]> Git Repo - linux.git/blame - net/ipv4/tcp_input.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <[email protected]>
11 * Mark Evans, <[email protected]>
12 * Corey Minyard <[email protected]>
13 * Florian La Roche, <[email protected]>
14 * Charles Hedrick, <[email protected]>
15 * Linus Torvalds, <[email protected]>
16 * Alan Cox, <[email protected]>
17 * Matthew Dillon, <[email protected]>
18 * Arnt Gulbrandsen, <[email protected]>
19 * Jorge Cwik, <[email protected]>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
c6345ce7 81#include <net/busy_poll.h>
1da177e4 82
ab32ea5d 83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 84
1da177e4
LT
85#define FLAG_DATA 0x01 /* Incoming frame contained data. */
86#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90#define FLAG_DATA_SACKED 0x20 /* New SACK. */
91#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 92#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 93#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 94#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 95#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 96#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 97#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 98#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 99#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 100#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 101#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
1da177e4
LT
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
1da177e4 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 110
e662ca40
YC
111#define REXMIT_NONE 0 /* no loss recovery to do */
112#define REXMIT_LOST 1 /* retransmit packets marked lost */
113#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
6dac1523
IL
115#if IS_ENABLED(CONFIG_TLS_DEVICE)
116static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117
118void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120{
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
123}
124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126void clean_acked_data_disable(struct inet_connection_sock *icsk)
127{
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
130}
131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132#endif
133
0b9aefea
MRL
134static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 unsigned int len)
dcb17d22
MRL
136{
137 static bool __once __read_mostly;
138
139 if (!__once) {
140 struct net_device *dev;
141
142 __once = true;
143
144 rcu_read_lock();
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
149 rcu_read_unlock();
150 }
151}
152
e905a9ed 153/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 154 * real world.
e905a9ed 155 */
056834d9 156static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 157{
463c84b9 158 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 160 unsigned int len;
1da177e4 161
e905a9ed 162 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
163
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
166 */
056834d9 167 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 168 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 tcp_sk(sk)->advmss);
0b9aefea
MRL
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
175 } else {
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
178 *
179 * "len" is invariant segment length, including TCP header.
180 */
9c70220b 181 len += skb->data - skb_transport_header(skb);
bee7ca9e 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
187 */
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
193 */
463c84b9
ACM
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
1da177e4 196 if (len == lss) {
463c84b9 197 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
198 return;
199 }
200 }
1ef9696c
AK
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
204 }
205}
206
9a9c9b51 207static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
1da177e4 208{
463c84b9 209 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 211
056834d9
IJ
212 if (quickacks == 0)
213 quickacks = 2;
9a9c9b51 214 quickacks = min(quickacks, max_quickacks);
463c84b9 215 if (quickacks > icsk->icsk_ack.quick)
9a9c9b51 216 icsk->icsk_ack.quick = quickacks;
1da177e4
LT
217}
218
a0496ef2 219void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
1da177e4 220{
463c84b9 221 struct inet_connection_sock *icsk = inet_csk(sk);
9a9c9b51
ED
222
223 tcp_incr_quickack(sk, max_quickacks);
463c84b9
ACM
224 icsk->icsk_ack.pingpong = 0;
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 226}
a0496ef2 227EXPORT_SYMBOL(tcp_enter_quickack_mode);
1da177e4
LT
228
229/* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
231 */
232
2251ae46 233static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 234{
463c84b9 235 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 236 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 237
2251ae46
JM
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
240}
241
735d3831 242static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 243{
056834d9 244 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246}
247
fd2123a3 248static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 249{
9aee4000 250 if (tcp_hdr(skb)->cwr) {
fd2123a3 251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
9aee4000
LB
252
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
255 * immediately.
256 */
fd2123a3 257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
9aee4000 258 }
bdf1ee5d
IJ
259}
260
735d3831 261static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
262{
263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264}
265
f4c9f85f 266static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 267{
f4c9f85f
YS
268 struct tcp_sock *tp = tcp_sk(sk);
269
b82d1bb4 270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 271 case INET_ECN_NOT_ECT:
bdf1ee5d 272 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
273 * and we already seen ECT on a previous segment,
274 * it is probably a retransmit.
275 */
276 if (tp->ecn_flags & TCP_ECN_SEEN)
15ecbe94 277 tcp_enter_quickack_mode(sk, 2);
7a269ffa
ED
278 break;
279 case INET_ECN_CE:
f4c9f85f
YS
280 if (tcp_ca_needs_ecn(sk))
281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
9890092e 282
aae06bf5
ED
283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 /* Better not delay acks, sender can have a very low cwnd */
15ecbe94 285 tcp_enter_quickack_mode(sk, 2);
aae06bf5
ED
286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 }
9890092e
FW
288 tp->ecn_flags |= TCP_ECN_SEEN;
289 break;
7a269ffa 290 default:
f4c9f85f
YS
291 if (tcp_ca_needs_ecn(sk))
292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
7a269ffa 293 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 294 break;
bdf1ee5d
IJ
295 }
296}
297
f4c9f85f 298static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
735d3831 299{
f4c9f85f
YS
300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 __tcp_ecn_check_ce(sk, skb);
735d3831
FW
302}
303
304static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 305{
056834d9 306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
307 tp->ecn_flags &= ~TCP_ECN_OK;
308}
309
735d3831 310static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 311{
056834d9 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
313 tp->ecn_flags &= ~TCP_ECN_OK;
314}
315
735d3831 316static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 317{
056834d9 318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
319 return true;
320 return false;
bdf1ee5d
IJ
321}
322
1da177e4
LT
323/* Buffer size and advertised window tuning.
324 *
325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326 */
327
6ae70532 328static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 329{
6ae70532 330 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
332 int sndmem, per_mss;
333 u32 nr_segs;
334
335 /* Worst case is non GSO/TSO : each frame consumes one skb
336 * and skb->head is kmalloced using power of two area of memory
337 */
338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 MAX_TCP_HEADER +
340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341
342 per_mss = roundup_pow_of_two(per_mss) +
343 SKB_DATA_ALIGN(sizeof(struct sk_buff));
344
345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347
348 /* Fast Recovery (RFC 5681 3.2) :
349 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 350 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 351 */
77bfc174
YC
352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 sndmem *= nr_segs * per_mss;
1da177e4 354
06a59ecb 355 if (sk->sk_sndbuf < sndmem)
356d1833 356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
357}
358
359/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360 *
361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
362 * forward and advertised in receiver window (tp->rcv_wnd) and
363 * "application buffer", required to isolate scheduling/application
364 * latencies from network.
365 * window_clamp is maximal advertised window. It can be less than
366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
367 * is reserved for "application" buffer. The less window_clamp is
368 * the smoother our behaviour from viewpoint of network, but the lower
369 * throughput and the higher sensitivity of the connection to losses. 8)
370 *
371 * rcv_ssthresh is more strict window_clamp used at "slow start"
372 * phase to predict further behaviour of this connection.
373 * It is used for two goals:
374 * - to enforce header prediction at sender, even when application
375 * requires some significant "application buffer". It is check #1.
376 * - to prevent pruning of receive queue because of misprediction
377 * of receiver window. Check #2.
378 *
379 * The scheme does not work when sender sends good segments opening
caa20d9a 380 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
381 * in common situations. Otherwise, we have to rely on queue collapsing.
382 */
383
384/* Slow part of check#2. */
9e412ba7 385static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 388 /* Optimize this! */
94f0893e 389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
391
392 while (tp->rcv_ssthresh <= window) {
393 if (truesize <= skb->len)
463c84b9 394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
395
396 truesize >>= 1;
397 window >>= 1;
398 }
399 return 0;
400}
401
cf533ea5 402static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 403{
9e412ba7
IJ
404 struct tcp_sock *tp = tcp_sk(sk);
405
1da177e4
LT
406 /* Check #1 */
407 if (tp->rcv_ssthresh < tp->window_clamp &&
408 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 409 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
410 int incr;
411
412 /* Check #2. Increase window, if skb with such overhead
413 * will fit to rcvbuf in future.
414 */
94f0893e 415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 416 incr = 2 * tp->advmss;
1da177e4 417 else
9e412ba7 418 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
419
420 if (incr) {
4d846f02 421 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 tp->window_clamp);
463c84b9 424 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
425 }
426 }
427}
428
a337531b 429/* 3. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
430 * established state.
431 */
10467163 432void tcp_init_buffer_space(struct sock *sk)
1da177e4 433{
0c12654a 434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
1da177e4 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 439 tcp_sndbuf_expand(sk);
1da177e4 440
041a14d2 441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
9a568de4 442 tcp_mstamp_refresh(tp);
645f4c6f 443 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 444 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
445
446 maxwin = tcp_full_space(sk);
447
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
450
0c12654a 451 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 452 tp->window_clamp = max(maxwin -
0c12654a 453 (maxwin >> tcp_app_win),
1da177e4
LT
454 4 * tp->advmss);
455 }
456
457 /* Force reservation of one segment. */
0c12654a 458 if (tcp_app_win &&
1da177e4
LT
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 464 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
465}
466
a337531b 467/* 4. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 468static void tcp_clamp_window(struct sock *sk)
1da177e4 469{
9e412ba7 470 struct tcp_sock *tp = tcp_sk(sk);
6687e988 471 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 472 struct net *net = sock_net(sk);
1da177e4 473
6687e988 474 icsk->icsk_ack.quick = 0;
1da177e4 475
356d1833 476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 478 !tcp_under_memory_pressure(sk) &&
180d8cd9 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 481 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 482 }
326f36e9 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
485}
486
40efc6fa
SH
487/* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494void tcp_initialize_rcv_mss(struct sock *sk)
495{
cf533ea5 496 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
056834d9 499 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 500 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504}
4bc2f18b 505EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 506
1da177e4
LT
507/* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
512 *
513 * More detail on this code can be found at
631dd1a8 514 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519{
645f4c6f 520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
521 long m = sample;
522
1da177e4
LT
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
528 *
529 * Also, since we are only going for a minimum in the
31f34269 530 * non-timestamp case, we do not smooth things out
caa20d9a 531 * else with timestamps disabled convergence takes too
1da177e4
LT
532 * long.
533 */
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
18a223e0
NC
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
541 }
1da177e4 542 } else {
caa20d9a 543 /* No previous measure. */
1da177e4
LT
544 new_sample = m << 3;
545 }
546
645f4c6f 547 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
548}
549
550static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551{
645f4c6f
ED
552 u32 delta_us;
553
9a568de4 554 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
555 goto new_measure;
556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 return;
9a568de4 558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
559 if (!delta_us)
560 delta_us = 1;
645f4c6f 561 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
562
563new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 565 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
566}
567
056834d9
IJ
568static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
1da177e4 570{
463c84b9 571 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 572
3f6c65d6
WW
573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 return;
575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
576
577 if (TCP_SKB_CB(skb)->end_seq -
578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
9a568de4 579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 580 u32 delta_us;
9a568de4 581
9efdda4e
ED
582 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
583 if (!delta)
584 delta = 1;
585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
586 tcp_rcv_rtt_update(tp, delta_us, 0);
587 }
9a568de4 588 }
1da177e4
LT
589}
590
591/*
592 * This function should be called every time data is copied to user space.
593 * It calculates the appropriate TCP receive buffer space.
594 */
595void tcp_rcv_space_adjust(struct sock *sk)
596{
597 struct tcp_sock *tp = tcp_sk(sk);
607065ba 598 u32 copied;
1da177e4 599 int time;
e905a9ed 600
6163849d
YS
601 trace_tcp_rcv_space_adjust(sk);
602
86323850 603 tcp_mstamp_refresh(tp);
9a568de4 604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 606 return;
e905a9ed 607
b0983d3c
ED
608 /* Number of bytes copied to user in last RTT */
609 copied = tp->copied_seq - tp->rcvq_space.seq;
610 if (copied <= tp->rcvq_space.space)
611 goto new_measure;
612
613 /* A bit of theory :
614 * copied = bytes received in previous RTT, our base window
615 * To cope with packet losses, we need a 2x factor
616 * To cope with slow start, and sender growing its cwin by 100 %
617 * every RTT, we need a 4x factor, because the ACK we are sending
618 * now is for the next RTT, not the current one :
619 * <prev RTT . ><current RTT .. ><next RTT .... >
620 */
621
4540c0cf 622 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607065ba 624 int rcvmem, rcvbuf;
c3916ad9 625 u64 rcvwin, grow;
1da177e4 626
b0983d3c
ED
627 /* minimal window to cope with packet losses, assuming
628 * steady state. Add some cushion because of small variations.
629 */
607065ba 630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 631
c3916ad9
ED
632 /* Accommodate for sender rate increase (eg. slow start) */
633 grow = rcvwin * (copied - tp->rcvq_space.space);
634 do_div(grow, tp->rcvq_space.space);
635 rcvwin += (grow << 1);
1da177e4 636
b0983d3c 637 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 638 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 639 rcvmem += 128;
1da177e4 640
607065ba
ED
641 do_div(rcvwin, tp->advmss);
642 rcvbuf = min_t(u64, rcvwin * rcvmem,
643 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
644 if (rcvbuf > sk->sk_rcvbuf) {
645 sk->sk_rcvbuf = rcvbuf;
1da177e4 646
b0983d3c 647 /* Make the window clamp follow along. */
02db5571 648 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
649 }
650 }
b0983d3c 651 tp->rcvq_space.space = copied;
e905a9ed 652
1da177e4
LT
653new_measure:
654 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 655 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
656}
657
658/* There is something which you must keep in mind when you analyze the
659 * behavior of the tp->ato delayed ack timeout interval. When a
660 * connection starts up, we want to ack as quickly as possible. The
661 * problem is that "good" TCP's do slow start at the beginning of data
662 * transmission. The means that until we send the first few ACK's the
663 * sender will sit on his end and only queue most of his data, because
664 * he can only send snd_cwnd unacked packets at any given time. For
665 * each ACK we send, he increments snd_cwnd and transmits more of his
666 * queue. -DaveM
667 */
9e412ba7 668static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 669{
9e412ba7 670 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 671 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
672 u32 now;
673
463c84b9 674 inet_csk_schedule_ack(sk);
1da177e4 675
463c84b9 676 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
677
678 tcp_rcv_rtt_measure(tp);
e905a9ed 679
70eabf0e 680 now = tcp_jiffies32;
1da177e4 681
463c84b9 682 if (!icsk->icsk_ack.ato) {
1da177e4
LT
683 /* The _first_ data packet received, initialize
684 * delayed ACK engine.
685 */
9a9c9b51 686 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
463c84b9 687 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 688 } else {
463c84b9 689 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 690
056834d9 691 if (m <= TCP_ATO_MIN / 2) {
1da177e4 692 /* The fastest case is the first. */
463c84b9
ACM
693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
694 } else if (m < icsk->icsk_ack.ato) {
695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
696 if (icsk->icsk_ack.ato > icsk->icsk_rto)
697 icsk->icsk_ack.ato = icsk->icsk_rto;
698 } else if (m > icsk->icsk_rto) {
caa20d9a 699 /* Too long gap. Apparently sender failed to
1da177e4
LT
700 * restart window, so that we send ACKs quickly.
701 */
9a9c9b51 702 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
3ab224be 703 sk_mem_reclaim(sk);
1da177e4
LT
704 }
705 }
463c84b9 706 icsk->icsk_ack.lrcvtime = now;
1da177e4 707
f4c9f85f 708 tcp_ecn_check_ce(sk, skb);
1da177e4
LT
709
710 if (skb->len >= 128)
9e412ba7 711 tcp_grow_window(sk, skb);
1da177e4
LT
712}
713
1da177e4
LT
714/* Called to compute a smoothed rtt estimate. The data fed to this
715 * routine either comes from timestamps, or from segments that were
716 * known _not_ to have been retransmitted [see Karn/Partridge
717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
718 * piece by Van Jacobson.
719 * NOTE: the next three routines used to be one big routine.
720 * To save cycles in the RFC 1323 implementation it was better to break
721 * it up into three procedures. -- erics
722 */
740b0f18 723static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 724{
6687e988 725 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
726 long m = mrtt_us; /* RTT */
727 u32 srtt = tp->srtt_us;
1da177e4 728
1da177e4
LT
729 /* The following amusing code comes from Jacobson's
730 * article in SIGCOMM '88. Note that rtt and mdev
731 * are scaled versions of rtt and mean deviation.
e905a9ed 732 * This is designed to be as fast as possible
1da177e4
LT
733 * m stands for "measurement".
734 *
735 * On a 1990 paper the rto value is changed to:
736 * RTO = rtt + 4 * mdev
737 *
738 * Funny. This algorithm seems to be very broken.
739 * These formulae increase RTO, when it should be decreased, increase
31f34269 740 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
742 * does not matter how to _calculate_ it. Seems, it was trap
743 * that VJ failed to avoid. 8)
744 */
4a5ab4e2
ED
745 if (srtt != 0) {
746 m -= (srtt >> 3); /* m is now error in rtt est */
747 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
748 if (m < 0) {
749 m = -m; /* m is now abs(error) */
740b0f18 750 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
751 /* This is similar to one of Eifel findings.
752 * Eifel blocks mdev updates when rtt decreases.
753 * This solution is a bit different: we use finer gain
754 * for mdev in this case (alpha*beta).
755 * Like Eifel it also prevents growth of rto,
756 * but also it limits too fast rto decreases,
757 * happening in pure Eifel.
758 */
759 if (m > 0)
760 m >>= 3;
761 } else {
740b0f18 762 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 763 }
740b0f18
ED
764 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
765 if (tp->mdev_us > tp->mdev_max_us) {
766 tp->mdev_max_us = tp->mdev_us;
767 if (tp->mdev_max_us > tp->rttvar_us)
768 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
769 }
770 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
771 if (tp->mdev_max_us < tp->rttvar_us)
772 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 773 tp->rtt_seq = tp->snd_nxt;
740b0f18 774 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
775 }
776 } else {
777 /* no previous measure. */
4a5ab4e2 778 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
779 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
780 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
781 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
782 tp->rtt_seq = tp->snd_nxt;
783 }
740b0f18 784 tp->srtt_us = max(1U, srtt);
1da177e4
LT
785}
786
95bd09eb
ED
787static void tcp_update_pacing_rate(struct sock *sk)
788{
789 const struct tcp_sock *tp = tcp_sk(sk);
790 u64 rate;
791
792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
793 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
794
795 /* current rate is (cwnd * mss) / srtt
796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
797 * In Congestion Avoidance phase, set it to 120 % the current rate.
798 *
799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
801 * end of slow start and should slow down.
802 */
803 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 805 else
c26e91f8 806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
807
808 rate *= max(tp->snd_cwnd, tp->packets_out);
809
740b0f18
ED
810 if (likely(tp->srtt_us))
811 do_div(rate, tp->srtt_us);
95bd09eb 812
a9da6f29 813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
814 * without any lock. We want to make sure compiler wont store
815 * intermediate values in this location.
816 */
a9da6f29
MR
817 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
818 sk->sk_max_pacing_rate));
95bd09eb
ED
819}
820
1da177e4
LT
821/* Calculate rto without backoff. This is the second half of Van Jacobson's
822 * routine referred to above.
823 */
f7e56a76 824static void tcp_set_rto(struct sock *sk)
1da177e4 825{
463c84b9 826 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
827 /* Old crap is replaced with new one. 8)
828 *
829 * More seriously:
830 * 1. If rtt variance happened to be less 50msec, it is hallucination.
831 * It cannot be less due to utterly erratic ACK generation made
832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
833 * to do with delayed acks, because at cwnd>2 true delack timeout
834 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 835 * ACKs in some circumstances.
1da177e4 836 */
f1ecd5d9 837 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
838
839 /* 2. Fixups made earlier cannot be right.
840 * If we do not estimate RTO correctly without them,
841 * all the algo is pure shit and should be replaced
caa20d9a 842 * with correct one. It is exactly, which we pretend to do.
1da177e4 843 */
1da177e4 844
ee6aac59
IJ
845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
846 * guarantees that rto is higher.
847 */
f1ecd5d9 848 tcp_bound_rto(sk);
1da177e4
LT
849}
850
cf533ea5 851__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
852{
853 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
854
22b71c8f 855 if (!cwnd)
442b9635 856 cwnd = TCP_INIT_CWND;
1da177e4
LT
857 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
858}
859
564262c1 860/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
861static void tcp_dsack_seen(struct tcp_sock *tp)
862{
ab56222a 863 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 864 tp->rack.dsack_seen = 1;
7e10b655 865 tp->dsack_dups++;
e60402d0
IJ
866}
867
737ff314
YC
868/* It's reordering when higher sequence was delivered (i.e. sacked) before
869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
870 * distance is approximated in full-mss packet distance ("reordering").
871 */
872static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
873 const int ts)
1da177e4 874{
6687e988 875 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
876 const u32 mss = tp->mss_cache;
877 u32 fack, metric;
40b215e5 878
737ff314
YC
879 fack = tcp_highest_sack_seq(tp);
880 if (!before(low_seq, fack))
6f5b24ee
SHY
881 return;
882
737ff314
YC
883 metric = fack - low_seq;
884 if ((metric > tp->reordering * mss) && mss) {
1da177e4 885#if FASTRETRANS_DEBUG > 1
91df42be
JP
886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
887 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
888 tp->reordering,
737ff314 889 0,
91df42be
JP
890 tp->sacked_out,
891 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 892#endif
737ff314
YC
893 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
894 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 895 }
eed530b6 896
2d2517ee 897 /* This exciting event is worth to be remembered. 8) */
7ec65372 898 tp->reord_seen++;
737ff314
YC
899 NET_INC_STATS(sock_net(sk),
900 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
901}
902
006f582c 903/* This must be called before lost_out is incremented */
c8c213f2
IJ
904static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
905{
51456b29 906 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
907 before(TCP_SKB_CB(skb)->seq,
908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 909 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
910}
911
0682e690
NC
912/* Sum the number of packets on the wire we have marked as lost.
913 * There are two cases we care about here:
914 * a) Packet hasn't been marked lost (nor retransmitted),
915 * and this is the first loss.
916 * b) Packet has been marked both lost and retransmitted,
917 * and this means we think it was lost again.
918 */
919static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
920{
921 __u8 sacked = TCP_SKB_CB(skb)->sacked;
922
923 if (!(sacked & TCPCB_LOST) ||
924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
925 tp->lost += tcp_skb_pcount(skb);
926}
927
41ea36e3
IJ
928static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
929{
930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
931 tcp_verify_retransmit_hint(tp, skb);
932
933 tp->lost_out += tcp_skb_pcount(skb);
0682e690 934 tcp_sum_lost(tp, skb);
41ea36e3
IJ
935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
936 }
937}
938
4f41b1c5 939void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
940{
941 tcp_verify_retransmit_hint(tp, skb);
942
0682e690 943 tcp_sum_lost(tp, skb);
006f582c
IJ
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tp->lost_out += tcp_skb_pcount(skb);
946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
947 }
948}
949
1da177e4
LT
950/* This procedure tags the retransmission queue when SACKs arrive.
951 *
952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
953 * Packets in queue with these bits set are counted in variables
954 * sacked_out, retrans_out and lost_out, correspondingly.
955 *
956 * Valid combinations are:
957 * Tag InFlight Description
958 * 0 1 - orig segment is in flight.
959 * S 0 - nothing flies, orig reached receiver.
960 * L 0 - nothing flies, orig lost by net.
961 * R 2 - both orig and retransmit are in flight.
962 * L|R 1 - orig is lost, retransmit is in flight.
963 * S|R 1 - orig reached receiver, retrans is still in flight.
964 * (L|S|R is logically valid, it could occur when L|R is sacked,
965 * but it is equivalent to plain S and code short-curcuits it to S.
966 * L|S is logically invalid, it would mean -1 packet in flight 8))
967 *
968 * These 6 states form finite state machine, controlled by the following events:
969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 971 * 3. Loss detection event of two flavors:
1da177e4
LT
972 * A. Scoreboard estimator decided the packet is lost.
973 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 974 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
977 *
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
981 *
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
986 *
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
5b3c9882
IJ
994 *
995 * SACK block validation.
996 * ----------------------
997 *
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1010 *
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015 * wrap (s_w):
1016 *
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1019 * | | | | | | |
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1023 *
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1029 *
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1032 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1da177e4 1042 */
a2a385d6
ED
1043static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1045{
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1048 return false;
5b3c9882
IJ
1049
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1052 return false;
5b3c9882 1053
564262c1 1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1055 * start_seq == snd_una is non-sensical (see comments above)
1056 */
1057 if (after(start_seq, tp->snd_una))
a2a385d6 1058 return true;
5b3c9882
IJ
1059
1060 if (!is_dsack || !tp->undo_marker)
a2a385d6 1061 return false;
5b3c9882
IJ
1062
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1064 if (after(end_seq, tp->snd_una))
a2a385d6 1065 return false;
5b3c9882
IJ
1066
1067 if (!before(start_seq, tp->undo_marker))
a2a385d6 1068 return true;
5b3c9882
IJ
1069
1070 /* Too old */
1071 if (!after(end_seq, tp->undo_marker))
a2a385d6 1072 return false;
5b3c9882
IJ
1073
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1076 */
1077 return !before(start_seq, end_seq - tp->max_window);
1078}
1079
a2a385d6
ED
1080static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 struct tcp_sack_block_wire *sp, int num_sacks,
1082 u32 prior_snd_una)
d06e021d 1083{
1ed83465 1084 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1087 bool dup_sack = false;
d06e021d
DM
1088
1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1090 dup_sack = true;
e60402d0 1091 tcp_dsack_seen(tp);
c10d9310 1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1093 } else if (num_sacks > 1) {
d3e2ce3b
HH
1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1096
1097 if (!after(end_seq_0, end_seq_1) &&
1098 !before(start_seq_0, start_seq_1)) {
a2a385d6 1099 dup_sack = true;
e60402d0 1100 tcp_dsack_seen(tp);
c10d9310 1101 NET_INC_STATS(sock_net(sk),
de0744af 1102 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1103 }
1104 }
1105
1106 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1108 !after(end_seq_0, prior_snd_una) &&
1109 after(end_seq_0, tp->undo_marker))
1110 tp->undo_retrans--;
1111
1112 return dup_sack;
1113}
1114
a1197f5a 1115struct tcp_sacktag_state {
737ff314 1116 u32 reord;
31231a8a
KKJ
1117 /* Timestamps for earliest and latest never-retransmitted segment
1118 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1119 * but congestion control should still get an accurate delay signal.
1120 */
9a568de4
ED
1121 u64 first_sackt;
1122 u64 last_sackt;
b9f64820 1123 struct rate_sample *rate;
740b0f18 1124 int flag;
75c119af 1125 unsigned int mss_now;
a1197f5a
IJ
1126};
1127
d1935942
IJ
1128/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1129 * the incoming SACK may not exactly match but we can find smaller MSS
1130 * aligned portion of it that matches. Therefore we might need to fragment
1131 * which may fail and creates some hassle (caller must handle error case
1132 * returns).
832d11c5
IJ
1133 *
1134 * FIXME: this could be merged to shift decision code
d1935942 1135 */
0f79efdc 1136static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1137 u32 start_seq, u32 end_seq)
d1935942 1138{
a2a385d6
ED
1139 int err;
1140 bool in_sack;
d1935942 1141 unsigned int pkt_len;
adb92db8 1142 unsigned int mss;
d1935942
IJ
1143
1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1146
1147 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1149 mss = tcp_skb_mss(skb);
d1935942
IJ
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1151
adb92db8 1152 if (!in_sack) {
d1935942 1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1154 if (pkt_len < mss)
1155 pkt_len = mss;
1156 } else {
d1935942 1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1158 if (pkt_len < mss)
1159 return -EINVAL;
1160 }
1161
1162 /* Round if necessary so that SACKs cover only full MSSes
1163 * and/or the remaining small portion (if present)
1164 */
1165 if (pkt_len > mss) {
1166 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1167 if (!in_sack && new_len < pkt_len)
adb92db8 1168 new_len += mss;
adb92db8
IJ
1169 pkt_len = new_len;
1170 }
b451e5d2
YC
1171
1172 if (pkt_len >= skb->len && !in_sack)
1173 return 0;
1174
75c119af
ED
1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1176 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1177 if (err < 0)
1178 return err;
1179 }
1180
1181 return in_sack;
1182}
1183
cc9a672e
NC
1184/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1185static u8 tcp_sacktag_one(struct sock *sk,
1186 struct tcp_sacktag_state *state, u8 sacked,
1187 u32 start_seq, u32 end_seq,
740b0f18 1188 int dup_sack, int pcount,
9a568de4 1189 u64 xmit_time)
9e10c47c 1190{
6859d494 1191 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1192
1193 /* Account D-SACK for retransmitted packet. */
1194 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1195 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1196 after(end_seq, tp->undo_marker))
9e10c47c 1197 tp->undo_retrans--;
737ff314
YC
1198 if ((sacked & TCPCB_SACKED_ACKED) &&
1199 before(start_seq, state->reord))
1200 state->reord = start_seq;
9e10c47c
IJ
1201 }
1202
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1204 if (!after(end_seq, tp->snd_una))
a1197f5a 1205 return sacked;
9e10c47c
IJ
1206
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1209
9e10c47c
IJ
1210 if (sacked & TCPCB_SACKED_RETRANS) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1214 */
1215 if (sacked & TCPCB_LOST) {
a1197f5a 1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1217 tp->lost_out -= pcount;
1218 tp->retrans_out -= pcount;
9e10c47c
IJ
1219 }
1220 } else {
1221 if (!(sacked & TCPCB_RETRANS)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1224 */
cc9a672e 1225 if (before(start_seq,
737ff314
YC
1226 tcp_highest_sack_seq(tp)) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1229
e33099f9
YC
1230 if (!after(end_seq, tp->high_seq))
1231 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1232 if (state->first_sackt == 0)
1233 state->first_sackt = xmit_time;
1234 state->last_sackt = xmit_time;
9e10c47c
IJ
1235 }
1236
1237 if (sacked & TCPCB_LOST) {
a1197f5a 1238 sacked &= ~TCPCB_LOST;
f58b22fd 1239 tp->lost_out -= pcount;
9e10c47c
IJ
1240 }
1241 }
1242
a1197f5a
IJ
1243 sacked |= TCPCB_SACKED_ACKED;
1244 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1245 tp->sacked_out += pcount;
ddf1af6f 1246 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1247
9e10c47c 1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1249 if (tp->lost_skb_hint &&
cc9a672e 1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1251 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1252 }
1253
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1257 */
a1197f5a
IJ
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1260 tp->retrans_out -= pcount;
9e10c47c
IJ
1261 }
1262
a1197f5a 1263 return sacked;
9e10c47c
IJ
1264}
1265
daef52ba
NC
1266/* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
f3319816
ED
1269static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1270 struct sk_buff *skb,
a2a385d6
ED
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
832d11c5
IJ
1274{
1275 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1278
1279 BUG_ON(!pcount);
1280
4c90d3b3
NC
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1286 */
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1288 start_seq, end_seq, dup_sack, pcount,
2fd66ffb 1289 tcp_skb_timestamp_us(skb));
b9f64820 1290 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1291
1292 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1293 tp->lost_cnt_hint += pcount;
1294
832d11c5
IJ
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
cd7d8498
ED
1298 tcp_skb_pcount_add(prev, pcount);
1299 BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
f69ad292
ED
1307 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1308 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1309
1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1311 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1312 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1313
832d11c5
IJ
1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1316
832d11c5
IJ
1317 if (skb->len > 0) {
1318 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1320 return false;
832d11c5
IJ
1321 }
1322
1323 /* Whole SKB was eaten :-) */
1324
92ee76b6
IJ
1325 if (skb == tp->retransmit_skb_hint)
1326 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1327 if (skb == tp->lost_skb_hint) {
1328 tp->lost_skb_hint = prev;
1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1330 }
1331
5e8a402f 1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1335 TCP_SKB_CB(prev)->end_seq++;
1336
832d11c5
IJ
1337 if (skb == tcp_highest_sack(sk))
1338 tcp_advance_highest_sack(sk, skb);
1339
cfea5a68 1340 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1343
75c119af 1344 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1345
c10d9310 1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1347
a2a385d6 1348 return true;
832d11c5
IJ
1349}
1350
1351/* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
cf533ea5 1354static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1355{
775ffabf 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1357}
1358
1359/* Shifting pages past head area doesn't work */
cf533ea5 1360static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1361{
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363}
1364
1365/* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1369 struct tcp_sacktag_state *state,
832d11c5 1370 u32 start_seq, u32 end_seq,
a2a385d6 1371 bool dup_sack)
832d11c5
IJ
1372{
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1379
832d11c5
IJ
1380 /* Normally R but no L won't result in plain S */
1381 if (!dup_sack &&
9969ca5f 1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1383 goto fallback;
1384 if (!skb_can_shift(skb))
1385 goto fallback;
1386 /* This frame is about to be dropped (was ACKed). */
1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 goto fallback;
1389
1390 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1391 prev = skb_rb_prev(skb);
1392 if (!prev)
832d11c5 1393 goto fallback;
832d11c5
IJ
1394
1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 goto fallback;
1397
a643b5d4
MKL
1398 if (!tcp_skb_can_collapse_to(prev))
1399 goto fallback;
1400
832d11c5
IJ
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
775ffabf 1407 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
775ffabf 1412 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
775ffabf 1453 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
4648dc97
NC
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
832d11c5
IJ
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
f3319816 1472 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
75c119af
ED
1478 skb = skb_rb_next(prev);
1479 if (!skb)
832d11c5 1480 goto out;
832d11c5 1481
f0bc52f3 1482 if (!skb_can_shift(skb) ||
f0bc52f3 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1484 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
f3319816
ED
1490 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1491 len, mss, 0);
832d11c5
IJ
1492 }
1493
1494out:
832d11c5
IJ
1495 return prev;
1496
1497noop:
1498 return skb;
1499
1500fallback:
c10d9310 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1502 return NULL;
1503}
1504
68f8353b
IJ
1505static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
a1197f5a 1507 struct tcp_sacktag_state *state,
68f8353b 1508 u32 start_seq, u32 end_seq,
a2a385d6 1509 bool dup_sack_in)
68f8353b 1510{
832d11c5
IJ
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
75c119af 1514 skb_rbtree_walk_from(skb) {
68f8353b 1515 int in_sack = 0;
a2a385d6 1516 bool dup_sack = dup_sack_in;
68f8353b 1517
68f8353b
IJ
1518 /* queue is in-order => we can short-circuit the walk early */
1519 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1520 break;
1521
00db4124 1522 if (next_dup &&
68f8353b
IJ
1523 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1524 in_sack = tcp_match_skb_to_sack(sk, skb,
1525 next_dup->start_seq,
1526 next_dup->end_seq);
1527 if (in_sack > 0)
a2a385d6 1528 dup_sack = true;
68f8353b
IJ
1529 }
1530
832d11c5
IJ
1531 /* skb reference here is a bit tricky to get right, since
1532 * shifting can eat and free both this skb and the next,
1533 * so not even _safe variant of the loop is enough.
1534 */
1535 if (in_sack <= 0) {
a1197f5a
IJ
1536 tmp = tcp_shift_skb_data(sk, skb, state,
1537 start_seq, end_seq, dup_sack);
00db4124 1538 if (tmp) {
832d11c5
IJ
1539 if (tmp != skb) {
1540 skb = tmp;
1541 continue;
1542 }
1543
1544 in_sack = 0;
1545 } else {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 start_seq,
1548 end_seq);
1549 }
1550 }
1551
68f8353b
IJ
1552 if (unlikely(in_sack < 0))
1553 break;
1554
832d11c5 1555 if (in_sack) {
cc9a672e
NC
1556 TCP_SKB_CB(skb)->sacked =
1557 tcp_sacktag_one(sk,
1558 state,
1559 TCP_SKB_CB(skb)->sacked,
1560 TCP_SKB_CB(skb)->seq,
1561 TCP_SKB_CB(skb)->end_seq,
1562 dup_sack,
59c9af42 1563 tcp_skb_pcount(skb),
2fd66ffb 1564 tcp_skb_timestamp_us(skb));
b9f64820 1565 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1566 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1567 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1568
832d11c5
IJ
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1572 }
68f8353b
IJ
1573 }
1574 return skb;
1575}
1576
75c119af
ED
1577static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1578 struct tcp_sacktag_state *state,
1579 u32 seq)
1580{
1581 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1582 struct sk_buff *skb;
75c119af
ED
1583
1584 while (*p) {
1585 parent = *p;
1586 skb = rb_to_skb(parent);
1587 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1588 p = &parent->rb_left;
1589 continue;
1590 }
1591 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1592 p = &parent->rb_right;
1593 continue;
1594 }
75c119af
ED
1595 return skb;
1596 }
1597 return NULL;
1598}
1599
68f8353b 1600static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
68f8353b 1603{
75c119af
ED
1604 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1605 return skb;
d152a7d8 1606
75c119af 1607 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1608}
1609
1610static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 struct sock *sk,
1612 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1613 struct tcp_sacktag_state *state,
1614 u32 skip_to_seq)
68f8353b 1615{
51456b29 1616 if (!next_dup)
68f8353b
IJ
1617 return skb;
1618
1619 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 next_dup->start_seq, next_dup->end_seq,
1623 1);
68f8353b
IJ
1624 }
1625
1626 return skb;
1627}
1628
cf533ea5 1629static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1630{
1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1632}
1633
1da177e4 1634static int
cf533ea5 1635tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1636 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1637{
1638 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1639 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1642 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1643 struct tcp_sack_block *cache;
1644 struct sk_buff *skb;
4389dded 1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1646 int used_sacks;
a2a385d6 1647 bool found_dup_sack = false;
68f8353b 1648 int i, j;
fda03fbb 1649 int first_sack_index;
1da177e4 1650
196da974 1651 state->flag = 0;
737ff314 1652 state->reord = tp->snd_nxt;
a1197f5a 1653
737ff314 1654 if (!tp->sacked_out)
6859d494 1655 tcp_highest_sack_reset(sk);
1da177e4 1656
1ed83465 1657 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1658 num_sacks, prior_snd_una);
b9f64820 1659 if (found_dup_sack) {
196da974 1660 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1661 tp->delivered++; /* A spurious retransmission is delivered */
1662 }
6f74651a
BE
1663
1664 /* Eliminate too old ACKs, but take into
1665 * account more or less fresh ones, they can
1666 * contain valid SACK info.
1667 */
1668 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1669 return 0;
1670