]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
1da177e4 LT |
2 | #ifndef _ASM_GENERIC_DIV64_H |
3 | #define _ASM_GENERIC_DIV64_H | |
4 | /* | |
5 | * Copyright (C) 2003 Bernardo Innocenti <[email protected]> | |
6 | * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h | |
7 | * | |
461a5e51 NP |
8 | * Optimization for constant divisors on 32-bit machines: |
9 | * Copyright (C) 2006-2015 Nicolas Pitre | |
10 | * | |
f2875832 MR |
11 | * The semantics of do_div() is, in C++ notation, observing that the name |
12 | * is a function-like macro and the n parameter has the semantics of a C++ | |
13 | * reference: | |
1da177e4 | 14 | * |
f2875832 | 15 | * uint32_t do_div(uint64_t &n, uint32_t base) |
1da177e4 | 16 | * { |
f2875832 MR |
17 | * uint32_t remainder = n % base; |
18 | * n = n / base; | |
1da177e4 LT |
19 | * return remainder; |
20 | * } | |
21 | * | |
22 | * NOTE: macro parameter n is evaluated multiple times, | |
23 | * beware of side effects! | |
24 | */ | |
25 | ||
26 | #include <linux/types.h> | |
27 | #include <linux/compiler.h> | |
28 | ||
29 | #if BITS_PER_LONG == 64 | |
30 | ||
6ec72e61 RD |
31 | /** |
32 | * do_div - returns 2 values: calculate remainder and update new dividend | |
e8e4eb0f | 33 | * @n: uint64_t dividend (will be updated) |
6ec72e61 RD |
34 | * @base: uint32_t divisor |
35 | * | |
36 | * Summary: | |
e8e4eb0f JN |
37 | * ``uint32_t remainder = n % base;`` |
38 | * ``n = n / base;`` | |
6ec72e61 RD |
39 | * |
40 | * Return: (uint32_t)remainder | |
41 | * | |
42 | * NOTE: macro parameter @n is evaluated multiple times, | |
43 | * beware of side effects! | |
44 | */ | |
1da177e4 LT |
45 | # define do_div(n,base) ({ \ |
46 | uint32_t __base = (base); \ | |
47 | uint32_t __rem; \ | |
48 | __rem = ((uint64_t)(n)) % __base; \ | |
49 | (n) = ((uint64_t)(n)) / __base; \ | |
50 | __rem; \ | |
51 | }) | |
52 | ||
53 | #elif BITS_PER_LONG == 32 | |
54 | ||
911918aa NP |
55 | #include <linux/log2.h> |
56 | ||
461a5e51 NP |
57 | /* |
58 | * If the divisor happens to be constant, we determine the appropriate | |
59 | * inverse at compile time to turn the division into a few inline | |
c747ce47 | 60 | * multiplications which ought to be much faster. |
461a5e51 NP |
61 | * |
62 | * (It is unfortunate that gcc doesn't perform all this internally.) | |
63 | */ | |
64 | ||
461a5e51 NP |
65 | #define __div64_const32(n, ___b) \ |
66 | ({ \ | |
67 | /* \ | |
68 | * Multiplication by reciprocal of b: n / b = n * (p / b) / p \ | |
69 | * \ | |
70 | * We rely on the fact that most of this code gets optimized \ | |
71 | * away at compile time due to constant propagation and only \ | |
72 | * a few multiplication instructions should remain. \ | |
73 | * Hence this monstrous macro (static inline doesn't always \ | |
74 | * do the trick here). \ | |
75 | */ \ | |
76 | uint64_t ___res, ___x, ___t, ___m, ___n = (n); \ | |
f682b27c | 77 | uint32_t ___p, ___bias; \ |
461a5e51 NP |
78 | \ |
79 | /* determine MSB of b */ \ | |
80 | ___p = 1 << ilog2(___b); \ | |
81 | \ | |
82 | /* compute m = ((p << 64) + b - 1) / b */ \ | |
83 | ___m = (~0ULL / ___b) * ___p; \ | |
84 | ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \ | |
85 | \ | |
86 | /* one less than the dividend with highest result */ \ | |
87 | ___x = ~0ULL / ___b * ___b - 1; \ | |
88 | \ | |
89 | /* test our ___m with res = m * x / (p << 64) */ \ | |
90 | ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \ | |
91 | ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \ | |
92 | ___res += (___x & 0xffffffff) * (___m >> 32); \ | |
93 | ___t = (___res < ___t) ? (1ULL << 32) : 0; \ | |
94 | ___res = (___res >> 32) + ___t; \ | |
95 | ___res += (___m >> 32) * (___x >> 32); \ | |
96 | ___res /= ___p; \ | |
97 | \ | |
98 | /* Now sanitize and optimize what we've got. */ \ | |
99 | if (~0ULL % (___b / (___b & -___b)) == 0) { \ | |
100 | /* special case, can be simplified to ... */ \ | |
101 | ___n /= (___b & -___b); \ | |
102 | ___m = ~0ULL / (___b / (___b & -___b)); \ | |
103 | ___p = 1; \ | |
104 | ___bias = 1; \ | |
105 | } else if (___res != ___x / ___b) { \ | |
106 | /* \ | |
107 | * We can't get away without a bias to compensate \ | |
108 | * for bit truncation errors. To avoid it we'd need an \ | |
109 | * additional bit to represent m which would overflow \ | |
110 | * a 64-bit variable. \ | |
111 | * \ | |
112 | * Instead we do m = p / b and n / b = (n * m + m) / p. \ | |
113 | */ \ | |
114 | ___bias = 1; \ | |
115 | /* Compute m = (p << 64) / b */ \ | |
116 | ___m = (~0ULL / ___b) * ___p; \ | |
117 | ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ | |
118 | } else { \ | |
119 | /* \ | |
120 | * Reduce m / p, and try to clear bit 31 of m when \ | |
121 | * possible, otherwise that'll need extra overflow \ | |
122 | * handling later. \ | |
123 | */ \ | |
124 | uint32_t ___bits = -(___m & -___m); \ | |
125 | ___bits |= ___m >> 32; \ | |
126 | ___bits = (~___bits) << 1; \ | |
127 | /* \ | |
128 | * If ___bits == 0 then setting bit 31 is unavoidable. \ | |
129 | * Simply apply the maximum possible reduction in that \ | |
130 | * case. Otherwise the MSB of ___bits indicates the \ | |
131 | * best reduction we should apply. \ | |
132 | */ \ | |
133 | if (!___bits) { \ | |
134 | ___p /= (___m & -___m); \ | |
135 | ___m /= (___m & -___m); \ | |
136 | } else { \ | |
137 | ___p >>= ilog2(___bits); \ | |
138 | ___m >>= ilog2(___bits); \ | |
139 | } \ | |
140 | /* No bias needed. */ \ | |
141 | ___bias = 0; \ | |
142 | } \ | |
143 | \ | |
144 | /* \ | |
145 | * Now we have a combination of 2 conditions: \ | |
146 | * \ | |
147 | * 1) whether or not we need to apply a bias, and \ | |
148 | * \ | |
149 | * 2) whether or not there might be an overflow in the cross \ | |
150 | * product determined by (___m & ((1 << 63) | (1 << 31))). \ | |
151 | * \ | |
f682b27c | 152 | * Select the best way to do (m_bias + m * n) / (1 << 64). \ |
461a5e51 NP |
153 | * From now on there will be actual runtime code generated. \ |
154 | */ \ | |
f682b27c | 155 | ___res = __arch_xprod_64(___m, ___n, ___bias); \ |
461a5e51 NP |
156 | \ |
157 | ___res /= ___p; \ | |
158 | }) | |
159 | ||
f682b27c NP |
160 | #ifndef __arch_xprod_64 |
161 | /* | |
162 | * Default C implementation for __arch_xprod_64() | |
163 | * | |
164 | * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | |
165 | * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 | |
166 | * | |
167 | * The product is a 128-bit value, scaled down to 64 bits. | |
168 | * Assuming constant propagation to optimize away unused conditional code. | |
169 | * Architectures may provide their own optimized assembly implementation. | |
170 | */ | |
171 | static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | |
172 | { | |
173 | uint32_t m_lo = m; | |
174 | uint32_t m_hi = m >> 32; | |
175 | uint32_t n_lo = n; | |
176 | uint32_t n_hi = n >> 32; | |
602828c1 NP |
177 | uint64_t res; |
178 | uint32_t res_lo, res_hi, tmp; | |
f682b27c NP |
179 | |
180 | if (!bias) { | |
181 | res = ((uint64_t)m_lo * n_lo) >> 32; | |
182 | } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | |
183 | /* there can't be any overflow here */ | |
184 | res = (m + (uint64_t)m_lo * n_lo) >> 32; | |
185 | } else { | |
186 | res = m + (uint64_t)m_lo * n_lo; | |
602828c1 NP |
187 | res_lo = res >> 32; |
188 | res_hi = (res_lo < m_hi); | |
189 | res = res_lo | ((uint64_t)res_hi << 32); | |
f682b27c NP |
190 | } |
191 | ||
192 | if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | |
193 | /* there can't be any overflow here */ | |
194 | res += (uint64_t)m_lo * n_hi; | |
195 | res += (uint64_t)m_hi * n_lo; | |
196 | res >>= 32; | |
197 | } else { | |
602828c1 NP |
198 | res += (uint64_t)m_lo * n_hi; |
199 | tmp = res >> 32; | |
f682b27c | 200 | res += (uint64_t)m_hi * n_lo; |
602828c1 NP |
201 | res_lo = res >> 32; |
202 | res_hi = (res_lo < tmp); | |
203 | res = res_lo | ((uint64_t)res_hi << 32); | |
f682b27c NP |
204 | } |
205 | ||
206 | res += (uint64_t)m_hi * n_hi; | |
207 | ||
208 | return res; | |
209 | } | |
210 | #endif | |
211 | ||
dce1eb93 | 212 | #ifndef __div64_32 |
1da177e4 | 213 | extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); |
dce1eb93 | 214 | #endif |
1da177e4 LT |
215 | |
216 | /* The unnecessary pointer compare is there | |
217 | * to check for type safety (n must be 64bit) | |
218 | */ | |
219 | # define do_div(n,base) ({ \ | |
220 | uint32_t __base = (base); \ | |
221 | uint32_t __rem; \ | |
222 | (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ | |
911918aa NP |
223 | if (__builtin_constant_p(__base) && \ |
224 | is_power_of_2(__base)) { \ | |
225 | __rem = (n) & (__base - 1); \ | |
226 | (n) >>= ilog2(__base); \ | |
c747ce47 | 227 | } else if (__builtin_constant_p(__base) && \ |
461a5e51 NP |
228 | __base != 0) { \ |
229 | uint32_t __res_lo, __n_lo = (n); \ | |
230 | (n) = __div64_const32(n, __base); \ | |
231 | /* the remainder can be computed with 32-bit regs */ \ | |
232 | __res_lo = (n); \ | |
233 | __rem = __n_lo - __res_lo * __base; \ | |
911918aa | 234 | } else if (likely(((n) >> 32) == 0)) { \ |
1da177e4 LT |
235 | __rem = (uint32_t)(n) % __base; \ |
236 | (n) = (uint32_t)(n) / __base; \ | |
c747ce47 | 237 | } else { \ |
1da177e4 | 238 | __rem = __div64_32(&(n), __base); \ |
c747ce47 | 239 | } \ |
1da177e4 LT |
240 | __rem; \ |
241 | }) | |
242 | ||
243 | #else /* BITS_PER_LONG == ?? */ | |
244 | ||
245 | # error do_div() does not yet support the C64 | |
246 | ||
247 | #endif /* BITS_PER_LONG */ | |
248 | ||
249 | #endif /* _ASM_GENERIC_DIV64_H */ |