]> Git Repo - linux.git/blame - kernel/sched/sched.h
sched: Fix performance regression introduced by mm_cid
[linux.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
95458477
IM
5#ifndef _KERNEL_SCHED_SCHED_H
6#define _KERNEL_SCHED_SCHED_H
325ea10c 7
801c1419 8#include <linux/sched/affinity.h>
dfc3401a 9#include <linux/sched/autogroup.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c 11#include <linux/sched/deadline.h>
4ff8f2ca 12#include <linux/sched.h>
325ea10c
IM
13#include <linux/sched/loadavg.h>
14#include <linux/sched/mm.h>
801c1419 15#include <linux/sched/rseq_api.h>
325ea10c 16#include <linux/sched/signal.h>
321a874a 17#include <linux/sched/smt.h>
325ea10c
IM
18#include <linux/sched/stat.h>
19#include <linux/sched/sysctl.h>
4ff8f2ca 20#include <linux/sched/task_flags.h>
29930025 21#include <linux/sched/task.h>
325ea10c 22#include <linux/sched/topology.h>
ef8bd77f 23
4ff8f2ca 24#include <linux/atomic.h>
801c1419 25#include <linux/bitmap.h>
4ff8f2ca 26#include <linux/bug.h>
801c1419 27#include <linux/capability.h>
4ff8f2ca 28#include <linux/cgroup_api.h>
801c1419 29#include <linux/cgroup.h>
e67198cc 30#include <linux/context_tracking.h>
325ea10c 31#include <linux/cpufreq.h>
801c1419 32#include <linux/cpumask_api.h>
325ea10c 33#include <linux/ctype.h>
801c1419 34#include <linux/file.h>
4ff8f2ca 35#include <linux/fs_api.h>
f96eca43
IM
36#include <linux/hrtimer_api.h>
37#include <linux/interrupt.h>
4ff8f2ca 38#include <linux/irq_work.h>
801c1419
IM
39#include <linux/jiffies.h>
40#include <linux/kref_api.h>
325ea10c 41#include <linux/kthread.h>
f96eca43 42#include <linux/ktime_api.h>
801c1419 43#include <linux/lockdep_api.h>
4ff8f2ca
IM
44#include <linux/lockdep.h>
45#include <linux/minmax.h>
46#include <linux/mm.h>
801c1419
IM
47#include <linux/module.h>
48#include <linux/mutex_api.h>
4ff8f2ca 49#include <linux/plist.h>
801c1419 50#include <linux/poll.h>
325ea10c 51#include <linux/proc_fs.h>
325ea10c 52#include <linux/profile.h>
eb414681 53#include <linux/psi.h>
4ff8f2ca 54#include <linux/rcupdate.h>
801c1419
IM
55#include <linux/seq_file.h>
56#include <linux/seqlock.h>
f96eca43
IM
57#include <linux/softirq.h>
58#include <linux/spinlock_api.h>
4ff8f2ca 59#include <linux/static_key.h>
029632fb 60#include <linux/stop_machine.h>
801c1419 61#include <linux/syscalls_api.h>
325ea10c 62#include <linux/syscalls.h>
4ff8f2ca 63#include <linux/tick.h>
801c1419
IM
64#include <linux/topology.h>
65#include <linux/types.h>
f96eca43 66#include <linux/u64_stats_sync_api.h>
801c1419
IM
67#include <linux/uaccess.h>
68#include <linux/wait_api.h>
4ff8f2ca 69#include <linux/wait_bit.h>
801c1419
IM
70#include <linux/workqueue_api.h>
71
72#include <trace/events/power.h>
4ff8f2ca 73#include <trace/events/sched.h>
801c1419
IM
74
75#include "../workqueue_internal.h"
76
4ff8f2ca
IM
77#ifdef CONFIG_CGROUP_SCHED
78#include <linux/cgroup.h>
79#include <linux/psi.h>
80#endif
325ea10c 81
4ff8f2ca
IM
82#ifdef CONFIG_SCHED_DEBUG
83# include <linux/static_key.h>
84#endif
029632fb 85
7fce777c 86#ifdef CONFIG_PARAVIRT
325ea10c 87# include <asm/paravirt.h>
4ff8f2ca 88# include <asm/paravirt_api_clock.h>
7fce777c
IM
89#endif
90
391e43da 91#include "cpupri.h"
6bfd6d72 92#include "cpudeadline.h"
029632fb 93
9148a3a1 94#ifdef CONFIG_SCHED_DEBUG
4ff8f2ca 95# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 96#else
4ff8f2ca 97# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
98#endif
99
45ceebf7 100struct rq;
442bf3aa 101struct cpuidle_state;
45ceebf7 102
da0c1e65
KT
103/* task_struct::on_rq states: */
104#define TASK_ON_RQ_QUEUED 1
cca26e80 105#define TASK_ON_RQ_MIGRATING 2
da0c1e65 106
029632fb
PZ
107extern __read_mostly int scheduler_running;
108
45ceebf7
PG
109extern unsigned long calc_load_update;
110extern atomic_long_t calc_load_tasks;
111
a60707d7
ZN
112extern unsigned int sysctl_sched_child_runs_first;
113
3289bdb4 114extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 115extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 116
9d246053 117extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
d9ab0e63
ZN
118
119extern unsigned int sysctl_sched_rt_period;
120extern int sysctl_sched_rt_runtime;
dafd7a9d 121extern int sched_rr_timeslice;
d9ab0e63 122
029632fb
PZ
123/*
124 * Helpers for converting nanosecond timing to jiffy resolution
125 */
126#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127
cc1f4b1f
LZ
128/*
129 * Increase resolution of nice-level calculations for 64-bit architectures.
130 * The extra resolution improves shares distribution and load balancing of
131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132 * hierarchies, especially on larger systems. This is not a user-visible change
133 * and does not change the user-interface for setting shares/weights.
134 *
135 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137 * are pretty high and the returns do not justify the increased costs.
2159197d 138 *
97fb7a0a
IM
139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 141 */
2159197d 142#ifdef CONFIG_64BIT
172895e6 143# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 144# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
145# define scale_load_down(w) \
146({ \
147 unsigned long __w = (w); \
148 if (__w) \
149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 __w; \
151})
cc1f4b1f 152#else
172895e6 153# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
154# define scale_load(w) (w)
155# define scale_load_down(w) (w)
156#endif
157
6ecdd749 158/*
172895e6
YD
159 * Task weight (visible to users) and its load (invisible to users) have
160 * independent resolution, but they should be well calibrated. We use
161 * scale_load() and scale_load_down(w) to convert between them. The
162 * following must be true:
163 *
9d061ba6 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
172895e6 165 *
6ecdd749 166 */
172895e6 167#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 168
332ac17e
DF
169/*
170 * Single value that decides SCHED_DEADLINE internal math precision.
171 * 10 -> just above 1us
172 * 9 -> just above 0.5us
173 */
97fb7a0a 174#define DL_SCALE 10
029632fb
PZ
175
176/*
97fb7a0a 177 * Single value that denotes runtime == period, ie unlimited time.
029632fb 178 */
97fb7a0a 179#define RUNTIME_INF ((u64)~0ULL)
029632fb 180
20f9cd2a
HA
181static inline int idle_policy(int policy)
182{
183 return policy == SCHED_IDLE;
184}
d50dde5a
DF
185static inline int fair_policy(int policy)
186{
187 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188}
189
029632fb
PZ
190static inline int rt_policy(int policy)
191{
d50dde5a 192 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
193}
194
aab03e05
DF
195static inline int dl_policy(int policy)
196{
197 return policy == SCHED_DEADLINE;
198}
20f9cd2a
HA
199static inline bool valid_policy(int policy)
200{
201 return idle_policy(policy) || fair_policy(policy) ||
202 rt_policy(policy) || dl_policy(policy);
203}
aab03e05 204
1da1843f
VK
205static inline int task_has_idle_policy(struct task_struct *p)
206{
207 return idle_policy(p->policy);
208}
209
029632fb
PZ
210static inline int task_has_rt_policy(struct task_struct *p)
211{
212 return rt_policy(p->policy);
213}
214
aab03e05
DF
215static inline int task_has_dl_policy(struct task_struct *p)
216{
217 return dl_policy(p->policy);
218}
219
07881166
JL
220#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221
d76343c6
VS
222static inline void update_avg(u64 *avg, u64 sample)
223{
224 s64 diff = sample - *avg;
225 *avg += diff / 8;
226}
227
39a2a6eb
VS
228/*
229 * Shifting a value by an exponent greater *or equal* to the size of said value
230 * is UB; cap at size-1.
231 */
232#define shr_bound(val, shift) \
233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234
794a56eb
JL
235/*
236 * !! For sched_setattr_nocheck() (kernel) only !!
237 *
238 * This is actually gross. :(
239 *
240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241 * tasks, but still be able to sleep. We need this on platforms that cannot
242 * atomically change clock frequency. Remove once fast switching will be
243 * available on such platforms.
244 *
245 * SUGOV stands for SchedUtil GOVernor.
246 */
247#define SCHED_FLAG_SUGOV 0x10000000
248
f9509153
QP
249#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250
904cbab7 251static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
794a56eb
JL
252{
253#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255#else
256 return false;
257#endif
258}
259
2d3d891d
DF
260/*
261 * Tells if entity @a should preempt entity @b.
262 */
904cbab7
MWO
263static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
264 const struct sched_dl_entity *b)
2d3d891d 265{
794a56eb
JL
266 return dl_entity_is_special(a) ||
267 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
268}
269
029632fb
PZ
270/*
271 * This is the priority-queue data structure of the RT scheduling class:
272 */
273struct rt_prio_array {
274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 struct list_head queue[MAX_RT_PRIO];
276};
277
278struct rt_bandwidth {
279 /* nests inside the rq lock: */
280 raw_spinlock_t rt_runtime_lock;
281 ktime_t rt_period;
282 u64 rt_runtime;
283 struct hrtimer rt_period_timer;
4cfafd30 284 unsigned int rt_period_active;
029632fb 285};
a5e7be3b
JL
286
287void __dl_clear_params(struct task_struct *p);
288
332ac17e 289struct dl_bandwidth {
97fb7a0a
IM
290 raw_spinlock_t dl_runtime_lock;
291 u64 dl_runtime;
292 u64 dl_period;
332ac17e
DF
293};
294
295static inline int dl_bandwidth_enabled(void)
296{
1724813d 297 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
298}
299
a57415f5
PL
300/*
301 * To keep the bandwidth of -deadline tasks under control
302 * we need some place where:
303 * - store the maximum -deadline bandwidth of each cpu;
304 * - cache the fraction of bandwidth that is currently allocated in
305 * each root domain;
306 *
307 * This is all done in the data structure below. It is similar to the
308 * one used for RT-throttling (rt_bandwidth), with the main difference
309 * that, since here we are only interested in admission control, we
310 * do not decrease any runtime while the group "executes", neither we
311 * need a timer to replenish it.
312 *
313 * With respect to SMP, bandwidth is given on a per root domain basis,
314 * meaning that:
315 * - bw (< 100%) is the deadline bandwidth of each CPU;
316 * - total_bw is the currently allocated bandwidth in each root domain;
317 */
332ac17e 318struct dl_bw {
97fb7a0a
IM
319 raw_spinlock_t lock;
320 u64 bw;
321 u64 total_bw;
332ac17e
DF
322};
323
f2cb1360 324extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 325extern int sched_dl_global_validate(void);
06a76fe0 326extern void sched_dl_do_global(void);
97fb7a0a 327extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
328extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
329extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
330extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 331extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a 332extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
772b6539 333extern int dl_cpu_busy(int cpu, struct task_struct *p);
029632fb
PZ
334
335#ifdef CONFIG_CGROUP_SCHED
336
029632fb
PZ
337struct cfs_rq;
338struct rt_rq;
339
35cf4e50 340extern struct list_head task_groups;
029632fb
PZ
341
342struct cfs_bandwidth {
343#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
344 raw_spinlock_t lock;
345 ktime_t period;
346 u64 quota;
347 u64 runtime;
f4183717 348 u64 burst;
bcb1704a 349 u64 runtime_snap;
97fb7a0a 350 s64 hierarchical_quota;
97fb7a0a 351
66567fcb 352 u8 idle;
353 u8 period_active;
66567fcb 354 u8 slack_started;
97fb7a0a
IM
355 struct hrtimer period_timer;
356 struct hrtimer slack_timer;
357 struct list_head throttled_cfs_rq;
358
359 /* Statistics: */
360 int nr_periods;
361 int nr_throttled;
bcb1704a 362 int nr_burst;
97fb7a0a 363 u64 throttled_time;
bcb1704a 364 u64 burst_time;
029632fb
PZ
365#endif
366};
367
97fb7a0a 368/* Task group related information */
029632fb
PZ
369struct task_group {
370 struct cgroup_subsys_state css;
371
372#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
373 /* schedulable entities of this group on each CPU */
374 struct sched_entity **se;
375 /* runqueue "owned" by this group on each CPU */
376 struct cfs_rq **cfs_rq;
377 unsigned long shares;
029632fb 378
30400039
JD
379 /* A positive value indicates that this is a SCHED_IDLE group. */
380 int idle;
381
fa6bddeb 382#ifdef CONFIG_SMP
b0367629
WL
383 /*
384 * load_avg can be heavily contended at clock tick time, so put
385 * it in its own cacheline separated from the fields above which
386 * will also be accessed at each tick.
387 */
97fb7a0a 388 atomic_long_t load_avg ____cacheline_aligned;
029632fb 389#endif
fa6bddeb 390#endif
029632fb
PZ
391
392#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
393 struct sched_rt_entity **rt_se;
394 struct rt_rq **rt_rq;
029632fb 395
97fb7a0a 396 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
397#endif
398
97fb7a0a
IM
399 struct rcu_head rcu;
400 struct list_head list;
029632fb 401
97fb7a0a
IM
402 struct task_group *parent;
403 struct list_head siblings;
404 struct list_head children;
029632fb
PZ
405
406#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 407 struct autogroup *autogroup;
029632fb
PZ
408#endif
409
97fb7a0a 410 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
411
412#ifdef CONFIG_UCLAMP_TASK_GROUP
413 /* The two decimal precision [%] value requested from user-space */
414 unsigned int uclamp_pct[UCLAMP_CNT];
415 /* Clamp values requested for a task group */
416 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
417 /* Effective clamp values used for a task group */
418 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
419#endif
420
029632fb
PZ
421};
422
423#ifdef CONFIG_FAIR_GROUP_SCHED
424#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
425
426/*
427 * A weight of 0 or 1 can cause arithmetics problems.
428 * A weight of a cfs_rq is the sum of weights of which entities
429 * are queued on this cfs_rq, so a weight of a entity should not be
430 * too large, so as the shares value of a task group.
431 * (The default weight is 1024 - so there's no practical
432 * limitation from this.)
433 */
97fb7a0a
IM
434#define MIN_SHARES (1UL << 1)
435#define MAX_SHARES (1UL << 18)
029632fb
PZ
436#endif
437
029632fb
PZ
438typedef int (*tg_visitor)(struct task_group *, void *);
439
440extern int walk_tg_tree_from(struct task_group *from,
441 tg_visitor down, tg_visitor up, void *data);
442
443/*
444 * Iterate the full tree, calling @down when first entering a node and @up when
445 * leaving it for the final time.
446 *
447 * Caller must hold rcu_lock or sufficient equivalent.
448 */
449static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
450{
451 return walk_tg_tree_from(&root_task_group, down, up, data);
452}
453
454extern int tg_nop(struct task_group *tg, void *data);
455
456extern void free_fair_sched_group(struct task_group *tg);
457extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 458extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 459extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
460extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
461 struct sched_entity *se, int cpu,
462 struct sched_entity *parent);
463extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
464
465extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 466extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
467extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
468
029632fb
PZ
469extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
470 struct sched_rt_entity *rt_se, int cpu,
471 struct sched_rt_entity *parent);
8887cd99
NP
472extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
473extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
474extern long sched_group_rt_runtime(struct task_group *tg);
475extern long sched_group_rt_period(struct task_group *tg);
476extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 477
25cc7da7
LZ
478extern struct task_group *sched_create_group(struct task_group *parent);
479extern void sched_online_group(struct task_group *tg,
480 struct task_group *parent);
481extern void sched_destroy_group(struct task_group *tg);
b027789e 482extern void sched_release_group(struct task_group *tg);
25cc7da7
LZ
483
484extern void sched_move_task(struct task_struct *tsk);
485
486#ifdef CONFIG_FAIR_GROUP_SCHED
487extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86 488
30400039
JD
489extern int sched_group_set_idle(struct task_group *tg, long idle);
490
ad936d86
BP
491#ifdef CONFIG_SMP
492extern void set_task_rq_fair(struct sched_entity *se,
493 struct cfs_rq *prev, struct cfs_rq *next);
494#else /* !CONFIG_SMP */
495static inline void set_task_rq_fair(struct sched_entity *se,
496 struct cfs_rq *prev, struct cfs_rq *next) { }
497#endif /* CONFIG_SMP */
498#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 499
029632fb
PZ
500#else /* CONFIG_CGROUP_SCHED */
501
502struct cfs_bandwidth { };
503
504#endif /* CONFIG_CGROUP_SCHED */
505
87514b2c
BD
506extern void unregister_rt_sched_group(struct task_group *tg);
507extern void free_rt_sched_group(struct task_group *tg);
508extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
509
d05b4305
VD
510/*
511 * u64_u32_load/u64_u32_store
512 *
513 * Use a copy of a u64 value to protect against data race. This is only
514 * applicable for 32-bits architectures.
515 */
516#ifdef CONFIG_64BIT
517# define u64_u32_load_copy(var, copy) var
518# define u64_u32_store_copy(var, copy, val) (var = val)
519#else
520# define u64_u32_load_copy(var, copy) \
521({ \
522 u64 __val, __val_copy; \
523 do { \
524 __val_copy = copy; \
525 /* \
526 * paired with u64_u32_store_copy(), ordering access \
527 * to var and copy. \
528 */ \
529 smp_rmb(); \
530 __val = var; \
531 } while (__val != __val_copy); \
532 __val; \
533})
534# define u64_u32_store_copy(var, copy, val) \
535do { \
536 typeof(val) __val = (val); \
537 var = __val; \
538 /* \
539 * paired with u64_u32_load_copy(), ordering access to var and \
540 * copy. \
541 */ \
542 smp_wmb(); \
543 copy = __val; \
544} while (0)
545#endif
546# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
547# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
548
029632fb
PZ
549/* CFS-related fields in a runqueue */
550struct cfs_rq {
97fb7a0a 551 struct load_weight load;
97fb7a0a 552 unsigned int nr_running;
43e9f7f2 553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
a480adde 554 unsigned int idle_nr_running; /* SCHED_IDLE */
43e9f7f2 555 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 556
97fb7a0a
IM
557 u64 exec_clock;
558 u64 min_vruntime;
c6047c2e
JFG
559#ifdef CONFIG_SCHED_CORE
560 unsigned int forceidle_seq;
561 u64 min_vruntime_fi;
562#endif
563
029632fb 564#ifndef CONFIG_64BIT
97fb7a0a 565 u64 min_vruntime_copy;
029632fb
PZ
566#endif
567
97fb7a0a 568 struct rb_root_cached tasks_timeline;
029632fb 569
029632fb
PZ
570 /*
571 * 'curr' points to currently running entity on this cfs_rq.
572 * It is set to NULL otherwise (i.e when none are currently running).
573 */
97fb7a0a
IM
574 struct sched_entity *curr;
575 struct sched_entity *next;
576 struct sched_entity *last;
577 struct sched_entity *skip;
029632fb
PZ
578
579#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 580 unsigned int nr_spread_over;
029632fb
PZ
581#endif
582
2dac754e
PT
583#ifdef CONFIG_SMP
584 /*
9d89c257 585 * CFS load tracking
2dac754e 586 */
97fb7a0a 587 struct sched_avg avg;
2a2f5d4e 588#ifndef CONFIG_64BIT
d05b4305 589 u64 last_update_time_copy;
9d89c257 590#endif
2a2f5d4e
PZ
591 struct {
592 raw_spinlock_t lock ____cacheline_aligned;
593 int nr;
594 unsigned long load_avg;
595 unsigned long util_avg;
9f683953 596 unsigned long runnable_avg;
2a2f5d4e 597 } removed;
82958366 598
9d89c257 599#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
600 unsigned long tg_load_avg_contrib;
601 long propagate;
602 long prop_runnable_sum;
0e2d2aaa 603
82958366
PT
604 /*
605 * h_load = weight * f(tg)
606 *
607 * Where f(tg) is the recursive weight fraction assigned to
608 * this group.
609 */
97fb7a0a
IM
610 unsigned long h_load;
611 u64 last_h_load_update;
612 struct sched_entity *h_load_next;
68520796 613#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
614#endif /* CONFIG_SMP */
615
029632fb 616#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
618
619 /*
620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
622 * (like users, containers etc.)
623 *
97fb7a0a
IM
624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
625 * This list is used during load balance.
029632fb 626 */
97fb7a0a
IM
627 int on_list;
628 struct list_head leaf_cfs_rq_list;
629 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 630
30400039
JD
631 /* Locally cached copy of our task_group's idle value */
632 int idle;
633
029632fb 634#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 635 int runtime_enabled;
97fb7a0a
IM
636 s64 runtime_remaining;
637
e2f3e35f
VD
638 u64 throttled_pelt_idle;
639#ifndef CONFIG_64BIT
640 u64 throttled_pelt_idle_copy;
641#endif
97fb7a0a 642 u64 throttled_clock;
64eaf507
CZ
643 u64 throttled_clock_pelt;
644 u64 throttled_clock_pelt_time;
97fb7a0a
IM
645 int throttled;
646 int throttle_count;
647 struct list_head throttled_list;
8ad075c2
JD
648#ifdef CONFIG_SMP
649 struct list_head throttled_csd_list;
650#endif
029632fb
PZ
651#endif /* CONFIG_CFS_BANDWIDTH */
652#endif /* CONFIG_FAIR_GROUP_SCHED */
653};
654
655static inline int rt_bandwidth_enabled(void)
656{
657 return sysctl_sched_rt_runtime >= 0;
658}
659
b6366f04 660/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 661#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
662# define HAVE_RT_PUSH_IPI
663#endif
664
029632fb
PZ
665/* Real-Time classes' related field in a runqueue: */
666struct rt_rq {
97fb7a0a
IM
667 struct rt_prio_array active;
668 unsigned int rt_nr_running;
669 unsigned int rr_nr_running;
029632fb
PZ
670#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
671 struct {
97fb7a0a 672 int curr; /* highest queued rt task prio */
029632fb 673#ifdef CONFIG_SMP
97fb7a0a 674 int next; /* next highest */
029632fb
PZ
675#endif
676 } highest_prio;
677#endif
678#ifdef CONFIG_SMP
e6fe3f42
AD
679 unsigned int rt_nr_migratory;
680 unsigned int rt_nr_total;
97fb7a0a
IM
681 int overloaded;
682 struct plist_head pushable_tasks;
371bf427 683
b6366f04 684#endif /* CONFIG_SMP */
97fb7a0a 685 int rt_queued;
f4ebcbc0 686
97fb7a0a
IM
687 int rt_throttled;
688 u64 rt_time;
689 u64 rt_runtime;
029632fb 690 /* Nests inside the rq lock: */
97fb7a0a 691 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
692
693#ifdef CONFIG_RT_GROUP_SCHED
e6fe3f42 694 unsigned int rt_nr_boosted;
029632fb 695
97fb7a0a
IM
696 struct rq *rq;
697 struct task_group *tg;
029632fb
PZ
698#endif
699};
700
296b2ffe
VG
701static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
702{
703 return rt_rq->rt_queued && rt_rq->rt_nr_running;
704}
705
aab03e05
DF
706/* Deadline class' related fields in a runqueue */
707struct dl_rq {
708 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 709 struct rb_root_cached root;
aab03e05 710
e6fe3f42 711 unsigned int dl_nr_running;
1baca4ce
JL
712
713#ifdef CONFIG_SMP
714 /*
715 * Deadline values of the currently executing and the
716 * earliest ready task on this rq. Caching these facilitates
dfcb245e 717 * the decision whether or not a ready but not running task
1baca4ce
JL
718 * should migrate somewhere else.
719 */
720 struct {
97fb7a0a
IM
721 u64 curr;
722 u64 next;
1baca4ce
JL
723 } earliest_dl;
724
e6fe3f42 725 unsigned int dl_nr_migratory;
97fb7a0a 726 int overloaded;
1baca4ce
JL
727
728 /*
729 * Tasks on this rq that can be pushed away. They are kept in
730 * an rb-tree, ordered by tasks' deadlines, with caching
731 * of the leftmost (earliest deadline) element.
732 */
97fb7a0a 733 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 734#else
97fb7a0a 735 struct dl_bw dl_bw;
1baca4ce 736#endif
e36d8677
LA
737 /*
738 * "Active utilization" for this runqueue: increased when a
739 * task wakes up (becomes TASK_RUNNING) and decreased when a
740 * task blocks
741 */
97fb7a0a 742 u64 running_bw;
4da3abce 743
8fd27231
LA
744 /*
745 * Utilization of the tasks "assigned" to this runqueue (including
746 * the tasks that are in runqueue and the tasks that executed on this
747 * CPU and blocked). Increased when a task moves to this runqueue, and
748 * decreased when the task moves away (migrates, changes scheduling
749 * policy, or terminates).
750 * This is needed to compute the "inactive utilization" for the
751 * runqueue (inactive utilization = this_bw - running_bw).
752 */
97fb7a0a
IM
753 u64 this_bw;
754 u64 extra_bw;
8fd27231 755
4da3abce
LA
756 /*
757 * Inverse of the fraction of CPU utilization that can be reclaimed
758 * by the GRUB algorithm.
759 */
97fb7a0a 760 u64 bw_ratio;
aab03e05
DF
761};
762
c0796298
VG
763#ifdef CONFIG_FAIR_GROUP_SCHED
764/* An entity is a task if it doesn't "own" a runqueue */
765#define entity_is_task(se) (!se->my_q)
0dacee1b 766
9f683953
VG
767static inline void se_update_runnable(struct sched_entity *se)
768{
769 if (!entity_is_task(se))
770 se->runnable_weight = se->my_q->h_nr_running;
771}
772
773static inline long se_runnable(struct sched_entity *se)
774{
775 if (entity_is_task(se))
776 return !!se->on_rq;
777 else
778 return se->runnable_weight;
779}
780
c0796298
VG
781#else
782#define entity_is_task(se) 1
0dacee1b 783
9f683953
VG
784static inline void se_update_runnable(struct sched_entity *se) {}
785
786static inline long se_runnable(struct sched_entity *se)
787{
788 return !!se->on_rq;
789}
c0796298
VG
790#endif
791
029632fb 792#ifdef CONFIG_SMP
c0796298
VG
793/*
794 * XXX we want to get rid of these helpers and use the full load resolution.
795 */
796static inline long se_weight(struct sched_entity *se)
797{
798 return scale_load_down(se->load.weight);
799}
800
029632fb 801
afe06efd
TC
802static inline bool sched_asym_prefer(int a, int b)
803{
804 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
805}
806
6aa140fa
QP
807struct perf_domain {
808 struct em_perf_domain *em_pd;
809 struct perf_domain *next;
810 struct rcu_head rcu;
811};
812
630246a0
QP
813/* Scheduling group status flags */
814#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 815#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 816
029632fb
PZ
817/*
818 * We add the notion of a root-domain which will be used to define per-domain
819 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 820 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
821 * exclusive cpuset is created, we also create and attach a new root-domain
822 * object.
823 *
824 */
825struct root_domain {
97fb7a0a
IM
826 atomic_t refcount;
827 atomic_t rto_count;
828 struct rcu_head rcu;
829 cpumask_var_t span;
830 cpumask_var_t online;
029632fb 831
757ffdd7
VS
832 /*
833 * Indicate pullable load on at least one CPU, e.g:
834 * - More than one runnable task
835 * - Running task is misfit
836 */
575638d1 837 int overload;
4486edd1 838
2802bf3c
MR
839 /* Indicate one or more cpus over-utilized (tipping point) */
840 int overutilized;
841
1baca4ce
JL
842 /*
843 * The bit corresponding to a CPU gets set here if such CPU has more
844 * than one runnable -deadline task (as it is below for RT tasks).
845 */
97fb7a0a
IM
846 cpumask_var_t dlo_mask;
847 atomic_t dlo_count;
848 struct dl_bw dl_bw;
849 struct cpudl cpudl;
1baca4ce 850
26762423
PL
851 /*
852 * Indicate whether a root_domain's dl_bw has been checked or
853 * updated. It's monotonously increasing value.
854 *
855 * Also, some corner cases, like 'wrap around' is dangerous, but given
856 * that u64 is 'big enough'. So that shouldn't be a concern.
857 */
858 u64 visit_gen;
859
4bdced5c
SRRH
860#ifdef HAVE_RT_PUSH_IPI
861 /*
862 * For IPI pull requests, loop across the rto_mask.
863 */
97fb7a0a
IM
864 struct irq_work rto_push_work;
865 raw_spinlock_t rto_lock;
4bdced5c 866 /* These are only updated and read within rto_lock */
97fb7a0a
IM
867 int rto_loop;
868 int rto_cpu;
4bdced5c 869 /* These atomics are updated outside of a lock */
97fb7a0a
IM
870 atomic_t rto_loop_next;
871 atomic_t rto_loop_start;
4bdced5c 872#endif
029632fb
PZ
873 /*
874 * The "RT overload" flag: it gets set if a CPU has more than
875 * one runnable RT task.
876 */
97fb7a0a
IM
877 cpumask_var_t rto_mask;
878 struct cpupri cpupri;
cd92bfd3 879
97fb7a0a 880 unsigned long max_cpu_capacity;
6aa140fa
QP
881
882 /*
883 * NULL-terminated list of performance domains intersecting with the
884 * CPUs of the rd. Protected by RCU.
885 */
7ba7319f 886 struct perf_domain __rcu *pd;
029632fb
PZ
887};
888
f2cb1360 889extern void init_defrootdomain(void);
8d5dc512 890extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 891extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
892extern void sched_get_rd(struct root_domain *rd);
893extern void sched_put_rd(struct root_domain *rd);
029632fb 894
4bdced5c
SRRH
895#ifdef HAVE_RT_PUSH_IPI
896extern void rto_push_irq_work_func(struct irq_work *work);
897#endif
029632fb
PZ
898#endif /* CONFIG_SMP */
899
69842cba
PB
900#ifdef CONFIG_UCLAMP_TASK
901/*
902 * struct uclamp_bucket - Utilization clamp bucket
903 * @value: utilization clamp value for tasks on this clamp bucket
904 * @tasks: number of RUNNABLE tasks on this clamp bucket
905 *
906 * Keep track of how many tasks are RUNNABLE for a given utilization
907 * clamp value.
908 */
909struct uclamp_bucket {
910 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
911 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
912};
913
914/*
915 * struct uclamp_rq - rq's utilization clamp
916 * @value: currently active clamp values for a rq
917 * @bucket: utilization clamp buckets affecting a rq
918 *
919 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
920 * A clamp value is affecting a rq when there is at least one task RUNNABLE
921 * (or actually running) with that value.
922 *
923 * There are up to UCLAMP_CNT possible different clamp values, currently there
924 * are only two: minimum utilization and maximum utilization.
925 *
926 * All utilization clamping values are MAX aggregated, since:
927 * - for util_min: we want to run the CPU at least at the max of the minimum
928 * utilization required by its currently RUNNABLE tasks.
929 * - for util_max: we want to allow the CPU to run up to the max of the
930 * maximum utilization allowed by its currently RUNNABLE tasks.
931 *
932 * Since on each system we expect only a limited number of different
933 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
934 * the metrics required to compute all the per-rq utilization clamp values.
935 */
936struct uclamp_rq {
937 unsigned int value;
938 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
939};
46609ce2
QY
940
941DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
942#endif /* CONFIG_UCLAMP_TASK */
943
8e5bad7d
KC
944struct rq;
945struct balance_callback {
946 struct balance_callback *next;
947 void (*func)(struct rq *rq);
948};
949
029632fb
PZ
950/*
951 * This is the main, per-CPU runqueue data structure.
952 *
953 * Locking rule: those places that want to lock multiple runqueues
954 * (such as the load balancing or the thread migration code), lock
955 * acquire operations must be ordered by ascending &runqueue.
956 */
957struct rq {
958 /* runqueue lock: */
5cb9eaa3 959 raw_spinlock_t __lock;
029632fb
PZ
960
961 /*
962 * nr_running and cpu_load should be in the same cacheline because
963 * remote CPUs use both these fields when doing load calculation.
964 */
97fb7a0a 965 unsigned int nr_running;
0ec8aa00 966#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
967 unsigned int nr_numa_running;
968 unsigned int nr_preferred_running;
a4739eca 969 unsigned int numa_migrate_on;
0ec8aa00 970#endif
3451d024 971#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 972#ifdef CONFIG_SMP
e022e0d3 973 unsigned long last_blocked_load_update_tick;
f643ea22 974 unsigned int has_blocked_load;
90b5363a 975 call_single_data_t nohz_csd;
9fd81dd5 976#endif /* CONFIG_SMP */
00357f5e 977 unsigned int nohz_tick_stopped;
90b5363a 978 atomic_t nohz_flags;
9fd81dd5 979#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 980
126c2092
PZ
981#ifdef CONFIG_SMP
982 unsigned int ttwu_pending;
983#endif
97fb7a0a 984 u64 nr_switches;
029632fb 985
69842cba
PB
986#ifdef CONFIG_UCLAMP_TASK
987 /* Utilization clamp values based on CPU's RUNNABLE tasks */
988 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
989 unsigned int uclamp_flags;
990#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
991#endif
992
97fb7a0a
IM
993 struct cfs_rq cfs;
994 struct rt_rq rt;
995 struct dl_rq dl;
029632fb
PZ
996
997#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
998 /* list of leaf cfs_rq on this CPU: */
999 struct list_head leaf_cfs_rq_list;
1000 struct list_head *tmp_alone_branch;
a35b6466
PZ
1001#endif /* CONFIG_FAIR_GROUP_SCHED */
1002
029632fb
PZ
1003 /*
1004 * This is part of a global counter where only the total sum
1005 * over all CPUs matters. A task can increase this counter on
1006 * one CPU and if it got migrated afterwards it may decrease
1007 * it on another CPU. Always updated under the runqueue lock:
1008 */
e6fe3f42 1009 unsigned int nr_uninterruptible;
029632fb 1010
4104a562 1011 struct task_struct __rcu *curr;
97fb7a0a
IM
1012 struct task_struct *idle;
1013 struct task_struct *stop;
1014 unsigned long next_balance;
1015 struct mm_struct *prev_mm;
029632fb 1016
97fb7a0a
IM
1017 unsigned int clock_update_flags;
1018 u64 clock;
23127296
VG
1019 /* Ensure that all clocks are in the same cache line */
1020 u64 clock_task ____cacheline_aligned;
1021 u64 clock_pelt;
1022 unsigned long lost_idle_time;
e2f3e35f
VD
1023 u64 clock_pelt_idle;
1024 u64 clock_idle;
1025#ifndef CONFIG_64BIT
1026 u64 clock_pelt_idle_copy;
1027 u64 clock_idle_copy;
1028#endif
029632fb 1029
97fb7a0a 1030 atomic_t nr_iowait;
029632fb 1031
c006fac5
PT
1032#ifdef CONFIG_SCHED_DEBUG
1033 u64 last_seen_need_resched_ns;
1034 int ticks_without_resched;
1035#endif
1036
227a4aad
MD
1037#ifdef CONFIG_MEMBARRIER
1038 int membarrier_state;
1039#endif
1040
029632fb 1041#ifdef CONFIG_SMP
994aeb7a
JFG
1042 struct root_domain *rd;
1043 struct sched_domain __rcu *sd;
97fb7a0a
IM
1044
1045 unsigned long cpu_capacity;
1046 unsigned long cpu_capacity_orig;
029632fb 1047
8e5bad7d 1048 struct balance_callback *balance_callback;
029632fb 1049
19a1f5ec 1050 unsigned char nohz_idle_balance;
97fb7a0a 1051 unsigned char idle_balance;
e3fca9e7 1052
3b1baa64
MR
1053 unsigned long misfit_task_load;
1054
029632fb 1055 /* For active balancing */
97fb7a0a
IM
1056 int active_balance;
1057 int push_cpu;
1058 struct cpu_stop_work active_balance_work;
1059
1060 /* CPU of this runqueue: */
1061 int cpu;
1062 int online;
029632fb 1063
367456c7
PZ
1064 struct list_head cfs_tasks;
1065
371bf427 1066 struct sched_avg avg_rt;
3727e0e1 1067 struct sched_avg avg_dl;
11d4afd4 1068#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 1069 struct sched_avg avg_irq;
76504793
TG
1070#endif
1071#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1072 struct sched_avg avg_thermal;
91c27493 1073#endif
97fb7a0a
IM
1074 u64 idle_stamp;
1075 u64 avg_idle;
9bd721c5 1076
94aafc3e
PZ
1077 unsigned long wake_stamp;
1078 u64 wake_avg_idle;
1079
9bd721c5 1080 /* This is used to determine avg_idle's max value */
97fb7a0a 1081 u64 max_idle_balance_cost;
f2469a1f
TG
1082
1083#ifdef CONFIG_HOTPLUG_CPU
1084 struct rcuwait hotplug_wait;
1085#endif
90b5363a 1086#endif /* CONFIG_SMP */
029632fb
PZ
1087
1088#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1089 u64 prev_irq_time;
029632fb
PZ
1090#endif
1091#ifdef CONFIG_PARAVIRT
97fb7a0a 1092 u64 prev_steal_time;
029632fb
PZ
1093#endif
1094#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1095 u64 prev_steal_time_rq;
029632fb
PZ
1096#endif
1097
1098 /* calc_load related fields */
97fb7a0a
IM
1099 unsigned long calc_load_update;
1100 long calc_load_active;
029632fb
PZ
1101
1102#ifdef CONFIG_SCHED_HRTICK
1103#ifdef CONFIG_SMP
97fb7a0a 1104 call_single_data_t hrtick_csd;
029632fb 1105#endif
97fb7a0a 1106 struct hrtimer hrtick_timer;
156ec6f4 1107 ktime_t hrtick_time;
029632fb
PZ
1108#endif
1109
1110#ifdef CONFIG_SCHEDSTATS
1111 /* latency stats */
97fb7a0a
IM
1112 struct sched_info rq_sched_info;
1113 unsigned long long rq_cpu_time;
029632fb
PZ
1114 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1115
1116 /* sys_sched_yield() stats */
97fb7a0a 1117 unsigned int yld_count;
029632fb
PZ
1118
1119 /* schedule() stats */
97fb7a0a
IM
1120 unsigned int sched_count;
1121 unsigned int sched_goidle;
029632fb
PZ
1122
1123 /* try_to_wake_up() stats */
97fb7a0a
IM
1124 unsigned int ttwu_count;
1125 unsigned int ttwu_local;
029632fb
PZ
1126#endif
1127
442bf3aa
DL
1128#ifdef CONFIG_CPU_IDLE
1129 /* Must be inspected within a rcu lock section */
97fb7a0a 1130 struct cpuidle_state *idle_state;
442bf3aa 1131#endif
3015ef4b 1132
74d862b6 1133#ifdef CONFIG_SMP
3015ef4b
TG
1134 unsigned int nr_pinned;
1135#endif
a7c81556
PZ
1136 unsigned int push_busy;
1137 struct cpu_stop_work push_work;
9edeaea1
PZ
1138
1139#ifdef CONFIG_SCHED_CORE
1140 /* per rq */
1141 struct rq *core;
539f6512 1142 struct task_struct *core_pick;
9edeaea1 1143 unsigned int core_enabled;
539f6512 1144 unsigned int core_sched_seq;
8a311c74
PZ
1145 struct rb_root core_tree;
1146
3c474b32 1147 /* shared state -- careful with sched_core_cpu_deactivate() */
8a311c74 1148 unsigned int core_task_seq;
539f6512
PZ
1149 unsigned int core_pick_seq;
1150 unsigned long core_cookie;
4feee7d1 1151 unsigned int core_forceidle_count;
c6047c2e 1152 unsigned int core_forceidle_seq;
4feee7d1
JD
1153 unsigned int core_forceidle_occupation;
1154 u64 core_forceidle_start;
9edeaea1 1155#endif
da019032
WL
1156
1157 /* Scratch cpumask to be temporarily used under rq_lock */
1158 cpumask_var_t scratch_mask;
8ad075c2
JD
1159
1160#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1161 call_single_data_t cfsb_csd;
1162 struct list_head cfsb_csd_list;
1163#endif
029632fb
PZ
1164};
1165
62478d99
VG
1166#ifdef CONFIG_FAIR_GROUP_SCHED
1167
1168/* CPU runqueue to which this cfs_rq is attached */
1169static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1170{
1171 return cfs_rq->rq;
1172}
1173
1174#else
1175
1176static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1177{
1178 return container_of(cfs_rq, struct rq, cfs);
1179}
1180#endif
1181
029632fb
PZ
1182static inline int cpu_of(struct rq *rq)
1183{
1184#ifdef CONFIG_SMP
1185 return rq->cpu;
1186#else
1187 return 0;
1188#endif
1189}
1190
a7c81556
PZ
1191#define MDF_PUSH 0x01
1192
1193static inline bool is_migration_disabled(struct task_struct *p)
1194{
74d862b6 1195#ifdef CONFIG_SMP
a7c81556
PZ
1196 return p->migration_disabled;
1197#else
1198 return false;
1199#endif
1200}
1b568f0a 1201
e705968d
LS
1202DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1203
1204#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1205#define this_rq() this_cpu_ptr(&runqueues)
1206#define task_rq(p) cpu_rq(task_cpu(p))
1207#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1208#define raw_rq() raw_cpu_ptr(&runqueues)
1209
97886d9d 1210struct sched_group;
9edeaea1 1211#ifdef CONFIG_SCHED_CORE
97886d9d 1212static inline struct cpumask *sched_group_span(struct sched_group *sg);
9edeaea1
PZ
1213
1214DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1215
1216static inline bool sched_core_enabled(struct rq *rq)
1217{
1218 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1219}
1220
1221static inline bool sched_core_disabled(void)
1222{
1223 return !static_branch_unlikely(&__sched_core_enabled);
1224}
1225
9ef7e7e3
PZ
1226/*
1227 * Be careful with this function; not for general use. The return value isn't
1228 * stable unless you actually hold a relevant rq->__lock.
1229 */
9edeaea1
PZ
1230static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1231{
1232 if (sched_core_enabled(rq))
1233 return &rq->core->__lock;
1234
1235 return &rq->__lock;
1236}
1237
9ef7e7e3
PZ
1238static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1239{
1240 if (rq->core_enabled)
1241 return &rq->core->__lock;
1242
1243 return &rq->__lock;
1244}
1245
904cbab7
MWO
1246bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1247 bool fi);
c6047c2e 1248
97886d9d
AL
1249/*
1250 * Helpers to check if the CPU's core cookie matches with the task's cookie
1251 * when core scheduling is enabled.
1252 * A special case is that the task's cookie always matches with CPU's core
1253 * cookie if the CPU is in an idle core.
1254 */
1255static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1256{
1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1258 if (!sched_core_enabled(rq))
1259 return true;
1260
1261 return rq->core->core_cookie == p->core_cookie;
1262}
1263
1264static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1265{
1266 bool idle_core = true;
1267 int cpu;
1268
1269 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1270 if (!sched_core_enabled(rq))
1271 return true;
1272
1273 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1274 if (!available_idle_cpu(cpu)) {
1275 idle_core = false;
1276 break;
1277 }
1278 }
1279
1280 /*
1281 * A CPU in an idle core is always the best choice for tasks with
1282 * cookies.
1283 */
1284 return idle_core || rq->core->core_cookie == p->core_cookie;
1285}
1286
1287static inline bool sched_group_cookie_match(struct rq *rq,
1288 struct task_struct *p,
1289 struct sched_group *group)
1290{
1291 int cpu;
1292
1293 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1294 if (!sched_core_enabled(rq))
1295 return true;
1296
1297 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
e705968d 1298 if (sched_core_cookie_match(cpu_rq(cpu), p))
97886d9d
AL
1299 return true;
1300 }
1301 return false;
1302}
1303
6e33cad0
PZ
1304static inline bool sched_core_enqueued(struct task_struct *p)
1305{
1306 return !RB_EMPTY_NODE(&p->core_node);
1307}
1308
1309extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
4feee7d1 1310extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
6e33cad0
PZ
1311
1312extern void sched_core_get(void);
1313extern void sched_core_put(void);
1314
9edeaea1
PZ
1315#else /* !CONFIG_SCHED_CORE */
1316
1317static inline bool sched_core_enabled(struct rq *rq)
1318{
1319 return false;
1320}
1321
d66f1b06
PZ
1322static inline bool sched_core_disabled(void)
1323{
1324 return true;
1325}
1326
39d371b7
PZ
1327static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1328{
5cb9eaa3 1329 return &rq->__lock;
39d371b7
PZ
1330}
1331
9ef7e7e3
PZ
1332static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1333{
1334 return &rq->__lock;
1335}
1336
97886d9d
AL
1337static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1338{
1339 return true;
1340}
1341
1342static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1343{
1344 return true;
1345}
1346
1347static inline bool sched_group_cookie_match(struct rq *rq,
1348 struct task_struct *p,
1349 struct sched_group *group)
1350{
1351 return true;
1352}
9edeaea1
PZ
1353#endif /* CONFIG_SCHED_CORE */
1354
39d371b7
PZ
1355static inline void lockdep_assert_rq_held(struct rq *rq)
1356{
9ef7e7e3 1357 lockdep_assert_held(__rq_lockp(rq));
39d371b7
PZ
1358}
1359
1360extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1361extern bool raw_spin_rq_trylock(struct rq *rq);
1362extern void raw_spin_rq_unlock(struct rq *rq);
1363
1364static inline void raw_spin_rq_lock(struct rq *rq)
1365{
1366 raw_spin_rq_lock_nested(rq, 0);
1367}
1368
1369static inline void raw_spin_rq_lock_irq(struct rq *rq)
1370{
1371 local_irq_disable();
1372 raw_spin_rq_lock(rq);
1373}
1374
1375static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1376{
1377 raw_spin_rq_unlock(rq);
1378 local_irq_enable();
1379}
1380
1381static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1382{
1383 unsigned long flags;
1384 local_irq_save(flags);
1385 raw_spin_rq_lock(rq);
1386 return flags;
1387}
1388
1389static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1390{
1391 raw_spin_rq_unlock(rq);
1392 local_irq_restore(flags);
1393}
1394
1395#define raw_spin_rq_lock_irqsave(rq, flags) \
1396do { \
1397 flags = _raw_spin_rq_lock_irqsave(rq); \
1398} while (0)
1399
1b568f0a 1400#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1401extern void __update_idle_core(struct rq *rq);
1402
1403static inline void update_idle_core(struct rq *rq)
1404{
1405 if (static_branch_unlikely(&sched_smt_present))
1406 __update_idle_core(rq);
1407}
1408
1409#else
1410static inline void update_idle_core(struct rq *rq) { }
1411#endif
1412
8a311c74
PZ
1413#ifdef CONFIG_FAIR_GROUP_SCHED
1414static inline struct task_struct *task_of(struct sched_entity *se)
1415{
1416 SCHED_WARN_ON(!entity_is_task(se));
1417 return container_of(se, struct task_struct, se);
1418}
1419
1420static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1421{
1422 return p->se.cfs_rq;
1423}
1424
1425/* runqueue on which this entity is (to be) queued */
904cbab7 1426static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
8a311c74
PZ
1427{
1428 return se->cfs_rq;
1429}
1430
1431/* runqueue "owned" by this group */
1432static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1433{
1434 return grp->my_q;
1435}
1436
1437#else
1438
904cbab7 1439#define task_of(_se) container_of(_se, struct task_struct, se)
8a311c74 1440
904cbab7 1441static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
8a311c74
PZ
1442{
1443 return &task_rq(p)->cfs;
1444}
1445
904cbab7 1446static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
8a311c74 1447{
904cbab7 1448 const struct task_struct *p = task_of(se);
8a311c74
PZ
1449 struct rq *rq = task_rq(p);
1450
1451 return &rq->cfs;
1452}
1453
1454/* runqueue "owned" by this group */
1455static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1456{
1457 return NULL;
1458}
1459#endif
1460
1f351d7f
JW
1461extern void update_rq_clock(struct rq *rq);
1462
cb42c9a3
MF
1463/*
1464 * rq::clock_update_flags bits
1465 *
1466 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1467 * call to __schedule(). This is an optimisation to avoid
1468 * neighbouring rq clock updates.
1469 *
1470 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1471 * in effect and calls to update_rq_clock() are being ignored.
1472 *
1473 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1474 * made to update_rq_clock() since the last time rq::lock was pinned.
1475 *
1476 * If inside of __schedule(), clock_update_flags will have been
1477 * shifted left (a left shift is a cheap operation for the fast path
1478 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1479 *
1480 * if (rq-clock_update_flags >= RQCF_UPDATED)
1481 *
3b03706f 1482 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
cb42c9a3
MF
1483 * one position though, because the next rq_unpin_lock() will shift it
1484 * back.
1485 */
97fb7a0a
IM
1486#define RQCF_REQ_SKIP 0x01
1487#define RQCF_ACT_SKIP 0x02
1488#define RQCF_UPDATED 0x04
cb42c9a3
MF
1489
1490static inline void assert_clock_updated(struct rq *rq)
1491{
1492 /*
1493 * The only reason for not seeing a clock update since the
1494 * last rq_pin_lock() is if we're currently skipping updates.
1495 */
1496 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1497}
1498
78becc27
FW
1499static inline u64 rq_clock(struct rq *rq)
1500{
5cb9eaa3 1501 lockdep_assert_rq_held(rq);
cb42c9a3
MF
1502 assert_clock_updated(rq);
1503
78becc27
FW
1504 return rq->clock;
1505}
1506
1507static inline u64 rq_clock_task(struct rq *rq)
1508{
5cb9eaa3 1509 lockdep_assert_rq_held(rq);
cb42c9a3
MF
1510 assert_clock_updated(rq);
1511
78becc27
FW
1512 return rq->clock_task;
1513}
1514
05289b90
TG
1515/**
1516 * By default the decay is the default pelt decay period.
1517 * The decay shift can change the decay period in
1518 * multiples of 32.
1519 * Decay shift Decay period(ms)
1520 * 0 32
1521 * 1 64
1522 * 2 128
1523 * 3 256
1524 * 4 512
1525 */
1526extern int sched_thermal_decay_shift;
1527
1528static inline u64 rq_clock_thermal(struct rq *rq)
1529{
1530 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1531}
1532
adcc8da8 1533static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed 1534{
5cb9eaa3 1535 lockdep_assert_rq_held(rq);
adcc8da8
DB
1536 rq->clock_update_flags |= RQCF_REQ_SKIP;
1537}
1538
1539/*
595058b6 1540 * See rt task throttling, which is the only time a skip
3b03706f 1541 * request is canceled.
adcc8da8
DB
1542 */
1543static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1544{
5cb9eaa3 1545 lockdep_assert_rq_held(rq);
adcc8da8 1546 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1547}
1548
d8ac8971
MF
1549struct rq_flags {
1550 unsigned long flags;
1551 struct pin_cookie cookie;
cb42c9a3
MF
1552#ifdef CONFIG_SCHED_DEBUG
1553 /*
1554 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1555 * current pin context is stashed here in case it needs to be
1556 * restored in rq_repin_lock().
1557 */
1558 unsigned int clock_update_flags;
1559#endif
d8ac8971
MF
1560};
1561
8e5bad7d 1562extern struct balance_callback balance_push_callback;
ae792702 1563
58877d34
PZ
1564/*
1565 * Lockdep annotation that avoids accidental unlocks; it's like a
1566 * sticky/continuous lockdep_assert_held().
1567 *
1568 * This avoids code that has access to 'struct rq *rq' (basically everything in
1569 * the scheduler) from accidentally unlocking the rq if they do not also have a
1570 * copy of the (on-stack) 'struct rq_flags rf'.
1571 *
1572 * Also see Documentation/locking/lockdep-design.rst.
1573 */
d8ac8971
MF
1574static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1575{
9ef7e7e3 1576 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
cb42c9a3
MF
1577
1578#ifdef CONFIG_SCHED_DEBUG
1579 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1580 rf->clock_update_flags = 0;
565790d2 1581#ifdef CONFIG_SMP
ae792702
PZ
1582 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1583#endif
565790d2 1584#endif
d8ac8971
MF
1585}
1586
1587static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1588{
cb42c9a3
MF
1589#ifdef CONFIG_SCHED_DEBUG
1590 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1591 rf->clock_update_flags = RQCF_UPDATED;
1592#endif
1593
9ef7e7e3 1594 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
d8ac8971
MF
1595}
1596
1597static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1598{
9ef7e7e3 1599 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
cb42c9a3
MF
1600
1601#ifdef CONFIG_SCHED_DEBUG
1602 /*
1603 * Restore the value we stashed in @rf for this pin context.
1604 */
1605 rq->clock_update_flags |= rf->clock_update_flags;
1606#endif
d8ac8971
MF
1607}
1608
1f351d7f
JW
1609struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1610 __acquires(rq->lock);
1611
1612struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1613 __acquires(p->pi_lock)
1614 __acquires(rq->lock);
1615
1616static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1617 __releases(rq->lock)
1618{
1619 rq_unpin_lock(rq, rf);
5cb9eaa3 1620 raw_spin_rq_unlock(rq);
1f351d7f
JW
1621}
1622
1623static inline void
1624task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1625 __releases(rq->lock)
1626 __releases(p->pi_lock)
1627{
1628 rq_unpin_lock(rq, rf);
5cb9eaa3 1629 raw_spin_rq_unlock(rq);
1f351d7f
JW
1630 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1631}
1632
1633static inline void
1634rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1635 __acquires(rq->lock)
1636{
5cb9eaa3 1637 raw_spin_rq_lock_irqsave(rq, rf->flags);
1f351d7f
JW
1638 rq_pin_lock(rq, rf);
1639}
1640
1641static inline void
1642rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1643 __acquires(rq->lock)
1644{
5cb9eaa3 1645 raw_spin_rq_lock_irq(rq);
1f351d7f
JW
1646 rq_pin_lock(rq, rf);
1647}
1648
1649static inline void
1650rq_lock(struct rq *rq, struct rq_flags *rf)
1651 __acquires(rq->lock)
1652{
5cb9eaa3 1653 raw_spin_rq_lock(rq);
1f351d7f
JW
1654 rq_pin_lock(rq, rf);
1655}
1656
1f351d7f
JW
1657static inline void
1658rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1659 __releases(rq->lock)
1660{
1661 rq_unpin_lock(rq, rf);
5cb9eaa3 1662 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1f351d7f
JW
1663}
1664
1665static inline void
1666rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1667 __releases(rq->lock)
1668{
1669 rq_unpin_lock(rq, rf);
5cb9eaa3 1670 raw_spin_rq_unlock_irq(rq);
1f351d7f
JW
1671}
1672
1673static inline void
1674rq_unlock(struct rq *rq, struct rq_flags *rf)
1675 __releases(rq->lock)
1676{
1677 rq_unpin_lock(rq, rf);
5cb9eaa3 1678 raw_spin_rq_unlock(rq);
1f351d7f
JW
1679}
1680
246b3b33
JW
1681static inline struct rq *
1682this_rq_lock_irq(struct rq_flags *rf)
1683 __acquires(rq->lock)
1684{
1685 struct rq *rq;
1686
1687 local_irq_disable();
1688 rq = this_rq();
1689 rq_lock(rq, rf);
1690 return rq;
1691}
1692
9942f79b 1693#ifdef CONFIG_NUMA
e3fe70b1
RR
1694enum numa_topology_type {
1695 NUMA_DIRECT,
1696 NUMA_GLUELESS_MESH,
1697 NUMA_BACKPLANE,
1698};
1699extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1700extern int sched_max_numa_distance;
1701extern bool find_numa_distance(int distance);
0fb3978b
YH
1702extern void sched_init_numa(int offline_node);
1703extern void sched_update_numa(int cpu, bool online);
f2cb1360
IM
1704extern void sched_domains_numa_masks_set(unsigned int cpu);
1705extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1706extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360 1707#else
0fb3978b
YH
1708static inline void sched_init_numa(int offline_node) { }
1709static inline void sched_update_numa(int cpu, bool online) { }
f2cb1360
IM
1710static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1711static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1712static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1713{
1714 return nr_cpu_ids;
1715}
f2cb1360
IM
1716#endif
1717
f809ca9a 1718#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1719/* The regions in numa_faults array from task_struct */
1720enum numa_faults_stats {
1721 NUMA_MEM = 0,
1722 NUMA_CPU,
1723 NUMA_MEMBUF,
1724 NUMA_CPUBUF
1725};
0ec8aa00 1726extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1727extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1728extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1729 int cpu, int scpu);
13784475
MG
1730extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1731#else
1732static inline void
1733init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1734{
1735}
f809ca9a
MG
1736#endif /* CONFIG_NUMA_BALANCING */
1737
518cd623
PZ
1738#ifdef CONFIG_SMP
1739
e3fca9e7
PZ
1740static inline void
1741queue_balance_callback(struct rq *rq,
8e5bad7d 1742 struct balance_callback *head,
e3fca9e7
PZ
1743 void (*func)(struct rq *rq))
1744{
5cb9eaa3 1745 lockdep_assert_rq_held(rq);
e3fca9e7 1746
04193d59
PZ
1747 /*
1748 * Don't (re)queue an already queued item; nor queue anything when
1749 * balance_push() is active, see the comment with
1750 * balance_push_callback.
1751 */
ae792702 1752 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
e3fca9e7
PZ
1753 return;
1754
8e5bad7d 1755 head->func = func;
e3fca9e7
PZ
1756 head->next = rq->balance_callback;
1757 rq->balance_callback = head;
1758}
1759
029632fb
PZ
1760#define rcu_dereference_check_sched_domain(p) \
1761 rcu_dereference_check((p), \
1762 lockdep_is_held(&sched_domains_mutex))
1763
1764/*
1765 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1766 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1767 *
1768 * The domain tree of any CPU may only be accessed from within
1769 * preempt-disabled sections.
1770 */
1771#define for_each_domain(cpu, __sd) \
518cd623
PZ
1772 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1773 __sd; __sd = __sd->parent)
029632fb 1774
518cd623
PZ
1775/**
1776 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1777 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1778 * be returned.
1779 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1780 * for the given CPU.
518cd623 1781 *
97fb7a0a 1782 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1783 */
1784static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1785{
1786 struct sched_domain *sd, *hsd = NULL;
1787
1788 for_each_domain(cpu, sd) {
1789 if (!(sd->flags & flag))
1790 break;
1791 hsd = sd;
1792 }
1793
1794 return hsd;
1795}
1796
fb13c7ee
MG
1797static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1798{
1799 struct sched_domain *sd;
1800
1801 for_each_domain(cpu, sd) {
1802 if (sd->flags & flag)
1803 break;
1804 }
1805
1806 return sd;
1807}
1808
994aeb7a 1809DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1810DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1811DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1812DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1813DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1814DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1815DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1816extern struct static_key_false sched_asym_cpucapacity;
518cd623 1817
740cf8a7
DE
1818static __always_inline bool sched_asym_cpucap_active(void)
1819{
1820 return static_branch_unlikely(&sched_asym_cpucapacity);
1821}
1822
63b2ca30 1823struct sched_group_capacity {
97fb7a0a 1824 atomic_t ref;
5e6521ea 1825 /*
172895e6 1826 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1827 * for a single CPU.
5e6521ea 1828 */
97fb7a0a
IM
1829 unsigned long capacity;
1830 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1831 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1832 unsigned long next_update;
1833 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1834
005f874d 1835#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1836 int id;
005f874d
PZ
1837#endif
1838
eba9f082 1839 unsigned long cpumask[]; /* Balance mask */
5e6521ea
LZ
1840};
1841
1842struct sched_group {
97fb7a0a
IM
1843 struct sched_group *next; /* Must be a circular list */
1844 atomic_t ref;
5e6521ea 1845
97fb7a0a 1846 unsigned int group_weight;
63b2ca30 1847 struct sched_group_capacity *sgc;
97fb7a0a 1848 int asym_prefer_cpu; /* CPU of highest priority in group */
16d364ba 1849 int flags;
5e6521ea
LZ
1850
1851 /*
1852 * The CPUs this group covers.
1853 *
1854 * NOTE: this field is variable length. (Allocated dynamically
1855 * by attaching extra space to the end of the structure,
1856 * depending on how many CPUs the kernel has booted up with)
1857 */
04f5c362 1858 unsigned long cpumask[];
5e6521ea
LZ
1859};
1860
ae4df9d6 1861static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1862{
1863 return to_cpumask(sg->cpumask);
1864}
1865
1866/*
e5c14b1f 1867 * See build_balance_mask().
5e6521ea 1868 */
e5c14b1f 1869static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1870{
63b2ca30 1871 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1872}
1873
c1174876
PZ
1874extern int group_balance_cpu(struct sched_group *sg);
1875
3b87f136
PZ
1876#ifdef CONFIG_SCHED_DEBUG
1877void update_sched_domain_debugfs(void);
bbdacdfe 1878void dirty_sched_domain_sysctl(int cpu);
3866e845 1879#else
3b87f136 1880static inline void update_sched_domain_debugfs(void)
3866e845
SRRH
1881{
1882}
bbdacdfe
PZ
1883static inline void dirty_sched_domain_sysctl(int cpu)
1884{
1885}
3866e845
SRRH
1886#endif
1887
8a99b683 1888extern int sched_update_scaling(void);
8f9ea86f
WL
1889
1890static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1891{
1892 if (!p->user_cpus_ptr)
1893 return cpu_possible_mask; /* &init_task.cpus_mask */
1894 return p->user_cpus_ptr;
1895}
d664e399 1896#endif /* CONFIG_SMP */
029632fb 1897
391e43da 1898#include "stats.h"
029632fb 1899
4feee7d1
JD
1900#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1901
1902extern void __sched_core_account_forceidle(struct rq *rq);
1903
1904static inline void sched_core_account_forceidle(struct rq *rq)
1905{
1906 if (schedstat_enabled())
1907 __sched_core_account_forceidle(rq);
1908}
1909
1910extern void __sched_core_tick(struct rq *rq);
1911
1912static inline void sched_core_tick(struct rq *rq)
1913{
1914 if (sched_core_enabled(rq) && schedstat_enabled())
1915 __sched_core_tick(rq);
1916}
1917
1918#else
1919
1920static inline void sched_core_account_forceidle(struct rq *rq) {}
1921
1922static inline void sched_core_tick(struct rq *rq) {}
1923
1924#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1925
029632fb
PZ
1926#ifdef CONFIG_CGROUP_SCHED
1927
1928/*
1929 * Return the group to which this tasks belongs.
1930 *
8af01f56
TH
1931 * We cannot use task_css() and friends because the cgroup subsystem
1932 * changes that value before the cgroup_subsys::attach() method is called,
1933 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1934 *
1935 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1936 * core changes this before calling sched_move_task().
1937 *
1938 * Instead we use a 'copy' which is updated from sched_move_task() while
1939 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1940 */
1941static inline struct task_group *task_group(struct task_struct *p)
1942{
8323f26c 1943 return p->sched_task_group;
029632fb
PZ
1944}
1945
1946/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1947static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1948{
1949#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1950 struct task_group *tg = task_group(p);
1951#endif
1952
1953#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1954 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1955 p->se.cfs_rq = tg->cfs_rq[cpu];
1956 p->se.parent = tg->se[cpu];
78b6b157 1957 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
029632fb
PZ
1958#endif
1959
1960#ifdef CONFIG_RT_GROUP_SCHED
1961 p->rt.rt_rq = tg->rt_rq[cpu];
1962 p->rt.parent = tg->rt_se[cpu];
1963#endif
1964}
1965
1966#else /* CONFIG_CGROUP_SCHED */
1967
1968static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1969static inline struct task_group *task_group(struct task_struct *p)
1970{
1971 return NULL;
1972}
1973
1974#endif /* CONFIG_CGROUP_SCHED */
1975
1976static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1977{
1978 set_task_rq(p, cpu);
1979#ifdef CONFIG_SMP
1980 /*
1981 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1982 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1983 * per-task data have been completed by this moment.
1984 */
1985 smp_wmb();
c546951d 1986 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
ac66f547 1987 p->wake_cpu = cpu;
029632fb
PZ
1988#endif
1989}
1990
1991/*
1992 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1993 */
1994#ifdef CONFIG_SCHED_DEBUG
1995# define const_debug __read_mostly
1996#else
1997# define const_debug const
1998#endif
1999
029632fb
PZ
2000#define SCHED_FEAT(name, enabled) \
2001 __SCHED_FEAT_##name ,
2002
2003enum {
391e43da 2004#include "features.h"
f8b6d1cc 2005 __SCHED_FEAT_NR,
029632fb
PZ
2006};
2007
2008#undef SCHED_FEAT
2009
a73f863a 2010#ifdef CONFIG_SCHED_DEBUG
765cc3a4
PB
2011
2012/*
2013 * To support run-time toggling of sched features, all the translation units
2014 * (but core.c) reference the sysctl_sched_features defined in core.c.
2015 */
2016extern const_debug unsigned int sysctl_sched_features;
2017
a73f863a 2018#ifdef CONFIG_JUMP_LABEL
f8b6d1cc 2019#define SCHED_FEAT(name, enabled) \
c5905afb 2020static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 2021{ \
6e76ea8a 2022 return static_key_##enabled(key); \
f8b6d1cc
PZ
2023}
2024
2025#include "features.h"
f8b6d1cc
PZ
2026#undef SCHED_FEAT
2027
c5905afb 2028extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 2029#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 2030
a73f863a
JL
2031#else /* !CONFIG_JUMP_LABEL */
2032
2033#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2034
2035#endif /* CONFIG_JUMP_LABEL */
2036
2037#else /* !SCHED_DEBUG */
765cc3a4
PB
2038
2039/*
2040 * Each translation unit has its own copy of sysctl_sched_features to allow
2041 * constants propagation at compile time and compiler optimization based on
2042 * features default.
2043 */
2044#define SCHED_FEAT(name, enabled) \
2045 (1UL << __SCHED_FEAT_##name) * enabled |
2046static const_debug __maybe_unused unsigned int sysctl_sched_features =
2047#include "features.h"
2048 0;
2049#undef SCHED_FEAT
2050
7e6f4c5d 2051#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 2052
a73f863a 2053#endif /* SCHED_DEBUG */
029632fb 2054
2a595721 2055extern struct static_key_false sched_numa_balancing;
cb251765 2056extern struct static_key_false sched_schedstats;
cbee9f88 2057
029632fb
PZ
2058static inline u64 global_rt_period(void)
2059{
2060 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2061}
2062
2063static inline u64 global_rt_runtime(void)
2064{
2065 if (sysctl_sched_rt_runtime < 0)
2066 return RUNTIME_INF;
2067
2068 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2069}
2070
029632fb
PZ
2071static inline int task_current(struct rq *rq, struct task_struct *p)
2072{
2073 return rq->curr == p;
2074}
2075
0b9d46fc 2076static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
029632fb
PZ
2077{
2078#ifdef CONFIG_SMP
2079 return p->on_cpu;
2080#else
2081 return task_current(rq, p);
2082#endif
2083}
2084
da0c1e65
KT
2085static inline int task_on_rq_queued(struct task_struct *p)
2086{
2087 return p->on_rq == TASK_ON_RQ_QUEUED;
2088}
029632fb 2089
cca26e80
KT
2090static inline int task_on_rq_migrating(struct task_struct *p)
2091{
c546951d 2092 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
2093}
2094
17770579
VS
2095/* Wake flags. The first three directly map to some SD flag value */
2096#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2097#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2098#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2099
2100#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2101#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
17770579
VS
2102
2103#ifdef CONFIG_SMP
2104static_assert(WF_EXEC == SD_BALANCE_EXEC);
2105static_assert(WF_FORK == SD_BALANCE_FORK);
2106static_assert(WF_TTWU == SD_BALANCE_WAKE);
2107#endif
b13095f0 2108
029632fb
PZ
2109/*
2110 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2111 * of tasks with abnormal "nice" values across CPUs the contribution that
2112 * each task makes to its run queue's load is weighted according to its
2113 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2114 * scaled version of the new time slice allocation that they receive on time
2115 * slice expiry etc.
2116 */
2117
97fb7a0a
IM
2118#define WEIGHT_IDLEPRIO 3
2119#define WMULT_IDLEPRIO 1431655765
029632fb 2120
97fb7a0a
IM
2121extern const int sched_prio_to_weight[40];
2122extern const u32 sched_prio_to_wmult[40];
029632fb 2123
ff77e468
PZ
2124/*
2125 * {de,en}queue flags:
2126 *
2127 * DEQUEUE_SLEEP - task is no longer runnable
2128 * ENQUEUE_WAKEUP - task just became runnable
2129 *
2130 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2131 * are in a known state which allows modification. Such pairs
2132 * should preserve as much state as possible.
2133 *
2134 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2135 * in the runqueue.
2136 *
2137 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2138 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 2139 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
2140 *
2141 */
2142
2143#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
2144#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2145#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2146#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 2147
1de64443 2148#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
2149#define ENQUEUE_RESTORE 0x02
2150#define ENQUEUE_MOVE 0x04
0a67d1ee 2151#define ENQUEUE_NOCLOCK 0x08
ff77e468 2152
0a67d1ee
PZ
2153#define ENQUEUE_HEAD 0x10
2154#define ENQUEUE_REPLENISH 0x20
c82ba9fa 2155#ifdef CONFIG_SMP
0a67d1ee 2156#define ENQUEUE_MIGRATED 0x40
c82ba9fa 2157#else
59efa0ba 2158#define ENQUEUE_MIGRATED 0x00
c82ba9fa 2159#endif
c82ba9fa 2160
37e117c0
PZ
2161#define RETRY_TASK ((void *)-1UL)
2162
713a2e21
WL
2163struct affinity_context {
2164 const struct cpumask *new_mask;
8f9ea86f 2165 struct cpumask *user_mask;
713a2e21
WL
2166 unsigned int flags;
2167};
2168
c82ba9fa 2169struct sched_class {
c82ba9fa 2170
69842cba
PB
2171#ifdef CONFIG_UCLAMP_TASK
2172 int uclamp_enabled;
2173#endif
2174
c82ba9fa
LZ
2175 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2176 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 2177 void (*yield_task) (struct rq *rq);
0900acf2 2178 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 2179
97fb7a0a 2180 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 2181
98c2f700
PZ
2182 struct task_struct *(*pick_next_task)(struct rq *rq);
2183
6e2df058 2184 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 2185 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
2186
2187#ifdef CONFIG_SMP
6e2df058 2188 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
3aef1551 2189 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
21f56ffe
PZ
2190
2191 struct task_struct * (*pick_task)(struct rq *rq);
2192
1327237a 2193 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 2194
97fb7a0a 2195 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa 2196
713a2e21 2197 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
c82ba9fa
LZ
2198
2199 void (*rq_online)(struct rq *rq);
2200 void (*rq_offline)(struct rq *rq);
a7c81556
PZ
2201
2202 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
c82ba9fa
LZ
2203#endif
2204
97fb7a0a
IM
2205 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2206 void (*task_fork)(struct task_struct *p);
2207 void (*task_dead)(struct task_struct *p);
c82ba9fa 2208
67dfa1b7
KT
2209 /*
2210 * The switched_from() call is allowed to drop rq->lock, therefore we
3b03706f 2211 * cannot assume the switched_from/switched_to pair is serialized by
67dfa1b7
KT
2212 * rq->lock. They are however serialized by p->pi_lock.
2213 */
97fb7a0a
IM
2214 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2215 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 2216 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 2217 int oldprio);
c82ba9fa 2218
97fb7a0a
IM
2219 unsigned int (*get_rr_interval)(struct rq *rq,
2220 struct task_struct *task);
c82ba9fa 2221
97fb7a0a 2222 void (*update_curr)(struct rq *rq);
6e998916 2223
c82ba9fa 2224#ifdef CONFIG_FAIR_GROUP_SCHED
39c42611 2225 void (*task_change_group)(struct task_struct *p);
c82ba9fa 2226#endif
530bfad1
HJ
2227
2228#ifdef CONFIG_SCHED_CORE
2229 int (*task_is_throttled)(struct task_struct *p, int cpu);
2230#endif
43c31ac0 2231};
029632fb 2232
3f1d2a31
PZ
2233static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2234{
10e7071b 2235 WARN_ON_ONCE(rq->curr != prev);
6e2df058 2236 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
2237}
2238
03b7fad1 2239static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 2240{
a0e813f2 2241 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
2242}
2243
43c31ac0
PZ
2244
2245/*
2246 * Helper to define a sched_class instance; each one is placed in a separate
2247 * section which is ordered by the linker script:
2248 *
2249 * include/asm-generic/vmlinux.lds.h
2250 *
546a3fee
PZ
2251 * *CAREFUL* they are laid out in *REVERSE* order!!!
2252 *
43c31ac0
PZ
2253 * Also enforce alignment on the instance, not the type, to guarantee layout.
2254 */
2255#define DEFINE_SCHED_CLASS(name) \
2256const struct sched_class name##_sched_class \
2257 __aligned(__alignof__(struct sched_class)) \
2258 __section("__" #name "_sched_class")
2259
c3a340f7 2260/* Defined in include/asm-generic/vmlinux.lds.h */
546a3fee
PZ
2261extern struct sched_class __sched_class_highest[];
2262extern struct sched_class __sched_class_lowest[];
6e2df058
PZ
2263
2264#define for_class_range(class, _from, _to) \
546a3fee 2265 for (class = (_from); class < (_to); class++)
6e2df058 2266
029632fb 2267#define for_each_class(class) \
546a3fee
PZ
2268 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2269
2270#define sched_class_above(_a, _b) ((_a) < (_b))
029632fb
PZ
2271
2272extern const struct sched_class stop_sched_class;
aab03e05 2273extern const struct sched_class dl_sched_class;
029632fb
PZ
2274extern const struct sched_class rt_sched_class;
2275extern const struct sched_class fair_sched_class;
2276extern const struct sched_class idle_sched_class;
2277
6e2df058
PZ
2278static inline bool sched_stop_runnable(struct rq *rq)
2279{
2280 return rq->stop && task_on_rq_queued(rq->stop);
2281}
2282
2283static inline bool sched_dl_runnable(struct rq *rq)
2284{
2285 return rq->dl.dl_nr_running > 0;
2286}
2287
2288static inline bool sched_rt_runnable(struct rq *rq)
2289{
2290 return rq->rt.rt_queued > 0;
2291}
2292
2293static inline bool sched_fair_runnable(struct rq *rq)
2294{
2295 return rq->cfs.nr_running > 0;
2296}
029632fb 2297
5d7d6056 2298extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 2299extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 2300
af449901
PZ
2301#define SCA_CHECK 0x01
2302#define SCA_MIGRATE_DISABLE 0x02
2303#define SCA_MIGRATE_ENABLE 0x04
07ec77a1 2304#define SCA_USER 0x08
af449901 2305
029632fb
PZ
2306#ifdef CONFIG_SMP
2307
63b2ca30 2308extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 2309
7caff66f 2310extern void trigger_load_balance(struct rq *rq);
029632fb 2311
713a2e21 2312extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
c5b28038 2313
a7c81556
PZ
2314static inline struct task_struct *get_push_task(struct rq *rq)
2315{
2316 struct task_struct *p = rq->curr;
2317
5cb9eaa3 2318 lockdep_assert_rq_held(rq);
a7c81556
PZ
2319
2320 if (rq->push_busy)
2321 return NULL;
2322
2323 if (p->nr_cpus_allowed == 1)
2324 return NULL;
2325
e681dcba
SAS
2326 if (p->migration_disabled)
2327 return NULL;
2328
a7c81556
PZ
2329 rq->push_busy = true;
2330 return get_task_struct(p);
2331}
2332
2333extern int push_cpu_stop(void *arg);
c5b28038 2334
029632fb
PZ
2335#endif
2336
442bf3aa
DL
2337#ifdef CONFIG_CPU_IDLE
2338static inline void idle_set_state(struct rq *rq,
2339 struct cpuidle_state *idle_state)
2340{
2341 rq->idle_state = idle_state;
2342}
2343
2344static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2345{
9148a3a1 2346 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 2347
442bf3aa
DL
2348 return rq->idle_state;
2349}
2350#else
2351static inline void idle_set_state(struct rq *rq,
2352 struct cpuidle_state *idle_state)
2353{
2354}
2355
2356static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2357{
2358 return NULL;
2359}
2360#endif
2361
8663effb
SRV
2362extern void schedule_idle(void);
2363
029632fb
PZ
2364extern void sysrq_sched_debug_show(void);
2365extern void sched_init_granularity(void);
2366extern void update_max_interval(void);
1baca4ce
JL
2367
2368extern void init_sched_dl_class(void);
029632fb
PZ
2369extern void init_sched_rt_class(void);
2370extern void init_sched_fair_class(void);
2371
9059393e
VG
2372extern void reweight_task(struct task_struct *p, int prio);
2373
8875125e 2374extern void resched_curr(struct rq *rq);
029632fb
PZ
2375extern void resched_cpu(int cpu);
2376
2377extern struct rt_bandwidth def_rt_bandwidth;
2378extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
d664e399 2379extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
029632fb 2380
332ac17e 2381extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 2382extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 2383extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 2384
97fb7a0a
IM
2385#define BW_SHIFT 20
2386#define BW_UNIT (1 << BW_SHIFT)
2387#define RATIO_SHIFT 8
d505b8af
HC
2388#define MAX_BW_BITS (64 - BW_SHIFT)
2389#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
2390unsigned long to_ratio(u64 period, u64 runtime);
2391
540247fb 2392extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 2393extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 2394
76d92ac3
FW
2395#ifdef CONFIG_NO_HZ_FULL
2396extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 2397extern int __init sched_tick_offload_init(void);
76d92ac3
FW
2398
2399/*
2400 * Tick may be needed by tasks in the runqueue depending on their policy and
2401 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2402 * nohz mode if necessary.
2403 */
2404static inline void sched_update_tick_dependency(struct rq *rq)
2405{
21a6ee14 2406 int cpu = cpu_of(rq);
76d92ac3
FW
2407
2408 if (!tick_nohz_full_cpu(cpu))
2409 return;
2410
2411 if (sched_can_stop_tick(rq))
2412 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2413 else
2414 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2415}
2416#else
d84b3131 2417static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
2418static inline void sched_update_tick_dependency(struct rq *rq) { }
2419#endif
2420
72465447 2421static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 2422{
72465447
KT
2423 unsigned prev_nr = rq->nr_running;
2424
2425 rq->nr_running = prev_nr + count;
9d246053
PA
2426 if (trace_sched_update_nr_running_tp_enabled()) {
2427 call_trace_sched_update_nr_running(rq, count);
2428 }
9f3660c2 2429
4486edd1 2430#ifdef CONFIG_SMP
3e184501 2431 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
2432 if (!READ_ONCE(rq->rd->overload))
2433 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 2434 }
3e184501 2435#endif
76d92ac3
FW
2436
2437 sched_update_tick_dependency(rq);
029632fb
PZ
2438}
2439
72465447 2440static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 2441{
72465447 2442 rq->nr_running -= count;
9d246053 2443 if (trace_sched_update_nr_running_tp_enabled()) {
a1bd0685 2444 call_trace_sched_update_nr_running(rq, -count);
9d246053
PA
2445 }
2446
76d92ac3
FW
2447 /* Check if we still need preemption */
2448 sched_update_tick_dependency(rq);
029632fb
PZ
2449}
2450
029632fb
PZ
2451extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2452extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2453
2454extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2455
c59862f8
VG
2456#ifdef CONFIG_PREEMPT_RT
2457#define SCHED_NR_MIGRATE_BREAK 8
2458#else
2459#define SCHED_NR_MIGRATE_BREAK 32
2460#endif
2461
029632fb
PZ
2462extern const_debug unsigned int sysctl_sched_nr_migrate;
2463extern const_debug unsigned int sysctl_sched_migration_cost;
2464
18765447
HL
2465#ifdef CONFIG_SCHED_DEBUG
2466extern unsigned int sysctl_sched_latency;
2467extern unsigned int sysctl_sched_min_granularity;
51ce83ed 2468extern unsigned int sysctl_sched_idle_min_granularity;
18765447
HL
2469extern unsigned int sysctl_sched_wakeup_granularity;
2470extern int sysctl_resched_latency_warn_ms;
2471extern int sysctl_resched_latency_warn_once;
2472
2473extern unsigned int sysctl_sched_tunable_scaling;
2474
2475extern unsigned int sysctl_numa_balancing_scan_delay;
2476extern unsigned int sysctl_numa_balancing_scan_period_min;
2477extern unsigned int sysctl_numa_balancing_scan_period_max;
2478extern unsigned int sysctl_numa_balancing_scan_size;
33024536 2479extern unsigned int sysctl_numa_balancing_hot_threshold;
18765447
HL
2480#endif
2481
029632fb
PZ
2482#ifdef CONFIG_SCHED_HRTICK
2483
2484/*
2485 * Use hrtick when:
2486 * - enabled by features
2487 * - hrtimer is actually high res
2488 */
2489static inline int hrtick_enabled(struct rq *rq)
2490{
029632fb
PZ
2491 if (!cpu_active(cpu_of(rq)))
2492 return 0;
2493 return hrtimer_is_hres_active(&rq->hrtick_timer);
2494}
2495
e0ee463c
JL
2496static inline int hrtick_enabled_fair(struct rq *rq)
2497{
2498 if (!sched_feat(HRTICK))
2499 return 0;
2500 return hrtick_enabled(rq);
2501}
2502
2503static inline int hrtick_enabled_dl(struct rq *rq)
2504{
2505 if (!sched_feat(HRTICK_DL))
2506 return 0;
2507 return hrtick_enabled(rq);
2508}
2509
029632fb
PZ
2510void hrtick_start(struct rq *rq, u64 delay);
2511
b39e66ea
MG
2512#else
2513
e0ee463c
JL
2514static inline int hrtick_enabled_fair(struct rq *rq)
2515{
2516 return 0;
2517}
2518
2519static inline int hrtick_enabled_dl(struct rq *rq)
2520{
2521 return 0;
2522}
2523
b39e66ea
MG
2524static inline int hrtick_enabled(struct rq *rq)
2525{
2526 return 0;
2527}
2528
029632fb
PZ
2529#endif /* CONFIG_SCHED_HRTICK */
2530
1567c3e3
GG
2531#ifndef arch_scale_freq_tick
2532static __always_inline
2533void arch_scale_freq_tick(void)
2534{
2535}
2536#endif
2537
dfbca41f 2538#ifndef arch_scale_freq_capacity
f4470cdf
VS
2539/**
2540 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2541 * @cpu: the CPU in question.
2542 *
2543 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2544 *
2545 * f_curr
2546 * ------ * SCHED_CAPACITY_SCALE
2547 * f_max
2548 */
dfbca41f 2549static __always_inline
7673c8a4 2550unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2551{
2552 return SCHED_CAPACITY_SCALE;
2553}
2554#endif
b5b4860d 2555
2679a837
HJ
2556#ifdef CONFIG_SCHED_DEBUG
2557/*
2558 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2559 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2560 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2561 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2562 */
2563static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2564{
2565 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2566 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2567#ifdef CONFIG_SMP
2568 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2569#endif
2570}
2571#else
2572static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2573#endif
d66f1b06 2574
029632fb 2575#ifdef CONFIG_SMP
029632fb 2576
d66f1b06
PZ
2577static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2578{
9edeaea1
PZ
2579#ifdef CONFIG_SCHED_CORE
2580 /*
2581 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2582 * order by core-id first and cpu-id second.
2583 *
2584 * Notably:
2585 *
2586 * double_rq_lock(0,3); will take core-0, core-1 lock
2587 * double_rq_lock(1,2); will take core-1, core-0 lock
2588 *
2589 * when only cpu-id is considered.
2590 */
2591 if (rq1->core->cpu < rq2->core->cpu)
2592 return true;
2593 if (rq1->core->cpu > rq2->core->cpu)
2594 return false;
2595
2596 /*
2597 * __sched_core_flip() relies on SMT having cpu-id lock order.
2598 */
2599#endif
d66f1b06
PZ
2600 return rq1->cpu < rq2->cpu;
2601}
2602
2603extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2604
2605#ifdef CONFIG_PREEMPTION
029632fb
PZ
2606
2607/*
2608 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2609 * way at the expense of forcing extra atomic operations in all
2610 * invocations. This assures that the double_lock is acquired using the
2611 * same underlying policy as the spinlock_t on this architecture, which
2612 * reduces latency compared to the unfair variant below. However, it
2613 * also adds more overhead and therefore may reduce throughput.
2614 */
2615static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2616 __releases(this_rq->lock)
2617 __acquires(busiest->lock)
2618 __acquires(this_rq->lock)
2619{
5cb9eaa3 2620 raw_spin_rq_unlock(this_rq);
029632fb
PZ
2621 double_rq_lock(this_rq, busiest);
2622
2623 return 1;
2624}
2625
2626#else
2627/*
2628 * Unfair double_lock_balance: Optimizes throughput at the expense of
2629 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2630 * already in proper order on entry. This favors lower CPU-ids and will
2631 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2632 * regardless of entry order into the function.
2633 */
2634static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2635 __releases(this_rq->lock)
2636 __acquires(busiest->lock)
2637 __acquires(this_rq->lock)
2638{
2679a837
HJ
2639 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2640 likely(raw_spin_rq_trylock(busiest))) {
2641 double_rq_clock_clear_update(this_rq, busiest);
5cb9eaa3 2642 return 0;
2679a837 2643 }
5cb9eaa3 2644
d66f1b06 2645 if (rq_order_less(this_rq, busiest)) {
5cb9eaa3 2646 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2679a837 2647 double_rq_clock_clear_update(this_rq, busiest);
5cb9eaa3 2648 return 0;
029632fb 2649 }
5cb9eaa3
PZ
2650
2651 raw_spin_rq_unlock(this_rq);
d66f1b06 2652 double_rq_lock(this_rq, busiest);
5cb9eaa3
PZ
2653
2654 return 1;
029632fb
PZ
2655}
2656
c1a280b6 2657#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2658
2659/*
2660 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2661 */
2662static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2663{
5cb9eaa3 2664 lockdep_assert_irqs_disabled();
029632fb
PZ
2665
2666 return _double_lock_balance(this_rq, busiest);
2667}
2668
2669static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2670 __releases(busiest->lock)
2671{
9ef7e7e3 2672 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
5cb9eaa3 2673 raw_spin_rq_unlock(busiest);
9ef7e7e3 2674 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
029632fb
PZ
2675}
2676
74602315
PZ
2677static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2678{
2679 if (l1 > l2)
2680 swap(l1, l2);
2681
2682 spin_lock(l1);
2683 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2684}
2685
60e69eed
MG
2686static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2687{
2688 if (l1 > l2)
2689 swap(l1, l2);
2690
2691 spin_lock_irq(l1);
2692 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2693}
2694
74602315
PZ
2695static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2696{
2697 if (l1 > l2)
2698 swap(l1, l2);
2699
2700 raw_spin_lock(l1);
2701 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2702}
2703
029632fb
PZ
2704/*
2705 * double_rq_unlock - safely unlock two runqueues
2706 *
2707 * Note this does not restore interrupts like task_rq_unlock,
2708 * you need to do so manually after calling.
2709 */
2710static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2711 __releases(rq1->lock)
2712 __releases(rq2->lock)
2713{
9ef7e7e3 2714 if (__rq_lockp(rq1) != __rq_lockp(rq2))
5cb9eaa3 2715 raw_spin_rq_unlock(rq2);
029632fb
PZ
2716 else
2717 __release(rq2->lock);
d66f1b06 2718 raw_spin_rq_unlock(rq1);
029632fb
PZ
2719}
2720
f2cb1360
IM
2721extern void set_rq_online (struct rq *rq);
2722extern void set_rq_offline(struct rq *rq);
2723extern bool sched_smp_initialized;
2724
029632fb
PZ
2725#else /* CONFIG_SMP */
2726
2727/*
2728 * double_rq_lock - safely lock two runqueues
2729 *
2730 * Note this does not disable interrupts like task_rq_lock,
2731 * you need to do so manually before calling.
2732 */
2733static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2734 __acquires(rq1->lock)
2735 __acquires(rq2->lock)
2736{
09348d75
IM
2737 WARN_ON_ONCE(!irqs_disabled());
2738 WARN_ON_ONCE(rq1 != rq2);
5cb9eaa3 2739 raw_spin_rq_lock(rq1);
029632fb 2740 __acquire(rq2->lock); /* Fake it out ;) */
2679a837 2741 double_rq_clock_clear_update(rq1, rq2);
029632fb
PZ
2742}
2743
2744/*
2745 * double_rq_unlock - safely unlock two runqueues
2746 *
2747 * Note this does not restore interrupts like task_rq_unlock,
2748 * you need to do so manually after calling.
2749 */
2750static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2751 __releases(rq1->lock)
2752 __releases(rq2->lock)
2753{
09348d75 2754 WARN_ON_ONCE(rq1 != rq2);
5cb9eaa3 2755 raw_spin_rq_unlock(rq1);
029632fb
PZ
2756 __release(rq2->lock);
2757}
2758
2759#endif
2760
2761extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2762extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2763
2764#ifdef CONFIG_SCHED_DEBUG
9406415f 2765extern bool sched_debug_verbose;
9469eb01 2766
029632fb
PZ
2767extern void print_cfs_stats(struct seq_file *m, int cpu);
2768extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2769extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2770extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2771extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2772extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
c006fac5
PT
2773
2774extern void resched_latency_warn(int cpu, u64 latency);
397f2378
SD
2775#ifdef CONFIG_NUMA_BALANCING
2776extern void
2777show_numa_stats(struct task_struct *p, struct seq_file *m);
2778extern void
2779print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2780 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2781#endif /* CONFIG_NUMA_BALANCING */
c006fac5
PT
2782#else
2783static inline void resched_latency_warn(int cpu, u64 latency) {}
397f2378 2784#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2785
2786extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2787extern void init_rt_rq(struct rt_rq *rt_rq);
2788extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2789
1ee14e6c
BS
2790extern void cfs_bandwidth_usage_inc(void);
2791extern void cfs_bandwidth_usage_dec(void);
1c792db7 2792
3451d024 2793#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2794#define NOHZ_BALANCE_KICK_BIT 0
2795#define NOHZ_STATS_KICK_BIT 1
c6f88654 2796#define NOHZ_NEWILB_KICK_BIT 2
efd984c4 2797#define NOHZ_NEXT_KICK_BIT 3
a22e47a4 2798
efd984c4 2799/* Run rebalance_domains() */
a22e47a4 2800#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
efd984c4 2801/* Update blocked load */
b7031a02 2802#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
efd984c4 2803/* Update blocked load when entering idle */
c6f88654 2804#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
efd984c4
VS
2805/* Update nohz.next_balance */
2806#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
b7031a02 2807
efd984c4 2808#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
1c792db7
SS
2809
2810#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2811
00357f5e 2812extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2813#else
00357f5e 2814static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2815#endif
73fbec60 2816
c6f88654
VG
2817#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2818extern void nohz_run_idle_balance(int cpu);
2819#else
2820static inline void nohz_run_idle_balance(int cpu) { }
2821#endif
daec5798 2822
73fbec60 2823#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2824struct irqtime {
25e2d8c1 2825 u64 total;
a499a5a1 2826 u64 tick_delta;
19d23dbf
FW
2827 u64 irq_start_time;
2828 struct u64_stats_sync sync;
2829};
73fbec60 2830
19d23dbf 2831DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2832
25e2d8c1
FW
2833/*
2834 * Returns the irqtime minus the softirq time computed by ksoftirqd.
3b03706f 2835 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
25e2d8c1
FW
2836 * and never move forward.
2837 */
73fbec60
FW
2838static inline u64 irq_time_read(int cpu)
2839{
19d23dbf
FW
2840 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2841 unsigned int seq;
2842 u64 total;
73fbec60
FW
2843
2844 do {
19d23dbf 2845 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2846 total = irqtime->total;
19d23dbf 2847 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2848
19d23dbf 2849 return total;
73fbec60 2850}
73fbec60 2851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2852
2853#ifdef CONFIG_CPU_FREQ
b10abd0a 2854DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2855
2856/**
2857 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2858 * @rq: Runqueue to carry out the update for.
58919e83 2859 * @flags: Update reason flags.
adaf9fcd 2860 *
58919e83
RW
2861 * This function is called by the scheduler on the CPU whose utilization is
2862 * being updated.
adaf9fcd
RW
2863 *
2864 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2865 *
2866 * The way cpufreq is currently arranged requires it to evaluate the CPU
2867 * performance state (frequency/voltage) on a regular basis to prevent it from
2868 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2869 * That is not guaranteed to happen if the updates are only triggered from CFS
2870 * and DL, though, because they may not be coming in if only RT tasks are
2871 * active all the time (or there are RT tasks only).
adaf9fcd 2872 *
e0367b12
JL
2873 * As a workaround for that issue, this function is called periodically by the
2874 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2875 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2876 * solutions targeted more specifically at RT tasks.
adaf9fcd 2877 */
12bde33d 2878static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2879{
58919e83
RW
2880 struct update_util_data *data;
2881
674e7541
VK
2882 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2883 cpu_of(rq)));
58919e83 2884 if (data)
12bde33d
RW
2885 data->func(data, rq_clock(rq), flags);
2886}
adaf9fcd 2887#else
12bde33d 2888static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2889#endif /* CONFIG_CPU_FREQ */
be53f58f 2890
9bdcb44e 2891#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2892# ifndef arch_scale_freq_invariant
2893# define arch_scale_freq_invariant() true
2894# endif
2895#else
2896# define arch_scale_freq_invariant() false
9bdcb44e 2897#endif
d4edd662 2898
10a35e68
VG
2899#ifdef CONFIG_SMP
2900static inline unsigned long capacity_orig_of(int cpu)
2901{
2902 return cpu_rq(cpu)->cpu_capacity_orig;
2903}
10a35e68 2904
938e5e4b 2905/**
a5418be9 2906 * enum cpu_util_type - CPU utilization type
938e5e4b
QP
2907 * @FREQUENCY_UTIL: Utilization used to select frequency
2908 * @ENERGY_UTIL: Utilization used during energy calculation
2909 *
2910 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2911 * need to be aggregated differently depending on the usage made of them. This
a5418be9 2912 * enum is used within effective_cpu_util() to differentiate the types of
938e5e4b
QP
2913 * utilization expected by the callers, and adjust the aggregation accordingly.
2914 */
a5418be9 2915enum cpu_util_type {
938e5e4b
QP
2916 FREQUENCY_UTIL,
2917 ENERGY_UTIL,
2918};
2919
a5418be9 2920unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 2921 enum cpu_util_type type,
af24bde8 2922 struct task_struct *p);
938e5e4b 2923
b3f53daa
DE
2924/*
2925 * Verify the fitness of task @p to run on @cpu taking into account the
2926 * CPU original capacity and the runtime/deadline ratio of the task.
2927 *
2928 * The function will return true if the original capacity of @cpu is
2929 * greater than or equal to task's deadline density right shifted by
2930 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2931 */
2932static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2933{
2934 unsigned long cap = arch_scale_cpu_capacity(cpu);
2935
2936 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2937}
2938
8cc90515 2939static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2940{
2941 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2942}
2943
8cc90515
VG
2944static inline unsigned long cpu_util_dl(struct rq *rq)
2945{
2946 return READ_ONCE(rq->avg_dl.util_avg);
2947}
2948
82762d2a
DE
2949/**
2950 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2951 * @cpu: the CPU to get the utilization for.
2952 *
2953 * The unit of the return value must be the same as the one of CPU capacity
2954 * so that CPU utilization can be compared with CPU capacity.
2955 *
2956 * CPU utilization is the sum of running time of runnable tasks plus the
2957 * recent utilization of currently non-runnable tasks on that CPU.
2958 * It represents the amount of CPU capacity currently used by CFS tasks in
2959 * the range [0..max CPU capacity] with max CPU capacity being the CPU
2960 * capacity at f_max.
2961 *
2962 * The estimated CPU utilization is defined as the maximum between CPU
2963 * utilization and sum of the estimated utilization of the currently
2964 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2965 * previously-executed tasks, which helps better deduce how busy a CPU will
2966 * be when a long-sleeping task wakes up. The contribution to CPU utilization
2967 * of such a task would be significantly decayed at this point of time.
2968 *
2969 * CPU utilization can be higher than the current CPU capacity
2970 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2971 * of rounding errors as well as task migrations or wakeups of new tasks.
2972 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2973 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2974 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2975 * capacity. CPU utilization is allowed to overshoot current CPU capacity
2976 * though since this is useful for predicting the CPU capacity required
2977 * after task migrations (scheduler-driven DVFS).
2978 *
2979 * Return: (Estimated) utilization for the specified CPU.
2980 */
2981static inline unsigned long cpu_util_cfs(int cpu)
d4edd662 2982{
82762d2a
DE
2983 struct cfs_rq *cfs_rq;
2984 unsigned long util;
2985
2986 cfs_rq = &cpu_rq(cpu)->cfs;
2987 util = READ_ONCE(cfs_rq->avg.util_avg);
a07630b8
PB
2988
2989 if (sched_feat(UTIL_EST)) {
2990 util = max_t(unsigned long, util,
82762d2a 2991 READ_ONCE(cfs_rq->avg.util_est.enqueued));
a07630b8
PB
2992 }
2993
82762d2a 2994 return min(util, capacity_orig_of(cpu));
d4edd662 2995}
371bf427
VG
2996
2997static inline unsigned long cpu_util_rt(struct rq *rq)
2998{
dfa444dc 2999 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 3000}
7d6a905f 3001#endif
9033ea11 3002
7a17e1db
QY
3003#ifdef CONFIG_UCLAMP_TASK
3004unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3005
24422603
QY
3006static inline unsigned long uclamp_rq_get(struct rq *rq,
3007 enum uclamp_id clamp_id)
3008{
3009 return READ_ONCE(rq->uclamp[clamp_id].value);
3010}
3011
3012static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3013 unsigned int value)
3014{
3015 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3016}
3017
3018static inline bool uclamp_rq_is_idle(struct rq *rq)
3019{
3020 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3021}
3022
7a17e1db
QY
3023/**
3024 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3025 * @rq: The rq to clamp against. Must not be NULL.
3026 * @util: The util value to clamp.
3027 * @p: The task to clamp against. Can be NULL if you want to clamp
3028 * against @rq only.
3029 *
3030 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3031 *
3032 * If sched_uclamp_used static key is disabled, then just return the util
3033 * without any clamping since uclamp aggregation at the rq level in the fast
3034 * path is disabled, rendering this operation a NOP.
3035 *
3036 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3037 * will return the correct effective uclamp value of the task even if the
3038 * static key is disabled.
3039 */
3040static __always_inline
3041unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3042 struct task_struct *p)
3043{
3044 unsigned long min_util = 0;
3045 unsigned long max_util = 0;
3046
3047 if (!static_branch_likely(&sched_uclamp_used))
3048 return util;
3049
3050 if (p) {
3051 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3052 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3053
3054 /*
3055 * Ignore last runnable task's max clamp, as this task will
3056 * reset it. Similarly, no need to read the rq's min clamp.
3057 */
24422603 3058 if (uclamp_rq_is_idle(rq))
7a17e1db
QY
3059 goto out;
3060 }
3061
24422603
QY
3062 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3063 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
7a17e1db
QY
3064out:
3065 /*
3066 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3067 * RUNNABLE tasks with _different_ clamps, we can end up with an
3068 * inversion. Fix it now when the clamps are applied.
3069 */
3070 if (unlikely(min_util >= max_util))
3071 return min_util;
3072
3073 return clamp(util, min_util, max_util);
3074}
3075
3076/* Is the rq being capped/throttled by uclamp_max? */
3077static inline bool uclamp_rq_is_capped(struct rq *rq)
3078{
3079 unsigned long rq_util;
3080 unsigned long max_util;
3081
3082 if (!static_branch_likely(&sched_uclamp_used))
3083 return false;
3084
3085 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3086 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3087
3088 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3089}
3090
3091/*
3092 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3093 * by default in the fast path and only gets turned on once userspace performs
3094 * an operation that requires it.
3095 *
3096 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3097 * hence is active.
3098 */
3099static inline bool uclamp_is_used(void)
3100{
3101 return static_branch_likely(&sched_uclamp_used);
3102}
3103#else /* CONFIG_UCLAMP_TASK */
b48e16a6
QY
3104static inline unsigned long uclamp_eff_value(struct task_struct *p,
3105 enum uclamp_id clamp_id)
3106{
3107 if (clamp_id == UCLAMP_MIN)
3108 return 0;
3109
3110 return SCHED_CAPACITY_SCALE;
3111}
3112
7a17e1db
QY
3113static inline
3114unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3115 struct task_struct *p)
3116{
3117 return util;
3118}
3119
3120static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3121
3122static inline bool uclamp_is_used(void)
3123{
3124 return false;
3125}
24422603
QY
3126
3127static inline unsigned long uclamp_rq_get(struct rq *rq,
3128 enum uclamp_id clamp_id)
3129{
3130 if (clamp_id == UCLAMP_MIN)
3131 return 0;
3132
3133 return SCHED_CAPACITY_SCALE;
3134}
3135
3136static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3137 unsigned int value)
3138{
3139}
3140
3141static inline bool uclamp_rq_is_idle(struct rq *rq)
3142{
3143 return false;
3144}
7a17e1db
QY
3145#endif /* CONFIG_UCLAMP_TASK */
3146
11d4afd4 3147#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
3148static inline unsigned long cpu_util_irq(struct rq *rq)
3149{
3150 return rq->avg_irq.util_avg;
3151}
2e62c474
VG
3152
3153static inline
3154unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3155{
3156 util *= (max - irq);
3157 util /= max;
3158
3159 return util;
3160
3161}
9033ea11
VG
3162#else
3163static inline unsigned long cpu_util_irq(struct rq *rq)
3164{
3165 return 0;
3166}
3167
2e62c474
VG
3168static inline
3169unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3170{
3171 return util;
3172}
794a56eb 3173#endif
6aa140fa 3174
531b5c9f 3175#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 3176
6aa140fa 3177#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
3178
3179DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3180
3181static inline bool sched_energy_enabled(void)
3182{
3183 return static_branch_unlikely(&sched_energy_present);
3184}
3185
3186#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3187
6aa140fa 3188#define perf_domain_span(pd) NULL
f8a696f2 3189static inline bool sched_energy_enabled(void) { return false; }
1f74de87 3190
f8a696f2 3191#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
3192
3193#ifdef CONFIG_MEMBARRIER
3194/*
3195 * The scheduler provides memory barriers required by membarrier between:
3196 * - prior user-space memory accesses and store to rq->membarrier_state,
3197 * - store to rq->membarrier_state and following user-space memory accesses.
3198 * In the same way it provides those guarantees around store to rq->curr.
3199 */
3200static inline void membarrier_switch_mm(struct rq *rq,
3201 struct mm_struct *prev_mm,
3202 struct mm_struct *next_mm)
3203{
3204 int membarrier_state;
3205
3206 if (prev_mm == next_mm)
3207 return;
3208
3209 membarrier_state = atomic_read(&next_mm->membarrier_state);
3210 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3211 return;
3212
3213 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3214}
3215#else
3216static inline void membarrier_switch_mm(struct rq *rq,
3217 struct mm_struct *prev_mm,
3218 struct mm_struct *next_mm)
3219{
3220}
3221#endif
52262ee5
MG
3222
3223#ifdef CONFIG_SMP
3224static inline bool is_per_cpu_kthread(struct task_struct *p)
3225{
3226 if (!(p->flags & PF_KTHREAD))
3227 return false;
3228
3229 if (p->nr_cpus_allowed != 1)
3230 return false;
3231
3232 return true;
3233}
3234#endif
b3212fe2 3235
1011dcce
PZ
3236extern void swake_up_all_locked(struct swait_queue_head *q);
3237extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3238
3239#ifdef CONFIG_PREEMPT_DYNAMIC
3240extern int preempt_dynamic_mode;
3241extern int sched_dynamic_mode(const char *str);
3242extern void sched_dynamic_update(int mode);
3243#endif
3244
5531ecff
SX
3245static inline void update_current_exec_runtime(struct task_struct *curr,
3246 u64 now, u64 delta_exec)
3247{
3248 curr->se.sum_exec_runtime += delta_exec;
3249 account_group_exec_runtime(curr, delta_exec);
3250
3251 curr->se.exec_start = now;
3252 cgroup_account_cputime(curr, delta_exec);
3253}
3254
af7f588d 3255#ifdef CONFIG_SCHED_MM_CID
223baf9d
MD
3256
3257#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3258#define MM_CID_SCAN_DELAY 100 /* 100ms */
3259
3260extern raw_spinlock_t cid_lock;
3261extern int use_cid_lock;
3262
3263extern void sched_mm_cid_migrate_from(struct task_struct *t);
3264extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3265extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3266extern void init_sched_mm_cid(struct task_struct *t);
3267
3268static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3269{
3270 if (cid < 0)
3271 return;
3272 cpumask_clear_cpu(cid, mm_cidmask(mm));
3273}
3274
3275/*
3276 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3277 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3278 * be held to transition to other states.
3279 *
3280 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3281 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3282 */
3283static inline void mm_cid_put_lazy(struct task_struct *t)
3284{
3285 struct mm_struct *mm = t->mm;
3286 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3287 int cid;
3288
3289 lockdep_assert_irqs_disabled();
3290 cid = __this_cpu_read(pcpu_cid->cid);
3291 if (!mm_cid_is_lazy_put(cid) ||
3292 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3293 return;
3294 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3295}
3296
3297static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3298{
3299 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3300 int cid, res;
3301
3302 lockdep_assert_irqs_disabled();
3303 cid = __this_cpu_read(pcpu_cid->cid);
3304 for (;;) {
3305 if (mm_cid_is_unset(cid))
3306 return MM_CID_UNSET;
3307 /*
3308 * Attempt transition from valid or lazy-put to unset.
3309 */
3310 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3311 if (res == cid)
3312 break;
3313 cid = res;
3314 }
3315 return cid;
3316}
3317
3318static inline void mm_cid_put(struct mm_struct *mm)
3319{
3320 int cid;
3321
3322 lockdep_assert_irqs_disabled();
3323 cid = mm_cid_pcpu_unset(mm);
3324 if (cid == MM_CID_UNSET)
3325 return;
3326 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3327}
3328
3329static inline int __mm_cid_try_get(struct mm_struct *mm)
af7f588d
MD
3330{
3331 struct cpumask *cpumask;
3332 int cid;
3333
3334 cpumask = mm_cidmask(mm);
223baf9d
MD
3335 /*
3336 * Retry finding first zero bit if the mask is temporarily
3337 * filled. This only happens during concurrent remote-clear
3338 * which owns a cid without holding a rq lock.
3339 */
3340 for (;;) {
3341 cid = cpumask_first_zero(cpumask);
3342 if (cid < nr_cpu_ids)
3343 break;
3344 cpu_relax();
3345 }
3346 if (cpumask_test_and_set_cpu(cid, cpumask))
af7f588d 3347 return -1;
af7f588d
MD
3348 return cid;
3349}
3350
223baf9d
MD
3351/*
3352 * Save a snapshot of the current runqueue time of this cpu
3353 * with the per-cpu cid value, allowing to estimate how recently it was used.
3354 */
3355static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
af7f588d 3356{
223baf9d
MD
3357 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3358
3359 lockdep_assert_rq_held(rq);
3360 WRITE_ONCE(pcpu_cid->time, rq->clock);
af7f588d
MD
3361}
3362
223baf9d 3363static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
af7f588d 3364{
223baf9d 3365 int cid;
af7f588d 3366
223baf9d
MD
3367 /*
3368 * All allocations (even those using the cid_lock) are lock-free. If
3369 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3370 * guarantee forward progress.
3371 */
3372 if (!READ_ONCE(use_cid_lock)) {
3373 cid = __mm_cid_try_get(mm);
3374 if (cid >= 0)
3375 goto end;
3376 raw_spin_lock(&cid_lock);
3377 } else {
3378 raw_spin_lock(&cid_lock);
3379 cid = __mm_cid_try_get(mm);
3380 if (cid >= 0)
3381 goto unlock;
3382 }
3383
3384 /*
3385 * cid concurrently allocated. Retry while forcing following
3386 * allocations to use the cid_lock to ensure forward progress.
3387 */
3388 WRITE_ONCE(use_cid_lock, 1);
3389 /*
3390 * Set use_cid_lock before allocation. Only care about program order
3391 * because this is only required for forward progress.
3392 */
3393 barrier();
3394 /*
3395 * Retry until it succeeds. It is guaranteed to eventually succeed once
3396 * all newcoming allocations observe the use_cid_lock flag set.
3397 */
3398 do {
3399 cid = __mm_cid_try_get(mm);
3400 cpu_relax();
3401 } while (cid < 0);
3402 /*
3403 * Allocate before clearing use_cid_lock. Only care about
3404 * program order because this is for forward progress.
3405 */
3406 barrier();
3407 WRITE_ONCE(use_cid_lock, 0);
3408unlock:
3409 raw_spin_unlock(&cid_lock);
3410end:
3411 mm_cid_snapshot_time(rq, mm);
3412 return cid;
af7f588d
MD
3413}
3414
223baf9d 3415static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
af7f588d 3416{
223baf9d
MD
3417 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3418 struct cpumask *cpumask;
3419 int cid;
3420
3421 lockdep_assert_rq_held(rq);
3422 cpumask = mm_cidmask(mm);
3423 cid = __this_cpu_read(pcpu_cid->cid);
3424 if (mm_cid_is_valid(cid)) {
3425 mm_cid_snapshot_time(rq, mm);
3426 return cid;
3427 }
3428 if (mm_cid_is_lazy_put(cid)) {
3429 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3430 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3431 }
3432 cid = __mm_cid_get(rq, mm);
3433 __this_cpu_write(pcpu_cid->cid, cid);
3434 return cid;
3435}
3436
3437static inline void switch_mm_cid(struct rq *rq,
3438 struct task_struct *prev,
3439 struct task_struct *next)
3440{
3441 /*
3442 * Provide a memory barrier between rq->curr store and load of
3443 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3444 *
3445 * Should be adapted if context_switch() is modified.
3446 */
3447 if (!next->mm) { // to kernel
3448 /*
3449 * user -> kernel transition does not guarantee a barrier, but
3450 * we can use the fact that it performs an atomic operation in
3451 * mmgrab().
3452 */
3453 if (prev->mm) // from user
3454 smp_mb__after_mmgrab();
3455 /*
3456 * kernel -> kernel transition does not change rq->curr->mm
3457 * state. It stays NULL.
3458 */
3459 } else { // to user
3460 /*
3461 * kernel -> user transition does not provide a barrier
3462 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3463 * Provide it here.
3464 */
3465 if (!prev->mm) // from kernel
3466 smp_mb();
3467 /*
3468 * user -> user transition guarantees a memory barrier through
3469 * switch_mm() when current->mm changes. If current->mm is
3470 * unchanged, no barrier is needed.
3471 */
3472 }
af7f588d 3473 if (prev->mm_cid_active) {
223baf9d
MD
3474 mm_cid_snapshot_time(rq, prev->mm);
3475 mm_cid_put_lazy(prev);
af7f588d
MD
3476 prev->mm_cid = -1;
3477 }
3478 if (next->mm_cid_active)
223baf9d 3479 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
af7f588d
MD
3480}
3481
3482#else
223baf9d
MD
3483static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3484static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3485static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3486static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3487static inline void init_sched_mm_cid(struct task_struct *t) { }
af7f588d
MD
3488#endif
3489
95458477 3490#endif /* _KERNEL_SCHED_SCHED_H */
This page took 1.146877 seconds and 4 git commands to generate.