | |
5cb9eaa3 | 1653 | raw_spin_rq_lock(rq); |
1f351d7f JW |
1654 | rq_pin_lock(rq, rf); |
1655 | } | |
1656 | ||
1f351d7f JW |
1657 | static inline void |
1658 | rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) | |
1659 | __releases(rq->lock) | |
1660 | { | |
1661 | rq_unpin_lock(rq, rf); | |
5cb9eaa3 | 1662 | raw_spin_rq_unlock_irqrestore(rq, rf->flags); |
1f351d7f JW |
1663 | } |
1664 | ||
1665 | static inline void | |
1666 | rq_unlock_irq(struct rq *rq, struct rq_flags *rf) | |
1667 | __releases(rq->lock) | |
1668 | { | |
1669 | rq_unpin_lock(rq, rf); | |
5cb9eaa3 | 1670 | raw_spin_rq_unlock_irq(rq); |
1f351d7f JW |
1671 | } |
1672 | ||
1673 | static inline void | |
1674 | rq_unlock(struct rq *rq, struct rq_flags *rf) | |
1675 | __releases(rq->lock) | |
1676 | { | |
1677 | rq_unpin_lock(rq, rf); | |
5cb9eaa3 | 1678 | raw_spin_rq_unlock(rq); |
1f351d7f JW |
1679 | } |
1680 | ||
246b3b33 JW |
1681 | static inline struct rq * |
1682 | this_rq_lock_irq(struct rq_flags *rf) | |
1683 | __acquires(rq->lock) | |
1684 | { | |
1685 | struct rq *rq; | |
1686 | ||
1687 | local_irq_disable(); | |
1688 | rq = this_rq(); | |
1689 | rq_lock(rq, rf); | |
1690 | return rq; | |
1691 | } | |
1692 | ||
9942f79b | 1693 | #ifdef CONFIG_NUMA |
e3fe70b1 RR |
1694 | enum numa_topology_type { |
1695 | NUMA_DIRECT, | |
1696 | NUMA_GLUELESS_MESH, | |
1697 | NUMA_BACKPLANE, | |
1698 | }; | |
1699 | extern enum numa_topology_type sched_numa_topology_type; | |
9942f79b RR |
1700 | extern int sched_max_numa_distance; |
1701 | extern bool find_numa_distance(int distance); | |
0fb3978b YH |
1702 | extern void sched_init_numa(int offline_node); |
1703 | extern void sched_update_numa(int cpu, bool online); | |
f2cb1360 IM |
1704 | extern void sched_domains_numa_masks_set(unsigned int cpu); |
1705 | extern void sched_domains_numa_masks_clear(unsigned int cpu); | |
e0e8d491 | 1706 | extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); |
f2cb1360 | 1707 | #else |
0fb3978b YH |
1708 | static inline void sched_init_numa(int offline_node) { } |
1709 | static inline void sched_update_numa(int cpu, bool online) { } | |
f2cb1360 IM |
1710 | static inline void sched_domains_numa_masks_set(unsigned int cpu) { } |
1711 | static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } | |
e0e8d491 WL |
1712 | static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) |
1713 | { | |
1714 | return nr_cpu_ids; | |
1715 | } | |
f2cb1360 IM |
1716 | #endif |
1717 | ||
f809ca9a | 1718 | #ifdef CONFIG_NUMA_BALANCING |
44dba3d5 IM |
1719 | /* The regions in numa_faults array from task_struct */ |
1720 | enum numa_faults_stats { | |
1721 | NUMA_MEM = 0, | |
1722 | NUMA_CPU, | |
1723 | NUMA_MEMBUF, | |
1724 | NUMA_CPUBUF | |
1725 | }; | |
0ec8aa00 | 1726 | extern void sched_setnuma(struct task_struct *p, int node); |
e6628d5b | 1727 | extern int migrate_task_to(struct task_struct *p, int cpu); |
0ad4e3df SD |
1728 | extern int migrate_swap(struct task_struct *p, struct task_struct *t, |
1729 | int cpu, int scpu); | |
13784475 MG |
1730 | extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); |
1731 | #else | |
1732 | static inline void | |
1733 | init_numa_balancing(unsigned long clone_flags, struct task_struct *p) | |
1734 | { | |
1735 | } | |
f809ca9a MG |
1736 | #endif /* CONFIG_NUMA_BALANCING */ |
1737 | ||
518cd623 PZ |
1738 | #ifdef CONFIG_SMP |
1739 | ||
e3fca9e7 PZ |
1740 | static inline void |
1741 | queue_balance_callback(struct rq *rq, | |
8e5bad7d | 1742 | struct balance_callback *head, |
e3fca9e7 PZ |
1743 | void (*func)(struct rq *rq)) |
1744 | { | |
5cb9eaa3 | 1745 | lockdep_assert_rq_held(rq); |
e3fca9e7 | 1746 | |
04193d59 PZ |
1747 | /* |
1748 | * Don't (re)queue an already queued item; nor queue anything when | |
1749 | * balance_push() is active, see the comment with | |
1750 | * balance_push_callback. | |
1751 | */ | |
ae792702 | 1752 | if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) |
e3fca9e7 PZ |
1753 | return; |
1754 | ||
8e5bad7d | 1755 | head->func = func; |
e3fca9e7 PZ |
1756 | head->next = rq->balance_callback; |
1757 | rq->balance_callback = head; | |
1758 | } | |
1759 | ||
029632fb PZ |
1760 | #define rcu_dereference_check_sched_domain(p) \ |
1761 | rcu_dereference_check((p), \ | |
1762 | lockdep_is_held(&sched_domains_mutex)) | |
1763 | ||
1764 | /* | |
1765 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
337e9b07 | 1766 | * See destroy_sched_domains: call_rcu for details. |
029632fb PZ |
1767 | * |
1768 | * The domain tree of any CPU may only be accessed from within | |
1769 | * preempt-disabled sections. | |
1770 | */ | |
1771 | #define for_each_domain(cpu, __sd) \ | |
518cd623 PZ |
1772 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
1773 | __sd; __sd = __sd->parent) | |
029632fb | 1774 | |
518cd623 PZ |
1775 | /** |
1776 | * highest_flag_domain - Return highest sched_domain containing flag. | |
97fb7a0a | 1777 | * @cpu: The CPU whose highest level of sched domain is to |
518cd623 PZ |
1778 | * be returned. |
1779 | * @flag: The flag to check for the highest sched_domain | |
97fb7a0a | 1780 | * for the given CPU. |
518cd623 | 1781 | * |
97fb7a0a | 1782 | * Returns the highest sched_domain of a CPU which contains the given flag. |
518cd623 PZ |
1783 | */ |
1784 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | |
1785 | { | |
1786 | struct sched_domain *sd, *hsd = NULL; | |
1787 | ||
1788 | for_each_domain(cpu, sd) { | |
1789 | if (!(sd->flags & flag)) | |
1790 | break; | |
1791 | hsd = sd; | |
1792 | } | |
1793 | ||
1794 | return hsd; | |
1795 | } | |
1796 | ||
fb13c7ee MG |
1797 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
1798 | { | |
1799 | struct sched_domain *sd; | |
1800 | ||
1801 | for_each_domain(cpu, sd) { | |
1802 | if (sd->flags & flag) | |
1803 | break; | |
1804 | } | |
1805 | ||
1806 | return sd; | |
1807 | } | |
1808 | ||
994aeb7a | 1809 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); |
7d9ffa89 | 1810 | DECLARE_PER_CPU(int, sd_llc_size); |
518cd623 | 1811 | DECLARE_PER_CPU(int, sd_llc_id); |
994aeb7a JFG |
1812 | DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); |
1813 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); | |
1814 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); | |
1815 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); | |
df054e84 | 1816 | extern struct static_key_false sched_asym_cpucapacity; |
518cd623 | 1817 | |
740cf8a7 DE |
1818 | static __always_inline bool sched_asym_cpucap_active(void) |
1819 | { | |
1820 | return static_branch_unlikely(&sched_asym_cpucapacity); | |
1821 | } | |
1822 | ||
63b2ca30 | 1823 | struct sched_group_capacity { |
97fb7a0a | 1824 | atomic_t ref; |
5e6521ea | 1825 | /* |
172895e6 | 1826 | * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity |
63b2ca30 | 1827 | * for a single CPU. |
5e6521ea | 1828 | */ |
97fb7a0a IM |
1829 | unsigned long capacity; |
1830 | unsigned long min_capacity; /* Min per-CPU capacity in group */ | |
e3d6d0cb | 1831 | unsigned long max_capacity; /* Max per-CPU capacity in group */ |
97fb7a0a IM |
1832 | unsigned long next_update; |
1833 | int imbalance; /* XXX unrelated to capacity but shared group state */ | |
5e6521ea | 1834 | |
005f874d | 1835 | #ifdef CONFIG_SCHED_DEBUG |
97fb7a0a | 1836 | int id; |
005f874d PZ |
1837 | #endif |
1838 | ||
eba9f082 | 1839 | unsigned long cpumask[]; /* Balance mask */ |
5e6521ea LZ |
1840 | }; |
1841 | ||
1842 | struct sched_group { | |
97fb7a0a IM |
1843 | struct sched_group *next; /* Must be a circular list */ |
1844 | atomic_t ref; | |
5e6521ea | 1845 | |
97fb7a0a | 1846 | unsigned int group_weight; |
63b2ca30 | 1847 | struct sched_group_capacity *sgc; |
97fb7a0a | 1848 | int asym_prefer_cpu; /* CPU of highest priority in group */ |
16d364ba | 1849 | int flags; |
5e6521ea LZ |
1850 | |
1851 | /* | |
1852 | * The CPUs this group covers. | |
1853 | * | |
1854 | * NOTE: this field is variable length. (Allocated dynamically | |
1855 | * by attaching extra space to the end of the structure, | |
1856 | * depending on how many CPUs the kernel has booted up with) | |
1857 | */ | |
04f5c362 | 1858 | unsigned long cpumask[]; |
5e6521ea LZ |
1859 | }; |
1860 | ||
ae4df9d6 | 1861 | static inline struct cpumask *sched_group_span(struct sched_group *sg) |
5e6521ea LZ |
1862 | { |
1863 | return to_cpumask(sg->cpumask); | |
1864 | } | |
1865 | ||
1866 | /* | |
e5c14b1f | 1867 | * See build_balance_mask(). |
5e6521ea | 1868 | */ |
e5c14b1f | 1869 | static inline struct cpumask *group_balance_mask(struct sched_group *sg) |
5e6521ea | 1870 | { |
63b2ca30 | 1871 | return to_cpumask(sg->sgc->cpumask); |
5e6521ea LZ |
1872 | } |
1873 | ||
c1174876 PZ |
1874 | extern int group_balance_cpu(struct sched_group *sg); |
1875 | ||
3b87f136 PZ |
1876 | #ifdef CONFIG_SCHED_DEBUG |
1877 | void update_sched_domain_debugfs(void); | |
bbdacdfe | 1878 | void dirty_sched_domain_sysctl(int cpu); |
3866e845 | 1879 | #else |
3b87f136 | 1880 | static inline void update_sched_domain_debugfs(void) |
3866e845 SRRH |
1881 | { |
1882 | } | |
bbdacdfe PZ |
1883 | static inline void dirty_sched_domain_sysctl(int cpu) |
1884 | { | |
1885 | } | |
3866e845 SRRH |
1886 | #endif |
1887 | ||
8a99b683 | 1888 | extern int sched_update_scaling(void); |
8f9ea86f WL |
1889 | |
1890 | static inline const struct cpumask *task_user_cpus(struct task_struct *p) | |
1891 | { | |
1892 | if (!p->user_cpus_ptr) | |
1893 | return cpu_possible_mask; /* &init_task.cpus_mask */ | |
1894 | return p->user_cpus_ptr; | |
1895 | } | |
d664e399 | 1896 | #endif /* CONFIG_SMP */ |
029632fb | 1897 | |
391e43da | 1898 | #include "stats.h" |
029632fb | 1899 | |
4feee7d1 JD |
1900 | #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) |
1901 | ||
1902 | extern void __sched_core_account_forceidle(struct rq *rq); | |
1903 | ||
1904 | static inline void sched_core_account_forceidle(struct rq *rq) | |
1905 | { | |
1906 | if (schedstat_enabled()) | |
1907 | __sched_core_account_forceidle(rq); | |
1908 | } | |
1909 | ||
1910 | extern void __sched_core_tick(struct rq *rq); | |
1911 | ||
1912 | static inline void sched_core_tick(struct rq *rq) | |
1913 | { | |
1914 | if (sched_core_enabled(rq) && schedstat_enabled()) | |
1915 | __sched_core_tick(rq); | |
1916 | } | |
1917 | ||
1918 | #else | |
1919 | ||
1920 | static inline void sched_core_account_forceidle(struct rq *rq) {} | |
1921 | ||
1922 | static inline void sched_core_tick(struct rq *rq) {} | |
1923 | ||
1924 | #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ | |
1925 | ||
029632fb PZ |
1926 | #ifdef CONFIG_CGROUP_SCHED |
1927 | ||
1928 | /* | |
1929 | * Return the group to which this tasks belongs. | |
1930 | * | |
8af01f56 TH |
1931 | * We cannot use task_css() and friends because the cgroup subsystem |
1932 | * changes that value before the cgroup_subsys::attach() method is called, | |
1933 | * therefore we cannot pin it and might observe the wrong value. | |
8323f26c PZ |
1934 | * |
1935 | * The same is true for autogroup's p->signal->autogroup->tg, the autogroup | |
1936 | * core changes this before calling sched_move_task(). | |
1937 | * | |
1938 | * Instead we use a 'copy' which is updated from sched_move_task() while | |
1939 | * holding both task_struct::pi_lock and rq::lock. | |
029632fb PZ |
1940 | */ |
1941 | static inline struct task_group *task_group(struct task_struct *p) | |
1942 | { | |
8323f26c | 1943 | return p->sched_task_group; |
029632fb PZ |
1944 | } |
1945 | ||
1946 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
1947 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |
1948 | { | |
1949 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | |
1950 | struct task_group *tg = task_group(p); | |
1951 | #endif | |
1952 | ||
1953 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
ad936d86 | 1954 | set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); |
029632fb PZ |
1955 | p->se.cfs_rq = tg->cfs_rq[cpu]; |
1956 | p->se.parent = tg->se[cpu]; | |
78b6b157 | 1957 | p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; |
029632fb PZ |
1958 | #endif |
1959 | ||
1960 | #ifdef CONFIG_RT_GROUP_SCHED | |
1961 | p->rt.rt_rq = tg->rt_rq[cpu]; | |
1962 | p->rt.parent = tg->rt_se[cpu]; | |
1963 | #endif | |
1964 | } | |
1965 | ||
1966 | #else /* CONFIG_CGROUP_SCHED */ | |
1967 | ||
1968 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | |
1969 | static inline struct task_group *task_group(struct task_struct *p) | |
1970 | { | |
1971 | return NULL; | |
1972 | } | |
1973 | ||
1974 | #endif /* CONFIG_CGROUP_SCHED */ | |
1975 | ||
1976 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |
1977 | { | |
1978 | set_task_rq(p, cpu); | |
1979 | #ifdef CONFIG_SMP | |
1980 | /* | |
1981 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
dfcb245e | 1982 | * successfully executed on another CPU. We must ensure that updates of |
029632fb PZ |
1983 | * per-task data have been completed by this moment. |
1984 | */ | |
1985 | smp_wmb(); | |
c546951d | 1986 | WRITE_ONCE(task_thread_info(p)->cpu, cpu); |
ac66f547 | 1987 | p->wake_cpu = cpu; |
029632fb PZ |
1988 | #endif |
1989 | } | |
1990 | ||
1991 | /* | |
1992 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
1993 | */ | |
1994 | #ifdef CONFIG_SCHED_DEBUG | |
1995 | # define const_debug __read_mostly | |
1996 | #else | |
1997 | # define const_debug const | |
1998 | #endif | |
1999 | ||
029632fb PZ |
2000 | #define SCHED_FEAT(name, enabled) \ |
2001 | __SCHED_FEAT_##name , | |
2002 | ||
2003 | enum { | |
391e43da | 2004 | #include "features.h" |
f8b6d1cc | 2005 | __SCHED_FEAT_NR, |
029632fb PZ |
2006 | }; |
2007 | ||
2008 | #undef SCHED_FEAT | |
2009 | ||
a73f863a | 2010 | #ifdef CONFIG_SCHED_DEBUG |
765cc3a4 PB |
2011 | |
2012 | /* | |
2013 | * To support run-time toggling of sched features, all the translation units | |
2014 | * (but core.c) reference the sysctl_sched_features defined in core.c. | |
2015 | */ | |
2016 | extern const_debug unsigned int sysctl_sched_features; | |
2017 | ||
a73f863a | 2018 | #ifdef CONFIG_JUMP_LABEL |
f8b6d1cc | 2019 | #define SCHED_FEAT(name, enabled) \ |
c5905afb | 2020 | static __always_inline bool static_branch_##name(struct static_key *key) \ |
f8b6d1cc | 2021 | { \ |
6e76ea8a | 2022 | return static_key_##enabled(key); \ |
f8b6d1cc PZ |
2023 | } |
2024 | ||
2025 | #include "features.h" | |
f8b6d1cc PZ |
2026 | #undef SCHED_FEAT |
2027 | ||
c5905afb | 2028 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
f8b6d1cc | 2029 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
765cc3a4 | 2030 | |
a73f863a JL |
2031 | #else /* !CONFIG_JUMP_LABEL */ |
2032 | ||
2033 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
2034 | ||
2035 | #endif /* CONFIG_JUMP_LABEL */ | |
2036 | ||
2037 | #else /* !SCHED_DEBUG */ | |
765cc3a4 PB |
2038 | |
2039 | /* | |
2040 | * Each translation unit has its own copy of sysctl_sched_features to allow | |
2041 | * constants propagation at compile time and compiler optimization based on | |
2042 | * features default. | |
2043 | */ | |
2044 | #define SCHED_FEAT(name, enabled) \ | |
2045 | (1UL << __SCHED_FEAT_##name) * enabled | | |
2046 | static const_debug __maybe_unused unsigned int sysctl_sched_features = | |
2047 | #include "features.h" | |
2048 | 0; | |
2049 | #undef SCHED_FEAT | |
2050 | ||
7e6f4c5d | 2051 | #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
765cc3a4 | 2052 | |
a73f863a | 2053 | #endif /* SCHED_DEBUG */ |
029632fb | 2054 | |
2a595721 | 2055 | extern struct static_key_false sched_numa_balancing; |
cb251765 | 2056 | extern struct static_key_false sched_schedstats; |
cbee9f88 | 2057 | |
029632fb PZ |
2058 | static inline u64 global_rt_period(void) |
2059 | { | |
2060 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
2061 | } | |
2062 | ||
2063 | static inline u64 global_rt_runtime(void) | |
2064 | { | |
2065 | if (sysctl_sched_rt_runtime < 0) | |
2066 | return RUNTIME_INF; | |
2067 | ||
2068 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
2069 | } | |
2070 | ||
029632fb PZ |
2071 | static inline int task_current(struct rq *rq, struct task_struct *p) |
2072 | { | |
2073 | return rq->curr == p; | |
2074 | } | |
2075 | ||
0b9d46fc | 2076 | static inline int task_on_cpu(struct rq *rq, struct task_struct *p) |
029632fb PZ |
2077 | { |
2078 | #ifdef CONFIG_SMP | |
2079 | return p->on_cpu; | |
2080 | #else | |
2081 | return task_current(rq, p); | |
2082 | #endif | |
2083 | } | |
2084 | ||
da0c1e65 KT |
2085 | static inline int task_on_rq_queued(struct task_struct *p) |
2086 | { | |
2087 | return p->on_rq == TASK_ON_RQ_QUEUED; | |
2088 | } | |
029632fb | 2089 | |
cca26e80 KT |
2090 | static inline int task_on_rq_migrating(struct task_struct *p) |
2091 | { | |
c546951d | 2092 | return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; |
cca26e80 KT |
2093 | } |
2094 | ||
17770579 VS |
2095 | /* Wake flags. The first three directly map to some SD flag value */ |
2096 | #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ | |
2097 | #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ | |
2098 | #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ | |
2099 | ||
2100 | #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ | |
2101 | #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ | |
17770579 VS |
2102 | |
2103 | #ifdef CONFIG_SMP | |
2104 | static_assert(WF_EXEC == SD_BALANCE_EXEC); | |
2105 | static_assert(WF_FORK == SD_BALANCE_FORK); | |
2106 | static_assert(WF_TTWU == SD_BALANCE_WAKE); | |
2107 | #endif | |
b13095f0 | 2108 | |
029632fb PZ |
2109 | /* |
2110 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
2111 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
2112 | * each task makes to its run queue's load is weighted according to its | |
2113 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | |
2114 | * scaled version of the new time slice allocation that they receive on time | |
2115 | * slice expiry etc. | |
2116 | */ | |
2117 | ||
97fb7a0a IM |
2118 | #define WEIGHT_IDLEPRIO 3 |
2119 | #define WMULT_IDLEPRIO 1431655765 | |
029632fb | 2120 | |
97fb7a0a IM |
2121 | extern const int sched_prio_to_weight[40]; |
2122 | extern const u32 sched_prio_to_wmult[40]; | |
029632fb | 2123 | |
ff77e468 PZ |
2124 | /* |
2125 | * {de,en}queue flags: | |
2126 | * | |
2127 | * DEQUEUE_SLEEP - task is no longer runnable | |
2128 | * ENQUEUE_WAKEUP - task just became runnable | |
2129 | * | |
2130 | * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks | |
2131 | * are in a known state which allows modification. Such pairs | |
2132 | * should preserve as much state as possible. | |
2133 | * | |
2134 | * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location | |
2135 | * in the runqueue. | |
2136 | * | |
2137 | * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) | |
2138 | * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) | |
59efa0ba | 2139 | * ENQUEUE_MIGRATED - the task was migrated during wakeup |
ff77e468 PZ |
2140 | * |
2141 | */ | |
2142 | ||
2143 | #define DEQUEUE_SLEEP 0x01 | |
97fb7a0a IM |
2144 | #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ |
2145 | #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ | |
2146 | #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ | |
ff77e468 | 2147 | |
1de64443 | 2148 | #define ENQUEUE_WAKEUP 0x01 |
ff77e468 PZ |
2149 | #define ENQUEUE_RESTORE 0x02 |
2150 | #define ENQUEUE_MOVE 0x04 | |
0a67d1ee | 2151 | #define ENQUEUE_NOCLOCK 0x08 |
ff77e468 | 2152 | |
0a67d1ee PZ |
2153 | #define ENQUEUE_HEAD 0x10 |
2154 | #define ENQUEUE_REPLENISH 0x20 | |
c82ba9fa | 2155 | #ifdef CONFIG_SMP |
0a67d1ee | 2156 | #define ENQUEUE_MIGRATED 0x40 |
c82ba9fa | 2157 | #else |
59efa0ba | 2158 | #define ENQUEUE_MIGRATED 0x00 |
c82ba9fa | 2159 | #endif |
c82ba9fa | 2160 | |
37e117c0 PZ |
2161 | #define RETRY_TASK ((void *)-1UL) |
2162 | ||
713a2e21 WL |
2163 | struct affinity_context { |
2164 | const struct cpumask *new_mask; | |
8f9ea86f | 2165 | struct cpumask *user_mask; |
713a2e21 WL |
2166 | unsigned int flags; |
2167 | }; | |
2168 | ||
c82ba9fa | 2169 | struct sched_class { |
c82ba9fa | 2170 | |
69842cba PB |
2171 | #ifdef CONFIG_UCLAMP_TASK |
2172 | int uclamp_enabled; | |
2173 | #endif | |
2174 | ||
c82ba9fa LZ |
2175 | void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
2176 | void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); | |
97fb7a0a | 2177 | void (*yield_task) (struct rq *rq); |
0900acf2 | 2178 | bool (*yield_to_task)(struct rq *rq, struct task_struct *p); |
c82ba9fa | 2179 | |
97fb7a0a | 2180 | void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); |
c82ba9fa | 2181 | |
98c2f700 PZ |
2182 | struct task_struct *(*pick_next_task)(struct rq *rq); |
2183 | ||
6e2df058 | 2184 | void (*put_prev_task)(struct rq *rq, struct task_struct *p); |
a0e813f2 | 2185 | void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); |
c82ba9fa LZ |
2186 | |
2187 | #ifdef CONFIG_SMP | |
6e2df058 | 2188 | int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); |
3aef1551 | 2189 | int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); |
21f56ffe PZ |
2190 | |
2191 | struct task_struct * (*pick_task)(struct rq *rq); | |
2192 | ||
1327237a | 2193 | void (*migrate_task_rq)(struct task_struct *p, int new_cpu); |
c82ba9fa | 2194 | |
97fb7a0a | 2195 | void (*task_woken)(struct rq *this_rq, struct task_struct *task); |
c82ba9fa | 2196 | |
713a2e21 | 2197 | void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); |
c82ba9fa LZ |
2198 | |
2199 | void (*rq_online)(struct rq *rq); | |
2200 | void (*rq_offline)(struct rq *rq); | |
a7c81556 PZ |
2201 | |
2202 | struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); | |
c82ba9fa LZ |
2203 | #endif |
2204 | ||
97fb7a0a IM |
2205 | void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); |
2206 | void (*task_fork)(struct task_struct *p); | |
2207 | void (*task_dead)(struct task_struct *p); | |
c82ba9fa | 2208 | |
67dfa1b7 KT |
2209 | /* |
2210 | * The switched_from() call is allowed to drop rq->lock, therefore we | |
3b03706f | 2211 | * cannot assume the switched_from/switched_to pair is serialized by |
67dfa1b7 KT |
2212 | * rq->lock. They are however serialized by p->pi_lock. |
2213 | */ | |
97fb7a0a IM |
2214 | void (*switched_from)(struct rq *this_rq, struct task_struct *task); |
2215 | void (*switched_to) (struct rq *this_rq, struct task_struct *task); | |
c82ba9fa | 2216 | void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
97fb7a0a | 2217 | int oldprio); |
c82ba9fa | 2218 | |
97fb7a0a IM |
2219 | unsigned int (*get_rr_interval)(struct rq *rq, |
2220 | struct task_struct *task); | |
c82ba9fa | 2221 | |
97fb7a0a | 2222 | void (*update_curr)(struct rq *rq); |
6e998916 | 2223 | |
c82ba9fa | 2224 | #ifdef CONFIG_FAIR_GROUP_SCHED |
39c42611 | 2225 | void (*task_change_group)(struct task_struct *p); |
c82ba9fa | 2226 | #endif |
530bfad1 HJ |
2227 | |
2228 | #ifdef CONFIG_SCHED_CORE | |
2229 | int (*task_is_throttled)(struct task_struct *p, int cpu); | |
2230 | #endif | |
43c31ac0 | 2231 | }; |
029632fb | 2232 | |
3f1d2a31 PZ |
2233 | static inline void put_prev_task(struct rq *rq, struct task_struct *prev) |
2234 | { | |
10e7071b | 2235 | WARN_ON_ONCE(rq->curr != prev); |
6e2df058 | 2236 | prev->sched_class->put_prev_task(rq, prev); |
3f1d2a31 PZ |
2237 | } |
2238 | ||
03b7fad1 | 2239 | static inline void set_next_task(struct rq *rq, struct task_struct *next) |
b2bf6c31 | 2240 | { |
a0e813f2 | 2241 | next->sched_class->set_next_task(rq, next, false); |
b2bf6c31 PZ |
2242 | } |
2243 | ||
43c31ac0 PZ |
2244 | |
2245 | /* | |
2246 | * Helper to define a sched_class instance; each one is placed in a separate | |
2247 | * section which is ordered by the linker script: | |
2248 | * | |
2249 | * include/asm-generic/vmlinux.lds.h | |
2250 | * | |
546a3fee PZ |
2251 | * *CAREFUL* they are laid out in *REVERSE* order!!! |
2252 | * | |
43c31ac0 PZ |
2253 | * Also enforce alignment on the instance, not the type, to guarantee layout. |
2254 | */ | |
2255 | #define DEFINE_SCHED_CLASS(name) \ | |
2256 | const struct sched_class name##_sched_class \ | |
2257 | __aligned(__alignof__(struct sched_class)) \ | |
2258 | __section("__" #name "_sched_class") | |
2259 | ||
c3a340f7 | 2260 | /* Defined in include/asm-generic/vmlinux.lds.h */ |
546a3fee PZ |
2261 | extern struct sched_class __sched_class_highest[]; |
2262 | extern struct sched_class __sched_class_lowest[]; | |
6e2df058 PZ |
2263 | |
2264 | #define for_class_range(class, _from, _to) \ | |
546a3fee | 2265 | for (class = (_from); class < (_to); class++) |
6e2df058 | 2266 | |
029632fb | 2267 | #define for_each_class(class) \ |
546a3fee PZ |
2268 | for_class_range(class, __sched_class_highest, __sched_class_lowest) |
2269 | ||
2270 | #define sched_class_above(_a, _b) ((_a) < (_b)) | |
029632fb PZ |
2271 | |
2272 | extern const struct sched_class stop_sched_class; | |
aab03e05 | 2273 | extern const struct sched_class dl_sched_class; |
029632fb PZ |
2274 | extern const struct sched_class rt_sched_class; |
2275 | extern const struct sched_class fair_sched_class; | |
2276 | extern const struct sched_class idle_sched_class; | |
2277 | ||
6e2df058 PZ |
2278 | static inline bool sched_stop_runnable(struct rq *rq) |
2279 | { | |
2280 | return rq->stop && task_on_rq_queued(rq->stop); | |
2281 | } | |
2282 | ||
2283 | static inline bool sched_dl_runnable(struct rq *rq) | |
2284 | { | |
2285 | return rq->dl.dl_nr_running > 0; | |
2286 | } | |
2287 | ||
2288 | static inline bool sched_rt_runnable(struct rq *rq) | |
2289 | { | |
2290 | return rq->rt.rt_queued > 0; | |
2291 | } | |
2292 | ||
2293 | static inline bool sched_fair_runnable(struct rq *rq) | |
2294 | { | |
2295 | return rq->cfs.nr_running > 0; | |
2296 | } | |
029632fb | 2297 | |
5d7d6056 | 2298 | extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); |
98c2f700 | 2299 | extern struct task_struct *pick_next_task_idle(struct rq *rq); |
5d7d6056 | 2300 | |
af449901 PZ |
2301 | #define SCA_CHECK 0x01 |
2302 | #define SCA_MIGRATE_DISABLE 0x02 | |
2303 | #define SCA_MIGRATE_ENABLE 0x04 | |
07ec77a1 | 2304 | #define SCA_USER 0x08 |
af449901 | 2305 | |
029632fb PZ |
2306 | #ifdef CONFIG_SMP |
2307 | ||
63b2ca30 | 2308 | extern void update_group_capacity(struct sched_domain *sd, int cpu); |
b719203b | 2309 | |
7caff66f | 2310 | extern void trigger_load_balance(struct rq *rq); |
029632fb | 2311 | |
713a2e21 | 2312 | extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); |
c5b28038 | 2313 | |
a7c81556 PZ |
2314 | static inline struct task_struct *get_push_task(struct rq *rq) |
2315 | { | |
2316 | struct task_struct *p = rq->curr; | |
2317 | ||
5cb9eaa3 | 2318 | lockdep_assert_rq_held(rq); |
a7c81556 PZ |
2319 | |
2320 | if (rq->push_busy) | |
2321 | return NULL; | |
2322 | ||
2323 | if (p->nr_cpus_allowed == 1) | |
2324 | return NULL; | |
2325 | ||
e681dcba SAS |
2326 | if (p->migration_disabled) |
2327 | return NULL; | |
2328 | ||
a7c81556 PZ |
2329 | rq->push_busy = true; |
2330 | return get_task_struct(p); | |
2331 | } | |
2332 | ||
2333 | extern int push_cpu_stop(void *arg); | |
c5b28038 | 2334 | |
029632fb PZ |
2335 | #endif |
2336 | ||
442bf3aa DL |
2337 | #ifdef CONFIG_CPU_IDLE |
2338 | static inline void idle_set_state(struct rq *rq, | |
2339 | struct cpuidle_state *idle_state) | |
2340 | { | |
2341 | rq->idle_state = idle_state; | |
2342 | } | |
2343 | ||
2344 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | |
2345 | { | |
9148a3a1 | 2346 | SCHED_WARN_ON(!rcu_read_lock_held()); |
97fb7a0a | 2347 | |
442bf3aa DL |
2348 | return rq->idle_state; |
2349 | } | |
2350 | #else | |
2351 | static inline void idle_set_state(struct rq *rq, | |
2352 | struct cpuidle_state *idle_state) | |
2353 | { | |
2354 | } | |
2355 | ||
2356 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | |
2357 | { | |
2358 | return NULL; | |
2359 | } | |
2360 | #endif | |
2361 | ||
8663effb SRV |
2362 | extern void schedule_idle(void); |
2363 | ||
029632fb PZ |
2364 | extern void sysrq_sched_debug_show(void); |
2365 | extern void sched_init_granularity(void); | |
2366 | extern void update_max_interval(void); | |
1baca4ce JL |
2367 | |
2368 | extern void init_sched_dl_class(void); | |
029632fb PZ |
2369 | extern void init_sched_rt_class(void); |
2370 | extern void init_sched_fair_class(void); | |
2371 | ||
9059393e VG |
2372 | extern void reweight_task(struct task_struct *p, int prio); |
2373 | ||
8875125e | 2374 | extern void resched_curr(struct rq *rq); |
029632fb PZ |
2375 | extern void resched_cpu(int cpu); |
2376 | ||
2377 | extern struct rt_bandwidth def_rt_bandwidth; | |
2378 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | |
d664e399 | 2379 | extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); |
029632fb | 2380 | |
332ac17e | 2381 | extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); |
aab03e05 | 2382 | extern void init_dl_task_timer(struct sched_dl_entity *dl_se); |
209a0cbd | 2383 | extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); |
aab03e05 | 2384 | |
97fb7a0a IM |
2385 | #define BW_SHIFT 20 |
2386 | #define BW_UNIT (1 << BW_SHIFT) | |
2387 | #define RATIO_SHIFT 8 | |
d505b8af HC |
2388 | #define MAX_BW_BITS (64 - BW_SHIFT) |
2389 | #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) | |
332ac17e DF |
2390 | unsigned long to_ratio(u64 period, u64 runtime); |
2391 | ||
540247fb | 2392 | extern void init_entity_runnable_average(struct sched_entity *se); |
d0fe0b9c | 2393 | extern void post_init_entity_util_avg(struct task_struct *p); |
a75cdaa9 | 2394 | |
76d92ac3 FW |
2395 | #ifdef CONFIG_NO_HZ_FULL |
2396 | extern bool sched_can_stop_tick(struct rq *rq); | |
d84b3131 | 2397 | extern int __init sched_tick_offload_init(void); |
76d92ac3 FW |
2398 | |
2399 | /* | |
2400 | * Tick may be needed by tasks in the runqueue depending on their policy and | |
2401 | * requirements. If tick is needed, lets send the target an IPI to kick it out of | |
2402 | * nohz mode if necessary. | |
2403 | */ | |
2404 | static inline void sched_update_tick_dependency(struct rq *rq) | |
2405 | { | |
21a6ee14 | 2406 | int cpu = cpu_of(rq); |
76d92ac3 FW |
2407 | |
2408 | if (!tick_nohz_full_cpu(cpu)) | |
2409 | return; | |
2410 | ||
2411 | if (sched_can_stop_tick(rq)) | |
2412 | tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); | |
2413 | else | |
2414 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | |
2415 | } | |
2416 | #else | |
d84b3131 | 2417 | static inline int sched_tick_offload_init(void) { return 0; } |
76d92ac3 FW |
2418 | static inline void sched_update_tick_dependency(struct rq *rq) { } |
2419 | #endif | |
2420 | ||
72465447 | 2421 | static inline void add_nr_running(struct rq *rq, unsigned count) |
029632fb | 2422 | { |
72465447 KT |
2423 | unsigned prev_nr = rq->nr_running; |
2424 | ||
2425 | rq->nr_running = prev_nr + count; | |
9d246053 PA |
2426 | if (trace_sched_update_nr_running_tp_enabled()) { |
2427 | call_trace_sched_update_nr_running(rq, count); | |
2428 | } | |
9f3660c2 | 2429 | |
4486edd1 | 2430 | #ifdef CONFIG_SMP |
3e184501 | 2431 | if (prev_nr < 2 && rq->nr_running >= 2) { |
e90c8fe1 VS |
2432 | if (!READ_ONCE(rq->rd->overload)) |
2433 | WRITE_ONCE(rq->rd->overload, 1); | |
4486edd1 | 2434 | } |
3e184501 | 2435 | #endif |
76d92ac3 FW |
2436 | |
2437 | sched_update_tick_dependency(rq); | |
029632fb PZ |
2438 | } |
2439 | ||
72465447 | 2440 | static inline void sub_nr_running(struct rq *rq, unsigned count) |
029632fb | 2441 | { |
72465447 | 2442 | rq->nr_running -= count; |
9d246053 | 2443 | if (trace_sched_update_nr_running_tp_enabled()) { |
a1bd0685 | 2444 | call_trace_sched_update_nr_running(rq, -count); |
9d246053 PA |
2445 | } |
2446 | ||
76d92ac3 FW |
2447 | /* Check if we still need preemption */ |
2448 | sched_update_tick_dependency(rq); | |
029632fb PZ |
2449 | } |
2450 | ||
029632fb PZ |
2451 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
2452 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | |
2453 | ||
2454 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | |
2455 | ||
c59862f8 VG |
2456 | #ifdef CONFIG_PREEMPT_RT |
2457 | #define SCHED_NR_MIGRATE_BREAK 8 | |
2458 | #else | |
2459 | #define SCHED_NR_MIGRATE_BREAK 32 | |
2460 | #endif | |
2461 | ||
029632fb PZ |
2462 | extern const_debug unsigned int sysctl_sched_nr_migrate; |
2463 | extern const_debug unsigned int sysctl_sched_migration_cost; | |
2464 | ||
18765447 HL |
2465 | #ifdef CONFIG_SCHED_DEBUG |
2466 | extern unsigned int sysctl_sched_latency; | |
2467 | extern unsigned int sysctl_sched_min_granularity; | |
51ce83ed | 2468 | extern unsigned int sysctl_sched_idle_min_granularity; |
18765447 HL |
2469 | extern unsigned int sysctl_sched_wakeup_granularity; |
2470 | extern int sysctl_resched_latency_warn_ms; | |
2471 | extern int sysctl_resched_latency_warn_once; | |
2472 | ||
2473 | extern unsigned int sysctl_sched_tunable_scaling; | |
2474 | ||
2475 | extern unsigned int sysctl_numa_balancing_scan_delay; | |
2476 | extern unsigned int sysctl_numa_balancing_scan_period_min; | |
2477 | extern unsigned int sysctl_numa_balancing_scan_period_max; | |
2478 | extern unsigned int sysctl_numa_balancing_scan_size; | |
33024536 | 2479 | extern unsigned int sysctl_numa_balancing_hot_threshold; |
18765447 HL |
2480 | #endif |
2481 | ||
029632fb PZ |
2482 | #ifdef CONFIG_SCHED_HRTICK |
2483 | ||
2484 | /* | |
2485 | * Use hrtick when: | |
2486 | * - enabled by features | |
2487 | * - hrtimer is actually high res | |
2488 | */ | |
2489 | static inline int hrtick_enabled(struct rq *rq) | |
2490 | { | |
029632fb PZ |
2491 | if (!cpu_active(cpu_of(rq))) |
2492 | return 0; | |
2493 | return hrtimer_is_hres_active(&rq->hrtick_timer); | |
2494 | } | |
2495 | ||
e0ee463c JL |
2496 | static inline int hrtick_enabled_fair(struct rq *rq) |
2497 | { | |
2498 | if (!sched_feat(HRTICK)) | |
2499 | return 0; | |
2500 | return hrtick_enabled(rq); | |
2501 | } | |
2502 | ||
2503 | static inline int hrtick_enabled_dl(struct rq *rq) | |
2504 | { | |
2505 | if (!sched_feat(HRTICK_DL)) | |
2506 | return 0; | |
2507 | return hrtick_enabled(rq); | |
2508 | } | |
2509 | ||
029632fb PZ |
2510 | void hrtick_start(struct rq *rq, u64 delay); |
2511 | ||
b39e66ea MG |
2512 | #else |
2513 | ||
e0ee463c JL |
2514 | static inline int hrtick_enabled_fair(struct rq *rq) |
2515 | { | |
2516 | return 0; | |
2517 | } | |
2518 | ||
2519 | static inline int hrtick_enabled_dl(struct rq *rq) | |
2520 | { | |
2521 | return 0; | |
2522 | } | |
2523 | ||
b39e66ea MG |
2524 | static inline int hrtick_enabled(struct rq *rq) |
2525 | { | |
2526 | return 0; | |
2527 | } | |
2528 | ||
029632fb PZ |
2529 | #endif /* CONFIG_SCHED_HRTICK */ |
2530 | ||
1567c3e3 GG |
2531 | #ifndef arch_scale_freq_tick |
2532 | static __always_inline | |
2533 | void arch_scale_freq_tick(void) | |
2534 | { | |
2535 | } | |
2536 | #endif | |
2537 | ||
dfbca41f | 2538 | #ifndef arch_scale_freq_capacity |
f4470cdf VS |
2539 | /** |
2540 | * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. | |
2541 | * @cpu: the CPU in question. | |
2542 | * | |
2543 | * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. | |
2544 | * | |
2545 | * f_curr | |
2546 | * ------ * SCHED_CAPACITY_SCALE | |
2547 | * f_max | |
2548 | */ | |
dfbca41f | 2549 | static __always_inline |
7673c8a4 | 2550 | unsigned long arch_scale_freq_capacity(int cpu) |
dfbca41f PZ |
2551 | { |
2552 | return SCHED_CAPACITY_SCALE; | |
2553 | } | |
2554 | #endif | |
b5b4860d | 2555 | |
2679a837 HJ |
2556 | #ifdef CONFIG_SCHED_DEBUG |
2557 | /* | |
2558 | * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to | |
2559 | * acquire rq lock instead of rq_lock(). So at the end of these two functions | |
2560 | * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of | |
2561 | * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. | |
2562 | */ | |
2563 | static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) | |
2564 | { | |
2565 | rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); | |
2566 | /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ | |
2567 | #ifdef CONFIG_SMP | |
2568 | rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); | |
2569 | #endif | |
2570 | } | |
2571 | #else | |
2572 | static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} | |
2573 | #endif | |
d66f1b06 | 2574 | |
029632fb | 2575 | #ifdef CONFIG_SMP |
029632fb | 2576 | |
d66f1b06 PZ |
2577 | static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) |
2578 | { | |
9edeaea1 PZ |
2579 | #ifdef CONFIG_SCHED_CORE |
2580 | /* | |
2581 | * In order to not have {0,2},{1,3} turn into into an AB-BA, | |
2582 | * order by core-id first and cpu-id second. | |
2583 | * | |
2584 | * Notably: | |
2585 | * | |
2586 | * double_rq_lock(0,3); will take core-0, core-1 lock | |
2587 | * double_rq_lock(1,2); will take core-1, core-0 lock | |
2588 | * | |
2589 | * when only cpu-id is considered. | |
2590 | */ | |
2591 | if (rq1->core->cpu < rq2->core->cpu) | |
2592 | return true; | |
2593 | if (rq1->core->cpu > rq2->core->cpu) | |
2594 | return false; | |
2595 | ||
2596 | /* | |
2597 | * __sched_core_flip() relies on SMT having cpu-id lock order. | |
2598 | */ | |
2599 | #endif | |
d66f1b06 PZ |
2600 | return rq1->cpu < rq2->cpu; |
2601 | } | |
2602 | ||
2603 | extern void double_rq_lock(struct rq *rq1, struct rq *rq2); | |
2604 | ||
2605 | #ifdef CONFIG_PREEMPTION | |
029632fb PZ |
2606 | |
2607 | /* | |
2608 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | |
2609 | * way at the expense of forcing extra atomic operations in all | |
2610 | * invocations. This assures that the double_lock is acquired using the | |
2611 | * same underlying policy as the spinlock_t on this architecture, which | |
2612 | * reduces latency compared to the unfair variant below. However, it | |
2613 | * also adds more overhead and therefore may reduce throughput. | |
2614 | */ | |
2615 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
2616 | __releases(this_rq->lock) | |
2617 | __acquires(busiest->lock) | |
2618 | __acquires(this_rq->lock) | |
2619 | { | |
5cb9eaa3 | 2620 | raw_spin_rq_unlock(this_rq); |
029632fb PZ |
2621 | double_rq_lock(this_rq, busiest); |
2622 | ||
2623 | return 1; | |
2624 | } | |
2625 | ||
2626 | #else | |
2627 | /* | |
2628 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
2629 | * latency by eliminating extra atomic operations when the locks are | |
97fb7a0a IM |
2630 | * already in proper order on entry. This favors lower CPU-ids and will |
2631 | * grant the double lock to lower CPUs over higher ids under contention, | |
029632fb PZ |
2632 | * regardless of entry order into the function. |
2633 | */ | |
2634 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
2635 | __releases(this_rq->lock) | |
2636 | __acquires(busiest->lock) | |
2637 | __acquires(this_rq->lock) | |
2638 | { | |
2679a837 HJ |
2639 | if (__rq_lockp(this_rq) == __rq_lockp(busiest) || |
2640 | likely(raw_spin_rq_trylock(busiest))) { | |
2641 | double_rq_clock_clear_update(this_rq, busiest); | |
5cb9eaa3 | 2642 | return 0; |
2679a837 | 2643 | } |
5cb9eaa3 | 2644 | |
d66f1b06 | 2645 | if (rq_order_less(this_rq, busiest)) { |
5cb9eaa3 | 2646 | raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); |
2679a837 | 2647 | double_rq_clock_clear_update(this_rq, busiest); |
5cb9eaa3 | 2648 | return 0; |
029632fb | 2649 | } |
5cb9eaa3 PZ |
2650 | |
2651 | raw_spin_rq_unlock(this_rq); | |
d66f1b06 | 2652 | double_rq_lock(this_rq, busiest); |
5cb9eaa3 PZ |
2653 | |
2654 | return 1; | |
029632fb PZ |
2655 | } |
2656 | ||
c1a280b6 | 2657 | #endif /* CONFIG_PREEMPTION */ |
029632fb PZ |
2658 | |
2659 | /* | |
2660 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
2661 | */ | |
2662 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
2663 | { | |
5cb9eaa3 | 2664 | lockdep_assert_irqs_disabled(); |
029632fb PZ |
2665 | |
2666 | return _double_lock_balance(this_rq, busiest); | |
2667 | } | |
2668 | ||
2669 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |
2670 | __releases(busiest->lock) | |
2671 | { | |
9ef7e7e3 | 2672 | if (__rq_lockp(this_rq) != __rq_lockp(busiest)) |
5cb9eaa3 | 2673 | raw_spin_rq_unlock(busiest); |
9ef7e7e3 | 2674 | lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); |
029632fb PZ |
2675 | } |
2676 | ||
74602315 PZ |
2677 | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) |
2678 | { | |
2679 | if (l1 > l2) | |
2680 | swap(l1, l2); | |
2681 | ||
2682 | spin_lock(l1); | |
2683 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | |
2684 | } | |
2685 | ||
60e69eed MG |
2686 | static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) |
2687 | { | |
2688 | if (l1 > l2) | |
2689 | swap(l1, l2); | |
2690 | ||
2691 | spin_lock_irq(l1); | |
2692 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | |
2693 | } | |
2694 | ||
74602315 PZ |
2695 | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
2696 | { | |
2697 | if (l1 > l2) | |
2698 | swap(l1, l2); | |
2699 | ||
2700 | raw_spin_lock(l1); | |
2701 | raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | |
2702 | } | |
2703 | ||
029632fb PZ |
2704 | /* |
2705 | * double_rq_unlock - safely unlock two runqueues | |
2706 | * | |
2707 | * Note this does not restore interrupts like task_rq_unlock, | |
2708 | * you need to do so manually after calling. | |
2709 | */ | |
2710 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
2711 | __releases(rq1->lock) | |
2712 | __releases(rq2->lock) | |
2713 | { | |
9ef7e7e3 | 2714 | if (__rq_lockp(rq1) != __rq_lockp(rq2)) |
5cb9eaa3 | 2715 | raw_spin_rq_unlock(rq2); |
029632fb PZ |
2716 | else |
2717 | __release(rq2->lock); | |
d66f1b06 | 2718 | raw_spin_rq_unlock(rq1); |
029632fb PZ |
2719 | } |
2720 | ||
f2cb1360 IM |
2721 | extern void set_rq_online (struct rq *rq); |
2722 | extern void set_rq_offline(struct rq *rq); | |
2723 | extern bool sched_smp_initialized; | |
2724 | ||
029632fb PZ |
2725 | #else /* CONFIG_SMP */ |
2726 | ||
2727 | /* | |
2728 | * double_rq_lock - safely lock two runqueues | |
2729 | * | |
2730 | * Note this does not disable interrupts like task_rq_lock, | |
2731 | * you need to do so manually before calling. | |
2732 | */ | |
2733 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
2734 | __acquires(rq1->lock) | |
2735 | __acquires(rq2->lock) | |
2736 | { | |
09348d75 IM |
2737 | WARN_ON_ONCE(!irqs_disabled()); |
2738 | WARN_ON_ONCE(rq1 != rq2); | |
5cb9eaa3 | 2739 | raw_spin_rq_lock(rq1); |
029632fb | 2740 | __acquire(rq2->lock); /* Fake it out ;) */ |
2679a837 | 2741 | double_rq_clock_clear_update(rq1, rq2); |
029632fb PZ |
2742 | } |
2743 | ||
2744 | /* | |
2745 | * double_rq_unlock - safely unlock two runqueues | |
2746 | * | |
2747 | * Note this does not restore interrupts like task_rq_unlock, | |
2748 | * you need to do so manually after calling. | |
2749 | */ | |
2750 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
2751 | __releases(rq1->lock) | |
2752 | __releases(rq2->lock) | |
2753 | { | |
09348d75 | 2754 | WARN_ON_ONCE(rq1 != rq2); |
5cb9eaa3 | 2755 | raw_spin_rq_unlock(rq1); |
029632fb PZ |
2756 | __release(rq2->lock); |
2757 | } | |
2758 | ||
2759 | #endif | |
2760 | ||
2761 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | |
2762 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | |
6b55c965 SD |
2763 | |
2764 | #ifdef CONFIG_SCHED_DEBUG | |
9406415f | 2765 | extern bool sched_debug_verbose; |
9469eb01 | 2766 | |
029632fb PZ |
2767 | extern void print_cfs_stats(struct seq_file *m, int cpu); |
2768 | extern void print_rt_stats(struct seq_file *m, int cpu); | |
acb32132 | 2769 | extern void print_dl_stats(struct seq_file *m, int cpu); |
f6a34630 MM |
2770 | extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); |
2771 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | |
2772 | extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); | |
c006fac5 PT |
2773 | |
2774 | extern void resched_latency_warn(int cpu, u64 latency); | |
397f2378 SD |
2775 | #ifdef CONFIG_NUMA_BALANCING |
2776 | extern void | |
2777 | show_numa_stats(struct task_struct *p, struct seq_file *m); | |
2778 | extern void | |
2779 | print_numa_stats(struct seq_file *m, int node, unsigned long tsf, | |
2780 | unsigned long tpf, unsigned long gsf, unsigned long gpf); | |
2781 | #endif /* CONFIG_NUMA_BALANCING */ | |
c006fac5 PT |
2782 | #else |
2783 | static inline void resched_latency_warn(int cpu, u64 latency) {} | |
397f2378 | 2784 | #endif /* CONFIG_SCHED_DEBUG */ |
029632fb PZ |
2785 | |
2786 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | |
07c54f7a AV |
2787 | extern void init_rt_rq(struct rt_rq *rt_rq); |
2788 | extern void init_dl_rq(struct dl_rq *dl_rq); | |
029632fb | 2789 | |
1ee14e6c BS |
2790 | extern void cfs_bandwidth_usage_inc(void); |
2791 | extern void cfs_bandwidth_usage_dec(void); | |
1c792db7 | 2792 | |
3451d024 | 2793 | #ifdef CONFIG_NO_HZ_COMMON |
00357f5e PZ |
2794 | #define NOHZ_BALANCE_KICK_BIT 0 |
2795 | #define NOHZ_STATS_KICK_BIT 1 | |
c6f88654 | 2796 | #define NOHZ_NEWILB_KICK_BIT 2 |
efd984c4 | 2797 | #define NOHZ_NEXT_KICK_BIT 3 |
a22e47a4 | 2798 | |
efd984c4 | 2799 | /* Run rebalance_domains() */ |
a22e47a4 | 2800 | #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) |
efd984c4 | 2801 | /* Update blocked load */ |
b7031a02 | 2802 | #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) |
efd984c4 | 2803 | /* Update blocked load when entering idle */ |
c6f88654 | 2804 | #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) |
efd984c4 VS |
2805 | /* Update nohz.next_balance */ |
2806 | #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) | |
b7031a02 | 2807 | |
efd984c4 | 2808 | #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) |
1c792db7 SS |
2809 | |
2810 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) | |
20a5c8cc | 2811 | |
00357f5e | 2812 | extern void nohz_balance_exit_idle(struct rq *rq); |
20a5c8cc | 2813 | #else |
00357f5e | 2814 | static inline void nohz_balance_exit_idle(struct rq *rq) { } |
1c792db7 | 2815 | #endif |
73fbec60 | 2816 | |
c6f88654 VG |
2817 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
2818 | extern void nohz_run_idle_balance(int cpu); | |
2819 | #else | |
2820 | static inline void nohz_run_idle_balance(int cpu) { } | |
2821 | #endif | |
daec5798 | 2822 | |
73fbec60 | 2823 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
19d23dbf | 2824 | struct irqtime { |
25e2d8c1 | 2825 | u64 total; |
a499a5a1 | 2826 | u64 tick_delta; |
19d23dbf FW |
2827 | u64 irq_start_time; |
2828 | struct u64_stats_sync sync; | |
2829 | }; | |
73fbec60 | 2830 | |
19d23dbf | 2831 | DECLARE_PER_CPU(struct irqtime, cpu_irqtime); |
73fbec60 | 2832 | |
25e2d8c1 FW |
2833 | /* |
2834 | * Returns the irqtime minus the softirq time computed by ksoftirqd. | |
3b03706f | 2835 | * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime |
25e2d8c1 FW |
2836 | * and never move forward. |
2837 | */ | |
73fbec60 FW |
2838 | static inline u64 irq_time_read(int cpu) |
2839 | { | |
19d23dbf FW |
2840 | struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); |
2841 | unsigned int seq; | |
2842 | u64 total; | |
73fbec60 FW |
2843 | |
2844 | do { | |
19d23dbf | 2845 | seq = __u64_stats_fetch_begin(&irqtime->sync); |
25e2d8c1 | 2846 | total = irqtime->total; |
19d23dbf | 2847 | } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); |
73fbec60 | 2848 | |
19d23dbf | 2849 | return total; |
73fbec60 | 2850 | } |
73fbec60 | 2851 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
adaf9fcd RW |
2852 | |
2853 | #ifdef CONFIG_CPU_FREQ | |
b10abd0a | 2854 | DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); |
adaf9fcd RW |
2855 | |
2856 | /** | |
2857 | * cpufreq_update_util - Take a note about CPU utilization changes. | |
12bde33d | 2858 | * @rq: Runqueue to carry out the update for. |
58919e83 | 2859 | * @flags: Update reason flags. |
adaf9fcd | 2860 | * |
58919e83 RW |
2861 | * This function is called by the scheduler on the CPU whose utilization is |
2862 | * being updated. | |
adaf9fcd RW |
2863 | * |
2864 | * It can only be called from RCU-sched read-side critical sections. | |
adaf9fcd RW |
2865 | * |
2866 | * The way cpufreq is currently arranged requires it to evaluate the CPU | |
2867 | * performance state (frequency/voltage) on a regular basis to prevent it from | |
2868 | * being stuck in a completely inadequate performance level for too long. | |
e0367b12 JL |
2869 | * That is not guaranteed to happen if the updates are only triggered from CFS |
2870 | * and DL, though, because they may not be coming in if only RT tasks are | |
2871 | * active all the time (or there are RT tasks only). | |
adaf9fcd | 2872 | * |
e0367b12 JL |
2873 | * As a workaround for that issue, this function is called periodically by the |
2874 | * RT sched class to trigger extra cpufreq updates to prevent it from stalling, | |
adaf9fcd | 2875 | * but that really is a band-aid. Going forward it should be replaced with |
e0367b12 | 2876 | * solutions targeted more specifically at RT tasks. |
adaf9fcd | 2877 | */ |
12bde33d | 2878 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) |
adaf9fcd | 2879 | { |
58919e83 RW |
2880 | struct update_util_data *data; |
2881 | ||
674e7541 VK |
2882 | data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, |
2883 | cpu_of(rq))); | |
58919e83 | 2884 | if (data) |
12bde33d RW |
2885 | data->func(data, rq_clock(rq), flags); |
2886 | } | |
adaf9fcd | 2887 | #else |
12bde33d | 2888 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} |
adaf9fcd | 2889 | #endif /* CONFIG_CPU_FREQ */ |
be53f58f | 2890 | |
9bdcb44e | 2891 | #ifdef arch_scale_freq_capacity |
97fb7a0a IM |
2892 | # ifndef arch_scale_freq_invariant |
2893 | # define arch_scale_freq_invariant() true | |
2894 | # endif | |
2895 | #else | |
2896 | # define arch_scale_freq_invariant() false | |
9bdcb44e | 2897 | #endif |
d4edd662 | 2898 | |
10a35e68 VG |
2899 | #ifdef CONFIG_SMP |
2900 | static inline unsigned long capacity_orig_of(int cpu) | |
2901 | { | |
2902 | return cpu_rq(cpu)->cpu_capacity_orig; | |
2903 | } | |
10a35e68 | 2904 | |
938e5e4b | 2905 | /** |
a5418be9 | 2906 | * enum cpu_util_type - CPU utilization type |
938e5e4b QP |
2907 | * @FREQUENCY_UTIL: Utilization used to select frequency |
2908 | * @ENERGY_UTIL: Utilization used during energy calculation | |
2909 | * | |
2910 | * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time | |
2911 | * need to be aggregated differently depending on the usage made of them. This | |
a5418be9 | 2912 | * enum is used within effective_cpu_util() to differentiate the types of |
938e5e4b QP |
2913 | * utilization expected by the callers, and adjust the aggregation accordingly. |
2914 | */ | |
a5418be9 | 2915 | enum cpu_util_type { |
938e5e4b QP |
2916 | FREQUENCY_UTIL, |
2917 | ENERGY_UTIL, | |
2918 | }; | |
2919 | ||
a5418be9 | 2920 | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, |
bb447999 | 2921 | enum cpu_util_type type, |
af24bde8 | 2922 | struct task_struct *p); |
938e5e4b | 2923 | |
b3f53daa DE |
2924 | /* |
2925 | * Verify the fitness of task @p to run on @cpu taking into account the | |
2926 | * CPU original capacity and the runtime/deadline ratio of the task. | |
2927 | * | |
2928 | * The function will return true if the original capacity of @cpu is | |
2929 | * greater than or equal to task's deadline density right shifted by | |
2930 | * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. | |
2931 | */ | |
2932 | static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) | |
2933 | { | |
2934 | unsigned long cap = arch_scale_cpu_capacity(cpu); | |
2935 | ||
2936 | return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); | |
2937 | } | |
2938 | ||
8cc90515 | 2939 | static inline unsigned long cpu_bw_dl(struct rq *rq) |
d4edd662 JL |
2940 | { |
2941 | return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; | |
2942 | } | |
2943 | ||
8cc90515 VG |
2944 | static inline unsigned long cpu_util_dl(struct rq *rq) |
2945 | { | |
2946 | return READ_ONCE(rq->avg_dl.util_avg); | |
2947 | } | |
2948 | ||
82762d2a DE |
2949 | /** |
2950 | * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. | |
2951 | * @cpu: the CPU to get the utilization for. | |
2952 | * | |
2953 | * The unit of the return value must be the same as the one of CPU capacity | |
2954 | * so that CPU utilization can be compared with CPU capacity. | |
2955 | * | |
2956 | * CPU utilization is the sum of running time of runnable tasks plus the | |
2957 | * recent utilization of currently non-runnable tasks on that CPU. | |
2958 | * It represents the amount of CPU capacity currently used by CFS tasks in | |
2959 | * the range [0..max CPU capacity] with max CPU capacity being the CPU | |
2960 | * capacity at f_max. | |
2961 | * | |
2962 | * The estimated CPU utilization is defined as the maximum between CPU | |
2963 | * utilization and sum of the estimated utilization of the currently | |
2964 | * runnable tasks on that CPU. It preserves a utilization "snapshot" of | |
2965 | * previously-executed tasks, which helps better deduce how busy a CPU will | |
2966 | * be when a long-sleeping task wakes up. The contribution to CPU utilization | |
2967 | * of such a task would be significantly decayed at this point of time. | |
2968 | * | |
2969 | * CPU utilization can be higher than the current CPU capacity | |
2970 | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because | |
2971 | * of rounding errors as well as task migrations or wakeups of new tasks. | |
2972 | * CPU utilization has to be capped to fit into the [0..max CPU capacity] | |
2973 | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) | |
2974 | * could be seen as over-utilized even though CPU1 has 20% of spare CPU | |
2975 | * capacity. CPU utilization is allowed to overshoot current CPU capacity | |
2976 | * though since this is useful for predicting the CPU capacity required | |
2977 | * after task migrations (scheduler-driven DVFS). | |
2978 | * | |
2979 | * Return: (Estimated) utilization for the specified CPU. | |
2980 | */ | |
2981 | static inline unsigned long cpu_util_cfs(int cpu) | |
d4edd662 | 2982 | { |
82762d2a DE |
2983 | struct cfs_rq *cfs_rq; |
2984 | unsigned long util; | |
2985 | ||
2986 | cfs_rq = &cpu_rq(cpu)->cfs; | |
2987 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
a07630b8 PB |
2988 | |
2989 | if (sched_feat(UTIL_EST)) { | |
2990 | util = max_t(unsigned long, util, | |
82762d2a | 2991 | READ_ONCE(cfs_rq->avg.util_est.enqueued)); |
a07630b8 PB |
2992 | } |
2993 | ||
82762d2a | 2994 | return min(util, capacity_orig_of(cpu)); |
d4edd662 | 2995 | } |
371bf427 VG |
2996 | |
2997 | static inline unsigned long cpu_util_rt(struct rq *rq) | |
2998 | { | |
dfa444dc | 2999 | return READ_ONCE(rq->avg_rt.util_avg); |
371bf427 | 3000 | } |
7d6a905f | 3001 | #endif |
9033ea11 | 3002 | |
7a17e1db QY |
3003 | #ifdef CONFIG_UCLAMP_TASK |
3004 | unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); | |
3005 | ||
24422603 QY |
3006 | static inline unsigned long uclamp_rq_get(struct rq *rq, |
3007 | enum uclamp_id clamp_id) | |
3008 | { | |
3009 | return READ_ONCE(rq->uclamp[clamp_id].value); | |
3010 | } | |
3011 | ||
3012 | static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, | |
3013 | unsigned int value) | |
3014 | { | |
3015 | WRITE_ONCE(rq->uclamp[clamp_id].value, value); | |
3016 | } | |
3017 | ||
3018 | static inline bool uclamp_rq_is_idle(struct rq *rq) | |
3019 | { | |
3020 | return rq->uclamp_flags & UCLAMP_FLAG_IDLE; | |
3021 | } | |
3022 | ||
7a17e1db QY |
3023 | /** |
3024 | * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. | |
3025 | * @rq: The rq to clamp against. Must not be NULL. | |
3026 | * @util: The util value to clamp. | |
3027 | * @p: The task to clamp against. Can be NULL if you want to clamp | |
3028 | * against @rq only. | |
3029 | * | |
3030 | * Clamps the passed @util to the max(@rq, @p) effective uclamp values. | |
3031 | * | |
3032 | * If sched_uclamp_used static key is disabled, then just return the util | |
3033 | * without any clamping since uclamp aggregation at the rq level in the fast | |
3034 | * path is disabled, rendering this operation a NOP. | |
3035 | * | |
3036 | * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It | |
3037 | * will return the correct effective uclamp value of the task even if the | |
3038 | * static key is disabled. | |
3039 | */ | |
3040 | static __always_inline | |
3041 | unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, | |
3042 | struct task_struct *p) | |
3043 | { | |
3044 | unsigned long min_util = 0; | |
3045 | unsigned long max_util = 0; | |
3046 | ||
3047 | if (!static_branch_likely(&sched_uclamp_used)) | |
3048 | return util; | |
3049 | ||
3050 | if (p) { | |
3051 | min_util = uclamp_eff_value(p, UCLAMP_MIN); | |
3052 | max_util = uclamp_eff_value(p, UCLAMP_MAX); | |
3053 | ||
3054 | /* | |
3055 | * Ignore last runnable task's max clamp, as this task will | |
3056 | * reset it. Similarly, no need to read the rq's min clamp. | |
3057 | */ | |
24422603 | 3058 | if (uclamp_rq_is_idle(rq)) |
7a17e1db QY |
3059 | goto out; |
3060 | } | |
3061 | ||
24422603 QY |
3062 | min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN)); |
3063 | max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX)); | |
7a17e1db QY |
3064 | out: |
3065 | /* | |
3066 | * Since CPU's {min,max}_util clamps are MAX aggregated considering | |
3067 | * RUNNABLE tasks with _different_ clamps, we can end up with an | |
3068 | * inversion. Fix it now when the clamps are applied. | |
3069 | */ | |
3070 | if (unlikely(min_util >= max_util)) | |
3071 | return min_util; | |
3072 | ||
3073 | return clamp(util, min_util, max_util); | |
3074 | } | |
3075 | ||
3076 | /* Is the rq being capped/throttled by uclamp_max? */ | |
3077 | static inline bool uclamp_rq_is_capped(struct rq *rq) | |
3078 | { | |
3079 | unsigned long rq_util; | |
3080 | unsigned long max_util; | |
3081 | ||
3082 | if (!static_branch_likely(&sched_uclamp_used)) | |
3083 | return false; | |
3084 | ||
3085 | rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); | |
3086 | max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); | |
3087 | ||
3088 | return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; | |
3089 | } | |
3090 | ||
3091 | /* | |
3092 | * When uclamp is compiled in, the aggregation at rq level is 'turned off' | |
3093 | * by default in the fast path and only gets turned on once userspace performs | |
3094 | * an operation that requires it. | |
3095 | * | |
3096 | * Returns true if userspace opted-in to use uclamp and aggregation at rq level | |
3097 | * hence is active. | |
3098 | */ | |
3099 | static inline bool uclamp_is_used(void) | |
3100 | { | |
3101 | return static_branch_likely(&sched_uclamp_used); | |
3102 | } | |
3103 | #else /* CONFIG_UCLAMP_TASK */ | |
b48e16a6 QY |
3104 | static inline unsigned long uclamp_eff_value(struct task_struct *p, |
3105 | enum uclamp_id clamp_id) | |
3106 | { | |
3107 | if (clamp_id == UCLAMP_MIN) | |
3108 | return 0; | |
3109 | ||
3110 | return SCHED_CAPACITY_SCALE; | |
3111 | } | |
3112 | ||
7a17e1db QY |
3113 | static inline |
3114 | unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, | |
3115 | struct task_struct *p) | |
3116 | { | |
3117 | return util; | |
3118 | } | |
3119 | ||
3120 | static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } | |
3121 | ||
3122 | static inline bool uclamp_is_used(void) | |
3123 | { | |
3124 | return false; | |
3125 | } | |
24422603 QY |
3126 | |
3127 | static inline unsigned long uclamp_rq_get(struct rq *rq, | |
3128 | enum uclamp_id clamp_id) | |
3129 | { | |
3130 | if (clamp_id == UCLAMP_MIN) | |
3131 | return 0; | |
3132 | ||
3133 | return SCHED_CAPACITY_SCALE; | |
3134 | } | |
3135 | ||
3136 | static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, | |
3137 | unsigned int value) | |
3138 | { | |
3139 | } | |
3140 | ||
3141 | static inline bool uclamp_rq_is_idle(struct rq *rq) | |
3142 | { | |
3143 | return false; | |
3144 | } | |
7a17e1db QY |
3145 | #endif /* CONFIG_UCLAMP_TASK */ |
3146 | ||
11d4afd4 | 3147 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
9033ea11 VG |
3148 | static inline unsigned long cpu_util_irq(struct rq *rq) |
3149 | { | |
3150 | return rq->avg_irq.util_avg; | |
3151 | } | |
2e62c474 VG |
3152 | |
3153 | static inline | |
3154 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) | |
3155 | { | |
3156 | util *= (max - irq); | |
3157 | util /= max; | |
3158 | ||
3159 | return util; | |
3160 | ||
3161 | } | |
9033ea11 VG |
3162 | #else |
3163 | static inline unsigned long cpu_util_irq(struct rq *rq) | |
3164 | { | |
3165 | return 0; | |
3166 | } | |
3167 | ||
2e62c474 VG |
3168 | static inline |
3169 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) | |
3170 | { | |
3171 | return util; | |
3172 | } | |
794a56eb | 3173 | #endif |
6aa140fa | 3174 | |
531b5c9f | 3175 | #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) |
f8a696f2 | 3176 | |
6aa140fa | 3177 | #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) |
f8a696f2 PZ |
3178 | |
3179 | DECLARE_STATIC_KEY_FALSE(sched_energy_present); | |
3180 | ||
3181 | static inline bool sched_energy_enabled(void) | |
3182 | { | |
3183 | return static_branch_unlikely(&sched_energy_present); | |
3184 | } | |
3185 | ||
3186 | #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ | |
3187 | ||
6aa140fa | 3188 | #define perf_domain_span(pd) NULL |
f8a696f2 | 3189 | static inline bool sched_energy_enabled(void) { return false; } |
1f74de87 | 3190 | |
f8a696f2 | 3191 | #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ |
227a4aad MD |
3192 | |
3193 | #ifdef CONFIG_MEMBARRIER | |
3194 | /* | |
3195 | * The scheduler provides memory barriers required by membarrier between: | |
3196 | * - prior user-space memory accesses and store to rq->membarrier_state, | |
3197 | * - store to rq->membarrier_state and following user-space memory accesses. | |
3198 | * In the same way it provides those guarantees around store to rq->curr. | |
3199 | */ | |
3200 | static inline void membarrier_switch_mm(struct rq *rq, | |
3201 | struct mm_struct *prev_mm, | |
3202 | struct mm_struct *next_mm) | |
3203 | { | |
3204 | int membarrier_state; | |
3205 | ||
3206 | if (prev_mm == next_mm) | |
3207 | return; | |
3208 | ||
3209 | membarrier_state = atomic_read(&next_mm->membarrier_state); | |
3210 | if (READ_ONCE(rq->membarrier_state) == membarrier_state) | |
3211 | return; | |
3212 | ||
3213 | WRITE_ONCE(rq->membarrier_state, membarrier_state); | |
3214 | } | |
3215 | #else | |
3216 | static inline void membarrier_switch_mm(struct rq *rq, | |
3217 | struct mm_struct *prev_mm, | |
3218 | struct mm_struct *next_mm) | |
3219 | { | |
3220 | } | |
3221 | #endif | |
52262ee5 MG |
3222 | |
3223 | #ifdef CONFIG_SMP | |
3224 | static inline bool is_per_cpu_kthread(struct task_struct *p) | |
3225 | { | |
3226 | if (!(p->flags & PF_KTHREAD)) | |
3227 | return false; | |
3228 | ||
3229 | if (p->nr_cpus_allowed != 1) | |
3230 | return false; | |
3231 | ||
3232 | return true; | |
3233 | } | |
3234 | #endif | |
b3212fe2 | 3235 | |
1011dcce PZ |
3236 | extern void swake_up_all_locked(struct swait_queue_head *q); |
3237 | extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); | |
3238 | ||
3239 | #ifdef CONFIG_PREEMPT_DYNAMIC | |
3240 | extern int preempt_dynamic_mode; | |
3241 | extern int sched_dynamic_mode(const char *str); | |
3242 | extern void sched_dynamic_update(int mode); | |
3243 | #endif | |
3244 | ||
5531ecff SX |
3245 | static inline void update_current_exec_runtime(struct task_struct *curr, |
3246 | u64 now, u64 delta_exec) | |
3247 | { | |
3248 | curr->se.sum_exec_runtime += delta_exec; | |
3249 | account_group_exec_runtime(curr, delta_exec); | |
3250 | ||
3251 | curr->se.exec_start = now; | |
3252 | cgroup_account_cputime(curr, delta_exec); | |
3253 | } | |
3254 | ||
af7f588d | 3255 | #ifdef CONFIG_SCHED_MM_CID |
223baf9d MD |
3256 | |
3257 | #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ | |
3258 | #define MM_CID_SCAN_DELAY 100 /* 100ms */ | |
3259 | ||
3260 | extern raw_spinlock_t cid_lock; | |
3261 | extern int use_cid_lock; | |
3262 | ||
3263 | extern void sched_mm_cid_migrate_from(struct task_struct *t); | |
3264 | extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); | |
3265 | extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); | |
3266 | extern void init_sched_mm_cid(struct task_struct *t); | |
3267 | ||
3268 | static inline void __mm_cid_put(struct mm_struct *mm, int cid) | |
3269 | { | |
3270 | if (cid < 0) | |
3271 | return; | |
3272 | cpumask_clear_cpu(cid, mm_cidmask(mm)); | |
3273 | } | |
3274 | ||
3275 | /* | |
3276 | * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to | |
3277 | * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to | |
3278 | * be held to transition to other states. | |
3279 | * | |
3280 | * State transitions synchronized with cmpxchg or try_cmpxchg need to be | |
3281 | * consistent across cpus, which prevents use of this_cpu_cmpxchg. | |
3282 | */ | |
3283 | static inline void mm_cid_put_lazy(struct task_struct *t) | |
3284 | { | |
3285 | struct mm_struct *mm = t->mm; | |
3286 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; | |
3287 | int cid; | |
3288 | ||
3289 | lockdep_assert_irqs_disabled(); | |
3290 | cid = __this_cpu_read(pcpu_cid->cid); | |
3291 | if (!mm_cid_is_lazy_put(cid) || | |
3292 | !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) | |
3293 | return; | |
3294 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); | |
3295 | } | |
3296 | ||
3297 | static inline int mm_cid_pcpu_unset(struct mm_struct *mm) | |
3298 | { | |
3299 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; | |
3300 | int cid, res; | |
3301 | ||
3302 | lockdep_assert_irqs_disabled(); | |
3303 | cid = __this_cpu_read(pcpu_cid->cid); | |
3304 | for (;;) { | |
3305 | if (mm_cid_is_unset(cid)) | |
3306 | return MM_CID_UNSET; | |
3307 | /* | |
3308 | * Attempt transition from valid or lazy-put to unset. | |
3309 | */ | |
3310 | res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); | |
3311 | if (res == cid) | |
3312 | break; | |
3313 | cid = res; | |
3314 | } | |
3315 | return cid; | |
3316 | } | |
3317 | ||
3318 | static inline void mm_cid_put(struct mm_struct *mm) | |
3319 | { | |
3320 | int cid; | |
3321 | ||
3322 | lockdep_assert_irqs_disabled(); | |
3323 | cid = mm_cid_pcpu_unset(mm); | |
3324 | if (cid == MM_CID_UNSET) | |
3325 | return; | |
3326 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); | |
3327 | } | |
3328 | ||
3329 | static inline int __mm_cid_try_get(struct mm_struct *mm) | |
af7f588d MD |
3330 | { |
3331 | struct cpumask *cpumask; | |
3332 | int cid; | |
3333 | ||
3334 | cpumask = mm_cidmask(mm); | |
223baf9d MD |
3335 | /* |
3336 | * Retry finding first zero bit if the mask is temporarily | |
3337 | * filled. This only happens during concurrent remote-clear | |
3338 | * which owns a cid without holding a rq lock. | |
3339 | */ | |
3340 | for (;;) { | |
3341 | cid = cpumask_first_zero(cpumask); | |
3342 | if (cid < nr_cpu_ids) | |
3343 | break; | |
3344 | cpu_relax(); | |
3345 | } | |
3346 | if (cpumask_test_and_set_cpu(cid, cpumask)) | |
af7f588d | 3347 | return -1; |
af7f588d MD |
3348 | return cid; |
3349 | } | |
3350 | ||
223baf9d MD |
3351 | /* |
3352 | * Save a snapshot of the current runqueue time of this cpu | |
3353 | * with the per-cpu cid value, allowing to estimate how recently it was used. | |
3354 | */ | |
3355 | static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) | |
af7f588d | 3356 | { |
223baf9d MD |
3357 | struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); |
3358 | ||
3359 | lockdep_assert_rq_held(rq); | |
3360 | WRITE_ONCE(pcpu_cid->time, rq->clock); | |
af7f588d MD |
3361 | } |
3362 | ||
223baf9d | 3363 | static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) |
af7f588d | 3364 | { |
223baf9d | 3365 | int cid; |
af7f588d | 3366 | |
223baf9d MD |
3367 | /* |
3368 | * All allocations (even those using the cid_lock) are lock-free. If | |
3369 | * use_cid_lock is set, hold the cid_lock to perform cid allocation to | |
3370 | * guarantee forward progress. | |
3371 | */ | |
3372 | if (!READ_ONCE(use_cid_lock)) { | |
3373 | cid = __mm_cid_try_get(mm); | |
3374 | if (cid >= 0) | |
3375 | goto end; | |
3376 | raw_spin_lock(&cid_lock); | |
3377 | } else { | |
3378 | raw_spin_lock(&cid_lock); | |
3379 | cid = __mm_cid_try_get(mm); | |
3380 | if (cid >= 0) | |
3381 | goto unlock; | |
3382 | } | |
3383 | ||
3384 | /* | |
3385 | * cid concurrently allocated. Retry while forcing following | |
3386 | * allocations to use the cid_lock to ensure forward progress. | |
3387 | */ | |
3388 | WRITE_ONCE(use_cid_lock, 1); | |
3389 | /* | |
3390 | * Set use_cid_lock before allocation. Only care about program order | |
3391 | * because this is only required for forward progress. | |
3392 | */ | |
3393 | barrier(); | |
3394 | /* | |
3395 | * Retry until it succeeds. It is guaranteed to eventually succeed once | |
3396 | * all newcoming allocations observe the use_cid_lock flag set. | |
3397 | */ | |
3398 | do { | |
3399 | cid = __mm_cid_try_get(mm); | |
3400 | cpu_relax(); | |
3401 | } while (cid < 0); | |
3402 | /* | |
3403 | * Allocate before clearing use_cid_lock. Only care about | |
3404 | * program order because this is for forward progress. | |
3405 | */ | |
3406 | barrier(); | |
3407 | WRITE_ONCE(use_cid_lock, 0); | |
3408 | unlock: | |
3409 | raw_spin_unlock(&cid_lock); | |
3410 | end: | |
3411 | mm_cid_snapshot_time(rq, mm); | |
3412 | return cid; | |
af7f588d MD |
3413 | } |
3414 | ||
223baf9d | 3415 | static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) |
af7f588d | 3416 | { |
223baf9d MD |
3417 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; |
3418 | struct cpumask *cpumask; | |
3419 | int cid; | |
3420 | ||
3421 | lockdep_assert_rq_held(rq); | |
3422 | cpumask = mm_cidmask(mm); | |
3423 | cid = __this_cpu_read(pcpu_cid->cid); | |
3424 | if (mm_cid_is_valid(cid)) { | |
3425 | mm_cid_snapshot_time(rq, mm); | |
3426 | return cid; | |
3427 | } | |
3428 | if (mm_cid_is_lazy_put(cid)) { | |
3429 | if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) | |
3430 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); | |
3431 | } | |
3432 | cid = __mm_cid_get(rq, mm); | |
3433 | __this_cpu_write(pcpu_cid->cid, cid); | |
3434 | return cid; | |
3435 | } | |
3436 | ||
3437 | static inline void switch_mm_cid(struct rq *rq, | |
3438 | struct task_struct *prev, | |
3439 | struct task_struct *next) | |
3440 | { | |
3441 | /* | |
3442 | * Provide a memory barrier between rq->curr store and load of | |
3443 | * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. | |
3444 | * | |
3445 | * Should be adapted if context_switch() is modified. | |
3446 | */ | |
3447 | if (!next->mm) { // to kernel | |
3448 | /* | |
3449 | * user -> kernel transition does not guarantee a barrier, but | |
3450 | * we can use the fact that it performs an atomic operation in | |
3451 | * mmgrab(). | |
3452 | */ | |
3453 | if (prev->mm) // from user | |
3454 | smp_mb__after_mmgrab(); | |
3455 | /* | |
3456 | * kernel -> kernel transition does not change rq->curr->mm | |
3457 | * state. It stays NULL. | |
3458 | */ | |
3459 | } else { // to user | |
3460 | /* | |
3461 | * kernel -> user transition does not provide a barrier | |
3462 | * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. | |
3463 | * Provide it here. | |
3464 | */ | |
3465 | if (!prev->mm) // from kernel | |
3466 | smp_mb(); | |
3467 | /* | |
3468 | * user -> user transition guarantees a memory barrier through | |
3469 | * switch_mm() when current->mm changes. If current->mm is | |
3470 | * unchanged, no barrier is needed. | |
3471 | */ | |
3472 | } | |
af7f588d | 3473 | if (prev->mm_cid_active) { |
223baf9d MD |
3474 | mm_cid_snapshot_time(rq, prev->mm); |
3475 | mm_cid_put_lazy(prev); | |
af7f588d MD |
3476 | prev->mm_cid = -1; |
3477 | } | |
3478 | if (next->mm_cid_active) | |
223baf9d | 3479 | next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); |
af7f588d MD |
3480 | } |
3481 | ||
3482 | #else | |
223baf9d MD |
3483 | static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } |
3484 | static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } | |
3485 | static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } | |
3486 | static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } | |
3487 | static inline void init_sched_mm_cid(struct task_struct *t) { } | |
af7f588d MD |
3488 | #endif |
3489 | ||
95458477 | 3490 | #endif /* _KERNEL_SCHED_SCHED_H */ |