]>
Commit | Line | Data |
---|---|---|
afe4fd06 ED |
1 | /* |
2 | * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) | |
3 | * | |
86b3bfe9 | 4 | * Copyright (C) 2013-2015 Eric Dumazet <[email protected]> |
afe4fd06 ED |
5 | * |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License | |
8 | * as published by the Free Software Foundation; either version | |
9 | * 2 of the License, or (at your option) any later version. | |
10 | * | |
05e8bb86 | 11 | * Meant to be mostly used for locally generated traffic : |
afe4fd06 ED |
12 | * Fast classification depends on skb->sk being set before reaching us. |
13 | * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. | |
14 | * All packets belonging to a socket are considered as a 'flow'. | |
15 | * | |
16 | * Flows are dynamically allocated and stored in a hash table of RB trees | |
17 | * They are also part of one Round Robin 'queues' (new or old flows) | |
18 | * | |
19 | * Burst avoidance (aka pacing) capability : | |
20 | * | |
21 | * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a | |
22 | * bunch of packets, and this packet scheduler adds delay between | |
23 | * packets to respect rate limitation. | |
24 | * | |
25 | * enqueue() : | |
26 | * - lookup one RB tree (out of 1024 or more) to find the flow. | |
27 | * If non existent flow, create it, add it to the tree. | |
28 | * Add skb to the per flow list of skb (fifo). | |
29 | * - Use a special fifo for high prio packets | |
30 | * | |
31 | * dequeue() : serves flows in Round Robin | |
32 | * Note : When a flow becomes empty, we do not immediately remove it from | |
33 | * rb trees, for performance reasons (its expected to send additional packets, | |
34 | * or SLAB cache will reuse socket for another flow) | |
35 | */ | |
36 | ||
37 | #include <linux/module.h> | |
38 | #include <linux/types.h> | |
39 | #include <linux/kernel.h> | |
40 | #include <linux/jiffies.h> | |
41 | #include <linux/string.h> | |
42 | #include <linux/in.h> | |
43 | #include <linux/errno.h> | |
44 | #include <linux/init.h> | |
45 | #include <linux/skbuff.h> | |
46 | #include <linux/slab.h> | |
47 | #include <linux/rbtree.h> | |
48 | #include <linux/hash.h> | |
08f89b98 | 49 | #include <linux/prefetch.h> |
c3bd8549 | 50 | #include <linux/vmalloc.h> |
afe4fd06 ED |
51 | #include <net/netlink.h> |
52 | #include <net/pkt_sched.h> | |
53 | #include <net/sock.h> | |
54 | #include <net/tcp_states.h> | |
98781965 | 55 | #include <net/tcp.h> |
afe4fd06 ED |
56 | |
57 | /* | |
58 | * Per flow structure, dynamically allocated | |
59 | */ | |
60 | struct fq_flow { | |
61 | struct sk_buff *head; /* list of skbs for this flow : first skb */ | |
62 | union { | |
63 | struct sk_buff *tail; /* last skb in the list */ | |
64 | unsigned long age; /* jiffies when flow was emptied, for gc */ | |
65 | }; | |
05e8bb86 | 66 | struct rb_node fq_node; /* anchor in fq_root[] trees */ |
afe4fd06 ED |
67 | struct sock *sk; |
68 | int qlen; /* number of packets in flow queue */ | |
69 | int credit; | |
70 | u32 socket_hash; /* sk_hash */ | |
71 | struct fq_flow *next; /* next pointer in RR lists, or &detached */ | |
72 | ||
73 | struct rb_node rate_node; /* anchor in q->delayed tree */ | |
74 | u64 time_next_packet; | |
75 | }; | |
76 | ||
77 | struct fq_flow_head { | |
78 | struct fq_flow *first; | |
79 | struct fq_flow *last; | |
80 | }; | |
81 | ||
82 | struct fq_sched_data { | |
83 | struct fq_flow_head new_flows; | |
84 | ||
85 | struct fq_flow_head old_flows; | |
86 | ||
87 | struct rb_root delayed; /* for rate limited flows */ | |
88 | u64 time_next_delayed_flow; | |
fefa569a | 89 | unsigned long unthrottle_latency_ns; |
afe4fd06 ED |
90 | |
91 | struct fq_flow internal; /* for non classified or high prio packets */ | |
92 | u32 quantum; | |
93 | u32 initial_quantum; | |
f52ed899 | 94 | u32 flow_refill_delay; |
afe4fd06 | 95 | u32 flow_plimit; /* max packets per flow */ |
76a9ebe8 | 96 | unsigned long flow_max_rate; /* optional max rate per flow */ |
06eb395f | 97 | u32 orphan_mask; /* mask for orphaned skb */ |
77879147 | 98 | u32 low_rate_threshold; |
afe4fd06 ED |
99 | struct rb_root *fq_root; |
100 | u8 rate_enable; | |
101 | u8 fq_trees_log; | |
102 | ||
103 | u32 flows; | |
104 | u32 inactive_flows; | |
105 | u32 throttled_flows; | |
106 | ||
107 | u64 stat_gc_flows; | |
108 | u64 stat_internal_packets; | |
afe4fd06 ED |
109 | u64 stat_throttled; |
110 | u64 stat_flows_plimit; | |
111 | u64 stat_pkts_too_long; | |
112 | u64 stat_allocation_errors; | |
113 | struct qdisc_watchdog watchdog; | |
114 | }; | |
115 | ||
116 | /* special value to mark a detached flow (not on old/new list) */ | |
117 | static struct fq_flow detached, throttled; | |
118 | ||
119 | static void fq_flow_set_detached(struct fq_flow *f) | |
120 | { | |
121 | f->next = &detached; | |
f52ed899 | 122 | f->age = jiffies; |
afe4fd06 ED |
123 | } |
124 | ||
125 | static bool fq_flow_is_detached(const struct fq_flow *f) | |
126 | { | |
127 | return f->next == &detached; | |
128 | } | |
129 | ||
7df40c26 ED |
130 | static bool fq_flow_is_throttled(const struct fq_flow *f) |
131 | { | |
132 | return f->next == &throttled; | |
133 | } | |
134 | ||
135 | static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow) | |
136 | { | |
137 | if (head->first) | |
138 | head->last->next = flow; | |
139 | else | |
140 | head->first = flow; | |
141 | head->last = flow; | |
142 | flow->next = NULL; | |
143 | } | |
144 | ||
145 | static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f) | |
146 | { | |
147 | rb_erase(&f->rate_node, &q->delayed); | |
148 | q->throttled_flows--; | |
149 | fq_flow_add_tail(&q->old_flows, f); | |
150 | } | |
151 | ||
afe4fd06 ED |
152 | static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) |
153 | { | |
154 | struct rb_node **p = &q->delayed.rb_node, *parent = NULL; | |
155 | ||
156 | while (*p) { | |
157 | struct fq_flow *aux; | |
158 | ||
159 | parent = *p; | |
e124557d | 160 | aux = rb_entry(parent, struct fq_flow, rate_node); |
afe4fd06 ED |
161 | if (f->time_next_packet >= aux->time_next_packet) |
162 | p = &parent->rb_right; | |
163 | else | |
164 | p = &parent->rb_left; | |
165 | } | |
166 | rb_link_node(&f->rate_node, parent, p); | |
167 | rb_insert_color(&f->rate_node, &q->delayed); | |
168 | q->throttled_flows++; | |
169 | q->stat_throttled++; | |
170 | ||
171 | f->next = &throttled; | |
172 | if (q->time_next_delayed_flow > f->time_next_packet) | |
173 | q->time_next_delayed_flow = f->time_next_packet; | |
174 | } | |
175 | ||
176 | ||
177 | static struct kmem_cache *fq_flow_cachep __read_mostly; | |
178 | ||
afe4fd06 ED |
179 | |
180 | /* limit number of collected flows per round */ | |
181 | #define FQ_GC_MAX 8 | |
182 | #define FQ_GC_AGE (3*HZ) | |
183 | ||
184 | static bool fq_gc_candidate(const struct fq_flow *f) | |
185 | { | |
186 | return fq_flow_is_detached(f) && | |
187 | time_after(jiffies, f->age + FQ_GC_AGE); | |
188 | } | |
189 | ||
190 | static void fq_gc(struct fq_sched_data *q, | |
191 | struct rb_root *root, | |
192 | struct sock *sk) | |
193 | { | |
194 | struct fq_flow *f, *tofree[FQ_GC_MAX]; | |
195 | struct rb_node **p, *parent; | |
196 | int fcnt = 0; | |
197 | ||
198 | p = &root->rb_node; | |
199 | parent = NULL; | |
200 | while (*p) { | |
201 | parent = *p; | |
202 | ||
e124557d | 203 | f = rb_entry(parent, struct fq_flow, fq_node); |
afe4fd06 ED |
204 | if (f->sk == sk) |
205 | break; | |
206 | ||
207 | if (fq_gc_candidate(f)) { | |
208 | tofree[fcnt++] = f; | |
209 | if (fcnt == FQ_GC_MAX) | |
210 | break; | |
211 | } | |
212 | ||
213 | if (f->sk > sk) | |
214 | p = &parent->rb_right; | |
215 | else | |
216 | p = &parent->rb_left; | |
217 | } | |
218 | ||
219 | q->flows -= fcnt; | |
220 | q->inactive_flows -= fcnt; | |
221 | q->stat_gc_flows += fcnt; | |
222 | while (fcnt) { | |
223 | struct fq_flow *f = tofree[--fcnt]; | |
224 | ||
225 | rb_erase(&f->fq_node, root); | |
226 | kmem_cache_free(fq_flow_cachep, f); | |
227 | } | |
228 | } | |
229 | ||
afe4fd06 ED |
230 | static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q) |
231 | { | |
232 | struct rb_node **p, *parent; | |
233 | struct sock *sk = skb->sk; | |
234 | struct rb_root *root; | |
235 | struct fq_flow *f; | |
afe4fd06 ED |
236 | |
237 | /* warning: no starvation prevention... */ | |
2abc2f07 | 238 | if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL)) |
afe4fd06 ED |
239 | return &q->internal; |
240 | ||
ca6fb065 | 241 | /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket |
e446f9df | 242 | * or a listener (SYNCOOKIE mode) |
ca6fb065 ED |
243 | * 1) request sockets are not full blown, |
244 | * they do not contain sk_pacing_rate | |
245 | * 2) They are not part of a 'flow' yet | |
246 | * 3) We do not want to rate limit them (eg SYNFLOOD attack), | |
06eb395f | 247 | * especially if the listener set SO_MAX_PACING_RATE |
ca6fb065 | 248 | * 4) We pretend they are orphaned |
06eb395f | 249 | */ |
e446f9df | 250 | if (!sk || sk_listener(sk)) { |
06eb395f ED |
251 | unsigned long hash = skb_get_hash(skb) & q->orphan_mask; |
252 | ||
afe4fd06 ED |
253 | /* By forcing low order bit to 1, we make sure to not |
254 | * collide with a local flow (socket pointers are word aligned) | |
255 | */ | |
06eb395f ED |
256 | sk = (struct sock *)((hash << 1) | 1UL); |
257 | skb_orphan(skb); | |
afe4fd06 ED |
258 | } |
259 | ||
29c58472 | 260 | root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)]; |
afe4fd06 ED |
261 | |
262 | if (q->flows >= (2U << q->fq_trees_log) && | |
263 | q->inactive_flows > q->flows/2) | |
264 | fq_gc(q, root, sk); | |
265 | ||
266 | p = &root->rb_node; | |
267 | parent = NULL; | |
268 | while (*p) { | |
269 | parent = *p; | |
270 | ||
e124557d | 271 | f = rb_entry(parent, struct fq_flow, fq_node); |
afe4fd06 ED |
272 | if (f->sk == sk) { |
273 | /* socket might have been reallocated, so check | |
274 | * if its sk_hash is the same. | |
275 | * It not, we need to refill credit with | |
276 | * initial quantum | |
277 | */ | |
278 | if (unlikely(skb->sk && | |
279 | f->socket_hash != sk->sk_hash)) { | |
280 | f->credit = q->initial_quantum; | |
281 | f->socket_hash = sk->sk_hash; | |
7df40c26 ED |
282 | if (fq_flow_is_throttled(f)) |
283 | fq_flow_unset_throttled(q, f); | |
fc59d5bd | 284 | f->time_next_packet = 0ULL; |
afe4fd06 ED |
285 | } |
286 | return f; | |
287 | } | |
288 | if (f->sk > sk) | |
289 | p = &parent->rb_right; | |
290 | else | |
291 | p = &parent->rb_left; | |
292 | } | |
293 | ||
294 | f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); | |
295 | if (unlikely(!f)) { | |
296 | q->stat_allocation_errors++; | |
297 | return &q->internal; | |
298 | } | |
299 | fq_flow_set_detached(f); | |
300 | f->sk = sk; | |
301 | if (skb->sk) | |
302 | f->socket_hash = sk->sk_hash; | |
303 | f->credit = q->initial_quantum; | |
304 | ||
305 | rb_link_node(&f->fq_node, parent, p); | |
306 | rb_insert_color(&f->fq_node, root); | |
307 | ||
308 | q->flows++; | |
309 | q->inactive_flows++; | |
310 | return f; | |
311 | } | |
312 | ||
313 | ||
314 | /* remove one skb from head of flow queue */ | |
8d34ce10 | 315 | static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow) |
afe4fd06 ED |
316 | { |
317 | struct sk_buff *skb = flow->head; | |
318 | ||
319 | if (skb) { | |
320 | flow->head = skb->next; | |
a8305bff | 321 | skb_mark_not_on_list(skb); |
afe4fd06 | 322 | flow->qlen--; |
25331d6c | 323 | qdisc_qstats_backlog_dec(sch, skb); |
8d34ce10 | 324 | sch->q.qlen--; |
afe4fd06 ED |
325 | } |
326 | return skb; | |
327 | } | |
328 | ||
afe4fd06 ED |
329 | static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) |
330 | { | |
90caf67b | 331 | struct sk_buff *head = flow->head; |
afe4fd06 ED |
332 | |
333 | skb->next = NULL; | |
90caf67b | 334 | if (!head) |
afe4fd06 | 335 | flow->head = skb; |
90caf67b | 336 | else |
afe4fd06 | 337 | flow->tail->next = skb; |
afe4fd06 | 338 | |
90caf67b | 339 | flow->tail = skb; |
afe4fd06 ED |
340 | } |
341 | ||
520ac30f ED |
342 | static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
343 | struct sk_buff **to_free) | |
afe4fd06 ED |
344 | { |
345 | struct fq_sched_data *q = qdisc_priv(sch); | |
346 | struct fq_flow *f; | |
347 | ||
348 | if (unlikely(sch->q.qlen >= sch->limit)) | |
520ac30f | 349 | return qdisc_drop(skb, sch, to_free); |
afe4fd06 ED |
350 | |
351 | f = fq_classify(skb, q); | |
352 | if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) { | |
353 | q->stat_flows_plimit++; | |
520ac30f | 354 | return qdisc_drop(skb, sch, to_free); |
afe4fd06 ED |
355 | } |
356 | ||
357 | f->qlen++; | |
25331d6c | 358 | qdisc_qstats_backlog_inc(sch, skb); |
afe4fd06 | 359 | if (fq_flow_is_detached(f)) { |
218af599 ED |
360 | struct sock *sk = skb->sk; |
361 | ||
afe4fd06 | 362 | fq_flow_add_tail(&q->new_flows, f); |
f52ed899 ED |
363 | if (time_after(jiffies, f->age + q->flow_refill_delay)) |
364 | f->credit = max_t(u32, f->credit, q->quantum); | |
218af599 ED |
365 | if (sk && q->rate_enable) { |
366 | if (unlikely(smp_load_acquire(&sk->sk_pacing_status) != | |
367 | SK_PACING_FQ)) | |
368 | smp_store_release(&sk->sk_pacing_status, | |
369 | SK_PACING_FQ); | |
370 | } | |
afe4fd06 | 371 | q->inactive_flows--; |
afe4fd06 | 372 | } |
f52ed899 ED |
373 | |
374 | /* Note: this overwrites f->age */ | |
375 | flow_queue_add(f, skb); | |
376 | ||
afe4fd06 ED |
377 | if (unlikely(f == &q->internal)) { |
378 | q->stat_internal_packets++; | |
afe4fd06 ED |
379 | } |
380 | sch->q.qlen++; | |
381 | ||
382 | return NET_XMIT_SUCCESS; | |
383 | } | |
384 | ||
385 | static void fq_check_throttled(struct fq_sched_data *q, u64 now) | |
386 | { | |
fefa569a | 387 | unsigned long sample; |
afe4fd06 ED |
388 | struct rb_node *p; |
389 | ||
390 | if (q->time_next_delayed_flow > now) | |
391 | return; | |
392 | ||
fefa569a ED |
393 | /* Update unthrottle latency EWMA. |
394 | * This is cheap and can help diagnosing timer/latency problems. | |
395 | */ | |
396 | sample = (unsigned long)(now - q->time_next_delayed_flow); | |
397 | q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3; | |
398 | q->unthrottle_latency_ns += sample >> 3; | |
399 | ||
afe4fd06 ED |
400 | q->time_next_delayed_flow = ~0ULL; |
401 | while ((p = rb_first(&q->delayed)) != NULL) { | |
e124557d | 402 | struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node); |
afe4fd06 ED |
403 | |
404 | if (f->time_next_packet > now) { | |
405 | q->time_next_delayed_flow = f->time_next_packet; | |
406 | break; | |
407 | } | |
7df40c26 | 408 | fq_flow_unset_throttled(q, f); |
afe4fd06 ED |
409 | } |
410 | } | |
411 | ||
412 | static struct sk_buff *fq_dequeue(struct Qdisc *sch) | |
413 | { | |
414 | struct fq_sched_data *q = qdisc_priv(sch); | |
fb420d5d | 415 | u64 now = ktime_get_ns(); |
afe4fd06 ED |
416 | struct fq_flow_head *head; |
417 | struct sk_buff *skb; | |
418 | struct fq_flow *f; | |
76a9ebe8 ED |
419 | unsigned long rate; |
420 | u32 plen; | |
afe4fd06 | 421 | |
8d34ce10 | 422 | skb = fq_dequeue_head(sch, &q->internal); |
afe4fd06 ED |
423 | if (skb) |
424 | goto out; | |
425 | fq_check_throttled(q, now); | |
426 | begin: | |
427 | head = &q->new_flows; | |
428 | if (!head->first) { | |
429 | head = &q->old_flows; | |
430 | if (!head->first) { | |
431 | if (q->time_next_delayed_flow != ~0ULL) | |
432 | qdisc_watchdog_schedule_ns(&q->watchdog, | |
45f50bed | 433 | q->time_next_delayed_flow); |
afe4fd06 ED |
434 | return NULL; |
435 | } | |
436 | } | |
437 | f = head->first; | |
438 | ||
439 | if (f->credit <= 0) { | |
440 | f->credit += q->quantum; | |
441 | head->first = f->next; | |
442 | fq_flow_add_tail(&q->old_flows, f); | |
443 | goto begin; | |
444 | } | |
445 | ||
98781965 | 446 | skb = f->head; |
7baf33bd | 447 | if (skb) { |
ab408b6d ED |
448 | u64 time_next_packet = max_t(u64, ktime_to_ns(skb->tstamp), |
449 | f->time_next_packet); | |
450 | ||
451 | if (now < time_next_packet) { | |
452 | head->first = f->next; | |
453 | f->time_next_packet = time_next_packet; | |
454 | fq_flow_set_throttled(q, f); | |
455 | goto begin; | |
456 | } | |
afe4fd06 ED |
457 | } |
458 | ||
8d34ce10 | 459 | skb = fq_dequeue_head(sch, f); |
afe4fd06 ED |
460 | if (!skb) { |
461 | head->first = f->next; | |
462 | /* force a pass through old_flows to prevent starvation */ | |
463 | if ((head == &q->new_flows) && q->old_flows.first) { | |
464 | fq_flow_add_tail(&q->old_flows, f); | |
465 | } else { | |
466 | fq_flow_set_detached(f); | |
afe4fd06 ED |
467 | q->inactive_flows++; |
468 | } | |
469 | goto begin; | |
470 | } | |
08f89b98 | 471 | prefetch(&skb->end); |
08e14fe4 ED |
472 | plen = qdisc_pkt_len(skb); |
473 | f->credit -= plen; | |
afe4fd06 | 474 | |
08e14fe4 | 475 | if (!q->rate_enable) |
98781965 ED |
476 | goto out; |
477 | ||
7eec4174 | 478 | rate = q->flow_max_rate; |
08e14fe4 ED |
479 | |
480 | /* If EDT time was provided for this skb, we need to | |
481 | * update f->time_next_packet only if this qdisc enforces | |
482 | * a flow max rate. | |
483 | */ | |
484 | if (!skb->tstamp) { | |
485 | if (skb->sk) | |
486 | rate = min(skb->sk->sk_pacing_rate, rate); | |
487 | ||
488 | if (rate <= q->low_rate_threshold) { | |
489 | f->credit = 0; | |
490 | } else { | |
491 | plen = max(plen, q->quantum); | |
492 | if (f->credit > 0) | |
493 | goto out; | |
494 | } | |
77879147 | 495 | } |
76a9ebe8 | 496 | if (rate != ~0UL) { |
0eab5eb7 ED |
497 | u64 len = (u64)plen * NSEC_PER_SEC; |
498 | ||
7eec4174 | 499 | if (likely(rate)) |
76a9ebe8 | 500 | len = div64_ul(len, rate); |
0eab5eb7 | 501 | /* Since socket rate can change later, |
ced7a04e ED |
502 | * clamp the delay to 1 second. |
503 | * Really, providers of too big packets should be fixed ! | |
0eab5eb7 | 504 | */ |
ced7a04e ED |
505 | if (unlikely(len > NSEC_PER_SEC)) { |
506 | len = NSEC_PER_SEC; | |
0eab5eb7 | 507 | q->stat_pkts_too_long++; |
afe4fd06 | 508 | } |
fefa569a ED |
509 | /* Account for schedule/timers drifts. |
510 | * f->time_next_packet was set when prior packet was sent, | |
511 | * and current time (@now) can be too late by tens of us. | |
512 | */ | |
513 | if (f->time_next_packet) | |
514 | len -= min(len/2, now - f->time_next_packet); | |
0eab5eb7 | 515 | f->time_next_packet = now + len; |
afe4fd06 ED |
516 | } |
517 | out: | |
afe4fd06 | 518 | qdisc_bstats_update(sch, skb); |
afe4fd06 ED |
519 | return skb; |
520 | } | |
521 | ||
e14ffdfd ED |
522 | static void fq_flow_purge(struct fq_flow *flow) |
523 | { | |
524 | rtnl_kfree_skbs(flow->head, flow->tail); | |
525 | flow->head = NULL; | |
526 | flow->qlen = 0; | |
527 | } | |
528 | ||
afe4fd06 ED |
529 | static void fq_reset(struct Qdisc *sch) |
530 | { | |
8d34ce10 ED |
531 | struct fq_sched_data *q = qdisc_priv(sch); |
532 | struct rb_root *root; | |
8d34ce10 ED |
533 | struct rb_node *p; |
534 | struct fq_flow *f; | |
535 | unsigned int idx; | |
afe4fd06 | 536 | |
e14ffdfd ED |
537 | sch->q.qlen = 0; |
538 | sch->qstats.backlog = 0; | |
539 | ||
540 | fq_flow_purge(&q->internal); | |
8d34ce10 ED |
541 | |
542 | if (!q->fq_root) | |
543 | return; | |
544 | ||
545 | for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { | |
546 | root = &q->fq_root[idx]; | |
547 | while ((p = rb_first(root)) != NULL) { | |
e124557d | 548 | f = rb_entry(p, struct fq_flow, fq_node); |
8d34ce10 ED |
549 | rb_erase(p, root); |
550 | ||
e14ffdfd | 551 | fq_flow_purge(f); |
8d34ce10 ED |
552 | |
553 | kmem_cache_free(fq_flow_cachep, f); | |
554 | } | |
555 | } | |
556 | q->new_flows.first = NULL; | |
557 | q->old_flows.first = NULL; | |
558 | q->delayed = RB_ROOT; | |
559 | q->flows = 0; | |
560 | q->inactive_flows = 0; | |
561 | q->throttled_flows = 0; | |
afe4fd06 ED |
562 | } |
563 | ||
564 | static void fq_rehash(struct fq_sched_data *q, | |
565 | struct rb_root *old_array, u32 old_log, | |
566 | struct rb_root *new_array, u32 new_log) | |
567 | { | |
568 | struct rb_node *op, **np, *parent; | |
569 | struct rb_root *oroot, *nroot; | |
570 | struct fq_flow *of, *nf; | |
571 | int fcnt = 0; | |
572 | u32 idx; | |
573 | ||
574 | for (idx = 0; idx < (1U << old_log); idx++) { | |
575 | oroot = &old_array[idx]; | |
576 | while ((op = rb_first(oroot)) != NULL) { | |
577 | rb_erase(op, oroot); | |
e124557d | 578 | of = rb_entry(op, struct fq_flow, fq_node); |
afe4fd06 ED |
579 | if (fq_gc_candidate(of)) { |
580 | fcnt++; | |
581 | kmem_cache_free(fq_flow_cachep, of); | |
582 | continue; | |
583 | } | |
29c58472 | 584 | nroot = &new_array[hash_ptr(of->sk, new_log)]; |
afe4fd06 ED |
585 | |
586 | np = &nroot->rb_node; | |
587 | parent = NULL; | |
588 | while (*np) { | |
589 | parent = *np; | |
590 | ||
e124557d | 591 | nf = rb_entry(parent, struct fq_flow, fq_node); |
afe4fd06 ED |
592 | BUG_ON(nf->sk == of->sk); |
593 | ||
594 | if (nf->sk > of->sk) | |
595 | np = &parent->rb_right; | |
596 | else | |
597 | np = &parent->rb_left; | |
598 | } | |
599 | ||
600 | rb_link_node(&of->fq_node, parent, np); | |
601 | rb_insert_color(&of->fq_node, nroot); | |
602 | } | |
603 | } | |
604 | q->flows -= fcnt; | |
605 | q->inactive_flows -= fcnt; | |
606 | q->stat_gc_flows += fcnt; | |
607 | } | |
608 | ||
c3bd8549 ED |
609 | static void fq_free(void *addr) |
610 | { | |
4cb28970 | 611 | kvfree(addr); |
c3bd8549 ED |
612 | } |
613 | ||
614 | static int fq_resize(struct Qdisc *sch, u32 log) | |
615 | { | |
616 | struct fq_sched_data *q = qdisc_priv(sch); | |
afe4fd06 | 617 | struct rb_root *array; |
2d8d40af | 618 | void *old_fq_root; |
afe4fd06 ED |
619 | u32 idx; |
620 | ||
621 | if (q->fq_root && log == q->fq_trees_log) | |
622 | return 0; | |
623 | ||
c3bd8549 | 624 | /* If XPS was setup, we can allocate memory on right NUMA node */ |
dcda9b04 | 625 | array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL, |
c3bd8549 | 626 | netdev_queue_numa_node_read(sch->dev_queue)); |
afe4fd06 ED |
627 | if (!array) |
628 | return -ENOMEM; | |
629 | ||
630 | for (idx = 0; idx < (1U << log); idx++) | |
631 | array[idx] = RB_ROOT; | |
632 | ||
2d8d40af ED |
633 | sch_tree_lock(sch); |
634 | ||
635 | old_fq_root = q->fq_root; | |
636 | if (old_fq_root) | |
637 | fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); | |
638 | ||
afe4fd06 ED |
639 | q->fq_root = array; |
640 | q->fq_trees_log = log; | |
641 | ||
2d8d40af ED |
642 | sch_tree_unlock(sch); |
643 | ||
644 | fq_free(old_fq_root); | |
645 | ||
afe4fd06 ED |
646 | return 0; |
647 | } | |
648 | ||
649 | static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { | |
650 | [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, | |
651 | [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, | |
652 | [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, | |
653 | [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 }, | |
654 | [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, | |
655 | [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, | |
656 | [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, | |
657 | [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, | |
f52ed899 | 658 | [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, |
77879147 | 659 | [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 }, |
afe4fd06 ED |
660 | }; |
661 | ||
2030721c AA |
662 | static int fq_change(struct Qdisc *sch, struct nlattr *opt, |
663 | struct netlink_ext_ack *extack) | |
afe4fd06 ED |
664 | { |
665 | struct fq_sched_data *q = qdisc_priv(sch); | |
666 | struct nlattr *tb[TCA_FQ_MAX + 1]; | |
667 | int err, drop_count = 0; | |
2ccccf5f | 668 | unsigned drop_len = 0; |
afe4fd06 ED |
669 | u32 fq_log; |
670 | ||
671 | if (!opt) | |
672 | return -EINVAL; | |
673 | ||
fceb6435 | 674 | err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL); |
afe4fd06 ED |
675 | if (err < 0) |
676 | return err; | |
677 | ||
678 | sch_tree_lock(sch); | |
679 | ||
680 | fq_log = q->fq_trees_log; | |
681 | ||
682 | if (tb[TCA_FQ_BUCKETS_LOG]) { | |
683 | u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); | |
684 | ||
685 | if (nval >= 1 && nval <= ilog2(256*1024)) | |
686 | fq_log = nval; | |
687 | else | |
688 | err = -EINVAL; | |
689 | } | |
690 | if (tb[TCA_FQ_PLIMIT]) | |
691 | sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); | |
692 | ||
693 | if (tb[TCA_FQ_FLOW_PLIMIT]) | |
694 | q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); | |
695 | ||
3725a269 KKJ |
696 | if (tb[TCA_FQ_QUANTUM]) { |
697 | u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); | |
698 | ||
699 | if (quantum > 0) | |
700 | q->quantum = quantum; | |
701 | else | |
702 | err = -EINVAL; | |
703 | } | |
afe4fd06 ED |
704 | |
705 | if (tb[TCA_FQ_INITIAL_QUANTUM]) | |
ede869cd | 706 | q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); |
afe4fd06 ED |
707 | |
708 | if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) | |
65c5189a ED |
709 | pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", |
710 | nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); | |
afe4fd06 | 711 | |
76a9ebe8 ED |
712 | if (tb[TCA_FQ_FLOW_MAX_RATE]) { |
713 | u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); | |
afe4fd06 | 714 | |
76a9ebe8 ED |
715 | q->flow_max_rate = (rate == ~0U) ? ~0UL : rate; |
716 | } | |
77879147 ED |
717 | if (tb[TCA_FQ_LOW_RATE_THRESHOLD]) |
718 | q->low_rate_threshold = | |
719 | nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); | |
720 | ||
afe4fd06 ED |
721 | if (tb[TCA_FQ_RATE_ENABLE]) { |
722 | u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); | |
723 | ||
724 | if (enable <= 1) | |
725 | q->rate_enable = enable; | |
726 | else | |
727 | err = -EINVAL; | |
728 | } | |
729 | ||
f52ed899 ED |
730 | if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { |
731 | u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; | |
732 | ||
733 | q->flow_refill_delay = usecs_to_jiffies(usecs_delay); | |
734 | } | |
735 | ||
06eb395f ED |
736 | if (tb[TCA_FQ_ORPHAN_MASK]) |
737 | q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); | |
738 | ||
2d8d40af ED |
739 | if (!err) { |
740 | sch_tree_unlock(sch); | |
c3bd8549 | 741 | err = fq_resize(sch, fq_log); |
2d8d40af ED |
742 | sch_tree_lock(sch); |
743 | } | |
afe4fd06 ED |
744 | while (sch->q.qlen > sch->limit) { |
745 | struct sk_buff *skb = fq_dequeue(sch); | |
746 | ||
8d34ce10 ED |
747 | if (!skb) |
748 | break; | |
2ccccf5f | 749 | drop_len += qdisc_pkt_len(skb); |
e14ffdfd | 750 | rtnl_kfree_skbs(skb, skb); |
afe4fd06 ED |
751 | drop_count++; |
752 | } | |
2ccccf5f | 753 | qdisc_tree_reduce_backlog(sch, drop_count, drop_len); |
afe4fd06 ED |
754 | |
755 | sch_tree_unlock(sch); | |
756 | return err; | |
757 | } | |
758 | ||
759 | static void fq_destroy(struct Qdisc *sch) | |
760 | { | |
761 | struct fq_sched_data *q = qdisc_priv(sch); | |
afe4fd06 | 762 | |
8d34ce10 | 763 | fq_reset(sch); |
c3bd8549 | 764 | fq_free(q->fq_root); |
afe4fd06 ED |
765 | qdisc_watchdog_cancel(&q->watchdog); |
766 | } | |
767 | ||
e63d7dfd AA |
768 | static int fq_init(struct Qdisc *sch, struct nlattr *opt, |
769 | struct netlink_ext_ack *extack) | |
afe4fd06 ED |
770 | { |
771 | struct fq_sched_data *q = qdisc_priv(sch); | |
772 | int err; | |
773 | ||
774 | sch->limit = 10000; | |
775 | q->flow_plimit = 100; | |
776 | q->quantum = 2 * psched_mtu(qdisc_dev(sch)); | |
777 | q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); | |
f52ed899 | 778 | q->flow_refill_delay = msecs_to_jiffies(40); |
76a9ebe8 | 779 | q->flow_max_rate = ~0UL; |
fefa569a | 780 | q->time_next_delayed_flow = ~0ULL; |
afe4fd06 ED |
781 | q->rate_enable = 1; |
782 | q->new_flows.first = NULL; | |
783 | q->old_flows.first = NULL; | |
784 | q->delayed = RB_ROOT; | |
785 | q->fq_root = NULL; | |
786 | q->fq_trees_log = ilog2(1024); | |
06eb395f | 787 | q->orphan_mask = 1024 - 1; |
77879147 | 788 | q->low_rate_threshold = 550000 / 8; |
fb420d5d | 789 | qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC); |
afe4fd06 ED |
790 | |
791 | if (opt) | |
2030721c | 792 | err = fq_change(sch, opt, extack); |
afe4fd06 | 793 | else |
c3bd8549 | 794 | err = fq_resize(sch, q->fq_trees_log); |
afe4fd06 ED |
795 | |
796 | return err; | |
797 | } | |
798 | ||
799 | static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) | |
800 | { | |
801 | struct fq_sched_data *q = qdisc_priv(sch); | |
802 | struct nlattr *opts; | |
803 | ||
804 | opts = nla_nest_start(skb, TCA_OPTIONS); | |
805 | if (opts == NULL) | |
806 | goto nla_put_failure; | |
807 | ||
65c5189a ED |
808 | /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ |
809 | ||
afe4fd06 ED |
810 | if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || |
811 | nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || | |
812 | nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || | |
813 | nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || | |
814 | nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || | |
76a9ebe8 ED |
815 | nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, |
816 | min_t(unsigned long, q->flow_max_rate, ~0U)) || | |
f52ed899 ED |
817 | nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, |
818 | jiffies_to_usecs(q->flow_refill_delay)) || | |
06eb395f | 819 | nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || |
77879147 ED |
820 | nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD, |
821 | q->low_rate_threshold) || | |
afe4fd06 ED |
822 | nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log)) |
823 | goto nla_put_failure; | |
824 | ||
d59b7d80 | 825 | return nla_nest_end(skb, opts); |
afe4fd06 ED |
826 | |
827 | nla_put_failure: | |
828 | return -1; | |
829 | } | |
830 | ||
831 | static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | |
832 | { | |
833 | struct fq_sched_data *q = qdisc_priv(sch); | |
695b4ec0 ED |
834 | struct tc_fq_qd_stats st; |
835 | ||
836 | sch_tree_lock(sch); | |
837 | ||
838 | st.gc_flows = q->stat_gc_flows; | |
839 | st.highprio_packets = q->stat_internal_packets; | |
90caf67b | 840 | st.tcp_retrans = 0; |
695b4ec0 ED |
841 | st.throttled = q->stat_throttled; |
842 | st.flows_plimit = q->stat_flows_plimit; | |
843 | st.pkts_too_long = q->stat_pkts_too_long; | |
844 | st.allocation_errors = q->stat_allocation_errors; | |
fb420d5d | 845 | st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns(); |
695b4ec0 ED |
846 | st.flows = q->flows; |
847 | st.inactive_flows = q->inactive_flows; | |
848 | st.throttled_flows = q->throttled_flows; | |
fefa569a ED |
849 | st.unthrottle_latency_ns = min_t(unsigned long, |
850 | q->unthrottle_latency_ns, ~0U); | |
695b4ec0 | 851 | sch_tree_unlock(sch); |
afe4fd06 ED |
852 | |
853 | return gnet_stats_copy_app(d, &st, sizeof(st)); | |
854 | } | |
855 | ||
856 | static struct Qdisc_ops fq_qdisc_ops __read_mostly = { | |
857 | .id = "fq", | |
858 | .priv_size = sizeof(struct fq_sched_data), | |
859 | ||
860 | .enqueue = fq_enqueue, | |
861 | .dequeue = fq_dequeue, | |
862 | .peek = qdisc_peek_dequeued, | |
863 | .init = fq_init, | |
864 | .reset = fq_reset, | |
865 | .destroy = fq_destroy, | |
866 | .change = fq_change, | |
867 | .dump = fq_dump, | |
868 | .dump_stats = fq_dump_stats, | |
869 | .owner = THIS_MODULE, | |
870 | }; | |
871 | ||
872 | static int __init fq_module_init(void) | |
873 | { | |
874 | int ret; | |
875 | ||
876 | fq_flow_cachep = kmem_cache_create("fq_flow_cache", | |
877 | sizeof(struct fq_flow), | |
878 | 0, 0, NULL); | |
879 | if (!fq_flow_cachep) | |
880 | return -ENOMEM; | |
881 | ||
882 | ret = register_qdisc(&fq_qdisc_ops); | |
883 | if (ret) | |
884 | kmem_cache_destroy(fq_flow_cachep); | |
885 | return ret; | |
886 | } | |
887 | ||
888 | static void __exit fq_module_exit(void) | |
889 | { | |
890 | unregister_qdisc(&fq_qdisc_ops); | |
891 | kmem_cache_destroy(fq_flow_cachep); | |
892 | } | |
893 | ||
894 | module_init(fq_module_init) | |
895 | module_exit(fq_module_exit) | |
896 | MODULE_AUTHOR("Eric Dumazet"); | |
897 | MODULE_LICENSE("GPL"); |