]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bf0f6f24 IM |
2 | /* |
3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
4 | * | |
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]> | |
6 | * | |
7 | * Interactivity improvements by Mike Galbraith | |
8 | * (C) 2007 Mike Galbraith <[email protected]> | |
9 | * | |
10 | * Various enhancements by Dmitry Adamushko. | |
11 | * (C) 2007 Dmitry Adamushko <[email protected]> | |
12 | * | |
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
14 | * Copyright IBM Corporation, 2007 | |
15 | * Author: Srivatsa Vaddagiri <[email protected]> | |
16 | * | |
17 | * Scaled math optimizations by Thomas Gleixner | |
18 | * Copyright (C) 2007, Thomas Gleixner <[email protected]> | |
21805085 PZ |
19 | * |
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 | 22 | */ |
325ea10c | 23 | #include "sched.h" |
029632fb PZ |
24 | |
25 | #include <trace/events/sched.h> | |
26 | ||
bf0f6f24 | 27 | /* |
21805085 | 28 | * Targeted preemption latency for CPU-bound tasks: |
bf0f6f24 | 29 | * |
21805085 | 30 | * NOTE: this latency value is not the same as the concept of |
d274a4ce IM |
31 | * 'timeslice length' - timeslices in CFS are of variable length |
32 | * and have no persistent notion like in traditional, time-slice | |
33 | * based scheduling concepts. | |
bf0f6f24 | 34 | * |
d274a4ce IM |
35 | * (to see the precise effective timeslice length of your workload, |
36 | * run vmstat and monitor the context-switches (cs) field) | |
2b4d5b25 IM |
37 | * |
38 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 39 | */ |
2b4d5b25 IM |
40 | unsigned int sysctl_sched_latency = 6000000ULL; |
41 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | |
2bd8e6d4 | 42 | |
1983a922 CE |
43 | /* |
44 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
45 | * |
46 | * Options are: | |
2b4d5b25 IM |
47 | * |
48 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
49 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | |
50 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | |
51 | * | |
52 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 53 | */ |
2b4d5b25 | 54 | enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 55 | |
2bd8e6d4 | 56 | /* |
b2be5e96 | 57 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 58 | * |
864616ee | 59 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 60 | */ |
2b4d5b25 IM |
61 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
62 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | |
21805085 PZ |
63 | |
64 | /* | |
2b4d5b25 | 65 | * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity |
b2be5e96 | 66 | */ |
0bf377bb | 67 | static unsigned int sched_nr_latency = 8; |
b2be5e96 PZ |
68 | |
69 | /* | |
2bba22c5 | 70 | * After fork, child runs first. If set to 0 (default) then |
b2be5e96 | 71 | * parent will (try to) run first. |
21805085 | 72 | */ |
2bba22c5 | 73 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
bf0f6f24 | 74 | |
bf0f6f24 IM |
75 | /* |
76 | * SCHED_OTHER wake-up granularity. | |
bf0f6f24 IM |
77 | * |
78 | * This option delays the preemption effects of decoupled workloads | |
79 | * and reduces their over-scheduling. Synchronous workloads will still | |
80 | * have immediate wakeup/sleep latencies. | |
2b4d5b25 IM |
81 | * |
82 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 83 | */ |
2b4d5b25 IM |
84 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
85 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | |
bf0f6f24 | 86 | |
2b4d5b25 | 87 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 88 | |
afe06efd TC |
89 | #ifdef CONFIG_SMP |
90 | /* | |
97fb7a0a | 91 | * For asym packing, by default the lower numbered CPU has higher priority. |
afe06efd TC |
92 | */ |
93 | int __weak arch_asym_cpu_priority(int cpu) | |
94 | { | |
95 | return -cpu; | |
96 | } | |
97 | #endif | |
98 | ||
ec12cb7f PT |
99 | #ifdef CONFIG_CFS_BANDWIDTH |
100 | /* | |
101 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
102 | * each time a cfs_rq requests quota. | |
103 | * | |
104 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
105 | * to consumption or the quota being specified to be smaller than the slice) | |
106 | * we will always only issue the remaining available time. | |
107 | * | |
2b4d5b25 IM |
108 | * (default: 5 msec, units: microseconds) |
109 | */ | |
110 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | |
ec12cb7f PT |
111 | #endif |
112 | ||
3273163c MR |
113 | /* |
114 | * The margin used when comparing utilization with CPU capacity: | |
893c5d22 | 115 | * util * margin < capacity * 1024 |
2b4d5b25 IM |
116 | * |
117 | * (default: ~20%) | |
3273163c | 118 | */ |
2b4d5b25 | 119 | unsigned int capacity_margin = 1280; |
3273163c | 120 | |
8527632d PG |
121 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
122 | { | |
123 | lw->weight += inc; | |
124 | lw->inv_weight = 0; | |
125 | } | |
126 | ||
127 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
128 | { | |
129 | lw->weight -= dec; | |
130 | lw->inv_weight = 0; | |
131 | } | |
132 | ||
133 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
134 | { | |
135 | lw->weight = w; | |
136 | lw->inv_weight = 0; | |
137 | } | |
138 | ||
029632fb PZ |
139 | /* |
140 | * Increase the granularity value when there are more CPUs, | |
141 | * because with more CPUs the 'effective latency' as visible | |
142 | * to users decreases. But the relationship is not linear, | |
143 | * so pick a second-best guess by going with the log2 of the | |
144 | * number of CPUs. | |
145 | * | |
146 | * This idea comes from the SD scheduler of Con Kolivas: | |
147 | */ | |
58ac93e4 | 148 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 149 | { |
58ac93e4 | 150 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
151 | unsigned int factor; |
152 | ||
153 | switch (sysctl_sched_tunable_scaling) { | |
154 | case SCHED_TUNABLESCALING_NONE: | |
155 | factor = 1; | |
156 | break; | |
157 | case SCHED_TUNABLESCALING_LINEAR: | |
158 | factor = cpus; | |
159 | break; | |
160 | case SCHED_TUNABLESCALING_LOG: | |
161 | default: | |
162 | factor = 1 + ilog2(cpus); | |
163 | break; | |
164 | } | |
165 | ||
166 | return factor; | |
167 | } | |
168 | ||
169 | static void update_sysctl(void) | |
170 | { | |
171 | unsigned int factor = get_update_sysctl_factor(); | |
172 | ||
173 | #define SET_SYSCTL(name) \ | |
174 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
175 | SET_SYSCTL(sched_min_granularity); | |
176 | SET_SYSCTL(sched_latency); | |
177 | SET_SYSCTL(sched_wakeup_granularity); | |
178 | #undef SET_SYSCTL | |
179 | } | |
180 | ||
181 | void sched_init_granularity(void) | |
182 | { | |
183 | update_sysctl(); | |
184 | } | |
185 | ||
9dbdb155 | 186 | #define WMULT_CONST (~0U) |
029632fb PZ |
187 | #define WMULT_SHIFT 32 |
188 | ||
9dbdb155 PZ |
189 | static void __update_inv_weight(struct load_weight *lw) |
190 | { | |
191 | unsigned long w; | |
192 | ||
193 | if (likely(lw->inv_weight)) | |
194 | return; | |
195 | ||
196 | w = scale_load_down(lw->weight); | |
197 | ||
198 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
199 | lw->inv_weight = 1; | |
200 | else if (unlikely(!w)) | |
201 | lw->inv_weight = WMULT_CONST; | |
202 | else | |
203 | lw->inv_weight = WMULT_CONST / w; | |
204 | } | |
029632fb PZ |
205 | |
206 | /* | |
9dbdb155 PZ |
207 | * delta_exec * weight / lw.weight |
208 | * OR | |
209 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
210 | * | |
1c3de5e1 | 211 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
212 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
213 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
214 | * | |
215 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
216 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 217 | */ |
9dbdb155 | 218 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 219 | { |
9dbdb155 PZ |
220 | u64 fact = scale_load_down(weight); |
221 | int shift = WMULT_SHIFT; | |
029632fb | 222 | |
9dbdb155 | 223 | __update_inv_weight(lw); |
029632fb | 224 | |
9dbdb155 PZ |
225 | if (unlikely(fact >> 32)) { |
226 | while (fact >> 32) { | |
227 | fact >>= 1; | |
228 | shift--; | |
229 | } | |
029632fb PZ |
230 | } |
231 | ||
9dbdb155 PZ |
232 | /* hint to use a 32x32->64 mul */ |
233 | fact = (u64)(u32)fact * lw->inv_weight; | |
029632fb | 234 | |
9dbdb155 PZ |
235 | while (fact >> 32) { |
236 | fact >>= 1; | |
237 | shift--; | |
238 | } | |
029632fb | 239 | |
9dbdb155 | 240 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
241 | } |
242 | ||
243 | ||
244 | const struct sched_class fair_sched_class; | |
a4c2f00f | 245 | |
bf0f6f24 IM |
246 | /************************************************************** |
247 | * CFS operations on generic schedulable entities: | |
248 | */ | |
249 | ||
62160e3f | 250 | #ifdef CONFIG_FAIR_GROUP_SCHED |
bf0f6f24 | 251 | |
62160e3f | 252 | /* cpu runqueue to which this cfs_rq is attached */ |
bf0f6f24 IM |
253 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
254 | { | |
62160e3f | 255 | return cfs_rq->rq; |
bf0f6f24 IM |
256 | } |
257 | ||
8f48894f PZ |
258 | static inline struct task_struct *task_of(struct sched_entity *se) |
259 | { | |
9148a3a1 | 260 | SCHED_WARN_ON(!entity_is_task(se)); |
8f48894f PZ |
261 | return container_of(se, struct task_struct, se); |
262 | } | |
263 | ||
b758149c PZ |
264 | /* Walk up scheduling entities hierarchy */ |
265 | #define for_each_sched_entity(se) \ | |
266 | for (; se; se = se->parent) | |
267 | ||
268 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
269 | { | |
270 | return p->se.cfs_rq; | |
271 | } | |
272 | ||
273 | /* runqueue on which this entity is (to be) queued */ | |
274 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | |
275 | { | |
276 | return se->cfs_rq; | |
277 | } | |
278 | ||
279 | /* runqueue "owned" by this group */ | |
280 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
281 | { | |
282 | return grp->my_q; | |
283 | } | |
284 | ||
3d4b47b4 PZ |
285 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
286 | { | |
287 | if (!cfs_rq->on_list) { | |
9c2791f9 VG |
288 | struct rq *rq = rq_of(cfs_rq); |
289 | int cpu = cpu_of(rq); | |
67e86250 PT |
290 | /* |
291 | * Ensure we either appear before our parent (if already | |
292 | * enqueued) or force our parent to appear after us when it is | |
9c2791f9 VG |
293 | * enqueued. The fact that we always enqueue bottom-up |
294 | * reduces this to two cases and a special case for the root | |
295 | * cfs_rq. Furthermore, it also means that we will always reset | |
296 | * tmp_alone_branch either when the branch is connected | |
297 | * to a tree or when we reach the beg of the tree | |
67e86250 PT |
298 | */ |
299 | if (cfs_rq->tg->parent && | |
9c2791f9 VG |
300 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { |
301 | /* | |
302 | * If parent is already on the list, we add the child | |
303 | * just before. Thanks to circular linked property of | |
304 | * the list, this means to put the child at the tail | |
305 | * of the list that starts by parent. | |
306 | */ | |
307 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
308 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
309 | /* | |
310 | * The branch is now connected to its tree so we can | |
311 | * reset tmp_alone_branch to the beginning of the | |
312 | * list. | |
313 | */ | |
314 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
315 | } else if (!cfs_rq->tg->parent) { | |
316 | /* | |
317 | * cfs rq without parent should be put | |
318 | * at the tail of the list. | |
319 | */ | |
67e86250 | 320 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
9c2791f9 VG |
321 | &rq->leaf_cfs_rq_list); |
322 | /* | |
323 | * We have reach the beg of a tree so we can reset | |
324 | * tmp_alone_branch to the beginning of the list. | |
325 | */ | |
326 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
327 | } else { | |
328 | /* | |
329 | * The parent has not already been added so we want to | |
330 | * make sure that it will be put after us. | |
331 | * tmp_alone_branch points to the beg of the branch | |
332 | * where we will add parent. | |
333 | */ | |
334 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | |
335 | rq->tmp_alone_branch); | |
336 | /* | |
337 | * update tmp_alone_branch to points to the new beg | |
338 | * of the branch | |
339 | */ | |
340 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
67e86250 | 341 | } |
3d4b47b4 PZ |
342 | |
343 | cfs_rq->on_list = 1; | |
344 | } | |
345 | } | |
346 | ||
347 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
348 | { | |
349 | if (cfs_rq->on_list) { | |
350 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | |
351 | cfs_rq->on_list = 0; | |
352 | } | |
353 | } | |
354 | ||
b758149c | 355 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
a9e7f654 TH |
356 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
357 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
358 | leaf_cfs_rq_list) | |
b758149c PZ |
359 | |
360 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 361 | static inline struct cfs_rq * |
b758149c PZ |
362 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
363 | { | |
364 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 365 | return se->cfs_rq; |
b758149c | 366 | |
fed14d45 | 367 | return NULL; |
b758149c PZ |
368 | } |
369 | ||
370 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
371 | { | |
372 | return se->parent; | |
373 | } | |
374 | ||
464b7527 PZ |
375 | static void |
376 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
377 | { | |
378 | int se_depth, pse_depth; | |
379 | ||
380 | /* | |
381 | * preemption test can be made between sibling entities who are in the | |
382 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
383 | * both tasks until we find their ancestors who are siblings of common | |
384 | * parent. | |
385 | */ | |
386 | ||
387 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
388 | se_depth = (*se)->depth; |
389 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
390 | |
391 | while (se_depth > pse_depth) { | |
392 | se_depth--; | |
393 | *se = parent_entity(*se); | |
394 | } | |
395 | ||
396 | while (pse_depth > se_depth) { | |
397 | pse_depth--; | |
398 | *pse = parent_entity(*pse); | |
399 | } | |
400 | ||
401 | while (!is_same_group(*se, *pse)) { | |
402 | *se = parent_entity(*se); | |
403 | *pse = parent_entity(*pse); | |
404 | } | |
405 | } | |
406 | ||
8f48894f PZ |
407 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
408 | ||
409 | static inline struct task_struct *task_of(struct sched_entity *se) | |
410 | { | |
411 | return container_of(se, struct task_struct, se); | |
412 | } | |
bf0f6f24 | 413 | |
62160e3f IM |
414 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
415 | { | |
416 | return container_of(cfs_rq, struct rq, cfs); | |
bf0f6f24 IM |
417 | } |
418 | ||
bf0f6f24 | 419 | |
b758149c PZ |
420 | #define for_each_sched_entity(se) \ |
421 | for (; se; se = NULL) | |
bf0f6f24 | 422 | |
b758149c | 423 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
bf0f6f24 | 424 | { |
b758149c | 425 | return &task_rq(p)->cfs; |
bf0f6f24 IM |
426 | } |
427 | ||
b758149c PZ |
428 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
429 | { | |
430 | struct task_struct *p = task_of(se); | |
431 | struct rq *rq = task_rq(p); | |
432 | ||
433 | return &rq->cfs; | |
434 | } | |
435 | ||
436 | /* runqueue "owned" by this group */ | |
437 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
438 | { | |
439 | return NULL; | |
440 | } | |
441 | ||
3d4b47b4 PZ |
442 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
443 | { | |
444 | } | |
445 | ||
446 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
447 | { | |
448 | } | |
449 | ||
a9e7f654 TH |
450 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
451 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 452 | |
b758149c PZ |
453 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
454 | { | |
455 | return NULL; | |
456 | } | |
457 | ||
464b7527 PZ |
458 | static inline void |
459 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
460 | { | |
461 | } | |
462 | ||
b758149c PZ |
463 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
464 | ||
6c16a6dc | 465 | static __always_inline |
9dbdb155 | 466 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
467 | |
468 | /************************************************************** | |
469 | * Scheduling class tree data structure manipulation methods: | |
470 | */ | |
471 | ||
1bf08230 | 472 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 473 | { |
1bf08230 | 474 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 475 | if (delta > 0) |
1bf08230 | 476 | max_vruntime = vruntime; |
02e0431a | 477 | |
1bf08230 | 478 | return max_vruntime; |
02e0431a PZ |
479 | } |
480 | ||
0702e3eb | 481 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
482 | { |
483 | s64 delta = (s64)(vruntime - min_vruntime); | |
484 | if (delta < 0) | |
485 | min_vruntime = vruntime; | |
486 | ||
487 | return min_vruntime; | |
488 | } | |
489 | ||
54fdc581 FC |
490 | static inline int entity_before(struct sched_entity *a, |
491 | struct sched_entity *b) | |
492 | { | |
493 | return (s64)(a->vruntime - b->vruntime) < 0; | |
494 | } | |
495 | ||
1af5f730 PZ |
496 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
497 | { | |
b60205c7 | 498 | struct sched_entity *curr = cfs_rq->curr; |
bfb06889 | 499 | struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); |
b60205c7 | 500 | |
1af5f730 PZ |
501 | u64 vruntime = cfs_rq->min_vruntime; |
502 | ||
b60205c7 PZ |
503 | if (curr) { |
504 | if (curr->on_rq) | |
505 | vruntime = curr->vruntime; | |
506 | else | |
507 | curr = NULL; | |
508 | } | |
1af5f730 | 509 | |
bfb06889 DB |
510 | if (leftmost) { /* non-empty tree */ |
511 | struct sched_entity *se; | |
512 | se = rb_entry(leftmost, struct sched_entity, run_node); | |
1af5f730 | 513 | |
b60205c7 | 514 | if (!curr) |
1af5f730 PZ |
515 | vruntime = se->vruntime; |
516 | else | |
517 | vruntime = min_vruntime(vruntime, se->vruntime); | |
518 | } | |
519 | ||
1bf08230 | 520 | /* ensure we never gain time by being placed backwards. */ |
1af5f730 | 521 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
3fe1698b PZ |
522 | #ifndef CONFIG_64BIT |
523 | smp_wmb(); | |
524 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
525 | #endif | |
1af5f730 PZ |
526 | } |
527 | ||
bf0f6f24 IM |
528 | /* |
529 | * Enqueue an entity into the rb-tree: | |
530 | */ | |
0702e3eb | 531 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 532 | { |
bfb06889 | 533 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; |
bf0f6f24 IM |
534 | struct rb_node *parent = NULL; |
535 | struct sched_entity *entry; | |
bfb06889 | 536 | bool leftmost = true; |
bf0f6f24 IM |
537 | |
538 | /* | |
539 | * Find the right place in the rbtree: | |
540 | */ | |
541 | while (*link) { | |
542 | parent = *link; | |
543 | entry = rb_entry(parent, struct sched_entity, run_node); | |
544 | /* | |
545 | * We dont care about collisions. Nodes with | |
546 | * the same key stay together. | |
547 | */ | |
2bd2d6f2 | 548 | if (entity_before(se, entry)) { |
bf0f6f24 IM |
549 | link = &parent->rb_left; |
550 | } else { | |
551 | link = &parent->rb_right; | |
bfb06889 | 552 | leftmost = false; |
bf0f6f24 IM |
553 | } |
554 | } | |
555 | ||
bf0f6f24 | 556 | rb_link_node(&se->run_node, parent, link); |
bfb06889 DB |
557 | rb_insert_color_cached(&se->run_node, |
558 | &cfs_rq->tasks_timeline, leftmost); | |
bf0f6f24 IM |
559 | } |
560 | ||
0702e3eb | 561 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 562 | { |
bfb06889 | 563 | rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); |
bf0f6f24 IM |
564 | } |
565 | ||
029632fb | 566 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 567 | { |
bfb06889 | 568 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
f4b6755f PZ |
569 | |
570 | if (!left) | |
571 | return NULL; | |
572 | ||
573 | return rb_entry(left, struct sched_entity, run_node); | |
bf0f6f24 IM |
574 | } |
575 | ||
ac53db59 RR |
576 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) |
577 | { | |
578 | struct rb_node *next = rb_next(&se->run_node); | |
579 | ||
580 | if (!next) | |
581 | return NULL; | |
582 | ||
583 | return rb_entry(next, struct sched_entity, run_node); | |
584 | } | |
585 | ||
586 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 587 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 588 | { |
bfb06889 | 589 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
aeb73b04 | 590 | |
70eee74b BS |
591 | if (!last) |
592 | return NULL; | |
7eee3e67 IM |
593 | |
594 | return rb_entry(last, struct sched_entity, run_node); | |
aeb73b04 PZ |
595 | } |
596 | ||
bf0f6f24 IM |
597 | /************************************************************** |
598 | * Scheduling class statistics methods: | |
599 | */ | |
600 | ||
acb4a848 | 601 | int sched_proc_update_handler(struct ctl_table *table, int write, |
8d65af78 | 602 | void __user *buffer, size_t *lenp, |
b2be5e96 PZ |
603 | loff_t *ppos) |
604 | { | |
8d65af78 | 605 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
58ac93e4 | 606 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 PZ |
607 | |
608 | if (ret || !write) | |
609 | return ret; | |
610 | ||
611 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | |
612 | sysctl_sched_min_granularity); | |
613 | ||
acb4a848 CE |
614 | #define WRT_SYSCTL(name) \ |
615 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
616 | WRT_SYSCTL(sched_min_granularity); | |
617 | WRT_SYSCTL(sched_latency); | |
618 | WRT_SYSCTL(sched_wakeup_granularity); | |
acb4a848 CE |
619 | #undef WRT_SYSCTL |
620 | ||
b2be5e96 PZ |
621 | return 0; |
622 | } | |
623 | #endif | |
647e7cac | 624 | |
a7be37ac | 625 | /* |
f9c0b095 | 626 | * delta /= w |
a7be37ac | 627 | */ |
9dbdb155 | 628 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
a7be37ac | 629 | { |
f9c0b095 | 630 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
9dbdb155 | 631 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
a7be37ac PZ |
632 | |
633 | return delta; | |
634 | } | |
635 | ||
647e7cac IM |
636 | /* |
637 | * The idea is to set a period in which each task runs once. | |
638 | * | |
532b1858 | 639 | * When there are too many tasks (sched_nr_latency) we have to stretch |
647e7cac IM |
640 | * this period because otherwise the slices get too small. |
641 | * | |
642 | * p = (nr <= nl) ? l : l*nr/nl | |
643 | */ | |
4d78e7b6 PZ |
644 | static u64 __sched_period(unsigned long nr_running) |
645 | { | |
8e2b0bf3 BF |
646 | if (unlikely(nr_running > sched_nr_latency)) |
647 | return nr_running * sysctl_sched_min_granularity; | |
648 | else | |
649 | return sysctl_sched_latency; | |
4d78e7b6 PZ |
650 | } |
651 | ||
647e7cac IM |
652 | /* |
653 | * We calculate the wall-time slice from the period by taking a part | |
654 | * proportional to the weight. | |
655 | * | |
f9c0b095 | 656 | * s = p*P[w/rw] |
647e7cac | 657 | */ |
6d0f0ebd | 658 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 659 | { |
0a582440 | 660 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
f9c0b095 | 661 | |
0a582440 | 662 | for_each_sched_entity(se) { |
6272d68c | 663 | struct load_weight *load; |
3104bf03 | 664 | struct load_weight lw; |
6272d68c LM |
665 | |
666 | cfs_rq = cfs_rq_of(se); | |
667 | load = &cfs_rq->load; | |
f9c0b095 | 668 | |
0a582440 | 669 | if (unlikely(!se->on_rq)) { |
3104bf03 | 670 | lw = cfs_rq->load; |
0a582440 MG |
671 | |
672 | update_load_add(&lw, se->load.weight); | |
673 | load = &lw; | |
674 | } | |
9dbdb155 | 675 | slice = __calc_delta(slice, se->load.weight, load); |
0a582440 MG |
676 | } |
677 | return slice; | |
bf0f6f24 IM |
678 | } |
679 | ||
647e7cac | 680 | /* |
660cc00f | 681 | * We calculate the vruntime slice of a to-be-inserted task. |
647e7cac | 682 | * |
f9c0b095 | 683 | * vs = s/w |
647e7cac | 684 | */ |
f9c0b095 | 685 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
67e9fb2a | 686 | { |
f9c0b095 | 687 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
a7be37ac PZ |
688 | } |
689 | ||
a75cdaa9 | 690 | #ifdef CONFIG_SMP |
c0796298 | 691 | #include "pelt.h" |
283e2ed3 PZ |
692 | #include "sched-pelt.h" |
693 | ||
772bd008 | 694 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee | 695 | static unsigned long task_h_load(struct task_struct *p); |
3b1baa64 | 696 | static unsigned long capacity_of(int cpu); |
fb13c7ee | 697 | |
540247fb YD |
698 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
699 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 700 | { |
540247fb | 701 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 702 | |
f207934f PZ |
703 | memset(sa, 0, sizeof(*sa)); |
704 | ||
b5a9b340 VG |
705 | /* |
706 | * Tasks are intialized with full load to be seen as heavy tasks until | |
707 | * they get a chance to stabilize to their real load level. | |
708 | * Group entities are intialized with zero load to reflect the fact that | |
709 | * nothing has been attached to the task group yet. | |
710 | */ | |
711 | if (entity_is_task(se)) | |
1ea6c46a | 712 | sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); |
1ea6c46a | 713 | |
f207934f PZ |
714 | se->runnable_weight = se->load.weight; |
715 | ||
9d89c257 | 716 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 717 | } |
7ea241af | 718 | |
7dc603c9 | 719 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); |
df217913 | 720 | static void attach_entity_cfs_rq(struct sched_entity *se); |
7dc603c9 | 721 | |
2b8c41da YD |
722 | /* |
723 | * With new tasks being created, their initial util_avgs are extrapolated | |
724 | * based on the cfs_rq's current util_avg: | |
725 | * | |
726 | * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | |
727 | * | |
728 | * However, in many cases, the above util_avg does not give a desired | |
729 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
730 | * as when the series is a harmonic series. | |
731 | * | |
732 | * To solve this problem, we also cap the util_avg of successive tasks to | |
733 | * only 1/2 of the left utilization budget: | |
734 | * | |
8fe5c5a9 | 735 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
2b8c41da | 736 | * |
8fe5c5a9 | 737 | * where n denotes the nth task and cpu_scale the CPU capacity. |
2b8c41da | 738 | * |
8fe5c5a9 QP |
739 | * For example, for a CPU with 1024 of capacity, a simplest series from |
740 | * the beginning would be like: | |
2b8c41da YD |
741 | * |
742 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
743 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
744 | * | |
745 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
746 | * if util_avg > util_avg_cap. | |
747 | */ | |
748 | void post_init_entity_util_avg(struct sched_entity *se) | |
749 | { | |
750 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
751 | struct sched_avg *sa = &se->avg; | |
8fe5c5a9 QP |
752 | long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); |
753 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; | |
2b8c41da YD |
754 | |
755 | if (cap > 0) { | |
756 | if (cfs_rq->avg.util_avg != 0) { | |
757 | sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; | |
758 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | |
759 | ||
760 | if (sa->util_avg > cap) | |
761 | sa->util_avg = cap; | |
762 | } else { | |
763 | sa->util_avg = cap; | |
764 | } | |
2b8c41da | 765 | } |
7dc603c9 PZ |
766 | |
767 | if (entity_is_task(se)) { | |
768 | struct task_struct *p = task_of(se); | |
769 | if (p->sched_class != &fair_sched_class) { | |
770 | /* | |
771 | * For !fair tasks do: | |
772 | * | |
3a123bbb | 773 | update_cfs_rq_load_avg(now, cfs_rq); |
ea14b57e | 774 | attach_entity_load_avg(cfs_rq, se, 0); |
7dc603c9 PZ |
775 | switched_from_fair(rq, p); |
776 | * | |
777 | * such that the next switched_to_fair() has the | |
778 | * expected state. | |
779 | */ | |
df217913 | 780 | se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); |
7dc603c9 PZ |
781 | return; |
782 | } | |
783 | } | |
784 | ||
df217913 | 785 | attach_entity_cfs_rq(se); |
2b8c41da YD |
786 | } |
787 | ||
7dc603c9 | 788 | #else /* !CONFIG_SMP */ |
540247fb | 789 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
790 | { |
791 | } | |
2b8c41da YD |
792 | void post_init_entity_util_avg(struct sched_entity *se) |
793 | { | |
794 | } | |
3d30544f PZ |
795 | static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
796 | { | |
797 | } | |
7dc603c9 | 798 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 799 | |
bf0f6f24 | 800 | /* |
9dbdb155 | 801 | * Update the current task's runtime statistics. |
bf0f6f24 | 802 | */ |
b7cc0896 | 803 | static void update_curr(struct cfs_rq *cfs_rq) |
bf0f6f24 | 804 | { |
429d43bc | 805 | struct sched_entity *curr = cfs_rq->curr; |
78becc27 | 806 | u64 now = rq_clock_task(rq_of(cfs_rq)); |
9dbdb155 | 807 | u64 delta_exec; |
bf0f6f24 IM |
808 | |
809 | if (unlikely(!curr)) | |
810 | return; | |
811 | ||
9dbdb155 PZ |
812 | delta_exec = now - curr->exec_start; |
813 | if (unlikely((s64)delta_exec <= 0)) | |
34f28ecd | 814 | return; |
bf0f6f24 | 815 | |
8ebc91d9 | 816 | curr->exec_start = now; |
d842de87 | 817 | |
9dbdb155 PZ |
818 | schedstat_set(curr->statistics.exec_max, |
819 | max(delta_exec, curr->statistics.exec_max)); | |
820 | ||
821 | curr->sum_exec_runtime += delta_exec; | |
ae92882e | 822 | schedstat_add(cfs_rq->exec_clock, delta_exec); |
9dbdb155 PZ |
823 | |
824 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
825 | update_min_vruntime(cfs_rq); | |
826 | ||
d842de87 SV |
827 | if (entity_is_task(curr)) { |
828 | struct task_struct *curtask = task_of(curr); | |
829 | ||
f977bb49 | 830 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
d2cc5ed6 | 831 | cgroup_account_cputime(curtask, delta_exec); |
f06febc9 | 832 | account_group_exec_runtime(curtask, delta_exec); |
d842de87 | 833 | } |
ec12cb7f PT |
834 | |
835 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
bf0f6f24 IM |
836 | } |
837 | ||
6e998916 SG |
838 | static void update_curr_fair(struct rq *rq) |
839 | { | |
840 | update_curr(cfs_rq_of(&rq->curr->se)); | |
841 | } | |
842 | ||
bf0f6f24 | 843 | static inline void |
5870db5b | 844 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 845 | { |
4fa8d299 JP |
846 | u64 wait_start, prev_wait_start; |
847 | ||
848 | if (!schedstat_enabled()) | |
849 | return; | |
850 | ||
851 | wait_start = rq_clock(rq_of(cfs_rq)); | |
852 | prev_wait_start = schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
853 | |
854 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && | |
4fa8d299 JP |
855 | likely(wait_start > prev_wait_start)) |
856 | wait_start -= prev_wait_start; | |
3ea94de1 | 857 | |
2ed41a55 | 858 | __schedstat_set(se->statistics.wait_start, wait_start); |
bf0f6f24 IM |
859 | } |
860 | ||
4fa8d299 | 861 | static inline void |
3ea94de1 JP |
862 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
863 | { | |
864 | struct task_struct *p; | |
cb251765 MG |
865 | u64 delta; |
866 | ||
4fa8d299 JP |
867 | if (!schedstat_enabled()) |
868 | return; | |
869 | ||
870 | delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
871 | |
872 | if (entity_is_task(se)) { | |
873 | p = task_of(se); | |
874 | if (task_on_rq_migrating(p)) { | |
875 | /* | |
876 | * Preserve migrating task's wait time so wait_start | |
877 | * time stamp can be adjusted to accumulate wait time | |
878 | * prior to migration. | |
879 | */ | |
2ed41a55 | 880 | __schedstat_set(se->statistics.wait_start, delta); |
3ea94de1 JP |
881 | return; |
882 | } | |
883 | trace_sched_stat_wait(p, delta); | |
884 | } | |
885 | ||
2ed41a55 | 886 | __schedstat_set(se->statistics.wait_max, |
4fa8d299 | 887 | max(schedstat_val(se->statistics.wait_max), delta)); |
2ed41a55 PZ |
888 | __schedstat_inc(se->statistics.wait_count); |
889 | __schedstat_add(se->statistics.wait_sum, delta); | |
890 | __schedstat_set(se->statistics.wait_start, 0); | |
3ea94de1 | 891 | } |
3ea94de1 | 892 | |
4fa8d299 | 893 | static inline void |
1a3d027c JP |
894 | update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
895 | { | |
896 | struct task_struct *tsk = NULL; | |
4fa8d299 JP |
897 | u64 sleep_start, block_start; |
898 | ||
899 | if (!schedstat_enabled()) | |
900 | return; | |
901 | ||
902 | sleep_start = schedstat_val(se->statistics.sleep_start); | |
903 | block_start = schedstat_val(se->statistics.block_start); | |
1a3d027c JP |
904 | |
905 | if (entity_is_task(se)) | |
906 | tsk = task_of(se); | |
907 | ||
4fa8d299 JP |
908 | if (sleep_start) { |
909 | u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; | |
1a3d027c JP |
910 | |
911 | if ((s64)delta < 0) | |
912 | delta = 0; | |
913 | ||
4fa8d299 | 914 | if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) |
2ed41a55 | 915 | __schedstat_set(se->statistics.sleep_max, delta); |
1a3d027c | 916 | |
2ed41a55 PZ |
917 | __schedstat_set(se->statistics.sleep_start, 0); |
918 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
919 | |
920 | if (tsk) { | |
921 | account_scheduler_latency(tsk, delta >> 10, 1); | |
922 | trace_sched_stat_sleep(tsk, delta); | |
923 | } | |
924 | } | |
4fa8d299 JP |
925 | if (block_start) { |
926 | u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; | |
1a3d027c JP |
927 | |
928 | if ((s64)delta < 0) | |
929 | delta = 0; | |
930 | ||
4fa8d299 | 931 | if (unlikely(delta > schedstat_val(se->statistics.block_max))) |
2ed41a55 | 932 | __schedstat_set(se->statistics.block_max, delta); |
1a3d027c | 933 | |
2ed41a55 PZ |
934 | __schedstat_set(se->statistics.block_start, 0); |
935 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
936 | |
937 | if (tsk) { | |
938 | if (tsk->in_iowait) { | |
2ed41a55 PZ |
939 | __schedstat_add(se->statistics.iowait_sum, delta); |
940 | __schedstat_inc(se->statistics.iowait_count); | |
1a3d027c JP |
941 | trace_sched_stat_iowait(tsk, delta); |
942 | } | |
943 | ||
944 | trace_sched_stat_blocked(tsk, delta); | |
945 | ||
946 | /* | |
947 | * Blocking time is in units of nanosecs, so shift by | |
948 | * 20 to get a milliseconds-range estimation of the | |
949 | * amount of time that the task spent sleeping: | |
950 | */ | |
951 | if (unlikely(prof_on == SLEEP_PROFILING)) { | |
952 | profile_hits(SLEEP_PROFILING, | |
953 | (void *)get_wchan(tsk), | |
954 | delta >> 20); | |
955 | } | |
956 | account_scheduler_latency(tsk, delta >> 10, 0); | |
957 | } | |
958 | } | |
3ea94de1 | 959 | } |
3ea94de1 | 960 | |
bf0f6f24 IM |
961 | /* |
962 | * Task is being enqueued - update stats: | |
963 | */ | |
cb251765 | 964 | static inline void |
1a3d027c | 965 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 966 | { |
4fa8d299 JP |
967 | if (!schedstat_enabled()) |
968 | return; | |
969 | ||
bf0f6f24 IM |
970 | /* |
971 | * Are we enqueueing a waiting task? (for current tasks | |
972 | * a dequeue/enqueue event is a NOP) | |
973 | */ | |
429d43bc | 974 | if (se != cfs_rq->curr) |
5870db5b | 975 | update_stats_wait_start(cfs_rq, se); |
1a3d027c JP |
976 | |
977 | if (flags & ENQUEUE_WAKEUP) | |
978 | update_stats_enqueue_sleeper(cfs_rq, se); | |
bf0f6f24 IM |
979 | } |
980 | ||
bf0f6f24 | 981 | static inline void |
cb251765 | 982 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 983 | { |
4fa8d299 JP |
984 | |
985 | if (!schedstat_enabled()) | |
986 | return; | |
987 | ||
bf0f6f24 IM |
988 | /* |
989 | * Mark the end of the wait period if dequeueing a | |
990 | * waiting task: | |
991 | */ | |
429d43bc | 992 | if (se != cfs_rq->curr) |
9ef0a961 | 993 | update_stats_wait_end(cfs_rq, se); |
cb251765 | 994 | |
4fa8d299 JP |
995 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
996 | struct task_struct *tsk = task_of(se); | |
cb251765 | 997 | |
4fa8d299 | 998 | if (tsk->state & TASK_INTERRUPTIBLE) |
2ed41a55 | 999 | __schedstat_set(se->statistics.sleep_start, |
4fa8d299 JP |
1000 | rq_clock(rq_of(cfs_rq))); |
1001 | if (tsk->state & TASK_UNINTERRUPTIBLE) | |
2ed41a55 | 1002 | __schedstat_set(se->statistics.block_start, |
4fa8d299 | 1003 | rq_clock(rq_of(cfs_rq))); |
cb251765 | 1004 | } |
cb251765 MG |
1005 | } |
1006 | ||
bf0f6f24 IM |
1007 | /* |
1008 | * We are picking a new current task - update its stats: | |
1009 | */ | |
1010 | static inline void | |
79303e9e | 1011 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1012 | { |
1013 | /* | |
1014 | * We are starting a new run period: | |
1015 | */ | |
78becc27 | 1016 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1017 | } |
1018 | ||
bf0f6f24 IM |
1019 | /************************************************** |
1020 | * Scheduling class queueing methods: | |
1021 | */ | |
1022 | ||
cbee9f88 PZ |
1023 | #ifdef CONFIG_NUMA_BALANCING |
1024 | /* | |
598f0ec0 MG |
1025 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1026 | * calculated based on the tasks virtual memory size and | |
1027 | * numa_balancing_scan_size. | |
cbee9f88 | 1028 | */ |
598f0ec0 MG |
1029 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1030 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1031 | |
1032 | /* Portion of address space to scan in MB */ | |
1033 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1034 | |
4b96a29b PZ |
1035 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1036 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1037 | ||
b5dd77c8 RR |
1038 | struct numa_group { |
1039 | atomic_t refcount; | |
1040 | ||
1041 | spinlock_t lock; /* nr_tasks, tasks */ | |
1042 | int nr_tasks; | |
1043 | pid_t gid; | |
1044 | int active_nodes; | |
1045 | ||
1046 | struct rcu_head rcu; | |
1047 | unsigned long total_faults; | |
1048 | unsigned long max_faults_cpu; | |
1049 | /* | |
1050 | * Faults_cpu is used to decide whether memory should move | |
1051 | * towards the CPU. As a consequence, these stats are weighted | |
1052 | * more by CPU use than by memory faults. | |
1053 | */ | |
1054 | unsigned long *faults_cpu; | |
1055 | unsigned long faults[0]; | |
1056 | }; | |
1057 | ||
1058 | static inline unsigned long group_faults_priv(struct numa_group *ng); | |
1059 | static inline unsigned long group_faults_shared(struct numa_group *ng); | |
1060 | ||
598f0ec0 MG |
1061 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1062 | { | |
1063 | unsigned long rss = 0; | |
1064 | unsigned long nr_scan_pages; | |
1065 | ||
1066 | /* | |
1067 | * Calculations based on RSS as non-present and empty pages are skipped | |
1068 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1069 | * on resident pages | |
1070 | */ | |
1071 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1072 | rss = get_mm_rss(p->mm); | |
1073 | if (!rss) | |
1074 | rss = nr_scan_pages; | |
1075 | ||
1076 | rss = round_up(rss, nr_scan_pages); | |
1077 | return rss / nr_scan_pages; | |
1078 | } | |
1079 | ||
1080 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | |
1081 | #define MAX_SCAN_WINDOW 2560 | |
1082 | ||
1083 | static unsigned int task_scan_min(struct task_struct *p) | |
1084 | { | |
316c1608 | 1085 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1086 | unsigned int scan, floor; |
1087 | unsigned int windows = 1; | |
1088 | ||
64192658 KT |
1089 | if (scan_size < MAX_SCAN_WINDOW) |
1090 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1091 | floor = 1000 / windows; |
1092 | ||
1093 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1094 | return max_t(unsigned int, floor, scan); | |
1095 | } | |
1096 | ||
b5dd77c8 RR |
1097 | static unsigned int task_scan_start(struct task_struct *p) |
1098 | { | |
1099 | unsigned long smin = task_scan_min(p); | |
1100 | unsigned long period = smin; | |
1101 | ||
1102 | /* Scale the maximum scan period with the amount of shared memory. */ | |
1103 | if (p->numa_group) { | |
1104 | struct numa_group *ng = p->numa_group; | |
1105 | unsigned long shared = group_faults_shared(ng); | |
1106 | unsigned long private = group_faults_priv(ng); | |
1107 | ||
1108 | period *= atomic_read(&ng->refcount); | |
1109 | period *= shared + 1; | |
1110 | period /= private + shared + 1; | |
1111 | } | |
1112 | ||
1113 | return max(smin, period); | |
1114 | } | |
1115 | ||
598f0ec0 MG |
1116 | static unsigned int task_scan_max(struct task_struct *p) |
1117 | { | |
b5dd77c8 RR |
1118 | unsigned long smin = task_scan_min(p); |
1119 | unsigned long smax; | |
598f0ec0 MG |
1120 | |
1121 | /* Watch for min being lower than max due to floor calculations */ | |
1122 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
b5dd77c8 RR |
1123 | |
1124 | /* Scale the maximum scan period with the amount of shared memory. */ | |
1125 | if (p->numa_group) { | |
1126 | struct numa_group *ng = p->numa_group; | |
1127 | unsigned long shared = group_faults_shared(ng); | |
1128 | unsigned long private = group_faults_priv(ng); | |
1129 | unsigned long period = smax; | |
1130 | ||
1131 | period *= atomic_read(&ng->refcount); | |
1132 | period *= shared + 1; | |
1133 | period /= private + shared + 1; | |
1134 | ||
1135 | smax = max(smax, period); | |
1136 | } | |
1137 | ||
598f0ec0 MG |
1138 | return max(smin, smax); |
1139 | } | |
1140 | ||
13784475 MG |
1141 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
1142 | { | |
1143 | int mm_users = 0; | |
1144 | struct mm_struct *mm = p->mm; | |
1145 | ||
1146 | if (mm) { | |
1147 | mm_users = atomic_read(&mm->mm_users); | |
1148 | if (mm_users == 1) { | |
1149 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
1150 | mm->numa_scan_seq = 0; | |
1151 | } | |
1152 | } | |
1153 | p->node_stamp = 0; | |
1154 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; | |
1155 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; | |
1156 | p->numa_work.next = &p->numa_work; | |
1157 | p->numa_faults = NULL; | |
1158 | p->numa_group = NULL; | |
1159 | p->last_task_numa_placement = 0; | |
1160 | p->last_sum_exec_runtime = 0; | |
1161 | ||
1162 | /* New address space, reset the preferred nid */ | |
1163 | if (!(clone_flags & CLONE_VM)) { | |
1164 | p->numa_preferred_nid = -1; | |
1165 | return; | |
1166 | } | |
1167 | ||
1168 | /* | |
1169 | * New thread, keep existing numa_preferred_nid which should be copied | |
1170 | * already by arch_dup_task_struct but stagger when scans start. | |
1171 | */ | |
1172 | if (mm) { | |
1173 | unsigned int delay; | |
1174 | ||
1175 | delay = min_t(unsigned int, task_scan_max(current), | |
1176 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | |
1177 | delay += 2 * TICK_NSEC; | |
1178 | p->node_stamp = delay; | |
1179 | } | |
1180 | } | |
1181 | ||
0ec8aa00 PZ |
1182 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1183 | { | |
1184 | rq->nr_numa_running += (p->numa_preferred_nid != -1); | |
1185 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | |
1186 | } | |
1187 | ||
1188 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1189 | { | |
1190 | rq->nr_numa_running -= (p->numa_preferred_nid != -1); | |
1191 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | |
1192 | } | |
1193 | ||
be1e4e76 RR |
1194 | /* Shared or private faults. */ |
1195 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1196 | ||
1197 | /* Memory and CPU locality */ | |
1198 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1199 | ||
1200 | /* Averaged statistics, and temporary buffers. */ | |
1201 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1202 | ||
e29cf08b MG |
1203 | pid_t task_numa_group_id(struct task_struct *p) |
1204 | { | |
1205 | return p->numa_group ? p->numa_group->gid : 0; | |
1206 | } | |
1207 | ||
44dba3d5 | 1208 | /* |
97fb7a0a | 1209 | * The averaged statistics, shared & private, memory & CPU, |
44dba3d5 IM |
1210 | * occupy the first half of the array. The second half of the |
1211 | * array is for current counters, which are averaged into the | |
1212 | * first set by task_numa_placement. | |
1213 | */ | |
1214 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1215 | { |
44dba3d5 | 1216 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1217 | } |
1218 | ||
1219 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1220 | { | |
44dba3d5 | 1221 | if (!p->numa_faults) |
ac8e895b MG |
1222 | return 0; |
1223 | ||
44dba3d5 IM |
1224 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1225 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1226 | } |
1227 | ||
83e1d2cd MG |
1228 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1229 | { | |
1230 | if (!p->numa_group) | |
1231 | return 0; | |
1232 | ||
44dba3d5 IM |
1233 | return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1234 | p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1235 | } |
1236 | ||
20e07dea RR |
1237 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1238 | { | |
44dba3d5 IM |
1239 | return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + |
1240 | group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; | |
20e07dea RR |
1241 | } |
1242 | ||
b5dd77c8 RR |
1243 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
1244 | { | |
1245 | unsigned long faults = 0; | |
1246 | int node; | |
1247 | ||
1248 | for_each_online_node(node) { | |
1249 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
1250 | } | |
1251 | ||
1252 | return faults; | |
1253 | } | |
1254 | ||
1255 | static inline unsigned long group_faults_shared(struct numa_group *ng) | |
1256 | { | |
1257 | unsigned long faults = 0; | |
1258 | int node; | |
1259 | ||
1260 | for_each_online_node(node) { | |
1261 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
1262 | } | |
1263 | ||
1264 | return faults; | |
1265 | } | |
1266 | ||
4142c3eb RR |
1267 | /* |
1268 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1269 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1270 | * between these nodes are slowed down, to allow things to settle down. | |
1271 | */ | |
1272 | #define ACTIVE_NODE_FRACTION 3 | |
1273 | ||
1274 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1275 | { | |
1276 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1277 | } | |
1278 | ||
6c6b1193 RR |
1279 | /* Handle placement on systems where not all nodes are directly connected. */ |
1280 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
1281 | int maxdist, bool task) | |
1282 | { | |
1283 | unsigned long score = 0; | |
1284 | int node; | |
1285 | ||
1286 | /* | |
1287 | * All nodes are directly connected, and the same distance | |
1288 | * from each other. No need for fancy placement algorithms. | |
1289 | */ | |
1290 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1291 | return 0; | |
1292 | ||
1293 | /* | |
1294 | * This code is called for each node, introducing N^2 complexity, | |
1295 | * which should be ok given the number of nodes rarely exceeds 8. | |
1296 | */ | |
1297 | for_each_online_node(node) { | |
1298 | unsigned long faults; | |
1299 | int dist = node_distance(nid, node); | |
1300 | ||
1301 | /* | |
1302 | * The furthest away nodes in the system are not interesting | |
1303 | * for placement; nid was already counted. | |
1304 | */ | |
1305 | if (dist == sched_max_numa_distance || node == nid) | |
1306 | continue; | |
1307 | ||
1308 | /* | |
1309 | * On systems with a backplane NUMA topology, compare groups | |
1310 | * of nodes, and move tasks towards the group with the most | |
1311 | * memory accesses. When comparing two nodes at distance | |
1312 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1313 | * of each group. Skip other nodes. | |
1314 | */ | |
1315 | if (sched_numa_topology_type == NUMA_BACKPLANE && | |
0ee7e74d | 1316 | dist >= maxdist) |
6c6b1193 RR |
1317 | continue; |
1318 | ||
1319 | /* Add up the faults from nearby nodes. */ | |
1320 | if (task) | |
1321 | faults = task_faults(p, node); | |
1322 | else | |
1323 | faults = group_faults(p, node); | |
1324 | ||
1325 | /* | |
1326 | * On systems with a glueless mesh NUMA topology, there are | |
1327 | * no fixed "groups of nodes". Instead, nodes that are not | |
1328 | * directly connected bounce traffic through intermediate | |
1329 | * nodes; a numa_group can occupy any set of nodes. | |
1330 | * The further away a node is, the less the faults count. | |
1331 | * This seems to result in good task placement. | |
1332 | */ | |
1333 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
1334 | faults *= (sched_max_numa_distance - dist); | |
1335 | faults /= (sched_max_numa_distance - LOCAL_DISTANCE); | |
1336 | } | |
1337 | ||
1338 | score += faults; | |
1339 | } | |
1340 | ||
1341 | return score; | |
1342 | } | |
1343 | ||
83e1d2cd MG |
1344 | /* |
1345 | * These return the fraction of accesses done by a particular task, or | |
1346 | * task group, on a particular numa node. The group weight is given a | |
1347 | * larger multiplier, in order to group tasks together that are almost | |
1348 | * evenly spread out between numa nodes. | |
1349 | */ | |
7bd95320 RR |
1350 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1351 | int dist) | |
83e1d2cd | 1352 | { |
7bd95320 | 1353 | unsigned long faults, total_faults; |
83e1d2cd | 1354 | |
44dba3d5 | 1355 | if (!p->numa_faults) |
83e1d2cd MG |
1356 | return 0; |
1357 | ||
1358 | total_faults = p->total_numa_faults; | |
1359 | ||
1360 | if (!total_faults) | |
1361 | return 0; | |
1362 | ||
7bd95320 | 1363 | faults = task_faults(p, nid); |
6c6b1193 RR |
1364 | faults += score_nearby_nodes(p, nid, dist, true); |
1365 | ||
7bd95320 | 1366 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1367 | } |
1368 | ||
7bd95320 RR |
1369 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1370 | int dist) | |
83e1d2cd | 1371 | { |
7bd95320 RR |
1372 | unsigned long faults, total_faults; |
1373 | ||
1374 | if (!p->numa_group) | |
1375 | return 0; | |
1376 | ||
1377 | total_faults = p->numa_group->total_faults; | |
1378 | ||
1379 | if (!total_faults) | |
83e1d2cd MG |
1380 | return 0; |
1381 | ||
7bd95320 | 1382 | faults = group_faults(p, nid); |
6c6b1193 RR |
1383 | faults += score_nearby_nodes(p, nid, dist, false); |
1384 | ||
7bd95320 | 1385 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1386 | } |
1387 | ||
10f39042 RR |
1388 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, |
1389 | int src_nid, int dst_cpu) | |
1390 | { | |
1391 | struct numa_group *ng = p->numa_group; | |
1392 | int dst_nid = cpu_to_node(dst_cpu); | |
1393 | int last_cpupid, this_cpupid; | |
1394 | ||
1395 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | |
37355bdc MG |
1396 | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); |
1397 | ||
1398 | /* | |
1399 | * Allow first faults or private faults to migrate immediately early in | |
1400 | * the lifetime of a task. The magic number 4 is based on waiting for | |
1401 | * two full passes of the "multi-stage node selection" test that is | |
1402 | * executed below. | |
1403 | */ | |
1404 | if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) && | |
1405 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) | |
1406 | return true; | |
10f39042 RR |
1407 | |
1408 | /* | |
1409 | * Multi-stage node selection is used in conjunction with a periodic | |
1410 | * migration fault to build a temporal task<->page relation. By using | |
1411 | * a two-stage filter we remove short/unlikely relations. | |
1412 | * | |
1413 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1414 | * a task's usage of a particular page (n_p) per total usage of this | |
1415 | * page (n_t) (in a given time-span) to a probability. | |
1416 | * | |
1417 | * Our periodic faults will sample this probability and getting the | |
1418 | * same result twice in a row, given these samples are fully | |
1419 | * independent, is then given by P(n)^2, provided our sample period | |
1420 | * is sufficiently short compared to the usage pattern. | |
1421 | * | |
1422 | * This quadric squishes small probabilities, making it less likely we | |
1423 | * act on an unlikely task<->page relation. | |
1424 | */ | |
10f39042 RR |
1425 | if (!cpupid_pid_unset(last_cpupid) && |
1426 | cpupid_to_nid(last_cpupid) != dst_nid) | |
1427 | return false; | |
1428 | ||
1429 | /* Always allow migrate on private faults */ | |
1430 | if (cpupid_match_pid(p, last_cpupid)) | |
1431 | return true; | |
1432 | ||
1433 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
1434 | if (!ng) | |
1435 | return true; | |
1436 | ||
1437 | /* | |
4142c3eb RR |
1438 | * Destination node is much more heavily used than the source |
1439 | * node? Allow migration. | |
10f39042 | 1440 | */ |
4142c3eb RR |
1441 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
1442 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
1443 | return true; |
1444 | ||
1445 | /* | |
4142c3eb RR |
1446 | * Distribute memory according to CPU & memory use on each node, |
1447 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
1448 | * | |
1449 | * faults_cpu(dst) 3 faults_cpu(src) | |
1450 | * --------------- * - > --------------- | |
1451 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 1452 | */ |
4142c3eb RR |
1453 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
1454 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
1455 | } |
1456 | ||
c7132dd6 | 1457 | static unsigned long weighted_cpuload(struct rq *rq); |
58d081b5 MG |
1458 | static unsigned long source_load(int cpu, int type); |
1459 | static unsigned long target_load(int cpu, int type); | |
58d081b5 | 1460 | |
fb13c7ee | 1461 | /* Cached statistics for all CPUs within a node */ |
58d081b5 MG |
1462 | struct numa_stats { |
1463 | unsigned long load; | |
fb13c7ee MG |
1464 | |
1465 | /* Total compute capacity of CPUs on a node */ | |
5ef20ca1 | 1466 | unsigned long compute_capacity; |
58d081b5 | 1467 | }; |
e6628d5b | 1468 | |
fb13c7ee MG |
1469 | /* |
1470 | * XXX borrowed from update_sg_lb_stats | |
1471 | */ | |
1472 | static void update_numa_stats(struct numa_stats *ns, int nid) | |
1473 | { | |
d90707eb | 1474 | int cpu; |
fb13c7ee MG |
1475 | |
1476 | memset(ns, 0, sizeof(*ns)); | |
1477 | for_each_cpu(cpu, cpumask_of_node(nid)) { | |
1478 | struct rq *rq = cpu_rq(cpu); | |
1479 | ||
c7132dd6 | 1480 | ns->load += weighted_cpuload(rq); |
ced549fa | 1481 | ns->compute_capacity += capacity_of(cpu); |
fb13c7ee MG |
1482 | } |
1483 | ||
fb13c7ee MG |
1484 | } |
1485 | ||
58d081b5 MG |
1486 | struct task_numa_env { |
1487 | struct task_struct *p; | |
e6628d5b | 1488 | |
58d081b5 MG |
1489 | int src_cpu, src_nid; |
1490 | int dst_cpu, dst_nid; | |
e6628d5b | 1491 | |
58d081b5 | 1492 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 1493 | |
40ea2b42 | 1494 | int imbalance_pct; |
7bd95320 | 1495 | int dist; |
fb13c7ee MG |
1496 | |
1497 | struct task_struct *best_task; | |
1498 | long best_imp; | |
58d081b5 MG |
1499 | int best_cpu; |
1500 | }; | |
1501 | ||
fb13c7ee MG |
1502 | static void task_numa_assign(struct task_numa_env *env, |
1503 | struct task_struct *p, long imp) | |
1504 | { | |
a4739eca SD |
1505 | struct rq *rq = cpu_rq(env->dst_cpu); |
1506 | ||
1507 | /* Bail out if run-queue part of active NUMA balance. */ | |
1508 | if (xchg(&rq->numa_migrate_on, 1)) | |
1509 | return; | |
1510 | ||
1511 | /* | |
1512 | * Clear previous best_cpu/rq numa-migrate flag, since task now | |
1513 | * found a better CPU to move/swap. | |
1514 | */ | |
1515 | if (env->best_cpu != -1) { | |
1516 | rq = cpu_rq(env->best_cpu); | |
1517 | WRITE_ONCE(rq->numa_migrate_on, 0); | |
1518 | } | |
1519 | ||
fb13c7ee MG |
1520 | if (env->best_task) |
1521 | put_task_struct(env->best_task); | |
bac78573 ON |
1522 | if (p) |
1523 | get_task_struct(p); | |
fb13c7ee MG |
1524 | |
1525 | env->best_task = p; | |
1526 | env->best_imp = imp; | |
1527 | env->best_cpu = env->dst_cpu; | |
1528 | } | |
1529 | ||
28a21745 | 1530 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
1531 | struct task_numa_env *env) |
1532 | { | |
e4991b24 RR |
1533 | long imb, old_imb; |
1534 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
1535 | long src_capacity, dst_capacity; |
1536 | ||
1537 | /* | |
1538 | * The load is corrected for the CPU capacity available on each node. | |
1539 | * | |
1540 | * src_load dst_load | |
1541 | * ------------ vs --------- | |
1542 | * src_capacity dst_capacity | |
1543 | */ | |
1544 | src_capacity = env->src_stats.compute_capacity; | |
1545 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 | 1546 | |
5f95ba7a | 1547 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
e63da036 | 1548 | |
28a21745 | 1549 | orig_src_load = env->src_stats.load; |
e4991b24 | 1550 | orig_dst_load = env->dst_stats.load; |
28a21745 | 1551 | |
5f95ba7a | 1552 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
e4991b24 RR |
1553 | |
1554 | /* Would this change make things worse? */ | |
1555 | return (imb > old_imb); | |
e63da036 RR |
1556 | } |
1557 | ||
6fd98e77 SD |
1558 | /* |
1559 | * Maximum NUMA importance can be 1998 (2*999); | |
1560 | * SMALLIMP @ 30 would be close to 1998/64. | |
1561 | * Used to deter task migration. | |
1562 | */ | |
1563 | #define SMALLIMP 30 | |
1564 | ||
fb13c7ee MG |
1565 | /* |
1566 | * This checks if the overall compute and NUMA accesses of the system would | |
1567 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
1568 | * into account that it might be best if task running on the dst_cpu should | |
1569 | * be exchanged with the source task | |
1570 | */ | |
887c290e | 1571 | static void task_numa_compare(struct task_numa_env *env, |
305c1fac | 1572 | long taskimp, long groupimp, bool maymove) |
fb13c7ee | 1573 | { |
fb13c7ee MG |
1574 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
1575 | struct task_struct *cur; | |
28a21745 | 1576 | long src_load, dst_load; |
fb13c7ee | 1577 | long load; |
1c5d3eb3 | 1578 | long imp = env->p->numa_group ? groupimp : taskimp; |
0132c3e1 | 1579 | long moveimp = imp; |
7bd95320 | 1580 | int dist = env->dist; |
fb13c7ee | 1581 | |
a4739eca SD |
1582 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
1583 | return; | |
1584 | ||
fb13c7ee | 1585 | rcu_read_lock(); |
bac78573 ON |
1586 | cur = task_rcu_dereference(&dst_rq->curr); |
1587 | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) | |
fb13c7ee MG |
1588 | cur = NULL; |
1589 | ||
7af68335 PZ |
1590 | /* |
1591 | * Because we have preemption enabled we can get migrated around and | |
1592 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
1593 | */ | |
1594 | if (cur == env->p) | |
1595 | goto unlock; | |
1596 | ||
305c1fac | 1597 | if (!cur) { |
6fd98e77 | 1598 | if (maymove && moveimp >= env->best_imp) |
305c1fac SD |
1599 | goto assign; |
1600 | else | |
1601 | goto unlock; | |
1602 | } | |
1603 | ||
fb13c7ee MG |
1604 | /* |
1605 | * "imp" is the fault differential for the source task between the | |
1606 | * source and destination node. Calculate the total differential for | |
1607 | * the source task and potential destination task. The more negative | |
305c1fac | 1608 | * the value is, the more remote accesses that would be expected to |
fb13c7ee MG |
1609 | * be incurred if the tasks were swapped. |
1610 | */ | |
305c1fac SD |
1611 | /* Skip this swap candidate if cannot move to the source cpu */ |
1612 | if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) | |
1613 | goto unlock; | |
fb13c7ee | 1614 | |
305c1fac SD |
1615 | /* |
1616 | * If dst and source tasks are in the same NUMA group, or not | |
1617 | * in any group then look only at task weights. | |
1618 | */ | |
1619 | if (cur->numa_group == env->p->numa_group) { | |
1620 | imp = taskimp + task_weight(cur, env->src_nid, dist) - | |
1621 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 1622 | /* |
305c1fac SD |
1623 | * Add some hysteresis to prevent swapping the |
1624 | * tasks within a group over tiny differences. | |
887c290e | 1625 | */ |
305c1fac SD |
1626 | if (cur->numa_group) |
1627 | imp -= imp / 16; | |
1628 | } else { | |
1629 | /* | |
1630 | * Compare the group weights. If a task is all by itself | |
1631 | * (not part of a group), use the task weight instead. | |
1632 | */ | |
1633 | if (cur->numa_group && env->p->numa_group) | |
1634 | imp += group_weight(cur, env->src_nid, dist) - | |
1635 | group_weight(cur, env->dst_nid, dist); | |
1636 | else | |
1637 | imp += task_weight(cur, env->src_nid, dist) - | |
1638 | task_weight(cur, env->dst_nid, dist); | |
fb13c7ee MG |
1639 | } |
1640 | ||
305c1fac | 1641 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
6fd98e77 | 1642 | imp = moveimp; |
305c1fac | 1643 | cur = NULL; |
fb13c7ee | 1644 | goto assign; |
305c1fac | 1645 | } |
fb13c7ee | 1646 | |
6fd98e77 SD |
1647 | /* |
1648 | * If the NUMA importance is less than SMALLIMP, | |
1649 | * task migration might only result in ping pong | |
1650 | * of tasks and also hurt performance due to cache | |
1651 | * misses. | |
1652 | */ | |
1653 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | |
1654 | goto unlock; | |
1655 | ||
fb13c7ee MG |
1656 | /* |
1657 | * In the overloaded case, try and keep the load balanced. | |
1658 | */ | |
305c1fac SD |
1659 | load = task_h_load(env->p) - task_h_load(cur); |
1660 | if (!load) | |
1661 | goto assign; | |
1662 | ||
e720fff6 PZ |
1663 | dst_load = env->dst_stats.load + load; |
1664 | src_load = env->src_stats.load - load; | |
fb13c7ee | 1665 | |
28a21745 | 1666 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
1667 | goto unlock; |
1668 | ||
305c1fac | 1669 | assign: |
ba7e5a27 RR |
1670 | /* |
1671 | * One idle CPU per node is evaluated for a task numa move. | |
1672 | * Call select_idle_sibling to maybe find a better one. | |
1673 | */ | |
10e2f1ac PZ |
1674 | if (!cur) { |
1675 | /* | |
97fb7a0a | 1676 | * select_idle_siblings() uses an per-CPU cpumask that |
10e2f1ac PZ |
1677 | * can be used from IRQ context. |
1678 | */ | |
1679 | local_irq_disable(); | |
772bd008 MR |
1680 | env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, |
1681 | env->dst_cpu); | |
10e2f1ac PZ |
1682 | local_irq_enable(); |
1683 | } | |
ba7e5a27 | 1684 | |
fb13c7ee MG |
1685 | task_numa_assign(env, cur, imp); |
1686 | unlock: | |
1687 | rcu_read_unlock(); | |
1688 | } | |
1689 | ||
887c290e RR |
1690 | static void task_numa_find_cpu(struct task_numa_env *env, |
1691 | long taskimp, long groupimp) | |
2c8a50aa | 1692 | { |
305c1fac SD |
1693 | long src_load, dst_load, load; |
1694 | bool maymove = false; | |
2c8a50aa MG |
1695 | int cpu; |
1696 | ||
305c1fac SD |
1697 | load = task_h_load(env->p); |
1698 | dst_load = env->dst_stats.load + load; | |
1699 | src_load = env->src_stats.load - load; | |
1700 | ||
1701 | /* | |
1702 | * If the improvement from just moving env->p direction is better | |
1703 | * than swapping tasks around, check if a move is possible. | |
1704 | */ | |
1705 | maymove = !load_too_imbalanced(src_load, dst_load, env); | |
1706 | ||
2c8a50aa MG |
1707 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
1708 | /* Skip this CPU if the source task cannot migrate */ | |
0c98d344 | 1709 | if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) |
2c8a50aa MG |
1710 | continue; |
1711 | ||
1712 | env->dst_cpu = cpu; | |
305c1fac | 1713 | task_numa_compare(env, taskimp, groupimp, maymove); |
2c8a50aa MG |
1714 | } |
1715 | } | |
1716 | ||
58d081b5 MG |
1717 | static int task_numa_migrate(struct task_struct *p) |
1718 | { | |
58d081b5 MG |
1719 | struct task_numa_env env = { |
1720 | .p = p, | |
fb13c7ee | 1721 | |
58d081b5 | 1722 | .src_cpu = task_cpu(p), |
b32e86b4 | 1723 | .src_nid = task_node(p), |
fb13c7ee MG |
1724 | |
1725 | .imbalance_pct = 112, | |
1726 | ||
1727 | .best_task = NULL, | |
1728 | .best_imp = 0, | |
4142c3eb | 1729 | .best_cpu = -1, |
58d081b5 MG |
1730 | }; |
1731 | struct sched_domain *sd; | |
a4739eca | 1732 | struct rq *best_rq; |
887c290e | 1733 | unsigned long taskweight, groupweight; |
7bd95320 | 1734 | int nid, ret, dist; |
887c290e | 1735 | long taskimp, groupimp; |
e6628d5b | 1736 | |
58d081b5 | 1737 | /* |
fb13c7ee MG |
1738 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
1739 | * imbalance and would be the first to start moving tasks about. | |
1740 | * | |
1741 | * And we want to avoid any moving of tasks about, as that would create | |
1742 | * random movement of tasks -- counter the numa conditions we're trying | |
1743 | * to satisfy here. | |
58d081b5 MG |
1744 | */ |
1745 | rcu_read_lock(); | |
fb13c7ee | 1746 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
46a73e8a RR |
1747 | if (sd) |
1748 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | |
e6628d5b MG |
1749 | rcu_read_unlock(); |
1750 | ||
46a73e8a RR |
1751 | /* |
1752 | * Cpusets can break the scheduler domain tree into smaller | |
1753 | * balance domains, some of which do not cross NUMA boundaries. | |
1754 | * Tasks that are "trapped" in such domains cannot be migrated | |
1755 | * elsewhere, so there is no point in (re)trying. | |
1756 | */ | |
1757 | if (unlikely(!sd)) { | |
8cd45eee | 1758 | sched_setnuma(p, task_node(p)); |
46a73e8a RR |
1759 | return -EINVAL; |
1760 | } | |
1761 | ||
2c8a50aa | 1762 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
1763 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
1764 | taskweight = task_weight(p, env.src_nid, dist); | |
1765 | groupweight = group_weight(p, env.src_nid, dist); | |
1766 | update_numa_stats(&env.src_stats, env.src_nid); | |
1767 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | |
1768 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
2c8a50aa | 1769 | update_numa_stats(&env.dst_stats, env.dst_nid); |
58d081b5 | 1770 | |
a43455a1 | 1771 | /* Try to find a spot on the preferred nid. */ |
2d4056fa | 1772 | task_numa_find_cpu(&env, taskimp, groupimp); |
e1dda8a7 | 1773 | |
9de05d48 RR |
1774 | /* |
1775 | * Look at other nodes in these cases: | |
1776 | * - there is no space available on the preferred_nid | |
1777 | * - the task is part of a numa_group that is interleaved across | |
1778 | * multiple NUMA nodes; in order to better consolidate the group, | |
1779 | * we need to check other locations. | |
1780 | */ | |
4142c3eb | 1781 | if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { |
2c8a50aa MG |
1782 | for_each_online_node(nid) { |
1783 | if (nid == env.src_nid || nid == p->numa_preferred_nid) | |
1784 | continue; | |
58d081b5 | 1785 | |
7bd95320 | 1786 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
1787 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
1788 | dist != env.dist) { | |
1789 | taskweight = task_weight(p, env.src_nid, dist); | |
1790 | groupweight = group_weight(p, env.src_nid, dist); | |
1791 | } | |
7bd95320 | 1792 | |
83e1d2cd | 1793 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
1794 | taskimp = task_weight(p, nid, dist) - taskweight; |
1795 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 1796 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
1797 | continue; |
1798 | ||
7bd95320 | 1799 | env.dist = dist; |
2c8a50aa MG |
1800 | env.dst_nid = nid; |
1801 | update_numa_stats(&env.dst_stats, env.dst_nid); | |
2d4056fa | 1802 | task_numa_find_cpu(&env, taskimp, groupimp); |
58d081b5 MG |
1803 | } |
1804 | } | |
1805 | ||
68d1b02a RR |
1806 | /* |
1807 | * If the task is part of a workload that spans multiple NUMA nodes, | |
1808 | * and is migrating into one of the workload's active nodes, remember | |
1809 | * this node as the task's preferred numa node, so the workload can | |
1810 | * settle down. | |
1811 | * A task that migrated to a second choice node will be better off | |
1812 | * trying for a better one later. Do not set the preferred node here. | |
1813 | */ | |
db015dae RR |
1814 | if (p->numa_group) { |
1815 | if (env.best_cpu == -1) | |
1816 | nid = env.src_nid; | |
1817 | else | |
8cd45eee | 1818 | nid = cpu_to_node(env.best_cpu); |
db015dae | 1819 | |
8cd45eee SD |
1820 | if (nid != p->numa_preferred_nid) |
1821 | sched_setnuma(p, nid); | |
db015dae RR |
1822 | } |
1823 | ||
1824 | /* No better CPU than the current one was found. */ | |
1825 | if (env.best_cpu == -1) | |
1826 | return -EAGAIN; | |
0ec8aa00 | 1827 | |
a4739eca | 1828 | best_rq = cpu_rq(env.best_cpu); |
fb13c7ee | 1829 | if (env.best_task == NULL) { |
286549dc | 1830 | ret = migrate_task_to(p, env.best_cpu); |
a4739eca | 1831 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
286549dc MG |
1832 | if (ret != 0) |
1833 | trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); | |
fb13c7ee MG |
1834 | return ret; |
1835 | } | |
1836 | ||
0ad4e3df | 1837 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
a4739eca | 1838 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
0ad4e3df | 1839 | |
286549dc MG |
1840 | if (ret != 0) |
1841 | trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); | |
fb13c7ee MG |
1842 | put_task_struct(env.best_task); |
1843 | return ret; | |
e6628d5b MG |
1844 | } |
1845 | ||
6b9a7460 MG |
1846 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
1847 | static void numa_migrate_preferred(struct task_struct *p) | |
1848 | { | |
5085e2a3 RR |
1849 | unsigned long interval = HZ; |
1850 | ||
2739d3ee | 1851 | /* This task has no NUMA fault statistics yet */ |
44dba3d5 | 1852 | if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) |
6b9a7460 MG |
1853 | return; |
1854 | ||
2739d3ee | 1855 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 | 1856 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
789ba280 | 1857 | p->numa_migrate_retry = jiffies + interval; |
2739d3ee RR |
1858 | |
1859 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 1860 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
1861 | return; |
1862 | ||
1863 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 1864 | task_numa_migrate(p); |
6b9a7460 MG |
1865 | } |
1866 | ||
20e07dea | 1867 | /* |
4142c3eb | 1868 | * Find out how many nodes on the workload is actively running on. Do this by |
20e07dea RR |
1869 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
1870 | * be different from the set of nodes where the workload's memory is currently | |
1871 | * located. | |
20e07dea | 1872 | */ |
4142c3eb | 1873 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
1874 | { |
1875 | unsigned long faults, max_faults = 0; | |
4142c3eb | 1876 | int nid, active_nodes = 0; |
20e07dea RR |
1877 | |
1878 | for_each_online_node(nid) { | |
1879 | faults = group_faults_cpu(numa_group, nid); | |
1880 | if (faults > max_faults) | |
1881 | max_faults = faults; | |
1882 | } | |
1883 | ||
1884 | for_each_online_node(nid) { | |
1885 | faults = group_faults_cpu(numa_group, nid); | |
4142c3eb RR |
1886 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
1887 | active_nodes++; | |
20e07dea | 1888 | } |
4142c3eb RR |
1889 | |
1890 | numa_group->max_faults_cpu = max_faults; | |
1891 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
1892 | } |
1893 | ||
04bb2f94 RR |
1894 | /* |
1895 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
1896 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
1897 | * period will be for the next scan window. If local/(local+remote) ratio is |
1898 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
1899 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
1900 | */ |
1901 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 1902 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
1903 | |
1904 | /* | |
1905 | * Increase the scan period (slow down scanning) if the majority of | |
1906 | * our memory is already on our local node, or if the majority of | |
1907 | * the page accesses are shared with other processes. | |
1908 | * Otherwise, decrease the scan period. | |
1909 | */ | |
1910 | static void update_task_scan_period(struct task_struct *p, | |
1911 | unsigned long shared, unsigned long private) | |
1912 | { | |
1913 | unsigned int period_slot; | |
37ec97de | 1914 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
1915 | int diff; |
1916 | ||
1917 | unsigned long remote = p->numa_faults_locality[0]; | |
1918 | unsigned long local = p->numa_faults_locality[1]; | |
1919 | ||
1920 | /* | |
1921 | * If there were no record hinting faults then either the task is | |
1922 | * completely idle or all activity is areas that are not of interest | |
074c2381 MG |
1923 | * to automatic numa balancing. Related to that, if there were failed |
1924 | * migration then it implies we are migrating too quickly or the local | |
1925 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 1926 | */ |
074c2381 | 1927 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
1928 | p->numa_scan_period = min(p->numa_scan_period_max, |
1929 | p->numa_scan_period << 1); | |
1930 | ||
1931 | p->mm->numa_next_scan = jiffies + | |
1932 | msecs_to_jiffies(p->numa_scan_period); | |
1933 | ||
1934 | return; | |
1935 | } | |
1936 | ||
1937 | /* | |
1938 | * Prepare to scale scan period relative to the current period. | |
1939 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
1940 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
1941 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
1942 | */ | |
1943 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
1944 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
1945 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
1946 | ||
1947 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1948 | /* | |
1949 | * Most memory accesses are local. There is no need to | |
1950 | * do fast NUMA scanning, since memory is already local. | |
1951 | */ | |
1952 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
1953 | if (!slot) | |
1954 | slot = 1; | |
1955 | diff = slot * period_slot; | |
1956 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1957 | /* | |
1958 | * Most memory accesses are shared with other tasks. | |
1959 | * There is no point in continuing fast NUMA scanning, | |
1960 | * since other tasks may just move the memory elsewhere. | |
1961 | */ | |
1962 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
1963 | if (!slot) |
1964 | slot = 1; | |
1965 | diff = slot * period_slot; | |
1966 | } else { | |
04bb2f94 | 1967 | /* |
37ec97de RR |
1968 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
1969 | * yet they are not on the local NUMA node. Speed up | |
1970 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 1971 | */ |
37ec97de RR |
1972 | int ratio = max(lr_ratio, ps_ratio); |
1973 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
1974 | } |
1975 | ||
1976 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
1977 | task_scan_min(p), task_scan_max(p)); | |
1978 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
1979 | } | |
1980 | ||
7e2703e6 RR |
1981 | /* |
1982 | * Get the fraction of time the task has been running since the last | |
1983 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
1984 | * decays those on a 32ms period, which is orders of magnitude off | |
1985 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
1986 | * stats only if the task is so new there are no NUMA statistics yet. | |
1987 | */ | |
1988 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
1989 | { | |
1990 | u64 runtime, delta, now; | |
1991 | /* Use the start of this time slice to avoid calculations. */ | |
1992 | now = p->se.exec_start; | |
1993 | runtime = p->se.sum_exec_runtime; | |
1994 | ||
1995 | if (p->last_task_numa_placement) { | |
1996 | delta = runtime - p->last_sum_exec_runtime; | |
1997 | *period = now - p->last_task_numa_placement; | |
1998 | } else { | |
c7b50216 | 1999 | delta = p->se.avg.load_sum; |
9d89c257 | 2000 | *period = LOAD_AVG_MAX; |
7e2703e6 RR |
2001 | } |
2002 | ||
2003 | p->last_sum_exec_runtime = runtime; | |
2004 | p->last_task_numa_placement = now; | |
2005 | ||
2006 | return delta; | |
2007 | } | |
2008 | ||
54009416 RR |
2009 | /* |
2010 | * Determine the preferred nid for a task in a numa_group. This needs to | |
2011 | * be done in a way that produces consistent results with group_weight, | |
2012 | * otherwise workloads might not converge. | |
2013 | */ | |
2014 | static int preferred_group_nid(struct task_struct *p, int nid) | |
2015 | { | |
2016 | nodemask_t nodes; | |
2017 | int dist; | |
2018 | ||
2019 | /* Direct connections between all NUMA nodes. */ | |
2020 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2021 | return nid; | |
2022 | ||
2023 | /* | |
2024 | * On a system with glueless mesh NUMA topology, group_weight | |
2025 | * scores nodes according to the number of NUMA hinting faults on | |
2026 | * both the node itself, and on nearby nodes. | |
2027 | */ | |
2028 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2029 | unsigned long score, max_score = 0; | |
2030 | int node, max_node = nid; | |
2031 | ||
2032 | dist = sched_max_numa_distance; | |
2033 | ||
2034 | for_each_online_node(node) { | |
2035 | score = group_weight(p, node, dist); | |
2036 | if (score > max_score) { | |
2037 | max_score = score; | |
2038 | max_node = node; | |
2039 | } | |
2040 | } | |
2041 | return max_node; | |
2042 | } | |
2043 | ||
2044 | /* | |
2045 | * Finding the preferred nid in a system with NUMA backplane | |
2046 | * interconnect topology is more involved. The goal is to locate | |
2047 | * tasks from numa_groups near each other in the system, and | |
2048 | * untangle workloads from different sides of the system. This requires | |
2049 | * searching down the hierarchy of node groups, recursively searching | |
2050 | * inside the highest scoring group of nodes. The nodemask tricks | |
2051 | * keep the complexity of the search down. | |
2052 | */ | |
2053 | nodes = node_online_map; | |
2054 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | |
2055 | unsigned long max_faults = 0; | |
81907478 | 2056 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2057 | int a, b; |
2058 | ||
2059 | /* Are there nodes at this distance from each other? */ | |
2060 | if (!find_numa_distance(dist)) | |
2061 | continue; | |
2062 | ||
2063 | for_each_node_mask(a, nodes) { | |
2064 | unsigned long faults = 0; | |
2065 | nodemask_t this_group; | |
2066 | nodes_clear(this_group); | |
2067 | ||
2068 | /* Sum group's NUMA faults; includes a==b case. */ | |
2069 | for_each_node_mask(b, nodes) { | |
2070 | if (node_distance(a, b) < dist) { | |
2071 | faults += group_faults(p, b); | |
2072 | node_set(b, this_group); | |
2073 | node_clear(b, nodes); | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | /* Remember the top group. */ | |
2078 | if (faults > max_faults) { | |
2079 | max_faults = faults; | |
2080 | max_group = this_group; | |
2081 | /* | |
2082 | * subtle: at the smallest distance there is | |
2083 | * just one node left in each "group", the | |
2084 | * winner is the preferred nid. | |
2085 | */ | |
2086 | nid = a; | |
2087 | } | |
2088 | } | |
2089 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2090 | if (!max_faults) |
2091 | break; | |
54009416 RR |
2092 | nodes = max_group; |
2093 | } | |
2094 | return nid; | |
2095 | } | |
2096 | ||
cbee9f88 PZ |
2097 | static void task_numa_placement(struct task_struct *p) |
2098 | { | |
f03bb676 SD |
2099 | int seq, nid, max_nid = -1; |
2100 | unsigned long max_faults = 0; | |
04bb2f94 | 2101 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2102 | unsigned long total_faults; |
2103 | u64 runtime, period; | |
7dbd13ed | 2104 | spinlock_t *group_lock = NULL; |
cbee9f88 | 2105 | |
7e5a2c17 JL |
2106 | /* |
2107 | * The p->mm->numa_scan_seq field gets updated without | |
2108 | * exclusive access. Use READ_ONCE() here to ensure | |
2109 | * that the field is read in a single access: | |
2110 | */ | |
316c1608 | 2111 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2112 | if (p->numa_scan_seq == seq) |
2113 | return; | |
2114 | p->numa_scan_seq = seq; | |
598f0ec0 | 2115 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2116 | |
7e2703e6 RR |
2117 | total_faults = p->numa_faults_locality[0] + |
2118 | p->numa_faults_locality[1]; | |
2119 | runtime = numa_get_avg_runtime(p, &period); | |
2120 | ||
7dbd13ed MG |
2121 | /* If the task is part of a group prevent parallel updates to group stats */ |
2122 | if (p->numa_group) { | |
2123 | group_lock = &p->numa_group->lock; | |
60e69eed | 2124 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2125 | } |
2126 | ||
688b7585 MG |
2127 | /* Find the node with the highest number of faults */ |
2128 | for_each_online_node(nid) { | |
44dba3d5 IM |
2129 | /* Keep track of the offsets in numa_faults array */ |
2130 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2131 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2132 | int priv; |
745d6147 | 2133 | |
be1e4e76 | 2134 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2135 | long diff, f_diff, f_weight; |
8c8a743c | 2136 | |
44dba3d5 IM |
2137 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2138 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2139 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2140 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2141 | |
ac8e895b | 2142 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2143 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2144 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2145 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2146 | |
7e2703e6 RR |
2147 | /* |
2148 | * Normalize the faults_from, so all tasks in a group | |
2149 | * count according to CPU use, instead of by the raw | |
2150 | * number of faults. Tasks with little runtime have | |
2151 | * little over-all impact on throughput, and thus their | |
2152 | * faults are less important. | |
2153 | */ | |
2154 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2155 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2156 | (total_faults + 1); |
44dba3d5 IM |
2157 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2158 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2159 | |
44dba3d5 IM |
2160 | p->numa_faults[mem_idx] += diff; |
2161 | p->numa_faults[cpu_idx] += f_diff; | |
2162 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2163 | p->total_numa_faults += diff; |
8c8a743c | 2164 | if (p->numa_group) { |
44dba3d5 IM |
2165 | /* |
2166 | * safe because we can only change our own group | |
2167 | * | |
2168 | * mem_idx represents the offset for a given | |
2169 | * nid and priv in a specific region because it | |
2170 | * is at the beginning of the numa_faults array. | |
2171 | */ | |
2172 | p->numa_group->faults[mem_idx] += diff; | |
2173 | p->numa_group->faults_cpu[mem_idx] += f_diff; | |
989348b5 | 2174 | p->numa_group->total_faults += diff; |
44dba3d5 | 2175 | group_faults += p->numa_group->faults[mem_idx]; |
8c8a743c | 2176 | } |
ac8e895b MG |
2177 | } |
2178 | ||
f03bb676 SD |
2179 | if (!p->numa_group) { |
2180 | if (faults > max_faults) { | |
2181 | max_faults = faults; | |
2182 | max_nid = nid; | |
2183 | } | |
2184 | } else if (group_faults > max_faults) { | |
2185 | max_faults = group_faults; | |
688b7585 MG |
2186 | max_nid = nid; |
2187 | } | |
83e1d2cd MG |
2188 | } |
2189 | ||
7dbd13ed | 2190 | if (p->numa_group) { |
4142c3eb | 2191 | numa_group_count_active_nodes(p->numa_group); |
60e69eed | 2192 | spin_unlock_irq(group_lock); |
f03bb676 | 2193 | max_nid = preferred_group_nid(p, max_nid); |
688b7585 MG |
2194 | } |
2195 | ||
bb97fc31 RR |
2196 | if (max_faults) { |
2197 | /* Set the new preferred node */ | |
2198 | if (max_nid != p->numa_preferred_nid) | |
2199 | sched_setnuma(p, max_nid); | |
3a7053b3 | 2200 | } |
30619c89 SD |
2201 | |
2202 | update_task_scan_period(p, fault_types[0], fault_types[1]); | |
cbee9f88 PZ |
2203 | } |
2204 | ||
8c8a743c PZ |
2205 | static inline int get_numa_group(struct numa_group *grp) |
2206 | { | |
2207 | return atomic_inc_not_zero(&grp->refcount); | |
2208 | } | |
2209 | ||
2210 | static inline void put_numa_group(struct numa_group *grp) | |
2211 | { | |
2212 | if (atomic_dec_and_test(&grp->refcount)) | |
2213 | kfree_rcu(grp, rcu); | |
2214 | } | |
2215 | ||
3e6a9418 MG |
2216 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
2217 | int *priv) | |
8c8a743c PZ |
2218 | { |
2219 | struct numa_group *grp, *my_grp; | |
2220 | struct task_struct *tsk; | |
2221 | bool join = false; | |
2222 | int cpu = cpupid_to_cpu(cpupid); | |
2223 | int i; | |
2224 | ||
2225 | if (unlikely(!p->numa_group)) { | |
2226 | unsigned int size = sizeof(struct numa_group) + | |
50ec8a40 | 2227 | 4*nr_node_ids*sizeof(unsigned long); |
8c8a743c PZ |
2228 | |
2229 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
2230 | if (!grp) | |
2231 | return; | |
2232 | ||
2233 | atomic_set(&grp->refcount, 1); | |
4142c3eb RR |
2234 | grp->active_nodes = 1; |
2235 | grp->max_faults_cpu = 0; | |
8c8a743c | 2236 | spin_lock_init(&grp->lock); |
e29cf08b | 2237 | grp->gid = p->pid; |
50ec8a40 | 2238 | /* Second half of the array tracks nids where faults happen */ |
be1e4e76 RR |
2239 | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * |
2240 | nr_node_ids; | |
8c8a743c | 2241 | |
be1e4e76 | 2242 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2243 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 2244 | |
989348b5 | 2245 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 2246 | |
8c8a743c PZ |
2247 | grp->nr_tasks++; |
2248 | rcu_assign_pointer(p->numa_group, grp); | |
2249 | } | |
2250 | ||
2251 | rcu_read_lock(); | |
316c1608 | 2252 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
2253 | |
2254 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 2255 | goto no_join; |
8c8a743c PZ |
2256 | |
2257 | grp = rcu_dereference(tsk->numa_group); | |
2258 | if (!grp) | |
3354781a | 2259 | goto no_join; |
8c8a743c PZ |
2260 | |
2261 | my_grp = p->numa_group; | |
2262 | if (grp == my_grp) | |
3354781a | 2263 | goto no_join; |
8c8a743c PZ |
2264 | |
2265 | /* | |
2266 | * Only join the other group if its bigger; if we're the bigger group, | |
2267 | * the other task will join us. | |
2268 | */ | |
2269 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 2270 | goto no_join; |
8c8a743c PZ |
2271 | |
2272 | /* | |
2273 | * Tie-break on the grp address. | |
2274 | */ | |
2275 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 2276 | goto no_join; |
8c8a743c | 2277 | |
dabe1d99 RR |
2278 | /* Always join threads in the same process. */ |
2279 | if (tsk->mm == current->mm) | |
2280 | join = true; | |
2281 | ||
2282 | /* Simple filter to avoid false positives due to PID collisions */ | |
2283 | if (flags & TNF_SHARED) | |
2284 | join = true; | |
8c8a743c | 2285 | |
3e6a9418 MG |
2286 | /* Update priv based on whether false sharing was detected */ |
2287 | *priv = !join; | |
2288 | ||
dabe1d99 | 2289 | if (join && !get_numa_group(grp)) |
3354781a | 2290 | goto no_join; |
8c8a743c | 2291 | |
8c8a743c PZ |
2292 | rcu_read_unlock(); |
2293 | ||
2294 | if (!join) | |
2295 | return; | |
2296 | ||
60e69eed MG |
2297 | BUG_ON(irqs_disabled()); |
2298 | double_lock_irq(&my_grp->lock, &grp->lock); | |
989348b5 | 2299 | |
be1e4e76 | 2300 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
2301 | my_grp->faults[i] -= p->numa_faults[i]; |
2302 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 2303 | } |
989348b5 MG |
2304 | my_grp->total_faults -= p->total_numa_faults; |
2305 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 2306 | |
8c8a743c PZ |
2307 | my_grp->nr_tasks--; |
2308 | grp->nr_tasks++; | |
2309 | ||
2310 | spin_unlock(&my_grp->lock); | |
60e69eed | 2311 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
2312 | |
2313 | rcu_assign_pointer(p->numa_group, grp); | |
2314 | ||
2315 | put_numa_group(my_grp); | |
3354781a PZ |
2316 | return; |
2317 | ||
2318 | no_join: | |
2319 | rcu_read_unlock(); | |
2320 | return; | |
8c8a743c PZ |
2321 | } |
2322 | ||
2323 | void task_numa_free(struct task_struct *p) | |
2324 | { | |
2325 | struct numa_group *grp = p->numa_group; | |
44dba3d5 | 2326 | void *numa_faults = p->numa_faults; |
e9dd685c SR |
2327 | unsigned long flags; |
2328 | int i; | |
8c8a743c PZ |
2329 | |
2330 | if (grp) { | |
e9dd685c | 2331 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 2332 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2333 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 2334 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 2335 | |
8c8a743c | 2336 | grp->nr_tasks--; |
e9dd685c | 2337 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 2338 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
2339 | put_numa_group(grp); |
2340 | } | |
2341 | ||
44dba3d5 | 2342 | p->numa_faults = NULL; |
82727018 | 2343 | kfree(numa_faults); |
8c8a743c PZ |
2344 | } |
2345 | ||
cbee9f88 PZ |
2346 | /* |
2347 | * Got a PROT_NONE fault for a page on @node. | |
2348 | */ | |
58b46da3 | 2349 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
2350 | { |
2351 | struct task_struct *p = current; | |
6688cc05 | 2352 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 2353 | int cpu_node = task_node(current); |
792568ec | 2354 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 2355 | struct numa_group *ng; |
ac8e895b | 2356 | int priv; |
cbee9f88 | 2357 | |
2a595721 | 2358 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
2359 | return; |
2360 | ||
9ff1d9ff MG |
2361 | /* for example, ksmd faulting in a user's mm */ |
2362 | if (!p->mm) | |
2363 | return; | |
2364 | ||
f809ca9a | 2365 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
2366 | if (unlikely(!p->numa_faults)) { |
2367 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 2368 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 2369 | |
44dba3d5 IM |
2370 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
2371 | if (!p->numa_faults) | |
f809ca9a | 2372 | return; |
745d6147 | 2373 | |
83e1d2cd | 2374 | p->total_numa_faults = 0; |
04bb2f94 | 2375 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 2376 | } |
cbee9f88 | 2377 | |
8c8a743c PZ |
2378 | /* |
2379 | * First accesses are treated as private, otherwise consider accesses | |
2380 | * to be private if the accessing pid has not changed | |
2381 | */ | |
2382 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
2383 | priv = 1; | |
2384 | } else { | |
2385 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 2386 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 2387 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
2388 | } |
2389 | ||
792568ec RR |
2390 | /* |
2391 | * If a workload spans multiple NUMA nodes, a shared fault that | |
2392 | * occurs wholly within the set of nodes that the workload is | |
2393 | * actively using should be counted as local. This allows the | |
2394 | * scan rate to slow down when a workload has settled down. | |
2395 | */ | |
4142c3eb RR |
2396 | ng = p->numa_group; |
2397 | if (!priv && !local && ng && ng->active_nodes > 1 && | |
2398 | numa_is_active_node(cpu_node, ng) && | |
2399 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
2400 | local = 1; |
2401 | ||
2739d3ee | 2402 | /* |
e1ff516a YW |
2403 | * Retry to migrate task to preferred node periodically, in case it |
2404 | * previously failed, or the scheduler moved us. | |
2739d3ee | 2405 | */ |
b6a60cf3 SD |
2406 | if (time_after(jiffies, p->numa_migrate_retry)) { |
2407 | task_numa_placement(p); | |
6b9a7460 | 2408 | numa_migrate_preferred(p); |
b6a60cf3 | 2409 | } |
6b9a7460 | 2410 | |
b32e86b4 IM |
2411 | if (migrated) |
2412 | p->numa_pages_migrated += pages; | |
074c2381 MG |
2413 | if (flags & TNF_MIGRATE_FAIL) |
2414 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 2415 | |
44dba3d5 IM |
2416 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
2417 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 2418 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
2419 | } |
2420 | ||
6e5fb223 PZ |
2421 | static void reset_ptenuma_scan(struct task_struct *p) |
2422 | { | |
7e5a2c17 JL |
2423 | /* |
2424 | * We only did a read acquisition of the mmap sem, so | |
2425 | * p->mm->numa_scan_seq is written to without exclusive access | |
2426 | * and the update is not guaranteed to be atomic. That's not | |
2427 | * much of an issue though, since this is just used for | |
2428 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
2429 | * expensive, to avoid any form of compiler optimizations: | |
2430 | */ | |
316c1608 | 2431 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
2432 | p->mm->numa_scan_offset = 0; |
2433 | } | |
2434 | ||
cbee9f88 PZ |
2435 | /* |
2436 | * The expensive part of numa migration is done from task_work context. | |
2437 | * Triggered from task_tick_numa(). | |
2438 | */ | |
2439 | void task_numa_work(struct callback_head *work) | |
2440 | { | |
2441 | unsigned long migrate, next_scan, now = jiffies; | |
2442 | struct task_struct *p = current; | |
2443 | struct mm_struct *mm = p->mm; | |
51170840 | 2444 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 2445 | struct vm_area_struct *vma; |
9f40604c | 2446 | unsigned long start, end; |
598f0ec0 | 2447 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 2448 | long pages, virtpages; |
cbee9f88 | 2449 | |
9148a3a1 | 2450 | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 PZ |
2451 | |
2452 | work->next = work; /* protect against double add */ | |
2453 | /* | |
2454 | * Who cares about NUMA placement when they're dying. | |
2455 | * | |
2456 | * NOTE: make sure not to dereference p->mm before this check, | |
2457 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
2458 | * without p->mm even though we still had it when we enqueued this | |
2459 | * work. | |
2460 | */ | |
2461 | if (p->flags & PF_EXITING) | |
2462 | return; | |
2463 | ||
930aa174 | 2464 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
2465 | mm->numa_next_scan = now + |
2466 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
2467 | } |
2468 | ||
cbee9f88 PZ |
2469 | /* |
2470 | * Enforce maximal scan/migration frequency.. | |
2471 | */ | |
2472 | migrate = mm->numa_next_scan; | |
2473 | if (time_before(now, migrate)) | |
2474 | return; | |
2475 | ||
598f0ec0 MG |
2476 | if (p->numa_scan_period == 0) { |
2477 | p->numa_scan_period_max = task_scan_max(p); | |
b5dd77c8 | 2478 | p->numa_scan_period = task_scan_start(p); |
598f0ec0 | 2479 | } |
cbee9f88 | 2480 | |
fb003b80 | 2481 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
cbee9f88 PZ |
2482 | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) |
2483 | return; | |
2484 | ||
19a78d11 PZ |
2485 | /* |
2486 | * Delay this task enough that another task of this mm will likely win | |
2487 | * the next time around. | |
2488 | */ | |
2489 | p->node_stamp += 2 * TICK_NSEC; | |
2490 | ||
9f40604c MG |
2491 | start = mm->numa_scan_offset; |
2492 | pages = sysctl_numa_balancing_scan_size; | |
2493 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 2494 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
2495 | if (!pages) |
2496 | return; | |
cbee9f88 | 2497 | |
4620f8c1 | 2498 | |
8655d549 VB |
2499 | if (!down_read_trylock(&mm->mmap_sem)) |
2500 | return; | |
9f40604c | 2501 | vma = find_vma(mm, start); |
6e5fb223 PZ |
2502 | if (!vma) { |
2503 | reset_ptenuma_scan(p); | |
9f40604c | 2504 | start = 0; |
6e5fb223 PZ |
2505 | vma = mm->mmap; |
2506 | } | |
9f40604c | 2507 | for (; vma; vma = vma->vm_next) { |
6b79c57b | 2508 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 2509 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
6e5fb223 | 2510 | continue; |
6b79c57b | 2511 | } |
6e5fb223 | 2512 | |
4591ce4f MG |
2513 | /* |
2514 | * Shared library pages mapped by multiple processes are not | |
2515 | * migrated as it is expected they are cache replicated. Avoid | |
2516 | * hinting faults in read-only file-backed mappings or the vdso | |
2517 | * as migrating the pages will be of marginal benefit. | |
2518 | */ | |
2519 | if (!vma->vm_mm || | |
2520 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | |
2521 | continue; | |
2522 | ||
3c67f474 MG |
2523 | /* |
2524 | * Skip inaccessible VMAs to avoid any confusion between | |
2525 | * PROT_NONE and NUMA hinting ptes | |
2526 | */ | |
2527 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | |
2528 | continue; | |
4591ce4f | 2529 | |
9f40604c MG |
2530 | do { |
2531 | start = max(start, vma->vm_start); | |
2532 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
2533 | end = min(end, vma->vm_end); | |
4620f8c1 | 2534 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
2535 | |
2536 | /* | |
4620f8c1 RR |
2537 | * Try to scan sysctl_numa_balancing_size worth of |
2538 | * hpages that have at least one present PTE that | |
2539 | * is not already pte-numa. If the VMA contains | |
2540 | * areas that are unused or already full of prot_numa | |
2541 | * PTEs, scan up to virtpages, to skip through those | |
2542 | * areas faster. | |
598f0ec0 MG |
2543 | */ |
2544 | if (nr_pte_updates) | |
2545 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 2546 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 2547 | |
9f40604c | 2548 | start = end; |
4620f8c1 | 2549 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 2550 | goto out; |
3cf1962c RR |
2551 | |
2552 | cond_resched(); | |
9f40604c | 2553 | } while (end != vma->vm_end); |
cbee9f88 | 2554 | } |
6e5fb223 | 2555 | |
9f40604c | 2556 | out: |
6e5fb223 | 2557 | /* |
c69307d5 PZ |
2558 | * It is possible to reach the end of the VMA list but the last few |
2559 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
2560 | * would find the !migratable VMA on the next scan but not reset the | |
2561 | * scanner to the start so check it now. | |
6e5fb223 PZ |
2562 | */ |
2563 | if (vma) | |
9f40604c | 2564 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
2565 | else |
2566 | reset_ptenuma_scan(p); | |
2567 | up_read(&mm->mmap_sem); | |
51170840 RR |
2568 | |
2569 | /* | |
2570 | * Make sure tasks use at least 32x as much time to run other code | |
2571 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
2572 | * Usually update_task_scan_period slows down scanning enough; on an | |
2573 | * overloaded system we need to limit overhead on a per task basis. | |
2574 | */ | |
2575 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
2576 | u64 diff = p->se.sum_exec_runtime - runtime; | |
2577 | p->node_stamp += 32 * diff; | |
2578 | } | |
cbee9f88 PZ |
2579 | } |
2580 | ||
2581 | /* | |
2582 | * Drive the periodic memory faults.. | |
2583 | */ | |
2584 | void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2585 | { | |
2586 | struct callback_head *work = &curr->numa_work; | |
2587 | u64 period, now; | |
2588 | ||
2589 | /* | |
2590 | * We don't care about NUMA placement if we don't have memory. | |
2591 | */ | |
2592 | if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) | |
2593 | return; | |
2594 | ||
2595 | /* | |
2596 | * Using runtime rather than walltime has the dual advantage that | |
2597 | * we (mostly) drive the selection from busy threads and that the | |
2598 | * task needs to have done some actual work before we bother with | |
2599 | * NUMA placement. | |
2600 | */ | |
2601 | now = curr->se.sum_exec_runtime; | |
2602 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
2603 | ||
25b3e5a3 | 2604 | if (now > curr->node_stamp + period) { |
4b96a29b | 2605 | if (!curr->node_stamp) |
b5dd77c8 | 2606 | curr->numa_scan_period = task_scan_start(curr); |
19a78d11 | 2607 | curr->node_stamp += period; |
cbee9f88 PZ |
2608 | |
2609 | if (!time_before(jiffies, curr->mm->numa_next_scan)) { | |
2610 | init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ | |
2611 | task_work_add(curr, work, true); | |
2612 | } | |
2613 | } | |
2614 | } | |
3fed382b | 2615 | |
3f9672ba SD |
2616 | static void update_scan_period(struct task_struct *p, int new_cpu) |
2617 | { | |
2618 | int src_nid = cpu_to_node(task_cpu(p)); | |
2619 | int dst_nid = cpu_to_node(new_cpu); | |
2620 | ||
05cbdf4f MG |
2621 | if (!static_branch_likely(&sched_numa_balancing)) |
2622 | return; | |
2623 | ||
3f9672ba SD |
2624 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
2625 | return; | |
2626 | ||
05cbdf4f MG |
2627 | if (src_nid == dst_nid) |
2628 | return; | |
2629 | ||
2630 | /* | |
2631 | * Allow resets if faults have been trapped before one scan | |
2632 | * has completed. This is most likely due to a new task that | |
2633 | * is pulled cross-node due to wakeups or load balancing. | |
2634 | */ | |
2635 | if (p->numa_scan_seq) { | |
2636 | /* | |
2637 | * Avoid scan adjustments if moving to the preferred | |
2638 | * node or if the task was not previously running on | |
2639 | * the preferred node. | |
2640 | */ | |
2641 | if (dst_nid == p->numa_preferred_nid || | |
2642 | (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid)) | |
2643 | return; | |
2644 | } | |
2645 | ||
2646 | p->numa_scan_period = task_scan_start(p); | |
3f9672ba SD |
2647 | } |
2648 | ||
cbee9f88 PZ |
2649 | #else |
2650 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2651 | { | |
2652 | } | |
0ec8aa00 PZ |
2653 | |
2654 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
2655 | { | |
2656 | } | |
2657 | ||
2658 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
2659 | { | |
2660 | } | |
3fed382b | 2661 | |
3f9672ba SD |
2662 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
2663 | { | |
2664 | } | |
2665 | ||
cbee9f88 PZ |
2666 | #endif /* CONFIG_NUMA_BALANCING */ |
2667 | ||
30cfdcfc DA |
2668 | static void |
2669 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2670 | { | |
2671 | update_load_add(&cfs_rq->load, se->load.weight); | |
c09595f6 | 2672 | if (!parent_entity(se)) |
029632fb | 2673 | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); |
367456c7 | 2674 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2675 | if (entity_is_task(se)) { |
2676 | struct rq *rq = rq_of(cfs_rq); | |
2677 | ||
2678 | account_numa_enqueue(rq, task_of(se)); | |
2679 | list_add(&se->group_node, &rq->cfs_tasks); | |
2680 | } | |
367456c7 | 2681 | #endif |
30cfdcfc | 2682 | cfs_rq->nr_running++; |
30cfdcfc DA |
2683 | } |
2684 | ||
2685 | static void | |
2686 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2687 | { | |
2688 | update_load_sub(&cfs_rq->load, se->load.weight); | |
c09595f6 | 2689 | if (!parent_entity(se)) |
029632fb | 2690 | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); |
bfdb198c | 2691 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2692 | if (entity_is_task(se)) { |
2693 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 2694 | list_del_init(&se->group_node); |
0ec8aa00 | 2695 | } |
bfdb198c | 2696 | #endif |
30cfdcfc | 2697 | cfs_rq->nr_running--; |
30cfdcfc DA |
2698 | } |
2699 | ||
8d5b9025 PZ |
2700 | /* |
2701 | * Signed add and clamp on underflow. | |
2702 | * | |
2703 | * Explicitly do a load-store to ensure the intermediate value never hits | |
2704 | * memory. This allows lockless observations without ever seeing the negative | |
2705 | * values. | |
2706 | */ | |
2707 | #define add_positive(_ptr, _val) do { \ | |
2708 | typeof(_ptr) ptr = (_ptr); \ | |
2709 | typeof(_val) val = (_val); \ | |
2710 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
2711 | \ | |
2712 | res = var + val; \ | |
2713 | \ | |
2714 | if (val < 0 && res > var) \ | |
2715 | res = 0; \ | |
2716 | \ | |
2717 | WRITE_ONCE(*ptr, res); \ | |
2718 | } while (0) | |
2719 | ||
2720 | /* | |
2721 | * Unsigned subtract and clamp on underflow. | |
2722 | * | |
2723 | * Explicitly do a load-store to ensure the intermediate value never hits | |
2724 | * memory. This allows lockless observations without ever seeing the negative | |
2725 | * values. | |
2726 | */ | |
2727 | #define sub_positive(_ptr, _val) do { \ | |
2728 | typeof(_ptr) ptr = (_ptr); \ | |
2729 | typeof(*ptr) val = (_val); \ | |
2730 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
2731 | res = var - val; \ | |
2732 | if (res > var) \ | |
2733 | res = 0; \ | |
2734 | WRITE_ONCE(*ptr, res); \ | |
2735 | } while (0) | |
2736 | ||
2737 | #ifdef CONFIG_SMP | |
8d5b9025 PZ |
2738 | static inline void |
2739 | enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2740 | { | |
1ea6c46a PZ |
2741 | cfs_rq->runnable_weight += se->runnable_weight; |
2742 | ||
2743 | cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; | |
2744 | cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; | |
8d5b9025 PZ |
2745 | } |
2746 | ||
2747 | static inline void | |
2748 | dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2749 | { | |
1ea6c46a PZ |
2750 | cfs_rq->runnable_weight -= se->runnable_weight; |
2751 | ||
2752 | sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); | |
2753 | sub_positive(&cfs_rq->avg.runnable_load_sum, | |
2754 | se_runnable(se) * se->avg.runnable_load_sum); | |
8d5b9025 PZ |
2755 | } |
2756 | ||
2757 | static inline void | |
2758 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2759 | { | |
2760 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
2761 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | |
2762 | } | |
2763 | ||
2764 | static inline void | |
2765 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2766 | { | |
2767 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | |
2768 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); | |
2769 | } | |
2770 | #else | |
2771 | static inline void | |
2772 | enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2773 | static inline void | |
2774 | dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2775 | static inline void | |
2776 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2777 | static inline void | |
2778 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2779 | #endif | |
2780 | ||
9059393e | 2781 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
1ea6c46a | 2782 | unsigned long weight, unsigned long runnable) |
9059393e VG |
2783 | { |
2784 | if (se->on_rq) { | |
2785 | /* commit outstanding execution time */ | |
2786 | if (cfs_rq->curr == se) | |
2787 | update_curr(cfs_rq); | |
2788 | account_entity_dequeue(cfs_rq, se); | |
2789 | dequeue_runnable_load_avg(cfs_rq, se); | |
2790 | } | |
2791 | dequeue_load_avg(cfs_rq, se); | |
2792 | ||
1ea6c46a | 2793 | se->runnable_weight = runnable; |
9059393e VG |
2794 | update_load_set(&se->load, weight); |
2795 | ||
2796 | #ifdef CONFIG_SMP | |
1ea6c46a PZ |
2797 | do { |
2798 | u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; | |
2799 | ||
2800 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | |
2801 | se->avg.runnable_load_avg = | |
2802 | div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); | |
2803 | } while (0); | |
9059393e VG |
2804 | #endif |
2805 | ||
2806 | enqueue_load_avg(cfs_rq, se); | |
2807 | if (se->on_rq) { | |
2808 | account_entity_enqueue(cfs_rq, se); | |
2809 | enqueue_runnable_load_avg(cfs_rq, se); | |
2810 | } | |
2811 | } | |
2812 | ||
2813 | void reweight_task(struct task_struct *p, int prio) | |
2814 | { | |
2815 | struct sched_entity *se = &p->se; | |
2816 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2817 | struct load_weight *load = &se->load; | |
2818 | unsigned long weight = scale_load(sched_prio_to_weight[prio]); | |
2819 | ||
1ea6c46a | 2820 | reweight_entity(cfs_rq, se, weight, weight); |
9059393e VG |
2821 | load->inv_weight = sched_prio_to_wmult[prio]; |
2822 | } | |
2823 | ||
3ff6dcac | 2824 | #ifdef CONFIG_FAIR_GROUP_SCHED |
387f77cc | 2825 | #ifdef CONFIG_SMP |
cef27403 PZ |
2826 | /* |
2827 | * All this does is approximate the hierarchical proportion which includes that | |
2828 | * global sum we all love to hate. | |
2829 | * | |
2830 | * That is, the weight of a group entity, is the proportional share of the | |
2831 | * group weight based on the group runqueue weights. That is: | |
2832 | * | |
2833 | * tg->weight * grq->load.weight | |
2834 | * ge->load.weight = ----------------------------- (1) | |
2835 | * \Sum grq->load.weight | |
2836 | * | |
2837 | * Now, because computing that sum is prohibitively expensive to compute (been | |
2838 | * there, done that) we approximate it with this average stuff. The average | |
2839 | * moves slower and therefore the approximation is cheaper and more stable. | |
2840 | * | |
2841 | * So instead of the above, we substitute: | |
2842 | * | |
2843 | * grq->load.weight -> grq->avg.load_avg (2) | |
2844 | * | |
2845 | * which yields the following: | |
2846 | * | |
2847 | * tg->weight * grq->avg.load_avg | |
2848 | * ge->load.weight = ------------------------------ (3) | |
2849 | * tg->load_avg | |
2850 | * | |
2851 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | |
2852 | * | |
2853 | * That is shares_avg, and it is right (given the approximation (2)). | |
2854 | * | |
2855 | * The problem with it is that because the average is slow -- it was designed | |
2856 | * to be exactly that of course -- this leads to transients in boundary | |
2857 | * conditions. In specific, the case where the group was idle and we start the | |
2858 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | |
2859 | * yielding bad latency etc.. | |
2860 | * | |
2861 | * Now, in that special case (1) reduces to: | |
2862 | * | |
2863 | * tg->weight * grq->load.weight | |
17de4ee0 | 2864 | * ge->load.weight = ----------------------------- = tg->weight (4) |
cef27403 PZ |
2865 | * grp->load.weight |
2866 | * | |
2867 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | |
2868 | * | |
2869 | * So what we do is modify our approximation (3) to approach (4) in the (near) | |
2870 | * UP case, like: | |
2871 | * | |
2872 | * ge->load.weight = | |
2873 | * | |
2874 | * tg->weight * grq->load.weight | |
2875 | * --------------------------------------------------- (5) | |
2876 | * tg->load_avg - grq->avg.load_avg + grq->load.weight | |
2877 | * | |
17de4ee0 PZ |
2878 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
2879 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | |
2880 | * | |
2881 | * | |
2882 | * tg->weight * grq->load.weight | |
2883 | * ge->load.weight = ----------------------------- (6) | |
2884 | * tg_load_avg' | |
2885 | * | |
2886 | * Where: | |
2887 | * | |
2888 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + | |
2889 | * max(grq->load.weight, grq->avg.load_avg) | |
cef27403 PZ |
2890 | * |
2891 | * And that is shares_weight and is icky. In the (near) UP case it approaches | |
2892 | * (4) while in the normal case it approaches (3). It consistently | |
2893 | * overestimates the ge->load.weight and therefore: | |
2894 | * | |
2895 | * \Sum ge->load.weight >= tg->weight | |
2896 | * | |
2897 | * hence icky! | |
2898 | */ | |
2c8e4dce | 2899 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
cf5f0acf | 2900 | { |
7c80cfc9 PZ |
2901 | long tg_weight, tg_shares, load, shares; |
2902 | struct task_group *tg = cfs_rq->tg; | |
2903 | ||
2904 | tg_shares = READ_ONCE(tg->shares); | |
cf5f0acf | 2905 | |
3d4b60d3 | 2906 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
cf5f0acf | 2907 | |
ea1dc6fc | 2908 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 2909 | |
ea1dc6fc PZ |
2910 | /* Ensure tg_weight >= load */ |
2911 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
2912 | tg_weight += load; | |
3ff6dcac | 2913 | |
7c80cfc9 | 2914 | shares = (tg_shares * load); |
cf5f0acf PZ |
2915 | if (tg_weight) |
2916 | shares /= tg_weight; | |
3ff6dcac | 2917 | |
b8fd8423 DE |
2918 | /* |
2919 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
2920 | * of a group with small tg->shares value. It is a floor value which is | |
2921 | * assigned as a minimum load.weight to the sched_entity representing | |
2922 | * the group on a CPU. | |
2923 | * | |
2924 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
2925 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
2926 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
2927 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
2928 | * instead of 0. | |
2929 | */ | |
7c80cfc9 | 2930 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
3ff6dcac | 2931 | } |
2c8e4dce JB |
2932 | |
2933 | /* | |
17de4ee0 PZ |
2934 | * This calculates the effective runnable weight for a group entity based on |
2935 | * the group entity weight calculated above. | |
2936 | * | |
2937 | * Because of the above approximation (2), our group entity weight is | |
2938 | * an load_avg based ratio (3). This means that it includes blocked load and | |
2939 | * does not represent the runnable weight. | |
2940 | * | |
2941 | * Approximate the group entity's runnable weight per ratio from the group | |
2942 | * runqueue: | |
2943 | * | |
2944 | * grq->avg.runnable_load_avg | |
2945 | * ge->runnable_weight = ge->load.weight * -------------------------- (7) | |
2946 | * grq->avg.load_avg | |
2947 | * | |
2948 | * However, analogous to above, since the avg numbers are slow, this leads to | |
2949 | * transients in the from-idle case. Instead we use: | |
2950 | * | |
2951 | * ge->runnable_weight = ge->load.weight * | |
2952 | * | |
2953 | * max(grq->avg.runnable_load_avg, grq->runnable_weight) | |
2954 | * ----------------------------------------------------- (8) | |
2955 | * max(grq->avg.load_avg, grq->load.weight) | |
2956 | * | |
2957 | * Where these max() serve both to use the 'instant' values to fix the slow | |
2958 | * from-idle and avoid the /0 on to-idle, similar to (6). | |
2c8e4dce JB |
2959 | */ |
2960 | static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) | |
2961 | { | |
17de4ee0 PZ |
2962 | long runnable, load_avg; |
2963 | ||
2964 | load_avg = max(cfs_rq->avg.load_avg, | |
2965 | scale_load_down(cfs_rq->load.weight)); | |
2966 | ||
2967 | runnable = max(cfs_rq->avg.runnable_load_avg, | |
2968 | scale_load_down(cfs_rq->runnable_weight)); | |
2c8e4dce JB |
2969 | |
2970 | runnable *= shares; | |
2971 | if (load_avg) | |
2972 | runnable /= load_avg; | |
17de4ee0 | 2973 | |
2c8e4dce JB |
2974 | return clamp_t(long, runnable, MIN_SHARES, shares); |
2975 | } | |
387f77cc | 2976 | #endif /* CONFIG_SMP */ |
ea1dc6fc | 2977 | |
82958366 PT |
2978 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
2979 | ||
1ea6c46a PZ |
2980 | /* |
2981 | * Recomputes the group entity based on the current state of its group | |
2982 | * runqueue. | |
2983 | */ | |
2984 | static void update_cfs_group(struct sched_entity *se) | |
2069dd75 | 2985 | { |
1ea6c46a PZ |
2986 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
2987 | long shares, runnable; | |
2069dd75 | 2988 | |
1ea6c46a | 2989 | if (!gcfs_rq) |
89ee048f VG |
2990 | return; |
2991 | ||
1ea6c46a | 2992 | if (throttled_hierarchy(gcfs_rq)) |
2069dd75 | 2993 | return; |
89ee048f | 2994 | |
3ff6dcac | 2995 | #ifndef CONFIG_SMP |
1ea6c46a | 2996 | runnable = shares = READ_ONCE(gcfs_rq->tg->shares); |
7c80cfc9 PZ |
2997 | |
2998 | if (likely(se->load.weight == shares)) | |
3ff6dcac | 2999 | return; |
7c80cfc9 | 3000 | #else |
2c8e4dce JB |
3001 | shares = calc_group_shares(gcfs_rq); |
3002 | runnable = calc_group_runnable(gcfs_rq, shares); | |
3ff6dcac | 3003 | #endif |
2069dd75 | 3004 | |
1ea6c46a | 3005 | reweight_entity(cfs_rq_of(se), se, shares, runnable); |
2069dd75 | 3006 | } |
89ee048f | 3007 | |
2069dd75 | 3008 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
1ea6c46a | 3009 | static inline void update_cfs_group(struct sched_entity *se) |
2069dd75 PZ |
3010 | { |
3011 | } | |
3012 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
3013 | ||
ea14b57e | 3014 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
a030d738 | 3015 | { |
43964409 LT |
3016 | struct rq *rq = rq_of(cfs_rq); |
3017 | ||
ea14b57e | 3018 | if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { |
a030d738 VK |
3019 | /* |
3020 | * There are a few boundary cases this might miss but it should | |
3021 | * get called often enough that that should (hopefully) not be | |
9783be2c | 3022 | * a real problem. |
a030d738 VK |
3023 | * |
3024 | * It will not get called when we go idle, because the idle | |
3025 | * thread is a different class (!fair), nor will the utilization | |
3026 | * number include things like RT tasks. | |
3027 | * | |
3028 | * As is, the util number is not freq-invariant (we'd have to | |
3029 | * implement arch_scale_freq_capacity() for that). | |
3030 | * | |
3031 | * See cpu_util(). | |
3032 | */ | |
ea14b57e | 3033 | cpufreq_update_util(rq, flags); |
a030d738 VK |
3034 | } |
3035 | } | |
3036 | ||
141965c7 | 3037 | #ifdef CONFIG_SMP |
c566e8e9 | 3038 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7c3edd2c PZ |
3039 | /** |
3040 | * update_tg_load_avg - update the tg's load avg | |
3041 | * @cfs_rq: the cfs_rq whose avg changed | |
3042 | * @force: update regardless of how small the difference | |
3043 | * | |
3044 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
3045 | * However, because tg->load_avg is a global value there are performance | |
3046 | * considerations. | |
3047 | * | |
3048 | * In order to avoid having to look at the other cfs_rq's, we use a | |
3049 | * differential update where we store the last value we propagated. This in | |
3050 | * turn allows skipping updates if the differential is 'small'. | |
3051 | * | |
815abf5a | 3052 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 3053 | */ |
9d89c257 | 3054 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
bb17f655 | 3055 | { |
9d89c257 | 3056 | long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
bb17f655 | 3057 | |
aa0b7ae0 WL |
3058 | /* |
3059 | * No need to update load_avg for root_task_group as it is not used. | |
3060 | */ | |
3061 | if (cfs_rq->tg == &root_task_group) | |
3062 | return; | |
3063 | ||
9d89c257 YD |
3064 | if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
3065 | atomic_long_add(delta, &cfs_rq->tg->load_avg); | |
3066 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
bb17f655 | 3067 | } |
8165e145 | 3068 | } |
f5f9739d | 3069 | |
ad936d86 | 3070 | /* |
97fb7a0a | 3071 | * Called within set_task_rq() right before setting a task's CPU. The |
ad936d86 BP |
3072 | * caller only guarantees p->pi_lock is held; no other assumptions, |
3073 | * including the state of rq->lock, should be made. | |
3074 | */ | |
3075 | void set_task_rq_fair(struct sched_entity *se, | |
3076 | struct cfs_rq *prev, struct cfs_rq *next) | |
3077 | { | |
0ccb977f PZ |
3078 | u64 p_last_update_time; |
3079 | u64 n_last_update_time; | |
3080 | ||
ad936d86 BP |
3081 | if (!sched_feat(ATTACH_AGE_LOAD)) |
3082 | return; | |
3083 | ||
3084 | /* | |
3085 | * We are supposed to update the task to "current" time, then its up to | |
3086 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
3087 | * getting what current time is, so simply throw away the out-of-date | |
3088 | * time. This will result in the wakee task is less decayed, but giving | |
3089 | * the wakee more load sounds not bad. | |
3090 | */ | |
0ccb977f PZ |
3091 | if (!(se->avg.last_update_time && prev)) |
3092 | return; | |
ad936d86 BP |
3093 | |
3094 | #ifndef CONFIG_64BIT | |
0ccb977f | 3095 | { |
ad936d86 BP |
3096 | u64 p_last_update_time_copy; |
3097 | u64 n_last_update_time_copy; | |
3098 | ||
3099 | do { | |
3100 | p_last_update_time_copy = prev->load_last_update_time_copy; | |
3101 | n_last_update_time_copy = next->load_last_update_time_copy; | |
3102 | ||
3103 | smp_rmb(); | |
3104 | ||
3105 | p_last_update_time = prev->avg.last_update_time; | |
3106 | n_last_update_time = next->avg.last_update_time; | |
3107 | ||
3108 | } while (p_last_update_time != p_last_update_time_copy || | |
3109 | n_last_update_time != n_last_update_time_copy); | |
0ccb977f | 3110 | } |
ad936d86 | 3111 | #else |
0ccb977f PZ |
3112 | p_last_update_time = prev->avg.last_update_time; |
3113 | n_last_update_time = next->avg.last_update_time; | |
ad936d86 | 3114 | #endif |
0ccb977f PZ |
3115 | __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); |
3116 | se->avg.last_update_time = n_last_update_time; | |
ad936d86 | 3117 | } |
09a43ace | 3118 | |
0e2d2aaa PZ |
3119 | |
3120 | /* | |
3121 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | |
3122 | * propagate its contribution. The key to this propagation is the invariant | |
3123 | * that for each group: | |
3124 | * | |
3125 | * ge->avg == grq->avg (1) | |
3126 | * | |
3127 | * _IFF_ we look at the pure running and runnable sums. Because they | |
3128 | * represent the very same entity, just at different points in the hierarchy. | |
3129 | * | |
a4c3c049 VG |
3130 | * Per the above update_tg_cfs_util() is trivial and simply copies the running |
3131 | * sum over (but still wrong, because the group entity and group rq do not have | |
3132 | * their PELT windows aligned). | |
0e2d2aaa PZ |
3133 | * |
3134 | * However, update_tg_cfs_runnable() is more complex. So we have: | |
3135 | * | |
3136 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) | |
3137 | * | |
3138 | * And since, like util, the runnable part should be directly transferable, | |
3139 | * the following would _appear_ to be the straight forward approach: | |
3140 | * | |
a4c3c049 | 3141 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
0e2d2aaa PZ |
3142 | * |
3143 | * And per (1) we have: | |
3144 | * | |
a4c3c049 | 3145 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
0e2d2aaa PZ |
3146 | * |
3147 | * Which gives: | |
3148 | * | |
3149 | * ge->load.weight * grq->avg.load_avg | |
3150 | * ge->avg.load_avg = ----------------------------------- (4) | |
3151 | * grq->load.weight | |
3152 | * | |
3153 | * Except that is wrong! | |
3154 | * | |
3155 | * Because while for entities historical weight is not important and we | |
3156 | * really only care about our future and therefore can consider a pure | |
3157 | * runnable sum, runqueues can NOT do this. | |
3158 | * | |
3159 | * We specifically want runqueues to have a load_avg that includes | |
3160 | * historical weights. Those represent the blocked load, the load we expect | |
3161 | * to (shortly) return to us. This only works by keeping the weights as | |
3162 | * integral part of the sum. We therefore cannot decompose as per (3). | |
3163 | * | |
a4c3c049 VG |
3164 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
3165 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | |
3166 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | |
3167 | * runnable section of these tasks overlap (or not). If they were to perfectly | |
3168 | * align the rq as a whole would be runnable 2/3 of the time. If however we | |
3169 | * always have at least 1 runnable task, the rq as a whole is always runnable. | |
0e2d2aaa | 3170 | * |
a4c3c049 | 3171 | * So we'll have to approximate.. :/ |
0e2d2aaa | 3172 | * |
a4c3c049 | 3173 | * Given the constraint: |
0e2d2aaa | 3174 | * |
a4c3c049 | 3175 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
0e2d2aaa | 3176 | * |
a4c3c049 VG |
3177 | * We can construct a rule that adds runnable to a rq by assuming minimal |
3178 | * overlap. | |
0e2d2aaa | 3179 | * |
a4c3c049 | 3180 | * On removal, we'll assume each task is equally runnable; which yields: |
0e2d2aaa | 3181 | * |
a4c3c049 | 3182 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
0e2d2aaa | 3183 | * |
a4c3c049 | 3184 | * XXX: only do this for the part of runnable > running ? |
0e2d2aaa | 3185 | * |
0e2d2aaa PZ |
3186 | */ |
3187 | ||
09a43ace | 3188 | static inline void |
0e2d2aaa | 3189 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3190 | { |
09a43ace VG |
3191 | long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; |
3192 | ||
3193 | /* Nothing to update */ | |
3194 | if (!delta) | |
3195 | return; | |
3196 | ||
a4c3c049 VG |
3197 | /* |
3198 | * The relation between sum and avg is: | |
3199 | * | |
3200 | * LOAD_AVG_MAX - 1024 + sa->period_contrib | |
3201 | * | |
3202 | * however, the PELT windows are not aligned between grq and gse. | |
3203 | */ | |
3204 | ||
09a43ace VG |
3205 | /* Set new sched_entity's utilization */ |
3206 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
3207 | se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; | |
3208 | ||
3209 | /* Update parent cfs_rq utilization */ | |
3210 | add_positive(&cfs_rq->avg.util_avg, delta); | |
3211 | cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; | |
3212 | } | |
3213 | ||
09a43ace | 3214 | static inline void |
0e2d2aaa | 3215 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3216 | { |
a4c3c049 VG |
3217 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
3218 | unsigned long runnable_load_avg, load_avg; | |
3219 | u64 runnable_load_sum, load_sum = 0; | |
3220 | s64 delta_sum; | |
09a43ace | 3221 | |
0e2d2aaa PZ |
3222 | if (!runnable_sum) |
3223 | return; | |
09a43ace | 3224 | |
0e2d2aaa | 3225 | gcfs_rq->prop_runnable_sum = 0; |
09a43ace | 3226 | |
a4c3c049 VG |
3227 | if (runnable_sum >= 0) { |
3228 | /* | |
3229 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | |
3230 | * the CPU is saturated running == runnable. | |
3231 | */ | |
3232 | runnable_sum += se->avg.load_sum; | |
3233 | runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); | |
3234 | } else { | |
3235 | /* | |
3236 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | |
3237 | * assuming all tasks are equally runnable. | |
3238 | */ | |
3239 | if (scale_load_down(gcfs_rq->load.weight)) { | |
3240 | load_sum = div_s64(gcfs_rq->avg.load_sum, | |
3241 | scale_load_down(gcfs_rq->load.weight)); | |
3242 | } | |
3243 | ||
3244 | /* But make sure to not inflate se's runnable */ | |
3245 | runnable_sum = min(se->avg.load_sum, load_sum); | |
3246 | } | |
3247 | ||
3248 | /* | |
3249 | * runnable_sum can't be lower than running_sum | |
97fb7a0a | 3250 | * As running sum is scale with CPU capacity wehreas the runnable sum |
a4c3c049 VG |
3251 | * is not we rescale running_sum 1st |
3252 | */ | |
3253 | running_sum = se->avg.util_sum / | |
3254 | arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); | |
3255 | runnable_sum = max(runnable_sum, running_sum); | |
3256 | ||
0e2d2aaa PZ |
3257 | load_sum = (s64)se_weight(se) * runnable_sum; |
3258 | load_avg = div_s64(load_sum, LOAD_AVG_MAX); | |
09a43ace | 3259 | |
a4c3c049 VG |
3260 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
3261 | delta_avg = load_avg - se->avg.load_avg; | |
09a43ace | 3262 | |
a4c3c049 VG |
3263 | se->avg.load_sum = runnable_sum; |
3264 | se->avg.load_avg = load_avg; | |
3265 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | |
3266 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | |
09a43ace | 3267 | |
1ea6c46a PZ |
3268 | runnable_load_sum = (s64)se_runnable(se) * runnable_sum; |
3269 | runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); | |
a4c3c049 VG |
3270 | delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; |
3271 | delta_avg = runnable_load_avg - se->avg.runnable_load_avg; | |
1ea6c46a | 3272 | |
a4c3c049 VG |
3273 | se->avg.runnable_load_sum = runnable_sum; |
3274 | se->avg.runnable_load_avg = runnable_load_avg; | |
1ea6c46a | 3275 | |
09a43ace | 3276 | if (se->on_rq) { |
a4c3c049 VG |
3277 | add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); |
3278 | add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); | |
09a43ace VG |
3279 | } |
3280 | } | |
3281 | ||
0e2d2aaa | 3282 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
09a43ace | 3283 | { |
0e2d2aaa PZ |
3284 | cfs_rq->propagate = 1; |
3285 | cfs_rq->prop_runnable_sum += runnable_sum; | |
09a43ace VG |
3286 | } |
3287 | ||
3288 | /* Update task and its cfs_rq load average */ | |
3289 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3290 | { | |
0e2d2aaa | 3291 | struct cfs_rq *cfs_rq, *gcfs_rq; |
09a43ace VG |
3292 | |
3293 | if (entity_is_task(se)) | |
3294 | return 0; | |
3295 | ||
0e2d2aaa PZ |
3296 | gcfs_rq = group_cfs_rq(se); |
3297 | if (!gcfs_rq->propagate) | |
09a43ace VG |
3298 | return 0; |
3299 | ||
0e2d2aaa PZ |
3300 | gcfs_rq->propagate = 0; |
3301 | ||
09a43ace VG |
3302 | cfs_rq = cfs_rq_of(se); |
3303 | ||
0e2d2aaa | 3304 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
09a43ace | 3305 | |
0e2d2aaa PZ |
3306 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
3307 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); | |
09a43ace VG |
3308 | |
3309 | return 1; | |
3310 | } | |
3311 | ||
bc427898 VG |
3312 | /* |
3313 | * Check if we need to update the load and the utilization of a blocked | |
3314 | * group_entity: | |
3315 | */ | |
3316 | static inline bool skip_blocked_update(struct sched_entity *se) | |
3317 | { | |
3318 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3319 | ||
3320 | /* | |
3321 | * If sched_entity still have not zero load or utilization, we have to | |
3322 | * decay it: | |
3323 | */ | |
3324 | if (se->avg.load_avg || se->avg.util_avg) | |
3325 | return false; | |
3326 | ||
3327 | /* | |
3328 | * If there is a pending propagation, we have to update the load and | |
3329 | * the utilization of the sched_entity: | |
3330 | */ | |
0e2d2aaa | 3331 | if (gcfs_rq->propagate) |
bc427898 VG |
3332 | return false; |
3333 | ||
3334 | /* | |
3335 | * Otherwise, the load and the utilization of the sched_entity is | |
3336 | * already zero and there is no pending propagation, so it will be a | |
3337 | * waste of time to try to decay it: | |
3338 | */ | |
3339 | return true; | |
3340 | } | |
3341 | ||
6e83125c | 3342 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 3343 | |
9d89c257 | 3344 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} |
09a43ace VG |
3345 | |
3346 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3347 | { | |
3348 | return 0; | |
3349 | } | |
3350 | ||
0e2d2aaa | 3351 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
09a43ace | 3352 | |
6e83125c | 3353 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 3354 | |
3d30544f PZ |
3355 | /** |
3356 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
3357 | * @now: current time, as per cfs_rq_clock_task() | |
3358 | * @cfs_rq: cfs_rq to update | |
3d30544f PZ |
3359 | * |
3360 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
3361 | * avg. The immediate corollary is that all (fair) tasks must be attached, see | |
3362 | * post_init_entity_util_avg(). | |
3363 | * | |
3364 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
3365 | * | |
7c3edd2c PZ |
3366 | * Returns true if the load decayed or we removed load. |
3367 | * | |
3368 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
3369 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 3370 | */ |
a2c6c91f | 3371 | static inline int |
3a123bbb | 3372 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 3373 | { |
0e2d2aaa | 3374 | unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; |
9d89c257 | 3375 | struct sched_avg *sa = &cfs_rq->avg; |
2a2f5d4e | 3376 | int decayed = 0; |
2dac754e | 3377 | |
2a2f5d4e PZ |
3378 | if (cfs_rq->removed.nr) { |
3379 | unsigned long r; | |
9a2dd585 | 3380 | u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; |
2a2f5d4e PZ |
3381 | |
3382 | raw_spin_lock(&cfs_rq->removed.lock); | |
3383 | swap(cfs_rq->removed.util_avg, removed_util); | |
3384 | swap(cfs_rq->removed.load_avg, removed_load); | |
0e2d2aaa | 3385 | swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); |
2a2f5d4e PZ |
3386 | cfs_rq->removed.nr = 0; |
3387 | raw_spin_unlock(&cfs_rq->removed.lock); | |
3388 | ||
2a2f5d4e | 3389 | r = removed_load; |
89741892 | 3390 | sub_positive(&sa->load_avg, r); |
9a2dd585 | 3391 | sub_positive(&sa->load_sum, r * divider); |
2dac754e | 3392 | |
2a2f5d4e | 3393 | r = removed_util; |
89741892 | 3394 | sub_positive(&sa->util_avg, r); |
9a2dd585 | 3395 | sub_positive(&sa->util_sum, r * divider); |
2a2f5d4e | 3396 | |
0e2d2aaa | 3397 | add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); |
2a2f5d4e PZ |
3398 | |
3399 | decayed = 1; | |
9d89c257 | 3400 | } |
36ee28e4 | 3401 | |
2a2f5d4e | 3402 | decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); |
36ee28e4 | 3403 | |
9d89c257 YD |
3404 | #ifndef CONFIG_64BIT |
3405 | smp_wmb(); | |
3406 | cfs_rq->load_last_update_time_copy = sa->last_update_time; | |
3407 | #endif | |
36ee28e4 | 3408 | |
2a2f5d4e | 3409 | if (decayed) |
ea14b57e | 3410 | cfs_rq_util_change(cfs_rq, 0); |
21e96f88 | 3411 | |
2a2f5d4e | 3412 | return decayed; |
21e96f88 SM |
3413 | } |
3414 | ||
3d30544f PZ |
3415 | /** |
3416 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
3417 | * @cfs_rq: cfs_rq to attach to | |
3418 | * @se: sched_entity to attach | |
882a78a9 | 3419 | * @flags: migration hints |
3d30544f PZ |
3420 | * |
3421 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3422 | * cfs_rq->avg.last_update_time being current. | |
3423 | */ | |
ea14b57e | 3424 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
a05e8c51 | 3425 | { |
f207934f PZ |
3426 | u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; |
3427 | ||
3428 | /* | |
3429 | * When we attach the @se to the @cfs_rq, we must align the decay | |
3430 | * window because without that, really weird and wonderful things can | |
3431 | * happen. | |
3432 | * | |
3433 | * XXX illustrate | |
3434 | */ | |
a05e8c51 | 3435 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
f207934f PZ |
3436 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
3437 | ||
3438 | /* | |
3439 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | |
3440 | * period_contrib. This isn't strictly correct, but since we're | |
3441 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | |
3442 | * _sum a little. | |
3443 | */ | |
3444 | se->avg.util_sum = se->avg.util_avg * divider; | |
3445 | ||
3446 | se->avg.load_sum = divider; | |
3447 | if (se_weight(se)) { | |
3448 | se->avg.load_sum = | |
3449 | div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); | |
3450 | } | |
3451 | ||
3452 | se->avg.runnable_load_sum = se->avg.load_sum; | |
3453 | ||
8d5b9025 | 3454 | enqueue_load_avg(cfs_rq, se); |
a05e8c51 BP |
3455 | cfs_rq->avg.util_avg += se->avg.util_avg; |
3456 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
0e2d2aaa PZ |
3457 | |
3458 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | |
a2c6c91f | 3459 | |
ea14b57e | 3460 | cfs_rq_util_change(cfs_rq, flags); |
a05e8c51 BP |
3461 | } |
3462 | ||
3d30544f PZ |
3463 | /** |
3464 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
3465 | * @cfs_rq: cfs_rq to detach from | |
3466 | * @se: sched_entity to detach | |
3467 | * | |
3468 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3469 | * cfs_rq->avg.last_update_time being current. | |
3470 | */ | |
a05e8c51 BP |
3471 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3472 | { | |
8d5b9025 | 3473 | dequeue_load_avg(cfs_rq, se); |
89741892 PZ |
3474 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
3475 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | |
0e2d2aaa PZ |
3476 | |
3477 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | |
a2c6c91f | 3478 | |
ea14b57e | 3479 | cfs_rq_util_change(cfs_rq, 0); |
a05e8c51 BP |
3480 | } |
3481 | ||
b382a531 PZ |
3482 | /* |
3483 | * Optional action to be done while updating the load average | |
3484 | */ | |
3485 | #define UPDATE_TG 0x1 | |
3486 | #define SKIP_AGE_LOAD 0x2 | |
3487 | #define DO_ATTACH 0x4 | |
3488 | ||
3489 | /* Update task and its cfs_rq load average */ | |
3490 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |
3491 | { | |
3492 | u64 now = cfs_rq_clock_task(cfs_rq); | |
3493 | struct rq *rq = rq_of(cfs_rq); | |
3494 | int cpu = cpu_of(rq); | |
3495 | int decayed; | |
3496 | ||
3497 | /* | |
3498 | * Track task load average for carrying it to new CPU after migrated, and | |
3499 | * track group sched_entity load average for task_h_load calc in migration | |
3500 | */ | |
3501 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | |
3502 | __update_load_avg_se(now, cpu, cfs_rq, se); | |
3503 | ||
3504 | decayed = update_cfs_rq_load_avg(now, cfs_rq); | |
3505 | decayed |= propagate_entity_load_avg(se); | |
3506 | ||
3507 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | |
3508 | ||
ea14b57e PZ |
3509 | /* |
3510 | * DO_ATTACH means we're here from enqueue_entity(). | |
3511 | * !last_update_time means we've passed through | |
3512 | * migrate_task_rq_fair() indicating we migrated. | |
3513 | * | |
3514 | * IOW we're enqueueing a task on a new CPU. | |
3515 | */ | |
3516 | attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); | |
b382a531 PZ |
3517 | update_tg_load_avg(cfs_rq, 0); |
3518 | ||
3519 | } else if (decayed && (flags & UPDATE_TG)) | |
3520 | update_tg_load_avg(cfs_rq, 0); | |
3521 | } | |
3522 | ||
9d89c257 | 3523 | #ifndef CONFIG_64BIT |
0905f04e YD |
3524 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3525 | { | |
9d89c257 | 3526 | u64 last_update_time_copy; |
0905f04e | 3527 | u64 last_update_time; |
9ee474f5 | 3528 | |
9d89c257 YD |
3529 | do { |
3530 | last_update_time_copy = cfs_rq->load_last_update_time_copy; | |
3531 | smp_rmb(); | |
3532 | last_update_time = cfs_rq->avg.last_update_time; | |
3533 | } while (last_update_time != last_update_time_copy); | |
0905f04e YD |
3534 | |
3535 | return last_update_time; | |
3536 | } | |
9d89c257 | 3537 | #else |
0905f04e YD |
3538 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3539 | { | |
3540 | return cfs_rq->avg.last_update_time; | |
3541 | } | |
9d89c257 YD |
3542 | #endif |
3543 | ||
104cb16d MR |
3544 | /* |
3545 | * Synchronize entity load avg of dequeued entity without locking | |
3546 | * the previous rq. | |
3547 | */ | |
3548 | void sync_entity_load_avg(struct sched_entity *se) | |
3549 | { | |
3550 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3551 | u64 last_update_time; | |
3552 | ||
3553 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
0ccb977f | 3554 | __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); |
104cb16d MR |
3555 | } |
3556 | ||
0905f04e YD |
3557 | /* |
3558 | * Task first catches up with cfs_rq, and then subtract | |
3559 | * itself from the cfs_rq (task must be off the queue now). | |
3560 | */ | |
3561 | void remove_entity_load_avg(struct sched_entity *se) | |
3562 | { | |
3563 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2a2f5d4e | 3564 | unsigned long flags; |
0905f04e YD |
3565 | |
3566 | /* | |
7dc603c9 PZ |
3567 | * tasks cannot exit without having gone through wake_up_new_task() -> |
3568 | * post_init_entity_util_avg() which will have added things to the | |
3569 | * cfs_rq, so we can remove unconditionally. | |
3570 | * | |
3571 | * Similarly for groups, they will have passed through | |
3572 | * post_init_entity_util_avg() before unregister_sched_fair_group() | |
3573 | * calls this. | |
0905f04e | 3574 | */ |
0905f04e | 3575 | |
104cb16d | 3576 | sync_entity_load_avg(se); |
2a2f5d4e PZ |
3577 | |
3578 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | |
3579 | ++cfs_rq->removed.nr; | |
3580 | cfs_rq->removed.util_avg += se->avg.util_avg; | |
3581 | cfs_rq->removed.load_avg += se->avg.load_avg; | |
0e2d2aaa | 3582 | cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ |
2a2f5d4e | 3583 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
2dac754e | 3584 | } |
642dbc39 | 3585 | |
7ea241af YD |
3586 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) |
3587 | { | |
1ea6c46a | 3588 | return cfs_rq->avg.runnable_load_avg; |
7ea241af YD |
3589 | } |
3590 | ||
3591 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | |
3592 | { | |
3593 | return cfs_rq->avg.load_avg; | |
3594 | } | |
3595 | ||
46f69fa3 | 3596 | static int idle_balance(struct rq *this_rq, struct rq_flags *rf); |
6e83125c | 3597 | |
7f65ea42 PB |
3598 | static inline unsigned long task_util(struct task_struct *p) |
3599 | { | |
3600 | return READ_ONCE(p->se.avg.util_avg); | |
3601 | } | |
3602 | ||
3603 | static inline unsigned long _task_util_est(struct task_struct *p) | |
3604 | { | |
3605 | struct util_est ue = READ_ONCE(p->se.avg.util_est); | |
3606 | ||
3607 | return max(ue.ewma, ue.enqueued); | |
3608 | } | |
3609 | ||
3610 | static inline unsigned long task_util_est(struct task_struct *p) | |
3611 | { | |
3612 | return max(task_util(p), _task_util_est(p)); | |
3613 | } | |
3614 | ||
3615 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | |
3616 | struct task_struct *p) | |
3617 | { | |
3618 | unsigned int enqueued; | |
3619 | ||
3620 | if (!sched_feat(UTIL_EST)) | |
3621 | return; | |
3622 | ||
3623 | /* Update root cfs_rq's estimated utilization */ | |
3624 | enqueued = cfs_rq->avg.util_est.enqueued; | |
d519329f | 3625 | enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); |
7f65ea42 PB |
3626 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); |
3627 | } | |
3628 | ||
3629 | /* | |
3630 | * Check if a (signed) value is within a specified (unsigned) margin, | |
3631 | * based on the observation that: | |
3632 | * | |
3633 | * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) | |
3634 | * | |
3635 | * NOTE: this only works when value + maring < INT_MAX. | |
3636 | */ | |
3637 | static inline bool within_margin(int value, int margin) | |
3638 | { | |
3639 | return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); | |
3640 | } | |
3641 | ||
3642 | static void | |
3643 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) | |
3644 | { | |
3645 | long last_ewma_diff; | |
3646 | struct util_est ue; | |
3647 | ||
3648 | if (!sched_feat(UTIL_EST)) | |
3649 | return; | |
3650 | ||
3482d98b VG |
3651 | /* Update root cfs_rq's estimated utilization */ |
3652 | ue.enqueued = cfs_rq->avg.util_est.enqueued; | |
3653 | ue.enqueued -= min_t(unsigned int, ue.enqueued, | |
3654 | (_task_util_est(p) | UTIL_AVG_UNCHANGED)); | |
7f65ea42 PB |
3655 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); |
3656 | ||
3657 | /* | |
3658 | * Skip update of task's estimated utilization when the task has not | |
3659 | * yet completed an activation, e.g. being migrated. | |
3660 | */ | |
3661 | if (!task_sleep) | |
3662 | return; | |
3663 | ||
d519329f PB |
3664 | /* |
3665 | * If the PELT values haven't changed since enqueue time, | |
3666 | * skip the util_est update. | |
3667 | */ | |
3668 | ue = p->se.avg.util_est; | |
3669 | if (ue.enqueued & UTIL_AVG_UNCHANGED) | |
3670 | return; | |
3671 | ||
7f65ea42 PB |
3672 | /* |
3673 | * Skip update of task's estimated utilization when its EWMA is | |
3674 | * already ~1% close to its last activation value. | |
3675 | */ | |
d519329f | 3676 | ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); |
7f65ea42 PB |
3677 | last_ewma_diff = ue.enqueued - ue.ewma; |
3678 | if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) | |
3679 | return; | |
3680 | ||
3681 | /* | |
3682 | * Update Task's estimated utilization | |
3683 | * | |
3684 | * When *p completes an activation we can consolidate another sample | |
3685 | * of the task size. This is done by storing the current PELT value | |
3686 | * as ue.enqueued and by using this value to update the Exponential | |
3687 | * Weighted Moving Average (EWMA): | |
3688 | * | |
3689 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) | |
3690 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) | |
3691 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) | |
3692 | * = w * ( last_ewma_diff ) + ewma(t-1) | |
3693 | * = w * (last_ewma_diff + ewma(t-1) / w) | |
3694 | * | |
3695 | * Where 'w' is the weight of new samples, which is configured to be | |
3696 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | |
3697 | */ | |
3698 | ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; | |
3699 | ue.ewma += last_ewma_diff; | |
3700 | ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; | |
3701 | WRITE_ONCE(p->se.avg.util_est, ue); | |
3702 | } | |
3703 | ||
3b1baa64 MR |
3704 | static inline int task_fits_capacity(struct task_struct *p, long capacity) |
3705 | { | |
3706 | return capacity * 1024 > task_util_est(p) * capacity_margin; | |
3707 | } | |
3708 | ||
3709 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | |
3710 | { | |
3711 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) | |
3712 | return; | |
3713 | ||
3714 | if (!p) { | |
3715 | rq->misfit_task_load = 0; | |
3716 | return; | |
3717 | } | |
3718 | ||
3719 | if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { | |
3720 | rq->misfit_task_load = 0; | |
3721 | return; | |
3722 | } | |
3723 | ||
3724 | rq->misfit_task_load = task_h_load(p); | |
3725 | } | |
3726 | ||
38033c37 PZ |
3727 | #else /* CONFIG_SMP */ |
3728 | ||
d31b1a66 VG |
3729 | #define UPDATE_TG 0x0 |
3730 | #define SKIP_AGE_LOAD 0x0 | |
b382a531 | 3731 | #define DO_ATTACH 0x0 |
d31b1a66 | 3732 | |
88c0616e | 3733 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
536bd00c | 3734 | { |
ea14b57e | 3735 | cfs_rq_util_change(cfs_rq, 0); |
536bd00c RW |
3736 | } |
3737 | ||
9d89c257 | 3738 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 3739 | |
a05e8c51 | 3740 | static inline void |
ea14b57e | 3741 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} |
a05e8c51 BP |
3742 | static inline void |
3743 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
3744 | ||
46f69fa3 | 3745 | static inline int idle_balance(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
3746 | { |
3747 | return 0; | |
3748 | } | |
3749 | ||
7f65ea42 PB |
3750 | static inline void |
3751 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | |
3752 | ||
3753 | static inline void | |
3754 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, | |
3755 | bool task_sleep) {} | |
3b1baa64 | 3756 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
7f65ea42 | 3757 | |
38033c37 | 3758 | #endif /* CONFIG_SMP */ |
9d85f21c | 3759 | |
ddc97297 PZ |
3760 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3761 | { | |
3762 | #ifdef CONFIG_SCHED_DEBUG | |
3763 | s64 d = se->vruntime - cfs_rq->min_vruntime; | |
3764 | ||
3765 | if (d < 0) | |
3766 | d = -d; | |
3767 | ||
3768 | if (d > 3*sysctl_sched_latency) | |
ae92882e | 3769 | schedstat_inc(cfs_rq->nr_spread_over); |
ddc97297 PZ |
3770 | #endif |
3771 | } | |
3772 | ||
aeb73b04 PZ |
3773 | static void |
3774 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |
3775 | { | |
1af5f730 | 3776 | u64 vruntime = cfs_rq->min_vruntime; |
94dfb5e7 | 3777 | |
2cb8600e PZ |
3778 | /* |
3779 | * The 'current' period is already promised to the current tasks, | |
3780 | * however the extra weight of the new task will slow them down a | |
3781 | * little, place the new task so that it fits in the slot that | |
3782 | * stays open at the end. | |
3783 | */ | |
94dfb5e7 | 3784 | if (initial && sched_feat(START_DEBIT)) |
f9c0b095 | 3785 | vruntime += sched_vslice(cfs_rq, se); |
aeb73b04 | 3786 | |
a2e7a7eb | 3787 | /* sleeps up to a single latency don't count. */ |
5ca9880c | 3788 | if (!initial) { |
a2e7a7eb | 3789 | unsigned long thresh = sysctl_sched_latency; |
a7be37ac | 3790 | |
a2e7a7eb MG |
3791 | /* |
3792 | * Halve their sleep time's effect, to allow | |
3793 | * for a gentler effect of sleepers: | |
3794 | */ | |
3795 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | |
3796 | thresh >>= 1; | |
51e0304c | 3797 | |
a2e7a7eb | 3798 | vruntime -= thresh; |
aeb73b04 PZ |
3799 | } |
3800 | ||
b5d9d734 | 3801 | /* ensure we never gain time by being placed backwards. */ |
16c8f1c7 | 3802 | se->vruntime = max_vruntime(se->vruntime, vruntime); |
aeb73b04 PZ |
3803 | } |
3804 | ||
d3d9dc33 PT |
3805 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
3806 | ||
cb251765 MG |
3807 | static inline void check_schedstat_required(void) |
3808 | { | |
3809 | #ifdef CONFIG_SCHEDSTATS | |
3810 | if (schedstat_enabled()) | |
3811 | return; | |
3812 | ||
3813 | /* Force schedstat enabled if a dependent tracepoint is active */ | |
3814 | if (trace_sched_stat_wait_enabled() || | |
3815 | trace_sched_stat_sleep_enabled() || | |
3816 | trace_sched_stat_iowait_enabled() || | |
3817 | trace_sched_stat_blocked_enabled() || | |
3818 | trace_sched_stat_runtime_enabled()) { | |
eda8dca5 | 3819 | printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " |
cb251765 | 3820 | "stat_blocked and stat_runtime require the " |
f67abed5 | 3821 | "kernel parameter schedstats=enable or " |
cb251765 MG |
3822 | "kernel.sched_schedstats=1\n"); |
3823 | } | |
3824 | #endif | |
3825 | } | |
3826 | ||
b5179ac7 PZ |
3827 | |
3828 | /* | |
3829 | * MIGRATION | |
3830 | * | |
3831 | * dequeue | |
3832 | * update_curr() | |
3833 | * update_min_vruntime() | |
3834 | * vruntime -= min_vruntime | |
3835 | * | |
3836 | * enqueue | |
3837 | * update_curr() | |
3838 | * update_min_vruntime() | |
3839 | * vruntime += min_vruntime | |
3840 | * | |
3841 | * this way the vruntime transition between RQs is done when both | |
3842 | * min_vruntime are up-to-date. | |
3843 | * | |
3844 | * WAKEUP (remote) | |
3845 | * | |
59efa0ba | 3846 | * ->migrate_task_rq_fair() (p->state == TASK_WAKING) |
b5179ac7 PZ |
3847 | * vruntime -= min_vruntime |
3848 | * | |
3849 | * enqueue | |
3850 | * update_curr() | |
3851 | * update_min_vruntime() | |
3852 | * vruntime += min_vruntime | |
3853 | * | |
3854 | * this way we don't have the most up-to-date min_vruntime on the originating | |
3855 | * CPU and an up-to-date min_vruntime on the destination CPU. | |
3856 | */ | |
3857 | ||
bf0f6f24 | 3858 | static void |
88ec22d3 | 3859 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 3860 | { |
2f950354 PZ |
3861 | bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); |
3862 | bool curr = cfs_rq->curr == se; | |
3863 | ||
88ec22d3 | 3864 | /* |
2f950354 PZ |
3865 | * If we're the current task, we must renormalise before calling |
3866 | * update_curr(). | |
88ec22d3 | 3867 | */ |
2f950354 | 3868 | if (renorm && curr) |
88ec22d3 PZ |
3869 | se->vruntime += cfs_rq->min_vruntime; |
3870 | ||
2f950354 PZ |
3871 | update_curr(cfs_rq); |
3872 | ||
bf0f6f24 | 3873 | /* |
2f950354 PZ |
3874 | * Otherwise, renormalise after, such that we're placed at the current |
3875 | * moment in time, instead of some random moment in the past. Being | |
3876 | * placed in the past could significantly boost this task to the | |
3877 | * fairness detriment of existing tasks. | |
bf0f6f24 | 3878 | */ |
2f950354 PZ |
3879 | if (renorm && !curr) |
3880 | se->vruntime += cfs_rq->min_vruntime; | |
3881 | ||
89ee048f VG |
3882 | /* |
3883 | * When enqueuing a sched_entity, we must: | |
3884 | * - Update loads to have both entity and cfs_rq synced with now. | |
3885 | * - Add its load to cfs_rq->runnable_avg | |
3886 | * - For group_entity, update its weight to reflect the new share of | |
3887 | * its group cfs_rq | |
3888 | * - Add its new weight to cfs_rq->load.weight | |
3889 | */ | |
b382a531 | 3890 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
1ea6c46a | 3891 | update_cfs_group(se); |
b5b3e35f | 3892 | enqueue_runnable_load_avg(cfs_rq, se); |
17bc14b7 | 3893 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 3894 | |
1a3d027c | 3895 | if (flags & ENQUEUE_WAKEUP) |
aeb73b04 | 3896 | place_entity(cfs_rq, se, 0); |
bf0f6f24 | 3897 | |
cb251765 | 3898 | check_schedstat_required(); |
4fa8d299 JP |
3899 | update_stats_enqueue(cfs_rq, se, flags); |
3900 | check_spread(cfs_rq, se); | |
2f950354 | 3901 | if (!curr) |
83b699ed | 3902 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 3903 | se->on_rq = 1; |
3d4b47b4 | 3904 | |
d3d9dc33 | 3905 | if (cfs_rq->nr_running == 1) { |
3d4b47b4 | 3906 | list_add_leaf_cfs_rq(cfs_rq); |
d3d9dc33 PT |
3907 | check_enqueue_throttle(cfs_rq); |
3908 | } | |
bf0f6f24 IM |
3909 | } |
3910 | ||
2c13c919 | 3911 | static void __clear_buddies_last(struct sched_entity *se) |
2002c695 | 3912 | { |
2c13c919 RR |
3913 | for_each_sched_entity(se) { |
3914 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3915 | if (cfs_rq->last != se) |
2c13c919 | 3916 | break; |
f1044799 PZ |
3917 | |
3918 | cfs_rq->last = NULL; | |
2c13c919 RR |
3919 | } |
3920 | } | |
2002c695 | 3921 | |
2c13c919 RR |
3922 | static void __clear_buddies_next(struct sched_entity *se) |
3923 | { | |
3924 | for_each_sched_entity(se) { | |
3925 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3926 | if (cfs_rq->next != se) |
2c13c919 | 3927 | break; |
f1044799 PZ |
3928 | |
3929 | cfs_rq->next = NULL; | |
2c13c919 | 3930 | } |
2002c695 PZ |
3931 | } |
3932 | ||
ac53db59 RR |
3933 | static void __clear_buddies_skip(struct sched_entity *se) |
3934 | { | |
3935 | for_each_sched_entity(se) { | |
3936 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3937 | if (cfs_rq->skip != se) |
ac53db59 | 3938 | break; |
f1044799 PZ |
3939 | |
3940 | cfs_rq->skip = NULL; | |
ac53db59 RR |
3941 | } |
3942 | } | |
3943 | ||
a571bbea PZ |
3944 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3945 | { | |
2c13c919 RR |
3946 | if (cfs_rq->last == se) |
3947 | __clear_buddies_last(se); | |
3948 | ||
3949 | if (cfs_rq->next == se) | |
3950 | __clear_buddies_next(se); | |
ac53db59 RR |
3951 | |
3952 | if (cfs_rq->skip == se) | |
3953 | __clear_buddies_skip(se); | |
a571bbea PZ |
3954 | } |
3955 | ||
6c16a6dc | 3956 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 3957 | |
bf0f6f24 | 3958 | static void |
371fd7e7 | 3959 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 3960 | { |
a2a2d680 DA |
3961 | /* |
3962 | * Update run-time statistics of the 'current'. | |
3963 | */ | |
3964 | update_curr(cfs_rq); | |
89ee048f VG |
3965 | |
3966 | /* | |
3967 | * When dequeuing a sched_entity, we must: | |
3968 | * - Update loads to have both entity and cfs_rq synced with now. | |
3969 | * - Substract its load from the cfs_rq->runnable_avg. | |
3970 | * - Substract its previous weight from cfs_rq->load.weight. | |
3971 | * - For group entity, update its weight to reflect the new share | |
3972 | * of its group cfs_rq. | |
3973 | */ | |
88c0616e | 3974 | update_load_avg(cfs_rq, se, UPDATE_TG); |
b5b3e35f | 3975 | dequeue_runnable_load_avg(cfs_rq, se); |
a2a2d680 | 3976 | |
4fa8d299 | 3977 | update_stats_dequeue(cfs_rq, se, flags); |
67e9fb2a | 3978 | |
2002c695 | 3979 | clear_buddies(cfs_rq, se); |
4793241b | 3980 | |
83b699ed | 3981 | if (se != cfs_rq->curr) |
30cfdcfc | 3982 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 3983 | se->on_rq = 0; |
30cfdcfc | 3984 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 PZ |
3985 | |
3986 | /* | |
b60205c7 PZ |
3987 | * Normalize after update_curr(); which will also have moved |
3988 | * min_vruntime if @se is the one holding it back. But before doing | |
3989 | * update_min_vruntime() again, which will discount @se's position and | |
3990 | * can move min_vruntime forward still more. | |
88ec22d3 | 3991 | */ |
371fd7e7 | 3992 | if (!(flags & DEQUEUE_SLEEP)) |
88ec22d3 | 3993 | se->vruntime -= cfs_rq->min_vruntime; |
1e876231 | 3994 | |
d8b4986d PT |
3995 | /* return excess runtime on last dequeue */ |
3996 | return_cfs_rq_runtime(cfs_rq); | |
3997 | ||
1ea6c46a | 3998 | update_cfs_group(se); |
b60205c7 PZ |
3999 | |
4000 | /* | |
4001 | * Now advance min_vruntime if @se was the entity holding it back, | |
4002 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
4003 | * put back on, and if we advance min_vruntime, we'll be placed back | |
4004 | * further than we started -- ie. we'll be penalized. | |
4005 | */ | |
9845c49c | 4006 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
b60205c7 | 4007 | update_min_vruntime(cfs_rq); |
bf0f6f24 IM |
4008 | } |
4009 | ||
4010 | /* | |
4011 | * Preempt the current task with a newly woken task if needed: | |
4012 | */ | |
7c92e54f | 4013 | static void |
2e09bf55 | 4014 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
bf0f6f24 | 4015 | { |
11697830 | 4016 | unsigned long ideal_runtime, delta_exec; |
f4cfb33e WX |
4017 | struct sched_entity *se; |
4018 | s64 delta; | |
11697830 | 4019 | |
6d0f0ebd | 4020 | ideal_runtime = sched_slice(cfs_rq, curr); |
11697830 | 4021 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
a9f3e2b5 | 4022 | if (delta_exec > ideal_runtime) { |
8875125e | 4023 | resched_curr(rq_of(cfs_rq)); |
a9f3e2b5 MG |
4024 | /* |
4025 | * The current task ran long enough, ensure it doesn't get | |
4026 | * re-elected due to buddy favours. | |
4027 | */ | |
4028 | clear_buddies(cfs_rq, curr); | |
f685ceac MG |
4029 | return; |
4030 | } | |
4031 | ||
4032 | /* | |
4033 | * Ensure that a task that missed wakeup preemption by a | |
4034 | * narrow margin doesn't have to wait for a full slice. | |
4035 | * This also mitigates buddy induced latencies under load. | |
4036 | */ | |
f685ceac MG |
4037 | if (delta_exec < sysctl_sched_min_granularity) |
4038 | return; | |
4039 | ||
f4cfb33e WX |
4040 | se = __pick_first_entity(cfs_rq); |
4041 | delta = curr->vruntime - se->vruntime; | |
f685ceac | 4042 | |
f4cfb33e WX |
4043 | if (delta < 0) |
4044 | return; | |
d7d82944 | 4045 | |
f4cfb33e | 4046 | if (delta > ideal_runtime) |
8875125e | 4047 | resched_curr(rq_of(cfs_rq)); |
bf0f6f24 IM |
4048 | } |
4049 | ||
83b699ed | 4050 | static void |
8494f412 | 4051 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 4052 | { |
83b699ed SV |
4053 | /* 'current' is not kept within the tree. */ |
4054 | if (se->on_rq) { | |
4055 | /* | |
4056 | * Any task has to be enqueued before it get to execute on | |
4057 | * a CPU. So account for the time it spent waiting on the | |
4058 | * runqueue. | |
4059 | */ | |
4fa8d299 | 4060 | update_stats_wait_end(cfs_rq, se); |
83b699ed | 4061 | __dequeue_entity(cfs_rq, se); |
88c0616e | 4062 | update_load_avg(cfs_rq, se, UPDATE_TG); |
83b699ed SV |
4063 | } |
4064 | ||
79303e9e | 4065 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 4066 | cfs_rq->curr = se; |
4fa8d299 | 4067 | |
eba1ed4b IM |
4068 | /* |
4069 | * Track our maximum slice length, if the CPU's load is at | |
4070 | * least twice that of our own weight (i.e. dont track it | |
4071 | * when there are only lesser-weight tasks around): | |
4072 | */ | |
cb251765 | 4073 | if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
4fa8d299 JP |
4074 | schedstat_set(se->statistics.slice_max, |
4075 | max((u64)schedstat_val(se->statistics.slice_max), | |
4076 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | |
eba1ed4b | 4077 | } |
4fa8d299 | 4078 | |
4a55b450 | 4079 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
4080 | } |
4081 | ||
3f3a4904 PZ |
4082 | static int |
4083 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |
4084 | ||
ac53db59 RR |
4085 | /* |
4086 | * Pick the next process, keeping these things in mind, in this order: | |
4087 | * 1) keep things fair between processes/task groups | |
4088 | * 2) pick the "next" process, since someone really wants that to run | |
4089 | * 3) pick the "last" process, for cache locality | |
4090 | * 4) do not run the "skip" process, if something else is available | |
4091 | */ | |
678d5718 PZ |
4092 | static struct sched_entity * |
4093 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | |
aa2ac252 | 4094 | { |
678d5718 PZ |
4095 | struct sched_entity *left = __pick_first_entity(cfs_rq); |
4096 | struct sched_entity *se; | |
4097 | ||
4098 | /* | |
4099 | * If curr is set we have to see if its left of the leftmost entity | |
4100 | * still in the tree, provided there was anything in the tree at all. | |
4101 | */ | |
4102 | if (!left || (curr && entity_before(curr, left))) | |
4103 | left = curr; | |
4104 | ||
4105 | se = left; /* ideally we run the leftmost entity */ | |
f4b6755f | 4106 | |
ac53db59 RR |
4107 | /* |
4108 | * Avoid running the skip buddy, if running something else can | |
4109 | * be done without getting too unfair. | |
4110 | */ | |
4111 | if (cfs_rq->skip == se) { | |
678d5718 PZ |
4112 | struct sched_entity *second; |
4113 | ||
4114 | if (se == curr) { | |
4115 | second = __pick_first_entity(cfs_rq); | |
4116 | } else { | |
4117 | second = __pick_next_entity(se); | |
4118 | if (!second || (curr && entity_before(curr, second))) | |
4119 | second = curr; | |
4120 | } | |
4121 | ||
ac53db59 RR |
4122 | if (second && wakeup_preempt_entity(second, left) < 1) |
4123 | se = second; | |
4124 | } | |
aa2ac252 | 4125 | |
f685ceac MG |
4126 | /* |
4127 | * Prefer last buddy, try to return the CPU to a preempted task. | |
4128 | */ | |
4129 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | |
4130 | se = cfs_rq->last; | |
4131 | ||
ac53db59 RR |
4132 | /* |
4133 | * Someone really wants this to run. If it's not unfair, run it. | |
4134 | */ | |
4135 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | |
4136 | se = cfs_rq->next; | |
4137 | ||
f685ceac | 4138 | clear_buddies(cfs_rq, se); |
4793241b PZ |
4139 | |
4140 | return se; | |
aa2ac252 PZ |
4141 | } |
4142 | ||
678d5718 | 4143 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 4144 | |
ab6cde26 | 4145 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
4146 | { |
4147 | /* | |
4148 | * If still on the runqueue then deactivate_task() | |
4149 | * was not called and update_curr() has to be done: | |
4150 | */ | |
4151 | if (prev->on_rq) | |
b7cc0896 | 4152 | update_curr(cfs_rq); |
bf0f6f24 | 4153 | |
d3d9dc33 PT |
4154 | /* throttle cfs_rqs exceeding runtime */ |
4155 | check_cfs_rq_runtime(cfs_rq); | |
4156 | ||
4fa8d299 | 4157 | check_spread(cfs_rq, prev); |
cb251765 | 4158 | |
30cfdcfc | 4159 | if (prev->on_rq) { |
4fa8d299 | 4160 | update_stats_wait_start(cfs_rq, prev); |
30cfdcfc DA |
4161 | /* Put 'current' back into the tree. */ |
4162 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 4163 | /* in !on_rq case, update occurred at dequeue */ |
88c0616e | 4164 | update_load_avg(cfs_rq, prev, 0); |
30cfdcfc | 4165 | } |
429d43bc | 4166 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
4167 | } |
4168 | ||
8f4d37ec PZ |
4169 | static void |
4170 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 4171 | { |
bf0f6f24 | 4172 | /* |
30cfdcfc | 4173 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 4174 | */ |
30cfdcfc | 4175 | update_curr(cfs_rq); |
bf0f6f24 | 4176 | |
9d85f21c PT |
4177 | /* |
4178 | * Ensure that runnable average is periodically updated. | |
4179 | */ | |
88c0616e | 4180 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
1ea6c46a | 4181 | update_cfs_group(curr); |
9d85f21c | 4182 | |
8f4d37ec PZ |
4183 | #ifdef CONFIG_SCHED_HRTICK |
4184 | /* | |
4185 | * queued ticks are scheduled to match the slice, so don't bother | |
4186 | * validating it and just reschedule. | |
4187 | */ | |
983ed7a6 | 4188 | if (queued) { |
8875125e | 4189 | resched_curr(rq_of(cfs_rq)); |
983ed7a6 HH |
4190 | return; |
4191 | } | |
8f4d37ec PZ |
4192 | /* |
4193 | * don't let the period tick interfere with the hrtick preemption | |
4194 | */ | |
4195 | if (!sched_feat(DOUBLE_TICK) && | |
4196 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
4197 | return; | |
4198 | #endif | |
4199 | ||
2c2efaed | 4200 | if (cfs_rq->nr_running > 1) |
2e09bf55 | 4201 | check_preempt_tick(cfs_rq, curr); |
bf0f6f24 IM |
4202 | } |
4203 | ||
ab84d31e PT |
4204 | |
4205 | /************************************************** | |
4206 | * CFS bandwidth control machinery | |
4207 | */ | |
4208 | ||
4209 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb PZ |
4210 | |
4211 | #ifdef HAVE_JUMP_LABEL | |
c5905afb | 4212 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
4213 | |
4214 | static inline bool cfs_bandwidth_used(void) | |
4215 | { | |
c5905afb | 4216 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
4217 | } |
4218 | ||
1ee14e6c | 4219 | void cfs_bandwidth_usage_inc(void) |
029632fb | 4220 | { |
ce48c146 | 4221 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
1ee14e6c BS |
4222 | } |
4223 | ||
4224 | void cfs_bandwidth_usage_dec(void) | |
4225 | { | |
ce48c146 | 4226 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
029632fb PZ |
4227 | } |
4228 | #else /* HAVE_JUMP_LABEL */ | |
4229 | static bool cfs_bandwidth_used(void) | |
4230 | { | |
4231 | return true; | |
4232 | } | |
4233 | ||
1ee14e6c BS |
4234 | void cfs_bandwidth_usage_inc(void) {} |
4235 | void cfs_bandwidth_usage_dec(void) {} | |
029632fb PZ |
4236 | #endif /* HAVE_JUMP_LABEL */ |
4237 | ||
ab84d31e PT |
4238 | /* |
4239 | * default period for cfs group bandwidth. | |
4240 | * default: 0.1s, units: nanoseconds | |
4241 | */ | |
4242 | static inline u64 default_cfs_period(void) | |
4243 | { | |
4244 | return 100000000ULL; | |
4245 | } | |
ec12cb7f PT |
4246 | |
4247 | static inline u64 sched_cfs_bandwidth_slice(void) | |
4248 | { | |
4249 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
4250 | } | |
4251 | ||
a9cf55b2 PT |
4252 | /* |
4253 | * Replenish runtime according to assigned quota and update expiration time. | |
4254 | * We use sched_clock_cpu directly instead of rq->clock to avoid adding | |
4255 | * additional synchronization around rq->lock. | |
4256 | * | |
4257 | * requires cfs_b->lock | |
4258 | */ | |
029632fb | 4259 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 PT |
4260 | { |
4261 | u64 now; | |
4262 | ||
4263 | if (cfs_b->quota == RUNTIME_INF) | |
4264 | return; | |
4265 | ||
4266 | now = sched_clock_cpu(smp_processor_id()); | |
4267 | cfs_b->runtime = cfs_b->quota; | |
4268 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | |
512ac999 | 4269 | cfs_b->expires_seq++; |
a9cf55b2 PT |
4270 | } |
4271 | ||
029632fb PZ |
4272 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
4273 | { | |
4274 | return &tg->cfs_bandwidth; | |
4275 | } | |
4276 | ||
f1b17280 PT |
4277 | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ |
4278 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | |
4279 | { | |
4280 | if (unlikely(cfs_rq->throttle_count)) | |
1a99ae3f | 4281 | return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; |
f1b17280 | 4282 | |
78becc27 | 4283 | return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; |
f1b17280 PT |
4284 | } |
4285 | ||
85dac906 PT |
4286 | /* returns 0 on failure to allocate runtime */ |
4287 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
ec12cb7f PT |
4288 | { |
4289 | struct task_group *tg = cfs_rq->tg; | |
4290 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | |
a9cf55b2 | 4291 | u64 amount = 0, min_amount, expires; |
512ac999 | 4292 | int expires_seq; |
ec12cb7f PT |
4293 | |
4294 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
4295 | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | |
4296 | ||
4297 | raw_spin_lock(&cfs_b->lock); | |
4298 | if (cfs_b->quota == RUNTIME_INF) | |
4299 | amount = min_amount; | |
58088ad0 | 4300 | else { |
77a4d1a1 | 4301 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
4302 | |
4303 | if (cfs_b->runtime > 0) { | |
4304 | amount = min(cfs_b->runtime, min_amount); | |
4305 | cfs_b->runtime -= amount; | |
4306 | cfs_b->idle = 0; | |
4307 | } | |
ec12cb7f | 4308 | } |
512ac999 | 4309 | expires_seq = cfs_b->expires_seq; |
a9cf55b2 | 4310 | expires = cfs_b->runtime_expires; |
ec12cb7f PT |
4311 | raw_spin_unlock(&cfs_b->lock); |
4312 | ||
4313 | cfs_rq->runtime_remaining += amount; | |
a9cf55b2 PT |
4314 | /* |
4315 | * we may have advanced our local expiration to account for allowed | |
4316 | * spread between our sched_clock and the one on which runtime was | |
4317 | * issued. | |
4318 | */ | |
512ac999 XP |
4319 | if (cfs_rq->expires_seq != expires_seq) { |
4320 | cfs_rq->expires_seq = expires_seq; | |
a9cf55b2 | 4321 | cfs_rq->runtime_expires = expires; |
512ac999 | 4322 | } |
85dac906 PT |
4323 | |
4324 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
4325 | } |
4326 | ||
a9cf55b2 PT |
4327 | /* |
4328 | * Note: This depends on the synchronization provided by sched_clock and the | |
4329 | * fact that rq->clock snapshots this value. | |
4330 | */ | |
4331 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
ec12cb7f | 4332 | { |
a9cf55b2 | 4333 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
a9cf55b2 PT |
4334 | |
4335 | /* if the deadline is ahead of our clock, nothing to do */ | |
78becc27 | 4336 | if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) |
ec12cb7f PT |
4337 | return; |
4338 | ||
a9cf55b2 PT |
4339 | if (cfs_rq->runtime_remaining < 0) |
4340 | return; | |
4341 | ||
4342 | /* | |
4343 | * If the local deadline has passed we have to consider the | |
4344 | * possibility that our sched_clock is 'fast' and the global deadline | |
4345 | * has not truly expired. | |
4346 | * | |
4347 | * Fortunately we can check determine whether this the case by checking | |
512ac999 | 4348 | * whether the global deadline(cfs_b->expires_seq) has advanced. |
a9cf55b2 | 4349 | */ |
512ac999 | 4350 | if (cfs_rq->expires_seq == cfs_b->expires_seq) { |
a9cf55b2 PT |
4351 | /* extend local deadline, drift is bounded above by 2 ticks */ |
4352 | cfs_rq->runtime_expires += TICK_NSEC; | |
4353 | } else { | |
4354 | /* global deadline is ahead, expiration has passed */ | |
4355 | cfs_rq->runtime_remaining = 0; | |
4356 | } | |
4357 | } | |
4358 | ||
9dbdb155 | 4359 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
4360 | { |
4361 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 4362 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
4363 | expire_cfs_rq_runtime(cfs_rq); |
4364 | ||
4365 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
4366 | return; |
4367 | ||
85dac906 PT |
4368 | /* |
4369 | * if we're unable to extend our runtime we resched so that the active | |
4370 | * hierarchy can be throttled | |
4371 | */ | |
4372 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 4373 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
4374 | } |
4375 | ||
6c16a6dc | 4376 | static __always_inline |
9dbdb155 | 4377 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 4378 | { |
56f570e5 | 4379 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
4380 | return; |
4381 | ||
4382 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
4383 | } | |
4384 | ||
85dac906 PT |
4385 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
4386 | { | |
56f570e5 | 4387 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
4388 | } |
4389 | ||
64660c86 PT |
4390 | /* check whether cfs_rq, or any parent, is throttled */ |
4391 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4392 | { | |
56f570e5 | 4393 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
4394 | } |
4395 | ||
4396 | /* | |
4397 | * Ensure that neither of the group entities corresponding to src_cpu or | |
4398 | * dest_cpu are members of a throttled hierarchy when performing group | |
4399 | * load-balance operations. | |
4400 | */ | |
4401 | static inline int throttled_lb_pair(struct task_group *tg, | |
4402 | int src_cpu, int dest_cpu) | |
4403 | { | |
4404 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
4405 | ||
4406 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
4407 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
4408 | ||
4409 | return throttled_hierarchy(src_cfs_rq) || | |
4410 | throttled_hierarchy(dest_cfs_rq); | |
4411 | } | |
4412 | ||
64660c86 PT |
4413 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
4414 | { | |
4415 | struct rq *rq = data; | |
4416 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4417 | ||
4418 | cfs_rq->throttle_count--; | |
64660c86 | 4419 | if (!cfs_rq->throttle_count) { |
f1b17280 | 4420 | /* adjust cfs_rq_clock_task() */ |
78becc27 | 4421 | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - |
f1b17280 | 4422 | cfs_rq->throttled_clock_task; |
64660c86 | 4423 | } |
64660c86 PT |
4424 | |
4425 | return 0; | |
4426 | } | |
4427 | ||
4428 | static int tg_throttle_down(struct task_group *tg, void *data) | |
4429 | { | |
4430 | struct rq *rq = data; | |
4431 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4432 | ||
82958366 PT |
4433 | /* group is entering throttled state, stop time */ |
4434 | if (!cfs_rq->throttle_count) | |
78becc27 | 4435 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
64660c86 PT |
4436 | cfs_rq->throttle_count++; |
4437 | ||
4438 | return 0; | |
4439 | } | |
4440 | ||
d3d9dc33 | 4441 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
4442 | { |
4443 | struct rq *rq = rq_of(cfs_rq); | |
4444 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4445 | struct sched_entity *se; | |
4446 | long task_delta, dequeue = 1; | |
77a4d1a1 | 4447 | bool empty; |
85dac906 PT |
4448 | |
4449 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
4450 | ||
f1b17280 | 4451 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
4452 | rcu_read_lock(); |
4453 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
4454 | rcu_read_unlock(); | |
85dac906 PT |
4455 | |
4456 | task_delta = cfs_rq->h_nr_running; | |
4457 | for_each_sched_entity(se) { | |
4458 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
4459 | /* throttled entity or throttle-on-deactivate */ | |
4460 | if (!se->on_rq) | |
4461 | break; | |
4462 | ||
4463 | if (dequeue) | |
4464 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | |
4465 | qcfs_rq->h_nr_running -= task_delta; | |
4466 | ||
4467 | if (qcfs_rq->load.weight) | |
4468 | dequeue = 0; | |
4469 | } | |
4470 | ||
4471 | if (!se) | |
72465447 | 4472 | sub_nr_running(rq, task_delta); |
85dac906 PT |
4473 | |
4474 | cfs_rq->throttled = 1; | |
78becc27 | 4475 | cfs_rq->throttled_clock = rq_clock(rq); |
85dac906 | 4476 | raw_spin_lock(&cfs_b->lock); |
d49db342 | 4477 | empty = list_empty(&cfs_b->throttled_cfs_rq); |
77a4d1a1 | 4478 | |
c06f04c7 BS |
4479 | /* |
4480 | * Add to the _head_ of the list, so that an already-started | |
baa9be4f PA |
4481 | * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is |
4482 | * not running add to the tail so that later runqueues don't get starved. | |
c06f04c7 | 4483 | */ |
baa9be4f PA |
4484 | if (cfs_b->distribute_running) |
4485 | list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | |
4486 | else | |
4487 | list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | |
77a4d1a1 PZ |
4488 | |
4489 | /* | |
4490 | * If we're the first throttled task, make sure the bandwidth | |
4491 | * timer is running. | |
4492 | */ | |
4493 | if (empty) | |
4494 | start_cfs_bandwidth(cfs_b); | |
4495 | ||
85dac906 PT |
4496 | raw_spin_unlock(&cfs_b->lock); |
4497 | } | |
4498 | ||
029632fb | 4499 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
4500 | { |
4501 | struct rq *rq = rq_of(cfs_rq); | |
4502 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4503 | struct sched_entity *se; | |
4504 | int enqueue = 1; | |
4505 | long task_delta; | |
4506 | ||
22b958d8 | 4507 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
4508 | |
4509 | cfs_rq->throttled = 0; | |
1a55af2e FW |
4510 | |
4511 | update_rq_clock(rq); | |
4512 | ||
671fd9da | 4513 | raw_spin_lock(&cfs_b->lock); |
78becc27 | 4514 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
671fd9da PT |
4515 | list_del_rcu(&cfs_rq->throttled_list); |
4516 | raw_spin_unlock(&cfs_b->lock); | |
4517 | ||
64660c86 PT |
4518 | /* update hierarchical throttle state */ |
4519 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
4520 | ||
671fd9da PT |
4521 | if (!cfs_rq->load.weight) |
4522 | return; | |
4523 | ||
4524 | task_delta = cfs_rq->h_nr_running; | |
4525 | for_each_sched_entity(se) { | |
4526 | if (se->on_rq) | |
4527 | enqueue = 0; | |
4528 | ||
4529 | cfs_rq = cfs_rq_of(se); | |
4530 | if (enqueue) | |
4531 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | |
4532 | cfs_rq->h_nr_running += task_delta; | |
4533 | ||
4534 | if (cfs_rq_throttled(cfs_rq)) | |
4535 | break; | |
4536 | } | |
4537 | ||
4538 | if (!se) | |
72465447 | 4539 | add_nr_running(rq, task_delta); |
671fd9da | 4540 | |
97fb7a0a | 4541 | /* Determine whether we need to wake up potentially idle CPU: */ |
671fd9da | 4542 | if (rq->curr == rq->idle && rq->cfs.nr_running) |
8875125e | 4543 | resched_curr(rq); |
671fd9da PT |
4544 | } |
4545 | ||
4546 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | |
4547 | u64 remaining, u64 expires) | |
4548 | { | |
4549 | struct cfs_rq *cfs_rq; | |
c06f04c7 BS |
4550 | u64 runtime; |
4551 | u64 starting_runtime = remaining; | |
671fd9da PT |
4552 | |
4553 | rcu_read_lock(); | |
4554 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
4555 | throttled_list) { | |
4556 | struct rq *rq = rq_of(cfs_rq); | |
8a8c69c3 | 4557 | struct rq_flags rf; |
671fd9da | 4558 | |
8a8c69c3 | 4559 | rq_lock(rq, &rf); |
671fd9da PT |
4560 | if (!cfs_rq_throttled(cfs_rq)) |
4561 | goto next; | |
4562 | ||
4563 | runtime = -cfs_rq->runtime_remaining + 1; | |
4564 | if (runtime > remaining) | |
4565 | runtime = remaining; | |
4566 | remaining -= runtime; | |
4567 | ||
4568 | cfs_rq->runtime_remaining += runtime; | |
4569 | cfs_rq->runtime_expires = expires; | |
4570 | ||
4571 | /* we check whether we're throttled above */ | |
4572 | if (cfs_rq->runtime_remaining > 0) | |
4573 | unthrottle_cfs_rq(cfs_rq); | |
4574 | ||
4575 | next: | |
8a8c69c3 | 4576 | rq_unlock(rq, &rf); |
671fd9da PT |
4577 | |
4578 | if (!remaining) | |
4579 | break; | |
4580 | } | |
4581 | rcu_read_unlock(); | |
4582 | ||
c06f04c7 | 4583 | return starting_runtime - remaining; |
671fd9da PT |
4584 | } |
4585 | ||
58088ad0 PT |
4586 | /* |
4587 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
4588 | * cfs_rqs as appropriate. If there has been no activity within the last | |
4589 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
4590 | * used to track this state. | |
4591 | */ | |
4592 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | |
4593 | { | |
671fd9da | 4594 | u64 runtime, runtime_expires; |
51f2176d | 4595 | int throttled; |
58088ad0 | 4596 | |
58088ad0 PT |
4597 | /* no need to continue the timer with no bandwidth constraint */ |
4598 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 4599 | goto out_deactivate; |
58088ad0 | 4600 | |
671fd9da | 4601 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 4602 | cfs_b->nr_periods += overrun; |
671fd9da | 4603 | |
51f2176d BS |
4604 | /* |
4605 | * idle depends on !throttled (for the case of a large deficit), and if | |
4606 | * we're going inactive then everything else can be deferred | |
4607 | */ | |
4608 | if (cfs_b->idle && !throttled) | |
4609 | goto out_deactivate; | |
a9cf55b2 PT |
4610 | |
4611 | __refill_cfs_bandwidth_runtime(cfs_b); | |
4612 | ||
671fd9da PT |
4613 | if (!throttled) { |
4614 | /* mark as potentially idle for the upcoming period */ | |
4615 | cfs_b->idle = 1; | |
51f2176d | 4616 | return 0; |
671fd9da PT |
4617 | } |
4618 | ||
e8da1b18 NR |
4619 | /* account preceding periods in which throttling occurred */ |
4620 | cfs_b->nr_throttled += overrun; | |
4621 | ||
671fd9da | 4622 | runtime_expires = cfs_b->runtime_expires; |
671fd9da PT |
4623 | |
4624 | /* | |
c06f04c7 BS |
4625 | * This check is repeated as we are holding onto the new bandwidth while |
4626 | * we unthrottle. This can potentially race with an unthrottled group | |
4627 | * trying to acquire new bandwidth from the global pool. This can result | |
4628 | * in us over-using our runtime if it is all used during this loop, but | |
4629 | * only by limited amounts in that extreme case. | |
671fd9da | 4630 | */ |
baa9be4f | 4631 | while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { |
c06f04c7 | 4632 | runtime = cfs_b->runtime; |
baa9be4f | 4633 | cfs_b->distribute_running = 1; |
671fd9da PT |
4634 | raw_spin_unlock(&cfs_b->lock); |
4635 | /* we can't nest cfs_b->lock while distributing bandwidth */ | |
4636 | runtime = distribute_cfs_runtime(cfs_b, runtime, | |
4637 | runtime_expires); | |
4638 | raw_spin_lock(&cfs_b->lock); | |
4639 | ||
baa9be4f | 4640 | cfs_b->distribute_running = 0; |
671fd9da | 4641 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
c06f04c7 BS |
4642 | |
4643 | cfs_b->runtime -= min(runtime, cfs_b->runtime); | |
671fd9da | 4644 | } |
58088ad0 | 4645 | |
671fd9da PT |
4646 | /* |
4647 | * While we are ensured activity in the period following an | |
4648 | * unthrottle, this also covers the case in which the new bandwidth is | |
4649 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
4650 | * timer to remain active while there are any throttled entities.) | |
4651 | */ | |
4652 | cfs_b->idle = 0; | |
58088ad0 | 4653 | |
51f2176d BS |
4654 | return 0; |
4655 | ||
4656 | out_deactivate: | |
51f2176d | 4657 | return 1; |
58088ad0 | 4658 | } |
d3d9dc33 | 4659 | |
d8b4986d PT |
4660 | /* a cfs_rq won't donate quota below this amount */ |
4661 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
4662 | /* minimum remaining period time to redistribute slack quota */ | |
4663 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
4664 | /* how long we wait to gather additional slack before distributing */ | |
4665 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
4666 | ||
db06e78c BS |
4667 | /* |
4668 | * Are we near the end of the current quota period? | |
4669 | * | |
4670 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 4671 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
4672 | * migrate_hrtimers, base is never cleared, so we are fine. |
4673 | */ | |
d8b4986d PT |
4674 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
4675 | { | |
4676 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
4677 | u64 remaining; | |
4678 | ||
4679 | /* if the call-back is running a quota refresh is already occurring */ | |
4680 | if (hrtimer_callback_running(refresh_timer)) | |
4681 | return 1; | |
4682 | ||
4683 | /* is a quota refresh about to occur? */ | |
4684 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
4685 | if (remaining < min_expire) | |
4686 | return 1; | |
4687 | ||
4688 | return 0; | |
4689 | } | |
4690 | ||
4691 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
4692 | { | |
4693 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
4694 | ||
4695 | /* if there's a quota refresh soon don't bother with slack */ | |
4696 | if (runtime_refresh_within(cfs_b, min_left)) | |
4697 | return; | |
4698 | ||
4cfafd30 PZ |
4699 | hrtimer_start(&cfs_b->slack_timer, |
4700 | ns_to_ktime(cfs_bandwidth_slack_period), | |
4701 | HRTIMER_MODE_REL); | |
d8b4986d PT |
4702 | } |
4703 | ||
4704 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
4705 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4706 | { | |
4707 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4708 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
4709 | ||
4710 | if (slack_runtime <= 0) | |
4711 | return; | |
4712 | ||
4713 | raw_spin_lock(&cfs_b->lock); | |
4714 | if (cfs_b->quota != RUNTIME_INF && | |
4715 | cfs_rq->runtime_expires == cfs_b->runtime_expires) { | |
4716 | cfs_b->runtime += slack_runtime; | |
4717 | ||
4718 | /* we are under rq->lock, defer unthrottling using a timer */ | |
4719 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
4720 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
4721 | start_cfs_slack_bandwidth(cfs_b); | |
4722 | } | |
4723 | raw_spin_unlock(&cfs_b->lock); | |
4724 | ||
4725 | /* even if it's not valid for return we don't want to try again */ | |
4726 | cfs_rq->runtime_remaining -= slack_runtime; | |
4727 | } | |
4728 | ||
4729 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4730 | { | |
56f570e5 PT |
4731 | if (!cfs_bandwidth_used()) |
4732 | return; | |
4733 | ||
fccfdc6f | 4734 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
d8b4986d PT |
4735 | return; |
4736 | ||
4737 | __return_cfs_rq_runtime(cfs_rq); | |
4738 | } | |
4739 | ||
4740 | /* | |
4741 | * This is done with a timer (instead of inline with bandwidth return) since | |
4742 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
4743 | */ | |
4744 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
4745 | { | |
4746 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
4747 | u64 expires; | |
4748 | ||
4749 | /* confirm we're still not at a refresh boundary */ | |
db06e78c | 4750 | raw_spin_lock(&cfs_b->lock); |
baa9be4f PA |
4751 | if (cfs_b->distribute_running) { |
4752 | raw_spin_unlock(&cfs_b->lock); | |
4753 | return; | |
4754 | } | |
4755 | ||
db06e78c BS |
4756 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
4757 | raw_spin_unlock(&cfs_b->lock); | |
d8b4986d | 4758 | return; |
db06e78c | 4759 | } |
d8b4986d | 4760 | |
c06f04c7 | 4761 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 4762 | runtime = cfs_b->runtime; |
c06f04c7 | 4763 | |
d8b4986d | 4764 | expires = cfs_b->runtime_expires; |
baa9be4f PA |
4765 | if (runtime) |
4766 | cfs_b->distribute_running = 1; | |
4767 | ||
d8b4986d PT |
4768 | raw_spin_unlock(&cfs_b->lock); |
4769 | ||
4770 | if (!runtime) | |
4771 | return; | |
4772 | ||
4773 | runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | |
4774 | ||
4775 | raw_spin_lock(&cfs_b->lock); | |
4776 | if (expires == cfs_b->runtime_expires) | |
c06f04c7 | 4777 | cfs_b->runtime -= min(runtime, cfs_b->runtime); |
baa9be4f | 4778 | cfs_b->distribute_running = 0; |
d8b4986d PT |
4779 | raw_spin_unlock(&cfs_b->lock); |
4780 | } | |
4781 | ||
d3d9dc33 PT |
4782 | /* |
4783 | * When a group wakes up we want to make sure that its quota is not already | |
4784 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
4785 | * runtime as update_curr() throttling can not not trigger until it's on-rq. | |
4786 | */ | |
4787 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
4788 | { | |
56f570e5 PT |
4789 | if (!cfs_bandwidth_used()) |
4790 | return; | |
4791 | ||
d3d9dc33 PT |
4792 | /* an active group must be handled by the update_curr()->put() path */ |
4793 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
4794 | return; | |
4795 | ||
4796 | /* ensure the group is not already throttled */ | |
4797 | if (cfs_rq_throttled(cfs_rq)) | |
4798 | return; | |
4799 | ||
4800 | /* update runtime allocation */ | |
4801 | account_cfs_rq_runtime(cfs_rq, 0); | |
4802 | if (cfs_rq->runtime_remaining <= 0) | |
4803 | throttle_cfs_rq(cfs_rq); | |
4804 | } | |
4805 | ||
55e16d30 PZ |
4806 | static void sync_throttle(struct task_group *tg, int cpu) |
4807 | { | |
4808 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
4809 | ||
4810 | if (!cfs_bandwidth_used()) | |
4811 | return; | |
4812 | ||
4813 | if (!tg->parent) | |
4814 | return; | |
4815 | ||
4816 | cfs_rq = tg->cfs_rq[cpu]; | |
4817 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
4818 | ||
4819 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
b8922125 | 4820 | cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); |
55e16d30 PZ |
4821 | } |
4822 | ||
d3d9dc33 | 4823 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 4824 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 4825 | { |
56f570e5 | 4826 | if (!cfs_bandwidth_used()) |
678d5718 | 4827 | return false; |
56f570e5 | 4828 | |
d3d9dc33 | 4829 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 4830 | return false; |
d3d9dc33 PT |
4831 | |
4832 | /* | |
4833 | * it's possible for a throttled entity to be forced into a running | |
4834 | * state (e.g. set_curr_task), in this case we're finished. | |
4835 | */ | |
4836 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 4837 | return true; |
d3d9dc33 PT |
4838 | |
4839 | throttle_cfs_rq(cfs_rq); | |
678d5718 | 4840 | return true; |
d3d9dc33 | 4841 | } |
029632fb | 4842 | |
029632fb PZ |
4843 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
4844 | { | |
4845 | struct cfs_bandwidth *cfs_b = | |
4846 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 4847 | |
029632fb PZ |
4848 | do_sched_cfs_slack_timer(cfs_b); |
4849 | ||
4850 | return HRTIMER_NORESTART; | |
4851 | } | |
4852 | ||
4853 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | |
4854 | { | |
4855 | struct cfs_bandwidth *cfs_b = | |
4856 | container_of(timer, struct cfs_bandwidth, period_timer); | |
029632fb PZ |
4857 | int overrun; |
4858 | int idle = 0; | |
4859 | ||
51f2176d | 4860 | raw_spin_lock(&cfs_b->lock); |
029632fb | 4861 | for (;;) { |
77a4d1a1 | 4862 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
4863 | if (!overrun) |
4864 | break; | |
4865 | ||
4866 | idle = do_sched_cfs_period_timer(cfs_b, overrun); | |
4867 | } | |
4cfafd30 PZ |
4868 | if (idle) |
4869 | cfs_b->period_active = 0; | |
51f2176d | 4870 | raw_spin_unlock(&cfs_b->lock); |
029632fb PZ |
4871 | |
4872 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
4873 | } | |
4874 | ||
4875 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
4876 | { | |
4877 | raw_spin_lock_init(&cfs_b->lock); | |
4878 | cfs_b->runtime = 0; | |
4879 | cfs_b->quota = RUNTIME_INF; | |
4880 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
4881 | ||
4882 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
4cfafd30 | 4883 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
4884 | cfs_b->period_timer.function = sched_cfs_period_timer; |
4885 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
4886 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | |
baa9be4f | 4887 | cfs_b->distribute_running = 0; |
029632fb PZ |
4888 | } |
4889 | ||
4890 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4891 | { | |
4892 | cfs_rq->runtime_enabled = 0; | |
4893 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
4894 | } | |
4895 | ||
77a4d1a1 | 4896 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 4897 | { |
f1d1be8a XP |
4898 | u64 overrun; |
4899 | ||
4cfafd30 | 4900 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 4901 | |
f1d1be8a XP |
4902 | if (cfs_b->period_active) |
4903 | return; | |
4904 | ||
4905 | cfs_b->period_active = 1; | |
4906 | overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); | |
4907 | cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); | |
4908 | cfs_b->expires_seq++; | |
4909 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); | |
029632fb PZ |
4910 | } |
4911 | ||
4912 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
4913 | { | |
7f1a169b TH |
4914 | /* init_cfs_bandwidth() was not called */ |
4915 | if (!cfs_b->throttled_cfs_rq.next) | |
4916 | return; | |
4917 | ||
029632fb PZ |
4918 | hrtimer_cancel(&cfs_b->period_timer); |
4919 | hrtimer_cancel(&cfs_b->slack_timer); | |
4920 | } | |
4921 | ||
502ce005 | 4922 | /* |
97fb7a0a | 4923 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
502ce005 PZ |
4924 | * |
4925 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
4926 | * bits doesn't do much. | |
4927 | */ | |
4928 | ||
4929 | /* cpu online calback */ | |
0e59bdae KT |
4930 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
4931 | { | |
502ce005 | 4932 | struct task_group *tg; |
0e59bdae | 4933 | |
502ce005 PZ |
4934 | lockdep_assert_held(&rq->lock); |
4935 | ||
4936 | rcu_read_lock(); | |
4937 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4938 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
4939 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
4940 | |
4941 | raw_spin_lock(&cfs_b->lock); | |
4942 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
4943 | raw_spin_unlock(&cfs_b->lock); | |
4944 | } | |
502ce005 | 4945 | rcu_read_unlock(); |
0e59bdae KT |
4946 | } |
4947 | ||
502ce005 | 4948 | /* cpu offline callback */ |
38dc3348 | 4949 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 4950 | { |
502ce005 PZ |
4951 | struct task_group *tg; |
4952 | ||
4953 | lockdep_assert_held(&rq->lock); | |
4954 | ||
4955 | rcu_read_lock(); | |
4956 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4957 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 4958 | |
029632fb PZ |
4959 | if (!cfs_rq->runtime_enabled) |
4960 | continue; | |
4961 | ||
4962 | /* | |
4963 | * clock_task is not advancing so we just need to make sure | |
4964 | * there's some valid quota amount | |
4965 | */ | |
51f2176d | 4966 | cfs_rq->runtime_remaining = 1; |
0e59bdae | 4967 | /* |
97fb7a0a | 4968 | * Offline rq is schedulable till CPU is completely disabled |
0e59bdae KT |
4969 | * in take_cpu_down(), so we prevent new cfs throttling here. |
4970 | */ | |
4971 | cfs_rq->runtime_enabled = 0; | |
4972 | ||
029632fb PZ |
4973 | if (cfs_rq_throttled(cfs_rq)) |
4974 | unthrottle_cfs_rq(cfs_rq); | |
4975 | } | |
502ce005 | 4976 | rcu_read_unlock(); |
029632fb PZ |
4977 | } |
4978 | ||
4979 | #else /* CONFIG_CFS_BANDWIDTH */ | |
f1b17280 PT |
4980 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) |
4981 | { | |
78becc27 | 4982 | return rq_clock_task(rq_of(cfs_rq)); |
f1b17280 PT |
4983 | } |
4984 | ||
9dbdb155 | 4985 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 4986 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 4987 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 4988 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 4989 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
4990 | |
4991 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
4992 | { | |
4993 | return 0; | |
4994 | } | |
64660c86 PT |
4995 | |
4996 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4997 | { | |
4998 | return 0; | |
4999 | } | |
5000 | ||
5001 | static inline int throttled_lb_pair(struct task_group *tg, | |
5002 | int src_cpu, int dest_cpu) | |
5003 | { | |
5004 | return 0; | |
5005 | } | |
029632fb PZ |
5006 | |
5007 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
5008 | ||
5009 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
5010 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | |
ab84d31e PT |
5011 | #endif |
5012 | ||
029632fb PZ |
5013 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
5014 | { | |
5015 | return NULL; | |
5016 | } | |
5017 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 5018 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 5019 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
029632fb PZ |
5020 | |
5021 | #endif /* CONFIG_CFS_BANDWIDTH */ | |
5022 | ||
bf0f6f24 IM |
5023 | /************************************************** |
5024 | * CFS operations on tasks: | |
5025 | */ | |
5026 | ||
8f4d37ec PZ |
5027 | #ifdef CONFIG_SCHED_HRTICK |
5028 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5029 | { | |
8f4d37ec PZ |
5030 | struct sched_entity *se = &p->se; |
5031 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5032 | ||
9148a3a1 | 5033 | SCHED_WARN_ON(task_rq(p) != rq); |
8f4d37ec | 5034 | |
8bf46a39 | 5035 | if (rq->cfs.h_nr_running > 1) { |
8f4d37ec PZ |
5036 | u64 slice = sched_slice(cfs_rq, se); |
5037 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | |
5038 | s64 delta = slice - ran; | |
5039 | ||
5040 | if (delta < 0) { | |
5041 | if (rq->curr == p) | |
8875125e | 5042 | resched_curr(rq); |
8f4d37ec PZ |
5043 | return; |
5044 | } | |
31656519 | 5045 | hrtick_start(rq, delta); |
8f4d37ec PZ |
5046 | } |
5047 | } | |
a4c2f00f PZ |
5048 | |
5049 | /* | |
5050 | * called from enqueue/dequeue and updates the hrtick when the | |
5051 | * current task is from our class and nr_running is low enough | |
5052 | * to matter. | |
5053 | */ | |
5054 | static void hrtick_update(struct rq *rq) | |
5055 | { | |
5056 | struct task_struct *curr = rq->curr; | |
5057 | ||
b39e66ea | 5058 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
a4c2f00f PZ |
5059 | return; |
5060 | ||
5061 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | |
5062 | hrtick_start_fair(rq, curr); | |
5063 | } | |
55e12e5e | 5064 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
5065 | static inline void |
5066 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5067 | { | |
5068 | } | |
a4c2f00f PZ |
5069 | |
5070 | static inline void hrtick_update(struct rq *rq) | |
5071 | { | |
5072 | } | |
8f4d37ec PZ |
5073 | #endif |
5074 | ||
bf0f6f24 IM |
5075 | /* |
5076 | * The enqueue_task method is called before nr_running is | |
5077 | * increased. Here we update the fair scheduling stats and | |
5078 | * then put the task into the rbtree: | |
5079 | */ | |
ea87bb78 | 5080 | static void |
371fd7e7 | 5081 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5082 | { |
5083 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5084 | struct sched_entity *se = &p->se; |
bf0f6f24 | 5085 | |
2539fc82 PB |
5086 | /* |
5087 | * The code below (indirectly) updates schedutil which looks at | |
5088 | * the cfs_rq utilization to select a frequency. | |
5089 | * Let's add the task's estimated utilization to the cfs_rq's | |
5090 | * estimated utilization, before we update schedutil. | |
5091 | */ | |
5092 | util_est_enqueue(&rq->cfs, p); | |
5093 | ||
8c34ab19 RW |
5094 | /* |
5095 | * If in_iowait is set, the code below may not trigger any cpufreq | |
5096 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
5097 | * passed. | |
5098 | */ | |
5099 | if (p->in_iowait) | |
674e7541 | 5100 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
8c34ab19 | 5101 | |
bf0f6f24 | 5102 | for_each_sched_entity(se) { |
62fb1851 | 5103 | if (se->on_rq) |
bf0f6f24 IM |
5104 | break; |
5105 | cfs_rq = cfs_rq_of(se); | |
88ec22d3 | 5106 | enqueue_entity(cfs_rq, se, flags); |
85dac906 PT |
5107 | |
5108 | /* | |
5109 | * end evaluation on encountering a throttled cfs_rq | |
5110 | * | |
5111 | * note: in the case of encountering a throttled cfs_rq we will | |
5112 | * post the final h_nr_running increment below. | |
e210bffd | 5113 | */ |
85dac906 PT |
5114 | if (cfs_rq_throttled(cfs_rq)) |
5115 | break; | |
953bfcd1 | 5116 | cfs_rq->h_nr_running++; |
85dac906 | 5117 | |
88ec22d3 | 5118 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 5119 | } |
8f4d37ec | 5120 | |
2069dd75 | 5121 | for_each_sched_entity(se) { |
0f317143 | 5122 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 5123 | cfs_rq->h_nr_running++; |
2069dd75 | 5124 | |
85dac906 PT |
5125 | if (cfs_rq_throttled(cfs_rq)) |
5126 | break; | |
5127 | ||
88c0616e | 5128 | update_load_avg(cfs_rq, se, UPDATE_TG); |
1ea6c46a | 5129 | update_cfs_group(se); |
2069dd75 PZ |
5130 | } |
5131 | ||
cd126afe | 5132 | if (!se) |
72465447 | 5133 | add_nr_running(rq, 1); |
cd126afe | 5134 | |
a4c2f00f | 5135 | hrtick_update(rq); |
bf0f6f24 IM |
5136 | } |
5137 | ||
2f36825b VP |
5138 | static void set_next_buddy(struct sched_entity *se); |
5139 | ||
bf0f6f24 IM |
5140 | /* |
5141 | * The dequeue_task method is called before nr_running is | |
5142 | * decreased. We remove the task from the rbtree and | |
5143 | * update the fair scheduling stats: | |
5144 | */ | |
371fd7e7 | 5145 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5146 | { |
5147 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5148 | struct sched_entity *se = &p->se; |
2f36825b | 5149 | int task_sleep = flags & DEQUEUE_SLEEP; |
bf0f6f24 IM |
5150 | |
5151 | for_each_sched_entity(se) { | |
5152 | cfs_rq = cfs_rq_of(se); | |
371fd7e7 | 5153 | dequeue_entity(cfs_rq, se, flags); |
85dac906 PT |
5154 | |
5155 | /* | |
5156 | * end evaluation on encountering a throttled cfs_rq | |
5157 | * | |
5158 | * note: in the case of encountering a throttled cfs_rq we will | |
5159 | * post the final h_nr_running decrement below. | |
5160 | */ | |
5161 | if (cfs_rq_throttled(cfs_rq)) | |
5162 | break; | |
953bfcd1 | 5163 | cfs_rq->h_nr_running--; |
2069dd75 | 5164 | |
bf0f6f24 | 5165 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 5166 | if (cfs_rq->load.weight) { |
754bd598 KK |
5167 | /* Avoid re-evaluating load for this entity: */ |
5168 | se = parent_entity(se); | |
2f36825b VP |
5169 | /* |
5170 | * Bias pick_next to pick a task from this cfs_rq, as | |
5171 | * p is sleeping when it is within its sched_slice. | |
5172 | */ | |
754bd598 KK |
5173 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
5174 | set_next_buddy(se); | |
bf0f6f24 | 5175 | break; |
2f36825b | 5176 | } |
371fd7e7 | 5177 | flags |= DEQUEUE_SLEEP; |
bf0f6f24 | 5178 | } |
8f4d37ec | 5179 | |
2069dd75 | 5180 | for_each_sched_entity(se) { |
0f317143 | 5181 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 5182 | cfs_rq->h_nr_running--; |
2069dd75 | 5183 | |
85dac906 PT |
5184 | if (cfs_rq_throttled(cfs_rq)) |
5185 | break; | |
5186 | ||
88c0616e | 5187 | update_load_avg(cfs_rq, se, UPDATE_TG); |
1ea6c46a | 5188 | update_cfs_group(se); |
2069dd75 PZ |
5189 | } |
5190 | ||
cd126afe | 5191 | if (!se) |
72465447 | 5192 | sub_nr_running(rq, 1); |
cd126afe | 5193 | |
7f65ea42 | 5194 | util_est_dequeue(&rq->cfs, p, task_sleep); |
a4c2f00f | 5195 | hrtick_update(rq); |
bf0f6f24 IM |
5196 | } |
5197 | ||
e7693a36 | 5198 | #ifdef CONFIG_SMP |
10e2f1ac PZ |
5199 | |
5200 | /* Working cpumask for: load_balance, load_balance_newidle. */ | |
5201 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | |
5202 | DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); | |
5203 | ||
9fd81dd5 | 5204 | #ifdef CONFIG_NO_HZ_COMMON |
3289bdb4 PZ |
5205 | /* |
5206 | * per rq 'load' arrray crap; XXX kill this. | |
5207 | */ | |
5208 | ||
5209 | /* | |
d937cdc5 | 5210 | * The exact cpuload calculated at every tick would be: |
3289bdb4 | 5211 | * |
d937cdc5 PZ |
5212 | * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load |
5213 | * | |
97fb7a0a IM |
5214 | * If a CPU misses updates for n ticks (as it was idle) and update gets |
5215 | * called on the n+1-th tick when CPU may be busy, then we have: | |
d937cdc5 PZ |
5216 | * |
5217 | * load_n = (1 - 1/2^i)^n * load_0 | |
5218 | * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load | |
3289bdb4 PZ |
5219 | * |
5220 | * decay_load_missed() below does efficient calculation of | |
3289bdb4 | 5221 | * |
d937cdc5 PZ |
5222 | * load' = (1 - 1/2^i)^n * load |
5223 | * | |
5224 | * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. | |
5225 | * This allows us to precompute the above in said factors, thereby allowing the | |
5226 | * reduction of an arbitrary n in O(log_2 n) steps. (See also | |
5227 | * fixed_power_int()) | |
3289bdb4 | 5228 | * |
d937cdc5 | 5229 | * The calculation is approximated on a 128 point scale. |
3289bdb4 PZ |
5230 | */ |
5231 | #define DEGRADE_SHIFT 7 | |
d937cdc5 PZ |
5232 | |
5233 | static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | |
5234 | static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | |
5235 | { 0, 0, 0, 0, 0, 0, 0, 0 }, | |
5236 | { 64, 32, 8, 0, 0, 0, 0, 0 }, | |
5237 | { 96, 72, 40, 12, 1, 0, 0, 0 }, | |
5238 | { 112, 98, 75, 43, 15, 1, 0, 0 }, | |
5239 | { 120, 112, 98, 76, 45, 16, 2, 0 } | |
5240 | }; | |
3289bdb4 PZ |
5241 | |
5242 | /* | |
5243 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | |
5244 | * would be when CPU is idle and so we just decay the old load without | |
5245 | * adding any new load. | |
5246 | */ | |
5247 | static unsigned long | |
5248 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | |
5249 | { | |
5250 | int j = 0; | |
5251 | ||
5252 | if (!missed_updates) | |
5253 | return load; | |
5254 | ||
5255 | if (missed_updates >= degrade_zero_ticks[idx]) | |
5256 | return 0; | |
5257 | ||
5258 | if (idx == 1) | |
5259 | return load >> missed_updates; | |
5260 | ||
5261 | while (missed_updates) { | |
5262 | if (missed_updates % 2) | |
5263 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | |
5264 | ||
5265 | missed_updates >>= 1; | |
5266 | j++; | |
5267 | } | |
5268 | return load; | |
5269 | } | |
e022e0d3 PZ |
5270 | |
5271 | static struct { | |
5272 | cpumask_var_t idle_cpus_mask; | |
5273 | atomic_t nr_cpus; | |
f643ea22 | 5274 | int has_blocked; /* Idle CPUS has blocked load */ |
e022e0d3 | 5275 | unsigned long next_balance; /* in jiffy units */ |
f643ea22 | 5276 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
e022e0d3 PZ |
5277 | } nohz ____cacheline_aligned; |
5278 | ||
9fd81dd5 | 5279 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 5280 | |
59543275 | 5281 | /** |
cee1afce | 5282 | * __cpu_load_update - update the rq->cpu_load[] statistics |
59543275 BP |
5283 | * @this_rq: The rq to update statistics for |
5284 | * @this_load: The current load | |
5285 | * @pending_updates: The number of missed updates | |
59543275 | 5286 | * |
3289bdb4 | 5287 | * Update rq->cpu_load[] statistics. This function is usually called every |
59543275 BP |
5288 | * scheduler tick (TICK_NSEC). |
5289 | * | |
5290 | * This function computes a decaying average: | |
5291 | * | |
5292 | * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load | |
5293 | * | |
5294 | * Because of NOHZ it might not get called on every tick which gives need for | |
5295 | * the @pending_updates argument. | |
5296 | * | |
5297 | * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 | |
5298 | * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load | |
5299 | * = A * (A * load[i]_n-2 + B) + B | |
5300 | * = A * (A * (A * load[i]_n-3 + B) + B) + B | |
5301 | * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B | |
5302 | * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B | |
5303 | * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B | |
5304 | * = (1 - 1/2^i)^n * (load[i]_0 - load) + load | |
5305 | * | |
5306 | * In the above we've assumed load_n := load, which is true for NOHZ_FULL as | |
5307 | * any change in load would have resulted in the tick being turned back on. | |
5308 | * | |
5309 | * For regular NOHZ, this reduces to: | |
5310 | * | |
5311 | * load[i]_n = (1 - 1/2^i)^n * load[i]_0 | |
5312 | * | |
5313 | * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra | |
1f41906a | 5314 | * term. |
3289bdb4 | 5315 | */ |
1f41906a FW |
5316 | static void cpu_load_update(struct rq *this_rq, unsigned long this_load, |
5317 | unsigned long pending_updates) | |
3289bdb4 | 5318 | { |
9fd81dd5 | 5319 | unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; |
3289bdb4 PZ |
5320 | int i, scale; |
5321 | ||
5322 | this_rq->nr_load_updates++; | |
5323 | ||
5324 | /* Update our load: */ | |
5325 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | |
5326 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
5327 | unsigned long old_load, new_load; | |
5328 | ||
5329 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
5330 | ||
7400d3bb | 5331 | old_load = this_rq->cpu_load[i]; |
9fd81dd5 | 5332 | #ifdef CONFIG_NO_HZ_COMMON |
3289bdb4 | 5333 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
7400d3bb BP |
5334 | if (tickless_load) { |
5335 | old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); | |
5336 | /* | |
5337 | * old_load can never be a negative value because a | |
5338 | * decayed tickless_load cannot be greater than the | |
5339 | * original tickless_load. | |
5340 | */ | |
5341 | old_load += tickless_load; | |
5342 | } | |
9fd81dd5 | 5343 | #endif |
3289bdb4 PZ |
5344 | new_load = this_load; |
5345 | /* | |
5346 | * Round up the averaging division if load is increasing. This | |
5347 | * prevents us from getting stuck on 9 if the load is 10, for | |
5348 | * example. | |
5349 | */ | |
5350 | if (new_load > old_load) | |
5351 | new_load += scale - 1; | |
5352 | ||
5353 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | |
5354 | } | |
3289bdb4 PZ |
5355 | } |
5356 | ||
7ea241af | 5357 | /* Used instead of source_load when we know the type == 0 */ |
c7132dd6 | 5358 | static unsigned long weighted_cpuload(struct rq *rq) |
7ea241af | 5359 | { |
c7132dd6 | 5360 | return cfs_rq_runnable_load_avg(&rq->cfs); |
7ea241af YD |
5361 | } |
5362 | ||
3289bdb4 | 5363 | #ifdef CONFIG_NO_HZ_COMMON |
1f41906a FW |
5364 | /* |
5365 | * There is no sane way to deal with nohz on smp when using jiffies because the | |
97fb7a0a | 5366 | * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading |
1f41906a FW |
5367 | * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. |
5368 | * | |
5369 | * Therefore we need to avoid the delta approach from the regular tick when | |
5370 | * possible since that would seriously skew the load calculation. This is why we | |
5371 | * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on | |
5372 | * jiffies deltas for updates happening while in nohz mode (idle ticks, idle | |
5373 | * loop exit, nohz_idle_balance, nohz full exit...) | |
5374 | * | |
5375 | * This means we might still be one tick off for nohz periods. | |
5376 | */ | |
5377 | ||
5378 | static void cpu_load_update_nohz(struct rq *this_rq, | |
5379 | unsigned long curr_jiffies, | |
5380 | unsigned long load) | |
be68a682 FW |
5381 | { |
5382 | unsigned long pending_updates; | |
5383 | ||
5384 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | |
5385 | if (pending_updates) { | |
5386 | this_rq->last_load_update_tick = curr_jiffies; | |
5387 | /* | |
5388 | * In the regular NOHZ case, we were idle, this means load 0. | |
5389 | * In the NOHZ_FULL case, we were non-idle, we should consider | |
5390 | * its weighted load. | |
5391 | */ | |
1f41906a | 5392 | cpu_load_update(this_rq, load, pending_updates); |
be68a682 FW |
5393 | } |
5394 | } | |
5395 | ||
3289bdb4 PZ |
5396 | /* |
5397 | * Called from nohz_idle_balance() to update the load ratings before doing the | |
5398 | * idle balance. | |
5399 | */ | |
cee1afce | 5400 | static void cpu_load_update_idle(struct rq *this_rq) |
3289bdb4 | 5401 | { |
3289bdb4 PZ |
5402 | /* |
5403 | * bail if there's load or we're actually up-to-date. | |
5404 | */ | |
c7132dd6 | 5405 | if (weighted_cpuload(this_rq)) |
3289bdb4 PZ |
5406 | return; |
5407 | ||
1f41906a | 5408 | cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); |
3289bdb4 PZ |
5409 | } |
5410 | ||
5411 | /* | |
1f41906a FW |
5412 | * Record CPU load on nohz entry so we know the tickless load to account |
5413 | * on nohz exit. cpu_load[0] happens then to be updated more frequently | |
5414 | * than other cpu_load[idx] but it should be fine as cpu_load readers | |
5415 | * shouldn't rely into synchronized cpu_load[*] updates. | |
3289bdb4 | 5416 | */ |
1f41906a | 5417 | void cpu_load_update_nohz_start(void) |
3289bdb4 PZ |
5418 | { |
5419 | struct rq *this_rq = this_rq(); | |
1f41906a FW |
5420 | |
5421 | /* | |
5422 | * This is all lockless but should be fine. If weighted_cpuload changes | |
5423 | * concurrently we'll exit nohz. And cpu_load write can race with | |
5424 | * cpu_load_update_idle() but both updater would be writing the same. | |
5425 | */ | |
c7132dd6 | 5426 | this_rq->cpu_load[0] = weighted_cpuload(this_rq); |
1f41906a FW |
5427 | } |
5428 | ||
5429 | /* | |
5430 | * Account the tickless load in the end of a nohz frame. | |
5431 | */ | |
5432 | void cpu_load_update_nohz_stop(void) | |
5433 | { | |
316c1608 | 5434 | unsigned long curr_jiffies = READ_ONCE(jiffies); |
1f41906a FW |
5435 | struct rq *this_rq = this_rq(); |
5436 | unsigned long load; | |
8a8c69c3 | 5437 | struct rq_flags rf; |
3289bdb4 PZ |
5438 | |
5439 | if (curr_jiffies == this_rq->last_load_update_tick) | |
5440 | return; | |
5441 | ||
c7132dd6 | 5442 | load = weighted_cpuload(this_rq); |
8a8c69c3 | 5443 | rq_lock(this_rq, &rf); |
b52fad2d | 5444 | update_rq_clock(this_rq); |
1f41906a | 5445 | cpu_load_update_nohz(this_rq, curr_jiffies, load); |
8a8c69c3 | 5446 | rq_unlock(this_rq, &rf); |
3289bdb4 | 5447 | } |
1f41906a FW |
5448 | #else /* !CONFIG_NO_HZ_COMMON */ |
5449 | static inline void cpu_load_update_nohz(struct rq *this_rq, | |
5450 | unsigned long curr_jiffies, | |
5451 | unsigned long load) { } | |
5452 | #endif /* CONFIG_NO_HZ_COMMON */ | |
5453 | ||
5454 | static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) | |
5455 | { | |
9fd81dd5 | 5456 | #ifdef CONFIG_NO_HZ_COMMON |
1f41906a FW |
5457 | /* See the mess around cpu_load_update_nohz(). */ |
5458 | this_rq->last_load_update_tick = READ_ONCE(jiffies); | |
9fd81dd5 | 5459 | #endif |
1f41906a FW |
5460 | cpu_load_update(this_rq, load, 1); |
5461 | } | |
3289bdb4 PZ |
5462 | |
5463 | /* | |
5464 | * Called from scheduler_tick() | |
5465 | */ | |
cee1afce | 5466 | void cpu_load_update_active(struct rq *this_rq) |
3289bdb4 | 5467 | { |
c7132dd6 | 5468 | unsigned long load = weighted_cpuload(this_rq); |
1f41906a FW |
5469 | |
5470 | if (tick_nohz_tick_stopped()) | |
5471 | cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); | |
5472 | else | |
5473 | cpu_load_update_periodic(this_rq, load); | |
3289bdb4 PZ |
5474 | } |
5475 | ||
029632fb | 5476 | /* |
97fb7a0a | 5477 | * Return a low guess at the load of a migration-source CPU weighted |
029632fb PZ |
5478 | * according to the scheduling class and "nice" value. |
5479 | * | |
5480 | * We want to under-estimate the load of migration sources, to | |
5481 | * balance conservatively. | |
5482 | */ | |
5483 | static unsigned long source_load(int cpu, int type) | |
5484 | { | |
5485 | struct rq *rq = cpu_rq(cpu); | |
c7132dd6 | 5486 | unsigned long total = weighted_cpuload(rq); |
029632fb PZ |
5487 | |
5488 | if (type == 0 || !sched_feat(LB_BIAS)) | |
5489 | return total; | |
5490 | ||
5491 | return min(rq->cpu_load[type-1], total); | |
5492 | } | |
5493 | ||
5494 | /* | |
97fb7a0a | 5495 | * Return a high guess at the load of a migration-target CPU weighted |
029632fb PZ |
5496 | * according to the scheduling class and "nice" value. |
5497 | */ | |
5498 | static unsigned long target_load(int cpu, int type) | |
5499 | { | |
5500 | struct rq *rq = cpu_rq(cpu); | |
c7132dd6 | 5501 | unsigned long total = weighted_cpuload(rq); |
029632fb PZ |
5502 | |
5503 | if (type == 0 || !sched_feat(LB_BIAS)) | |
5504 | return total; | |
5505 | ||
5506 | return max(rq->cpu_load[type-1], total); | |
5507 | } | |
5508 | ||
ced549fa | 5509 | static unsigned long capacity_of(int cpu) |
029632fb | 5510 | { |
ced549fa | 5511 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
5512 | } |
5513 | ||
ca6d75e6 VG |
5514 | static unsigned long capacity_orig_of(int cpu) |
5515 | { | |
5516 | return cpu_rq(cpu)->cpu_capacity_orig; | |
5517 | } | |
5518 | ||
029632fb PZ |
5519 | static unsigned long cpu_avg_load_per_task(int cpu) |
5520 | { | |
5521 | struct rq *rq = cpu_rq(cpu); | |
316c1608 | 5522 | unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); |
c7132dd6 | 5523 | unsigned long load_avg = weighted_cpuload(rq); |
029632fb PZ |
5524 | |
5525 | if (nr_running) | |
b92486cb | 5526 | return load_avg / nr_running; |
029632fb PZ |
5527 | |
5528 | return 0; | |
5529 | } | |
5530 | ||
c58d25f3 PZ |
5531 | static void record_wakee(struct task_struct *p) |
5532 | { | |
5533 | /* | |
5534 | * Only decay a single time; tasks that have less then 1 wakeup per | |
5535 | * jiffy will not have built up many flips. | |
5536 | */ | |
5537 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
5538 | current->wakee_flips >>= 1; | |
5539 | current->wakee_flip_decay_ts = jiffies; | |
5540 | } | |
5541 | ||
5542 | if (current->last_wakee != p) { | |
5543 | current->last_wakee = p; | |
5544 | current->wakee_flips++; | |
5545 | } | |
5546 | } | |
5547 | ||
63b0e9ed MG |
5548 | /* |
5549 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 5550 | * |
63b0e9ed | 5551 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
5552 | * at a frequency roughly N times higher than one of its wakees. |
5553 | * | |
5554 | * In order to determine whether we should let the load spread vs consolidating | |
5555 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
5556 | * partner, and a factor of lls_size higher frequency in the other. | |
5557 | * | |
5558 | * With both conditions met, we can be relatively sure that the relationship is | |
5559 | * non-monogamous, with partner count exceeding socket size. | |
5560 | * | |
5561 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
5562 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
5563 | * socket size. | |
63b0e9ed | 5564 | */ |
62470419 MW |
5565 | static int wake_wide(struct task_struct *p) |
5566 | { | |
63b0e9ed MG |
5567 | unsigned int master = current->wakee_flips; |
5568 | unsigned int slave = p->wakee_flips; | |
7d9ffa89 | 5569 | int factor = this_cpu_read(sd_llc_size); |
62470419 | 5570 | |
63b0e9ed MG |
5571 | if (master < slave) |
5572 | swap(master, slave); | |
5573 | if (slave < factor || master < slave * factor) | |
5574 | return 0; | |
5575 | return 1; | |
62470419 MW |
5576 | } |
5577 | ||
90001d67 | 5578 | /* |
d153b153 PZ |
5579 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
5580 | * soonest. For the purpose of speed we only consider the waking and previous | |
5581 | * CPU. | |
90001d67 | 5582 | * |
7332dec0 MG |
5583 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
5584 | * cache-affine and is (or will be) idle. | |
f2cdd9cc PZ |
5585 | * |
5586 | * wake_affine_weight() - considers the weight to reflect the average | |
5587 | * scheduling latency of the CPUs. This seems to work | |
5588 | * for the overloaded case. | |
90001d67 | 5589 | */ |
3b76c4a3 | 5590 | static int |
89a55f56 | 5591 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
90001d67 | 5592 | { |
7332dec0 MG |
5593 | /* |
5594 | * If this_cpu is idle, it implies the wakeup is from interrupt | |
5595 | * context. Only allow the move if cache is shared. Otherwise an | |
5596 | * interrupt intensive workload could force all tasks onto one | |
5597 | * node depending on the IO topology or IRQ affinity settings. | |
806486c3 MG |
5598 | * |
5599 | * If the prev_cpu is idle and cache affine then avoid a migration. | |
5600 | * There is no guarantee that the cache hot data from an interrupt | |
5601 | * is more important than cache hot data on the prev_cpu and from | |
5602 | * a cpufreq perspective, it's better to have higher utilisation | |
5603 | * on one CPU. | |
7332dec0 | 5604 | */ |
943d355d RJ |
5605 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
5606 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | |
90001d67 | 5607 | |
d153b153 | 5608 | if (sync && cpu_rq(this_cpu)->nr_running == 1) |
3b76c4a3 | 5609 | return this_cpu; |
90001d67 | 5610 | |
3b76c4a3 | 5611 | return nr_cpumask_bits; |
90001d67 PZ |
5612 | } |
5613 | ||
3b76c4a3 | 5614 | static int |
f2cdd9cc PZ |
5615 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
5616 | int this_cpu, int prev_cpu, int sync) | |
90001d67 | 5617 | { |
90001d67 PZ |
5618 | s64 this_eff_load, prev_eff_load; |
5619 | unsigned long task_load; | |
5620 | ||
f2cdd9cc | 5621 | this_eff_load = target_load(this_cpu, sd->wake_idx); |
90001d67 | 5622 | |
90001d67 PZ |
5623 | if (sync) { |
5624 | unsigned long current_load = task_h_load(current); | |
5625 | ||
f2cdd9cc | 5626 | if (current_load > this_eff_load) |
3b76c4a3 | 5627 | return this_cpu; |
90001d67 | 5628 | |
f2cdd9cc | 5629 | this_eff_load -= current_load; |
90001d67 PZ |
5630 | } |
5631 | ||
90001d67 PZ |
5632 | task_load = task_h_load(p); |
5633 | ||
f2cdd9cc PZ |
5634 | this_eff_load += task_load; |
5635 | if (sched_feat(WA_BIAS)) | |
5636 | this_eff_load *= 100; | |
5637 | this_eff_load *= capacity_of(prev_cpu); | |
90001d67 | 5638 | |
eeb60398 | 5639 | prev_eff_load = source_load(prev_cpu, sd->wake_idx); |
f2cdd9cc PZ |
5640 | prev_eff_load -= task_load; |
5641 | if (sched_feat(WA_BIAS)) | |
5642 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | |
5643 | prev_eff_load *= capacity_of(this_cpu); | |
90001d67 | 5644 | |
082f764a MG |
5645 | /* |
5646 | * If sync, adjust the weight of prev_eff_load such that if | |
5647 | * prev_eff == this_eff that select_idle_sibling() will consider | |
5648 | * stacking the wakee on top of the waker if no other CPU is | |
5649 | * idle. | |
5650 | */ | |
5651 | if (sync) | |
5652 | prev_eff_load += 1; | |
5653 | ||
5654 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | |
90001d67 PZ |
5655 | } |
5656 | ||
772bd008 | 5657 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
7ebb66a1 | 5658 | int this_cpu, int prev_cpu, int sync) |
098fb9db | 5659 | { |
3b76c4a3 | 5660 | int target = nr_cpumask_bits; |
098fb9db | 5661 | |
89a55f56 | 5662 | if (sched_feat(WA_IDLE)) |
3b76c4a3 | 5663 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
90001d67 | 5664 | |
3b76c4a3 MG |
5665 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
5666 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 5667 | |
ae92882e | 5668 | schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); |
3b76c4a3 MG |
5669 | if (target == nr_cpumask_bits) |
5670 | return prev_cpu; | |
098fb9db | 5671 | |
3b76c4a3 MG |
5672 | schedstat_inc(sd->ttwu_move_affine); |
5673 | schedstat_inc(p->se.statistics.nr_wakeups_affine); | |
5674 | return target; | |
098fb9db IM |
5675 | } |
5676 | ||
c469933e | 5677 | static unsigned long cpu_util_without(int cpu, struct task_struct *p); |
6a0b19c0 | 5678 | |
c469933e | 5679 | static unsigned long capacity_spare_without(int cpu, struct task_struct *p) |
6a0b19c0 | 5680 | { |
c469933e | 5681 | return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); |
6a0b19c0 MR |
5682 | } |
5683 | ||
aaee1203 PZ |
5684 | /* |
5685 | * find_idlest_group finds and returns the least busy CPU group within the | |
5686 | * domain. | |
6fee85cc BJ |
5687 | * |
5688 | * Assumes p is allowed on at least one CPU in sd. | |
aaee1203 PZ |
5689 | */ |
5690 | static struct sched_group * | |
78e7ed53 | 5691 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
c44f2a02 | 5692 | int this_cpu, int sd_flag) |
e7693a36 | 5693 | { |
b3bd3de6 | 5694 | struct sched_group *idlest = NULL, *group = sd->groups; |
6a0b19c0 | 5695 | struct sched_group *most_spare_sg = NULL; |
0d10ab95 BJ |
5696 | unsigned long min_runnable_load = ULONG_MAX; |
5697 | unsigned long this_runnable_load = ULONG_MAX; | |
5698 | unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; | |
6a0b19c0 | 5699 | unsigned long most_spare = 0, this_spare = 0; |
c44f2a02 | 5700 | int load_idx = sd->forkexec_idx; |
6b94780e VG |
5701 | int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; |
5702 | unsigned long imbalance = scale_load_down(NICE_0_LOAD) * | |
5703 | (sd->imbalance_pct-100) / 100; | |
e7693a36 | 5704 | |
c44f2a02 VG |
5705 | if (sd_flag & SD_BALANCE_WAKE) |
5706 | load_idx = sd->wake_idx; | |
5707 | ||
aaee1203 | 5708 | do { |
6b94780e VG |
5709 | unsigned long load, avg_load, runnable_load; |
5710 | unsigned long spare_cap, max_spare_cap; | |
aaee1203 PZ |
5711 | int local_group; |
5712 | int i; | |
e7693a36 | 5713 | |
aaee1203 | 5714 | /* Skip over this group if it has no CPUs allowed */ |
ae4df9d6 | 5715 | if (!cpumask_intersects(sched_group_span(group), |
0c98d344 | 5716 | &p->cpus_allowed)) |
aaee1203 PZ |
5717 | continue; |
5718 | ||
5719 | local_group = cpumask_test_cpu(this_cpu, | |
ae4df9d6 | 5720 | sched_group_span(group)); |
aaee1203 | 5721 | |
6a0b19c0 MR |
5722 | /* |
5723 | * Tally up the load of all CPUs in the group and find | |
5724 | * the group containing the CPU with most spare capacity. | |
5725 | */ | |
aaee1203 | 5726 | avg_load = 0; |
6b94780e | 5727 | runnable_load = 0; |
6a0b19c0 | 5728 | max_spare_cap = 0; |
aaee1203 | 5729 | |
ae4df9d6 | 5730 | for_each_cpu(i, sched_group_span(group)) { |
97fb7a0a | 5731 | /* Bias balancing toward CPUs of our domain */ |
aaee1203 PZ |
5732 | if (local_group) |
5733 | load = source_load(i, load_idx); | |
5734 | else | |
5735 | load = target_load(i, load_idx); | |
5736 | ||
6b94780e VG |
5737 | runnable_load += load; |
5738 | ||
5739 | avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); | |
6a0b19c0 | 5740 | |
c469933e | 5741 | spare_cap = capacity_spare_without(i, p); |
6a0b19c0 MR |
5742 | |
5743 | if (spare_cap > max_spare_cap) | |
5744 | max_spare_cap = spare_cap; | |
aaee1203 PZ |
5745 | } |
5746 | ||
63b2ca30 | 5747 | /* Adjust by relative CPU capacity of the group */ |
6b94780e VG |
5748 | avg_load = (avg_load * SCHED_CAPACITY_SCALE) / |
5749 | group->sgc->capacity; | |
5750 | runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / | |
5751 | group->sgc->capacity; | |
aaee1203 PZ |
5752 | |
5753 | if (local_group) { | |
6b94780e VG |
5754 | this_runnable_load = runnable_load; |
5755 | this_avg_load = avg_load; | |
6a0b19c0 MR |
5756 | this_spare = max_spare_cap; |
5757 | } else { | |
6b94780e VG |
5758 | if (min_runnable_load > (runnable_load + imbalance)) { |
5759 | /* | |
5760 | * The runnable load is significantly smaller | |
97fb7a0a | 5761 | * so we can pick this new CPU: |
6b94780e VG |
5762 | */ |
5763 | min_runnable_load = runnable_load; | |
5764 | min_avg_load = avg_load; | |
5765 | idlest = group; | |
5766 | } else if ((runnable_load < (min_runnable_load + imbalance)) && | |
5767 | (100*min_avg_load > imbalance_scale*avg_load)) { | |
5768 | /* | |
5769 | * The runnable loads are close so take the | |
97fb7a0a | 5770 | * blocked load into account through avg_load: |
6b94780e VG |
5771 | */ |
5772 | min_avg_load = avg_load; | |
6a0b19c0 MR |
5773 | idlest = group; |
5774 | } | |
5775 | ||
5776 | if (most_spare < max_spare_cap) { | |
5777 | most_spare = max_spare_cap; | |
5778 | most_spare_sg = group; | |
5779 | } | |
aaee1203 PZ |
5780 | } |
5781 | } while (group = group->next, group != sd->groups); | |
5782 | ||
6a0b19c0 MR |
5783 | /* |
5784 | * The cross-over point between using spare capacity or least load | |
5785 | * is too conservative for high utilization tasks on partially | |
5786 | * utilized systems if we require spare_capacity > task_util(p), | |
5787 | * so we allow for some task stuffing by using | |
5788 | * spare_capacity > task_util(p)/2. | |
f519a3f1 VG |
5789 | * |
5790 | * Spare capacity can't be used for fork because the utilization has | |
5791 | * not been set yet, we must first select a rq to compute the initial | |
5792 | * utilization. | |
6a0b19c0 | 5793 | */ |
f519a3f1 VG |
5794 | if (sd_flag & SD_BALANCE_FORK) |
5795 | goto skip_spare; | |
5796 | ||
6a0b19c0 | 5797 | if (this_spare > task_util(p) / 2 && |
6b94780e | 5798 | imbalance_scale*this_spare > 100*most_spare) |
6a0b19c0 | 5799 | return NULL; |
6b94780e VG |
5800 | |
5801 | if (most_spare > task_util(p) / 2) | |
6a0b19c0 MR |
5802 | return most_spare_sg; |
5803 | ||
f519a3f1 | 5804 | skip_spare: |
6b94780e VG |
5805 | if (!idlest) |
5806 | return NULL; | |
5807 | ||
2c833627 MG |
5808 | /* |
5809 | * When comparing groups across NUMA domains, it's possible for the | |
5810 | * local domain to be very lightly loaded relative to the remote | |
5811 | * domains but "imbalance" skews the comparison making remote CPUs | |
5812 | * look much more favourable. When considering cross-domain, add | |
5813 | * imbalance to the runnable load on the remote node and consider | |
5814 | * staying local. | |
5815 | */ | |
5816 | if ((sd->flags & SD_NUMA) && | |
5817 | min_runnable_load + imbalance >= this_runnable_load) | |
5818 | return NULL; | |
5819 | ||
6b94780e | 5820 | if (min_runnable_load > (this_runnable_load + imbalance)) |
aaee1203 | 5821 | return NULL; |
6b94780e VG |
5822 | |
5823 | if ((this_runnable_load < (min_runnable_load + imbalance)) && | |
5824 | (100*this_avg_load < imbalance_scale*min_avg_load)) | |
5825 | return NULL; | |
5826 | ||
aaee1203 PZ |
5827 | return idlest; |
5828 | } | |
5829 | ||
5830 | /* | |
97fb7a0a | 5831 | * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. |
aaee1203 PZ |
5832 | */ |
5833 | static int | |
18bd1b4b | 5834 | find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
aaee1203 PZ |
5835 | { |
5836 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
5837 | unsigned int min_exit_latency = UINT_MAX; |
5838 | u64 latest_idle_timestamp = 0; | |
5839 | int least_loaded_cpu = this_cpu; | |
5840 | int shallowest_idle_cpu = -1; | |
aaee1203 PZ |
5841 | int i; |
5842 | ||
eaecf41f MR |
5843 | /* Check if we have any choice: */ |
5844 | if (group->group_weight == 1) | |
ae4df9d6 | 5845 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 5846 | |
aaee1203 | 5847 | /* Traverse only the allowed CPUs */ |
ae4df9d6 | 5848 | for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { |
943d355d | 5849 | if (available_idle_cpu(i)) { |
83a0a96a NP |
5850 | struct rq *rq = cpu_rq(i); |
5851 | struct cpuidle_state *idle = idle_get_state(rq); | |
5852 | if (idle && idle->exit_latency < min_exit_latency) { | |
5853 | /* | |
5854 | * We give priority to a CPU whose idle state | |
5855 | * has the smallest exit latency irrespective | |
5856 | * of any idle timestamp. | |
5857 | */ | |
5858 | min_exit_latency = idle->exit_latency; | |
5859 | latest_idle_timestamp = rq->idle_stamp; | |
5860 | shallowest_idle_cpu = i; | |
5861 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
5862 | rq->idle_stamp > latest_idle_timestamp) { | |
5863 | /* | |
5864 | * If equal or no active idle state, then | |
5865 | * the most recently idled CPU might have | |
5866 | * a warmer cache. | |
5867 | */ | |
5868 | latest_idle_timestamp = rq->idle_stamp; | |
5869 | shallowest_idle_cpu = i; | |
5870 | } | |
9f96742a | 5871 | } else if (shallowest_idle_cpu == -1) { |
c7132dd6 | 5872 | load = weighted_cpuload(cpu_rq(i)); |
18cec7e0 | 5873 | if (load < min_load) { |
83a0a96a NP |
5874 | min_load = load; |
5875 | least_loaded_cpu = i; | |
5876 | } | |
e7693a36 GH |
5877 | } |
5878 | } | |
5879 | ||
83a0a96a | 5880 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
aaee1203 | 5881 | } |
e7693a36 | 5882 | |
18bd1b4b BJ |
5883 | static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, |
5884 | int cpu, int prev_cpu, int sd_flag) | |
5885 | { | |
93f50f90 | 5886 | int new_cpu = cpu; |
18bd1b4b | 5887 | |
6fee85cc BJ |
5888 | if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) |
5889 | return prev_cpu; | |
5890 | ||
c976a862 | 5891 | /* |
c469933e PB |
5892 | * We need task's util for capacity_spare_without, sync it up to |
5893 | * prev_cpu's last_update_time. | |
c976a862 VK |
5894 | */ |
5895 | if (!(sd_flag & SD_BALANCE_FORK)) | |
5896 | sync_entity_load_avg(&p->se); | |
5897 | ||
18bd1b4b BJ |
5898 | while (sd) { |
5899 | struct sched_group *group; | |
5900 | struct sched_domain *tmp; | |
5901 | int weight; | |
5902 | ||
5903 | if (!(sd->flags & sd_flag)) { | |
5904 | sd = sd->child; | |
5905 | continue; | |
5906 | } | |
5907 | ||
5908 | group = find_idlest_group(sd, p, cpu, sd_flag); | |
5909 | if (!group) { | |
5910 | sd = sd->child; | |
5911 | continue; | |
5912 | } | |
5913 | ||
5914 | new_cpu = find_idlest_group_cpu(group, p, cpu); | |
e90381ea | 5915 | if (new_cpu == cpu) { |
97fb7a0a | 5916 | /* Now try balancing at a lower domain level of 'cpu': */ |
18bd1b4b BJ |
5917 | sd = sd->child; |
5918 | continue; | |
5919 | } | |
5920 | ||
97fb7a0a | 5921 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
18bd1b4b BJ |
5922 | cpu = new_cpu; |
5923 | weight = sd->span_weight; | |
5924 | sd = NULL; | |
5925 | for_each_domain(cpu, tmp) { | |
5926 | if (weight <= tmp->span_weight) | |
5927 | break; | |
5928 | if (tmp->flags & sd_flag) | |
5929 | sd = tmp; | |
5930 | } | |
18bd1b4b BJ |
5931 | } |
5932 | ||
5933 | return new_cpu; | |
5934 | } | |
5935 | ||
10e2f1ac | 5936 | #ifdef CONFIG_SCHED_SMT |
ba2591a5 | 5937 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
10e2f1ac PZ |
5938 | |
5939 | static inline void set_idle_cores(int cpu, int val) | |
5940 | { | |
5941 | struct sched_domain_shared *sds; | |
5942 | ||
5943 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5944 | if (sds) | |
5945 | WRITE_ONCE(sds->has_idle_cores, val); | |
5946 | } | |
5947 | ||
5948 | static inline bool test_idle_cores(int cpu, bool def) | |
5949 | { | |
5950 | struct sched_domain_shared *sds; | |
5951 | ||
5952 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5953 | if (sds) | |
5954 | return READ_ONCE(sds->has_idle_cores); | |
5955 | ||
5956 | return def; | |
5957 | } | |
5958 | ||
5959 | /* | |
5960 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
5961 | * information in sd_llc_shared->has_idle_cores. | |
5962 | * | |
5963 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
5964 | * state should be fairly cheap. | |
5965 | */ | |
1b568f0a | 5966 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
5967 | { |
5968 | int core = cpu_of(rq); | |
5969 | int cpu; | |
5970 | ||
5971 | rcu_read_lock(); | |
5972 | if (test_idle_cores(core, true)) | |
5973 | goto unlock; | |
5974 | ||
5975 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
5976 | if (cpu == core) | |
5977 | continue; | |
5978 | ||
943d355d | 5979 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
5980 | goto unlock; |
5981 | } | |
5982 | ||
5983 | set_idle_cores(core, 1); | |
5984 | unlock: | |
5985 | rcu_read_unlock(); | |
5986 | } | |
5987 | ||
5988 | /* | |
5989 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
5990 | * there are no idle cores left in the system; tracked through | |
5991 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
5992 | */ | |
5993 | static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
5994 | { | |
5995 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); | |
c743f0a5 | 5996 | int core, cpu; |
10e2f1ac | 5997 | |
1b568f0a PZ |
5998 | if (!static_branch_likely(&sched_smt_present)) |
5999 | return -1; | |
6000 | ||
10e2f1ac PZ |
6001 | if (!test_idle_cores(target, false)) |
6002 | return -1; | |
6003 | ||
0c98d344 | 6004 | cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); |
10e2f1ac | 6005 | |
c743f0a5 | 6006 | for_each_cpu_wrap(core, cpus, target) { |
10e2f1ac PZ |
6007 | bool idle = true; |
6008 | ||
6009 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
6010 | cpumask_clear_cpu(cpu, cpus); | |
943d355d | 6011 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
6012 | idle = false; |
6013 | } | |
6014 | ||
6015 | if (idle) | |
6016 | return core; | |
6017 | } | |
6018 | ||
6019 | /* | |
6020 | * Failed to find an idle core; stop looking for one. | |
6021 | */ | |
6022 | set_idle_cores(target, 0); | |
6023 | ||
6024 | return -1; | |
6025 | } | |
6026 | ||
6027 | /* | |
6028 | * Scan the local SMT mask for idle CPUs. | |
6029 | */ | |
6030 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | |
6031 | { | |
6032 | int cpu; | |
6033 | ||
1b568f0a PZ |
6034 | if (!static_branch_likely(&sched_smt_present)) |
6035 | return -1; | |
6036 | ||
10e2f1ac | 6037 | for_each_cpu(cpu, cpu_smt_mask(target)) { |
0c98d344 | 6038 | if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) |
10e2f1ac | 6039 | continue; |
943d355d | 6040 | if (available_idle_cpu(cpu)) |
10e2f1ac PZ |
6041 | return cpu; |
6042 | } | |
6043 | ||
6044 | return -1; | |
6045 | } | |
6046 | ||
6047 | #else /* CONFIG_SCHED_SMT */ | |
6048 | ||
6049 | static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
6050 | { | |
6051 | return -1; | |
6052 | } | |
6053 | ||
6054 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | |
6055 | { | |
6056 | return -1; | |
6057 | } | |
6058 | ||
6059 | #endif /* CONFIG_SCHED_SMT */ | |
6060 | ||
6061 | /* | |
6062 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
6063 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
6064 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 6065 | */ |
10e2f1ac PZ |
6066 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) |
6067 | { | |
9cfb38a7 | 6068 | struct sched_domain *this_sd; |
1ad3aaf3 | 6069 | u64 avg_cost, avg_idle; |
10e2f1ac PZ |
6070 | u64 time, cost; |
6071 | s64 delta; | |
1ad3aaf3 | 6072 | int cpu, nr = INT_MAX; |
10e2f1ac | 6073 | |
9cfb38a7 WL |
6074 | this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); |
6075 | if (!this_sd) | |
6076 | return -1; | |
6077 | ||
10e2f1ac PZ |
6078 | /* |
6079 | * Due to large variance we need a large fuzz factor; hackbench in | |
6080 | * particularly is sensitive here. | |
6081 | */ | |
1ad3aaf3 PZ |
6082 | avg_idle = this_rq()->avg_idle / 512; |
6083 | avg_cost = this_sd->avg_scan_cost + 1; | |
6084 | ||
6085 | if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) | |
10e2f1ac PZ |
6086 | return -1; |
6087 | ||
1ad3aaf3 PZ |
6088 | if (sched_feat(SIS_PROP)) { |
6089 | u64 span_avg = sd->span_weight * avg_idle; | |
6090 | if (span_avg > 4*avg_cost) | |
6091 | nr = div_u64(span_avg, avg_cost); | |
6092 | else | |
6093 | nr = 4; | |
6094 | } | |
6095 | ||
10e2f1ac PZ |
6096 | time = local_clock(); |
6097 | ||
c743f0a5 | 6098 | for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { |
1ad3aaf3 PZ |
6099 | if (!--nr) |
6100 | return -1; | |
0c98d344 | 6101 | if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) |
10e2f1ac | 6102 | continue; |
943d355d | 6103 | if (available_idle_cpu(cpu)) |
10e2f1ac PZ |
6104 | break; |
6105 | } | |
6106 | ||
6107 | time = local_clock() - time; | |
6108 | cost = this_sd->avg_scan_cost; | |
6109 | delta = (s64)(time - cost) / 8; | |
6110 | this_sd->avg_scan_cost += delta; | |
6111 | ||
6112 | return cpu; | |
6113 | } | |
6114 | ||
6115 | /* | |
6116 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 6117 | */ |
772bd008 | 6118 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 6119 | { |
99bd5e2f | 6120 | struct sched_domain *sd; |
32e839dd | 6121 | int i, recent_used_cpu; |
a50bde51 | 6122 | |
943d355d | 6123 | if (available_idle_cpu(target)) |
e0a79f52 | 6124 | return target; |
99bd5e2f SS |
6125 | |
6126 | /* | |
97fb7a0a | 6127 | * If the previous CPU is cache affine and idle, don't be stupid: |
99bd5e2f | 6128 | */ |
943d355d | 6129 | if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) |
772bd008 | 6130 | return prev; |
a50bde51 | 6131 | |
97fb7a0a | 6132 | /* Check a recently used CPU as a potential idle candidate: */ |
32e839dd MG |
6133 | recent_used_cpu = p->recent_used_cpu; |
6134 | if (recent_used_cpu != prev && | |
6135 | recent_used_cpu != target && | |
6136 | cpus_share_cache(recent_used_cpu, target) && | |
943d355d | 6137 | available_idle_cpu(recent_used_cpu) && |
32e839dd MG |
6138 | cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { |
6139 | /* | |
6140 | * Replace recent_used_cpu with prev as it is a potential | |
97fb7a0a | 6141 | * candidate for the next wake: |
32e839dd MG |
6142 | */ |
6143 | p->recent_used_cpu = prev; | |
6144 | return recent_used_cpu; | |
6145 | } | |
6146 | ||
518cd623 | 6147 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
6148 | if (!sd) |
6149 | return target; | |
772bd008 | 6150 | |
10e2f1ac PZ |
6151 | i = select_idle_core(p, sd, target); |
6152 | if ((unsigned)i < nr_cpumask_bits) | |
6153 | return i; | |
37407ea7 | 6154 | |
10e2f1ac PZ |
6155 | i = select_idle_cpu(p, sd, target); |
6156 | if ((unsigned)i < nr_cpumask_bits) | |
6157 | return i; | |
6158 | ||
6159 | i = select_idle_smt(p, sd, target); | |
6160 | if ((unsigned)i < nr_cpumask_bits) | |
6161 | return i; | |
970e1789 | 6162 | |
a50bde51 PZ |
6163 | return target; |
6164 | } | |
231678b7 | 6165 | |
f9be3e59 PB |
6166 | /** |
6167 | * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks | |
6168 | * @cpu: the CPU to get the utilization of | |
6169 | * | |
6170 | * The unit of the return value must be the one of capacity so we can compare | |
6171 | * the utilization with the capacity of the CPU that is available for CFS task | |
6172 | * (ie cpu_capacity). | |
231678b7 DE |
6173 | * |
6174 | * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the | |
6175 | * recent utilization of currently non-runnable tasks on a CPU. It represents | |
6176 | * the amount of utilization of a CPU in the range [0..capacity_orig] where | |
6177 | * capacity_orig is the cpu_capacity available at the highest frequency | |
6178 | * (arch_scale_freq_capacity()). | |
6179 | * The utilization of a CPU converges towards a sum equal to or less than the | |
6180 | * current capacity (capacity_curr <= capacity_orig) of the CPU because it is | |
6181 | * the running time on this CPU scaled by capacity_curr. | |
6182 | * | |
f9be3e59 PB |
6183 | * The estimated utilization of a CPU is defined to be the maximum between its |
6184 | * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks | |
6185 | * currently RUNNABLE on that CPU. | |
6186 | * This allows to properly represent the expected utilization of a CPU which | |
6187 | * has just got a big task running since a long sleep period. At the same time | |
6188 | * however it preserves the benefits of the "blocked utilization" in | |
6189 | * describing the potential for other tasks waking up on the same CPU. | |
6190 | * | |
231678b7 DE |
6191 | * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even |
6192 | * higher than capacity_orig because of unfortunate rounding in | |
6193 | * cfs.avg.util_avg or just after migrating tasks and new task wakeups until | |
6194 | * the average stabilizes with the new running time. We need to check that the | |
6195 | * utilization stays within the range of [0..capacity_orig] and cap it if | |
6196 | * necessary. Without utilization capping, a group could be seen as overloaded | |
6197 | * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of | |
6198 | * available capacity. We allow utilization to overshoot capacity_curr (but not | |
6199 | * capacity_orig) as it useful for predicting the capacity required after task | |
6200 | * migrations (scheduler-driven DVFS). | |
f9be3e59 PB |
6201 | * |
6202 | * Return: the (estimated) utilization for the specified CPU | |
8bb5b00c | 6203 | */ |
f9be3e59 | 6204 | static inline unsigned long cpu_util(int cpu) |
8bb5b00c | 6205 | { |
f9be3e59 PB |
6206 | struct cfs_rq *cfs_rq; |
6207 | unsigned int util; | |
6208 | ||
6209 | cfs_rq = &cpu_rq(cpu)->cfs; | |
6210 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
6211 | ||
6212 | if (sched_feat(UTIL_EST)) | |
6213 | util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); | |
8bb5b00c | 6214 | |
f9be3e59 | 6215 | return min_t(unsigned long, util, capacity_orig_of(cpu)); |
8bb5b00c | 6216 | } |
a50bde51 | 6217 | |
104cb16d | 6218 | /* |
c469933e PB |
6219 | * cpu_util_without: compute cpu utilization without any contributions from *p |
6220 | * @cpu: the CPU which utilization is requested | |
6221 | * @p: the task which utilization should be discounted | |
6222 | * | |
6223 | * The utilization of a CPU is defined by the utilization of tasks currently | |
6224 | * enqueued on that CPU as well as tasks which are currently sleeping after an | |
6225 | * execution on that CPU. | |
6226 | * | |
6227 | * This method returns the utilization of the specified CPU by discounting the | |
6228 | * utilization of the specified task, whenever the task is currently | |
6229 | * contributing to the CPU utilization. | |
104cb16d | 6230 | */ |
c469933e | 6231 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) |
104cb16d | 6232 | { |
f9be3e59 PB |
6233 | struct cfs_rq *cfs_rq; |
6234 | unsigned int util; | |
104cb16d MR |
6235 | |
6236 | /* Task has no contribution or is new */ | |
f9be3e59 | 6237 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
104cb16d MR |
6238 | return cpu_util(cpu); |
6239 | ||
f9be3e59 PB |
6240 | cfs_rq = &cpu_rq(cpu)->cfs; |
6241 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
6242 | ||
c469933e | 6243 | /* Discount task's util from CPU's util */ |
f9be3e59 | 6244 | util -= min_t(unsigned int, util, task_util(p)); |
104cb16d | 6245 | |
f9be3e59 PB |
6246 | /* |
6247 | * Covered cases: | |
6248 | * | |
6249 | * a) if *p is the only task sleeping on this CPU, then: | |
6250 | * cpu_util (== task_util) > util_est (== 0) | |
6251 | * and thus we return: | |
c469933e | 6252 | * cpu_util_without = (cpu_util - task_util) = 0 |
f9be3e59 PB |
6253 | * |
6254 | * b) if other tasks are SLEEPING on this CPU, which is now exiting | |
6255 | * IDLE, then: | |
6256 | * cpu_util >= task_util | |
6257 | * cpu_util > util_est (== 0) | |
6258 | * and thus we discount *p's blocked utilization to return: | |
c469933e | 6259 | * cpu_util_without = (cpu_util - task_util) >= 0 |
f9be3e59 PB |
6260 | * |
6261 | * c) if other tasks are RUNNABLE on that CPU and | |
6262 | * util_est > cpu_util | |
6263 | * then we use util_est since it returns a more restrictive | |
6264 | * estimation of the spare capacity on that CPU, by just | |
6265 | * considering the expected utilization of tasks already | |
6266 | * runnable on that CPU. | |
6267 | * | |
6268 | * Cases a) and b) are covered by the above code, while case c) is | |
6269 | * covered by the following code when estimated utilization is | |
6270 | * enabled. | |
6271 | */ | |
c469933e PB |
6272 | if (sched_feat(UTIL_EST)) { |
6273 | unsigned int estimated = | |
6274 | READ_ONCE(cfs_rq->avg.util_est.enqueued); | |
6275 | ||
6276 | /* | |
6277 | * Despite the following checks we still have a small window | |
6278 | * for a possible race, when an execl's select_task_rq_fair() | |
6279 | * races with LB's detach_task(): | |
6280 | * | |
6281 | * detach_task() | |
6282 | * p->on_rq = TASK_ON_RQ_MIGRATING; | |
6283 | * ---------------------------------- A | |
6284 | * deactivate_task() \ | |
6285 | * dequeue_task() + RaceTime | |
6286 | * util_est_dequeue() / | |
6287 | * ---------------------------------- B | |
6288 | * | |
6289 | * The additional check on "current == p" it's required to | |
6290 | * properly fix the execl regression and it helps in further | |
6291 | * reducing the chances for the above race. | |
6292 | */ | |
6293 | if (unlikely(task_on_rq_queued(p) || current == p)) { | |
6294 | estimated -= min_t(unsigned int, estimated, | |
6295 | (_task_util_est(p) | UTIL_AVG_UNCHANGED)); | |
6296 | } | |
6297 | util = max(util, estimated); | |
6298 | } | |
f9be3e59 PB |
6299 | |
6300 | /* | |
6301 | * Utilization (estimated) can exceed the CPU capacity, thus let's | |
6302 | * clamp to the maximum CPU capacity to ensure consistency with | |
6303 | * the cpu_util call. | |
6304 | */ | |
6305 | return min_t(unsigned long, util, capacity_orig_of(cpu)); | |
104cb16d MR |
6306 | } |
6307 | ||
3273163c MR |
6308 | /* |
6309 | * Disable WAKE_AFFINE in the case where task @p doesn't fit in the | |
6310 | * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. | |
6311 | * | |
6312 | * In that case WAKE_AFFINE doesn't make sense and we'll let | |
6313 | * BALANCE_WAKE sort things out. | |
6314 | */ | |
6315 | static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) | |
6316 | { | |
6317 | long min_cap, max_cap; | |
6318 | ||
df054e84 MR |
6319 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) |
6320 | return 0; | |
6321 | ||
3273163c MR |
6322 | min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); |
6323 | max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; | |
6324 | ||
6325 | /* Minimum capacity is close to max, no need to abort wake_affine */ | |
6326 | if (max_cap - min_cap < max_cap >> 3) | |
6327 | return 0; | |
6328 | ||
104cb16d MR |
6329 | /* Bring task utilization in sync with prev_cpu */ |
6330 | sync_entity_load_avg(&p->se); | |
6331 | ||
3b1baa64 | 6332 | return !task_fits_capacity(p, min_cap); |
3273163c MR |
6333 | } |
6334 | ||
aaee1203 | 6335 | /* |
de91b9cb MR |
6336 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
6337 | * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, | |
6338 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | |
aaee1203 | 6339 | * |
97fb7a0a IM |
6340 | * Balances load by selecting the idlest CPU in the idlest group, or under |
6341 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 6342 | * |
97fb7a0a | 6343 | * Returns the target CPU number. |
aaee1203 PZ |
6344 | * |
6345 | * preempt must be disabled. | |
6346 | */ | |
0017d735 | 6347 | static int |
ac66f547 | 6348 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) |
aaee1203 | 6349 | { |
f1d88b44 | 6350 | struct sched_domain *tmp, *sd = NULL; |
c88d5910 | 6351 | int cpu = smp_processor_id(); |
63b0e9ed | 6352 | int new_cpu = prev_cpu; |
99bd5e2f | 6353 | int want_affine = 0; |
24d0c1d6 | 6354 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
c88d5910 | 6355 | |
c58d25f3 PZ |
6356 | if (sd_flag & SD_BALANCE_WAKE) { |
6357 | record_wakee(p); | |
3273163c | 6358 | want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) |
0c98d344 | 6359 | && cpumask_test_cpu(cpu, &p->cpus_allowed); |
c58d25f3 | 6360 | } |
aaee1203 | 6361 | |
dce840a0 | 6362 | rcu_read_lock(); |
aaee1203 | 6363 | for_each_domain(cpu, tmp) { |
e4f42888 | 6364 | if (!(tmp->flags & SD_LOAD_BALANCE)) |
63b0e9ed | 6365 | break; |
e4f42888 | 6366 | |
fe3bcfe1 | 6367 | /* |
97fb7a0a | 6368 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
99bd5e2f | 6369 | * cpu is a valid SD_WAKE_AFFINE target. |
fe3bcfe1 | 6370 | */ |
99bd5e2f SS |
6371 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
6372 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
f1d88b44 VK |
6373 | if (cpu != prev_cpu) |
6374 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | |
6375 | ||
6376 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
29cd8bae | 6377 | break; |
f03542a7 | 6378 | } |
29cd8bae | 6379 | |
f03542a7 | 6380 | if (tmp->flags & sd_flag) |
29cd8bae | 6381 | sd = tmp; |
63b0e9ed MG |
6382 | else if (!want_affine) |
6383 | break; | |
29cd8bae PZ |
6384 | } |
6385 | ||
f1d88b44 VK |
6386 | if (unlikely(sd)) { |
6387 | /* Slow path */ | |
18bd1b4b | 6388 | new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); |
f1d88b44 VK |
6389 | } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ |
6390 | /* Fast path */ | |
6391 | ||
6392 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); | |
6393 | ||
6394 | if (want_affine) | |
6395 | current->recent_used_cpu = cpu; | |
e7693a36 | 6396 | } |
dce840a0 | 6397 | rcu_read_unlock(); |
e7693a36 | 6398 | |
c88d5910 | 6399 | return new_cpu; |
e7693a36 | 6400 | } |
0a74bef8 | 6401 | |
144d8487 PZ |
6402 | static void detach_entity_cfs_rq(struct sched_entity *se); |
6403 | ||
0a74bef8 | 6404 | /* |
97fb7a0a | 6405 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
0a74bef8 | 6406 | * cfs_rq_of(p) references at time of call are still valid and identify the |
97fb7a0a | 6407 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 6408 | */ |
3f9672ba | 6409 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
0a74bef8 | 6410 | { |
59efa0ba PZ |
6411 | /* |
6412 | * As blocked tasks retain absolute vruntime the migration needs to | |
6413 | * deal with this by subtracting the old and adding the new | |
6414 | * min_vruntime -- the latter is done by enqueue_entity() when placing | |
6415 | * the task on the new runqueue. | |
6416 | */ | |
6417 | if (p->state == TASK_WAKING) { | |
6418 | struct sched_entity *se = &p->se; | |
6419 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
6420 | u64 min_vruntime; | |
6421 | ||
6422 | #ifndef CONFIG_64BIT | |
6423 | u64 min_vruntime_copy; | |
6424 | ||
6425 | do { | |
6426 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | |
6427 | smp_rmb(); | |
6428 | min_vruntime = cfs_rq->min_vruntime; | |
6429 | } while (min_vruntime != min_vruntime_copy); | |
6430 | #else | |
6431 | min_vruntime = cfs_rq->min_vruntime; | |
6432 | #endif | |
6433 | ||
6434 | se->vruntime -= min_vruntime; | |
6435 | } | |
6436 | ||
144d8487 PZ |
6437 | if (p->on_rq == TASK_ON_RQ_MIGRATING) { |
6438 | /* | |
6439 | * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' | |
6440 | * rq->lock and can modify state directly. | |
6441 | */ | |
6442 | lockdep_assert_held(&task_rq(p)->lock); | |
6443 | detach_entity_cfs_rq(&p->se); | |
6444 | ||
6445 | } else { | |
6446 | /* | |
6447 | * We are supposed to update the task to "current" time, then | |
6448 | * its up to date and ready to go to new CPU/cfs_rq. But we | |
6449 | * have difficulty in getting what current time is, so simply | |
6450 | * throw away the out-of-date time. This will result in the | |
6451 | * wakee task is less decayed, but giving the wakee more load | |
6452 | * sounds not bad. | |
6453 | */ | |
6454 | remove_entity_load_avg(&p->se); | |
6455 | } | |
9d89c257 YD |
6456 | |
6457 | /* Tell new CPU we are migrated */ | |
6458 | p->se.avg.last_update_time = 0; | |
3944a927 BS |
6459 | |
6460 | /* We have migrated, no longer consider this task hot */ | |
9d89c257 | 6461 | p->se.exec_start = 0; |
3f9672ba SD |
6462 | |
6463 | update_scan_period(p, new_cpu); | |
0a74bef8 | 6464 | } |
12695578 YD |
6465 | |
6466 | static void task_dead_fair(struct task_struct *p) | |
6467 | { | |
6468 | remove_entity_load_avg(&p->se); | |
6469 | } | |
e7693a36 GH |
6470 | #endif /* CONFIG_SMP */ |
6471 | ||
a555e9d8 | 6472 | static unsigned long wakeup_gran(struct sched_entity *se) |
0bbd3336 PZ |
6473 | { |
6474 | unsigned long gran = sysctl_sched_wakeup_granularity; | |
6475 | ||
6476 | /* | |
e52fb7c0 PZ |
6477 | * Since its curr running now, convert the gran from real-time |
6478 | * to virtual-time in his units. | |
13814d42 MG |
6479 | * |
6480 | * By using 'se' instead of 'curr' we penalize light tasks, so | |
6481 | * they get preempted easier. That is, if 'se' < 'curr' then | |
6482 | * the resulting gran will be larger, therefore penalizing the | |
6483 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | |
6484 | * be smaller, again penalizing the lighter task. | |
6485 | * | |
6486 | * This is especially important for buddies when the leftmost | |
6487 | * task is higher priority than the buddy. | |
0bbd3336 | 6488 | */ |
f4ad9bd2 | 6489 | return calc_delta_fair(gran, se); |
0bbd3336 PZ |
6490 | } |
6491 | ||
464b7527 PZ |
6492 | /* |
6493 | * Should 'se' preempt 'curr'. | |
6494 | * | |
6495 | * |s1 | |
6496 | * |s2 | |
6497 | * |s3 | |
6498 | * g | |
6499 | * |<--->|c | |
6500 | * | |
6501 | * w(c, s1) = -1 | |
6502 | * w(c, s2) = 0 | |
6503 | * w(c, s3) = 1 | |
6504 | * | |
6505 | */ | |
6506 | static int | |
6507 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |
6508 | { | |
6509 | s64 gran, vdiff = curr->vruntime - se->vruntime; | |
6510 | ||
6511 | if (vdiff <= 0) | |
6512 | return -1; | |
6513 | ||
a555e9d8 | 6514 | gran = wakeup_gran(se); |
464b7527 PZ |
6515 | if (vdiff > gran) |
6516 | return 1; | |
6517 | ||
6518 | return 0; | |
6519 | } | |
6520 | ||
02479099 PZ |
6521 | static void set_last_buddy(struct sched_entity *se) |
6522 | { | |
69c80f3e VP |
6523 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
6524 | return; | |
6525 | ||
c5ae366e DA |
6526 | for_each_sched_entity(se) { |
6527 | if (SCHED_WARN_ON(!se->on_rq)) | |
6528 | return; | |
69c80f3e | 6529 | cfs_rq_of(se)->last = se; |
c5ae366e | 6530 | } |
02479099 PZ |
6531 | } |
6532 | ||
6533 | static void set_next_buddy(struct sched_entity *se) | |
6534 | { | |
69c80f3e VP |
6535 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
6536 | return; | |
6537 | ||
c5ae366e DA |
6538 | for_each_sched_entity(se) { |
6539 | if (SCHED_WARN_ON(!se->on_rq)) | |
6540 | return; | |
69c80f3e | 6541 | cfs_rq_of(se)->next = se; |
c5ae366e | 6542 | } |
02479099 PZ |
6543 | } |
6544 | ||
ac53db59 RR |
6545 | static void set_skip_buddy(struct sched_entity *se) |
6546 | { | |
69c80f3e VP |
6547 | for_each_sched_entity(se) |
6548 | cfs_rq_of(se)->skip = se; | |
ac53db59 RR |
6549 | } |
6550 | ||
bf0f6f24 IM |
6551 | /* |
6552 | * Preempt the current task with a newly woken task if needed: | |
6553 | */ | |
5a9b86f6 | 6554 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
6555 | { |
6556 | struct task_struct *curr = rq->curr; | |
8651a86c | 6557 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 6558 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
f685ceac | 6559 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
2f36825b | 6560 | int next_buddy_marked = 0; |
bf0f6f24 | 6561 | |
4ae7d5ce IM |
6562 | if (unlikely(se == pse)) |
6563 | return; | |
6564 | ||
5238cdd3 | 6565 | /* |
163122b7 | 6566 | * This is possible from callers such as attach_tasks(), in which we |
5238cdd3 PT |
6567 | * unconditionally check_prempt_curr() after an enqueue (which may have |
6568 | * lead to a throttle). This both saves work and prevents false | |
6569 | * next-buddy nomination below. | |
6570 | */ | |
6571 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
6572 | return; | |
6573 | ||
2f36825b | 6574 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { |
3cb63d52 | 6575 | set_next_buddy(pse); |
2f36825b VP |
6576 | next_buddy_marked = 1; |
6577 | } | |
57fdc26d | 6578 | |
aec0a514 BR |
6579 | /* |
6580 | * We can come here with TIF_NEED_RESCHED already set from new task | |
6581 | * wake up path. | |
5238cdd3 PT |
6582 | * |
6583 | * Note: this also catches the edge-case of curr being in a throttled | |
6584 | * group (e.g. via set_curr_task), since update_curr() (in the | |
6585 | * enqueue of curr) will have resulted in resched being set. This | |
6586 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
6587 | * below. | |
aec0a514 BR |
6588 | */ |
6589 | if (test_tsk_need_resched(curr)) | |
6590 | return; | |
6591 | ||
a2f5c9ab DH |
6592 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
6593 | if (unlikely(curr->policy == SCHED_IDLE) && | |
6594 | likely(p->policy != SCHED_IDLE)) | |
6595 | goto preempt; | |
6596 | ||
91c234b4 | 6597 | /* |
a2f5c9ab DH |
6598 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
6599 | * is driven by the tick): | |
91c234b4 | 6600 | */ |
8ed92e51 | 6601 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 6602 | return; |
bf0f6f24 | 6603 | |
464b7527 | 6604 | find_matching_se(&se, &pse); |
9bbd7374 | 6605 | update_curr(cfs_rq_of(se)); |
002f128b | 6606 | BUG_ON(!pse); |
2f36825b VP |
6607 | if (wakeup_preempt_entity(se, pse) == 1) { |
6608 | /* | |
6609 | * Bias pick_next to pick the sched entity that is | |
6610 | * triggering this preemption. | |
6611 | */ | |
6612 | if (!next_buddy_marked) | |
6613 | set_next_buddy(pse); | |
3a7e73a2 | 6614 | goto preempt; |
2f36825b | 6615 | } |
464b7527 | 6616 | |
3a7e73a2 | 6617 | return; |
a65ac745 | 6618 | |
3a7e73a2 | 6619 | preempt: |
8875125e | 6620 | resched_curr(rq); |
3a7e73a2 PZ |
6621 | /* |
6622 | * Only set the backward buddy when the current task is still | |
6623 | * on the rq. This can happen when a wakeup gets interleaved | |
6624 | * with schedule on the ->pre_schedule() or idle_balance() | |
6625 | * point, either of which can * drop the rq lock. | |
6626 | * | |
6627 | * Also, during early boot the idle thread is in the fair class, | |
6628 | * for obvious reasons its a bad idea to schedule back to it. | |
6629 | */ | |
6630 | if (unlikely(!se->on_rq || curr == rq->idle)) | |
6631 | return; | |
6632 | ||
6633 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | |
6634 | set_last_buddy(se); | |
bf0f6f24 IM |
6635 | } |
6636 | ||
606dba2e | 6637 | static struct task_struct * |
d8ac8971 | 6638 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 IM |
6639 | { |
6640 | struct cfs_rq *cfs_rq = &rq->cfs; | |
6641 | struct sched_entity *se; | |
678d5718 | 6642 | struct task_struct *p; |
37e117c0 | 6643 | int new_tasks; |
678d5718 | 6644 | |
6e83125c | 6645 | again: |
678d5718 | 6646 | if (!cfs_rq->nr_running) |
38033c37 | 6647 | goto idle; |
678d5718 | 6648 | |
9674f5ca | 6649 | #ifdef CONFIG_FAIR_GROUP_SCHED |
3f1d2a31 | 6650 | if (prev->sched_class != &fair_sched_class) |
678d5718 PZ |
6651 | goto simple; |
6652 | ||
6653 | /* | |
6654 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
6655 | * likely that a next task is from the same cgroup as the current. | |
6656 | * | |
6657 | * Therefore attempt to avoid putting and setting the entire cgroup | |
6658 | * hierarchy, only change the part that actually changes. | |
6659 | */ | |
6660 | ||
6661 | do { | |
6662 | struct sched_entity *curr = cfs_rq->curr; | |
6663 | ||
6664 | /* | |
6665 | * Since we got here without doing put_prev_entity() we also | |
6666 | * have to consider cfs_rq->curr. If it is still a runnable | |
6667 | * entity, update_curr() will update its vruntime, otherwise | |
6668 | * forget we've ever seen it. | |
6669 | */ | |
54d27365 BS |
6670 | if (curr) { |
6671 | if (curr->on_rq) | |
6672 | update_curr(cfs_rq); | |
6673 | else | |
6674 | curr = NULL; | |
678d5718 | 6675 | |
54d27365 BS |
6676 | /* |
6677 | * This call to check_cfs_rq_runtime() will do the | |
6678 | * throttle and dequeue its entity in the parent(s). | |
9674f5ca | 6679 | * Therefore the nr_running test will indeed |
54d27365 BS |
6680 | * be correct. |
6681 | */ | |
9674f5ca VK |
6682 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) { |
6683 | cfs_rq = &rq->cfs; | |
6684 | ||
6685 | if (!cfs_rq->nr_running) | |
6686 | goto idle; | |
6687 | ||
54d27365 | 6688 | goto simple; |
9674f5ca | 6689 | } |
54d27365 | 6690 | } |
678d5718 PZ |
6691 | |
6692 | se = pick_next_entity(cfs_rq, curr); | |
6693 | cfs_rq = group_cfs_rq(se); | |
6694 | } while (cfs_rq); | |
6695 | ||
6696 | p = task_of(se); | |
6697 | ||
6698 | /* | |
6699 | * Since we haven't yet done put_prev_entity and if the selected task | |
6700 | * is a different task than we started out with, try and touch the | |
6701 | * least amount of cfs_rqs. | |
6702 | */ | |
6703 | if (prev != p) { | |
6704 | struct sched_entity *pse = &prev->se; | |
6705 | ||
6706 | while (!(cfs_rq = is_same_group(se, pse))) { | |
6707 | int se_depth = se->depth; | |
6708 | int pse_depth = pse->depth; | |
6709 | ||
6710 | if (se_depth <= pse_depth) { | |
6711 | put_prev_entity(cfs_rq_of(pse), pse); | |
6712 | pse = parent_entity(pse); | |
6713 | } | |
6714 | if (se_depth >= pse_depth) { | |
6715 | set_next_entity(cfs_rq_of(se), se); | |
6716 | se = parent_entity(se); | |
6717 | } | |
6718 | } | |
6719 | ||
6720 | put_prev_entity(cfs_rq, pse); | |
6721 | set_next_entity(cfs_rq, se); | |
6722 | } | |
6723 | ||
93824900 | 6724 | goto done; |
678d5718 | 6725 | simple: |
678d5718 | 6726 | #endif |
bf0f6f24 | 6727 | |
3f1d2a31 | 6728 | put_prev_task(rq, prev); |
606dba2e | 6729 | |
bf0f6f24 | 6730 | do { |
678d5718 | 6731 | se = pick_next_entity(cfs_rq, NULL); |
f4b6755f | 6732 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
6733 | cfs_rq = group_cfs_rq(se); |
6734 | } while (cfs_rq); | |
6735 | ||
8f4d37ec | 6736 | p = task_of(se); |
678d5718 | 6737 | |
13a453c2 | 6738 | done: __maybe_unused; |
93824900 UR |
6739 | #ifdef CONFIG_SMP |
6740 | /* | |
6741 | * Move the next running task to the front of | |
6742 | * the list, so our cfs_tasks list becomes MRU | |
6743 | * one. | |
6744 | */ | |
6745 | list_move(&p->se.group_node, &rq->cfs_tasks); | |
6746 | #endif | |
6747 | ||
b39e66ea MG |
6748 | if (hrtick_enabled(rq)) |
6749 | hrtick_start_fair(rq, p); | |
8f4d37ec | 6750 | |
3b1baa64 MR |
6751 | update_misfit_status(p, rq); |
6752 | ||
8f4d37ec | 6753 | return p; |
38033c37 PZ |
6754 | |
6755 | idle: | |
3b1baa64 | 6756 | update_misfit_status(NULL, rq); |
46f69fa3 MF |
6757 | new_tasks = idle_balance(rq, rf); |
6758 | ||
37e117c0 PZ |
6759 | /* |
6760 | * Because idle_balance() releases (and re-acquires) rq->lock, it is | |
6761 | * possible for any higher priority task to appear. In that case we | |
6762 | * must re-start the pick_next_entity() loop. | |
6763 | */ | |
e4aa358b | 6764 | if (new_tasks < 0) |
37e117c0 PZ |
6765 | return RETRY_TASK; |
6766 | ||
e4aa358b | 6767 | if (new_tasks > 0) |
38033c37 | 6768 | goto again; |
38033c37 PZ |
6769 | |
6770 | return NULL; | |
bf0f6f24 IM |
6771 | } |
6772 | ||
6773 | /* | |
6774 | * Account for a descheduled task: | |
6775 | */ | |
31ee529c | 6776 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
6777 | { |
6778 | struct sched_entity *se = &prev->se; | |
6779 | struct cfs_rq *cfs_rq; | |
6780 | ||
6781 | for_each_sched_entity(se) { | |
6782 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 6783 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
6784 | } |
6785 | } | |
6786 | ||
ac53db59 RR |
6787 | /* |
6788 | * sched_yield() is very simple | |
6789 | * | |
6790 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | |
6791 | */ | |
6792 | static void yield_task_fair(struct rq *rq) | |
6793 | { | |
6794 | struct task_struct *curr = rq->curr; | |
6795 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
6796 | struct sched_entity *se = &curr->se; | |
6797 | ||
6798 | /* | |
6799 | * Are we the only task in the tree? | |
6800 | */ | |
6801 | if (unlikely(rq->nr_running == 1)) | |
6802 | return; | |
6803 | ||
6804 | clear_buddies(cfs_rq, se); | |
6805 | ||
6806 | if (curr->policy != SCHED_BATCH) { | |
6807 | update_rq_clock(rq); | |
6808 | /* | |
6809 | * Update run-time statistics of the 'current'. | |
6810 | */ | |
6811 | update_curr(cfs_rq); | |
916671c0 MG |
6812 | /* |
6813 | * Tell update_rq_clock() that we've just updated, | |
6814 | * so we don't do microscopic update in schedule() | |
6815 | * and double the fastpath cost. | |
6816 | */ | |
adcc8da8 | 6817 | rq_clock_skip_update(rq); |
ac53db59 RR |
6818 | } |
6819 | ||
6820 | set_skip_buddy(se); | |
6821 | } | |
6822 | ||
d95f4122 MG |
6823 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) |
6824 | { | |
6825 | struct sched_entity *se = &p->se; | |
6826 | ||
5238cdd3 PT |
6827 | /* throttled hierarchies are not runnable */ |
6828 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
6829 | return false; |
6830 | ||
6831 | /* Tell the scheduler that we'd really like pse to run next. */ | |
6832 | set_next_buddy(se); | |
6833 | ||
d95f4122 MG |
6834 | yield_task_fair(rq); |
6835 | ||
6836 | return true; | |
6837 | } | |
6838 | ||
681f3e68 | 6839 | #ifdef CONFIG_SMP |
bf0f6f24 | 6840 | /************************************************** |
e9c84cb8 PZ |
6841 | * Fair scheduling class load-balancing methods. |
6842 | * | |
6843 | * BASICS | |
6844 | * | |
6845 | * The purpose of load-balancing is to achieve the same basic fairness the | |
97fb7a0a | 6846 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
e9c84cb8 PZ |
6847 | * time to each task. This is expressed in the following equation: |
6848 | * | |
6849 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
6850 | * | |
97fb7a0a | 6851 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
e9c84cb8 PZ |
6852 | * W_i,0 is defined as: |
6853 | * | |
6854 | * W_i,0 = \Sum_j w_i,j (2) | |
6855 | * | |
97fb7a0a | 6856 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
1c3de5e1 | 6857 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
6858 | * |
6859 | * The weight average is an exponential decay average of the instantaneous | |
6860 | * weight: | |
6861 | * | |
6862 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
6863 | * | |
97fb7a0a | 6864 | * C_i is the compute capacity of CPU i, typically it is the |
e9c84cb8 PZ |
6865 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
6866 | * can also include other factors [XXX]. | |
6867 | * | |
6868 | * To achieve this balance we define a measure of imbalance which follows | |
6869 | * directly from (1): | |
6870 | * | |
ced549fa | 6871 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
6872 | * |
6873 | * We them move tasks around to minimize the imbalance. In the continuous | |
6874 | * function space it is obvious this converges, in the discrete case we get | |
6875 | * a few fun cases generally called infeasible weight scenarios. | |
6876 | * | |
6877 | * [XXX expand on: | |
6878 | * - infeasible weights; | |
6879 | * - local vs global optima in the discrete case. ] | |
6880 | * | |
6881 | * | |
6882 | * SCHED DOMAINS | |
6883 | * | |
6884 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
97fb7a0a | 6885 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
e9c84cb8 | 6886 | * topology where each level pairs two lower groups (or better). This results |
97fb7a0a | 6887 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
e9c84cb8 | 6888 | * tree to only the first of the previous level and we decrease the frequency |
97fb7a0a | 6889 | * of load-balance at each level inv. proportional to the number of CPUs in |
e9c84cb8 PZ |
6890 | * the groups. |
6891 | * | |
6892 | * This yields: | |
6893 | * | |
6894 | * log_2 n 1 n | |
6895 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
6896 | * i = 0 2^i 2^i | |
6897 | * `- size of each group | |
97fb7a0a | 6898 | * | | `- number of CPUs doing load-balance |
e9c84cb8 PZ |
6899 | * | `- freq |
6900 | * `- sum over all levels | |
6901 | * | |
6902 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
6903 | * this makes (5) the runtime complexity of the balancer. | |
6904 | * | |
6905 | * An important property here is that each CPU is still (indirectly) connected | |
97fb7a0a | 6906 | * to every other CPU in at most O(log n) steps: |
e9c84cb8 PZ |
6907 | * |
6908 | * The adjacency matrix of the resulting graph is given by: | |
6909 | * | |
97a7142f | 6910 | * log_2 n |
e9c84cb8 PZ |
6911 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
6912 | * k = 0 | |
6913 | * | |
6914 | * And you'll find that: | |
6915 | * | |
6916 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
6917 | * | |
97fb7a0a | 6918 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
e9c84cb8 PZ |
6919 | * The task movement gives a factor of O(m), giving a convergence complexity |
6920 | * of: | |
6921 | * | |
6922 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
6923 | * | |
6924 | * | |
6925 | * WORK CONSERVING | |
6926 | * | |
6927 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
97fb7a0a | 6928 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
e9c84cb8 PZ |
6929 | * tree itself instead of relying on other CPUs to bring it work. |
6930 | * | |
6931 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
6932 | * time. | |
6933 | * | |
6934 | * [XXX more?] | |
6935 | * | |
6936 | * | |
6937 | * CGROUPS | |
6938 | * | |
6939 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
6940 | * | |
6941 | * s_k,i | |
6942 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
6943 | * S_k | |
6944 | * | |
6945 | * Where | |
6946 | * | |
6947 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
6948 | * | |
97fb7a0a | 6949 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
e9c84cb8 PZ |
6950 | * |
6951 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
6952 | * property. | |
6953 | * | |
6954 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
6955 | * rewrite all of this once again.] | |
97a7142f | 6956 | */ |
bf0f6f24 | 6957 | |
ed387b78 HS |
6958 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
6959 | ||
0ec8aa00 PZ |
6960 | enum fbq_type { regular, remote, all }; |
6961 | ||
3b1baa64 MR |
6962 | enum group_type { |
6963 | group_other = 0, | |
6964 | group_misfit_task, | |
6965 | group_imbalanced, | |
6966 | group_overloaded, | |
6967 | }; | |
6968 | ||
ddcdf6e7 | 6969 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 6970 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
6971 | #define LBF_DST_PINNED 0x04 |
6972 | #define LBF_SOME_PINNED 0x08 | |
e022e0d3 | 6973 | #define LBF_NOHZ_STATS 0x10 |
f643ea22 | 6974 | #define LBF_NOHZ_AGAIN 0x20 |
ddcdf6e7 PZ |
6975 | |
6976 | struct lb_env { | |
6977 | struct sched_domain *sd; | |
6978 | ||
ddcdf6e7 | 6979 | struct rq *src_rq; |
85c1e7da | 6980 | int src_cpu; |
ddcdf6e7 PZ |
6981 | |
6982 | int dst_cpu; | |
6983 | struct rq *dst_rq; | |
6984 | ||
88b8dac0 SV |
6985 | struct cpumask *dst_grpmask; |
6986 | int new_dst_cpu; | |
ddcdf6e7 | 6987 | enum cpu_idle_type idle; |
bd939f45 | 6988 | long imbalance; |
b9403130 MW |
6989 | /* The set of CPUs under consideration for load-balancing */ |
6990 | struct cpumask *cpus; | |
6991 | ||
ddcdf6e7 | 6992 | unsigned int flags; |
367456c7 PZ |
6993 | |
6994 | unsigned int loop; | |
6995 | unsigned int loop_break; | |
6996 | unsigned int loop_max; | |
0ec8aa00 PZ |
6997 | |
6998 | enum fbq_type fbq_type; | |
cad68e55 | 6999 | enum group_type src_grp_type; |
163122b7 | 7000 | struct list_head tasks; |
ddcdf6e7 PZ |
7001 | }; |
7002 | ||
029632fb PZ |
7003 | /* |
7004 | * Is this task likely cache-hot: | |
7005 | */ | |
5d5e2b1b | 7006 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
7007 | { |
7008 | s64 delta; | |
7009 | ||
e5673f28 KT |
7010 | lockdep_assert_held(&env->src_rq->lock); |
7011 | ||
029632fb PZ |
7012 | if (p->sched_class != &fair_sched_class) |
7013 | return 0; | |
7014 | ||
7015 | if (unlikely(p->policy == SCHED_IDLE)) | |
7016 | return 0; | |
7017 | ||
7018 | /* | |
7019 | * Buddy candidates are cache hot: | |
7020 | */ | |
5d5e2b1b | 7021 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
029632fb PZ |
7022 | (&p->se == cfs_rq_of(&p->se)->next || |
7023 | &p->se == cfs_rq_of(&p->se)->last)) | |
7024 | return 1; | |
7025 | ||
7026 | if (sysctl_sched_migration_cost == -1) | |
7027 | return 1; | |
7028 | if (sysctl_sched_migration_cost == 0) | |
7029 | return 0; | |
7030 | ||
5d5e2b1b | 7031 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
7032 | |
7033 | return delta < (s64)sysctl_sched_migration_cost; | |
7034 | } | |
7035 | ||
3a7053b3 | 7036 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 7037 | /* |
2a1ed24c SD |
7038 | * Returns 1, if task migration degrades locality |
7039 | * Returns 0, if task migration improves locality i.e migration preferred. | |
7040 | * Returns -1, if task migration is not affected by locality. | |
c1ceac62 | 7041 | */ |
2a1ed24c | 7042 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 7043 | { |
b1ad065e | 7044 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
f35678b6 SD |
7045 | unsigned long src_weight, dst_weight; |
7046 | int src_nid, dst_nid, dist; | |
3a7053b3 | 7047 | |
2a595721 | 7048 | if (!static_branch_likely(&sched_numa_balancing)) |
2a1ed24c SD |
7049 | return -1; |
7050 | ||
c3b9bc5b | 7051 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
2a1ed24c | 7052 | return -1; |
7a0f3083 MG |
7053 | |
7054 | src_nid = cpu_to_node(env->src_cpu); | |
7055 | dst_nid = cpu_to_node(env->dst_cpu); | |
7056 | ||
83e1d2cd | 7057 | if (src_nid == dst_nid) |
2a1ed24c | 7058 | return -1; |
7a0f3083 | 7059 | |
2a1ed24c SD |
7060 | /* Migrating away from the preferred node is always bad. */ |
7061 | if (src_nid == p->numa_preferred_nid) { | |
7062 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
7063 | return 1; | |
7064 | else | |
7065 | return -1; | |
7066 | } | |
b1ad065e | 7067 | |
c1ceac62 RR |
7068 | /* Encourage migration to the preferred node. */ |
7069 | if (dst_nid == p->numa_preferred_nid) | |
2a1ed24c | 7070 | return 0; |
b1ad065e | 7071 | |
739294fb | 7072 | /* Leaving a core idle is often worse than degrading locality. */ |
f35678b6 | 7073 | if (env->idle == CPU_IDLE) |
739294fb RR |
7074 | return -1; |
7075 | ||
f35678b6 | 7076 | dist = node_distance(src_nid, dst_nid); |
c1ceac62 | 7077 | if (numa_group) { |
f35678b6 SD |
7078 | src_weight = group_weight(p, src_nid, dist); |
7079 | dst_weight = group_weight(p, dst_nid, dist); | |
c1ceac62 | 7080 | } else { |
f35678b6 SD |
7081 | src_weight = task_weight(p, src_nid, dist); |
7082 | dst_weight = task_weight(p, dst_nid, dist); | |
b1ad065e RR |
7083 | } |
7084 | ||
f35678b6 | 7085 | return dst_weight < src_weight; |
7a0f3083 MG |
7086 | } |
7087 | ||
3a7053b3 | 7088 | #else |
2a1ed24c | 7089 | static inline int migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
7090 | struct lb_env *env) |
7091 | { | |
2a1ed24c | 7092 | return -1; |
7a0f3083 | 7093 | } |
3a7053b3 MG |
7094 | #endif |
7095 | ||
1e3c88bd PZ |
7096 | /* |
7097 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
7098 | */ | |
7099 | static | |
8e45cb54 | 7100 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 7101 | { |
2a1ed24c | 7102 | int tsk_cache_hot; |
e5673f28 KT |
7103 | |
7104 | lockdep_assert_held(&env->src_rq->lock); | |
7105 | ||
1e3c88bd PZ |
7106 | /* |
7107 | * We do not migrate tasks that are: | |
d3198084 | 7108 | * 1) throttled_lb_pair, or |
1e3c88bd | 7109 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
d3198084 JK |
7110 | * 3) running (obviously), or |
7111 | * 4) are cache-hot on their current CPU. | |
1e3c88bd | 7112 | */ |
d3198084 JK |
7113 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
7114 | return 0; | |
7115 | ||
0c98d344 | 7116 | if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { |
e02e60c1 | 7117 | int cpu; |
88b8dac0 | 7118 | |
ae92882e | 7119 | schedstat_inc(p->se.statistics.nr_failed_migrations_affine); |
88b8dac0 | 7120 | |
6263322c PZ |
7121 | env->flags |= LBF_SOME_PINNED; |
7122 | ||
88b8dac0 | 7123 | /* |
97fb7a0a | 7124 | * Remember if this task can be migrated to any other CPU in |
88b8dac0 SV |
7125 | * our sched_group. We may want to revisit it if we couldn't |
7126 | * meet load balance goals by pulling other tasks on src_cpu. | |
7127 | * | |
65a4433a JH |
7128 | * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have |
7129 | * already computed one in current iteration. | |
88b8dac0 | 7130 | */ |
65a4433a | 7131 | if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) |
88b8dac0 SV |
7132 | return 0; |
7133 | ||
97fb7a0a | 7134 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
e02e60c1 | 7135 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { |
0c98d344 | 7136 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { |
6263322c | 7137 | env->flags |= LBF_DST_PINNED; |
e02e60c1 JK |
7138 | env->new_dst_cpu = cpu; |
7139 | break; | |
7140 | } | |
88b8dac0 | 7141 | } |
e02e60c1 | 7142 | |
1e3c88bd PZ |
7143 | return 0; |
7144 | } | |
88b8dac0 SV |
7145 | |
7146 | /* Record that we found atleast one task that could run on dst_cpu */ | |
8e45cb54 | 7147 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 7148 | |
ddcdf6e7 | 7149 | if (task_running(env->src_rq, p)) { |
ae92882e | 7150 | schedstat_inc(p->se.statistics.nr_failed_migrations_running); |
1e3c88bd PZ |
7151 | return 0; |
7152 | } | |
7153 | ||
7154 | /* | |
7155 | * Aggressive migration if: | |
3a7053b3 MG |
7156 | * 1) destination numa is preferred |
7157 | * 2) task is cache cold, or | |
7158 | * 3) too many balance attempts have failed. | |
1e3c88bd | 7159 | */ |
2a1ed24c SD |
7160 | tsk_cache_hot = migrate_degrades_locality(p, env); |
7161 | if (tsk_cache_hot == -1) | |
7162 | tsk_cache_hot = task_hot(p, env); | |
3a7053b3 | 7163 | |
2a1ed24c | 7164 | if (tsk_cache_hot <= 0 || |
7a96c231 | 7165 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
2a1ed24c | 7166 | if (tsk_cache_hot == 1) { |
ae92882e JP |
7167 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
7168 | schedstat_inc(p->se.statistics.nr_forced_migrations); | |
3a7053b3 | 7169 | } |
1e3c88bd PZ |
7170 | return 1; |
7171 | } | |
7172 | ||
ae92882e | 7173 | schedstat_inc(p->se.statistics.nr_failed_migrations_hot); |
4e2dcb73 | 7174 | return 0; |
1e3c88bd PZ |
7175 | } |
7176 | ||
897c395f | 7177 | /* |
163122b7 KT |
7178 | * detach_task() -- detach the task for the migration specified in env |
7179 | */ | |
7180 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
7181 | { | |
7182 | lockdep_assert_held(&env->src_rq->lock); | |
7183 | ||
163122b7 | 7184 | p->on_rq = TASK_ON_RQ_MIGRATING; |
5704ac0a | 7185 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
7186 | set_task_cpu(p, env->dst_cpu); |
7187 | } | |
7188 | ||
897c395f | 7189 | /* |
e5673f28 | 7190 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 7191 | * part of active balancing operations within "domain". |
897c395f | 7192 | * |
e5673f28 | 7193 | * Returns a task if successful and NULL otherwise. |
897c395f | 7194 | */ |
e5673f28 | 7195 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f | 7196 | { |
93824900 | 7197 | struct task_struct *p; |
897c395f | 7198 | |
e5673f28 KT |
7199 | lockdep_assert_held(&env->src_rq->lock); |
7200 | ||
93824900 UR |
7201 | list_for_each_entry_reverse(p, |
7202 | &env->src_rq->cfs_tasks, se.group_node) { | |
367456c7 PZ |
7203 | if (!can_migrate_task(p, env)) |
7204 | continue; | |
897c395f | 7205 | |
163122b7 | 7206 | detach_task(p, env); |
e5673f28 | 7207 | |
367456c7 | 7208 | /* |
e5673f28 | 7209 | * Right now, this is only the second place where |
163122b7 | 7210 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 7211 | * so we can safely collect stats here rather than |
163122b7 | 7212 | * inside detach_tasks(). |
367456c7 | 7213 | */ |
ae92882e | 7214 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 7215 | return p; |
897c395f | 7216 | } |
e5673f28 | 7217 | return NULL; |
897c395f PZ |
7218 | } |
7219 | ||
eb95308e PZ |
7220 | static const unsigned int sched_nr_migrate_break = 32; |
7221 | ||
5d6523eb | 7222 | /* |
163122b7 KT |
7223 | * detach_tasks() -- tries to detach up to imbalance weighted load from |
7224 | * busiest_rq, as part of a balancing operation within domain "sd". | |
5d6523eb | 7225 | * |
163122b7 | 7226 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 7227 | */ |
163122b7 | 7228 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 7229 | { |
5d6523eb PZ |
7230 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
7231 | struct task_struct *p; | |
367456c7 | 7232 | unsigned long load; |
163122b7 KT |
7233 | int detached = 0; |
7234 | ||
7235 | lockdep_assert_held(&env->src_rq->lock); | |
1e3c88bd | 7236 | |
bd939f45 | 7237 | if (env->imbalance <= 0) |
5d6523eb | 7238 | return 0; |
1e3c88bd | 7239 | |
5d6523eb | 7240 | while (!list_empty(tasks)) { |
985d3a4c YD |
7241 | /* |
7242 | * We don't want to steal all, otherwise we may be treated likewise, | |
7243 | * which could at worst lead to a livelock crash. | |
7244 | */ | |
7245 | if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) | |
7246 | break; | |
7247 | ||
93824900 | 7248 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
1e3c88bd | 7249 | |
367456c7 PZ |
7250 | env->loop++; |
7251 | /* We've more or less seen every task there is, call it quits */ | |
5d6523eb | 7252 | if (env->loop > env->loop_max) |
367456c7 | 7253 | break; |
5d6523eb PZ |
7254 | |
7255 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 7256 | if (env->loop > env->loop_break) { |
eb95308e | 7257 | env->loop_break += sched_nr_migrate_break; |
8e45cb54 | 7258 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 7259 | break; |
a195f004 | 7260 | } |
1e3c88bd | 7261 | |
d3198084 | 7262 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
7263 | goto next; |
7264 | ||
7265 | load = task_h_load(p); | |
5d6523eb | 7266 | |
eb95308e | 7267 | if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) |
367456c7 PZ |
7268 | goto next; |
7269 | ||
bd939f45 | 7270 | if ((load / 2) > env->imbalance) |
367456c7 | 7271 | goto next; |
1e3c88bd | 7272 | |
163122b7 KT |
7273 | detach_task(p, env); |
7274 | list_add(&p->se.group_node, &env->tasks); | |
7275 | ||
7276 | detached++; | |
bd939f45 | 7277 | env->imbalance -= load; |
1e3c88bd PZ |
7278 | |
7279 | #ifdef CONFIG_PREEMPT | |
ee00e66f PZ |
7280 | /* |
7281 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 7282 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
7283 | * the critical section. |
7284 | */ | |
5d6523eb | 7285 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 7286 | break; |
1e3c88bd PZ |
7287 | #endif |
7288 | ||
ee00e66f PZ |
7289 | /* |
7290 | * We only want to steal up to the prescribed amount of | |
7291 | * weighted load. | |
7292 | */ | |
bd939f45 | 7293 | if (env->imbalance <= 0) |
ee00e66f | 7294 | break; |
367456c7 PZ |
7295 | |
7296 | continue; | |
7297 | next: | |
93824900 | 7298 | list_move(&p->se.group_node, tasks); |
1e3c88bd | 7299 | } |
5d6523eb | 7300 | |
1e3c88bd | 7301 | /* |
163122b7 KT |
7302 | * Right now, this is one of only two places we collect this stat |
7303 | * so we can safely collect detach_one_task() stats here rather | |
7304 | * than inside detach_one_task(). | |
1e3c88bd | 7305 | */ |
ae92882e | 7306 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 7307 | |
163122b7 KT |
7308 | return detached; |
7309 | } | |
7310 | ||
7311 | /* | |
7312 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
7313 | */ | |
7314 | static void attach_task(struct rq *rq, struct task_struct *p) | |
7315 | { | |
7316 | lockdep_assert_held(&rq->lock); | |
7317 | ||
7318 | BUG_ON(task_rq(p) != rq); | |
5704ac0a | 7319 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
3ea94de1 | 7320 | p->on_rq = TASK_ON_RQ_QUEUED; |
163122b7 KT |
7321 | check_preempt_curr(rq, p, 0); |
7322 | } | |
7323 | ||
7324 | /* | |
7325 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
7326 | * its new rq. | |
7327 | */ | |
7328 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
7329 | { | |
8a8c69c3 PZ |
7330 | struct rq_flags rf; |
7331 | ||
7332 | rq_lock(rq, &rf); | |
5704ac0a | 7333 | update_rq_clock(rq); |
163122b7 | 7334 | attach_task(rq, p); |
8a8c69c3 | 7335 | rq_unlock(rq, &rf); |
163122b7 KT |
7336 | } |
7337 | ||
7338 | /* | |
7339 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
7340 | * new rq. | |
7341 | */ | |
7342 | static void attach_tasks(struct lb_env *env) | |
7343 | { | |
7344 | struct list_head *tasks = &env->tasks; | |
7345 | struct task_struct *p; | |
8a8c69c3 | 7346 | struct rq_flags rf; |
163122b7 | 7347 | |
8a8c69c3 | 7348 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 7349 | update_rq_clock(env->dst_rq); |
163122b7 KT |
7350 | |
7351 | while (!list_empty(tasks)) { | |
7352 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
7353 | list_del_init(&p->se.group_node); | |
1e3c88bd | 7354 | |
163122b7 KT |
7355 | attach_task(env->dst_rq, p); |
7356 | } | |
7357 | ||
8a8c69c3 | 7358 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
7359 | } |
7360 | ||
1936c53c VG |
7361 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
7362 | { | |
7363 | if (cfs_rq->avg.load_avg) | |
7364 | return true; | |
7365 | ||
7366 | if (cfs_rq->avg.util_avg) | |
7367 | return true; | |
7368 | ||
7369 | return false; | |
7370 | } | |
7371 | ||
91c27493 | 7372 | static inline bool others_have_blocked(struct rq *rq) |
371bf427 VG |
7373 | { |
7374 | if (READ_ONCE(rq->avg_rt.util_avg)) | |
7375 | return true; | |
7376 | ||
3727e0e1 VG |
7377 | if (READ_ONCE(rq->avg_dl.util_avg)) |
7378 | return true; | |
7379 | ||
11d4afd4 | 7380 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
91c27493 VG |
7381 | if (READ_ONCE(rq->avg_irq.util_avg)) |
7382 | return true; | |
7383 | #endif | |
7384 | ||
371bf427 VG |
7385 | return false; |
7386 | } | |
7387 | ||
1936c53c VG |
7388 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7389 | ||
a9e7f654 TH |
7390 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
7391 | { | |
7392 | if (cfs_rq->load.weight) | |
7393 | return false; | |
7394 | ||
7395 | if (cfs_rq->avg.load_sum) | |
7396 | return false; | |
7397 | ||
7398 | if (cfs_rq->avg.util_sum) | |
7399 | return false; | |
7400 | ||
1ea6c46a | 7401 | if (cfs_rq->avg.runnable_load_sum) |
a9e7f654 TH |
7402 | return false; |
7403 | ||
7404 | return true; | |
7405 | } | |
7406 | ||
48a16753 | 7407 | static void update_blocked_averages(int cpu) |
9e3081ca | 7408 | { |
9e3081ca | 7409 | struct rq *rq = cpu_rq(cpu); |
a9e7f654 | 7410 | struct cfs_rq *cfs_rq, *pos; |
12b04875 | 7411 | const struct sched_class *curr_class; |
8a8c69c3 | 7412 | struct rq_flags rf; |
f643ea22 | 7413 | bool done = true; |
9e3081ca | 7414 | |
8a8c69c3 | 7415 | rq_lock_irqsave(rq, &rf); |
48a16753 | 7416 | update_rq_clock(rq); |
9d89c257 | 7417 | |
9763b67f PZ |
7418 | /* |
7419 | * Iterates the task_group tree in a bottom up fashion, see | |
7420 | * list_add_leaf_cfs_rq() for details. | |
7421 | */ | |
a9e7f654 | 7422 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
7423 | struct sched_entity *se; |
7424 | ||
9d89c257 YD |
7425 | /* throttled entities do not contribute to load */ |
7426 | if (throttled_hierarchy(cfs_rq)) | |
7427 | continue; | |
48a16753 | 7428 | |
3a123bbb | 7429 | if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) |
9d89c257 | 7430 | update_tg_load_avg(cfs_rq, 0); |
4e516076 | 7431 | |
bc427898 VG |
7432 | /* Propagate pending load changes to the parent, if any: */ |
7433 | se = cfs_rq->tg->se[cpu]; | |
7434 | if (se && !skip_blocked_update(se)) | |
88c0616e | 7435 | update_load_avg(cfs_rq_of(se), se, 0); |
a9e7f654 TH |
7436 | |
7437 | /* | |
7438 | * There can be a lot of idle CPU cgroups. Don't let fully | |
7439 | * decayed cfs_rqs linger on the list. | |
7440 | */ | |
7441 | if (cfs_rq_is_decayed(cfs_rq)) | |
7442 | list_del_leaf_cfs_rq(cfs_rq); | |
1936c53c VG |
7443 | |
7444 | /* Don't need periodic decay once load/util_avg are null */ | |
7445 | if (cfs_rq_has_blocked(cfs_rq)) | |
f643ea22 | 7446 | done = false; |
9d89c257 | 7447 | } |
12b04875 VG |
7448 | |
7449 | curr_class = rq->curr->sched_class; | |
7450 | update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); | |
7451 | update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); | |
91c27493 | 7452 | update_irq_load_avg(rq, 0); |
371bf427 | 7453 | /* Don't need periodic decay once load/util_avg are null */ |
91c27493 | 7454 | if (others_have_blocked(rq)) |
371bf427 | 7455 | done = false; |
e022e0d3 PZ |
7456 | |
7457 | #ifdef CONFIG_NO_HZ_COMMON | |
7458 | rq->last_blocked_load_update_tick = jiffies; | |
f643ea22 VG |
7459 | if (done) |
7460 | rq->has_blocked_load = 0; | |
e022e0d3 | 7461 | #endif |
8a8c69c3 | 7462 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
7463 | } |
7464 | ||
9763b67f | 7465 | /* |
68520796 | 7466 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
7467 | * This needs to be done in a top-down fashion because the load of a child |
7468 | * group is a fraction of its parents load. | |
7469 | */ | |
68520796 | 7470 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 7471 | { |
68520796 VD |
7472 | struct rq *rq = rq_of(cfs_rq); |
7473 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 7474 | unsigned long now = jiffies; |
68520796 | 7475 | unsigned long load; |
a35b6466 | 7476 | |
68520796 | 7477 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
7478 | return; |
7479 | ||
68520796 VD |
7480 | cfs_rq->h_load_next = NULL; |
7481 | for_each_sched_entity(se) { | |
7482 | cfs_rq = cfs_rq_of(se); | |
7483 | cfs_rq->h_load_next = se; | |
7484 | if (cfs_rq->last_h_load_update == now) | |
7485 | break; | |
7486 | } | |
a35b6466 | 7487 | |
68520796 | 7488 | if (!se) { |
7ea241af | 7489 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
7490 | cfs_rq->last_h_load_update = now; |
7491 | } | |
7492 | ||
7493 | while ((se = cfs_rq->h_load_next) != NULL) { | |
7494 | load = cfs_rq->h_load; | |
7ea241af YD |
7495 | load = div64_ul(load * se->avg.load_avg, |
7496 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
7497 | cfs_rq = group_cfs_rq(se); |
7498 | cfs_rq->h_load = load; | |
7499 | cfs_rq->last_h_load_update = now; | |
7500 | } | |
9763b67f PZ |
7501 | } |
7502 | ||
367456c7 | 7503 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 7504 | { |
367456c7 | 7505 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 7506 | |
68520796 | 7507 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 7508 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 7509 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
7510 | } |
7511 | #else | |
48a16753 | 7512 | static inline void update_blocked_averages(int cpu) |
9e3081ca | 7513 | { |
6c1d47c0 VG |
7514 | struct rq *rq = cpu_rq(cpu); |
7515 | struct cfs_rq *cfs_rq = &rq->cfs; | |
12b04875 | 7516 | const struct sched_class *curr_class; |
8a8c69c3 | 7517 | struct rq_flags rf; |
6c1d47c0 | 7518 | |
8a8c69c3 | 7519 | rq_lock_irqsave(rq, &rf); |
6c1d47c0 | 7520 | update_rq_clock(rq); |
3a123bbb | 7521 | update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); |
12b04875 VG |
7522 | |
7523 | curr_class = rq->curr->sched_class; | |
7524 | update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); | |
7525 | update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); | |
91c27493 | 7526 | update_irq_load_avg(rq, 0); |
e022e0d3 PZ |
7527 | #ifdef CONFIG_NO_HZ_COMMON |
7528 | rq->last_blocked_load_update_tick = jiffies; | |
91c27493 | 7529 | if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) |
f643ea22 | 7530 | rq->has_blocked_load = 0; |
e022e0d3 | 7531 | #endif |
8a8c69c3 | 7532 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
7533 | } |
7534 | ||
367456c7 | 7535 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 7536 | { |
9d89c257 | 7537 | return p->se.avg.load_avg; |
1e3c88bd | 7538 | } |
230059de | 7539 | #endif |
1e3c88bd | 7540 | |
1e3c88bd | 7541 | /********** Helpers for find_busiest_group ************************/ |
caeb178c | 7542 | |
1e3c88bd PZ |
7543 | /* |
7544 | * sg_lb_stats - stats of a sched_group required for load_balancing | |
7545 | */ | |
7546 | struct sg_lb_stats { | |
7547 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | |
7548 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
1e3c88bd | 7549 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ |
56cf515b | 7550 | unsigned long load_per_task; |
63b2ca30 | 7551 | unsigned long group_capacity; |
9e91d61d | 7552 | unsigned long group_util; /* Total utilization of the group */ |
147c5fc2 | 7553 | unsigned int sum_nr_running; /* Nr tasks running in the group */ |
147c5fc2 PZ |
7554 | unsigned int idle_cpus; |
7555 | unsigned int group_weight; | |
caeb178c | 7556 | enum group_type group_type; |
ea67821b | 7557 | int group_no_capacity; |
3b1baa64 | 7558 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ |
0ec8aa00 PZ |
7559 | #ifdef CONFIG_NUMA_BALANCING |
7560 | unsigned int nr_numa_running; | |
7561 | unsigned int nr_preferred_running; | |
7562 | #endif | |
1e3c88bd PZ |
7563 | }; |
7564 | ||
56cf515b JK |
7565 | /* |
7566 | * sd_lb_stats - Structure to store the statistics of a sched_domain | |
7567 | * during load balancing. | |
7568 | */ | |
7569 | struct sd_lb_stats { | |
7570 | struct sched_group *busiest; /* Busiest group in this sd */ | |
7571 | struct sched_group *local; /* Local group in this sd */ | |
90001d67 | 7572 | unsigned long total_running; |
56cf515b | 7573 | unsigned long total_load; /* Total load of all groups in sd */ |
63b2ca30 | 7574 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
56cf515b JK |
7575 | unsigned long avg_load; /* Average load across all groups in sd */ |
7576 | ||
56cf515b | 7577 | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ |
147c5fc2 | 7578 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
56cf515b JK |
7579 | }; |
7580 | ||
147c5fc2 PZ |
7581 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
7582 | { | |
7583 | /* | |
7584 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
7585 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
7586 | * We must however clear busiest_stat::avg_load because | |
7587 | * update_sd_pick_busiest() reads this before assignment. | |
7588 | */ | |
7589 | *sds = (struct sd_lb_stats){ | |
7590 | .busiest = NULL, | |
7591 | .local = NULL, | |
90001d67 | 7592 | .total_running = 0UL, |
147c5fc2 | 7593 | .total_load = 0UL, |
63b2ca30 | 7594 | .total_capacity = 0UL, |
147c5fc2 PZ |
7595 | .busiest_stat = { |
7596 | .avg_load = 0UL, | |
caeb178c RR |
7597 | .sum_nr_running = 0, |
7598 | .group_type = group_other, | |
147c5fc2 PZ |
7599 | }, |
7600 | }; | |
7601 | } | |
7602 | ||
1e3c88bd PZ |
7603 | /** |
7604 | * get_sd_load_idx - Obtain the load index for a given sched domain. | |
7605 | * @sd: The sched_domain whose load_idx is to be obtained. | |
ed1b7732 | 7606 | * @idle: The idle status of the CPU for whose sd load_idx is obtained. |
e69f6186 YB |
7607 | * |
7608 | * Return: The load index. | |
1e3c88bd PZ |
7609 | */ |
7610 | static inline int get_sd_load_idx(struct sched_domain *sd, | |
7611 | enum cpu_idle_type idle) | |
7612 | { | |
7613 | int load_idx; | |
7614 | ||
7615 | switch (idle) { | |
7616 | case CPU_NOT_IDLE: | |
7617 | load_idx = sd->busy_idx; | |
7618 | break; | |
7619 | ||
7620 | case CPU_NEWLY_IDLE: | |
7621 | load_idx = sd->newidle_idx; | |
7622 | break; | |
7623 | default: | |
7624 | load_idx = sd->idle_idx; | |
7625 | break; | |
7626 | } | |
7627 | ||
7628 | return load_idx; | |
7629 | } | |
7630 | ||
287cdaac | 7631 | static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
7632 | { |
7633 | struct rq *rq = cpu_rq(cpu); | |
287cdaac | 7634 | unsigned long max = arch_scale_cpu_capacity(sd, cpu); |
523e979d | 7635 | unsigned long used, free; |
523e979d | 7636 | unsigned long irq; |
b654f7de | 7637 | |
2e62c474 | 7638 | irq = cpu_util_irq(rq); |
cadefd3d | 7639 | |
523e979d VG |
7640 | if (unlikely(irq >= max)) |
7641 | return 1; | |
aa483808 | 7642 | |
523e979d VG |
7643 | used = READ_ONCE(rq->avg_rt.util_avg); |
7644 | used += READ_ONCE(rq->avg_dl.util_avg); | |
1e3c88bd | 7645 | |
523e979d VG |
7646 | if (unlikely(used >= max)) |
7647 | return 1; | |
1e3c88bd | 7648 | |
523e979d | 7649 | free = max - used; |
2e62c474 VG |
7650 | |
7651 | return scale_irq_capacity(free, irq, max); | |
1e3c88bd PZ |
7652 | } |
7653 | ||
ced549fa | 7654 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 7655 | { |
287cdaac | 7656 | unsigned long capacity = scale_rt_capacity(sd, cpu); |
1e3c88bd PZ |
7657 | struct sched_group *sdg = sd->groups; |
7658 | ||
523e979d | 7659 | cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); |
1e3c88bd | 7660 | |
ced549fa NP |
7661 | if (!capacity) |
7662 | capacity = 1; | |
1e3c88bd | 7663 | |
ced549fa NP |
7664 | cpu_rq(cpu)->cpu_capacity = capacity; |
7665 | sdg->sgc->capacity = capacity; | |
bf475ce0 | 7666 | sdg->sgc->min_capacity = capacity; |
e3d6d0cb | 7667 | sdg->sgc->max_capacity = capacity; |
1e3c88bd PZ |
7668 | } |
7669 | ||
63b2ca30 | 7670 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
7671 | { |
7672 | struct sched_domain *child = sd->child; | |
7673 | struct sched_group *group, *sdg = sd->groups; | |
e3d6d0cb | 7674 | unsigned long capacity, min_capacity, max_capacity; |
4ec4412e VG |
7675 | unsigned long interval; |
7676 | ||
7677 | interval = msecs_to_jiffies(sd->balance_interval); | |
7678 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 7679 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
7680 | |
7681 | if (!child) { | |
ced549fa | 7682 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
7683 | return; |
7684 | } | |
7685 | ||
dc7ff76e | 7686 | capacity = 0; |
bf475ce0 | 7687 | min_capacity = ULONG_MAX; |
e3d6d0cb | 7688 | max_capacity = 0; |
1e3c88bd | 7689 | |
74a5ce20 PZ |
7690 | if (child->flags & SD_OVERLAP) { |
7691 | /* | |
7692 | * SD_OVERLAP domains cannot assume that child groups | |
7693 | * span the current group. | |
7694 | */ | |
7695 | ||
ae4df9d6 | 7696 | for_each_cpu(cpu, sched_group_span(sdg)) { |
63b2ca30 | 7697 | struct sched_group_capacity *sgc; |
9abf24d4 | 7698 | struct rq *rq = cpu_rq(cpu); |
863bffc8 | 7699 | |
9abf24d4 | 7700 | /* |
63b2ca30 | 7701 | * build_sched_domains() -> init_sched_groups_capacity() |
9abf24d4 SD |
7702 | * gets here before we've attached the domains to the |
7703 | * runqueues. | |
7704 | * | |
ced549fa NP |
7705 | * Use capacity_of(), which is set irrespective of domains |
7706 | * in update_cpu_capacity(). | |
9abf24d4 | 7707 | * |
dc7ff76e | 7708 | * This avoids capacity from being 0 and |
9abf24d4 | 7709 | * causing divide-by-zero issues on boot. |
9abf24d4 SD |
7710 | */ |
7711 | if (unlikely(!rq->sd)) { | |
ced549fa | 7712 | capacity += capacity_of(cpu); |
bf475ce0 MR |
7713 | } else { |
7714 | sgc = rq->sd->groups->sgc; | |
7715 | capacity += sgc->capacity; | |
9abf24d4 | 7716 | } |
863bffc8 | 7717 | |
bf475ce0 | 7718 | min_capacity = min(capacity, min_capacity); |
e3d6d0cb | 7719 | max_capacity = max(capacity, max_capacity); |
863bffc8 | 7720 | } |
74a5ce20 PZ |
7721 | } else { |
7722 | /* | |
7723 | * !SD_OVERLAP domains can assume that child groups | |
7724 | * span the current group. | |
97a7142f | 7725 | */ |
74a5ce20 PZ |
7726 | |
7727 | group = child->groups; | |
7728 | do { | |
bf475ce0 MR |
7729 | struct sched_group_capacity *sgc = group->sgc; |
7730 | ||
7731 | capacity += sgc->capacity; | |
7732 | min_capacity = min(sgc->min_capacity, min_capacity); | |
e3d6d0cb | 7733 | max_capacity = max(sgc->max_capacity, max_capacity); |
74a5ce20 PZ |
7734 | group = group->next; |
7735 | } while (group != child->groups); | |
7736 | } | |
1e3c88bd | 7737 | |
63b2ca30 | 7738 | sdg->sgc->capacity = capacity; |
bf475ce0 | 7739 | sdg->sgc->min_capacity = min_capacity; |
e3d6d0cb | 7740 | sdg->sgc->max_capacity = max_capacity; |
1e3c88bd PZ |
7741 | } |
7742 | ||
9d5efe05 | 7743 | /* |
ea67821b VG |
7744 | * Check whether the capacity of the rq has been noticeably reduced by side |
7745 | * activity. The imbalance_pct is used for the threshold. | |
7746 | * Return true is the capacity is reduced | |
9d5efe05 SV |
7747 | */ |
7748 | static inline int | |
ea67821b | 7749 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 7750 | { |
ea67821b VG |
7751 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
7752 | (rq->cpu_capacity_orig * 100)); | |
9d5efe05 SV |
7753 | } |
7754 | ||
30ce5dab PZ |
7755 | /* |
7756 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
0c98d344 | 7757 | * groups is inadequate due to ->cpus_allowed constraints. |
30ce5dab | 7758 | * |
97fb7a0a IM |
7759 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
7760 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | |
30ce5dab PZ |
7761 | * Something like: |
7762 | * | |
2b4d5b25 IM |
7763 | * { 0 1 2 3 } { 4 5 6 7 } |
7764 | * * * * * | |
30ce5dab PZ |
7765 | * |
7766 | * If we were to balance group-wise we'd place two tasks in the first group and | |
7767 | * two tasks in the second group. Clearly this is undesired as it will overload | |
97fb7a0a | 7768 | * cpu 3 and leave one of the CPUs in the second group unused. |
30ce5dab PZ |
7769 | * |
7770 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
7771 | * by noticing the lower domain failed to reach balance and had difficulty |
7772 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
7773 | * |
7774 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 7775 | * update_sd_pick_busiest(). And calculate_imbalance() and |
6263322c | 7776 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
7777 | * to create an effective group imbalance. |
7778 | * | |
7779 | * This is a somewhat tricky proposition since the next run might not find the | |
7780 | * group imbalance and decide the groups need to be balanced again. A most | |
7781 | * subtle and fragile situation. | |
7782 | */ | |
7783 | ||
6263322c | 7784 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 7785 | { |
63b2ca30 | 7786 | return group->sgc->imbalance; |
30ce5dab PZ |
7787 | } |
7788 | ||
b37d9316 | 7789 | /* |
ea67821b VG |
7790 | * group_has_capacity returns true if the group has spare capacity that could |
7791 | * be used by some tasks. | |
7792 | * We consider that a group has spare capacity if the * number of task is | |
9e91d61d DE |
7793 | * smaller than the number of CPUs or if the utilization is lower than the |
7794 | * available capacity for CFS tasks. | |
ea67821b VG |
7795 | * For the latter, we use a threshold to stabilize the state, to take into |
7796 | * account the variance of the tasks' load and to return true if the available | |
7797 | * capacity in meaningful for the load balancer. | |
7798 | * As an example, an available capacity of 1% can appear but it doesn't make | |
7799 | * any benefit for the load balance. | |
b37d9316 | 7800 | */ |
ea67821b VG |
7801 | static inline bool |
7802 | group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) | |
b37d9316 | 7803 | { |
ea67821b VG |
7804 | if (sgs->sum_nr_running < sgs->group_weight) |
7805 | return true; | |
c61037e9 | 7806 | |
ea67821b | 7807 | if ((sgs->group_capacity * 100) > |
9e91d61d | 7808 | (sgs->group_util * env->sd->imbalance_pct)) |
ea67821b | 7809 | return true; |
b37d9316 | 7810 | |
ea67821b VG |
7811 | return false; |
7812 | } | |
7813 | ||
7814 | /* | |
7815 | * group_is_overloaded returns true if the group has more tasks than it can | |
7816 | * handle. | |
7817 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
7818 | * with the exact right number of tasks, has no more spare capacity but is not | |
7819 | * overloaded so both group_has_capacity and group_is_overloaded return | |
7820 | * false. | |
7821 | */ | |
7822 | static inline bool | |
7823 | group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) | |
7824 | { | |
7825 | if (sgs->sum_nr_running <= sgs->group_weight) | |
7826 | return false; | |
b37d9316 | 7827 | |
ea67821b | 7828 | if ((sgs->group_capacity * 100) < |
9e91d61d | 7829 | (sgs->group_util * env->sd->imbalance_pct)) |
ea67821b | 7830 | return true; |
b37d9316 | 7831 | |
ea67821b | 7832 | return false; |
b37d9316 PZ |
7833 | } |
7834 | ||
9e0994c0 | 7835 | /* |
e3d6d0cb | 7836 | * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller |
9e0994c0 MR |
7837 | * per-CPU capacity than sched_group ref. |
7838 | */ | |
7839 | static inline bool | |
e3d6d0cb | 7840 | group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) |
9e0994c0 MR |
7841 | { |
7842 | return sg->sgc->min_capacity * capacity_margin < | |
7843 | ref->sgc->min_capacity * 1024; | |
7844 | } | |
7845 | ||
e3d6d0cb MR |
7846 | /* |
7847 | * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller | |
7848 | * per-CPU capacity_orig than sched_group ref. | |
7849 | */ | |
7850 | static inline bool | |
7851 | group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) | |
7852 | { | |
7853 | return sg->sgc->max_capacity * capacity_margin < | |
7854 | ref->sgc->max_capacity * 1024; | |
7855 | } | |
7856 | ||
79a89f92 LY |
7857 | static inline enum |
7858 | group_type group_classify(struct sched_group *group, | |
7859 | struct sg_lb_stats *sgs) | |
caeb178c | 7860 | { |
ea67821b | 7861 | if (sgs->group_no_capacity) |
caeb178c RR |
7862 | return group_overloaded; |
7863 | ||
7864 | if (sg_imbalanced(group)) | |
7865 | return group_imbalanced; | |
7866 | ||
3b1baa64 MR |
7867 | if (sgs->group_misfit_task_load) |
7868 | return group_misfit_task; | |
7869 | ||
caeb178c RR |
7870 | return group_other; |
7871 | } | |
7872 | ||
63928384 | 7873 | static bool update_nohz_stats(struct rq *rq, bool force) |
e022e0d3 PZ |
7874 | { |
7875 | #ifdef CONFIG_NO_HZ_COMMON | |
7876 | unsigned int cpu = rq->cpu; | |
7877 | ||
f643ea22 VG |
7878 | if (!rq->has_blocked_load) |
7879 | return false; | |
7880 | ||
e022e0d3 | 7881 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) |
f643ea22 | 7882 | return false; |
e022e0d3 | 7883 | |
63928384 | 7884 | if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) |
f643ea22 | 7885 | return true; |
e022e0d3 PZ |
7886 | |
7887 | update_blocked_averages(cpu); | |
f643ea22 VG |
7888 | |
7889 | return rq->has_blocked_load; | |
7890 | #else | |
7891 | return false; | |
e022e0d3 PZ |
7892 | #endif |
7893 | } | |
7894 | ||
1e3c88bd PZ |
7895 | /** |
7896 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 7897 | * @env: The load balancing environment. |
1e3c88bd | 7898 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 7899 | * @load_idx: Load index of sched_domain of this_cpu for load calc. |
1e3c88bd | 7900 | * @local_group: Does group contain this_cpu. |
1e3c88bd | 7901 | * @sgs: variable to hold the statistics for this group. |
757ffdd7 | 7902 | * @overload: Indicate pullable load (e.g. >1 runnable task). |
1e3c88bd | 7903 | */ |
bd939f45 PZ |
7904 | static inline void update_sg_lb_stats(struct lb_env *env, |
7905 | struct sched_group *group, int load_idx, | |
4486edd1 TC |
7906 | int local_group, struct sg_lb_stats *sgs, |
7907 | bool *overload) | |
1e3c88bd | 7908 | { |
30ce5dab | 7909 | unsigned long load; |
a426f99c | 7910 | int i, nr_running; |
1e3c88bd | 7911 | |
b72ff13c PZ |
7912 | memset(sgs, 0, sizeof(*sgs)); |
7913 | ||
ae4df9d6 | 7914 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd PZ |
7915 | struct rq *rq = cpu_rq(i); |
7916 | ||
63928384 | 7917 | if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) |
f643ea22 | 7918 | env->flags |= LBF_NOHZ_AGAIN; |
e022e0d3 | 7919 | |
97fb7a0a | 7920 | /* Bias balancing toward CPUs of our domain: */ |
6263322c | 7921 | if (local_group) |
04f733b4 | 7922 | load = target_load(i, load_idx); |
6263322c | 7923 | else |
1e3c88bd | 7924 | load = source_load(i, load_idx); |
1e3c88bd PZ |
7925 | |
7926 | sgs->group_load += load; | |
9e91d61d | 7927 | sgs->group_util += cpu_util(i); |
65fdac08 | 7928 | sgs->sum_nr_running += rq->cfs.h_nr_running; |
4486edd1 | 7929 | |
a426f99c WL |
7930 | nr_running = rq->nr_running; |
7931 | if (nr_running > 1) | |
4486edd1 TC |
7932 | *overload = true; |
7933 | ||
0ec8aa00 PZ |
7934 | #ifdef CONFIG_NUMA_BALANCING |
7935 | sgs->nr_numa_running += rq->nr_numa_running; | |
7936 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
7937 | #endif | |
c7132dd6 | 7938 | sgs->sum_weighted_load += weighted_cpuload(rq); |
a426f99c WL |
7939 | /* |
7940 | * No need to call idle_cpu() if nr_running is not 0 | |
7941 | */ | |
7942 | if (!nr_running && idle_cpu(i)) | |
aae6d3dd | 7943 | sgs->idle_cpus++; |
3b1baa64 MR |
7944 | |
7945 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
757ffdd7 | 7946 | sgs->group_misfit_task_load < rq->misfit_task_load) { |
3b1baa64 | 7947 | sgs->group_misfit_task_load = rq->misfit_task_load; |
757ffdd7 VS |
7948 | *overload = 1; |
7949 | } | |
1e3c88bd PZ |
7950 | } |
7951 | ||
63b2ca30 NP |
7952 | /* Adjust by relative CPU capacity of the group */ |
7953 | sgs->group_capacity = group->sgc->capacity; | |
ca8ce3d0 | 7954 | sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; |
1e3c88bd | 7955 | |
dd5feea1 | 7956 | if (sgs->sum_nr_running) |
38d0f770 | 7957 | sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; |
1e3c88bd | 7958 | |
aae6d3dd | 7959 | sgs->group_weight = group->group_weight; |
b37d9316 | 7960 | |
ea67821b | 7961 | sgs->group_no_capacity = group_is_overloaded(env, sgs); |
79a89f92 | 7962 | sgs->group_type = group_classify(group, sgs); |
1e3c88bd PZ |
7963 | } |
7964 | ||
532cb4c4 MN |
7965 | /** |
7966 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 7967 | * @env: The load balancing environment. |
532cb4c4 MN |
7968 | * @sds: sched_domain statistics |
7969 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 7970 | * @sgs: sched_group statistics |
532cb4c4 MN |
7971 | * |
7972 | * Determine if @sg is a busier group than the previously selected | |
7973 | * busiest group. | |
e69f6186 YB |
7974 | * |
7975 | * Return: %true if @sg is a busier group than the previously selected | |
7976 | * busiest group. %false otherwise. | |
532cb4c4 | 7977 | */ |
bd939f45 | 7978 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
7979 | struct sd_lb_stats *sds, |
7980 | struct sched_group *sg, | |
bd939f45 | 7981 | struct sg_lb_stats *sgs) |
532cb4c4 | 7982 | { |
caeb178c | 7983 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 7984 | |
cad68e55 MR |
7985 | /* |
7986 | * Don't try to pull misfit tasks we can't help. | |
7987 | * We can use max_capacity here as reduction in capacity on some | |
7988 | * CPUs in the group should either be possible to resolve | |
7989 | * internally or be covered by avg_load imbalance (eventually). | |
7990 | */ | |
7991 | if (sgs->group_type == group_misfit_task && | |
7992 | (!group_smaller_max_cpu_capacity(sg, sds->local) || | |
7993 | !group_has_capacity(env, &sds->local_stat))) | |
7994 | return false; | |
7995 | ||
caeb178c | 7996 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
7997 | return true; |
7998 | ||
caeb178c RR |
7999 | if (sgs->group_type < busiest->group_type) |
8000 | return false; | |
8001 | ||
8002 | if (sgs->avg_load <= busiest->avg_load) | |
8003 | return false; | |
8004 | ||
9e0994c0 MR |
8005 | if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) |
8006 | goto asym_packing; | |
8007 | ||
8008 | /* | |
8009 | * Candidate sg has no more than one task per CPU and | |
8010 | * has higher per-CPU capacity. Migrating tasks to less | |
8011 | * capable CPUs may harm throughput. Maximize throughput, | |
8012 | * power/energy consequences are not considered. | |
8013 | */ | |
8014 | if (sgs->sum_nr_running <= sgs->group_weight && | |
e3d6d0cb | 8015 | group_smaller_min_cpu_capacity(sds->local, sg)) |
9e0994c0 MR |
8016 | return false; |
8017 | ||
cad68e55 MR |
8018 | /* |
8019 | * If we have more than one misfit sg go with the biggest misfit. | |
8020 | */ | |
8021 | if (sgs->group_type == group_misfit_task && | |
8022 | sgs->group_misfit_task_load < busiest->group_misfit_task_load) | |
9e0994c0 MR |
8023 | return false; |
8024 | ||
8025 | asym_packing: | |
caeb178c RR |
8026 | /* This is the busiest node in its class. */ |
8027 | if (!(env->sd->flags & SD_ASYM_PACKING)) | |
532cb4c4 MN |
8028 | return true; |
8029 | ||
97fb7a0a | 8030 | /* No ASYM_PACKING if target CPU is already busy */ |
1f621e02 SD |
8031 | if (env->idle == CPU_NOT_IDLE) |
8032 | return true; | |
532cb4c4 | 8033 | /* |
afe06efd TC |
8034 | * ASYM_PACKING needs to move all the work to the highest |
8035 | * prority CPUs in the group, therefore mark all groups | |
8036 | * of lower priority than ourself as busy. | |
532cb4c4 | 8037 | */ |
afe06efd TC |
8038 | if (sgs->sum_nr_running && |
8039 | sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { | |
532cb4c4 MN |
8040 | if (!sds->busiest) |
8041 | return true; | |
8042 | ||
97fb7a0a | 8043 | /* Prefer to move from lowest priority CPU's work */ |
afe06efd TC |
8044 | if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, |
8045 | sg->asym_prefer_cpu)) | |
532cb4c4 MN |
8046 | return true; |
8047 | } | |
8048 | ||
8049 | return false; | |
8050 | } | |
8051 | ||
0ec8aa00 PZ |
8052 | #ifdef CONFIG_NUMA_BALANCING |
8053 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8054 | { | |
8055 | if (sgs->sum_nr_running > sgs->nr_numa_running) | |
8056 | return regular; | |
8057 | if (sgs->sum_nr_running > sgs->nr_preferred_running) | |
8058 | return remote; | |
8059 | return all; | |
8060 | } | |
8061 | ||
8062 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8063 | { | |
8064 | if (rq->nr_running > rq->nr_numa_running) | |
8065 | return regular; | |
8066 | if (rq->nr_running > rq->nr_preferred_running) | |
8067 | return remote; | |
8068 | return all; | |
8069 | } | |
8070 | #else | |
8071 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8072 | { | |
8073 | return all; | |
8074 | } | |
8075 | ||
8076 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8077 | { | |
8078 | return regular; | |
8079 | } | |
8080 | #endif /* CONFIG_NUMA_BALANCING */ | |
8081 | ||
1e3c88bd | 8082 | /** |
461819ac | 8083 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 8084 | * @env: The load balancing environment. |
1e3c88bd PZ |
8085 | * @sds: variable to hold the statistics for this sched_domain. |
8086 | */ | |
0ec8aa00 | 8087 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 8088 | { |
bd939f45 PZ |
8089 | struct sched_domain *child = env->sd->child; |
8090 | struct sched_group *sg = env->sd->groups; | |
05b40e05 | 8091 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 8092 | struct sg_lb_stats tmp_sgs; |
dbbad719 | 8093 | int load_idx; |
4486edd1 | 8094 | bool overload = false; |
dbbad719 | 8095 | bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; |
1e3c88bd | 8096 | |
e022e0d3 | 8097 | #ifdef CONFIG_NO_HZ_COMMON |
f643ea22 | 8098 | if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) |
e022e0d3 | 8099 | env->flags |= LBF_NOHZ_STATS; |
e022e0d3 PZ |
8100 | #endif |
8101 | ||
bd939f45 | 8102 | load_idx = get_sd_load_idx(env->sd, env->idle); |
1e3c88bd PZ |
8103 | |
8104 | do { | |
56cf515b | 8105 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
8106 | int local_group; |
8107 | ||
ae4df9d6 | 8108 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
8109 | if (local_group) { |
8110 | sds->local = sg; | |
05b40e05 | 8111 | sgs = local; |
b72ff13c PZ |
8112 | |
8113 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
8114 | time_after_eq(jiffies, sg->sgc->next_update)) |
8115 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 8116 | } |
1e3c88bd | 8117 | |
4486edd1 TC |
8118 | update_sg_lb_stats(env, sg, load_idx, local_group, sgs, |
8119 | &overload); | |
1e3c88bd | 8120 | |
b72ff13c PZ |
8121 | if (local_group) |
8122 | goto next_group; | |
8123 | ||
1e3c88bd PZ |
8124 | /* |
8125 | * In case the child domain prefers tasks go to siblings | |
ea67821b | 8126 | * first, lower the sg capacity so that we'll try |
75dd321d NR |
8127 | * and move all the excess tasks away. We lower the capacity |
8128 | * of a group only if the local group has the capacity to fit | |
ea67821b VG |
8129 | * these excess tasks. The extra check prevents the case where |
8130 | * you always pull from the heaviest group when it is already | |
8131 | * under-utilized (possible with a large weight task outweighs | |
8132 | * the tasks on the system). | |
1e3c88bd | 8133 | */ |
b72ff13c | 8134 | if (prefer_sibling && sds->local && |
05b40e05 SD |
8135 | group_has_capacity(env, local) && |
8136 | (sgs->sum_nr_running > local->sum_nr_running + 1)) { | |
ea67821b | 8137 | sgs->group_no_capacity = 1; |
79a89f92 | 8138 | sgs->group_type = group_classify(sg, sgs); |
cb0b9f24 | 8139 | } |
1e3c88bd | 8140 | |
b72ff13c | 8141 | if (update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 8142 | sds->busiest = sg; |
56cf515b | 8143 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
8144 | } |
8145 | ||
b72ff13c PZ |
8146 | next_group: |
8147 | /* Now, start updating sd_lb_stats */ | |
90001d67 | 8148 | sds->total_running += sgs->sum_nr_running; |
b72ff13c | 8149 | sds->total_load += sgs->group_load; |
63b2ca30 | 8150 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 8151 | |
532cb4c4 | 8152 | sg = sg->next; |
bd939f45 | 8153 | } while (sg != env->sd->groups); |
0ec8aa00 | 8154 | |
f643ea22 VG |
8155 | #ifdef CONFIG_NO_HZ_COMMON |
8156 | if ((env->flags & LBF_NOHZ_AGAIN) && | |
8157 | cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { | |
8158 | ||
8159 | WRITE_ONCE(nohz.next_blocked, | |
8160 | jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
8161 | } | |
8162 | #endif | |
8163 | ||
0ec8aa00 PZ |
8164 | if (env->sd->flags & SD_NUMA) |
8165 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
8166 | |
8167 | if (!env->sd->parent) { | |
8168 | /* update overload indicator if we are at root domain */ | |
e90c8fe1 VS |
8169 | if (READ_ONCE(env->dst_rq->rd->overload) != overload) |
8170 | WRITE_ONCE(env->dst_rq->rd->overload, overload); | |
4486edd1 | 8171 | } |
532cb4c4 MN |
8172 | } |
8173 | ||
532cb4c4 MN |
8174 | /** |
8175 | * check_asym_packing - Check to see if the group is packed into the | |
0ba42a59 | 8176 | * sched domain. |
532cb4c4 MN |
8177 | * |
8178 | * This is primarily intended to used at the sibling level. Some | |
8179 | * cores like POWER7 prefer to use lower numbered SMT threads. In the | |
8180 | * case of POWER7, it can move to lower SMT modes only when higher | |
8181 | * threads are idle. When in lower SMT modes, the threads will | |
8182 | * perform better since they share less core resources. Hence when we | |
8183 | * have idle threads, we want them to be the higher ones. | |
8184 | * | |
8185 | * This packing function is run on idle threads. It checks to see if | |
8186 | * the busiest CPU in this domain (core in the P7 case) has a higher | |
8187 | * CPU number than the packing function is being run on. Here we are | |
8188 | * assuming lower CPU number will be equivalent to lower a SMT thread | |
8189 | * number. | |
8190 | * | |
e69f6186 | 8191 | * Return: 1 when packing is required and a task should be moved to |
46123355 | 8192 | * this CPU. The amount of the imbalance is returned in env->imbalance. |
b6b12294 | 8193 | * |
cd96891d | 8194 | * @env: The load balancing environment. |
532cb4c4 | 8195 | * @sds: Statistics of the sched_domain which is to be packed |
532cb4c4 | 8196 | */ |
bd939f45 | 8197 | static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) |
532cb4c4 MN |
8198 | { |
8199 | int busiest_cpu; | |
8200 | ||
bd939f45 | 8201 | if (!(env->sd->flags & SD_ASYM_PACKING)) |
532cb4c4 MN |
8202 | return 0; |
8203 | ||
1f621e02 SD |
8204 | if (env->idle == CPU_NOT_IDLE) |
8205 | return 0; | |
8206 | ||
532cb4c4 MN |
8207 | if (!sds->busiest) |
8208 | return 0; | |
8209 | ||
afe06efd TC |
8210 | busiest_cpu = sds->busiest->asym_prefer_cpu; |
8211 | if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) | |
532cb4c4 MN |
8212 | return 0; |
8213 | ||
bd939f45 | 8214 | env->imbalance = DIV_ROUND_CLOSEST( |
63b2ca30 | 8215 | sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, |
ca8ce3d0 | 8216 | SCHED_CAPACITY_SCALE); |
bd939f45 | 8217 | |
532cb4c4 | 8218 | return 1; |
1e3c88bd PZ |
8219 | } |
8220 | ||
8221 | /** | |
8222 | * fix_small_imbalance - Calculate the minor imbalance that exists | |
8223 | * amongst the groups of a sched_domain, during | |
8224 | * load balancing. | |
cd96891d | 8225 | * @env: The load balancing environment. |
1e3c88bd | 8226 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 8227 | */ |
bd939f45 PZ |
8228 | static inline |
8229 | void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | |
1e3c88bd | 8230 | { |
63b2ca30 | 8231 | unsigned long tmp, capa_now = 0, capa_move = 0; |
1e3c88bd | 8232 | unsigned int imbn = 2; |
dd5feea1 | 8233 | unsigned long scaled_busy_load_per_task; |
56cf515b | 8234 | struct sg_lb_stats *local, *busiest; |
1e3c88bd | 8235 | |
56cf515b JK |
8236 | local = &sds->local_stat; |
8237 | busiest = &sds->busiest_stat; | |
1e3c88bd | 8238 | |
56cf515b JK |
8239 | if (!local->sum_nr_running) |
8240 | local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); | |
8241 | else if (busiest->load_per_task > local->load_per_task) | |
8242 | imbn = 1; | |
dd5feea1 | 8243 | |
56cf515b | 8244 | scaled_busy_load_per_task = |
ca8ce3d0 | 8245 | (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
63b2ca30 | 8246 | busiest->group_capacity; |
56cf515b | 8247 | |
3029ede3 VD |
8248 | if (busiest->avg_load + scaled_busy_load_per_task >= |
8249 | local->avg_load + (scaled_busy_load_per_task * imbn)) { | |
56cf515b | 8250 | env->imbalance = busiest->load_per_task; |
1e3c88bd PZ |
8251 | return; |
8252 | } | |
8253 | ||
8254 | /* | |
8255 | * OK, we don't have enough imbalance to justify moving tasks, | |
ced549fa | 8256 | * however we may be able to increase total CPU capacity used by |
1e3c88bd PZ |
8257 | * moving them. |
8258 | */ | |
8259 | ||
63b2ca30 | 8260 | capa_now += busiest->group_capacity * |
56cf515b | 8261 | min(busiest->load_per_task, busiest->avg_load); |
63b2ca30 | 8262 | capa_now += local->group_capacity * |
56cf515b | 8263 | min(local->load_per_task, local->avg_load); |
ca8ce3d0 | 8264 | capa_now /= SCHED_CAPACITY_SCALE; |
1e3c88bd PZ |
8265 | |
8266 | /* Amount of load we'd subtract */ | |
a2cd4260 | 8267 | if (busiest->avg_load > scaled_busy_load_per_task) { |
63b2ca30 | 8268 | capa_move += busiest->group_capacity * |
56cf515b | 8269 | min(busiest->load_per_task, |
a2cd4260 | 8270 | busiest->avg_load - scaled_busy_load_per_task); |
56cf515b | 8271 | } |
1e3c88bd PZ |
8272 | |
8273 | /* Amount of load we'd add */ | |
63b2ca30 | 8274 | if (busiest->avg_load * busiest->group_capacity < |
ca8ce3d0 | 8275 | busiest->load_per_task * SCHED_CAPACITY_SCALE) { |
63b2ca30 NP |
8276 | tmp = (busiest->avg_load * busiest->group_capacity) / |
8277 | local->group_capacity; | |
56cf515b | 8278 | } else { |
ca8ce3d0 | 8279 | tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
63b2ca30 | 8280 | local->group_capacity; |
56cf515b | 8281 | } |
63b2ca30 | 8282 | capa_move += local->group_capacity * |
3ae11c90 | 8283 | min(local->load_per_task, local->avg_load + tmp); |
ca8ce3d0 | 8284 | capa_move /= SCHED_CAPACITY_SCALE; |
1e3c88bd PZ |
8285 | |
8286 | /* Move if we gain throughput */ | |
63b2ca30 | 8287 | if (capa_move > capa_now) |
56cf515b | 8288 | env->imbalance = busiest->load_per_task; |
1e3c88bd PZ |
8289 | } |
8290 | ||
8291 | /** | |
8292 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
8293 | * groups of a given sched_domain during load balance. | |
bd939f45 | 8294 | * @env: load balance environment |
1e3c88bd | 8295 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 8296 | */ |
bd939f45 | 8297 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 8298 | { |
dd5feea1 | 8299 | unsigned long max_pull, load_above_capacity = ~0UL; |
56cf515b JK |
8300 | struct sg_lb_stats *local, *busiest; |
8301 | ||
8302 | local = &sds->local_stat; | |
56cf515b | 8303 | busiest = &sds->busiest_stat; |
dd5feea1 | 8304 | |
caeb178c | 8305 | if (busiest->group_type == group_imbalanced) { |
30ce5dab PZ |
8306 | /* |
8307 | * In the group_imb case we cannot rely on group-wide averages | |
97fb7a0a | 8308 | * to ensure CPU-load equilibrium, look at wider averages. XXX |
30ce5dab | 8309 | */ |
56cf515b JK |
8310 | busiest->load_per_task = |
8311 | min(busiest->load_per_task, sds->avg_load); | |
dd5feea1 SS |
8312 | } |
8313 | ||
1e3c88bd | 8314 | /* |
885e542c DE |
8315 | * Avg load of busiest sg can be less and avg load of local sg can |
8316 | * be greater than avg load across all sgs of sd because avg load | |
8317 | * factors in sg capacity and sgs with smaller group_type are | |
8318 | * skipped when updating the busiest sg: | |
1e3c88bd | 8319 | */ |
cad68e55 MR |
8320 | if (busiest->group_type != group_misfit_task && |
8321 | (busiest->avg_load <= sds->avg_load || | |
8322 | local->avg_load >= sds->avg_load)) { | |
bd939f45 PZ |
8323 | env->imbalance = 0; |
8324 | return fix_small_imbalance(env, sds); | |
1e3c88bd PZ |
8325 | } |
8326 | ||
9a5d9ba6 | 8327 | /* |
97fb7a0a | 8328 | * If there aren't any idle CPUs, avoid creating some. |
9a5d9ba6 PZ |
8329 | */ |
8330 | if (busiest->group_type == group_overloaded && | |
8331 | local->group_type == group_overloaded) { | |
1be0eb2a | 8332 | load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; |
cfa10334 | 8333 | if (load_above_capacity > busiest->group_capacity) { |
ea67821b | 8334 | load_above_capacity -= busiest->group_capacity; |
26656215 | 8335 | load_above_capacity *= scale_load_down(NICE_0_LOAD); |
cfa10334 MR |
8336 | load_above_capacity /= busiest->group_capacity; |
8337 | } else | |
ea67821b | 8338 | load_above_capacity = ~0UL; |
dd5feea1 SS |
8339 | } |
8340 | ||
8341 | /* | |
97fb7a0a | 8342 | * We're trying to get all the CPUs to the average_load, so we don't |
dd5feea1 | 8343 | * want to push ourselves above the average load, nor do we wish to |
97fb7a0a | 8344 | * reduce the max loaded CPU below the average load. At the same time, |
0a9b23ce DE |
8345 | * we also don't want to reduce the group load below the group |
8346 | * capacity. Thus we look for the minimum possible imbalance. | |
dd5feea1 | 8347 | */ |
30ce5dab | 8348 | max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); |
1e3c88bd PZ |
8349 | |
8350 | /* How much load to actually move to equalise the imbalance */ | |
56cf515b | 8351 | env->imbalance = min( |
63b2ca30 NP |
8352 | max_pull * busiest->group_capacity, |
8353 | (sds->avg_load - local->avg_load) * local->group_capacity | |
ca8ce3d0 | 8354 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd | 8355 | |
cad68e55 MR |
8356 | /* Boost imbalance to allow misfit task to be balanced. */ |
8357 | if (busiest->group_type == group_misfit_task) { | |
8358 | env->imbalance = max_t(long, env->imbalance, | |
8359 | busiest->group_misfit_task_load); | |
8360 | } | |
8361 | ||
1e3c88bd PZ |
8362 | /* |
8363 | * if *imbalance is less than the average load per runnable task | |
25985edc | 8364 | * there is no guarantee that any tasks will be moved so we'll have |
1e3c88bd PZ |
8365 | * a think about bumping its value to force at least one task to be |
8366 | * moved | |
8367 | */ | |
56cf515b | 8368 | if (env->imbalance < busiest->load_per_task) |
bd939f45 | 8369 | return fix_small_imbalance(env, sds); |
1e3c88bd | 8370 | } |
fab47622 | 8371 | |
1e3c88bd PZ |
8372 | /******* find_busiest_group() helpers end here *********************/ |
8373 | ||
8374 | /** | |
8375 | * find_busiest_group - Returns the busiest group within the sched_domain | |
0a9b23ce | 8376 | * if there is an imbalance. |
1e3c88bd PZ |
8377 | * |
8378 | * Also calculates the amount of weighted load which should be moved | |
8379 | * to restore balance. | |
8380 | * | |
cd96891d | 8381 | * @env: The load balancing environment. |
1e3c88bd | 8382 | * |
e69f6186 | 8383 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 8384 | */ |
56cf515b | 8385 | static struct sched_group *find_busiest_group(struct lb_env *env) |
1e3c88bd | 8386 | { |
56cf515b | 8387 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
8388 | struct sd_lb_stats sds; |
8389 | ||
147c5fc2 | 8390 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
8391 | |
8392 | /* | |
8393 | * Compute the various statistics relavent for load balancing at | |
8394 | * this level. | |
8395 | */ | |
23f0d209 | 8396 | update_sd_lb_stats(env, &sds); |
56cf515b JK |
8397 | local = &sds.local_stat; |
8398 | busiest = &sds.busiest_stat; | |
1e3c88bd | 8399 | |
ea67821b | 8400 | /* ASYM feature bypasses nice load balance check */ |
1f621e02 | 8401 | if (check_asym_packing(env, &sds)) |
532cb4c4 MN |
8402 | return sds.busiest; |
8403 | ||
cc57aa8f | 8404 | /* There is no busy sibling group to pull tasks from */ |
56cf515b | 8405 | if (!sds.busiest || busiest->sum_nr_running == 0) |
1e3c88bd PZ |
8406 | goto out_balanced; |
8407 | ||
90001d67 | 8408 | /* XXX broken for overlapping NUMA groups */ |
ca8ce3d0 NP |
8409 | sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) |
8410 | / sds.total_capacity; | |
b0432d8f | 8411 | |
866ab43e PZ |
8412 | /* |
8413 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 8414 | * work because they assume all things are equal, which typically |
866ab43e PZ |
8415 | * isn't true due to cpus_allowed constraints and the like. |
8416 | */ | |
caeb178c | 8417 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
8418 | goto force_balance; |
8419 | ||
583ffd99 BJ |
8420 | /* |
8421 | * When dst_cpu is idle, prevent SMP nice and/or asymmetric group | |
8422 | * capacities from resulting in underutilization due to avg_load. | |
8423 | */ | |
8424 | if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && | |
ea67821b | 8425 | busiest->group_no_capacity) |
fab47622 NR |
8426 | goto force_balance; |
8427 | ||
cad68e55 MR |
8428 | /* Misfit tasks should be dealt with regardless of the avg load */ |
8429 | if (busiest->group_type == group_misfit_task) | |
8430 | goto force_balance; | |
8431 | ||
cc57aa8f | 8432 | /* |
9c58c79a | 8433 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
8434 | * don't try and pull any tasks. |
8435 | */ | |
56cf515b | 8436 | if (local->avg_load >= busiest->avg_load) |
1e3c88bd PZ |
8437 | goto out_balanced; |
8438 | ||
cc57aa8f PZ |
8439 | /* |
8440 | * Don't pull any tasks if this group is already above the domain | |
8441 | * average load. | |
8442 | */ | |
56cf515b | 8443 | if (local->avg_load >= sds.avg_load) |
1e3c88bd PZ |
8444 | goto out_balanced; |
8445 | ||
bd939f45 | 8446 | if (env->idle == CPU_IDLE) { |
aae6d3dd | 8447 | /* |
97fb7a0a | 8448 | * This CPU is idle. If the busiest group is not overloaded |
43f4d666 | 8449 | * and there is no imbalance between this and busiest group |
97fb7a0a | 8450 | * wrt idle CPUs, it is balanced. The imbalance becomes |
43f4d666 VG |
8451 | * significant if the diff is greater than 1 otherwise we |
8452 | * might end up to just move the imbalance on another group | |
aae6d3dd | 8453 | */ |
43f4d666 VG |
8454 | if ((busiest->group_type != group_overloaded) && |
8455 | (local->idle_cpus <= (busiest->idle_cpus + 1))) | |
aae6d3dd | 8456 | goto out_balanced; |
c186fafe PZ |
8457 | } else { |
8458 | /* | |
8459 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | |
8460 | * imbalance_pct to be conservative. | |
8461 | */ | |
56cf515b JK |
8462 | if (100 * busiest->avg_load <= |
8463 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 8464 | goto out_balanced; |
aae6d3dd | 8465 | } |
1e3c88bd | 8466 | |
fab47622 | 8467 | force_balance: |
1e3c88bd | 8468 | /* Looks like there is an imbalance. Compute it */ |
cad68e55 | 8469 | env->src_grp_type = busiest->group_type; |
bd939f45 | 8470 | calculate_imbalance(env, &sds); |
bb3485c8 | 8471 | return env->imbalance ? sds.busiest : NULL; |
1e3c88bd PZ |
8472 | |
8473 | out_balanced: | |
bd939f45 | 8474 | env->imbalance = 0; |
1e3c88bd PZ |
8475 | return NULL; |
8476 | } | |
8477 | ||
8478 | /* | |
97fb7a0a | 8479 | * find_busiest_queue - find the busiest runqueue among the CPUs in the group. |
1e3c88bd | 8480 | */ |
bd939f45 | 8481 | static struct rq *find_busiest_queue(struct lb_env *env, |
b9403130 | 8482 | struct sched_group *group) |
1e3c88bd PZ |
8483 | { |
8484 | struct rq *busiest = NULL, *rq; | |
ced549fa | 8485 | unsigned long busiest_load = 0, busiest_capacity = 1; |
1e3c88bd PZ |
8486 | int i; |
8487 | ||
ae4df9d6 | 8488 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
ea67821b | 8489 | unsigned long capacity, wl; |
0ec8aa00 PZ |
8490 | enum fbq_type rt; |
8491 | ||
8492 | rq = cpu_rq(i); | |
8493 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 8494 | |
0ec8aa00 PZ |
8495 | /* |
8496 | * We classify groups/runqueues into three groups: | |
8497 | * - regular: there are !numa tasks | |
8498 | * - remote: there are numa tasks that run on the 'wrong' node | |
8499 | * - all: there is no distinction | |
8500 | * | |
8501 | * In order to avoid migrating ideally placed numa tasks, | |
8502 | * ignore those when there's better options. | |
8503 | * | |
8504 | * If we ignore the actual busiest queue to migrate another | |
8505 | * task, the next balance pass can still reduce the busiest | |
8506 | * queue by moving tasks around inside the node. | |
8507 | * | |
8508 | * If we cannot move enough load due to this classification | |
8509 | * the next pass will adjust the group classification and | |
8510 | * allow migration of more tasks. | |
8511 | * | |
8512 | * Both cases only affect the total convergence complexity. | |
8513 | */ | |
8514 | if (rt > env->fbq_type) | |
8515 | continue; | |
8516 | ||
cad68e55 MR |
8517 | /* |
8518 | * For ASYM_CPUCAPACITY domains with misfit tasks we simply | |
8519 | * seek the "biggest" misfit task. | |
8520 | */ | |
8521 | if (env->src_grp_type == group_misfit_task) { | |
8522 | if (rq->misfit_task_load > busiest_load) { | |
8523 | busiest_load = rq->misfit_task_load; | |
8524 | busiest = rq; | |
8525 | } | |
8526 | ||
8527 | continue; | |
8528 | } | |
8529 | ||
ced549fa | 8530 | capacity = capacity_of(i); |
9d5efe05 | 8531 | |
4ad3831a CR |
8532 | /* |
8533 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | |
8534 | * eventually lead to active_balancing high->low capacity. | |
8535 | * Higher per-CPU capacity is considered better than balancing | |
8536 | * average load. | |
8537 | */ | |
8538 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
8539 | capacity_of(env->dst_cpu) < capacity && | |
8540 | rq->nr_running == 1) | |
8541 | continue; | |
8542 | ||
c7132dd6 | 8543 | wl = weighted_cpuload(rq); |
1e3c88bd | 8544 | |
6e40f5bb TG |
8545 | /* |
8546 | * When comparing with imbalance, use weighted_cpuload() | |
97fb7a0a | 8547 | * which is not scaled with the CPU capacity. |
6e40f5bb | 8548 | */ |
ea67821b VG |
8549 | |
8550 | if (rq->nr_running == 1 && wl > env->imbalance && | |
8551 | !check_cpu_capacity(rq, env->sd)) | |
1e3c88bd PZ |
8552 | continue; |
8553 | ||
6e40f5bb | 8554 | /* |
97fb7a0a IM |
8555 | * For the load comparisons with the other CPU's, consider |
8556 | * the weighted_cpuload() scaled with the CPU capacity, so | |
8557 | * that the load can be moved away from the CPU that is | |
ced549fa | 8558 | * potentially running at a lower capacity. |
95a79b80 | 8559 | * |
ced549fa | 8560 | * Thus we're looking for max(wl_i / capacity_i), crosswise |
95a79b80 | 8561 | * multiplication to rid ourselves of the division works out |
ced549fa NP |
8562 | * to: wl_i * capacity_j > wl_j * capacity_i; where j is |
8563 | * our previous maximum. | |
6e40f5bb | 8564 | */ |
ced549fa | 8565 | if (wl * busiest_capacity > busiest_load * capacity) { |
95a79b80 | 8566 | busiest_load = wl; |
ced549fa | 8567 | busiest_capacity = capacity; |
1e3c88bd PZ |
8568 | busiest = rq; |
8569 | } | |
8570 | } | |
8571 | ||
8572 | return busiest; | |
8573 | } | |
8574 | ||
8575 | /* | |
8576 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
8577 | * so long as it is large enough. | |
8578 | */ | |
8579 | #define MAX_PINNED_INTERVAL 512 | |
8580 | ||
bd939f45 | 8581 | static int need_active_balance(struct lb_env *env) |
1af3ed3d | 8582 | { |
bd939f45 PZ |
8583 | struct sched_domain *sd = env->sd; |
8584 | ||
8585 | if (env->idle == CPU_NEWLY_IDLE) { | |
532cb4c4 MN |
8586 | |
8587 | /* | |
8588 | * ASYM_PACKING needs to force migrate tasks from busy but | |
afe06efd TC |
8589 | * lower priority CPUs in order to pack all tasks in the |
8590 | * highest priority CPUs. | |
532cb4c4 | 8591 | */ |
afe06efd TC |
8592 | if ((sd->flags & SD_ASYM_PACKING) && |
8593 | sched_asym_prefer(env->dst_cpu, env->src_cpu)) | |
532cb4c4 | 8594 | return 1; |
1af3ed3d PZ |
8595 | } |
8596 | ||
1aaf90a4 VG |
8597 | /* |
8598 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
8599 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
8600 | * because of other sched_class or IRQs if more capacity stays | |
8601 | * available on dst_cpu. | |
8602 | */ | |
8603 | if ((env->idle != CPU_NOT_IDLE) && | |
8604 | (env->src_rq->cfs.h_nr_running == 1)) { | |
8605 | if ((check_cpu_capacity(env->src_rq, sd)) && | |
8606 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
8607 | return 1; | |
8608 | } | |
8609 | ||
cad68e55 MR |
8610 | if (env->src_grp_type == group_misfit_task) |
8611 | return 1; | |
8612 | ||
1af3ed3d PZ |
8613 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
8614 | } | |
8615 | ||
969c7921 TH |
8616 | static int active_load_balance_cpu_stop(void *data); |
8617 | ||
23f0d209 JK |
8618 | static int should_we_balance(struct lb_env *env) |
8619 | { | |
8620 | struct sched_group *sg = env->sd->groups; | |
23f0d209 JK |
8621 | int cpu, balance_cpu = -1; |
8622 | ||
024c9d2f PZ |
8623 | /* |
8624 | * Ensure the balancing environment is consistent; can happen | |
8625 | * when the softirq triggers 'during' hotplug. | |
8626 | */ | |
8627 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | |
8628 | return 0; | |
8629 | ||
23f0d209 | 8630 | /* |
97fb7a0a | 8631 | * In the newly idle case, we will allow all the CPUs |
23f0d209 JK |
8632 | * to do the newly idle load balance. |
8633 | */ | |
8634 | if (env->idle == CPU_NEWLY_IDLE) | |
8635 | return 1; | |
8636 | ||
97fb7a0a | 8637 | /* Try to find first idle CPU */ |
e5c14b1f | 8638 | for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { |
af218122 | 8639 | if (!idle_cpu(cpu)) |
23f0d209 JK |
8640 | continue; |
8641 | ||
8642 | balance_cpu = cpu; | |
8643 | break; | |
8644 | } | |
8645 | ||
8646 | if (balance_cpu == -1) | |
8647 | balance_cpu = group_balance_cpu(sg); | |
8648 | ||
8649 | /* | |
97fb7a0a | 8650 | * First idle CPU or the first CPU(busiest) in this sched group |
23f0d209 JK |
8651 | * is eligible for doing load balancing at this and above domains. |
8652 | */ | |
b0cff9d8 | 8653 | return balance_cpu == env->dst_cpu; |
23f0d209 JK |
8654 | } |
8655 | ||
1e3c88bd PZ |
8656 | /* |
8657 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
8658 | * tasks if there is an imbalance. | |
8659 | */ | |
8660 | static int load_balance(int this_cpu, struct rq *this_rq, | |
8661 | struct sched_domain *sd, enum cpu_idle_type idle, | |
23f0d209 | 8662 | int *continue_balancing) |
1e3c88bd | 8663 | { |
88b8dac0 | 8664 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 8665 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 8666 | struct sched_group *group; |
1e3c88bd | 8667 | struct rq *busiest; |
8a8c69c3 | 8668 | struct rq_flags rf; |
4ba29684 | 8669 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
1e3c88bd | 8670 | |
8e45cb54 PZ |
8671 | struct lb_env env = { |
8672 | .sd = sd, | |
ddcdf6e7 PZ |
8673 | .dst_cpu = this_cpu, |
8674 | .dst_rq = this_rq, | |
ae4df9d6 | 8675 | .dst_grpmask = sched_group_span(sd->groups), |
8e45cb54 | 8676 | .idle = idle, |
eb95308e | 8677 | .loop_break = sched_nr_migrate_break, |
b9403130 | 8678 | .cpus = cpus, |
0ec8aa00 | 8679 | .fbq_type = all, |
163122b7 | 8680 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
8681 | }; |
8682 | ||
65a4433a | 8683 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 8684 | |
ae92882e | 8685 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
8686 | |
8687 | redo: | |
23f0d209 JK |
8688 | if (!should_we_balance(&env)) { |
8689 | *continue_balancing = 0; | |
1e3c88bd | 8690 | goto out_balanced; |
23f0d209 | 8691 | } |
1e3c88bd | 8692 | |
23f0d209 | 8693 | group = find_busiest_group(&env); |
1e3c88bd | 8694 | if (!group) { |
ae92882e | 8695 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
8696 | goto out_balanced; |
8697 | } | |
8698 | ||
b9403130 | 8699 | busiest = find_busiest_queue(&env, group); |
1e3c88bd | 8700 | if (!busiest) { |
ae92882e | 8701 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
8702 | goto out_balanced; |
8703 | } | |
8704 | ||
78feefc5 | 8705 | BUG_ON(busiest == env.dst_rq); |
1e3c88bd | 8706 | |
ae92882e | 8707 | schedstat_add(sd->lb_imbalance[idle], env.imbalance); |
1e3c88bd | 8708 | |
1aaf90a4 VG |
8709 | env.src_cpu = busiest->cpu; |
8710 | env.src_rq = busiest; | |
8711 | ||
1e3c88bd PZ |
8712 | ld_moved = 0; |
8713 | if (busiest->nr_running > 1) { | |
8714 | /* | |
8715 | * Attempt to move tasks. If find_busiest_group has found | |
8716 | * an imbalance but busiest->nr_running <= 1, the group is | |
8717 | * still unbalanced. ld_moved simply stays zero, so it is | |
8718 | * correctly treated as an imbalance. | |
8719 | */ | |
8e45cb54 | 8720 | env.flags |= LBF_ALL_PINNED; |
c82513e5 | 8721 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 8722 | |
5d6523eb | 8723 | more_balance: |
8a8c69c3 | 8724 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 8725 | update_rq_clock(busiest); |
88b8dac0 SV |
8726 | |
8727 | /* | |
8728 | * cur_ld_moved - load moved in current iteration | |
8729 | * ld_moved - cumulative load moved across iterations | |
8730 | */ | |
163122b7 | 8731 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
8732 | |
8733 | /* | |
163122b7 KT |
8734 | * We've detached some tasks from busiest_rq. Every |
8735 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
8736 | * unlock busiest->lock, and we are able to be sure | |
8737 | * that nobody can manipulate the tasks in parallel. | |
8738 | * See task_rq_lock() family for the details. | |
1e3c88bd | 8739 | */ |
163122b7 | 8740 | |
8a8c69c3 | 8741 | rq_unlock(busiest, &rf); |
163122b7 KT |
8742 | |
8743 | if (cur_ld_moved) { | |
8744 | attach_tasks(&env); | |
8745 | ld_moved += cur_ld_moved; | |
8746 | } | |
8747 | ||
8a8c69c3 | 8748 | local_irq_restore(rf.flags); |
88b8dac0 | 8749 | |
f1cd0858 JK |
8750 | if (env.flags & LBF_NEED_BREAK) { |
8751 | env.flags &= ~LBF_NEED_BREAK; | |
8752 | goto more_balance; | |
8753 | } | |
8754 | ||
88b8dac0 SV |
8755 | /* |
8756 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
8757 | * us and move them to an alternate dst_cpu in our sched_group | |
8758 | * where they can run. The upper limit on how many times we | |
97fb7a0a | 8759 | * iterate on same src_cpu is dependent on number of CPUs in our |
88b8dac0 SV |
8760 | * sched_group. |
8761 | * | |
8762 | * This changes load balance semantics a bit on who can move | |
8763 | * load to a given_cpu. In addition to the given_cpu itself | |
8764 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
8765 | * nohz-idle), we now have balance_cpu in a position to move | |
8766 | * load to given_cpu. In rare situations, this may cause | |
8767 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
8768 | * _independently_ and at _same_ time to move some load to | |
8769 | * given_cpu) causing exceess load to be moved to given_cpu. | |
8770 | * This however should not happen so much in practice and | |
8771 | * moreover subsequent load balance cycles should correct the | |
8772 | * excess load moved. | |
8773 | */ | |
6263322c | 8774 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 8775 | |
97fb7a0a | 8776 | /* Prevent to re-select dst_cpu via env's CPUs */ |
7aff2e3a VD |
8777 | cpumask_clear_cpu(env.dst_cpu, env.cpus); |
8778 | ||
78feefc5 | 8779 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 8780 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 8781 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 SV |
8782 | env.loop = 0; |
8783 | env.loop_break = sched_nr_migrate_break; | |
e02e60c1 | 8784 | |
88b8dac0 SV |
8785 | /* |
8786 | * Go back to "more_balance" rather than "redo" since we | |
8787 | * need to continue with same src_cpu. | |
8788 | */ | |
8789 | goto more_balance; | |
8790 | } | |
1e3c88bd | 8791 | |
6263322c PZ |
8792 | /* |
8793 | * We failed to reach balance because of affinity. | |
8794 | */ | |
8795 | if (sd_parent) { | |
63b2ca30 | 8796 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 8797 | |
afdeee05 | 8798 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 8799 | *group_imbalance = 1; |
6263322c PZ |
8800 | } |
8801 | ||
1e3c88bd | 8802 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 8803 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
1e3c88bd | 8804 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
8805 | /* |
8806 | * Attempting to continue load balancing at the current | |
8807 | * sched_domain level only makes sense if there are | |
8808 | * active CPUs remaining as possible busiest CPUs to | |
8809 | * pull load from which are not contained within the | |
8810 | * destination group that is receiving any migrated | |
8811 | * load. | |
8812 | */ | |
8813 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 PN |
8814 | env.loop = 0; |
8815 | env.loop_break = sched_nr_migrate_break; | |
1e3c88bd | 8816 | goto redo; |
bbf18b19 | 8817 | } |
afdeee05 | 8818 | goto out_all_pinned; |
1e3c88bd PZ |
8819 | } |
8820 | } | |
8821 | ||
8822 | if (!ld_moved) { | |
ae92882e | 8823 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
8824 | /* |
8825 | * Increment the failure counter only on periodic balance. | |
8826 | * We do not want newidle balance, which can be very | |
8827 | * frequent, pollute the failure counter causing | |
8828 | * excessive cache_hot migrations and active balances. | |
8829 | */ | |
8830 | if (idle != CPU_NEWLY_IDLE) | |
8831 | sd->nr_balance_failed++; | |
1e3c88bd | 8832 | |
bd939f45 | 8833 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
8834 | unsigned long flags; |
8835 | ||
1e3c88bd PZ |
8836 | raw_spin_lock_irqsave(&busiest->lock, flags); |
8837 | ||
97fb7a0a IM |
8838 | /* |
8839 | * Don't kick the active_load_balance_cpu_stop, | |
8840 | * if the curr task on busiest CPU can't be | |
8841 | * moved to this_cpu: | |
1e3c88bd | 8842 | */ |
0c98d344 | 8843 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { |
1e3c88bd PZ |
8844 | raw_spin_unlock_irqrestore(&busiest->lock, |
8845 | flags); | |
8e45cb54 | 8846 | env.flags |= LBF_ALL_PINNED; |
1e3c88bd PZ |
8847 | goto out_one_pinned; |
8848 | } | |
8849 | ||
969c7921 TH |
8850 | /* |
8851 | * ->active_balance synchronizes accesses to | |
8852 | * ->active_balance_work. Once set, it's cleared | |
8853 | * only after active load balance is finished. | |
8854 | */ | |
1e3c88bd PZ |
8855 | if (!busiest->active_balance) { |
8856 | busiest->active_balance = 1; | |
8857 | busiest->push_cpu = this_cpu; | |
8858 | active_balance = 1; | |
8859 | } | |
8860 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | |
969c7921 | 8861 | |
bd939f45 | 8862 | if (active_balance) { |
969c7921 TH |
8863 | stop_one_cpu_nowait(cpu_of(busiest), |
8864 | active_load_balance_cpu_stop, busiest, | |
8865 | &busiest->active_balance_work); | |
bd939f45 | 8866 | } |
1e3c88bd | 8867 | |
d02c0711 | 8868 | /* We've kicked active balancing, force task migration. */ |
1e3c88bd PZ |
8869 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
8870 | } | |
8871 | } else | |
8872 | sd->nr_balance_failed = 0; | |
8873 | ||
8874 | if (likely(!active_balance)) { | |
8875 | /* We were unbalanced, so reset the balancing interval */ | |
8876 | sd->balance_interval = sd->min_interval; | |
8877 | } else { | |
8878 | /* | |
8879 | * If we've begun active balancing, start to back off. This | |
8880 | * case may not be covered by the all_pinned logic if there | |
8881 | * is only 1 task on the busy runqueue (because we don't call | |
163122b7 | 8882 | * detach_tasks). |
1e3c88bd PZ |
8883 | */ |
8884 | if (sd->balance_interval < sd->max_interval) | |
8885 | sd->balance_interval *= 2; | |
8886 | } | |
8887 | ||
1e3c88bd PZ |
8888 | goto out; |
8889 | ||
8890 | out_balanced: | |
afdeee05 VG |
8891 | /* |
8892 | * We reach balance although we may have faced some affinity | |
8893 | * constraints. Clear the imbalance flag if it was set. | |
8894 | */ | |
8895 | if (sd_parent) { | |
8896 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | |
8897 | ||
8898 | if (*group_imbalance) | |
8899 | *group_imbalance = 0; | |
8900 | } | |
8901 | ||
8902 | out_all_pinned: | |
8903 | /* | |
8904 | * We reach balance because all tasks are pinned at this level so | |
8905 | * we can't migrate them. Let the imbalance flag set so parent level | |
8906 | * can try to migrate them. | |
8907 | */ | |
ae92882e | 8908 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
8909 | |
8910 | sd->nr_balance_failed = 0; | |
8911 | ||
8912 | out_one_pinned: | |
8913 | /* tune up the balancing interval */ | |
8e45cb54 | 8914 | if (((env.flags & LBF_ALL_PINNED) && |
5b54b56b | 8915 | sd->balance_interval < MAX_PINNED_INTERVAL) || |
1e3c88bd PZ |
8916 | (sd->balance_interval < sd->max_interval)) |
8917 | sd->balance_interval *= 2; | |
8918 | ||
46e49b38 | 8919 | ld_moved = 0; |
1e3c88bd | 8920 | out: |
1e3c88bd PZ |
8921 | return ld_moved; |
8922 | } | |
8923 | ||
52a08ef1 JL |
8924 | static inline unsigned long |
8925 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
8926 | { | |
8927 | unsigned long interval = sd->balance_interval; | |
8928 | ||
8929 | if (cpu_busy) | |
8930 | interval *= sd->busy_factor; | |
8931 | ||
8932 | /* scale ms to jiffies */ | |
8933 | interval = msecs_to_jiffies(interval); | |
8934 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
8935 | ||
8936 | return interval; | |
8937 | } | |
8938 | ||
8939 | static inline void | |
31851a98 | 8940 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
8941 | { |
8942 | unsigned long interval, next; | |
8943 | ||
31851a98 LY |
8944 | /* used by idle balance, so cpu_busy = 0 */ |
8945 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
8946 | next = sd->last_balance + interval; |
8947 | ||
8948 | if (time_after(*next_balance, next)) | |
8949 | *next_balance = next; | |
8950 | } | |
8951 | ||
1e3c88bd | 8952 | /* |
97fb7a0a | 8953 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
969c7921 TH |
8954 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
8955 | * least 1 task to be running on each physical CPU where possible, and | |
8956 | * avoids physical / logical imbalances. | |
1e3c88bd | 8957 | */ |
969c7921 | 8958 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 8959 | { |
969c7921 TH |
8960 | struct rq *busiest_rq = data; |
8961 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 8962 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 8963 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 8964 | struct sched_domain *sd; |
e5673f28 | 8965 | struct task_struct *p = NULL; |
8a8c69c3 | 8966 | struct rq_flags rf; |
969c7921 | 8967 | |
8a8c69c3 | 8968 | rq_lock_irq(busiest_rq, &rf); |
edd8e41d PZ |
8969 | /* |
8970 | * Between queueing the stop-work and running it is a hole in which | |
8971 | * CPUs can become inactive. We should not move tasks from or to | |
8972 | * inactive CPUs. | |
8973 | */ | |
8974 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | |
8975 | goto out_unlock; | |
969c7921 | 8976 | |
97fb7a0a | 8977 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
969c7921 TH |
8978 | if (unlikely(busiest_cpu != smp_processor_id() || |
8979 | !busiest_rq->active_balance)) | |
8980 | goto out_unlock; | |
1e3c88bd PZ |
8981 | |
8982 | /* Is there any task to move? */ | |
8983 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 8984 | goto out_unlock; |
1e3c88bd PZ |
8985 | |
8986 | /* | |
8987 | * This condition is "impossible", if it occurs | |
8988 | * we need to fix it. Originally reported by | |
97fb7a0a | 8989 | * Bjorn Helgaas on a 128-CPU setup. |
1e3c88bd PZ |
8990 | */ |
8991 | BUG_ON(busiest_rq == target_rq); | |
8992 | ||
1e3c88bd | 8993 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 8994 | rcu_read_lock(); |
1e3c88bd PZ |
8995 | for_each_domain(target_cpu, sd) { |
8996 | if ((sd->flags & SD_LOAD_BALANCE) && | |
8997 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | |
8998 | break; | |
8999 | } | |
9000 | ||
9001 | if (likely(sd)) { | |
8e45cb54 PZ |
9002 | struct lb_env env = { |
9003 | .sd = sd, | |
ddcdf6e7 PZ |
9004 | .dst_cpu = target_cpu, |
9005 | .dst_rq = target_rq, | |
9006 | .src_cpu = busiest_rq->cpu, | |
9007 | .src_rq = busiest_rq, | |
8e45cb54 | 9008 | .idle = CPU_IDLE, |
65a4433a JH |
9009 | /* |
9010 | * can_migrate_task() doesn't need to compute new_dst_cpu | |
9011 | * for active balancing. Since we have CPU_IDLE, but no | |
9012 | * @dst_grpmask we need to make that test go away with lying | |
9013 | * about DST_PINNED. | |
9014 | */ | |
9015 | .flags = LBF_DST_PINNED, | |
8e45cb54 PZ |
9016 | }; |
9017 | ||
ae92882e | 9018 | schedstat_inc(sd->alb_count); |
3bed5e21 | 9019 | update_rq_clock(busiest_rq); |
1e3c88bd | 9020 | |
e5673f28 | 9021 | p = detach_one_task(&env); |
d02c0711 | 9022 | if (p) { |
ae92882e | 9023 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
9024 | /* Active balancing done, reset the failure counter. */ |
9025 | sd->nr_balance_failed = 0; | |
9026 | } else { | |
ae92882e | 9027 | schedstat_inc(sd->alb_failed); |
d02c0711 | 9028 | } |
1e3c88bd | 9029 | } |
dce840a0 | 9030 | rcu_read_unlock(); |
969c7921 TH |
9031 | out_unlock: |
9032 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 9033 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
9034 | |
9035 | if (p) | |
9036 | attach_one_task(target_rq, p); | |
9037 | ||
9038 | local_irq_enable(); | |
9039 | ||
969c7921 | 9040 | return 0; |
1e3c88bd PZ |
9041 | } |
9042 | ||
af3fe03c PZ |
9043 | static DEFINE_SPINLOCK(balancing); |
9044 | ||
9045 | /* | |
9046 | * Scale the max load_balance interval with the number of CPUs in the system. | |
9047 | * This trades load-balance latency on larger machines for less cross talk. | |
9048 | */ | |
9049 | void update_max_interval(void) | |
9050 | { | |
9051 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
9052 | } | |
9053 | ||
9054 | /* | |
9055 | * It checks each scheduling domain to see if it is due to be balanced, | |
9056 | * and initiates a balancing operation if so. | |
9057 | * | |
9058 | * Balancing parameters are set up in init_sched_domains. | |
9059 | */ | |
9060 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) | |
9061 | { | |
9062 | int continue_balancing = 1; | |
9063 | int cpu = rq->cpu; | |
9064 | unsigned long interval; | |
9065 | struct sched_domain *sd; | |
9066 | /* Earliest time when we have to do rebalance again */ | |
9067 | unsigned long next_balance = jiffies + 60*HZ; | |
9068 | int update_next_balance = 0; | |
9069 | int need_serialize, need_decay = 0; | |
9070 | u64 max_cost = 0; | |
9071 | ||
9072 | rcu_read_lock(); | |
9073 | for_each_domain(cpu, sd) { | |
9074 | /* | |
9075 | * Decay the newidle max times here because this is a regular | |
9076 | * visit to all the domains. Decay ~1% per second. | |
9077 | */ | |
9078 | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | |
9079 | sd->max_newidle_lb_cost = | |
9080 | (sd->max_newidle_lb_cost * 253) / 256; | |
9081 | sd->next_decay_max_lb_cost = jiffies + HZ; | |
9082 | need_decay = 1; | |
9083 | } | |
9084 | max_cost += sd->max_newidle_lb_cost; | |
9085 | ||
9086 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
9087 | continue; | |
9088 | ||
9089 | /* | |
9090 | * Stop the load balance at this level. There is another | |
9091 | * CPU in our sched group which is doing load balancing more | |
9092 | * actively. | |
9093 | */ | |
9094 | if (!continue_balancing) { | |
9095 | if (need_decay) | |
9096 | continue; | |
9097 | break; | |
9098 | } | |
9099 | ||
9100 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | |
9101 | ||
9102 | need_serialize = sd->flags & SD_SERIALIZE; | |
9103 | if (need_serialize) { | |
9104 | if (!spin_trylock(&balancing)) | |
9105 | goto out; | |
9106 | } | |
9107 | ||
9108 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
9109 | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { | |
9110 | /* | |
9111 | * The LBF_DST_PINNED logic could have changed | |
9112 | * env->dst_cpu, so we can't know our idle | |
9113 | * state even if we migrated tasks. Update it. | |
9114 | */ | |
9115 | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; | |
9116 | } | |
9117 | sd->last_balance = jiffies; | |
9118 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | |
9119 | } | |
9120 | if (need_serialize) | |
9121 | spin_unlock(&balancing); | |
9122 | out: | |
9123 | if (time_after(next_balance, sd->last_balance + interval)) { | |
9124 | next_balance = sd->last_balance + interval; | |
9125 | update_next_balance = 1; | |
9126 | } | |
9127 | } | |
9128 | if (need_decay) { | |
9129 | /* | |
9130 | * Ensure the rq-wide value also decays but keep it at a | |
9131 | * reasonable floor to avoid funnies with rq->avg_idle. | |
9132 | */ | |
9133 | rq->max_idle_balance_cost = | |
9134 | max((u64)sysctl_sched_migration_cost, max_cost); | |
9135 | } | |
9136 | rcu_read_unlock(); | |
9137 | ||
9138 | /* | |
9139 | * next_balance will be updated only when there is a need. | |
9140 | * When the cpu is attached to null domain for ex, it will not be | |
9141 | * updated. | |
9142 | */ | |
9143 | if (likely(update_next_balance)) { | |
9144 | rq->next_balance = next_balance; | |
9145 | ||
9146 | #ifdef CONFIG_NO_HZ_COMMON | |
9147 | /* | |
9148 | * If this CPU has been elected to perform the nohz idle | |
9149 | * balance. Other idle CPUs have already rebalanced with | |
9150 | * nohz_idle_balance() and nohz.next_balance has been | |
9151 | * updated accordingly. This CPU is now running the idle load | |
9152 | * balance for itself and we need to update the | |
9153 | * nohz.next_balance accordingly. | |
9154 | */ | |
9155 | if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) | |
9156 | nohz.next_balance = rq->next_balance; | |
9157 | #endif | |
9158 | } | |
9159 | } | |
9160 | ||
d987fc7f MG |
9161 | static inline int on_null_domain(struct rq *rq) |
9162 | { | |
9163 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
9164 | } | |
9165 | ||
3451d024 | 9166 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 VP |
9167 | /* |
9168 | * idle load balancing details | |
83cd4fe2 VP |
9169 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
9170 | * needed, they will kick the idle load balancer, which then does idle | |
9171 | * load balancing for all the idle CPUs. | |
9172 | */ | |
1e3c88bd | 9173 | |
3dd0337d | 9174 | static inline int find_new_ilb(void) |
1e3c88bd | 9175 | { |
0b005cf5 | 9176 | int ilb = cpumask_first(nohz.idle_cpus_mask); |
1e3c88bd | 9177 | |
786d6dc7 SS |
9178 | if (ilb < nr_cpu_ids && idle_cpu(ilb)) |
9179 | return ilb; | |
9180 | ||
9181 | return nr_cpu_ids; | |
1e3c88bd | 9182 | } |
1e3c88bd | 9183 | |
83cd4fe2 VP |
9184 | /* |
9185 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | |
9186 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | |
9187 | * CPU (if there is one). | |
9188 | */ | |
a4064fb6 | 9189 | static void kick_ilb(unsigned int flags) |
83cd4fe2 VP |
9190 | { |
9191 | int ilb_cpu; | |
9192 | ||
9193 | nohz.next_balance++; | |
9194 | ||
3dd0337d | 9195 | ilb_cpu = find_new_ilb(); |
83cd4fe2 | 9196 | |
0b005cf5 SS |
9197 | if (ilb_cpu >= nr_cpu_ids) |
9198 | return; | |
83cd4fe2 | 9199 | |
a4064fb6 | 9200 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
b7031a02 | 9201 | if (flags & NOHZ_KICK_MASK) |
1c792db7 | 9202 | return; |
4550487a | 9203 | |
1c792db7 SS |
9204 | /* |
9205 | * Use smp_send_reschedule() instead of resched_cpu(). | |
97fb7a0a | 9206 | * This way we generate a sched IPI on the target CPU which |
1c792db7 SS |
9207 | * is idle. And the softirq performing nohz idle load balance |
9208 | * will be run before returning from the IPI. | |
9209 | */ | |
9210 | smp_send_reschedule(ilb_cpu); | |
4550487a PZ |
9211 | } |
9212 | ||
9213 | /* | |
9214 | * Current heuristic for kicking the idle load balancer in the presence | |
9215 | * of an idle cpu in the system. | |
9216 | * - This rq has more than one task. | |
9217 | * - This rq has at least one CFS task and the capacity of the CPU is | |
9218 | * significantly reduced because of RT tasks or IRQs. | |
9219 | * - At parent of LLC scheduler domain level, this cpu's scheduler group has | |
9220 | * multiple busy cpu. | |
9221 | * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler | |
9222 | * domain span are idle. | |
9223 | */ | |
9224 | static void nohz_balancer_kick(struct rq *rq) | |
9225 | { | |
9226 | unsigned long now = jiffies; | |
9227 | struct sched_domain_shared *sds; | |
9228 | struct sched_domain *sd; | |
9229 | int nr_busy, i, cpu = rq->cpu; | |
a4064fb6 | 9230 | unsigned int flags = 0; |
4550487a PZ |
9231 | |
9232 | if (unlikely(rq->idle_balance)) | |
9233 | return; | |
9234 | ||
9235 | /* | |
9236 | * We may be recently in ticked or tickless idle mode. At the first | |
9237 | * busy tick after returning from idle, we will update the busy stats. | |
9238 | */ | |
00357f5e | 9239 | nohz_balance_exit_idle(rq); |
4550487a PZ |
9240 | |
9241 | /* | |
9242 | * None are in tickless mode and hence no need for NOHZ idle load | |
9243 | * balancing. | |
9244 | */ | |
9245 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
9246 | return; | |
9247 | ||
f643ea22 VG |
9248 | if (READ_ONCE(nohz.has_blocked) && |
9249 | time_after(now, READ_ONCE(nohz.next_blocked))) | |
a4064fb6 PZ |
9250 | flags = NOHZ_STATS_KICK; |
9251 | ||
4550487a | 9252 | if (time_before(now, nohz.next_balance)) |
a4064fb6 | 9253 | goto out; |
4550487a | 9254 | |
5fbdfae5 | 9255 | if (rq->nr_running >= 2 || rq->misfit_task_load) { |
a4064fb6 | 9256 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9257 | goto out; |
9258 | } | |
9259 | ||
9260 | rcu_read_lock(); | |
9261 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
9262 | if (sds) { | |
9263 | /* | |
9264 | * XXX: write a coherent comment on why we do this. | |
9265 | * See also: http://lkml.kernel.org/r/[email protected] | |
9266 | */ | |
9267 | nr_busy = atomic_read(&sds->nr_busy_cpus); | |
9268 | if (nr_busy > 1) { | |
a4064fb6 | 9269 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9270 | goto unlock; |
9271 | } | |
9272 | ||
9273 | } | |
9274 | ||
9275 | sd = rcu_dereference(rq->sd); | |
9276 | if (sd) { | |
9277 | if ((rq->cfs.h_nr_running >= 1) && | |
9278 | check_cpu_capacity(rq, sd)) { | |
a4064fb6 | 9279 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9280 | goto unlock; |
9281 | } | |
9282 | } | |
9283 | ||
9284 | sd = rcu_dereference(per_cpu(sd_asym, cpu)); | |
9285 | if (sd) { | |
9286 | for_each_cpu(i, sched_domain_span(sd)) { | |
9287 | if (i == cpu || | |
9288 | !cpumask_test_cpu(i, nohz.idle_cpus_mask)) | |
9289 | continue; | |
9290 | ||
9291 | if (sched_asym_prefer(i, cpu)) { | |
a4064fb6 | 9292 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9293 | goto unlock; |
9294 | } | |
9295 | } | |
9296 | } | |
9297 | unlock: | |
9298 | rcu_read_unlock(); | |
9299 | out: | |
a4064fb6 PZ |
9300 | if (flags) |
9301 | kick_ilb(flags); | |
83cd4fe2 VP |
9302 | } |
9303 | ||
00357f5e | 9304 | static void set_cpu_sd_state_busy(int cpu) |
71325960 | 9305 | { |
00357f5e | 9306 | struct sched_domain *sd; |
a22e47a4 | 9307 | |
00357f5e PZ |
9308 | rcu_read_lock(); |
9309 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | |
a22e47a4 | 9310 | |
00357f5e PZ |
9311 | if (!sd || !sd->nohz_idle) |
9312 | goto unlock; | |
9313 | sd->nohz_idle = 0; | |
9314 | ||
9315 | atomic_inc(&sd->shared->nr_busy_cpus); | |
9316 | unlock: | |
9317 | rcu_read_unlock(); | |
71325960 SS |
9318 | } |
9319 | ||
00357f5e PZ |
9320 | void nohz_balance_exit_idle(struct rq *rq) |
9321 | { | |
9322 | SCHED_WARN_ON(rq != this_rq()); | |
9323 | ||
9324 | if (likely(!rq->nohz_tick_stopped)) | |
9325 | return; | |
9326 | ||
9327 | rq->nohz_tick_stopped = 0; | |
9328 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | |
9329 | atomic_dec(&nohz.nr_cpus); | |
9330 | ||
9331 | set_cpu_sd_state_busy(rq->cpu); | |
9332 | } | |
9333 | ||
9334 | static void set_cpu_sd_state_idle(int cpu) | |
69e1e811 SS |
9335 | { |
9336 | struct sched_domain *sd; | |
69e1e811 | 9337 | |
69e1e811 | 9338 | rcu_read_lock(); |
0e369d75 | 9339 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
9340 | |
9341 | if (!sd || sd->nohz_idle) | |
9342 | goto unlock; | |
9343 | sd->nohz_idle = 1; | |
9344 | ||
0e369d75 | 9345 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 9346 | unlock: |
69e1e811 SS |
9347 | rcu_read_unlock(); |
9348 | } | |
9349 | ||
1e3c88bd | 9350 | /* |
97fb7a0a | 9351 | * This routine will record that the CPU is going idle with tick stopped. |
0b005cf5 | 9352 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 9353 | */ |
c1cc017c | 9354 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 9355 | { |
00357f5e PZ |
9356 | struct rq *rq = cpu_rq(cpu); |
9357 | ||
9358 | SCHED_WARN_ON(cpu != smp_processor_id()); | |
9359 | ||
97fb7a0a | 9360 | /* If this CPU is going down, then nothing needs to be done: */ |
71325960 SS |
9361 | if (!cpu_active(cpu)) |
9362 | return; | |
9363 | ||
387bc8b5 | 9364 | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ |
de201559 | 9365 | if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) |
387bc8b5 FW |
9366 | return; |
9367 | ||
f643ea22 VG |
9368 | /* |
9369 | * Can be set safely without rq->lock held | |
9370 | * If a clear happens, it will have evaluated last additions because | |
9371 | * rq->lock is held during the check and the clear | |
9372 | */ | |
9373 | rq->has_blocked_load = 1; | |
9374 | ||
9375 | /* | |
9376 | * The tick is still stopped but load could have been added in the | |
9377 | * meantime. We set the nohz.has_blocked flag to trig a check of the | |
9378 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | |
9379 | * of nohz.has_blocked can only happen after checking the new load | |
9380 | */ | |
00357f5e | 9381 | if (rq->nohz_tick_stopped) |
f643ea22 | 9382 | goto out; |
1e3c88bd | 9383 | |
97fb7a0a | 9384 | /* If we're a completely isolated CPU, we don't play: */ |
00357f5e | 9385 | if (on_null_domain(rq)) |
d987fc7f MG |
9386 | return; |
9387 | ||
00357f5e PZ |
9388 | rq->nohz_tick_stopped = 1; |
9389 | ||
c1cc017c AS |
9390 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
9391 | atomic_inc(&nohz.nr_cpus); | |
00357f5e | 9392 | |
f643ea22 VG |
9393 | /* |
9394 | * Ensures that if nohz_idle_balance() fails to observe our | |
9395 | * @idle_cpus_mask store, it must observe the @has_blocked | |
9396 | * store. | |
9397 | */ | |
9398 | smp_mb__after_atomic(); | |
9399 | ||
00357f5e | 9400 | set_cpu_sd_state_idle(cpu); |
f643ea22 VG |
9401 | |
9402 | out: | |
9403 | /* | |
9404 | * Each time a cpu enter idle, we assume that it has blocked load and | |
9405 | * enable the periodic update of the load of idle cpus | |
9406 | */ | |
9407 | WRITE_ONCE(nohz.has_blocked, 1); | |
1e3c88bd | 9408 | } |
1e3c88bd | 9409 | |
1e3c88bd | 9410 | /* |
31e77c93 VG |
9411 | * Internal function that runs load balance for all idle cpus. The load balance |
9412 | * can be a simple update of blocked load or a complete load balance with | |
9413 | * tasks movement depending of flags. | |
9414 | * The function returns false if the loop has stopped before running | |
9415 | * through all idle CPUs. | |
1e3c88bd | 9416 | */ |
31e77c93 VG |
9417 | static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, |
9418 | enum cpu_idle_type idle) | |
83cd4fe2 | 9419 | { |
c5afb6a8 | 9420 | /* Earliest time when we have to do rebalance again */ |
a4064fb6 PZ |
9421 | unsigned long now = jiffies; |
9422 | unsigned long next_balance = now + 60*HZ; | |
f643ea22 | 9423 | bool has_blocked_load = false; |
c5afb6a8 | 9424 | int update_next_balance = 0; |
b7031a02 | 9425 | int this_cpu = this_rq->cpu; |
b7031a02 | 9426 | int balance_cpu; |
31e77c93 | 9427 | int ret = false; |
b7031a02 | 9428 | struct rq *rq; |
83cd4fe2 | 9429 | |
b7031a02 | 9430 | SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
83cd4fe2 | 9431 | |
f643ea22 VG |
9432 | /* |
9433 | * We assume there will be no idle load after this update and clear | |
9434 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | |
9435 | * set the has_blocked flag and trig another update of idle load. | |
9436 | * Because a cpu that becomes idle, is added to idle_cpus_mask before | |
9437 | * setting the flag, we are sure to not clear the state and not | |
9438 | * check the load of an idle cpu. | |
9439 | */ | |
9440 | WRITE_ONCE(nohz.has_blocked, 0); | |
9441 | ||
9442 | /* | |
9443 | * Ensures that if we miss the CPU, we must see the has_blocked | |
9444 | * store from nohz_balance_enter_idle(). | |
9445 | */ | |
9446 | smp_mb(); | |
9447 | ||
83cd4fe2 | 9448 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
8a6d42d1 | 9449 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
83cd4fe2 VP |
9450 | continue; |
9451 | ||
9452 | /* | |
97fb7a0a IM |
9453 | * If this CPU gets work to do, stop the load balancing |
9454 | * work being done for other CPUs. Next load | |
83cd4fe2 VP |
9455 | * balancing owner will pick it up. |
9456 | */ | |
f643ea22 VG |
9457 | if (need_resched()) { |
9458 | has_blocked_load = true; | |
9459 | goto abort; | |
9460 | } | |
83cd4fe2 | 9461 | |
5ed4f1d9 VG |
9462 | rq = cpu_rq(balance_cpu); |
9463 | ||
63928384 | 9464 | has_blocked_load |= update_nohz_stats(rq, true); |
f643ea22 | 9465 | |
ed61bbc6 TC |
9466 | /* |
9467 | * If time for next balance is due, | |
9468 | * do the balance. | |
9469 | */ | |
9470 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
9471 | struct rq_flags rf; |
9472 | ||
31e77c93 | 9473 | rq_lock_irqsave(rq, &rf); |
ed61bbc6 | 9474 | update_rq_clock(rq); |
cee1afce | 9475 | cpu_load_update_idle(rq); |
31e77c93 | 9476 | rq_unlock_irqrestore(rq, &rf); |
8a8c69c3 | 9477 | |
b7031a02 PZ |
9478 | if (flags & NOHZ_BALANCE_KICK) |
9479 | rebalance_domains(rq, CPU_IDLE); | |
ed61bbc6 | 9480 | } |
83cd4fe2 | 9481 | |
c5afb6a8 VG |
9482 | if (time_after(next_balance, rq->next_balance)) { |
9483 | next_balance = rq->next_balance; | |
9484 | update_next_balance = 1; | |
9485 | } | |
83cd4fe2 | 9486 | } |
c5afb6a8 | 9487 | |
31e77c93 VG |
9488 | /* Newly idle CPU doesn't need an update */ |
9489 | if (idle != CPU_NEWLY_IDLE) { | |
9490 | update_blocked_averages(this_cpu); | |
9491 | has_blocked_load |= this_rq->has_blocked_load; | |
9492 | } | |
9493 | ||
b7031a02 PZ |
9494 | if (flags & NOHZ_BALANCE_KICK) |
9495 | rebalance_domains(this_rq, CPU_IDLE); | |
9496 | ||
f643ea22 VG |
9497 | WRITE_ONCE(nohz.next_blocked, |
9498 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
9499 | ||
31e77c93 VG |
9500 | /* The full idle balance loop has been done */ |
9501 | ret = true; | |
9502 | ||
f643ea22 VG |
9503 | abort: |
9504 | /* There is still blocked load, enable periodic update */ | |
9505 | if (has_blocked_load) | |
9506 | WRITE_ONCE(nohz.has_blocked, 1); | |
a4064fb6 | 9507 | |
c5afb6a8 VG |
9508 | /* |
9509 | * next_balance will be updated only when there is a need. | |
9510 | * When the CPU is attached to null domain for ex, it will not be | |
9511 | * updated. | |
9512 | */ | |
9513 | if (likely(update_next_balance)) | |
9514 | nohz.next_balance = next_balance; | |
b7031a02 | 9515 | |
31e77c93 VG |
9516 | return ret; |
9517 | } | |
9518 | ||
9519 | /* | |
9520 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | |
9521 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
9522 | */ | |
9523 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | |
9524 | { | |
9525 | int this_cpu = this_rq->cpu; | |
9526 | unsigned int flags; | |
9527 | ||
9528 | if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) | |
9529 | return false; | |
9530 | ||
9531 | if (idle != CPU_IDLE) { | |
9532 | atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); | |
9533 | return false; | |
9534 | } | |
9535 | ||
9536 | /* | |
9537 | * barrier, pairs with nohz_balance_enter_idle(), ensures ... | |
9538 | */ | |
9539 | flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); | |
9540 | if (!(flags & NOHZ_KICK_MASK)) | |
9541 | return false; | |
9542 | ||
9543 | _nohz_idle_balance(this_rq, flags, idle); | |
9544 | ||
b7031a02 | 9545 | return true; |
83cd4fe2 | 9546 | } |
31e77c93 VG |
9547 | |
9548 | static void nohz_newidle_balance(struct rq *this_rq) | |
9549 | { | |
9550 | int this_cpu = this_rq->cpu; | |
9551 | ||
9552 | /* | |
9553 | * This CPU doesn't want to be disturbed by scheduler | |
9554 | * housekeeping | |
9555 | */ | |
9556 | if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) | |
9557 | return; | |
9558 | ||
9559 | /* Will wake up very soon. No time for doing anything else*/ | |
9560 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | |
9561 | return; | |
9562 | ||
9563 | /* Don't need to update blocked load of idle CPUs*/ | |
9564 | if (!READ_ONCE(nohz.has_blocked) || | |
9565 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | |
9566 | return; | |
9567 | ||
9568 | raw_spin_unlock(&this_rq->lock); | |
9569 | /* | |
9570 | * This CPU is going to be idle and blocked load of idle CPUs | |
9571 | * need to be updated. Run the ilb locally as it is a good | |
9572 | * candidate for ilb instead of waking up another idle CPU. | |
9573 | * Kick an normal ilb if we failed to do the update. | |
9574 | */ | |
9575 | if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) | |
9576 | kick_ilb(NOHZ_STATS_KICK); | |
9577 | raw_spin_lock(&this_rq->lock); | |
9578 | } | |
9579 | ||
dd707247 PZ |
9580 | #else /* !CONFIG_NO_HZ_COMMON */ |
9581 | static inline void nohz_balancer_kick(struct rq *rq) { } | |
9582 | ||
31e77c93 | 9583 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
b7031a02 PZ |
9584 | { |
9585 | return false; | |
9586 | } | |
31e77c93 VG |
9587 | |
9588 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | |
dd707247 | 9589 | #endif /* CONFIG_NO_HZ_COMMON */ |
83cd4fe2 | 9590 | |
47ea5412 PZ |
9591 | /* |
9592 | * idle_balance is called by schedule() if this_cpu is about to become | |
9593 | * idle. Attempts to pull tasks from other CPUs. | |
9594 | */ | |
9595 | static int idle_balance(struct rq *this_rq, struct rq_flags *rf) | |
9596 | { | |
9597 | unsigned long next_balance = jiffies + HZ; | |
9598 | int this_cpu = this_rq->cpu; | |
9599 | struct sched_domain *sd; | |
9600 | int pulled_task = 0; | |
9601 | u64 curr_cost = 0; | |
9602 | ||
9603 | /* | |
9604 | * We must set idle_stamp _before_ calling idle_balance(), such that we | |
9605 | * measure the duration of idle_balance() as idle time. | |
9606 | */ | |
9607 | this_rq->idle_stamp = rq_clock(this_rq); | |
9608 | ||
9609 | /* | |
9610 | * Do not pull tasks towards !active CPUs... | |
9611 | */ | |
9612 | if (!cpu_active(this_cpu)) | |
9613 | return 0; | |
9614 | ||
9615 | /* | |
9616 | * This is OK, because current is on_cpu, which avoids it being picked | |
9617 | * for load-balance and preemption/IRQs are still disabled avoiding | |
9618 | * further scheduler activity on it and we're being very careful to | |
9619 | * re-start the picking loop. | |
9620 | */ | |
9621 | rq_unpin_lock(this_rq, rf); | |
9622 | ||
9623 | if (this_rq->avg_idle < sysctl_sched_migration_cost || | |
e90c8fe1 | 9624 | !READ_ONCE(this_rq->rd->overload)) { |
31e77c93 | 9625 | |
47ea5412 PZ |
9626 | rcu_read_lock(); |
9627 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
9628 | if (sd) | |
9629 | update_next_balance(sd, &next_balance); | |
9630 | rcu_read_unlock(); | |
9631 | ||
31e77c93 VG |
9632 | nohz_newidle_balance(this_rq); |
9633 | ||
47ea5412 PZ |
9634 | goto out; |
9635 | } | |
9636 | ||
9637 | raw_spin_unlock(&this_rq->lock); | |
9638 | ||
9639 | update_blocked_averages(this_cpu); | |
9640 | rcu_read_lock(); | |
9641 | for_each_domain(this_cpu, sd) { | |
9642 | int continue_balancing = 1; | |
9643 | u64 t0, domain_cost; | |
9644 | ||
9645 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
9646 | continue; | |
9647 | ||
9648 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { | |
9649 | update_next_balance(sd, &next_balance); | |
9650 | break; | |
9651 | } | |
9652 | ||
9653 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
9654 | t0 = sched_clock_cpu(this_cpu); | |
9655 | ||
9656 | pulled_task = load_balance(this_cpu, this_rq, | |
9657 | sd, CPU_NEWLY_IDLE, | |
9658 | &continue_balancing); | |
9659 | ||
9660 | domain_cost = sched_clock_cpu(this_cpu) - t0; | |
9661 | if (domain_cost > sd->max_newidle_lb_cost) | |
9662 | sd->max_newidle_lb_cost = domain_cost; | |
9663 | ||
9664 | curr_cost += domain_cost; | |
9665 | } | |
9666 | ||
9667 | update_next_balance(sd, &next_balance); | |
9668 | ||
9669 | /* | |
9670 | * Stop searching for tasks to pull if there are | |
9671 | * now runnable tasks on this rq. | |
9672 | */ | |
9673 | if (pulled_task || this_rq->nr_running > 0) | |
9674 | break; | |
9675 | } | |
9676 | rcu_read_unlock(); | |
9677 | ||
9678 | raw_spin_lock(&this_rq->lock); | |
9679 | ||
9680 | if (curr_cost > this_rq->max_idle_balance_cost) | |
9681 | this_rq->max_idle_balance_cost = curr_cost; | |
9682 | ||
457be908 | 9683 | out: |
47ea5412 PZ |
9684 | /* |
9685 | * While browsing the domains, we released the rq lock, a task could | |
9686 | * have been enqueued in the meantime. Since we're not going idle, | |
9687 | * pretend we pulled a task. | |
9688 | */ | |
9689 | if (this_rq->cfs.h_nr_running && !pulled_task) | |
9690 | pulled_task = 1; | |
9691 | ||
47ea5412 PZ |
9692 | /* Move the next balance forward */ |
9693 | if (time_after(this_rq->next_balance, next_balance)) | |
9694 | this_rq->next_balance = next_balance; | |
9695 | ||
9696 | /* Is there a task of a high priority class? */ | |
9697 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | |
9698 | pulled_task = -1; | |
9699 | ||
9700 | if (pulled_task) | |
9701 | this_rq->idle_stamp = 0; | |
9702 | ||
9703 | rq_repin_lock(this_rq, rf); | |
9704 | ||
9705 | return pulled_task; | |
9706 | } | |
9707 | ||
83cd4fe2 VP |
9708 | /* |
9709 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
9710 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | |
9711 | */ | |
0766f788 | 9712 | static __latent_entropy void run_rebalance_domains(struct softirq_action *h) |
1e3c88bd | 9713 | { |
208cb16b | 9714 | struct rq *this_rq = this_rq(); |
6eb57e0d | 9715 | enum cpu_idle_type idle = this_rq->idle_balance ? |
1e3c88bd PZ |
9716 | CPU_IDLE : CPU_NOT_IDLE; |
9717 | ||
1e3c88bd | 9718 | /* |
97fb7a0a IM |
9719 | * If this CPU has a pending nohz_balance_kick, then do the |
9720 | * balancing on behalf of the other idle CPUs whose ticks are | |
d4573c3e | 9721 | * stopped. Do nohz_idle_balance *before* rebalance_domains to |
97fb7a0a | 9722 | * give the idle CPUs a chance to load balance. Else we may |
d4573c3e PM |
9723 | * load balance only within the local sched_domain hierarchy |
9724 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 9725 | */ |
b7031a02 PZ |
9726 | if (nohz_idle_balance(this_rq, idle)) |
9727 | return; | |
9728 | ||
9729 | /* normal load balance */ | |
9730 | update_blocked_averages(this_rq->cpu); | |
d4573c3e | 9731 | rebalance_domains(this_rq, idle); |
1e3c88bd PZ |
9732 | } |
9733 | ||
1e3c88bd PZ |
9734 | /* |
9735 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 9736 | */ |
7caff66f | 9737 | void trigger_load_balance(struct rq *rq) |
1e3c88bd | 9738 | { |
1e3c88bd | 9739 | /* Don't need to rebalance while attached to NULL domain */ |
c726099e DL |
9740 | if (unlikely(on_null_domain(rq))) |
9741 | return; | |
9742 | ||
9743 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 9744 | raise_softirq(SCHED_SOFTIRQ); |
4550487a PZ |
9745 | |
9746 | nohz_balancer_kick(rq); | |
1e3c88bd PZ |
9747 | } |
9748 | ||
0bcdcf28 CE |
9749 | static void rq_online_fair(struct rq *rq) |
9750 | { | |
9751 | update_sysctl(); | |
0e59bdae KT |
9752 | |
9753 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
9754 | } |
9755 | ||
9756 | static void rq_offline_fair(struct rq *rq) | |
9757 | { | |
9758 | update_sysctl(); | |
a4c96ae3 PB |
9759 | |
9760 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
9761 | unthrottle_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
9762 | } |
9763 | ||
55e12e5e | 9764 | #endif /* CONFIG_SMP */ |
e1d1484f | 9765 | |
bf0f6f24 | 9766 | /* |
d84b3131 FW |
9767 | * scheduler tick hitting a task of our scheduling class. |
9768 | * | |
9769 | * NOTE: This function can be called remotely by the tick offload that | |
9770 | * goes along full dynticks. Therefore no local assumption can be made | |
9771 | * and everything must be accessed through the @rq and @curr passed in | |
9772 | * parameters. | |
bf0f6f24 | 9773 | */ |
8f4d37ec | 9774 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
9775 | { |
9776 | struct cfs_rq *cfs_rq; | |
9777 | struct sched_entity *se = &curr->se; | |
9778 | ||
9779 | for_each_sched_entity(se) { | |
9780 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 9781 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 9782 | } |
18bf2805 | 9783 | |
b52da86e | 9784 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 9785 | task_tick_numa(rq, curr); |
3b1baa64 MR |
9786 | |
9787 | update_misfit_status(curr, rq); | |
bf0f6f24 IM |
9788 | } |
9789 | ||
9790 | /* | |
cd29fe6f PZ |
9791 | * called on fork with the child task as argument from the parent's context |
9792 | * - child not yet on the tasklist | |
9793 | * - preemption disabled | |
bf0f6f24 | 9794 | */ |
cd29fe6f | 9795 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 9796 | { |
4fc420c9 DN |
9797 | struct cfs_rq *cfs_rq; |
9798 | struct sched_entity *se = &p->se, *curr; | |
cd29fe6f | 9799 | struct rq *rq = this_rq(); |
8a8c69c3 | 9800 | struct rq_flags rf; |
bf0f6f24 | 9801 | |
8a8c69c3 | 9802 | rq_lock(rq, &rf); |
861d034e PZ |
9803 | update_rq_clock(rq); |
9804 | ||
4fc420c9 DN |
9805 | cfs_rq = task_cfs_rq(current); |
9806 | curr = cfs_rq->curr; | |
e210bffd PZ |
9807 | if (curr) { |
9808 | update_curr(cfs_rq); | |
b5d9d734 | 9809 | se->vruntime = curr->vruntime; |
e210bffd | 9810 | } |
aeb73b04 | 9811 | place_entity(cfs_rq, se, 1); |
4d78e7b6 | 9812 | |
cd29fe6f | 9813 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
87fefa38 | 9814 | /* |
edcb60a3 IM |
9815 | * Upon rescheduling, sched_class::put_prev_task() will place |
9816 | * 'current' within the tree based on its new key value. | |
9817 | */ | |
4d78e7b6 | 9818 | swap(curr->vruntime, se->vruntime); |
8875125e | 9819 | resched_curr(rq); |
4d78e7b6 | 9820 | } |
bf0f6f24 | 9821 | |
88ec22d3 | 9822 | se->vruntime -= cfs_rq->min_vruntime; |
8a8c69c3 | 9823 | rq_unlock(rq, &rf); |
bf0f6f24 IM |
9824 | } |
9825 | ||
cb469845 SR |
9826 | /* |
9827 | * Priority of the task has changed. Check to see if we preempt | |
9828 | * the current task. | |
9829 | */ | |
da7a735e PZ |
9830 | static void |
9831 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 9832 | { |
da0c1e65 | 9833 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
9834 | return; |
9835 | ||
cb469845 SR |
9836 | /* |
9837 | * Reschedule if we are currently running on this runqueue and | |
9838 | * our priority decreased, or if we are not currently running on | |
9839 | * this runqueue and our priority is higher than the current's | |
9840 | */ | |
da7a735e | 9841 | if (rq->curr == p) { |
cb469845 | 9842 | if (p->prio > oldprio) |
8875125e | 9843 | resched_curr(rq); |
cb469845 | 9844 | } else |
15afe09b | 9845 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
9846 | } |
9847 | ||
daa59407 | 9848 | static inline bool vruntime_normalized(struct task_struct *p) |
da7a735e PZ |
9849 | { |
9850 | struct sched_entity *se = &p->se; | |
da7a735e PZ |
9851 | |
9852 | /* | |
daa59407 BP |
9853 | * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, |
9854 | * the dequeue_entity(.flags=0) will already have normalized the | |
9855 | * vruntime. | |
9856 | */ | |
9857 | if (p->on_rq) | |
9858 | return true; | |
9859 | ||
9860 | /* | |
9861 | * When !on_rq, vruntime of the task has usually NOT been normalized. | |
9862 | * But there are some cases where it has already been normalized: | |
da7a735e | 9863 | * |
daa59407 BP |
9864 | * - A forked child which is waiting for being woken up by |
9865 | * wake_up_new_task(). | |
9866 | * - A task which has been woken up by try_to_wake_up() and | |
9867 | * waiting for actually being woken up by sched_ttwu_pending(). | |
da7a735e | 9868 | */ |
d0cdb3ce SM |
9869 | if (!se->sum_exec_runtime || |
9870 | (p->state == TASK_WAKING && p->sched_remote_wakeup)) | |
daa59407 BP |
9871 | return true; |
9872 | ||
9873 | return false; | |
9874 | } | |
9875 | ||
09a43ace VG |
9876 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9877 | /* | |
9878 | * Propagate the changes of the sched_entity across the tg tree to make it | |
9879 | * visible to the root | |
9880 | */ | |
9881 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
9882 | { | |
9883 | struct cfs_rq *cfs_rq; | |
9884 | ||
9885 | /* Start to propagate at parent */ | |
9886 | se = se->parent; | |
9887 | ||
9888 | for_each_sched_entity(se) { | |
9889 | cfs_rq = cfs_rq_of(se); | |
9890 | ||
9891 | if (cfs_rq_throttled(cfs_rq)) | |
9892 | break; | |
9893 | ||
88c0616e | 9894 | update_load_avg(cfs_rq, se, UPDATE_TG); |
09a43ace VG |
9895 | } |
9896 | } | |
9897 | #else | |
9898 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
9899 | #endif | |
9900 | ||
df217913 | 9901 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 9902 | { |
daa59407 BP |
9903 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
9904 | ||
9d89c257 | 9905 | /* Catch up with the cfs_rq and remove our load when we leave */ |
88c0616e | 9906 | update_load_avg(cfs_rq, se, 0); |
a05e8c51 | 9907 | detach_entity_load_avg(cfs_rq, se); |
7c3edd2c | 9908 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 9909 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
9910 | } |
9911 | ||
df217913 | 9912 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 9913 | { |
daa59407 | 9914 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a BP |
9915 | |
9916 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
eb7a59b2 M |
9917 | /* |
9918 | * Since the real-depth could have been changed (only FAIR | |
9919 | * class maintain depth value), reset depth properly. | |
9920 | */ | |
9921 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
9922 | #endif | |
7855a35a | 9923 | |
df217913 | 9924 | /* Synchronize entity with its cfs_rq */ |
88c0616e | 9925 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
ea14b57e | 9926 | attach_entity_load_avg(cfs_rq, se, 0); |
7c3edd2c | 9927 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 9928 | propagate_entity_cfs_rq(se); |
df217913 VG |
9929 | } |
9930 | ||
9931 | static void detach_task_cfs_rq(struct task_struct *p) | |
9932 | { | |
9933 | struct sched_entity *se = &p->se; | |
9934 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9935 | ||
9936 | if (!vruntime_normalized(p)) { | |
9937 | /* | |
9938 | * Fix up our vruntime so that the current sleep doesn't | |
9939 | * cause 'unlimited' sleep bonus. | |
9940 | */ | |
9941 | place_entity(cfs_rq, se, 0); | |
9942 | se->vruntime -= cfs_rq->min_vruntime; | |
9943 | } | |
9944 | ||
9945 | detach_entity_cfs_rq(se); | |
9946 | } | |
9947 | ||
9948 | static void attach_task_cfs_rq(struct task_struct *p) | |
9949 | { | |
9950 | struct sched_entity *se = &p->se; | |
9951 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9952 | ||
9953 | attach_entity_cfs_rq(se); | |
daa59407 BP |
9954 | |
9955 | if (!vruntime_normalized(p)) | |
9956 | se->vruntime += cfs_rq->min_vruntime; | |
9957 | } | |
6efdb105 | 9958 | |
daa59407 BP |
9959 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
9960 | { | |
9961 | detach_task_cfs_rq(p); | |
9962 | } | |
9963 | ||
9964 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
9965 | { | |
9966 | attach_task_cfs_rq(p); | |
7855a35a | 9967 | |
daa59407 | 9968 | if (task_on_rq_queued(p)) { |
7855a35a | 9969 | /* |
daa59407 BP |
9970 | * We were most likely switched from sched_rt, so |
9971 | * kick off the schedule if running, otherwise just see | |
9972 | * if we can still preempt the current task. | |
7855a35a | 9973 | */ |
daa59407 BP |
9974 | if (rq->curr == p) |
9975 | resched_curr(rq); | |
9976 | else | |
9977 | check_preempt_curr(rq, p, 0); | |
7855a35a | 9978 | } |
cb469845 SR |
9979 | } |
9980 | ||
83b699ed SV |
9981 | /* Account for a task changing its policy or group. |
9982 | * | |
9983 | * This routine is mostly called to set cfs_rq->curr field when a task | |
9984 | * migrates between groups/classes. | |
9985 | */ | |
9986 | static void set_curr_task_fair(struct rq *rq) | |
9987 | { | |
9988 | struct sched_entity *se = &rq->curr->se; | |
9989 | ||
ec12cb7f PT |
9990 | for_each_sched_entity(se) { |
9991 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9992 | ||
9993 | set_next_entity(cfs_rq, se); | |
9994 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
9995 | account_cfs_rq_runtime(cfs_rq, 0); | |
9996 | } | |
83b699ed SV |
9997 | } |
9998 | ||
029632fb PZ |
9999 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
10000 | { | |
bfb06889 | 10001 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
029632fb PZ |
10002 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
10003 | #ifndef CONFIG_64BIT | |
10004 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
10005 | #endif | |
141965c7 | 10006 | #ifdef CONFIG_SMP |
2a2f5d4e | 10007 | raw_spin_lock_init(&cfs_rq->removed.lock); |
9ee474f5 | 10008 | #endif |
029632fb PZ |
10009 | } |
10010 | ||
810b3817 | 10011 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b VG |
10012 | static void task_set_group_fair(struct task_struct *p) |
10013 | { | |
10014 | struct sched_entity *se = &p->se; | |
10015 | ||
10016 | set_task_rq(p, task_cpu(p)); | |
10017 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
10018 | } | |
10019 | ||
bc54da21 | 10020 | static void task_move_group_fair(struct task_struct *p) |
810b3817 | 10021 | { |
daa59407 | 10022 | detach_task_cfs_rq(p); |
b2b5ce02 | 10023 | set_task_rq(p, task_cpu(p)); |
6efdb105 BP |
10024 | |
10025 | #ifdef CONFIG_SMP | |
10026 | /* Tell se's cfs_rq has been changed -- migrated */ | |
10027 | p->se.avg.last_update_time = 0; | |
10028 | #endif | |
daa59407 | 10029 | attach_task_cfs_rq(p); |
810b3817 | 10030 | } |
029632fb | 10031 | |
ea86cb4b VG |
10032 | static void task_change_group_fair(struct task_struct *p, int type) |
10033 | { | |
10034 | switch (type) { | |
10035 | case TASK_SET_GROUP: | |
10036 | task_set_group_fair(p); | |
10037 | break; | |
10038 | ||
10039 | case TASK_MOVE_GROUP: | |
10040 | task_move_group_fair(p); | |
10041 | break; | |
10042 | } | |
10043 | } | |
10044 | ||
029632fb PZ |
10045 | void free_fair_sched_group(struct task_group *tg) |
10046 | { | |
10047 | int i; | |
10048 | ||
10049 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
10050 | ||
10051 | for_each_possible_cpu(i) { | |
10052 | if (tg->cfs_rq) | |
10053 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 10054 | if (tg->se) |
029632fb PZ |
10055 | kfree(tg->se[i]); |
10056 | } | |
10057 | ||
10058 | kfree(tg->cfs_rq); | |
10059 | kfree(tg->se); | |
10060 | } | |
10061 | ||
10062 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
10063 | { | |
029632fb | 10064 | struct sched_entity *se; |
b7fa30c9 | 10065 | struct cfs_rq *cfs_rq; |
029632fb PZ |
10066 | int i; |
10067 | ||
6396bb22 | 10068 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
029632fb PZ |
10069 | if (!tg->cfs_rq) |
10070 | goto err; | |
6396bb22 | 10071 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
029632fb PZ |
10072 | if (!tg->se) |
10073 | goto err; | |
10074 | ||
10075 | tg->shares = NICE_0_LOAD; | |
10076 | ||
10077 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
10078 | ||
10079 | for_each_possible_cpu(i) { | |
10080 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
10081 | GFP_KERNEL, cpu_to_node(i)); | |
10082 | if (!cfs_rq) | |
10083 | goto err; | |
10084 | ||
10085 | se = kzalloc_node(sizeof(struct sched_entity), | |
10086 | GFP_KERNEL, cpu_to_node(i)); | |
10087 | if (!se) | |
10088 | goto err_free_rq; | |
10089 | ||
10090 | init_cfs_rq(cfs_rq); | |
10091 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 10092 | init_entity_runnable_average(se); |
029632fb PZ |
10093 | } |
10094 | ||
10095 | return 1; | |
10096 | ||
10097 | err_free_rq: | |
10098 | kfree(cfs_rq); | |
10099 | err: | |
10100 | return 0; | |
10101 | } | |
10102 | ||
8663e24d PZ |
10103 | void online_fair_sched_group(struct task_group *tg) |
10104 | { | |
10105 | struct sched_entity *se; | |
10106 | struct rq *rq; | |
10107 | int i; | |
10108 | ||
10109 | for_each_possible_cpu(i) { | |
10110 | rq = cpu_rq(i); | |
10111 | se = tg->se[i]; | |
10112 | ||
10113 | raw_spin_lock_irq(&rq->lock); | |
4126bad6 | 10114 | update_rq_clock(rq); |
d0326691 | 10115 | attach_entity_cfs_rq(se); |
55e16d30 | 10116 | sync_throttle(tg, i); |
8663e24d PZ |
10117 | raw_spin_unlock_irq(&rq->lock); |
10118 | } | |
10119 | } | |
10120 | ||
6fe1f348 | 10121 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 10122 | { |
029632fb | 10123 | unsigned long flags; |
6fe1f348 PZ |
10124 | struct rq *rq; |
10125 | int cpu; | |
029632fb | 10126 | |
6fe1f348 PZ |
10127 | for_each_possible_cpu(cpu) { |
10128 | if (tg->se[cpu]) | |
10129 | remove_entity_load_avg(tg->se[cpu]); | |
029632fb | 10130 | |
6fe1f348 PZ |
10131 | /* |
10132 | * Only empty task groups can be destroyed; so we can speculatively | |
10133 | * check on_list without danger of it being re-added. | |
10134 | */ | |
10135 | if (!tg->cfs_rq[cpu]->on_list) | |
10136 | continue; | |
10137 | ||
10138 | rq = cpu_rq(cpu); | |
10139 | ||
10140 | raw_spin_lock_irqsave(&rq->lock, flags); | |
10141 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | |
10142 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
10143 | } | |
029632fb PZ |
10144 | } |
10145 | ||
10146 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
10147 | struct sched_entity *se, int cpu, | |
10148 | struct sched_entity *parent) | |
10149 | { | |
10150 | struct rq *rq = cpu_rq(cpu); | |
10151 | ||
10152 | cfs_rq->tg = tg; | |
10153 | cfs_rq->rq = rq; | |
029632fb PZ |
10154 | init_cfs_rq_runtime(cfs_rq); |
10155 | ||
10156 | tg->cfs_rq[cpu] = cfs_rq; | |
10157 | tg->se[cpu] = se; | |
10158 | ||
10159 | /* se could be NULL for root_task_group */ | |
10160 | if (!se) | |
10161 | return; | |
10162 | ||
fed14d45 | 10163 | if (!parent) { |
029632fb | 10164 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
10165 | se->depth = 0; |
10166 | } else { | |
029632fb | 10167 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
10168 | se->depth = parent->depth + 1; |
10169 | } | |
029632fb PZ |
10170 | |
10171 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
10172 | /* guarantee group entities always have weight */ |
10173 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
10174 | se->parent = parent; |
10175 | } | |
10176 | ||
10177 | static DEFINE_MUTEX(shares_mutex); | |
10178 | ||
10179 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
10180 | { | |
10181 | int i; | |
029632fb PZ |
10182 | |
10183 | /* | |
10184 | * We can't change the weight of the root cgroup. | |
10185 | */ | |
10186 | if (!tg->se[0]) | |
10187 | return -EINVAL; | |
10188 | ||
10189 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
10190 | ||
10191 | mutex_lock(&shares_mutex); | |
10192 | if (tg->shares == shares) | |
10193 | goto done; | |
10194 | ||
10195 | tg->shares = shares; | |
10196 | for_each_possible_cpu(i) { | |
10197 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
10198 | struct sched_entity *se = tg->se[i]; |
10199 | struct rq_flags rf; | |
029632fb | 10200 | |
029632fb | 10201 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 10202 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 10203 | update_rq_clock(rq); |
89ee048f | 10204 | for_each_sched_entity(se) { |
88c0616e | 10205 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
1ea6c46a | 10206 | update_cfs_group(se); |
89ee048f | 10207 | } |
8a8c69c3 | 10208 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
10209 | } |
10210 | ||
10211 | done: | |
10212 | mutex_unlock(&shares_mutex); | |
10213 | return 0; | |
10214 | } | |
10215 | #else /* CONFIG_FAIR_GROUP_SCHED */ | |
10216 | ||
10217 | void free_fair_sched_group(struct task_group *tg) { } | |
10218 | ||
10219 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
10220 | { | |
10221 | return 1; | |
10222 | } | |
10223 | ||
8663e24d PZ |
10224 | void online_fair_sched_group(struct task_group *tg) { } |
10225 | ||
6fe1f348 | 10226 | void unregister_fair_sched_group(struct task_group *tg) { } |
029632fb PZ |
10227 | |
10228 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
10229 | ||
810b3817 | 10230 | |
6d686f45 | 10231 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
10232 | { |
10233 | struct sched_entity *se = &task->se; | |
0d721cea PW |
10234 | unsigned int rr_interval = 0; |
10235 | ||
10236 | /* | |
10237 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
10238 | * idle runqueue: | |
10239 | */ | |
0d721cea | 10240 | if (rq->cfs.load.weight) |
a59f4e07 | 10241 | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); |
0d721cea PW |
10242 | |
10243 | return rr_interval; | |
10244 | } | |
10245 | ||
bf0f6f24 IM |
10246 | /* |
10247 | * All the scheduling class methods: | |
10248 | */ | |
029632fb | 10249 | const struct sched_class fair_sched_class = { |
5522d5d5 | 10250 | .next = &idle_sched_class, |
bf0f6f24 IM |
10251 | .enqueue_task = enqueue_task_fair, |
10252 | .dequeue_task = dequeue_task_fair, | |
10253 | .yield_task = yield_task_fair, | |
d95f4122 | 10254 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 10255 | |
2e09bf55 | 10256 | .check_preempt_curr = check_preempt_wakeup, |
bf0f6f24 IM |
10257 | |
10258 | .pick_next_task = pick_next_task_fair, | |
10259 | .put_prev_task = put_prev_task_fair, | |
10260 | ||
681f3e68 | 10261 | #ifdef CONFIG_SMP |
4ce72a2c | 10262 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 10263 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 10264 | |
0bcdcf28 CE |
10265 | .rq_online = rq_online_fair, |
10266 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 10267 | |
12695578 | 10268 | .task_dead = task_dead_fair, |
c5b28038 | 10269 | .set_cpus_allowed = set_cpus_allowed_common, |
681f3e68 | 10270 | #endif |
bf0f6f24 | 10271 | |
83b699ed | 10272 | .set_curr_task = set_curr_task_fair, |
bf0f6f24 | 10273 | .task_tick = task_tick_fair, |
cd29fe6f | 10274 | .task_fork = task_fork_fair, |
cb469845 SR |
10275 | |
10276 | .prio_changed = prio_changed_fair, | |
da7a735e | 10277 | .switched_from = switched_from_fair, |
cb469845 | 10278 | .switched_to = switched_to_fair, |
810b3817 | 10279 | |
0d721cea PW |
10280 | .get_rr_interval = get_rr_interval_fair, |
10281 | ||
6e998916 SG |
10282 | .update_curr = update_curr_fair, |
10283 | ||
810b3817 | 10284 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 10285 | .task_change_group = task_change_group_fair, |
810b3817 | 10286 | #endif |
bf0f6f24 IM |
10287 | }; |
10288 | ||
10289 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 10290 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 10291 | { |
a9e7f654 | 10292 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 10293 | |
5973e5b9 | 10294 | rcu_read_lock(); |
a9e7f654 | 10295 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 10296 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 10297 | rcu_read_unlock(); |
bf0f6f24 | 10298 | } |
397f2378 SD |
10299 | |
10300 | #ifdef CONFIG_NUMA_BALANCING | |
10301 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
10302 | { | |
10303 | int node; | |
10304 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
10305 | ||
10306 | for_each_online_node(node) { | |
10307 | if (p->numa_faults) { | |
10308 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
10309 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
10310 | } | |
10311 | if (p->numa_group) { | |
10312 | gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
10313 | gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
10314 | } | |
10315 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
10316 | } | |
10317 | } | |
10318 | #endif /* CONFIG_NUMA_BALANCING */ | |
10319 | #endif /* CONFIG_SCHED_DEBUG */ | |
029632fb PZ |
10320 | |
10321 | __init void init_sched_fair_class(void) | |
10322 | { | |
10323 | #ifdef CONFIG_SMP | |
10324 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | |
10325 | ||
3451d024 | 10326 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 10327 | nohz.next_balance = jiffies; |
f643ea22 | 10328 | nohz.next_blocked = jiffies; |
029632fb | 10329 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
10330 | #endif |
10331 | #endif /* SMP */ | |
10332 | ||
10333 | } |