]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
563aaf06 | 4 | * This implementation is a fallback for platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <[email protected]> | |
7 | * Copyright (C) 2000 Goutham Rao <[email protected]> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <[email protected]> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
fb05a379 | 17 | * 08/12/11 beckyb Add highmem support |
1da177e4 LT |
18 | */ |
19 | ||
7d63fb3a KC |
20 | #define pr_fmt(fmt) "software IO TLB: " fmt |
21 | ||
1da177e4 | 22 | #include <linux/cache.h> |
ea8c64ac | 23 | #include <linux/dma-direct.h> |
a4a4330d | 24 | #include <linux/dma-noncoherent.h> |
1da177e4 | 25 | #include <linux/mm.h> |
8bc3bcc9 | 26 | #include <linux/export.h> |
1da177e4 LT |
27 | #include <linux/spinlock.h> |
28 | #include <linux/string.h> | |
0016fdee | 29 | #include <linux/swiotlb.h> |
fb05a379 | 30 | #include <linux/pfn.h> |
1da177e4 LT |
31 | #include <linux/types.h> |
32 | #include <linux/ctype.h> | |
ef9b1893 | 33 | #include <linux/highmem.h> |
5a0e3ad6 | 34 | #include <linux/gfp.h> |
84be456f | 35 | #include <linux/scatterlist.h> |
c7753208 | 36 | #include <linux/mem_encrypt.h> |
e7de6c7c | 37 | #include <linux/set_memory.h> |
1da177e4 LT |
38 | |
39 | #include <asm/io.h> | |
1da177e4 LT |
40 | #include <asm/dma.h> |
41 | ||
42 | #include <linux/init.h> | |
57c8a661 | 43 | #include <linux/memblock.h> |
a8522509 | 44 | #include <linux/iommu-helper.h> |
1da177e4 | 45 | |
ce5be5a1 | 46 | #define CREATE_TRACE_POINTS |
2b2b614d ZK |
47 | #include <trace/events/swiotlb.h> |
48 | ||
1da177e4 LT |
49 | #define OFFSET(val,align) ((unsigned long) \ |
50 | ( (val) & ( (align) - 1))) | |
51 | ||
0b9afede AW |
52 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
53 | ||
54 | /* | |
55 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
56 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
57 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
58 | */ | |
59 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
60 | ||
ae7871be | 61 | enum swiotlb_force swiotlb_force; |
1da177e4 LT |
62 | |
63 | /* | |
bfc5501f KRW |
64 | * Used to do a quick range check in swiotlb_tbl_unmap_single and |
65 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | |
1da177e4 LT |
66 | * API. |
67 | */ | |
ff7204a7 | 68 | static phys_addr_t io_tlb_start, io_tlb_end; |
1da177e4 LT |
69 | |
70 | /* | |
b595076a | 71 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and |
1da177e4 LT |
72 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. |
73 | */ | |
74 | static unsigned long io_tlb_nslabs; | |
75 | ||
1da177e4 LT |
76 | /* |
77 | * This is a free list describing the number of free entries available from | |
78 | * each index | |
79 | */ | |
80 | static unsigned int *io_tlb_list; | |
81 | static unsigned int io_tlb_index; | |
82 | ||
7453c549 KRW |
83 | /* |
84 | * Max segment that we can provide which (if pages are contingous) will | |
85 | * not be bounced (unless SWIOTLB_FORCE is set). | |
86 | */ | |
87 | unsigned int max_segment; | |
88 | ||
1da177e4 LT |
89 | /* |
90 | * We need to save away the original address corresponding to a mapped entry | |
91 | * for the sync operations. | |
92 | */ | |
8e0629c1 | 93 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
bc40ac66 | 94 | static phys_addr_t *io_tlb_orig_addr; |
1da177e4 LT |
95 | |
96 | /* | |
97 | * Protect the above data structures in the map and unmap calls | |
98 | */ | |
99 | static DEFINE_SPINLOCK(io_tlb_lock); | |
100 | ||
5740afdb FT |
101 | static int late_alloc; |
102 | ||
1da177e4 LT |
103 | static int __init |
104 | setup_io_tlb_npages(char *str) | |
105 | { | |
106 | if (isdigit(*str)) { | |
e8579e72 | 107 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
108 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
109 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
110 | } | |
111 | if (*str == ',') | |
112 | ++str; | |
fff5d992 | 113 | if (!strcmp(str, "force")) { |
ae7871be | 114 | swiotlb_force = SWIOTLB_FORCE; |
fff5d992 GU |
115 | } else if (!strcmp(str, "noforce")) { |
116 | swiotlb_force = SWIOTLB_NO_FORCE; | |
117 | io_tlb_nslabs = 1; | |
118 | } | |
b18485e7 | 119 | |
c729de8f | 120 | return 0; |
1da177e4 | 121 | } |
c729de8f | 122 | early_param("swiotlb", setup_io_tlb_npages); |
1da177e4 | 123 | |
f21ffe9f | 124 | unsigned long swiotlb_nr_tbl(void) |
5f98ecdb FT |
125 | { |
126 | return io_tlb_nslabs; | |
127 | } | |
f21ffe9f | 128 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); |
c729de8f | 129 | |
7453c549 KRW |
130 | unsigned int swiotlb_max_segment(void) |
131 | { | |
132 | return max_segment; | |
133 | } | |
134 | EXPORT_SYMBOL_GPL(swiotlb_max_segment); | |
135 | ||
136 | void swiotlb_set_max_segment(unsigned int val) | |
137 | { | |
138 | if (swiotlb_force == SWIOTLB_FORCE) | |
139 | max_segment = 1; | |
140 | else | |
141 | max_segment = rounddown(val, PAGE_SIZE); | |
142 | } | |
143 | ||
c729de8f YL |
144 | /* default to 64MB */ |
145 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | |
146 | unsigned long swiotlb_size_or_default(void) | |
147 | { | |
148 | unsigned long size; | |
149 | ||
150 | size = io_tlb_nslabs << IO_TLB_SHIFT; | |
151 | ||
152 | return size ? size : (IO_TLB_DEFAULT_SIZE); | |
153 | } | |
154 | ||
ac2cbab2 YL |
155 | static bool no_iotlb_memory; |
156 | ||
ad32e8cb | 157 | void swiotlb_print_info(void) |
2e5b2b86 | 158 | { |
ad32e8cb | 159 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
2e5b2b86 | 160 | |
ac2cbab2 | 161 | if (no_iotlb_memory) { |
7d63fb3a | 162 | pr_warn("No low mem\n"); |
ac2cbab2 YL |
163 | return; |
164 | } | |
165 | ||
7d63fb3a | 166 | pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", |
ff7204a7 | 167 | (unsigned long long)io_tlb_start, |
c40dba06 | 168 | (unsigned long long)io_tlb_end, |
7d63fb3a | 169 | bytes >> 20); |
2e5b2b86 IC |
170 | } |
171 | ||
c7753208 TL |
172 | /* |
173 | * Early SWIOTLB allocation may be too early to allow an architecture to | |
174 | * perform the desired operations. This function allows the architecture to | |
175 | * call SWIOTLB when the operations are possible. It needs to be called | |
176 | * before the SWIOTLB memory is used. | |
177 | */ | |
178 | void __init swiotlb_update_mem_attributes(void) | |
179 | { | |
180 | void *vaddr; | |
181 | unsigned long bytes; | |
182 | ||
183 | if (no_iotlb_memory || late_alloc) | |
184 | return; | |
185 | ||
186 | vaddr = phys_to_virt(io_tlb_start); | |
187 | bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); | |
e7de6c7c | 188 | set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); |
c7753208 | 189 | memset(vaddr, 0, bytes); |
c7753208 TL |
190 | } |
191 | ||
ac2cbab2 | 192 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) |
1da177e4 | 193 | { |
563aaf06 | 194 | unsigned long i, bytes; |
1da177e4 | 195 | |
abbceff7 | 196 | bytes = nslabs << IO_TLB_SHIFT; |
1da177e4 | 197 | |
abbceff7 | 198 | io_tlb_nslabs = nslabs; |
ff7204a7 AD |
199 | io_tlb_start = __pa(tlb); |
200 | io_tlb_end = io_tlb_start + bytes; | |
1da177e4 LT |
201 | |
202 | /* | |
203 | * Allocate and initialize the free list array. This array is used | |
204 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
205 | * between io_tlb_start and io_tlb_end. | |
206 | */ | |
eb31d559 | 207 | io_tlb_list = memblock_alloc( |
457ff1de SS |
208 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), |
209 | PAGE_SIZE); | |
eb31d559 | 210 | io_tlb_orig_addr = memblock_alloc( |
457ff1de SS |
211 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), |
212 | PAGE_SIZE); | |
8e0629c1 JB |
213 | for (i = 0; i < io_tlb_nslabs; i++) { |
214 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
215 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | |
216 | } | |
217 | io_tlb_index = 0; | |
1da177e4 | 218 | |
ad32e8cb FT |
219 | if (verbose) |
220 | swiotlb_print_info(); | |
ac2cbab2 | 221 | |
7453c549 | 222 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); |
ac2cbab2 | 223 | return 0; |
1da177e4 LT |
224 | } |
225 | ||
abbceff7 FT |
226 | /* |
227 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
228 | * structures for the software IO TLB used to implement the DMA API. | |
229 | */ | |
ac2cbab2 YL |
230 | void __init |
231 | swiotlb_init(int verbose) | |
abbceff7 | 232 | { |
c729de8f | 233 | size_t default_size = IO_TLB_DEFAULT_SIZE; |
ff7204a7 | 234 | unsigned char *vstart; |
abbceff7 FT |
235 | unsigned long bytes; |
236 | ||
237 | if (!io_tlb_nslabs) { | |
238 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
239 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
240 | } | |
241 | ||
242 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | |
243 | ||
ac2cbab2 | 244 | /* Get IO TLB memory from the low pages */ |
eb31d559 | 245 | vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); |
ac2cbab2 YL |
246 | if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) |
247 | return; | |
abbceff7 | 248 | |
ac2cbab2 | 249 | if (io_tlb_start) |
457ff1de SS |
250 | memblock_free_early(io_tlb_start, |
251 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | |
7d63fb3a | 252 | pr_warn("Cannot allocate buffer"); |
ac2cbab2 | 253 | no_iotlb_memory = true; |
1da177e4 LT |
254 | } |
255 | ||
0b9afede AW |
256 | /* |
257 | * Systems with larger DMA zones (those that don't support ISA) can | |
258 | * initialize the swiotlb later using the slab allocator if needed. | |
259 | * This should be just like above, but with some error catching. | |
260 | */ | |
261 | int | |
563aaf06 | 262 | swiotlb_late_init_with_default_size(size_t default_size) |
0b9afede | 263 | { |
74838b75 | 264 | unsigned long bytes, req_nslabs = io_tlb_nslabs; |
ff7204a7 | 265 | unsigned char *vstart = NULL; |
0b9afede | 266 | unsigned int order; |
74838b75 | 267 | int rc = 0; |
0b9afede AW |
268 | |
269 | if (!io_tlb_nslabs) { | |
270 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
271 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
272 | } | |
273 | ||
274 | /* | |
275 | * Get IO TLB memory from the low pages | |
276 | */ | |
563aaf06 | 277 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); |
0b9afede | 278 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
563aaf06 | 279 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede AW |
280 | |
281 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
ff7204a7 AD |
282 | vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, |
283 | order); | |
284 | if (vstart) | |
0b9afede AW |
285 | break; |
286 | order--; | |
287 | } | |
288 | ||
ff7204a7 | 289 | if (!vstart) { |
74838b75 KRW |
290 | io_tlb_nslabs = req_nslabs; |
291 | return -ENOMEM; | |
292 | } | |
563aaf06 | 293 | if (order != get_order(bytes)) { |
7d63fb3a KC |
294 | pr_warn("only able to allocate %ld MB\n", |
295 | (PAGE_SIZE << order) >> 20); | |
0b9afede AW |
296 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
297 | } | |
ff7204a7 | 298 | rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); |
74838b75 | 299 | if (rc) |
ff7204a7 | 300 | free_pages((unsigned long)vstart, order); |
7453c549 | 301 | |
74838b75 KRW |
302 | return rc; |
303 | } | |
304 | ||
305 | int | |
306 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | |
307 | { | |
308 | unsigned long i, bytes; | |
309 | ||
310 | bytes = nslabs << IO_TLB_SHIFT; | |
311 | ||
312 | io_tlb_nslabs = nslabs; | |
ff7204a7 AD |
313 | io_tlb_start = virt_to_phys(tlb); |
314 | io_tlb_end = io_tlb_start + bytes; | |
74838b75 | 315 | |
e7de6c7c | 316 | set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); |
ff7204a7 | 317 | memset(tlb, 0, bytes); |
0b9afede AW |
318 | |
319 | /* | |
320 | * Allocate and initialize the free list array. This array is used | |
321 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
322 | * between io_tlb_start and io_tlb_end. | |
323 | */ | |
324 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
325 | get_order(io_tlb_nslabs * sizeof(int))); | |
326 | if (!io_tlb_list) | |
ee3f6ba8 | 327 | goto cleanup3; |
0b9afede | 328 | |
bc40ac66 BB |
329 | io_tlb_orig_addr = (phys_addr_t *) |
330 | __get_free_pages(GFP_KERNEL, | |
331 | get_order(io_tlb_nslabs * | |
332 | sizeof(phys_addr_t))); | |
0b9afede | 333 | if (!io_tlb_orig_addr) |
ee3f6ba8 | 334 | goto cleanup4; |
0b9afede | 335 | |
8e0629c1 JB |
336 | for (i = 0; i < io_tlb_nslabs; i++) { |
337 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
338 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | |
339 | } | |
340 | io_tlb_index = 0; | |
0b9afede | 341 | |
ad32e8cb | 342 | swiotlb_print_info(); |
0b9afede | 343 | |
5740afdb FT |
344 | late_alloc = 1; |
345 | ||
7453c549 KRW |
346 | swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); |
347 | ||
0b9afede AW |
348 | return 0; |
349 | ||
350 | cleanup4: | |
25667d67 TL |
351 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * |
352 | sizeof(int))); | |
0b9afede | 353 | io_tlb_list = NULL; |
ee3f6ba8 | 354 | cleanup3: |
c40dba06 | 355 | io_tlb_end = 0; |
ff7204a7 | 356 | io_tlb_start = 0; |
74838b75 | 357 | io_tlb_nslabs = 0; |
7453c549 | 358 | max_segment = 0; |
0b9afede AW |
359 | return -ENOMEM; |
360 | } | |
361 | ||
7f2c8bbd | 362 | void __init swiotlb_exit(void) |
5740afdb | 363 | { |
ee3f6ba8 | 364 | if (!io_tlb_orig_addr) |
5740afdb FT |
365 | return; |
366 | ||
367 | if (late_alloc) { | |
5740afdb FT |
368 | free_pages((unsigned long)io_tlb_orig_addr, |
369 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
370 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | |
371 | sizeof(int))); | |
ff7204a7 | 372 | free_pages((unsigned long)phys_to_virt(io_tlb_start), |
5740afdb FT |
373 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); |
374 | } else { | |
457ff1de SS |
375 | memblock_free_late(__pa(io_tlb_orig_addr), |
376 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | |
377 | memblock_free_late(__pa(io_tlb_list), | |
378 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | |
379 | memblock_free_late(io_tlb_start, | |
380 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | |
5740afdb | 381 | } |
f21ffe9f | 382 | io_tlb_nslabs = 0; |
7453c549 | 383 | max_segment = 0; |
5740afdb FT |
384 | } |
385 | ||
b65125c6 | 386 | static int is_swiotlb_buffer(phys_addr_t paddr) |
640aebfe | 387 | { |
ff7204a7 | 388 | return paddr >= io_tlb_start && paddr < io_tlb_end; |
640aebfe FT |
389 | } |
390 | ||
fb05a379 BB |
391 | /* |
392 | * Bounce: copy the swiotlb buffer back to the original dma location | |
393 | */ | |
af51a9f1 AD |
394 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, |
395 | size_t size, enum dma_data_direction dir) | |
fb05a379 | 396 | { |
af51a9f1 AD |
397 | unsigned long pfn = PFN_DOWN(orig_addr); |
398 | unsigned char *vaddr = phys_to_virt(tlb_addr); | |
fb05a379 BB |
399 | |
400 | if (PageHighMem(pfn_to_page(pfn))) { | |
401 | /* The buffer does not have a mapping. Map it in and copy */ | |
af51a9f1 | 402 | unsigned int offset = orig_addr & ~PAGE_MASK; |
fb05a379 BB |
403 | char *buffer; |
404 | unsigned int sz = 0; | |
405 | unsigned long flags; | |
406 | ||
407 | while (size) { | |
67131ad0 | 408 | sz = min_t(size_t, PAGE_SIZE - offset, size); |
fb05a379 BB |
409 | |
410 | local_irq_save(flags); | |
c3eede8e | 411 | buffer = kmap_atomic(pfn_to_page(pfn)); |
fb05a379 | 412 | if (dir == DMA_TO_DEVICE) |
af51a9f1 | 413 | memcpy(vaddr, buffer + offset, sz); |
ef9b1893 | 414 | else |
af51a9f1 | 415 | memcpy(buffer + offset, vaddr, sz); |
c3eede8e | 416 | kunmap_atomic(buffer); |
ef9b1893 | 417 | local_irq_restore(flags); |
fb05a379 BB |
418 | |
419 | size -= sz; | |
420 | pfn++; | |
af51a9f1 | 421 | vaddr += sz; |
fb05a379 | 422 | offset = 0; |
ef9b1893 | 423 | } |
af51a9f1 AD |
424 | } else if (dir == DMA_TO_DEVICE) { |
425 | memcpy(vaddr, phys_to_virt(orig_addr), size); | |
ef9b1893 | 426 | } else { |
af51a9f1 | 427 | memcpy(phys_to_virt(orig_addr), vaddr, size); |
ef9b1893 | 428 | } |
1b548f66 JF |
429 | } |
430 | ||
e05ed4d1 AD |
431 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, |
432 | dma_addr_t tbl_dma_addr, | |
433 | phys_addr_t orig_addr, size_t size, | |
0443fa00 AD |
434 | enum dma_data_direction dir, |
435 | unsigned long attrs) | |
1da177e4 LT |
436 | { |
437 | unsigned long flags; | |
e05ed4d1 | 438 | phys_addr_t tlb_addr; |
1da177e4 LT |
439 | unsigned int nslots, stride, index, wrap; |
440 | int i; | |
681cc5cd FT |
441 | unsigned long mask; |
442 | unsigned long offset_slots; | |
443 | unsigned long max_slots; | |
444 | ||
ac2cbab2 YL |
445 | if (no_iotlb_memory) |
446 | panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | |
447 | ||
d7b417fa TL |
448 | if (mem_encrypt_active()) |
449 | pr_warn_once("%s is active and system is using DMA bounce buffers\n", | |
450 | sme_active() ? "SME" : "SEV"); | |
648babb7 | 451 | |
681cc5cd | 452 | mask = dma_get_seg_boundary(hwdev); |
681cc5cd | 453 | |
eb605a57 FT |
454 | tbl_dma_addr &= mask; |
455 | ||
456 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
a5ddde4a IC |
457 | |
458 | /* | |
459 | * Carefully handle integer overflow which can occur when mask == ~0UL. | |
460 | */ | |
b15a3891 JB |
461 | max_slots = mask + 1 |
462 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | |
463 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | |
1da177e4 LT |
464 | |
465 | /* | |
602d9858 NY |
466 | * For mappings greater than or equal to a page, we limit the stride |
467 | * (and hence alignment) to a page size. | |
1da177e4 LT |
468 | */ |
469 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
602d9858 | 470 | if (size >= PAGE_SIZE) |
1da177e4 LT |
471 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); |
472 | else | |
473 | stride = 1; | |
474 | ||
34814545 | 475 | BUG_ON(!nslots); |
1da177e4 LT |
476 | |
477 | /* | |
478 | * Find suitable number of IO TLB entries size that will fit this | |
479 | * request and allocate a buffer from that IO TLB pool. | |
480 | */ | |
481 | spin_lock_irqsave(&io_tlb_lock, flags); | |
a7133a15 AM |
482 | index = ALIGN(io_tlb_index, stride); |
483 | if (index >= io_tlb_nslabs) | |
484 | index = 0; | |
485 | wrap = index; | |
486 | ||
487 | do { | |
a8522509 FT |
488 | while (iommu_is_span_boundary(index, nslots, offset_slots, |
489 | max_slots)) { | |
b15a3891 JB |
490 | index += stride; |
491 | if (index >= io_tlb_nslabs) | |
492 | index = 0; | |
a7133a15 AM |
493 | if (index == wrap) |
494 | goto not_found; | |
495 | } | |
496 | ||
497 | /* | |
498 | * If we find a slot that indicates we have 'nslots' number of | |
499 | * contiguous buffers, we allocate the buffers from that slot | |
500 | * and mark the entries as '0' indicating unavailable. | |
501 | */ | |
502 | if (io_tlb_list[index] >= nslots) { | |
503 | int count = 0; | |
504 | ||
505 | for (i = index; i < (int) (index + nslots); i++) | |
506 | io_tlb_list[i] = 0; | |
507 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | |
508 | io_tlb_list[i] = ++count; | |
e05ed4d1 | 509 | tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); |
1da177e4 | 510 | |
a7133a15 AM |
511 | /* |
512 | * Update the indices to avoid searching in the next | |
513 | * round. | |
514 | */ | |
515 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
516 | ? (index + nslots) : 0); | |
517 | ||
518 | goto found; | |
519 | } | |
520 | index += stride; | |
521 | if (index >= io_tlb_nslabs) | |
522 | index = 0; | |
523 | } while (index != wrap); | |
524 | ||
525 | not_found: | |
526 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
d0bc0c2a | 527 | if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) |
0cb637bf | 528 | dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); |
e05ed4d1 | 529 | return SWIOTLB_MAP_ERROR; |
a7133a15 | 530 | found: |
1da177e4 LT |
531 | spin_unlock_irqrestore(&io_tlb_lock, flags); |
532 | ||
533 | /* | |
534 | * Save away the mapping from the original address to the DMA address. | |
535 | * This is needed when we sync the memory. Then we sync the buffer if | |
536 | * needed. | |
537 | */ | |
bc40ac66 | 538 | for (i = 0; i < nslots; i++) |
e05ed4d1 | 539 | io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); |
0443fa00 AD |
540 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
541 | (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 542 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); |
1da177e4 | 543 | |
e05ed4d1 | 544 | return tlb_addr; |
1da177e4 LT |
545 | } |
546 | ||
547 | /* | |
d0c8ba40 | 548 | * tlb_addr is the physical address of the bounce buffer to unmap. |
1da177e4 | 549 | */ |
61ca08c3 | 550 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, |
0443fa00 AD |
551 | size_t size, enum dma_data_direction dir, |
552 | unsigned long attrs) | |
1da177e4 LT |
553 | { |
554 | unsigned long flags; | |
555 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
61ca08c3 AD |
556 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
557 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
1da177e4 LT |
558 | |
559 | /* | |
560 | * First, sync the memory before unmapping the entry | |
561 | */ | |
8e0629c1 | 562 | if (orig_addr != INVALID_PHYS_ADDR && |
0443fa00 | 563 | !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
8e0629c1 | 564 | ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) |
af51a9f1 | 565 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); |
1da177e4 LT |
566 | |
567 | /* | |
568 | * Return the buffer to the free list by setting the corresponding | |
af901ca1 | 569 | * entries to indicate the number of contiguous entries available. |
1da177e4 LT |
570 | * While returning the entries to the free list, we merge the entries |
571 | * with slots below and above the pool being returned. | |
572 | */ | |
573 | spin_lock_irqsave(&io_tlb_lock, flags); | |
574 | { | |
575 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
576 | io_tlb_list[index + nslots] : 0); | |
577 | /* | |
578 | * Step 1: return the slots to the free list, merging the | |
579 | * slots with superceeding slots | |
580 | */ | |
8e0629c1 | 581 | for (i = index + nslots - 1; i >= index; i--) { |
1da177e4 | 582 | io_tlb_list[i] = ++count; |
8e0629c1 JB |
583 | io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; |
584 | } | |
1da177e4 LT |
585 | /* |
586 | * Step 2: merge the returned slots with the preceding slots, | |
587 | * if available (non zero) | |
588 | */ | |
589 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
590 | io_tlb_list[i] = ++count; | |
591 | } | |
592 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
593 | } | |
594 | ||
fbfda893 AD |
595 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, |
596 | size_t size, enum dma_data_direction dir, | |
597 | enum dma_sync_target target) | |
1da177e4 | 598 | { |
fbfda893 AD |
599 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
600 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
bc40ac66 | 601 | |
8e0629c1 JB |
602 | if (orig_addr == INVALID_PHYS_ADDR) |
603 | return; | |
fbfda893 | 604 | orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); |
df336d1c | 605 | |
de69e0f0 JL |
606 | switch (target) { |
607 | case SYNC_FOR_CPU: | |
608 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 609 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 610 | size, DMA_FROM_DEVICE); |
34814545 ES |
611 | else |
612 | BUG_ON(dir != DMA_TO_DEVICE); | |
de69e0f0 JL |
613 | break; |
614 | case SYNC_FOR_DEVICE: | |
615 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 616 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 617 | size, DMA_TO_DEVICE); |
34814545 ES |
618 | else |
619 | BUG_ON(dir != DMA_FROM_DEVICE); | |
de69e0f0 JL |
620 | break; |
621 | default: | |
1da177e4 | 622 | BUG(); |
de69e0f0 | 623 | } |
1da177e4 LT |
624 | } |
625 | ||
c4dae366 CH |
626 | static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys, |
627 | size_t size, enum dma_data_direction dir, unsigned long attrs) | |
628 | { | |
629 | dma_addr_t dma_addr; | |
630 | ||
631 | if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { | |
632 | dev_warn_ratelimited(dev, | |
633 | "Cannot do DMA to address %pa\n", phys); | |
634 | return DIRECT_MAPPING_ERROR; | |
635 | } | |
636 | ||
637 | /* Oh well, have to allocate and map a bounce buffer. */ | |
638 | *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), | |
639 | *phys, size, dir, attrs); | |
640 | if (*phys == SWIOTLB_MAP_ERROR) | |
641 | return DIRECT_MAPPING_ERROR; | |
642 | ||
643 | /* Ensure that the address returned is DMA'ble */ | |
644 | dma_addr = __phys_to_dma(dev, *phys); | |
645 | if (unlikely(!dma_capable(dev, dma_addr, size))) { | |
646 | swiotlb_tbl_unmap_single(dev, *phys, size, dir, | |
647 | attrs | DMA_ATTR_SKIP_CPU_SYNC); | |
648 | return DIRECT_MAPPING_ERROR; | |
649 | } | |
650 | ||
651 | return dma_addr; | |
652 | } | |
653 | ||
1da177e4 LT |
654 | /* |
655 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 656 | * physical address to use is returned. |
1da177e4 LT |
657 | * |
658 | * Once the device is given the dma address, the device owns this memory until | |
ceb5ac32 | 659 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. |
1da177e4 | 660 | */ |
f98eee8e FT |
661 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, |
662 | unsigned long offset, size_t size, | |
663 | enum dma_data_direction dir, | |
00085f1e | 664 | unsigned long attrs) |
1da177e4 | 665 | { |
c4dae366 | 666 | phys_addr_t phys = page_to_phys(page) + offset; |
862d196b | 667 | dma_addr_t dev_addr = phys_to_dma(dev, phys); |
1da177e4 | 668 | |
34814545 | 669 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 670 | /* |
ceb5ac32 | 671 | * If the address happens to be in the device's DMA window, |
1da177e4 LT |
672 | * we can safely return the device addr and not worry about bounce |
673 | * buffering it. | |
674 | */ | |
a4a4330d CH |
675 | if (!dma_capable(dev, dev_addr, size) || |
676 | swiotlb_force == SWIOTLB_FORCE) { | |
677 | trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); | |
678 | dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs); | |
679 | } | |
680 | ||
681 | if (!dev_is_dma_coherent(dev) && | |
cb216b84 RM |
682 | (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0 && |
683 | dev_addr != DIRECT_MAPPING_ERROR) | |
a4a4330d | 684 | arch_sync_dma_for_device(dev, phys, size, dir); |
1da177e4 | 685 | |
a4a4330d | 686 | return dev_addr; |
1da177e4 LT |
687 | } |
688 | ||
1da177e4 LT |
689 | /* |
690 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
ceb5ac32 | 691 | * match what was provided for in a previous swiotlb_map_page call. All |
1da177e4 LT |
692 | * other usages are undefined. |
693 | * | |
694 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
695 | * whatever the device wrote there. | |
696 | */ | |
27744e00 CH |
697 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, |
698 | size_t size, enum dma_data_direction dir, | |
699 | unsigned long attrs) | |
1da177e4 | 700 | { |
862d196b | 701 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 702 | |
34814545 | 703 | BUG_ON(dir == DMA_NONE); |
7fcebbd2 | 704 | |
a4a4330d CH |
705 | if (!dev_is_dma_coherent(hwdev) && |
706 | (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) | |
707 | arch_sync_dma_for_cpu(hwdev, paddr, size, dir); | |
708 | ||
02ca646e | 709 | if (is_swiotlb_buffer(paddr)) { |
0443fa00 | 710 | swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); |
7fcebbd2 BB |
711 | return; |
712 | } | |
713 | ||
714 | if (dir != DMA_FROM_DEVICE) | |
715 | return; | |
716 | ||
02ca646e FT |
717 | /* |
718 | * phys_to_virt doesn't work with hihgmem page but we could | |
719 | * call dma_mark_clean() with hihgmem page here. However, we | |
720 | * are fine since dma_mark_clean() is null on POWERPC. We can | |
721 | * make dma_mark_clean() take a physical address if necessary. | |
722 | */ | |
723 | dma_mark_clean(phys_to_virt(paddr), size); | |
7fcebbd2 BB |
724 | } |
725 | ||
1da177e4 LT |
726 | /* |
727 | * Make physical memory consistent for a single streaming mode DMA translation | |
728 | * after a transfer. | |
729 | * | |
ceb5ac32 | 730 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer |
17e5ad6c TL |
731 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
732 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
733 | * address back to the card, you must first perform a |
734 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
735 | */ | |
be6b0267 | 736 | static void |
8270f3f1 | 737 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, |
d7ef1533 KRW |
738 | size_t size, enum dma_data_direction dir, |
739 | enum dma_sync_target target) | |
1da177e4 | 740 | { |
862d196b | 741 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 742 | |
34814545 | 743 | BUG_ON(dir == DMA_NONE); |
380d6878 | 744 | |
a4a4330d CH |
745 | if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU) |
746 | arch_sync_dma_for_cpu(hwdev, paddr, size, dir); | |
747 | ||
748 | if (is_swiotlb_buffer(paddr)) | |
fbfda893 | 749 | swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); |
380d6878 | 750 | |
a4a4330d CH |
751 | if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE) |
752 | arch_sync_dma_for_device(hwdev, paddr, size, dir); | |
380d6878 | 753 | |
a4a4330d CH |
754 | if (!is_swiotlb_buffer(paddr) && dir == DMA_FROM_DEVICE) |
755 | dma_mark_clean(phys_to_virt(paddr), size); | |
1da177e4 LT |
756 | } |
757 | ||
8270f3f1 JL |
758 | void |
759 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 760 | size_t size, enum dma_data_direction dir) |
8270f3f1 | 761 | { |
de69e0f0 | 762 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 JL |
763 | } |
764 | ||
1da177e4 LT |
765 | void |
766 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 767 | size_t size, enum dma_data_direction dir) |
1da177e4 | 768 | { |
de69e0f0 | 769 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 LT |
770 | } |
771 | ||
772 | /* | |
773 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
ceb5ac32 | 774 | * This is the scatter-gather version of the above swiotlb_map_page |
1da177e4 LT |
775 | * interface. Here the scatter gather list elements are each tagged with the |
776 | * appropriate dma address and length. They are obtained via | |
777 | * sg_dma_{address,length}(SG). | |
778 | * | |
ceb5ac32 | 779 | * Device ownership issues as mentioned above for swiotlb_map_page are the |
1da177e4 LT |
780 | * same here. |
781 | */ | |
782 | int | |
4803b44e | 783 | swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, |
00085f1e | 784 | enum dma_data_direction dir, unsigned long attrs) |
1da177e4 | 785 | { |
dbfd49fe | 786 | struct scatterlist *sg; |
1da177e4 LT |
787 | int i; |
788 | ||
dbfd49fe | 789 | for_each_sg(sgl, sg, nelems, i) { |
4803b44e CH |
790 | sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset, |
791 | sg->length, dir, attrs); | |
792 | if (sg->dma_address == DIRECT_MAPPING_ERROR) | |
793 | goto out_error; | |
4d86ec7a | 794 | sg_dma_len(sg) = sg->length; |
1da177e4 | 795 | } |
4803b44e | 796 | |
1da177e4 | 797 | return nelems; |
4803b44e CH |
798 | |
799 | out_error: | |
800 | swiotlb_unmap_sg_attrs(dev, sgl, i, dir, | |
801 | attrs | DMA_ATTR_SKIP_CPU_SYNC); | |
802 | sg_dma_len(sgl) = 0; | |
803 | return 0; | |
1da177e4 | 804 | } |
309df0c5 | 805 | |
1da177e4 LT |
806 | /* |
807 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
ceb5ac32 | 808 | * concerning calls here are the same as for swiotlb_unmap_page() above. |
1da177e4 LT |
809 | */ |
810 | void | |
309df0c5 | 811 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, |
00085f1e KK |
812 | int nelems, enum dma_data_direction dir, |
813 | unsigned long attrs) | |
1da177e4 | 814 | { |
dbfd49fe | 815 | struct scatterlist *sg; |
1da177e4 LT |
816 | int i; |
817 | ||
34814545 | 818 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 819 | |
7fcebbd2 | 820 | for_each_sg(sgl, sg, nelems, i) |
27744e00 | 821 | swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir, |
0443fa00 | 822 | attrs); |
1da177e4 | 823 | } |
309df0c5 | 824 | |
1da177e4 LT |
825 | /* |
826 | * Make physical memory consistent for a set of streaming mode DMA translations | |
827 | * after a transfer. | |
828 | * | |
829 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
830 | * and usage. | |
831 | */ | |
be6b0267 | 832 | static void |
dbfd49fe | 833 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, |
d7ef1533 KRW |
834 | int nelems, enum dma_data_direction dir, |
835 | enum dma_sync_target target) | |
1da177e4 | 836 | { |
dbfd49fe | 837 | struct scatterlist *sg; |
1da177e4 LT |
838 | int i; |
839 | ||
380d6878 BB |
840 | for_each_sg(sgl, sg, nelems, i) |
841 | swiotlb_sync_single(hwdev, sg->dma_address, | |
4d86ec7a | 842 | sg_dma_len(sg), dir, target); |
1da177e4 LT |
843 | } |
844 | ||
8270f3f1 JL |
845 | void |
846 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 847 | int nelems, enum dma_data_direction dir) |
8270f3f1 | 848 | { |
de69e0f0 | 849 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 JL |
850 | } |
851 | ||
1da177e4 LT |
852 | void |
853 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 854 | int nelems, enum dma_data_direction dir) |
1da177e4 | 855 | { |
de69e0f0 | 856 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 LT |
857 | } |
858 | ||
1da177e4 | 859 | /* |
17e5ad6c | 860 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 861 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 862 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
863 | * this function. |
864 | */ | |
865 | int | |
563aaf06 | 866 | swiotlb_dma_supported(struct device *hwdev, u64 mask) |
1da177e4 | 867 | { |
b6e05477 | 868 | return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; |
1da177e4 | 869 | } |
251533eb | 870 | |
251533eb | 871 | const struct dma_map_ops swiotlb_dma_ops = { |
dff8d6c1 | 872 | .mapping_error = dma_direct_mapping_error, |
fafadcd1 CH |
873 | .alloc = dma_direct_alloc, |
874 | .free = dma_direct_free, | |
251533eb CH |
875 | .sync_single_for_cpu = swiotlb_sync_single_for_cpu, |
876 | .sync_single_for_device = swiotlb_sync_single_for_device, | |
877 | .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, | |
878 | .sync_sg_for_device = swiotlb_sync_sg_for_device, | |
879 | .map_sg = swiotlb_map_sg_attrs, | |
880 | .unmap_sg = swiotlb_unmap_sg_attrs, | |
881 | .map_page = swiotlb_map_page, | |
882 | .unmap_page = swiotlb_unmap_page, | |
66bdb147 | 883 | .dma_supported = dma_direct_supported, |
251533eb | 884 | }; |
210d0797 | 885 | EXPORT_SYMBOL(swiotlb_dma_ops); |