]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
4 | * operating system. INET is implemented using the BSD Socket | |
5 | * interface as the means of communication with the user level. | |
6 | * | |
7 | * Implementation of the Transmission Control Protocol(TCP). | |
8 | * | |
02c30a84 | 9 | * Authors: Ross Biro |
1da177e4 LT |
10 | * Fred N. van Kempen, <[email protected]> |
11 | * Mark Evans, <[email protected]> | |
12 | * Corey Minyard <[email protected]> | |
13 | * Florian La Roche, <[email protected]> | |
14 | * Charles Hedrick, <[email protected]> | |
15 | * Linus Torvalds, <[email protected]> | |
16 | * Alan Cox, <[email protected]> | |
17 | * Matthew Dillon, <[email protected]> | |
18 | * Arnt Gulbrandsen, <[email protected]> | |
19 | * Jorge Cwik, <[email protected]> | |
20 | */ | |
21 | ||
22 | /* | |
23 | * Changes: | |
24 | * Pedro Roque : Fast Retransmit/Recovery. | |
25 | * Two receive queues. | |
26 | * Retransmit queue handled by TCP. | |
27 | * Better retransmit timer handling. | |
28 | * New congestion avoidance. | |
29 | * Header prediction. | |
30 | * Variable renaming. | |
31 | * | |
32 | * Eric : Fast Retransmit. | |
33 | * Randy Scott : MSS option defines. | |
34 | * Eric Schenk : Fixes to slow start algorithm. | |
35 | * Eric Schenk : Yet another double ACK bug. | |
36 | * Eric Schenk : Delayed ACK bug fixes. | |
37 | * Eric Schenk : Floyd style fast retrans war avoidance. | |
38 | * David S. Miller : Don't allow zero congestion window. | |
39 | * Eric Schenk : Fix retransmitter so that it sends | |
40 | * next packet on ack of previous packet. | |
41 | * Andi Kleen : Moved open_request checking here | |
42 | * and process RSTs for open_requests. | |
43 | * Andi Kleen : Better prune_queue, and other fixes. | |
caa20d9a | 44 | * Andrey Savochkin: Fix RTT measurements in the presence of |
1da177e4 LT |
45 | * timestamps. |
46 | * Andrey Savochkin: Check sequence numbers correctly when | |
47 | * removing SACKs due to in sequence incoming | |
48 | * data segments. | |
49 | * Andi Kleen: Make sure we never ack data there is not | |
50 | * enough room for. Also make this condition | |
51 | * a fatal error if it might still happen. | |
e905a9ed | 52 | * Andi Kleen: Add tcp_measure_rcv_mss to make |
1da177e4 | 53 | * connections with MSS<min(MTU,ann. MSS) |
e905a9ed | 54 | * work without delayed acks. |
1da177e4 LT |
55 | * Andi Kleen: Process packets with PSH set in the |
56 | * fast path. | |
57 | * J Hadi Salim: ECN support | |
58 | * Andrei Gurtov, | |
59 | * Pasi Sarolahti, | |
60 | * Panu Kuhlberg: Experimental audit of TCP (re)transmission | |
61 | * engine. Lots of bugs are found. | |
62 | * Pasi Sarolahti: F-RTO for dealing with spurious RTOs | |
1da177e4 LT |
63 | */ |
64 | ||
afd46503 JP |
65 | #define pr_fmt(fmt) "TCP: " fmt |
66 | ||
1da177e4 | 67 | #include <linux/mm.h> |
5a0e3ad6 | 68 | #include <linux/slab.h> |
1da177e4 LT |
69 | #include <linux/module.h> |
70 | #include <linux/sysctl.h> | |
a0bffffc | 71 | #include <linux/kernel.h> |
ad971f61 | 72 | #include <linux/prefetch.h> |
5ffc02a1 | 73 | #include <net/dst.h> |
1da177e4 LT |
74 | #include <net/tcp.h> |
75 | #include <net/inet_common.h> | |
76 | #include <linux/ipsec.h> | |
77 | #include <asm/unaligned.h> | |
e1c8a607 | 78 | #include <linux/errqueue.h> |
5941521c | 79 | #include <trace/events/tcp.h> |
60e2a778 | 80 | #include <linux/static_key.h> |
c6345ce7 | 81 | #include <net/busy_poll.h> |
1da177e4 | 82 | |
ab32ea5d | 83 | int sysctl_tcp_max_orphans __read_mostly = NR_FILE; |
1da177e4 | 84 | |
1da177e4 LT |
85 | #define FLAG_DATA 0x01 /* Incoming frame contained data. */ |
86 | #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ | |
87 | #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ | |
88 | #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ | |
89 | #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ | |
90 | #define FLAG_DATA_SACKED 0x20 /* New SACK. */ | |
91 | #define FLAG_ECE 0x40 /* ECE in this ACK */ | |
291a00d1 | 92 | #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ |
31770e34 | 93 | #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ |
e33099f9 | 94 | #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ |
2e605294 | 95 | #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ |
564262c1 | 96 | #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ |
df92c839 | 97 | #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ |
cadbd031 | 98 | #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ |
12fb3dd9 | 99 | #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ |
d0e1a1b5 | 100 | #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ |
eb36be0f | 101 | #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ |
1da177e4 LT |
102 | |
103 | #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) | |
104 | #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) | |
d09b9e60 | 105 | #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) |
1da177e4 LT |
106 | #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) |
107 | ||
1da177e4 | 108 | #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) |
bdf1ee5d | 109 | #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) |
1da177e4 | 110 | |
e662ca40 YC |
111 | #define REXMIT_NONE 0 /* no loss recovery to do */ |
112 | #define REXMIT_LOST 1 /* retransmit packets marked lost */ | |
113 | #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ | |
114 | ||
6dac1523 IL |
115 | #if IS_ENABLED(CONFIG_TLS_DEVICE) |
116 | static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); | |
117 | ||
118 | void clean_acked_data_enable(struct inet_connection_sock *icsk, | |
119 | void (*cad)(struct sock *sk, u32 ack_seq)) | |
120 | { | |
121 | icsk->icsk_clean_acked = cad; | |
122 | static_branch_inc(&clean_acked_data_enabled); | |
123 | } | |
124 | EXPORT_SYMBOL_GPL(clean_acked_data_enable); | |
125 | ||
126 | void clean_acked_data_disable(struct inet_connection_sock *icsk) | |
127 | { | |
128 | static_branch_dec(&clean_acked_data_enabled); | |
129 | icsk->icsk_clean_acked = NULL; | |
130 | } | |
131 | EXPORT_SYMBOL_GPL(clean_acked_data_disable); | |
132 | #endif | |
133 | ||
0b9aefea MRL |
134 | static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, |
135 | unsigned int len) | |
dcb17d22 MRL |
136 | { |
137 | static bool __once __read_mostly; | |
138 | ||
139 | if (!__once) { | |
140 | struct net_device *dev; | |
141 | ||
142 | __once = true; | |
143 | ||
144 | rcu_read_lock(); | |
145 | dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); | |
0b9aefea MRL |
146 | if (!dev || len >= dev->mtu) |
147 | pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", | |
148 | dev ? dev->name : "Unknown driver"); | |
dcb17d22 MRL |
149 | rcu_read_unlock(); |
150 | } | |
151 | } | |
152 | ||
e905a9ed | 153 | /* Adapt the MSS value used to make delayed ack decision to the |
1da177e4 | 154 | * real world. |
e905a9ed | 155 | */ |
056834d9 | 156 | static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) |
1da177e4 | 157 | { |
463c84b9 | 158 | struct inet_connection_sock *icsk = inet_csk(sk); |
e905a9ed | 159 | const unsigned int lss = icsk->icsk_ack.last_seg_size; |
463c84b9 | 160 | unsigned int len; |
1da177e4 | 161 | |
e905a9ed | 162 | icsk->icsk_ack.last_seg_size = 0; |
1da177e4 LT |
163 | |
164 | /* skb->len may jitter because of SACKs, even if peer | |
165 | * sends good full-sized frames. | |
166 | */ | |
056834d9 | 167 | len = skb_shinfo(skb)->gso_size ? : skb->len; |
463c84b9 | 168 | if (len >= icsk->icsk_ack.rcv_mss) { |
dcb17d22 MRL |
169 | icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, |
170 | tcp_sk(sk)->advmss); | |
0b9aefea MRL |
171 | /* Account for possibly-removed options */ |
172 | if (unlikely(len > icsk->icsk_ack.rcv_mss + | |
173 | MAX_TCP_OPTION_SPACE)) | |
174 | tcp_gro_dev_warn(sk, skb, len); | |
1da177e4 LT |
175 | } else { |
176 | /* Otherwise, we make more careful check taking into account, | |
177 | * that SACKs block is variable. | |
178 | * | |
179 | * "len" is invariant segment length, including TCP header. | |
180 | */ | |
9c70220b | 181 | len += skb->data - skb_transport_header(skb); |
bee7ca9e | 182 | if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || |
1da177e4 LT |
183 | /* If PSH is not set, packet should be |
184 | * full sized, provided peer TCP is not badly broken. | |
185 | * This observation (if it is correct 8)) allows | |
186 | * to handle super-low mtu links fairly. | |
187 | */ | |
188 | (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && | |
aa8223c7 | 189 | !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { |
1da177e4 LT |
190 | /* Subtract also invariant (if peer is RFC compliant), |
191 | * tcp header plus fixed timestamp option length. | |
192 | * Resulting "len" is MSS free of SACK jitter. | |
193 | */ | |
463c84b9 ACM |
194 | len -= tcp_sk(sk)->tcp_header_len; |
195 | icsk->icsk_ack.last_seg_size = len; | |
1da177e4 | 196 | if (len == lss) { |
463c84b9 | 197 | icsk->icsk_ack.rcv_mss = len; |
1da177e4 LT |
198 | return; |
199 | } | |
200 | } | |
1ef9696c AK |
201 | if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) |
202 | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; | |
463c84b9 | 203 | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; |
1da177e4 LT |
204 | } |
205 | } | |
206 | ||
9a9c9b51 | 207 | static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) |
1da177e4 | 208 | { |
463c84b9 | 209 | struct inet_connection_sock *icsk = inet_csk(sk); |
95c96174 | 210 | unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); |
1da177e4 | 211 | |
056834d9 IJ |
212 | if (quickacks == 0) |
213 | quickacks = 2; | |
9a9c9b51 | 214 | quickacks = min(quickacks, max_quickacks); |
463c84b9 | 215 | if (quickacks > icsk->icsk_ack.quick) |
9a9c9b51 | 216 | icsk->icsk_ack.quick = quickacks; |
1da177e4 LT |
217 | } |
218 | ||
a0496ef2 | 219 | void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) |
1da177e4 | 220 | { |
463c84b9 | 221 | struct inet_connection_sock *icsk = inet_csk(sk); |
9a9c9b51 ED |
222 | |
223 | tcp_incr_quickack(sk, max_quickacks); | |
463c84b9 ACM |
224 | icsk->icsk_ack.pingpong = 0; |
225 | icsk->icsk_ack.ato = TCP_ATO_MIN; | |
1da177e4 | 226 | } |
a0496ef2 | 227 | EXPORT_SYMBOL(tcp_enter_quickack_mode); |
1da177e4 LT |
228 | |
229 | /* Send ACKs quickly, if "quick" count is not exhausted | |
230 | * and the session is not interactive. | |
231 | */ | |
232 | ||
2251ae46 | 233 | static bool tcp_in_quickack_mode(struct sock *sk) |
1da177e4 | 234 | { |
463c84b9 | 235 | const struct inet_connection_sock *icsk = inet_csk(sk); |
2251ae46 | 236 | const struct dst_entry *dst = __sk_dst_get(sk); |
a2a385d6 | 237 | |
2251ae46 JM |
238 | return (dst && dst_metric(dst, RTAX_QUICKACK)) || |
239 | (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); | |
1da177e4 LT |
240 | } |
241 | ||
735d3831 | 242 | static void tcp_ecn_queue_cwr(struct tcp_sock *tp) |
bdf1ee5d | 243 | { |
056834d9 | 244 | if (tp->ecn_flags & TCP_ECN_OK) |
bdf1ee5d IJ |
245 | tp->ecn_flags |= TCP_ECN_QUEUE_CWR; |
246 | } | |
247 | ||
fd2123a3 | 248 | static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) |
bdf1ee5d | 249 | { |
9aee4000 | 250 | if (tcp_hdr(skb)->cwr) { |
fd2123a3 | 251 | tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; |
9aee4000 LB |
252 | |
253 | /* If the sender is telling us it has entered CWR, then its | |
254 | * cwnd may be very low (even just 1 packet), so we should ACK | |
255 | * immediately. | |
256 | */ | |
fd2123a3 | 257 | inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; |
9aee4000 | 258 | } |
bdf1ee5d IJ |
259 | } |
260 | ||
735d3831 | 261 | static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) |
bdf1ee5d IJ |
262 | { |
263 | tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; | |
264 | } | |
265 | ||
f4c9f85f | 266 | static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) |
bdf1ee5d | 267 | { |
f4c9f85f YS |
268 | struct tcp_sock *tp = tcp_sk(sk); |
269 | ||
b82d1bb4 | 270 | switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { |
7a269ffa | 271 | case INET_ECN_NOT_ECT: |
bdf1ee5d | 272 | /* Funny extension: if ECT is not set on a segment, |
7a269ffa ED |
273 | * and we already seen ECT on a previous segment, |
274 | * it is probably a retransmit. | |
275 | */ | |
276 | if (tp->ecn_flags & TCP_ECN_SEEN) | |
15ecbe94 | 277 | tcp_enter_quickack_mode(sk, 2); |
7a269ffa ED |
278 | break; |
279 | case INET_ECN_CE: | |
f4c9f85f YS |
280 | if (tcp_ca_needs_ecn(sk)) |
281 | tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); | |
9890092e | 282 | |
aae06bf5 ED |
283 | if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { |
284 | /* Better not delay acks, sender can have a very low cwnd */ | |
15ecbe94 | 285 | tcp_enter_quickack_mode(sk, 2); |
aae06bf5 ED |
286 | tp->ecn_flags |= TCP_ECN_DEMAND_CWR; |
287 | } | |
9890092e FW |
288 | tp->ecn_flags |= TCP_ECN_SEEN; |
289 | break; | |
7a269ffa | 290 | default: |
f4c9f85f YS |
291 | if (tcp_ca_needs_ecn(sk)) |
292 | tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); | |
7a269ffa | 293 | tp->ecn_flags |= TCP_ECN_SEEN; |
9890092e | 294 | break; |
bdf1ee5d IJ |
295 | } |
296 | } | |
297 | ||
f4c9f85f | 298 | static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) |
735d3831 | 299 | { |
f4c9f85f YS |
300 | if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) |
301 | __tcp_ecn_check_ce(sk, skb); | |
735d3831 FW |
302 | } |
303 | ||
304 | static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) | |
bdf1ee5d | 305 | { |
056834d9 | 306 | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) |
bdf1ee5d IJ |
307 | tp->ecn_flags &= ~TCP_ECN_OK; |
308 | } | |
309 | ||
735d3831 | 310 | static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) |
bdf1ee5d | 311 | { |
056834d9 | 312 | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) |
bdf1ee5d IJ |
313 | tp->ecn_flags &= ~TCP_ECN_OK; |
314 | } | |
315 | ||
735d3831 | 316 | static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) |
bdf1ee5d | 317 | { |
056834d9 | 318 | if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) |
a2a385d6 ED |
319 | return true; |
320 | return false; | |
bdf1ee5d IJ |
321 | } |
322 | ||
1da177e4 LT |
323 | /* Buffer size and advertised window tuning. |
324 | * | |
325 | * 1. Tuning sk->sk_sndbuf, when connection enters established state. | |
326 | */ | |
327 | ||
6ae70532 | 328 | static void tcp_sndbuf_expand(struct sock *sk) |
1da177e4 | 329 | { |
6ae70532 | 330 | const struct tcp_sock *tp = tcp_sk(sk); |
77bfc174 | 331 | const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; |
6ae70532 ED |
332 | int sndmem, per_mss; |
333 | u32 nr_segs; | |
334 | ||
335 | /* Worst case is non GSO/TSO : each frame consumes one skb | |
336 | * and skb->head is kmalloced using power of two area of memory | |
337 | */ | |
338 | per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + | |
339 | MAX_TCP_HEADER + | |
340 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | |
341 | ||
342 | per_mss = roundup_pow_of_two(per_mss) + | |
343 | SKB_DATA_ALIGN(sizeof(struct sk_buff)); | |
344 | ||
345 | nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); | |
346 | nr_segs = max_t(u32, nr_segs, tp->reordering + 1); | |
347 | ||
348 | /* Fast Recovery (RFC 5681 3.2) : | |
349 | * Cubic needs 1.7 factor, rounded to 2 to include | |
a9a08845 | 350 | * extra cushion (application might react slowly to EPOLLOUT) |
6ae70532 | 351 | */ |
77bfc174 YC |
352 | sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; |
353 | sndmem *= nr_segs * per_mss; | |
1da177e4 | 354 | |
06a59ecb | 355 | if (sk->sk_sndbuf < sndmem) |
356d1833 | 356 | sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); |
1da177e4 LT |
357 | } |
358 | ||
359 | /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) | |
360 | * | |
361 | * All tcp_full_space() is split to two parts: "network" buffer, allocated | |
362 | * forward and advertised in receiver window (tp->rcv_wnd) and | |
363 | * "application buffer", required to isolate scheduling/application | |
364 | * latencies from network. | |
365 | * window_clamp is maximal advertised window. It can be less than | |
366 | * tcp_full_space(), in this case tcp_full_space() - window_clamp | |
367 | * is reserved for "application" buffer. The less window_clamp is | |
368 | * the smoother our behaviour from viewpoint of network, but the lower | |
369 | * throughput and the higher sensitivity of the connection to losses. 8) | |
370 | * | |
371 | * rcv_ssthresh is more strict window_clamp used at "slow start" | |
372 | * phase to predict further behaviour of this connection. | |
373 | * It is used for two goals: | |
374 | * - to enforce header prediction at sender, even when application | |
375 | * requires some significant "application buffer". It is check #1. | |
376 | * - to prevent pruning of receive queue because of misprediction | |
377 | * of receiver window. Check #2. | |
378 | * | |
379 | * The scheme does not work when sender sends good segments opening | |
caa20d9a | 380 | * window and then starts to feed us spaghetti. But it should work |
1da177e4 LT |
381 | * in common situations. Otherwise, we have to rely on queue collapsing. |
382 | */ | |
383 | ||
384 | /* Slow part of check#2. */ | |
9e412ba7 | 385 | static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) |
1da177e4 | 386 | { |
9e412ba7 | 387 | struct tcp_sock *tp = tcp_sk(sk); |
1da177e4 | 388 | /* Optimize this! */ |
94f0893e | 389 | int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; |
356d1833 | 390 | int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; |
1da177e4 LT |
391 | |
392 | while (tp->rcv_ssthresh <= window) { | |
393 | if (truesize <= skb->len) | |
463c84b9 | 394 | return 2 * inet_csk(sk)->icsk_ack.rcv_mss; |
1da177e4 LT |
395 | |
396 | truesize >>= 1; | |
397 | window >>= 1; | |
398 | } | |
399 | return 0; | |
400 | } | |
401 | ||
cf533ea5 | 402 | static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) |
1da177e4 | 403 | { |
9e412ba7 IJ |
404 | struct tcp_sock *tp = tcp_sk(sk); |
405 | ||
1da177e4 LT |
406 | /* Check #1 */ |
407 | if (tp->rcv_ssthresh < tp->window_clamp && | |
408 | (int)tp->rcv_ssthresh < tcp_space(sk) && | |
b8da51eb | 409 | !tcp_under_memory_pressure(sk)) { |
1da177e4 LT |
410 | int incr; |
411 | ||
412 | /* Check #2. Increase window, if skb with such overhead | |
413 | * will fit to rcvbuf in future. | |
414 | */ | |
94f0893e | 415 | if (tcp_win_from_space(sk, skb->truesize) <= skb->len) |
056834d9 | 416 | incr = 2 * tp->advmss; |
1da177e4 | 417 | else |
9e412ba7 | 418 | incr = __tcp_grow_window(sk, skb); |
1da177e4 LT |
419 | |
420 | if (incr) { | |
4d846f02 | 421 | incr = max_t(int, incr, 2 * skb->len); |
056834d9 IJ |
422 | tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, |
423 | tp->window_clamp); | |
463c84b9 | 424 | inet_csk(sk)->icsk_ack.quick |= 1; |
1da177e4 LT |
425 | } |
426 | } | |
427 | } | |
428 | ||
a337531b | 429 | /* 3. Try to fixup all. It is made immediately after connection enters |
1da177e4 LT |
430 | * established state. |
431 | */ | |
10467163 | 432 | void tcp_init_buffer_space(struct sock *sk) |
1da177e4 | 433 | { |
0c12654a | 434 | int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; |
1da177e4 LT |
435 | struct tcp_sock *tp = tcp_sk(sk); |
436 | int maxwin; | |
437 | ||
1da177e4 | 438 | if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) |
6ae70532 | 439 | tcp_sndbuf_expand(sk); |
1da177e4 | 440 | |
041a14d2 | 441 | tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); |
9a568de4 | 442 | tcp_mstamp_refresh(tp); |
645f4c6f | 443 | tp->rcvq_space.time = tp->tcp_mstamp; |
b0983d3c | 444 | tp->rcvq_space.seq = tp->copied_seq; |
1da177e4 LT |
445 | |
446 | maxwin = tcp_full_space(sk); | |
447 | ||
448 | if (tp->window_clamp >= maxwin) { | |
449 | tp->window_clamp = maxwin; | |
450 | ||
0c12654a | 451 | if (tcp_app_win && maxwin > 4 * tp->advmss) |
1da177e4 | 452 | tp->window_clamp = max(maxwin - |
0c12654a | 453 | (maxwin >> tcp_app_win), |
1da177e4 LT |
454 | 4 * tp->advmss); |
455 | } | |
456 | ||
457 | /* Force reservation of one segment. */ | |
0c12654a | 458 | if (tcp_app_win && |
1da177e4 LT |
459 | tp->window_clamp > 2 * tp->advmss && |
460 | tp->window_clamp + tp->advmss > maxwin) | |
461 | tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); | |
462 | ||
463 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); | |
c2203cf7 | 464 | tp->snd_cwnd_stamp = tcp_jiffies32; |
1da177e4 LT |
465 | } |
466 | ||
a337531b | 467 | /* 4. Recalculate window clamp after socket hit its memory bounds. */ |
9e412ba7 | 468 | static void tcp_clamp_window(struct sock *sk) |
1da177e4 | 469 | { |
9e412ba7 | 470 | struct tcp_sock *tp = tcp_sk(sk); |
6687e988 | 471 | struct inet_connection_sock *icsk = inet_csk(sk); |
356d1833 | 472 | struct net *net = sock_net(sk); |
1da177e4 | 473 | |
6687e988 | 474 | icsk->icsk_ack.quick = 0; |
1da177e4 | 475 | |
356d1833 | 476 | if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && |
326f36e9 | 477 | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && |
b8da51eb | 478 | !tcp_under_memory_pressure(sk) && |
180d8cd9 | 479 | sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { |
326f36e9 | 480 | sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), |
356d1833 | 481 | net->ipv4.sysctl_tcp_rmem[2]); |
1da177e4 | 482 | } |
326f36e9 | 483 | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) |
056834d9 | 484 | tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); |
1da177e4 LT |
485 | } |
486 | ||
40efc6fa SH |
487 | /* Initialize RCV_MSS value. |
488 | * RCV_MSS is an our guess about MSS used by the peer. | |
489 | * We haven't any direct information about the MSS. | |
490 | * It's better to underestimate the RCV_MSS rather than overestimate. | |
491 | * Overestimations make us ACKing less frequently than needed. | |
492 | * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). | |
493 | */ | |
494 | void tcp_initialize_rcv_mss(struct sock *sk) | |
495 | { | |
cf533ea5 | 496 | const struct tcp_sock *tp = tcp_sk(sk); |
40efc6fa SH |
497 | unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); |
498 | ||
056834d9 | 499 | hint = min(hint, tp->rcv_wnd / 2); |
bee7ca9e | 500 | hint = min(hint, TCP_MSS_DEFAULT); |
40efc6fa SH |
501 | hint = max(hint, TCP_MIN_MSS); |
502 | ||
503 | inet_csk(sk)->icsk_ack.rcv_mss = hint; | |
504 | } | |
4bc2f18b | 505 | EXPORT_SYMBOL(tcp_initialize_rcv_mss); |
40efc6fa | 506 | |
1da177e4 LT |
507 | /* Receiver "autotuning" code. |
508 | * | |
509 | * The algorithm for RTT estimation w/o timestamps is based on | |
510 | * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. | |
631dd1a8 | 511 | * <http://public.lanl.gov/radiant/pubs.html#DRS> |
1da177e4 LT |
512 | * |
513 | * More detail on this code can be found at | |
631dd1a8 | 514 | * <http://staff.psc.edu/jheffner/>, |
1da177e4 LT |
515 | * though this reference is out of date. A new paper |
516 | * is pending. | |
517 | */ | |
518 | static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) | |
519 | { | |
645f4c6f | 520 | u32 new_sample = tp->rcv_rtt_est.rtt_us; |
1da177e4 LT |
521 | long m = sample; |
522 | ||
1da177e4 LT |
523 | if (new_sample != 0) { |
524 | /* If we sample in larger samples in the non-timestamp | |
525 | * case, we could grossly overestimate the RTT especially | |
526 | * with chatty applications or bulk transfer apps which | |
527 | * are stalled on filesystem I/O. | |
528 | * | |
529 | * Also, since we are only going for a minimum in the | |
31f34269 | 530 | * non-timestamp case, we do not smooth things out |
caa20d9a | 531 | * else with timestamps disabled convergence takes too |
1da177e4 LT |
532 | * long. |
533 | */ | |
534 | if (!win_dep) { | |
535 | m -= (new_sample >> 3); | |
536 | new_sample += m; | |
18a223e0 NC |
537 | } else { |
538 | m <<= 3; | |
539 | if (m < new_sample) | |
540 | new_sample = m; | |
541 | } | |
1da177e4 | 542 | } else { |
caa20d9a | 543 | /* No previous measure. */ |
1da177e4 LT |
544 | new_sample = m << 3; |
545 | } | |
546 | ||
645f4c6f | 547 | tp->rcv_rtt_est.rtt_us = new_sample; |
1da177e4 LT |
548 | } |
549 | ||
550 | static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) | |
551 | { | |
645f4c6f ED |
552 | u32 delta_us; |
553 | ||
9a568de4 | 554 | if (tp->rcv_rtt_est.time == 0) |
1da177e4 LT |
555 | goto new_measure; |
556 | if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) | |
557 | return; | |
9a568de4 | 558 | delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); |
9ee11bd0 WW |
559 | if (!delta_us) |
560 | delta_us = 1; | |
645f4c6f | 561 | tcp_rcv_rtt_update(tp, delta_us, 1); |
1da177e4 LT |
562 | |
563 | new_measure: | |
564 | tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; | |
645f4c6f | 565 | tp->rcv_rtt_est.time = tp->tcp_mstamp; |
1da177e4 LT |
566 | } |
567 | ||
056834d9 IJ |
568 | static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, |
569 | const struct sk_buff *skb) | |
1da177e4 | 570 | { |
463c84b9 | 571 | struct tcp_sock *tp = tcp_sk(sk); |
9a568de4 | 572 | |
3f6c65d6 WW |
573 | if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) |
574 | return; | |
575 | tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; | |
576 | ||
577 | if (TCP_SKB_CB(skb)->end_seq - | |
578 | TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { | |
9a568de4 | 579 | u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; |
9ee11bd0 | 580 | u32 delta_us; |
9a568de4 | 581 | |
9efdda4e ED |
582 | if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { |
583 | if (!delta) | |
584 | delta = 1; | |
585 | delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); | |
586 | tcp_rcv_rtt_update(tp, delta_us, 0); | |
587 | } | |
9a568de4 | 588 | } |
1da177e4 LT |
589 | } |
590 | ||
591 | /* | |
592 | * This function should be called every time data is copied to user space. | |
593 | * It calculates the appropriate TCP receive buffer space. | |
594 | */ | |
595 | void tcp_rcv_space_adjust(struct sock *sk) | |
596 | { | |
597 | struct tcp_sock *tp = tcp_sk(sk); | |
607065ba | 598 | u32 copied; |
1da177e4 | 599 | int time; |
e905a9ed | 600 | |
6163849d YS |
601 | trace_tcp_rcv_space_adjust(sk); |
602 | ||
86323850 | 603 | tcp_mstamp_refresh(tp); |
9a568de4 | 604 | time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); |
645f4c6f | 605 | if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) |
1da177e4 | 606 | return; |
e905a9ed | 607 | |
b0983d3c ED |
608 | /* Number of bytes copied to user in last RTT */ |
609 | copied = tp->copied_seq - tp->rcvq_space.seq; | |
610 | if (copied <= tp->rcvq_space.space) | |
611 | goto new_measure; | |
612 | ||
613 | /* A bit of theory : | |
614 | * copied = bytes received in previous RTT, our base window | |
615 | * To cope with packet losses, we need a 2x factor | |
616 | * To cope with slow start, and sender growing its cwin by 100 % | |
617 | * every RTT, we need a 4x factor, because the ACK we are sending | |
618 | * now is for the next RTT, not the current one : | |
619 | * <prev RTT . ><current RTT .. ><next RTT .... > | |
620 | */ | |
621 | ||
4540c0cf | 622 | if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && |
b0983d3c | 623 | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { |
607065ba | 624 | int rcvmem, rcvbuf; |
c3916ad9 | 625 | u64 rcvwin, grow; |
1da177e4 | 626 | |
b0983d3c ED |
627 | /* minimal window to cope with packet losses, assuming |
628 | * steady state. Add some cushion because of small variations. | |
629 | */ | |
607065ba | 630 | rcvwin = ((u64)copied << 1) + 16 * tp->advmss; |
1da177e4 | 631 | |
c3916ad9 ED |
632 | /* Accommodate for sender rate increase (eg. slow start) */ |
633 | grow = rcvwin * (copied - tp->rcvq_space.space); | |
634 | do_div(grow, tp->rcvq_space.space); | |
635 | rcvwin += (grow << 1); | |
1da177e4 | 636 | |
b0983d3c | 637 | rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); |
94f0893e | 638 | while (tcp_win_from_space(sk, rcvmem) < tp->advmss) |
b0983d3c | 639 | rcvmem += 128; |
1da177e4 | 640 | |
607065ba ED |
641 | do_div(rcvwin, tp->advmss); |
642 | rcvbuf = min_t(u64, rcvwin * rcvmem, | |
643 | sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); | |
b0983d3c ED |
644 | if (rcvbuf > sk->sk_rcvbuf) { |
645 | sk->sk_rcvbuf = rcvbuf; | |
1da177e4 | 646 | |
b0983d3c | 647 | /* Make the window clamp follow along. */ |
02db5571 | 648 | tp->window_clamp = tcp_win_from_space(sk, rcvbuf); |
1da177e4 LT |
649 | } |
650 | } | |
b0983d3c | 651 | tp->rcvq_space.space = copied; |
e905a9ed | 652 | |
1da177e4 LT |
653 | new_measure: |
654 | tp->rcvq_space.seq = tp->copied_seq; | |
645f4c6f | 655 | tp->rcvq_space.time = tp->tcp_mstamp; |
1da177e4 LT |
656 | } |
657 | ||
658 | /* There is something which you must keep in mind when you analyze the | |
659 | * behavior of the tp->ato delayed ack timeout interval. When a | |
660 | * connection starts up, we want to ack as quickly as possible. The | |
661 | * problem is that "good" TCP's do slow start at the beginning of data | |
662 | * transmission. The means that until we send the first few ACK's the | |
663 | * sender will sit on his end and only queue most of his data, because | |
664 | * he can only send snd_cwnd unacked packets at any given time. For | |
665 | * each ACK we send, he increments snd_cwnd and transmits more of his | |
666 | * queue. -DaveM | |
667 | */ | |
9e412ba7 | 668 | static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) |
1da177e4 | 669 | { |
9e412ba7 | 670 | struct tcp_sock *tp = tcp_sk(sk); |
463c84b9 | 671 | struct inet_connection_sock *icsk = inet_csk(sk); |
1da177e4 LT |
672 | u32 now; |
673 | ||
463c84b9 | 674 | inet_csk_schedule_ack(sk); |
1da177e4 | 675 | |
463c84b9 | 676 | tcp_measure_rcv_mss(sk, skb); |
1da177e4 LT |
677 | |
678 | tcp_rcv_rtt_measure(tp); | |
e905a9ed | 679 | |
70eabf0e | 680 | now = tcp_jiffies32; |
1da177e4 | 681 | |
463c84b9 | 682 | if (!icsk->icsk_ack.ato) { |
1da177e4 LT |
683 | /* The _first_ data packet received, initialize |
684 | * delayed ACK engine. | |
685 | */ | |
9a9c9b51 | 686 | tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); |
463c84b9 | 687 | icsk->icsk_ack.ato = TCP_ATO_MIN; |
1da177e4 | 688 | } else { |
463c84b9 | 689 | int m = now - icsk->icsk_ack.lrcvtime; |
1da177e4 | 690 | |
056834d9 | 691 | if (m <= TCP_ATO_MIN / 2) { |
1da177e4 | 692 | /* The fastest case is the first. */ |
463c84b9 ACM |
693 | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; |
694 | } else if (m < icsk->icsk_ack.ato) { | |
695 | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; | |
696 | if (icsk->icsk_ack.ato > icsk->icsk_rto) | |
697 | icsk->icsk_ack.ato = icsk->icsk_rto; | |
698 | } else if (m > icsk->icsk_rto) { | |
caa20d9a | 699 | /* Too long gap. Apparently sender failed to |
1da177e4 LT |
700 | * restart window, so that we send ACKs quickly. |
701 | */ | |
9a9c9b51 | 702 | tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); |
3ab224be | 703 | sk_mem_reclaim(sk); |
1da177e4 LT |
704 | } |
705 | } | |
463c84b9 | 706 | icsk->icsk_ack.lrcvtime = now; |
1da177e4 | 707 | |
f4c9f85f | 708 | tcp_ecn_check_ce(sk, skb); |
1da177e4 LT |
709 | |
710 | if (skb->len >= 128) | |
9e412ba7 | 711 | tcp_grow_window(sk, skb); |
1da177e4 LT |
712 | } |
713 | ||
1da177e4 LT |
714 | /* Called to compute a smoothed rtt estimate. The data fed to this |
715 | * routine either comes from timestamps, or from segments that were | |
716 | * known _not_ to have been retransmitted [see Karn/Partridge | |
717 | * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 | |
718 | * piece by Van Jacobson. | |
719 | * NOTE: the next three routines used to be one big routine. | |
720 | * To save cycles in the RFC 1323 implementation it was better to break | |
721 | * it up into three procedures. -- erics | |
722 | */ | |
740b0f18 | 723 | static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) |
1da177e4 | 724 | { |
6687e988 | 725 | struct tcp_sock *tp = tcp_sk(sk); |
740b0f18 ED |
726 | long m = mrtt_us; /* RTT */ |
727 | u32 srtt = tp->srtt_us; | |
1da177e4 | 728 | |
1da177e4 LT |
729 | /* The following amusing code comes from Jacobson's |
730 | * article in SIGCOMM '88. Note that rtt and mdev | |
731 | * are scaled versions of rtt and mean deviation. | |
e905a9ed | 732 | * This is designed to be as fast as possible |
1da177e4 LT |
733 | * m stands for "measurement". |
734 | * | |
735 | * On a 1990 paper the rto value is changed to: | |
736 | * RTO = rtt + 4 * mdev | |
737 | * | |
738 | * Funny. This algorithm seems to be very broken. | |
739 | * These formulae increase RTO, when it should be decreased, increase | |
31f34269 | 740 | * too slowly, when it should be increased quickly, decrease too quickly |
1da177e4 LT |
741 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely |
742 | * does not matter how to _calculate_ it. Seems, it was trap | |
743 | * that VJ failed to avoid. 8) | |
744 | */ | |
4a5ab4e2 ED |
745 | if (srtt != 0) { |
746 | m -= (srtt >> 3); /* m is now error in rtt est */ | |
747 | srtt += m; /* rtt = 7/8 rtt + 1/8 new */ | |
1da177e4 LT |
748 | if (m < 0) { |
749 | m = -m; /* m is now abs(error) */ | |
740b0f18 | 750 | m -= (tp->mdev_us >> 2); /* similar update on mdev */ |
1da177e4 LT |
751 | /* This is similar to one of Eifel findings. |
752 | * Eifel blocks mdev updates when rtt decreases. | |
753 | * This solution is a bit different: we use finer gain | |
754 | * for mdev in this case (alpha*beta). | |
755 | * Like Eifel it also prevents growth of rto, | |
756 | * but also it limits too fast rto decreases, | |
757 | * happening in pure Eifel. | |
758 | */ | |
759 | if (m > 0) | |
760 | m >>= 3; | |
761 | } else { | |
740b0f18 | 762 | m -= (tp->mdev_us >> 2); /* similar update on mdev */ |
1da177e4 | 763 | } |
740b0f18 ED |
764 | tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ |
765 | if (tp->mdev_us > tp->mdev_max_us) { | |
766 | tp->mdev_max_us = tp->mdev_us; | |
767 | if (tp->mdev_max_us > tp->rttvar_us) | |
768 | tp->rttvar_us = tp->mdev_max_us; | |
1da177e4 LT |
769 | } |
770 | if (after(tp->snd_una, tp->rtt_seq)) { | |
740b0f18 ED |
771 | if (tp->mdev_max_us < tp->rttvar_us) |
772 | tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; | |
1da177e4 | 773 | tp->rtt_seq = tp->snd_nxt; |
740b0f18 | 774 | tp->mdev_max_us = tcp_rto_min_us(sk); |
1da177e4 LT |
775 | } |
776 | } else { | |
777 | /* no previous measure. */ | |
4a5ab4e2 | 778 | srtt = m << 3; /* take the measured time to be rtt */ |
740b0f18 ED |
779 | tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ |
780 | tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); | |
781 | tp->mdev_max_us = tp->rttvar_us; | |
1da177e4 LT |
782 | tp->rtt_seq = tp->snd_nxt; |
783 | } | |
740b0f18 | 784 | tp->srtt_us = max(1U, srtt); |
1da177e4 LT |
785 | } |
786 | ||
95bd09eb ED |
787 | static void tcp_update_pacing_rate(struct sock *sk) |
788 | { | |
789 | const struct tcp_sock *tp = tcp_sk(sk); | |
790 | u64 rate; | |
791 | ||
792 | /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ | |
43e122b0 ED |
793 | rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); |
794 | ||
795 | /* current rate is (cwnd * mss) / srtt | |
796 | * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. | |
797 | * In Congestion Avoidance phase, set it to 120 % the current rate. | |
798 | * | |
799 | * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) | |
800 | * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching | |
801 | * end of slow start and should slow down. | |
802 | */ | |
803 | if (tp->snd_cwnd < tp->snd_ssthresh / 2) | |
23a7102a | 804 | rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; |
43e122b0 | 805 | else |
c26e91f8 | 806 | rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; |
95bd09eb ED |
807 | |
808 | rate *= max(tp->snd_cwnd, tp->packets_out); | |
809 | ||
740b0f18 ED |
810 | if (likely(tp->srtt_us)) |
811 | do_div(rate, tp->srtt_us); | |
95bd09eb | 812 | |
a9da6f29 | 813 | /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate |
ba537427 ED |
814 | * without any lock. We want to make sure compiler wont store |
815 | * intermediate values in this location. | |
816 | */ | |
a9da6f29 MR |
817 | WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, |
818 | sk->sk_max_pacing_rate)); | |
95bd09eb ED |
819 | } |
820 | ||
1da177e4 LT |
821 | /* Calculate rto without backoff. This is the second half of Van Jacobson's |
822 | * routine referred to above. | |
823 | */ | |
f7e56a76 | 824 | static void tcp_set_rto(struct sock *sk) |
1da177e4 | 825 | { |
463c84b9 | 826 | const struct tcp_sock *tp = tcp_sk(sk); |
1da177e4 LT |
827 | /* Old crap is replaced with new one. 8) |
828 | * | |
829 | * More seriously: | |
830 | * 1. If rtt variance happened to be less 50msec, it is hallucination. | |
831 | * It cannot be less due to utterly erratic ACK generation made | |
832 | * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ | |
833 | * to do with delayed acks, because at cwnd>2 true delack timeout | |
834 | * is invisible. Actually, Linux-2.4 also generates erratic | |
caa20d9a | 835 | * ACKs in some circumstances. |
1da177e4 | 836 | */ |
f1ecd5d9 | 837 | inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); |
1da177e4 LT |
838 | |
839 | /* 2. Fixups made earlier cannot be right. | |
840 | * If we do not estimate RTO correctly without them, | |
841 | * all the algo is pure shit and should be replaced | |
caa20d9a | 842 | * with correct one. It is exactly, which we pretend to do. |
1da177e4 | 843 | */ |
1da177e4 | 844 | |
ee6aac59 IJ |
845 | /* NOTE: clamping at TCP_RTO_MIN is not required, current algo |
846 | * guarantees that rto is higher. | |
847 | */ | |
f1ecd5d9 | 848 | tcp_bound_rto(sk); |
1da177e4 LT |
849 | } |
850 | ||
cf533ea5 | 851 | __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) |
1da177e4 LT |
852 | { |
853 | __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); | |
854 | ||
22b71c8f | 855 | if (!cwnd) |
442b9635 | 856 | cwnd = TCP_INIT_CWND; |
1da177e4 LT |
857 | return min_t(__u32, cwnd, tp->snd_cwnd_clamp); |
858 | } | |
859 | ||
564262c1 | 860 | /* Take a notice that peer is sending D-SACKs */ |
e60402d0 IJ |
861 | static void tcp_dsack_seen(struct tcp_sock *tp) |
862 | { | |
ab56222a | 863 | tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; |
1f255691 | 864 | tp->rack.dsack_seen = 1; |
7e10b655 | 865 | tp->dsack_dups++; |
e60402d0 IJ |
866 | } |
867 | ||
737ff314 YC |
868 | /* It's reordering when higher sequence was delivered (i.e. sacked) before |
869 | * some lower never-retransmitted sequence ("low_seq"). The maximum reordering | |
870 | * distance is approximated in full-mss packet distance ("reordering"). | |
871 | */ | |
872 | static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, | |
873 | const int ts) | |
1da177e4 | 874 | { |
6687e988 | 875 | struct tcp_sock *tp = tcp_sk(sk); |
737ff314 YC |
876 | const u32 mss = tp->mss_cache; |
877 | u32 fack, metric; | |
40b215e5 | 878 | |
737ff314 YC |
879 | fack = tcp_highest_sack_seq(tp); |
880 | if (!before(low_seq, fack)) | |
6f5b24ee SHY |
881 | return; |
882 | ||
737ff314 YC |
883 | metric = fack - low_seq; |
884 | if ((metric > tp->reordering * mss) && mss) { | |
1da177e4 | 885 | #if FASTRETRANS_DEBUG > 1 |
91df42be JP |
886 | pr_debug("Disorder%d %d %u f%u s%u rr%d\n", |
887 | tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, | |
888 | tp->reordering, | |
737ff314 | 889 | 0, |
91df42be JP |
890 | tp->sacked_out, |
891 | tp->undo_marker ? tp->undo_retrans : 0); | |
1da177e4 | 892 | #endif |
737ff314 YC |
893 | tp->reordering = min_t(u32, (metric + mss - 1) / mss, |
894 | sock_net(sk)->ipv4.sysctl_tcp_max_reordering); | |
1da177e4 | 895 | } |
eed530b6 | 896 | |
2d2517ee | 897 | /* This exciting event is worth to be remembered. 8) */ |
7ec65372 | 898 | tp->reord_seen++; |
737ff314 YC |
899 | NET_INC_STATS(sock_net(sk), |
900 | ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); | |
1da177e4 LT |
901 | } |
902 | ||
006f582c | 903 | /* This must be called before lost_out is incremented */ |
c8c213f2 IJ |
904 | static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) |
905 | { | |
51456b29 | 906 | if (!tp->retransmit_skb_hint || |
c8c213f2 IJ |
907 | before(TCP_SKB_CB(skb)->seq, |
908 | TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) | |
006f582c | 909 | tp->retransmit_skb_hint = skb; |
c8c213f2 IJ |
910 | } |
911 | ||
0682e690 NC |
912 | /* Sum the number of packets on the wire we have marked as lost. |
913 | * There are two cases we care about here: | |
914 | * a) Packet hasn't been marked lost (nor retransmitted), | |
915 | * and this is the first loss. | |
916 | * b) Packet has been marked both lost and retransmitted, | |
917 | * and this means we think it was lost again. | |
918 | */ | |
919 | static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) | |
920 | { | |
921 | __u8 sacked = TCP_SKB_CB(skb)->sacked; | |
922 | ||
923 | if (!(sacked & TCPCB_LOST) || | |
924 | ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) | |
925 | tp->lost += tcp_skb_pcount(skb); | |
926 | } | |
927 | ||
41ea36e3 IJ |
928 | static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) |
929 | { | |
930 | if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { | |
931 | tcp_verify_retransmit_hint(tp, skb); | |
932 | ||
933 | tp->lost_out += tcp_skb_pcount(skb); | |
0682e690 | 934 | tcp_sum_lost(tp, skb); |
41ea36e3 IJ |
935 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
936 | } | |
937 | } | |
938 | ||
4f41b1c5 | 939 | void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) |
006f582c IJ |
940 | { |
941 | tcp_verify_retransmit_hint(tp, skb); | |
942 | ||
0682e690 | 943 | tcp_sum_lost(tp, skb); |
006f582c IJ |
944 | if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { |
945 | tp->lost_out += tcp_skb_pcount(skb); | |
946 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | |
947 | } | |
948 | } | |
949 | ||
1da177e4 LT |
950 | /* This procedure tags the retransmission queue when SACKs arrive. |
951 | * | |
952 | * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). | |
953 | * Packets in queue with these bits set are counted in variables | |
954 | * sacked_out, retrans_out and lost_out, correspondingly. | |
955 | * | |
956 | * Valid combinations are: | |
957 | * Tag InFlight Description | |
958 | * 0 1 - orig segment is in flight. | |
959 | * S 0 - nothing flies, orig reached receiver. | |
960 | * L 0 - nothing flies, orig lost by net. | |
961 | * R 2 - both orig and retransmit are in flight. | |
962 | * L|R 1 - orig is lost, retransmit is in flight. | |
963 | * S|R 1 - orig reached receiver, retrans is still in flight. | |
964 | * (L|S|R is logically valid, it could occur when L|R is sacked, | |
965 | * but it is equivalent to plain S and code short-curcuits it to S. | |
966 | * L|S is logically invalid, it would mean -1 packet in flight 8)) | |
967 | * | |
968 | * These 6 states form finite state machine, controlled by the following events: | |
969 | * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) | |
970 | * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) | |
974c1236 | 971 | * 3. Loss detection event of two flavors: |
1da177e4 LT |
972 | * A. Scoreboard estimator decided the packet is lost. |
973 | * A'. Reno "three dupacks" marks head of queue lost. | |
974c1236 | 974 | * B. SACK arrives sacking SND.NXT at the moment, when the |
1da177e4 LT |
975 | * segment was retransmitted. |
976 | * 4. D-SACK added new rule: D-SACK changes any tag to S. | |
977 | * | |
978 | * It is pleasant to note, that state diagram turns out to be commutative, | |
979 | * so that we are allowed not to be bothered by order of our actions, | |
980 | * when multiple events arrive simultaneously. (see the function below). | |
981 | * | |
982 | * Reordering detection. | |
983 | * -------------------- | |
984 | * Reordering metric is maximal distance, which a packet can be displaced | |
985 | * in packet stream. With SACKs we can estimate it: | |
986 | * | |
987 | * 1. SACK fills old hole and the corresponding segment was not | |
988 | * ever retransmitted -> reordering. Alas, we cannot use it | |
989 | * when segment was retransmitted. | |
990 | * 2. The last flaw is solved with D-SACK. D-SACK arrives | |
991 | * for retransmitted and already SACKed segment -> reordering.. | |
992 | * Both of these heuristics are not used in Loss state, when we cannot | |
993 | * account for retransmits accurately. | |
5b3c9882 IJ |
994 | * |
995 | * SACK block validation. | |
996 | * ---------------------- | |
997 | * | |
998 | * SACK block range validation checks that the received SACK block fits to | |
999 | * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. | |
1000 | * Note that SND.UNA is not included to the range though being valid because | |
0e835331 IJ |
1001 | * it means that the receiver is rather inconsistent with itself reporting |
1002 | * SACK reneging when it should advance SND.UNA. Such SACK block this is | |
1003 | * perfectly valid, however, in light of RFC2018 which explicitly states | |
1004 | * that "SACK block MUST reflect the newest segment. Even if the newest | |
1005 | * segment is going to be discarded ...", not that it looks very clever | |
1006 | * in case of head skb. Due to potentional receiver driven attacks, we | |
1007 | * choose to avoid immediate execution of a walk in write queue due to | |
1008 | * reneging and defer head skb's loss recovery to standard loss recovery | |
1009 | * procedure that will eventually trigger (nothing forbids us doing this). | |
5b3c9882 IJ |
1010 | * |
1011 | * Implements also blockage to start_seq wrap-around. Problem lies in the | |
1012 | * fact that though start_seq (s) is before end_seq (i.e., not reversed), | |
1013 | * there's no guarantee that it will be before snd_nxt (n). The problem | |
1014 | * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt | |
1015 | * wrap (s_w): | |
1016 | * | |
1017 | * <- outs wnd -> <- wrapzone -> | |
1018 | * u e n u_w e_w s n_w | |
1019 | * | | | | | | | | |
1020 | * |<------------+------+----- TCP seqno space --------------+---------->| | |
1021 | * ...-- <2^31 ->| |<--------... | |
1022 | * ...---- >2^31 ------>| |<--------... | |
1023 | * | |
1024 | * Current code wouldn't be vulnerable but it's better still to discard such | |
1025 | * crazy SACK blocks. Doing this check for start_seq alone closes somewhat | |
1026 | * similar case (end_seq after snd_nxt wrap) as earlier reversed check in | |
1027 | * snd_nxt wrap -> snd_una region will then become "well defined", i.e., | |
1028 | * equal to the ideal case (infinite seqno space without wrap caused issues). | |
1029 | * | |
1030 | * With D-SACK the lower bound is extended to cover sequence space below | |
1031 | * SND.UNA down to undo_marker, which is the last point of interest. Yet | |
564262c1 | 1032 | * again, D-SACK block must not to go across snd_una (for the same reason as |
5b3c9882 IJ |
1033 | * for the normal SACK blocks, explained above). But there all simplicity |
1034 | * ends, TCP might receive valid D-SACKs below that. As long as they reside | |
1035 | * fully below undo_marker they do not affect behavior in anyway and can | |
1036 | * therefore be safely ignored. In rare cases (which are more or less | |
1037 | * theoretical ones), the D-SACK will nicely cross that boundary due to skb | |
1038 | * fragmentation and packet reordering past skb's retransmission. To consider | |
1039 | * them correctly, the acceptable range must be extended even more though | |
1040 | * the exact amount is rather hard to quantify. However, tp->max_window can | |
1041 | * be used as an exaggerated estimate. | |
1da177e4 | 1042 | */ |
a2a385d6 ED |
1043 | static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, |
1044 | u32 start_seq, u32 end_seq) | |
5b3c9882 IJ |
1045 | { |
1046 | /* Too far in future, or reversed (interpretation is ambiguous) */ | |
1047 | if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) | |
a2a385d6 | 1048 | return false; |
5b3c9882 IJ |
1049 | |
1050 | /* Nasty start_seq wrap-around check (see comments above) */ | |
1051 | if (!before(start_seq, tp->snd_nxt)) | |
a2a385d6 | 1052 | return false; |
5b3c9882 | 1053 | |
564262c1 | 1054 | /* In outstanding window? ...This is valid exit for D-SACKs too. |
5b3c9882 IJ |
1055 | * start_seq == snd_una is non-sensical (see comments above) |
1056 | */ | |
1057 | if (after(start_seq, tp->snd_una)) | |
a2a385d6 | 1058 | return true; |
5b3c9882 IJ |
1059 | |
1060 | if (!is_dsack || !tp->undo_marker) | |
a2a385d6 | 1061 | return false; |
5b3c9882 IJ |
1062 | |
1063 | /* ...Then it's D-SACK, and must reside below snd_una completely */ | |
f779b2d6 | 1064 | if (after(end_seq, tp->snd_una)) |
a2a385d6 | 1065 | return false; |
5b3c9882 IJ |
1066 | |
1067 | if (!before(start_seq, tp->undo_marker)) | |
a2a385d6 | 1068 | return true; |
5b3c9882 IJ |
1069 | |
1070 | /* Too old */ | |
1071 | if (!after(end_seq, tp->undo_marker)) | |
a2a385d6 | 1072 | return false; |
5b3c9882 IJ |
1073 | |
1074 | /* Undo_marker boundary crossing (overestimates a lot). Known already: | |
1075 | * start_seq < undo_marker and end_seq >= undo_marker. | |
1076 | */ | |
1077 | return !before(start_seq, end_seq - tp->max_window); | |
1078 | } | |
1079 | ||
a2a385d6 ED |
1080 | static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, |
1081 | struct tcp_sack_block_wire *sp, int num_sacks, | |
1082 | u32 prior_snd_una) | |
d06e021d | 1083 | { |
1ed83465 | 1084 | struct tcp_sock *tp = tcp_sk(sk); |
d3e2ce3b HH |
1085 | u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); |
1086 | u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); | |
a2a385d6 | 1087 | bool dup_sack = false; |
d06e021d DM |
1088 | |
1089 | if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { | |
a2a385d6 | 1090 | dup_sack = true; |
e60402d0 | 1091 | tcp_dsack_seen(tp); |
c10d9310 | 1092 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); |
d06e021d | 1093 | } else if (num_sacks > 1) { |
d3e2ce3b HH |
1094 | u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); |
1095 | u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); | |
d06e021d DM |
1096 | |
1097 | if (!after(end_seq_0, end_seq_1) && | |
1098 | !before(start_seq_0, start_seq_1)) { | |
a2a385d6 | 1099 | dup_sack = true; |
e60402d0 | 1100 | tcp_dsack_seen(tp); |
c10d9310 | 1101 | NET_INC_STATS(sock_net(sk), |
de0744af | 1102 | LINUX_MIB_TCPDSACKOFORECV); |
d06e021d DM |
1103 | } |
1104 | } | |
1105 | ||
1106 | /* D-SACK for already forgotten data... Do dumb counting. */ | |
6e08d5e3 | 1107 | if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && |
d06e021d DM |
1108 | !after(end_seq_0, prior_snd_una) && |
1109 | after(end_seq_0, tp->undo_marker)) | |
1110 | tp->undo_retrans--; | |
1111 | ||
1112 | return dup_sack; | |
1113 | } | |
1114 | ||
a1197f5a | 1115 | struct tcp_sacktag_state { |
737ff314 | 1116 | u32 reord; |
31231a8a KKJ |
1117 | /* Timestamps for earliest and latest never-retransmitted segment |
1118 | * that was SACKed. RTO needs the earliest RTT to stay conservative, | |
1119 | * but congestion control should still get an accurate delay signal. | |
1120 | */ | |
9a568de4 ED |
1121 | u64 first_sackt; |
1122 | u64 last_sackt; | |
b9f64820 | 1123 | struct rate_sample *rate; |
740b0f18 | 1124 | int flag; |
75c119af | 1125 | unsigned int mss_now; |
a1197f5a IJ |
1126 | }; |
1127 | ||
d1935942 IJ |
1128 | /* Check if skb is fully within the SACK block. In presence of GSO skbs, |
1129 | * the incoming SACK may not exactly match but we can find smaller MSS | |
1130 | * aligned portion of it that matches. Therefore we might need to fragment | |
1131 | * which may fail and creates some hassle (caller must handle error case | |
1132 | * returns). | |
832d11c5 IJ |
1133 | * |
1134 | * FIXME: this could be merged to shift decision code | |
d1935942 | 1135 | */ |
0f79efdc | 1136 | static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, |
a2a385d6 | 1137 | u32 start_seq, u32 end_seq) |
d1935942 | 1138 | { |
a2a385d6 ED |
1139 | int err; |
1140 | bool in_sack; | |
d1935942 | 1141 | unsigned int pkt_len; |
adb92db8 | 1142 | unsigned int mss; |
d1935942 IJ |
1143 | |
1144 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | |
1145 | !before(end_seq, TCP_SKB_CB(skb)->end_seq); | |
1146 | ||
1147 | if (tcp_skb_pcount(skb) > 1 && !in_sack && | |
1148 | after(TCP_SKB_CB(skb)->end_seq, start_seq)) { | |
adb92db8 | 1149 | mss = tcp_skb_mss(skb); |
d1935942 IJ |
1150 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); |
1151 | ||
adb92db8 | 1152 | if (!in_sack) { |
d1935942 | 1153 | pkt_len = start_seq - TCP_SKB_CB(skb)->seq; |
adb92db8 IJ |
1154 | if (pkt_len < mss) |
1155 | pkt_len = mss; | |
1156 | } else { | |
d1935942 | 1157 | pkt_len = end_seq - TCP_SKB_CB(skb)->seq; |
adb92db8 IJ |
1158 | if (pkt_len < mss) |
1159 | return -EINVAL; | |
1160 | } | |
1161 | ||
1162 | /* Round if necessary so that SACKs cover only full MSSes | |
1163 | * and/or the remaining small portion (if present) | |
1164 | */ | |
1165 | if (pkt_len > mss) { | |
1166 | unsigned int new_len = (pkt_len / mss) * mss; | |
b451e5d2 | 1167 | if (!in_sack && new_len < pkt_len) |
adb92db8 | 1168 | new_len += mss; |
adb92db8 IJ |
1169 | pkt_len = new_len; |
1170 | } | |
b451e5d2 YC |
1171 | |
1172 | if (pkt_len >= skb->len && !in_sack) | |
1173 | return 0; | |
1174 | ||
75c119af ED |
1175 | err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, |
1176 | pkt_len, mss, GFP_ATOMIC); | |
d1935942 IJ |
1177 | if (err < 0) |
1178 | return err; | |
1179 | } | |
1180 | ||
1181 | return in_sack; | |
1182 | } | |
1183 | ||
cc9a672e NC |
1184 | /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ |
1185 | static u8 tcp_sacktag_one(struct sock *sk, | |
1186 | struct tcp_sacktag_state *state, u8 sacked, | |
1187 | u32 start_seq, u32 end_seq, | |
740b0f18 | 1188 | int dup_sack, int pcount, |
9a568de4 | 1189 | u64 xmit_time) |
9e10c47c | 1190 | { |
6859d494 | 1191 | struct tcp_sock *tp = tcp_sk(sk); |
9e10c47c IJ |
1192 | |
1193 | /* Account D-SACK for retransmitted packet. */ | |
1194 | if (dup_sack && (sacked & TCPCB_RETRANS)) { | |
6e08d5e3 | 1195 | if (tp->undo_marker && tp->undo_retrans > 0 && |
cc9a672e | 1196 | after(end_seq, tp->undo_marker)) |
9e10c47c | 1197 | tp->undo_retrans--; |
737ff314 YC |
1198 | if ((sacked & TCPCB_SACKED_ACKED) && |
1199 | before(start_seq, state->reord)) | |
1200 | state->reord = start_seq; | |
9e10c47c IJ |
1201 | } |
1202 | ||
1203 | /* Nothing to do; acked frame is about to be dropped (was ACKed). */ | |
cc9a672e | 1204 | if (!after(end_seq, tp->snd_una)) |
a1197f5a | 1205 | return sacked; |
9e10c47c IJ |
1206 | |
1207 | if (!(sacked & TCPCB_SACKED_ACKED)) { | |
d2329f10 | 1208 | tcp_rack_advance(tp, sacked, end_seq, xmit_time); |
659a8ad5 | 1209 | |
9e10c47c IJ |
1210 | if (sacked & TCPCB_SACKED_RETRANS) { |
1211 | /* If the segment is not tagged as lost, | |
1212 | * we do not clear RETRANS, believing | |
1213 | * that retransmission is still in flight. | |
1214 | */ | |
1215 | if (sacked & TCPCB_LOST) { | |
a1197f5a | 1216 | sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); |
f58b22fd IJ |
1217 | tp->lost_out -= pcount; |
1218 | tp->retrans_out -= pcount; | |
9e10c47c IJ |
1219 | } |
1220 | } else { | |
1221 | if (!(sacked & TCPCB_RETRANS)) { | |
1222 | /* New sack for not retransmitted frame, | |
1223 | * which was in hole. It is reordering. | |
1224 | */ | |
cc9a672e | 1225 | if (before(start_seq, |
737ff314 YC |
1226 | tcp_highest_sack_seq(tp)) && |
1227 | before(start_seq, state->reord)) | |
1228 | state->reord = start_seq; | |
1229 | ||
e33099f9 YC |
1230 | if (!after(end_seq, tp->high_seq)) |
1231 | state->flag |= FLAG_ORIG_SACK_ACKED; | |
9a568de4 ED |
1232 | if (state->first_sackt == 0) |
1233 | state->first_sackt = xmit_time; | |
1234 | state->last_sackt = xmit_time; | |
9e10c47c IJ |
1235 | } |
1236 | ||
1237 | if (sacked & TCPCB_LOST) { | |
a1197f5a | 1238 | sacked &= ~TCPCB_LOST; |
f58b22fd | 1239 | tp->lost_out -= pcount; |
9e10c47c IJ |
1240 | } |
1241 | } | |
1242 | ||
a1197f5a IJ |
1243 | sacked |= TCPCB_SACKED_ACKED; |
1244 | state->flag |= FLAG_DATA_SACKED; | |
f58b22fd | 1245 | tp->sacked_out += pcount; |
ddf1af6f | 1246 | tp->delivered += pcount; /* Out-of-order packets delivered */ |
9e10c47c | 1247 | |
9e10c47c | 1248 | /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ |
713bafea | 1249 | if (tp->lost_skb_hint && |
cc9a672e | 1250 | before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) |
f58b22fd | 1251 | tp->lost_cnt_hint += pcount; |
9e10c47c IJ |
1252 | } |
1253 | ||
1254 | /* D-SACK. We can detect redundant retransmission in S|R and plain R | |
1255 | * frames and clear it. undo_retrans is decreased above, L|R frames | |
1256 | * are accounted above as well. | |
1257 | */ | |
a1197f5a IJ |
1258 | if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { |
1259 | sacked &= ~TCPCB_SACKED_RETRANS; | |
f58b22fd | 1260 | tp->retrans_out -= pcount; |
9e10c47c IJ |
1261 | } |
1262 | ||
a1197f5a | 1263 | return sacked; |
9e10c47c IJ |
1264 | } |
1265 | ||
daef52ba NC |
1266 | /* Shift newly-SACKed bytes from this skb to the immediately previous |
1267 | * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. | |
1268 | */ | |
f3319816 ED |
1269 | static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, |
1270 | struct sk_buff *skb, | |
a2a385d6 ED |
1271 | struct tcp_sacktag_state *state, |
1272 | unsigned int pcount, int shifted, int mss, | |
1273 | bool dup_sack) | |
832d11c5 IJ |
1274 | { |
1275 | struct tcp_sock *tp = tcp_sk(sk); | |
daef52ba NC |
1276 | u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ |
1277 | u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ | |
832d11c5 IJ |
1278 | |
1279 | BUG_ON(!pcount); | |
1280 | ||
4c90d3b3 NC |
1281 | /* Adjust counters and hints for the newly sacked sequence |
1282 | * range but discard the return value since prev is already | |
1283 | * marked. We must tag the range first because the seq | |
1284 | * advancement below implicitly advances | |
1285 | * tcp_highest_sack_seq() when skb is highest_sack. | |
1286 | */ | |
1287 | tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, | |
59c9af42 | 1288 | start_seq, end_seq, dup_sack, pcount, |
2fd66ffb | 1289 | tcp_skb_timestamp_us(skb)); |
b9f64820 | 1290 | tcp_rate_skb_delivered(sk, skb, state->rate); |
4c90d3b3 NC |
1291 | |
1292 | if (skb == tp->lost_skb_hint) | |
0af2a0d0 NC |
1293 | tp->lost_cnt_hint += pcount; |
1294 | ||
832d11c5 IJ |
1295 | TCP_SKB_CB(prev)->end_seq += shifted; |
1296 | TCP_SKB_CB(skb)->seq += shifted; | |
1297 | ||
cd7d8498 ED |
1298 | tcp_skb_pcount_add(prev, pcount); |
1299 | BUG_ON(tcp_skb_pcount(skb) < pcount); | |
1300 | tcp_skb_pcount_add(skb, -pcount); | |
832d11c5 IJ |
1301 | |
1302 | /* When we're adding to gso_segs == 1, gso_size will be zero, | |
1303 | * in theory this shouldn't be necessary but as long as DSACK | |
1304 | * code can come after this skb later on it's better to keep | |
1305 | * setting gso_size to something. | |
1306 | */ | |
f69ad292 ED |
1307 | if (!TCP_SKB_CB(prev)->tcp_gso_size) |
1308 | TCP_SKB_CB(prev)->tcp_gso_size = mss; | |
832d11c5 IJ |
1309 | |
1310 | /* CHECKME: To clear or not to clear? Mimics normal skb currently */ | |
51466a75 | 1311 | if (tcp_skb_pcount(skb) <= 1) |
f69ad292 | 1312 | TCP_SKB_CB(skb)->tcp_gso_size = 0; |
832d11c5 | 1313 | |
832d11c5 IJ |
1314 | /* Difference in this won't matter, both ACKed by the same cumul. ACK */ |
1315 | TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); | |
1316 | ||
832d11c5 IJ |
1317 | if (skb->len > 0) { |
1318 | BUG_ON(!tcp_skb_pcount(skb)); | |
c10d9310 | 1319 | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); |
a2a385d6 | 1320 | return false; |
832d11c5 IJ |
1321 | } |
1322 | ||
1323 | /* Whole SKB was eaten :-) */ | |
1324 | ||
92ee76b6 IJ |
1325 | if (skb == tp->retransmit_skb_hint) |
1326 | tp->retransmit_skb_hint = prev; | |
92ee76b6 IJ |
1327 | if (skb == tp->lost_skb_hint) { |
1328 | tp->lost_skb_hint = prev; | |
1329 | tp->lost_cnt_hint -= tcp_skb_pcount(prev); | |
1330 | } | |
1331 | ||
5e8a402f | 1332 | TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; |
a643b5d4 | 1333 | TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; |
5e8a402f ED |
1334 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
1335 | TCP_SKB_CB(prev)->end_seq++; | |
1336 | ||
832d11c5 IJ |
1337 | if (skb == tcp_highest_sack(sk)) |
1338 | tcp_advance_highest_sack(sk, skb); | |
1339 | ||
cfea5a68 | 1340 | tcp_skb_collapse_tstamp(prev, skb); |
9a568de4 ED |
1341 | if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) |
1342 | TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; | |
b9f64820 | 1343 | |
75c119af | 1344 | tcp_rtx_queue_unlink_and_free(skb, sk); |
832d11c5 | 1345 | |
c10d9310 | 1346 | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); |
111cc8b9 | 1347 | |
a2a385d6 | 1348 | return true; |
832d11c5 IJ |
1349 | } |
1350 | ||
1351 | /* I wish gso_size would have a bit more sane initialization than | |
1352 | * something-or-zero which complicates things | |
1353 | */ | |
cf533ea5 | 1354 | static int tcp_skb_seglen(const struct sk_buff *skb) |
832d11c5 | 1355 | { |
775ffabf | 1356 | return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); |
832d11c5 IJ |
1357 | } |
1358 | ||
1359 | /* Shifting pages past head area doesn't work */ | |
cf533ea5 | 1360 | static int skb_can_shift(const struct sk_buff *skb) |
832d11c5 IJ |
1361 | { |
1362 | return !skb_headlen(skb) && skb_is_nonlinear(skb); | |
1363 | } | |
1364 | ||
1365 | /* Try collapsing SACK blocks spanning across multiple skbs to a single | |
1366 | * skb. | |
1367 | */ | |
1368 | static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, | |
a1197f5a | 1369 | struct tcp_sacktag_state *state, |
832d11c5 | 1370 | u32 start_seq, u32 end_seq, |
a2a385d6 | 1371 | bool dup_sack) |
832d11c5 IJ |
1372 | { |
1373 | struct tcp_sock *tp = tcp_sk(sk); | |
1374 | struct sk_buff *prev; | |
1375 | int mss; | |
1376 | int pcount = 0; | |
1377 | int len; | |
1378 | int in_sack; | |
1379 | ||
832d11c5 IJ |
1380 | /* Normally R but no L won't result in plain S */ |
1381 | if (!dup_sack && | |
9969ca5f | 1382 | (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) |
832d11c5 IJ |
1383 | goto fallback; |
1384 | if (!skb_can_shift(skb)) | |
1385 | goto fallback; | |
1386 | /* This frame is about to be dropped (was ACKed). */ | |
1387 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | |
1388 | goto fallback; | |
1389 | ||
1390 | /* Can only happen with delayed DSACK + discard craziness */ | |
75c119af ED |
1391 | prev = skb_rb_prev(skb); |
1392 | if (!prev) | |
832d11c5 | 1393 | goto fallback; |
832d11c5 IJ |
1394 | |
1395 | if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) | |
1396 | goto fallback; | |
1397 | ||
a643b5d4 MKL |
1398 | if (!tcp_skb_can_collapse_to(prev)) |
1399 | goto fallback; | |
1400 | ||
832d11c5 IJ |
1401 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && |
1402 | !before(end_seq, TCP_SKB_CB(skb)->end_seq); | |
1403 | ||
1404 | if (in_sack) { | |
1405 | len = skb->len; | |
1406 | pcount = tcp_skb_pcount(skb); | |
775ffabf | 1407 | mss = tcp_skb_seglen(skb); |
832d11c5 IJ |
1408 | |
1409 | /* TODO: Fix DSACKs to not fragment already SACKed and we can | |
1410 | * drop this restriction as unnecessary | |
1411 | */ | |
775ffabf | 1412 | if (mss != tcp_skb_seglen(prev)) |
832d11c5 IJ |
1413 | goto fallback; |
1414 | } else { | |
1415 | if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) | |
1416 | goto noop; | |
1417 | /* CHECKME: This is non-MSS split case only?, this will | |
1418 | * cause skipped skbs due to advancing loop btw, original | |
1419 | * has that feature too | |
1420 | */ | |
1421 | if (tcp_skb_pcount(skb) <= 1) | |
1422 | goto noop; | |
1423 | ||
1424 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); | |
1425 | if (!in_sack) { | |
1426 | /* TODO: head merge to next could be attempted here | |
1427 | * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), | |
1428 | * though it might not be worth of the additional hassle | |
1429 | * | |
1430 | * ...we can probably just fallback to what was done | |
1431 | * previously. We could try merging non-SACKed ones | |
1432 | * as well but it probably isn't going to buy off | |
1433 | * because later SACKs might again split them, and | |
1434 | * it would make skb timestamp tracking considerably | |
1435 | * harder problem. | |
1436 | */ | |
1437 | goto fallback; | |
1438 | } | |
1439 | ||
1440 | len = end_seq - TCP_SKB_CB(skb)->seq; | |
1441 | BUG_ON(len < 0); | |
1442 | BUG_ON(len > skb->len); | |
1443 | ||
1444 | /* MSS boundaries should be honoured or else pcount will | |
1445 | * severely break even though it makes things bit trickier. | |
1446 | * Optimize common case to avoid most of the divides | |
1447 | */ | |
1448 | mss = tcp_skb_mss(skb); | |
1449 | ||
1450 | /* TODO: Fix DSACKs to not fragment already SACKed and we can | |
1451 | * drop this restriction as unnecessary | |
1452 | */ | |
775ffabf | 1453 | if (mss != tcp_skb_seglen(prev)) |
832d11c5 IJ |
1454 | goto fallback; |
1455 | ||
1456 | if (len == mss) { | |
1457 | pcount = 1; | |
1458 | } else if (len < mss) { | |
1459 | goto noop; | |
1460 | } else { | |
1461 | pcount = len / mss; | |
1462 | len = pcount * mss; | |
1463 | } | |
1464 | } | |
1465 | ||
4648dc97 NC |
1466 | /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ |
1467 | if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) | |
1468 | goto fallback; | |
1469 | ||
832d11c5 IJ |
1470 | if (!skb_shift(prev, skb, len)) |
1471 | goto fallback; | |
f3319816 | 1472 | if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) |
832d11c5 IJ |
1473 | goto out; |
1474 | ||
1475 | /* Hole filled allows collapsing with the next as well, this is very | |
1476 | * useful when hole on every nth skb pattern happens | |
1477 | */ | |
75c119af ED |
1478 | skb = skb_rb_next(prev); |
1479 | if (!skb) | |
832d11c5 | 1480 | goto out; |
832d11c5 | 1481 | |
f0bc52f3 | 1482 | if (!skb_can_shift(skb) || |
f0bc52f3 | 1483 | ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || |
775ffabf | 1484 | (mss != tcp_skb_seglen(skb))) |
832d11c5 IJ |
1485 | goto out; |
1486 | ||
1487 | len = skb->len; | |
1488 | if (skb_shift(prev, skb, len)) { | |
1489 | pcount += tcp_skb_pcount(skb); | |
f3319816 ED |
1490 | tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), |
1491 | len, mss, 0); | |
832d11c5 IJ |
1492 | } |
1493 | ||
1494 | out: | |
832d11c5 IJ |
1495 | return prev; |
1496 | ||
1497 | noop: | |
1498 | return skb; | |
1499 | ||
1500 | fallback: | |
c10d9310 | 1501 | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); |
832d11c5 IJ |
1502 | return NULL; |
1503 | } | |
1504 | ||
68f8353b IJ |
1505 | static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, |
1506 | struct tcp_sack_block *next_dup, | |
a1197f5a | 1507 | struct tcp_sacktag_state *state, |
68f8353b | 1508 | u32 start_seq, u32 end_seq, |
a2a385d6 | 1509 | bool dup_sack_in) |
68f8353b | 1510 | { |
832d11c5 IJ |
1511 | struct tcp_sock *tp = tcp_sk(sk); |
1512 | struct sk_buff *tmp; | |
1513 | ||
75c119af | 1514 | skb_rbtree_walk_from(skb) { |
68f8353b | 1515 | int in_sack = 0; |
a2a385d6 | 1516 | bool dup_sack = dup_sack_in; |
68f8353b | 1517 | |
68f8353b IJ |
1518 | /* queue is in-order => we can short-circuit the walk early */ |
1519 | if (!before(TCP_SKB_CB(skb)->seq, end_seq)) | |
1520 | break; | |
1521 | ||
00db4124 | 1522 | if (next_dup && |
68f8353b IJ |
1523 | before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { |
1524 | in_sack = tcp_match_skb_to_sack(sk, skb, | |
1525 | next_dup->start_seq, | |
1526 | next_dup->end_seq); | |
1527 | if (in_sack > 0) | |
a2a385d6 | 1528 | dup_sack = true; |
68f8353b IJ |
1529 | } |
1530 | ||
832d11c5 IJ |
1531 | /* skb reference here is a bit tricky to get right, since |
1532 | * shifting can eat and free both this skb and the next, | |
1533 | * so not even _safe variant of the loop is enough. | |
1534 | */ | |
1535 | if (in_sack <= 0) { | |
a1197f5a IJ |
1536 | tmp = tcp_shift_skb_data(sk, skb, state, |
1537 | start_seq, end_seq, dup_sack); | |
00db4124 | 1538 | if (tmp) { |
832d11c5 IJ |
1539 | if (tmp != skb) { |
1540 | skb = tmp; | |
1541 | continue; | |
1542 | } | |
1543 | ||
1544 | in_sack = 0; | |
1545 | } else { | |
1546 | in_sack = tcp_match_skb_to_sack(sk, skb, | |
1547 | start_seq, | |
1548 | end_seq); | |
1549 | } | |
1550 | } | |
1551 | ||
68f8353b IJ |
1552 | if (unlikely(in_sack < 0)) |
1553 | break; | |
1554 | ||
832d11c5 | 1555 | if (in_sack) { |
cc9a672e NC |
1556 | TCP_SKB_CB(skb)->sacked = |
1557 | tcp_sacktag_one(sk, | |
1558 | state, | |
1559 | TCP_SKB_CB(skb)->sacked, | |
1560 | TCP_SKB_CB(skb)->seq, | |
1561 | TCP_SKB_CB(skb)->end_seq, | |
1562 | dup_sack, | |
59c9af42 | 1563 | tcp_skb_pcount(skb), |
2fd66ffb | 1564 | tcp_skb_timestamp_us(skb)); |
b9f64820 | 1565 | tcp_rate_skb_delivered(sk, skb, state->rate); |
e2080072 ED |
1566 | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) |
1567 | list_del_init(&skb->tcp_tsorted_anchor); | |
68f8353b | 1568 | |
832d11c5 IJ |
1569 | if (!before(TCP_SKB_CB(skb)->seq, |
1570 | tcp_highest_sack_seq(tp))) | |
1571 | tcp_advance_highest_sack(sk, skb); | |
1572 | } | |
68f8353b IJ |
1573 | } |
1574 | return skb; | |
1575 | } | |
1576 | ||
75c119af ED |
1577 | static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, |
1578 | struct tcp_sacktag_state *state, | |
1579 | u32 seq) | |
1580 | { | |
1581 | struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; | |
1582 | struct sk_buff *skb; | |
75c119af ED |
1583 | |
1584 | while (*p) { | |
1585 | parent = *p; | |
1586 | skb = rb_to_skb(parent); | |
1587 | if (before(seq, TCP_SKB_CB(skb)->seq)) { | |
1588 | p = &parent->rb_left; | |
1589 | continue; | |
1590 | } | |
1591 | if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { | |
1592 | p = &parent->rb_right; | |
1593 | continue; | |
1594 | } | |
75c119af ED |
1595 | return skb; |
1596 | } | |
1597 | return NULL; | |
1598 | } | |
1599 | ||
68f8353b | 1600 | static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, |
a1197f5a IJ |
1601 | struct tcp_sacktag_state *state, |
1602 | u32 skip_to_seq) | |
68f8353b | 1603 | { |
75c119af ED |
1604 | if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) |
1605 | return skb; | |
d152a7d8 | 1606 | |
75c119af | 1607 | return tcp_sacktag_bsearch(sk, state, skip_to_seq); |
68f8353b IJ |
1608 | } |
1609 | ||
1610 | static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, | |
1611 | struct sock *sk, | |
1612 | struct tcp_sack_block *next_dup, | |
a1197f5a IJ |
1613 | struct tcp_sacktag_state *state, |
1614 | u32 skip_to_seq) | |
68f8353b | 1615 | { |
51456b29 | 1616 | if (!next_dup) |
68f8353b IJ |
1617 | return skb; |
1618 | ||
1619 | if (before(next_dup->start_seq, skip_to_seq)) { | |
a1197f5a IJ |
1620 | skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); |
1621 | skb = tcp_sacktag_walk(skb, sk, NULL, state, | |
1622 | next_dup->start_seq, next_dup->end_seq, | |
1623 | 1); | |
68f8353b IJ |
1624 | } |
1625 | ||
1626 | return skb; | |
1627 | } | |
1628 | ||
cf533ea5 | 1629 | static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) |
68f8353b IJ |
1630 | { |
1631 | return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); | |
1632 | } | |
1633 | ||
1da177e4 | 1634 | static int |
cf533ea5 | 1635 | tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, |
196da974 | 1636 | u32 prior_snd_una, struct tcp_sacktag_state *state) |
1da177e4 LT |
1637 | { |
1638 | struct tcp_sock *tp = tcp_sk(sk); | |
cf533ea5 ED |
1639 | const unsigned char *ptr = (skb_transport_header(ack_skb) + |
1640 | TCP_SKB_CB(ack_skb)->sacked); | |
fd6dad61 | 1641 | struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); |
4389dded | 1642 | struct tcp_sack_block sp[TCP_NUM_SACKS]; |
68f8353b IJ |
1643 | struct tcp_sack_block *cache; |
1644 | struct sk_buff *skb; | |
4389dded | 1645 | int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); |
fd6dad61 | 1646 | int used_sacks; |
a2a385d6 | 1647 | bool found_dup_sack = false; |
68f8353b | 1648 | int i, j; |
fda03fbb | 1649 | int first_sack_index; |
1da177e4 | 1650 | |
196da974 | 1651 | state->flag = 0; |
737ff314 | 1652 | state->reord = tp->snd_nxt; |
a1197f5a | 1653 | |
737ff314 | 1654 | if (!tp->sacked_out) |
6859d494 | 1655 | tcp_highest_sack_reset(sk); |
1da177e4 | 1656 | |
1ed83465 | 1657 | found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, |
d06e021d | 1658 | num_sacks, prior_snd_una); |
b9f64820 | 1659 | if (found_dup_sack) { |
196da974 | 1660 | state->flag |= FLAG_DSACKING_ACK; |
b9f64820 YC |
1661 | tp->delivered++; /* A spurious retransmission is delivered */ |
1662 | } | |
6f74651a BE |
1663 | |
1664 | /* Eliminate too old ACKs, but take into | |
1665 | * account more or less fresh ones, they can | |
1666 | * contain valid SACK info. | |
1667 | */ | |
1668 | if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) | |
1669 | return 0; | |
1670 | ||