]> Git Repo - linux.git/blame - fs/btrfs/disk-io.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
7e75bf3f 20#include <asm/unaligned.h>
eb60ceac
CM
21#include "ctree.h"
22#include "disk-io.h"
e089f05c 23#include "transaction.h"
0f7d52f4 24#include "btrfs_inode.h"
0b86a832 25#include "volumes.h"
db94535d 26#include "print-tree.h"
925baedd 27#include "locking.h"
e02119d5 28#include "tree-log.h"
fa9c0d79 29#include "free-space-cache.h"
70f6d82e 30#include "free-space-tree.h"
581bb050 31#include "inode-map.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
eb60ceac 41
de0022b9
JB
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 206 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 207 int create)
7eccb903 208{
3ffbd68c 209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 210 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
211 struct extent_map *em;
212 int ret;
213
890871be 214 read_lock(&em_tree->lock);
d1310b2e 215 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 216 if (em) {
0b246afa 217 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 218 read_unlock(&em_tree->lock);
5f39d397 219 goto out;
a061fc8d 220 }
890871be 221 read_unlock(&em_tree->lock);
7b13b7b1 222
172ddd60 223 em = alloc_extent_map();
5f39d397
CM
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
0afbaf8c 229 em->len = (u64)-1;
c8b97818 230 em->block_len = (u64)-1;
5f39d397 231 em->block_start = 0;
0b246afa 232 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 233
890871be 234 write_lock(&em_tree->lock);
09a2a8f9 235 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
236 if (ret == -EEXIST) {
237 free_extent_map(em);
7b13b7b1 238 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 239 if (!em)
0433f20d 240 em = ERR_PTR(-EIO);
5f39d397 241 } else if (ret) {
7b13b7b1 242 free_extent_map(em);
0433f20d 243 em = ERR_PTR(ret);
5f39d397 244 }
890871be 245 write_unlock(&em_tree->lock);
7b13b7b1 246
5f39d397
CM
247out:
248 return em;
7eccb903
CM
249}
250
9ed57367 251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 252{
9678c543 253 return crc32c(seed, data, len);
19c00ddc
CM
254}
255
0b5e3daf 256void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 257{
7e75bf3f 258 put_unaligned_le32(~crc, result);
19c00ddc
CM
259}
260
d352ac68
CM
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
01d58472
DD
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
19c00ddc
CM
267 int verify)
268{
01d58472 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 270 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
d397712b 281 while (len > 0) {
19c00ddc 282 err = map_private_extent_buffer(buf, offset, 32,
a6591715 283 &kaddr, &map_start, &map_len);
d397712b 284 if (err)
8bd98f0e 285 return err;
19c00ddc 286 cur_len = min(len, map_len - (offset - map_start));
b0496686 287 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
94647322 303 btrfs_warn_rl(fs_info,
5d163e0e 304 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 305 fs_info->sb->s_id, buf->start,
efe120a0 306 val, found, btrfs_header_level(buf));
8bd98f0e 307 return -EUCLEAN;
19c00ddc
CM
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
71a63551 312
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75 327 int ret;
2755a0de 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
a26e8c9f
JB
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
2ac55d41 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 342 &cached_state);
0b32f4bb 343 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
94647322
DS
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
29549aec 351 parent_transid, btrfs_header_generation(eb));
1259ab75 352 ret = 1;
a26e8c9f
JB
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
01327610 357 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
33958dc6 364out:
2ac55d41 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 366 &cached_state);
472b909f
JB
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
1259ab75 369 return ret;
1259ab75
CM
370}
371
1104a885
DS
372/*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
ab8d0fc4
JM
376static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
1104a885
DS
378{
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
776c4a7c 386 char result[sizeof(crc)];
1104a885
DS
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 391 * is filled with zeros and is included in the checksum.
1104a885
DS
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
776c4a7c 397 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408}
409
581c1760
QW
410static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
ff76a864 412 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
413{
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420#ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425#endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
5d41be6f
QW
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
581c1760
QW
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446#ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
ff76a864
LB
450"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
581c1760
QW
455 }
456#endif
457 return ret;
458}
459
d352ac68
CM
460/*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
d352ac68 467 */
2ff7e61e 468static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 469 struct extent_buffer *eb,
581c1760
QW
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
f188591e
CM
472{
473 struct extent_io_tree *io_tree;
ea466794 474 int failed = 0;
f188591e
CM
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
ea466794 478 int failed_mirror = 0;
f188591e 479
0b246afa 480 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 481 while (1) {
f8397d69 482 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 484 mirror_num);
256dd1bb 485 if (!ret) {
581c1760 486 if (verify_parent_transid(io_tree, eb,
b9fab919 487 parent_transid, 0))
256dd1bb 488 ret = -EIO;
581c1760 489 else if (verify_level_key(fs_info, eb, level,
ff76a864 490 first_key, parent_transid))
581c1760
QW
491 ret = -EUCLEAN;
492 else
493 break;
256dd1bb 494 }
d397712b 495
0b246afa 496 num_copies = btrfs_num_copies(fs_info,
f188591e 497 eb->start, eb->len);
4235298e 498 if (num_copies == 1)
ea466794 499 break;
4235298e 500
5cf1ab56
JB
501 if (!failed_mirror) {
502 failed = 1;
503 failed_mirror = eb->read_mirror;
504 }
505
f188591e 506 mirror_num++;
ea466794
JB
507 if (mirror_num == failed_mirror)
508 mirror_num++;
509
4235298e 510 if (mirror_num > num_copies)
ea466794 511 break;
f188591e 512 }
ea466794 513
c0901581 514 if (failed && !ret && failed_mirror)
2ff7e61e 515 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
516
517 return ret;
f188591e 518}
19c00ddc 519
d352ac68 520/*
d397712b
CM
521 * checksum a dirty tree block before IO. This has extra checks to make sure
522 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 523 */
d397712b 524
01d58472 525static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 526{
4eee4fa4 527 u64 start = page_offset(page);
19c00ddc 528 u64 found_start;
19c00ddc 529 struct extent_buffer *eb;
f188591e 530
4f2de97a
JB
531 eb = (struct extent_buffer *)page->private;
532 if (page != eb->pages[0])
533 return 0;
0f805531 534
19c00ddc 535 found_start = btrfs_header_bytenr(eb);
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
545 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
546 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
547
8bd98f0e 548 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
549}
550
01d58472 551static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
552 struct extent_buffer *eb)
553{
01d58472 554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 555 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
556 int ret = 1;
557
0a4e5586 558 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
559 while (fs_devices) {
560 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
561 ret = 0;
562 break;
563 }
564 fs_devices = fs_devices->seed;
565 }
566 return ret;
567}
568
facc8a22
MX
569static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
570 u64 phy_offset, struct page *page,
571 u64 start, u64 end, int mirror)
ce9adaa5 572{
ce9adaa5
CM
573 u64 found_start;
574 int found_level;
ce9adaa5
CM
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 577 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 578 int ret = 0;
727011e0 579 int reads_done;
ce9adaa5 580
ce9adaa5
CM
581 if (!page->private)
582 goto out;
d397712b 583
4f2de97a 584 eb = (struct extent_buffer *)page->private;
d397712b 585
0b32f4bb
JB
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
592 if (!reads_done)
593 goto err;
f188591e 594
5cf1ab56 595 eb->read_mirror = mirror;
656f30db 596 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
597 ret = -EIO;
598 goto err;
599 }
600
ce9adaa5 601 found_start = btrfs_header_bytenr(eb);
727011e0 602 if (found_start != eb->start) {
893bf4b1
SY
603 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
604 eb->start, found_start);
f188591e 605 ret = -EIO;
ce9adaa5
CM
606 goto err;
607 }
02873e43
ZL
608 if (check_tree_block_fsid(fs_info, eb)) {
609 btrfs_err_rl(fs_info, "bad fsid on block %llu",
610 eb->start);
1259ab75
CM
611 ret = -EIO;
612 goto err;
613 }
ce9adaa5 614 found_level = btrfs_header_level(eb);
1c24c3ce 615 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
616 btrfs_err(fs_info, "bad tree block level %d on %llu",
617 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
618 ret = -EIO;
619 goto err;
620 }
ce9adaa5 621
85d4e461
CM
622 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
623 eb, found_level);
4008c04a 624
02873e43 625 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 626 if (ret)
a826d6dc 627 goto err;
a826d6dc
JB
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
2f659546 634 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
2f659546 639 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
640 ret = -EIO;
641
0b32f4bb
JB
642 if (!ret)
643 set_extent_buffer_uptodate(eb);
ce9adaa5 644err:
79fb65a1
JB
645 if (reads_done &&
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 647 btree_readahead_hook(eb, ret);
4bb31e92 648
53b381b3
DW
649 if (ret) {
650 /*
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
653 * to decrement
654 */
655 atomic_inc(&eb->io_pages);
0b32f4bb 656 clear_extent_buffer_uptodate(eb);
53b381b3 657 }
0b32f4bb 658 free_extent_buffer(eb);
ce9adaa5 659out:
f188591e 660 return ret;
ce9adaa5
CM
661}
662
ea466794 663static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 664{
4bb31e92 665 struct extent_buffer *eb;
4bb31e92 666
4f2de97a 667 eb = (struct extent_buffer *)page->private;
656f30db 668 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 669 eb->read_mirror = failed_mirror;
53b381b3 670 atomic_dec(&eb->io_pages);
ea466794 671 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 672 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
673 return -EIO; /* we fixed nothing */
674}
675
4246a0b6 676static void end_workqueue_bio(struct bio *bio)
ce9adaa5 677{
97eb6b69 678 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 679 struct btrfs_fs_info *fs_info;
9e0af237
LB
680 struct btrfs_workqueue *wq;
681 btrfs_work_func_t func;
ce9adaa5 682
ce9adaa5 683 fs_info = end_io_wq->info;
4e4cbee9 684 end_io_wq->status = bio->bi_status;
d20f7043 685
37226b21 686 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
687 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
688 wq = fs_info->endio_meta_write_workers;
689 func = btrfs_endio_meta_write_helper;
690 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
691 wq = fs_info->endio_freespace_worker;
692 func = btrfs_freespace_write_helper;
693 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
694 wq = fs_info->endio_raid56_workers;
695 func = btrfs_endio_raid56_helper;
696 } else {
697 wq = fs_info->endio_write_workers;
698 func = btrfs_endio_write_helper;
699 }
d20f7043 700 } else {
8b110e39
MX
701 if (unlikely(end_io_wq->metadata ==
702 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
703 wq = fs_info->endio_repair_workers;
704 func = btrfs_endio_repair_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
706 wq = fs_info->endio_raid56_workers;
707 func = btrfs_endio_raid56_helper;
708 } else if (end_io_wq->metadata) {
709 wq = fs_info->endio_meta_workers;
710 func = btrfs_endio_meta_helper;
711 } else {
712 wq = fs_info->endio_workers;
713 func = btrfs_endio_helper;
714 }
d20f7043 715 }
9e0af237
LB
716
717 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
718 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
719}
720
4e4cbee9 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 722 enum btrfs_wq_endio_type metadata)
0b86a832 723{
97eb6b69 724 struct btrfs_end_io_wq *end_io_wq;
8b110e39 725
97eb6b69 726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 727 if (!end_io_wq)
4e4cbee9 728 return BLK_STS_RESOURCE;
ce9adaa5
CM
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
22c59948 732 end_io_wq->info = info;
4e4cbee9 733 end_io_wq->status = 0;
ce9adaa5 734 end_io_wq->bio = bio;
22c59948 735 end_io_wq->metadata = metadata;
ce9adaa5
CM
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
739 return 0;
740}
741
4a69a410
CM
742static void run_one_async_start(struct btrfs_work *work)
743{
4a69a410 744 struct async_submit_bio *async;
4e4cbee9 745 blk_status_t ret;
4a69a410
CM
746
747 async = container_of(work, struct async_submit_bio, work);
c6100a4b 748 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
749 async->bio_offset);
750 if (ret)
4e4cbee9 751 async->status = ret;
4a69a410
CM
752}
753
754static void run_one_async_done(struct btrfs_work *work)
8b712842 755{
8b712842
CM
756 struct async_submit_bio *async;
757
758 async = container_of(work, struct async_submit_bio, work);
4854ddd0 759
bb7ab3b9 760 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
761 if (async->status) {
762 async->bio->bi_status = async->status;
4246a0b6 763 bio_endio(async->bio);
79787eaa
JM
764 return;
765 }
766
e288c080 767 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
768}
769
770static void run_one_async_free(struct btrfs_work *work)
771{
772 struct async_submit_bio *async;
773
774 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
775 kfree(async);
776}
777
8c27cb35
LT
778blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
779 int mirror_num, unsigned long bio_flags,
780 u64 bio_offset, void *private_data,
e288c080 781 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
782{
783 struct async_submit_bio *async;
784
785 async = kmalloc(sizeof(*async), GFP_NOFS);
786 if (!async)
4e4cbee9 787 return BLK_STS_RESOURCE;
44b8bd7e 788
c6100a4b 789 async->private_data = private_data;
44b8bd7e
CM
790 async->bio = bio;
791 async->mirror_num = mirror_num;
4a69a410 792 async->submit_bio_start = submit_bio_start;
4a69a410 793
9e0af237 794 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 795 run_one_async_done, run_one_async_free);
4a69a410 796
eaf25d93 797 async->bio_offset = bio_offset;
8c8bee1d 798
4e4cbee9 799 async->status = 0;
79787eaa 800
67f055c7 801 if (op_is_sync(bio->bi_opf))
5cdc7ad3 802 btrfs_set_work_high_priority(&async->work);
d313d7a3 803
5cdc7ad3 804 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
805 return 0;
806}
807
4e4cbee9 808static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 809{
2c30c71b 810 struct bio_vec *bvec;
ce3ed71a 811 struct btrfs_root *root;
2c30c71b 812 int i, ret = 0;
ce3ed71a 813
c09abff8 814 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 815 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 816 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 817 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
818 if (ret)
819 break;
ce3ed71a 820 }
2c30c71b 821
4e4cbee9 822 return errno_to_blk_status(ret);
ce3ed71a
CM
823}
824
d0ee3934 825static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 826 u64 bio_offset)
22c59948 827{
8b712842
CM
828 /*
829 * when we're called for a write, we're already in the async
5443be45 830 * submission context. Just jump into btrfs_map_bio
8b712842 831 */
79787eaa 832 return btree_csum_one_bio(bio);
4a69a410 833}
22c59948 834
18fdc679 835static int check_async_write(struct btrfs_inode *bi)
de0022b9 836{
6300463b
LB
837 if (atomic_read(&bi->sync_writers))
838 return 0;
de0022b9 839#ifdef CONFIG_X86
bc696ca0 840 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
841 return 0;
842#endif
843 return 1;
844}
845
8c27cb35
LT
846static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
847 int mirror_num, unsigned long bio_flags,
848 u64 bio_offset)
44b8bd7e 849{
c6100a4b 850 struct inode *inode = private_data;
0b246afa 851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 852 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 853 blk_status_t ret;
cad321ad 854
37226b21 855 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
856 /*
857 * called for a read, do the setup so that checksum validation
858 * can happen in the async kernel threads
859 */
0b246afa
JM
860 ret = btrfs_bio_wq_end_io(fs_info, bio,
861 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 862 if (ret)
61891923 863 goto out_w_error;
2ff7e61e 864 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
865 } else if (!async) {
866 ret = btree_csum_one_bio(bio);
867 if (ret)
61891923 868 goto out_w_error;
2ff7e61e 869 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
870 } else {
871 /*
872 * kthread helpers are used to submit writes so that
873 * checksumming can happen in parallel across all CPUs
874 */
c6100a4b
JB
875 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
876 bio_offset, private_data,
e288c080 877 btree_submit_bio_start);
44b8bd7e 878 }
d313d7a3 879
4246a0b6
CH
880 if (ret)
881 goto out_w_error;
882 return 0;
883
61891923 884out_w_error:
4e4cbee9 885 bio->bi_status = ret;
4246a0b6 886 bio_endio(bio);
61891923 887 return ret;
44b8bd7e
CM
888}
889
3dd1462e 890#ifdef CONFIG_MIGRATION
784b4e29 891static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
892 struct page *newpage, struct page *page,
893 enum migrate_mode mode)
784b4e29
CM
894{
895 /*
896 * we can't safely write a btree page from here,
897 * we haven't done the locking hook
898 */
899 if (PageDirty(page))
900 return -EAGAIN;
901 /*
902 * Buffers may be managed in a filesystem specific way.
903 * We must have no buffers or drop them.
904 */
905 if (page_has_private(page) &&
906 !try_to_release_page(page, GFP_KERNEL))
907 return -EAGAIN;
a6bc32b8 908 return migrate_page(mapping, newpage, page, mode);
784b4e29 909}
3dd1462e 910#endif
784b4e29 911
0da5468f
CM
912
913static int btree_writepages(struct address_space *mapping,
914 struct writeback_control *wbc)
915{
e2d84521
MX
916 struct btrfs_fs_info *fs_info;
917 int ret;
918
d8d5f3e1 919 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
920
921 if (wbc->for_kupdate)
922 return 0;
923
e2d84521 924 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 925 /* this is a bit racy, but that's ok */
d814a491
EL
926 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
927 BTRFS_DIRTY_METADATA_THRESH,
928 fs_info->dirty_metadata_batch);
e2d84521 929 if (ret < 0)
793955bc 930 return 0;
793955bc 931 }
0b32f4bb 932 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
933}
934
b2950863 935static int btree_readpage(struct file *file, struct page *page)
5f39d397 936{
d1310b2e
CM
937 struct extent_io_tree *tree;
938 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 939 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 940}
22b0ebda 941
70dec807 942static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 943{
98509cfc 944 if (PageWriteback(page) || PageDirty(page))
d397712b 945 return 0;
0c4e538b 946
f7a52a40 947 return try_release_extent_buffer(page);
d98237b3
CM
948}
949
d47992f8
LC
950static void btree_invalidatepage(struct page *page, unsigned int offset,
951 unsigned int length)
d98237b3 952{
d1310b2e
CM
953 struct extent_io_tree *tree;
954 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
955 extent_invalidatepage(tree, page, offset);
956 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 957 if (PagePrivate(page)) {
efe120a0
FH
958 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
959 "page private not zero on page %llu",
960 (unsigned long long)page_offset(page));
9ad6b7bc
CM
961 ClearPagePrivate(page);
962 set_page_private(page, 0);
09cbfeaf 963 put_page(page);
9ad6b7bc 964 }
d98237b3
CM
965}
966
0b32f4bb
JB
967static int btree_set_page_dirty(struct page *page)
968{
bb146eb2 969#ifdef DEBUG
0b32f4bb
JB
970 struct extent_buffer *eb;
971
972 BUG_ON(!PagePrivate(page));
973 eb = (struct extent_buffer *)page->private;
974 BUG_ON(!eb);
975 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
976 BUG_ON(!atomic_read(&eb->refs));
977 btrfs_assert_tree_locked(eb);
bb146eb2 978#endif
0b32f4bb
JB
979 return __set_page_dirty_nobuffers(page);
980}
981
7f09410b 982static const struct address_space_operations btree_aops = {
d98237b3 983 .readpage = btree_readpage,
0da5468f 984 .writepages = btree_writepages,
5f39d397
CM
985 .releasepage = btree_releasepage,
986 .invalidatepage = btree_invalidatepage,
5a92bc88 987#ifdef CONFIG_MIGRATION
784b4e29 988 .migratepage = btree_migratepage,
5a92bc88 989#endif
0b32f4bb 990 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
991};
992
2ff7e61e 993void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 994{
5f39d397 995 struct extent_buffer *buf = NULL;
2ff7e61e 996 struct inode *btree_inode = fs_info->btree_inode;
090d1875 997
2ff7e61e 998 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 999 if (IS_ERR(buf))
6197d86e 1000 return;
d1310b2e 1001 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1002 buf, WAIT_NONE, 0);
5f39d397 1003 free_extent_buffer(buf);
090d1875
CM
1004}
1005
2ff7e61e 1006int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1007 int mirror_num, struct extent_buffer **eb)
1008{
1009 struct extent_buffer *buf = NULL;
2ff7e61e 1010 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1011 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1012 int ret;
1013
2ff7e61e 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1015 if (IS_ERR(buf))
ab0fff03
AJ
1016 return 0;
1017
1018 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1019
8436ea91 1020 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1021 mirror_num);
ab0fff03
AJ
1022 if (ret) {
1023 free_extent_buffer(buf);
1024 return ret;
1025 }
1026
1027 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1028 free_extent_buffer(buf);
1029 return -EIO;
0b32f4bb 1030 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1031 *eb = buf;
1032 } else {
1033 free_extent_buffer(buf);
1034 }
1035 return 0;
1036}
1037
2ff7e61e
JM
1038struct extent_buffer *btrfs_find_create_tree_block(
1039 struct btrfs_fs_info *fs_info,
1040 u64 bytenr)
0999df54 1041{
0b246afa
JM
1042 if (btrfs_is_testing(fs_info))
1043 return alloc_test_extent_buffer(fs_info, bytenr);
1044 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1045}
1046
1047
e02119d5
CM
1048int btrfs_write_tree_block(struct extent_buffer *buf)
1049{
727011e0 1050 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1051 buf->start + buf->len - 1);
e02119d5
CM
1052}
1053
3189ff77 1054void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1055{
3189ff77
JL
1056 filemap_fdatawait_range(buf->pages[0]->mapping,
1057 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1058}
1059
581c1760
QW
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
2ff7e61e 1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
0999df54
CM
1071{
1072 struct extent_buffer *buf = NULL;
0999df54
CM
1073 int ret;
1074
2ff7e61e 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1076 if (IS_ERR(buf))
1077 return buf;
0999df54 1078
581c1760
QW
1079 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1080 level, first_key);
0f0fe8f7
FDBM
1081 if (ret) {
1082 free_extent_buffer(buf);
64c043de 1083 return ERR_PTR(ret);
0f0fe8f7 1084 }
5f39d397 1085 return buf;
ce9adaa5 1086
eb60ceac
CM
1087}
1088
7c302b49 1089void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1090 struct extent_buffer *buf)
ed2ff2cb 1091{
55c69072 1092 if (btrfs_header_generation(buf) ==
e2d84521 1093 fs_info->running_transaction->transid) {
b9447ef8 1094 btrfs_assert_tree_locked(buf);
b4ce94de 1095
b9473439 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101 btrfs_set_lock_blocking(buf);
1102 clear_extent_buffer_dirty(buf);
1103 }
925baedd 1104 }
5f39d397
CM
1105}
1106
8257b2dc
MX
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
8a5a916d 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
da17066c 1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1134 u64 objectid)
d97e63b6 1135{
7c0260ee 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1137 root->node = NULL;
a28ec197 1138 root->commit_root = NULL;
27cdeb70 1139 root->state = 0;
d68fc57b 1140 root->orphan_cleanup_state = 0;
0b86a832 1141
0f7d52f4 1142 root->last_trans = 0;
13a8a7c8 1143 root->highest_objectid = 0;
eb73c1b7 1144 root->nr_delalloc_inodes = 0;
199c2a9c 1145 root->nr_ordered_extents = 0;
6bef4d31 1146 root->inode_tree = RB_ROOT;
16cdcec7 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1148 root->block_rsv = NULL;
0b86a832
CM
1149
1150 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1151 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1152 INIT_LIST_HEAD(&root->delalloc_inodes);
1153 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1154 INIT_LIST_HEAD(&root->ordered_extents);
1155 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1156 INIT_LIST_HEAD(&root->logged_list[0]);
1157 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1158 spin_lock_init(&root->inode_lock);
eb73c1b7 1159 spin_lock_init(&root->delalloc_lock);
199c2a9c 1160 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1161 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1162 spin_lock_init(&root->log_extents_lock[0]);
1163 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1164 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1165 mutex_init(&root->objectid_mutex);
e02119d5 1166 mutex_init(&root->log_mutex);
31f3d255 1167 mutex_init(&root->ordered_extent_mutex);
573bfb72 1168 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1169 init_waitqueue_head(&root->log_writer_wait);
1170 init_waitqueue_head(&root->log_commit_wait[0]);
1171 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1172 INIT_LIST_HEAD(&root->log_ctxs[0]);
1173 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1174 atomic_set(&root->log_commit[0], 0);
1175 atomic_set(&root->log_commit[1], 0);
1176 atomic_set(&root->log_writers, 0);
2ecb7923 1177 atomic_set(&root->log_batch, 0);
0700cea7 1178 refcount_set(&root->refs, 1);
ea14b57f 1179 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1180 atomic_set(&root->snapshot_force_cow, 0);
7237f183 1181 root->log_transid = 0;
d1433deb 1182 root->log_transid_committed = -1;
257c62e1 1183 root->last_log_commit = 0;
7c0260ee 1184 if (!dummy)
c6100a4b 1185 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1186
3768f368
CM
1187 memset(&root->root_key, 0, sizeof(root->root_key));
1188 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1190 if (!dummy)
06ea65a3
JB
1191 root->defrag_trans_start = fs_info->generation;
1192 else
1193 root->defrag_trans_start = 0;
4d775673 1194 root->root_key.objectid = objectid;
0ee5dc67 1195 root->anon_dev = 0;
8ea05e3a 1196
5f3ab90a 1197 spin_lock_init(&root->root_item_lock);
3768f368
CM
1198}
1199
74e4d827
DS
1200static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1201 gfp_t flags)
6f07e42e 1202{
74e4d827 1203 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1204 if (root)
1205 root->fs_info = fs_info;
1206 return root;
1207}
1208
06ea65a3
JB
1209#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210/* Should only be used by the testing infrastructure */
da17066c 1211struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1212{
1213 struct btrfs_root *root;
1214
7c0260ee
JM
1215 if (!fs_info)
1216 return ERR_PTR(-EINVAL);
1217
1218 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1219 if (!root)
1220 return ERR_PTR(-ENOMEM);
da17066c 1221
b9ef22de 1222 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1223 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1224 root->alloc_bytenr = 0;
06ea65a3
JB
1225
1226 return root;
1227}
1228#endif
1229
20897f5c
AJ
1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231 struct btrfs_fs_info *fs_info,
1232 u64 objectid)
1233{
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
1238 int ret = 0;
33d85fda 1239 uuid_le uuid = NULL_UUID_LE;
20897f5c 1240
74e4d827 1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1242 if (!root)
1243 return ERR_PTR(-ENOMEM);
1244
da17066c 1245 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1246 root->root_key.objectid = objectid;
1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248 root->root_key.offset = 0;
1249
4d75f8a9 1250 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1251 if (IS_ERR(leaf)) {
1252 ret = PTR_ERR(leaf);
1dd05682 1253 leaf = NULL;
20897f5c
AJ
1254 goto fail;
1255 }
1256
20897f5c 1257 root->node = leaf;
20897f5c
AJ
1258 btrfs_mark_buffer_dirty(leaf);
1259
1260 root->commit_root = btrfs_root_node(root);
27cdeb70 1261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1262
1263 root->root_item.flags = 0;
1264 root->root_item.byte_limit = 0;
1265 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1266 btrfs_set_root_generation(&root->root_item, trans->transid);
1267 btrfs_set_root_level(&root->root_item, 0);
1268 btrfs_set_root_refs(&root->root_item, 1);
1269 btrfs_set_root_used(&root->root_item, leaf->len);
1270 btrfs_set_root_last_snapshot(&root->root_item, 0);
1271 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1272 if (is_fstree(objectid))
1273 uuid_le_gen(&uuid);
6463fe58 1274 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1275 root->root_item.drop_level = 0;
1276
1277 key.objectid = objectid;
1278 key.type = BTRFS_ROOT_ITEM_KEY;
1279 key.offset = 0;
1280 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1281 if (ret)
1282 goto fail;
1283
1284 btrfs_tree_unlock(leaf);
1285
1dd05682
TI
1286 return root;
1287
20897f5c 1288fail:
1dd05682
TI
1289 if (leaf) {
1290 btrfs_tree_unlock(leaf);
59885b39 1291 free_extent_buffer(root->commit_root);
1dd05682
TI
1292 free_extent_buffer(leaf);
1293 }
1294 kfree(root);
20897f5c 1295
1dd05682 1296 return ERR_PTR(ret);
20897f5c
AJ
1297}
1298
7237f183
YZ
1299static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1300 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1301{
1302 struct btrfs_root *root;
7237f183 1303 struct extent_buffer *leaf;
e02119d5 1304
74e4d827 1305 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1306 if (!root)
7237f183 1307 return ERR_PTR(-ENOMEM);
e02119d5 1308
da17066c 1309 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1310
1311 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1312 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1313 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1314
7237f183 1315 /*
27cdeb70
MX
1316 * DON'T set REF_COWS for log trees
1317 *
7237f183
YZ
1318 * log trees do not get reference counted because they go away
1319 * before a real commit is actually done. They do store pointers
1320 * to file data extents, and those reference counts still get
1321 * updated (along with back refs to the log tree).
1322 */
e02119d5 1323
4d75f8a9
DS
1324 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1325 NULL, 0, 0, 0);
7237f183
YZ
1326 if (IS_ERR(leaf)) {
1327 kfree(root);
1328 return ERR_CAST(leaf);
1329 }
e02119d5 1330
7237f183 1331 root->node = leaf;
e02119d5 1332
e02119d5
CM
1333 btrfs_mark_buffer_dirty(root->node);
1334 btrfs_tree_unlock(root->node);
7237f183
YZ
1335 return root;
1336}
1337
1338int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1339 struct btrfs_fs_info *fs_info)
1340{
1341 struct btrfs_root *log_root;
1342
1343 log_root = alloc_log_tree(trans, fs_info);
1344 if (IS_ERR(log_root))
1345 return PTR_ERR(log_root);
1346 WARN_ON(fs_info->log_root_tree);
1347 fs_info->log_root_tree = log_root;
1348 return 0;
1349}
1350
1351int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *root)
1353{
0b246afa 1354 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1355 struct btrfs_root *log_root;
1356 struct btrfs_inode_item *inode_item;
1357
0b246afa 1358 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1359 if (IS_ERR(log_root))
1360 return PTR_ERR(log_root);
1361
1362 log_root->last_trans = trans->transid;
1363 log_root->root_key.offset = root->root_key.objectid;
1364
1365 inode_item = &log_root->root_item.inode;
3cae210f
QW
1366 btrfs_set_stack_inode_generation(inode_item, 1);
1367 btrfs_set_stack_inode_size(inode_item, 3);
1368 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1369 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1370 fs_info->nodesize);
3cae210f 1371 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1372
5d4f98a2 1373 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1374
1375 WARN_ON(root->log_root);
1376 root->log_root = log_root;
1377 root->log_transid = 0;
d1433deb 1378 root->log_transid_committed = -1;
257c62e1 1379 root->last_log_commit = 0;
e02119d5
CM
1380 return 0;
1381}
1382
35a3621b
SB
1383static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1384 struct btrfs_key *key)
e02119d5
CM
1385{
1386 struct btrfs_root *root;
1387 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1388 struct btrfs_path *path;
84234f3a 1389 u64 generation;
cb517eab 1390 int ret;
581c1760 1391 int level;
0f7d52f4 1392
cb517eab
MX
1393 path = btrfs_alloc_path();
1394 if (!path)
0f7d52f4 1395 return ERR_PTR(-ENOMEM);
cb517eab 1396
74e4d827 1397 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1398 if (!root) {
1399 ret = -ENOMEM;
1400 goto alloc_fail;
0f7d52f4
CM
1401 }
1402
da17066c 1403 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1404
cb517eab
MX
1405 ret = btrfs_find_root(tree_root, key, path,
1406 &root->root_item, &root->root_key);
0f7d52f4 1407 if (ret) {
13a8a7c8
YZ
1408 if (ret > 0)
1409 ret = -ENOENT;
cb517eab 1410 goto find_fail;
0f7d52f4 1411 }
13a8a7c8 1412
84234f3a 1413 generation = btrfs_root_generation(&root->root_item);
581c1760 1414 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1415 root->node = read_tree_block(fs_info,
1416 btrfs_root_bytenr(&root->root_item),
581c1760 1417 generation, level, NULL);
64c043de
LB
1418 if (IS_ERR(root->node)) {
1419 ret = PTR_ERR(root->node);
cb517eab
MX
1420 goto find_fail;
1421 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1422 ret = -EIO;
64c043de
LB
1423 free_extent_buffer(root->node);
1424 goto find_fail;
416bc658 1425 }
5d4f98a2 1426 root->commit_root = btrfs_root_node(root);
13a8a7c8 1427out:
cb517eab
MX
1428 btrfs_free_path(path);
1429 return root;
1430
cb517eab
MX
1431find_fail:
1432 kfree(root);
1433alloc_fail:
1434 root = ERR_PTR(ret);
1435 goto out;
1436}
1437
1438struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1439 struct btrfs_key *location)
1440{
1441 struct btrfs_root *root;
1442
1443 root = btrfs_read_tree_root(tree_root, location);
1444 if (IS_ERR(root))
1445 return root;
1446
1447 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1448 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1449 btrfs_check_and_init_root_item(&root->root_item);
1450 }
13a8a7c8 1451
5eda7b5e
CM
1452 return root;
1453}
1454
cb517eab
MX
1455int btrfs_init_fs_root(struct btrfs_root *root)
1456{
1457 int ret;
8257b2dc 1458 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1459
1460 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1461 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1462 GFP_NOFS);
1463 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1464 ret = -ENOMEM;
1465 goto fail;
1466 }
1467
8257b2dc
MX
1468 writers = btrfs_alloc_subvolume_writers();
1469 if (IS_ERR(writers)) {
1470 ret = PTR_ERR(writers);
1471 goto fail;
1472 }
1473 root->subv_writers = writers;
1474
cb517eab 1475 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1476 spin_lock_init(&root->ino_cache_lock);
1477 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1478
1479 ret = get_anon_bdev(&root->anon_dev);
1480 if (ret)
876d2cf1 1481 goto fail;
f32e48e9
CR
1482
1483 mutex_lock(&root->objectid_mutex);
1484 ret = btrfs_find_highest_objectid(root,
1485 &root->highest_objectid);
1486 if (ret) {
1487 mutex_unlock(&root->objectid_mutex);
876d2cf1 1488 goto fail;
f32e48e9
CR
1489 }
1490
1491 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1492
1493 mutex_unlock(&root->objectid_mutex);
1494
cb517eab
MX
1495 return 0;
1496fail:
84db5ccf 1497 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1498 return ret;
1499}
1500
35bbb97f
JM
1501struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1502 u64 root_id)
cb517eab
MX
1503{
1504 struct btrfs_root *root;
1505
1506 spin_lock(&fs_info->fs_roots_radix_lock);
1507 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1508 (unsigned long)root_id);
1509 spin_unlock(&fs_info->fs_roots_radix_lock);
1510 return root;
1511}
1512
1513int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1514 struct btrfs_root *root)
1515{
1516 int ret;
1517
e1860a77 1518 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1519 if (ret)
1520 return ret;
1521
1522 spin_lock(&fs_info->fs_roots_radix_lock);
1523 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524 (unsigned long)root->root_key.objectid,
1525 root);
1526 if (ret == 0)
27cdeb70 1527 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1528 spin_unlock(&fs_info->fs_roots_radix_lock);
1529 radix_tree_preload_end();
1530
1531 return ret;
1532}
1533
c00869f1
MX
1534struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1535 struct btrfs_key *location,
1536 bool check_ref)
5eda7b5e
CM
1537{
1538 struct btrfs_root *root;
381cf658 1539 struct btrfs_path *path;
1d4c08e0 1540 struct btrfs_key key;
5eda7b5e
CM
1541 int ret;
1542
edbd8d4e
CM
1543 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1544 return fs_info->tree_root;
1545 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1546 return fs_info->extent_root;
8f18cf13
CM
1547 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1548 return fs_info->chunk_root;
1549 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1550 return fs_info->dev_root;
0403e47e
YZ
1551 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1552 return fs_info->csum_root;
bcef60f2
AJ
1553 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1554 return fs_info->quota_root ? fs_info->quota_root :
1555 ERR_PTR(-ENOENT);
f7a81ea4
SB
1556 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1557 return fs_info->uuid_root ? fs_info->uuid_root :
1558 ERR_PTR(-ENOENT);
70f6d82e
OS
1559 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1560 return fs_info->free_space_root ? fs_info->free_space_root :
1561 ERR_PTR(-ENOENT);
4df27c4d 1562again:
cb517eab 1563 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1564 if (root) {
c00869f1 1565 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1566 return ERR_PTR(-ENOENT);
5eda7b5e 1567 return root;
48475471 1568 }
5eda7b5e 1569
cb517eab 1570 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1571 if (IS_ERR(root))
1572 return root;
3394e160 1573
c00869f1 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1575 ret = -ENOENT;
581bb050 1576 goto fail;
35a30d7c 1577 }
581bb050 1578
cb517eab 1579 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1580 if (ret)
1581 goto fail;
3394e160 1582
381cf658
DS
1583 path = btrfs_alloc_path();
1584 if (!path) {
1585 ret = -ENOMEM;
1586 goto fail;
1587 }
1d4c08e0
DS
1588 key.objectid = BTRFS_ORPHAN_OBJECTID;
1589 key.type = BTRFS_ORPHAN_ITEM_KEY;
1590 key.offset = location->objectid;
1591
1592 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1593 btrfs_free_path(path);
d68fc57b
YZ
1594 if (ret < 0)
1595 goto fail;
1596 if (ret == 0)
27cdeb70 1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1598
cb517eab 1599 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1600 if (ret) {
4df27c4d 1601 if (ret == -EEXIST) {
84db5ccf 1602 btrfs_free_fs_root(root);
4df27c4d
YZ
1603 goto again;
1604 }
1605 goto fail;
0f7d52f4 1606 }
edbd8d4e 1607 return root;
4df27c4d 1608fail:
84db5ccf 1609 btrfs_free_fs_root(root);
4df27c4d 1610 return ERR_PTR(ret);
edbd8d4e
CM
1611}
1612
04160088
CM
1613static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1614{
1615 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1616 int ret = 0;
04160088
CM
1617 struct btrfs_device *device;
1618 struct backing_dev_info *bdi;
b7967db7 1619
1f78160c
XG
1620 rcu_read_lock();
1621 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1622 if (!device->bdev)
1623 continue;
efa7c9f9 1624 bdi = device->bdev->bd_bdi;
ff9ea323 1625 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1626 ret = 1;
1627 break;
1628 }
1629 }
1f78160c 1630 rcu_read_unlock();
04160088
CM
1631 return ret;
1632}
1633
8b712842
CM
1634/*
1635 * called by the kthread helper functions to finally call the bio end_io
1636 * functions. This is where read checksum verification actually happens
1637 */
1638static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1639{
ce9adaa5 1640 struct bio *bio;
97eb6b69 1641 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1642
97eb6b69 1643 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1644 bio = end_io_wq->bio;
ce9adaa5 1645
4e4cbee9 1646 bio->bi_status = end_io_wq->status;
8b712842
CM
1647 bio->bi_private = end_io_wq->private;
1648 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1649 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1650 bio_endio(bio);
44b8bd7e
CM
1651}
1652
a74a4b97
CM
1653static int cleaner_kthread(void *arg)
1654{
1655 struct btrfs_root *root = arg;
0b246afa 1656 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1657 int again;
a74a4b97 1658
d6fd0ae2 1659 while (1) {
d0278245 1660 again = 0;
a74a4b97 1661
d0278245 1662 /* Make the cleaner go to sleep early. */
2ff7e61e 1663 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1664 goto sleep;
1665
90c711ab
ZB
1666 /*
1667 * Do not do anything if we might cause open_ctree() to block
1668 * before we have finished mounting the filesystem.
1669 */
0b246afa 1670 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1671 goto sleep;
1672
0b246afa 1673 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1674 goto sleep;
1675
dc7f370c
MX
1676 /*
1677 * Avoid the problem that we change the status of the fs
1678 * during the above check and trylock.
1679 */
2ff7e61e 1680 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1681 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1682 goto sleep;
76dda93c 1683 }
a74a4b97 1684
0b246afa 1685 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1686 btrfs_run_delayed_iputs(fs_info);
0b246afa 1687 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1688
d0278245 1689 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1690 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1691
1692 /*
05323cd1
MX
1693 * The defragger has dealt with the R/O remount and umount,
1694 * needn't do anything special here.
d0278245 1695 */
0b246afa 1696 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1697
1698 /*
1699 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1700 * with relocation (btrfs_relocate_chunk) and relocation
1701 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1702 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1703 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1704 * unused block groups.
1705 */
0b246afa 1706 btrfs_delete_unused_bgs(fs_info);
d0278245 1707sleep:
d6fd0ae2
OS
1708 if (kthread_should_park())
1709 kthread_parkme();
1710 if (kthread_should_stop())
1711 return 0;
838fe188 1712 if (!again) {
a74a4b97 1713 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1714 schedule();
a74a4b97
CM
1715 __set_current_state(TASK_RUNNING);
1716 }
da288d28 1717 }
a74a4b97
CM
1718}
1719
1720static int transaction_kthread(void *arg)
1721{
1722 struct btrfs_root *root = arg;
0b246afa 1723 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1724 struct btrfs_trans_handle *trans;
1725 struct btrfs_transaction *cur;
8929ecfa 1726 u64 transid;
a944442c 1727 time64_t now;
a74a4b97 1728 unsigned long delay;
914b2007 1729 bool cannot_commit;
a74a4b97
CM
1730
1731 do {
914b2007 1732 cannot_commit = false;
0b246afa
JM
1733 delay = HZ * fs_info->commit_interval;
1734 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1735
0b246afa
JM
1736 spin_lock(&fs_info->trans_lock);
1737 cur = fs_info->running_transaction;
a74a4b97 1738 if (!cur) {
0b246afa 1739 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1740 goto sleep;
1741 }
31153d81 1742
afd48513 1743 now = ktime_get_seconds();
4a9d8bde 1744 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1745 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1746 (now < cur->start_time ||
0b246afa
JM
1747 now - cur->start_time < fs_info->commit_interval)) {
1748 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1749 delay = HZ * 5;
1750 goto sleep;
1751 }
8929ecfa 1752 transid = cur->transid;
0b246afa 1753 spin_unlock(&fs_info->trans_lock);
56bec294 1754
79787eaa 1755 /* If the file system is aborted, this will always fail. */
354aa0fb 1756 trans = btrfs_attach_transaction(root);
914b2007 1757 if (IS_ERR(trans)) {
354aa0fb
MX
1758 if (PTR_ERR(trans) != -ENOENT)
1759 cannot_commit = true;
79787eaa 1760 goto sleep;
914b2007 1761 }
8929ecfa 1762 if (transid == trans->transid) {
3a45bb20 1763 btrfs_commit_transaction(trans);
8929ecfa 1764 } else {
3a45bb20 1765 btrfs_end_transaction(trans);
8929ecfa 1766 }
a74a4b97 1767sleep:
0b246afa
JM
1768 wake_up_process(fs_info->cleaner_kthread);
1769 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1770
4e121c06 1771 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1772 &fs_info->fs_state)))
2ff7e61e 1773 btrfs_cleanup_transaction(fs_info);
ce63f891 1774 if (!kthread_should_stop() &&
0b246afa 1775 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1776 cannot_commit))
bc5511d0 1777 schedule_timeout_interruptible(delay);
a74a4b97
CM
1778 } while (!kthread_should_stop());
1779 return 0;
1780}
1781
af31f5e5
CM
1782/*
1783 * this will find the highest generation in the array of
1784 * root backups. The index of the highest array is returned,
1785 * or -1 if we can't find anything.
1786 *
1787 * We check to make sure the array is valid by comparing the
1788 * generation of the latest root in the array with the generation
1789 * in the super block. If they don't match we pitch it.
1790 */
1791static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1792{
1793 u64 cur;
1794 int newest_index = -1;
1795 struct btrfs_root_backup *root_backup;
1796 int i;
1797
1798 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1799 root_backup = info->super_copy->super_roots + i;
1800 cur = btrfs_backup_tree_root_gen(root_backup);
1801 if (cur == newest_gen)
1802 newest_index = i;
1803 }
1804
1805 /* check to see if we actually wrapped around */
1806 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1807 root_backup = info->super_copy->super_roots;
1808 cur = btrfs_backup_tree_root_gen(root_backup);
1809 if (cur == newest_gen)
1810 newest_index = 0;
1811 }
1812 return newest_index;
1813}
1814
1815
1816/*
1817 * find the oldest backup so we know where to store new entries
1818 * in the backup array. This will set the backup_root_index
1819 * field in the fs_info struct
1820 */
1821static void find_oldest_super_backup(struct btrfs_fs_info *info,
1822 u64 newest_gen)
1823{
1824 int newest_index = -1;
1825
1826 newest_index = find_newest_super_backup(info, newest_gen);
1827 /* if there was garbage in there, just move along */
1828 if (newest_index == -1) {
1829 info->backup_root_index = 0;
1830 } else {
1831 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832 }
1833}
1834
1835/*
1836 * copy all the root pointers into the super backup array.
1837 * this will bump the backup pointer by one when it is
1838 * done
1839 */
1840static void backup_super_roots(struct btrfs_fs_info *info)
1841{
1842 int next_backup;
1843 struct btrfs_root_backup *root_backup;
1844 int last_backup;
1845
1846 next_backup = info->backup_root_index;
1847 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1848 BTRFS_NUM_BACKUP_ROOTS;
1849
1850 /*
1851 * just overwrite the last backup if we're at the same generation
1852 * this happens only at umount
1853 */
1854 root_backup = info->super_for_commit->super_roots + last_backup;
1855 if (btrfs_backup_tree_root_gen(root_backup) ==
1856 btrfs_header_generation(info->tree_root->node))
1857 next_backup = last_backup;
1858
1859 root_backup = info->super_for_commit->super_roots + next_backup;
1860
1861 /*
1862 * make sure all of our padding and empty slots get zero filled
1863 * regardless of which ones we use today
1864 */
1865 memset(root_backup, 0, sizeof(*root_backup));
1866
1867 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1868
1869 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1870 btrfs_set_backup_tree_root_gen(root_backup,
1871 btrfs_header_generation(info->tree_root->node));
1872
1873 btrfs_set_backup_tree_root_level(root_backup,
1874 btrfs_header_level(info->tree_root->node));
1875
1876 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1877 btrfs_set_backup_chunk_root_gen(root_backup,
1878 btrfs_header_generation(info->chunk_root->node));
1879 btrfs_set_backup_chunk_root_level(root_backup,
1880 btrfs_header_level(info->chunk_root->node));
1881
1882 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1883 btrfs_set_backup_extent_root_gen(root_backup,
1884 btrfs_header_generation(info->extent_root->node));
1885 btrfs_set_backup_extent_root_level(root_backup,
1886 btrfs_header_level(info->extent_root->node));
1887
7c7e82a7
CM
1888 /*
1889 * we might commit during log recovery, which happens before we set
1890 * the fs_root. Make sure it is valid before we fill it in.
1891 */
1892 if (info->fs_root && info->fs_root->node) {
1893 btrfs_set_backup_fs_root(root_backup,
1894 info->fs_root->node->start);
1895 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1896 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1897 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1898 btrfs_header_level(info->fs_root->node));
7c7e82a7 1899 }
af31f5e5
CM
1900
1901 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1902 btrfs_set_backup_dev_root_gen(root_backup,
1903 btrfs_header_generation(info->dev_root->node));
1904 btrfs_set_backup_dev_root_level(root_backup,
1905 btrfs_header_level(info->dev_root->node));
1906
1907 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1908 btrfs_set_backup_csum_root_gen(root_backup,
1909 btrfs_header_generation(info->csum_root->node));
1910 btrfs_set_backup_csum_root_level(root_backup,
1911 btrfs_header_level(info->csum_root->node));
1912
1913 btrfs_set_backup_total_bytes(root_backup,
1914 btrfs_super_total_bytes(info->super_copy));
1915 btrfs_set_backup_bytes_used(root_backup,
1916 btrfs_super_bytes_used(info->super_copy));
1917 btrfs_set_backup_num_devices(root_backup,
1918 btrfs_super_num_devices(info->super_copy));
1919
1920 /*
1921 * if we don't copy this out to the super_copy, it won't get remembered
1922 * for the next commit
1923 */
1924 memcpy(&info->super_copy->super_roots,
1925 &info->super_for_commit->super_roots,
1926 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1927}
1928
1929/*
1930 * this copies info out of the root backup array and back into
1931 * the in-memory super block. It is meant to help iterate through
1932 * the array, so you send it the number of backups you've already
1933 * tried and the last backup index you used.
1934 *
1935 * this returns -1 when it has tried all the backups
1936 */
1937static noinline int next_root_backup(struct btrfs_fs_info *info,
1938 struct btrfs_super_block *super,
1939 int *num_backups_tried, int *backup_index)
1940{
1941 struct btrfs_root_backup *root_backup;
1942 int newest = *backup_index;
1943
1944 if (*num_backups_tried == 0) {
1945 u64 gen = btrfs_super_generation(super);
1946
1947 newest = find_newest_super_backup(info, gen);
1948 if (newest == -1)
1949 return -1;
1950
1951 *backup_index = newest;
1952 *num_backups_tried = 1;
1953 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1954 /* we've tried all the backups, all done */
1955 return -1;
1956 } else {
1957 /* jump to the next oldest backup */
1958 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1959 BTRFS_NUM_BACKUP_ROOTS;
1960 *backup_index = newest;
1961 *num_backups_tried += 1;
1962 }
1963 root_backup = super->super_roots + newest;
1964
1965 btrfs_set_super_generation(super,
1966 btrfs_backup_tree_root_gen(root_backup));
1967 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1968 btrfs_set_super_root_level(super,
1969 btrfs_backup_tree_root_level(root_backup));
1970 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1971
1972 /*
1973 * fixme: the total bytes and num_devices need to match or we should
1974 * need a fsck
1975 */
1976 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1977 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978 return 0;
1979}
1980
7abadb64
LB
1981/* helper to cleanup workers */
1982static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983{
dc6e3209 1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1986 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1987 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1989 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1990 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1991 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1992 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 1993 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 1994 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1995 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1996 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1997 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1998 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 1999 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2000 /*
2001 * Now that all other work queues are destroyed, we can safely destroy
2002 * the queues used for metadata I/O, since tasks from those other work
2003 * queues can do metadata I/O operations.
2004 */
2005 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2007}
2008
2e9f5954
R
2009static void free_root_extent_buffers(struct btrfs_root *root)
2010{
2011 if (root) {
2012 free_extent_buffer(root->node);
2013 free_extent_buffer(root->commit_root);
2014 root->node = NULL;
2015 root->commit_root = NULL;
2016 }
2017}
2018
af31f5e5
CM
2019/* helper to cleanup tree roots */
2020static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2021{
2e9f5954 2022 free_root_extent_buffers(info->tree_root);
655b09fe 2023
2e9f5954
R
2024 free_root_extent_buffers(info->dev_root);
2025 free_root_extent_buffers(info->extent_root);
2026 free_root_extent_buffers(info->csum_root);
2027 free_root_extent_buffers(info->quota_root);
2028 free_root_extent_buffers(info->uuid_root);
2029 if (chunk_root)
2030 free_root_extent_buffers(info->chunk_root);
70f6d82e 2031 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2032}
2033
faa2dbf0 2034void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2035{
2036 int ret;
2037 struct btrfs_root *gang[8];
2038 int i;
2039
2040 while (!list_empty(&fs_info->dead_roots)) {
2041 gang[0] = list_entry(fs_info->dead_roots.next,
2042 struct btrfs_root, root_list);
2043 list_del(&gang[0]->root_list);
2044
27cdeb70 2045 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2046 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2047 } else {
2048 free_extent_buffer(gang[0]->node);
2049 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2050 btrfs_put_fs_root(gang[0]);
171f6537
JB
2051 }
2052 }
2053
2054 while (1) {
2055 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2056 (void **)gang, 0,
2057 ARRAY_SIZE(gang));
2058 if (!ret)
2059 break;
2060 for (i = 0; i < ret; i++)
cb517eab 2061 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2062 }
1a4319cc
LB
2063
2064 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2065 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2066 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2067 }
171f6537 2068}
af31f5e5 2069
638aa7ed
ES
2070static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2071{
2072 mutex_init(&fs_info->scrub_lock);
2073 atomic_set(&fs_info->scrubs_running, 0);
2074 atomic_set(&fs_info->scrub_pause_req, 0);
2075 atomic_set(&fs_info->scrubs_paused, 0);
2076 atomic_set(&fs_info->scrub_cancel_req, 0);
2077 init_waitqueue_head(&fs_info->scrub_pause_wait);
2078 fs_info->scrub_workers_refcnt = 0;
2079}
2080
779a65a4
ES
2081static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2082{
2083 spin_lock_init(&fs_info->balance_lock);
2084 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2085 atomic_set(&fs_info->balance_pause_req, 0);
2086 atomic_set(&fs_info->balance_cancel_req, 0);
2087 fs_info->balance_ctl = NULL;
2088 init_waitqueue_head(&fs_info->balance_wait_q);
2089}
2090
6bccf3ab 2091static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2092{
2ff7e61e
JM
2093 struct inode *inode = fs_info->btree_inode;
2094
2095 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2096 set_nlink(inode, 1);
f37938e0
ES
2097 /*
2098 * we set the i_size on the btree inode to the max possible int.
2099 * the real end of the address space is determined by all of
2100 * the devices in the system
2101 */
2ff7e61e
JM
2102 inode->i_size = OFFSET_MAX;
2103 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2104
2ff7e61e 2105 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2106 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2107 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2108 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2109
2ff7e61e 2110 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2111
2ff7e61e
JM
2112 BTRFS_I(inode)->root = fs_info->tree_root;
2113 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2114 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2115 btrfs_insert_inode_hash(inode);
f37938e0
ES
2116}
2117
ad618368
ES
2118static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2119{
ad618368 2120 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9 2121 rwlock_init(&fs_info->dev_replace.lock);
73beece9 2122 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
7f8d236a 2123 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
73beece9 2124 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2125}
2126
f9e92e40
ES
2127static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2128{
2129 spin_lock_init(&fs_info->qgroup_lock);
2130 mutex_init(&fs_info->qgroup_ioctl_lock);
2131 fs_info->qgroup_tree = RB_ROOT;
2132 fs_info->qgroup_op_tree = RB_ROOT;
2133 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2134 fs_info->qgroup_seq = 1;
f9e92e40 2135 fs_info->qgroup_ulist = NULL;
d2c609b8 2136 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2137 mutex_init(&fs_info->qgroup_rescan_lock);
2138}
2139
2a458198
ES
2140static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2141 struct btrfs_fs_devices *fs_devices)
2142{
f7b885be 2143 u32 max_active = fs_info->thread_pool_size;
6f011058 2144 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2145
2146 fs_info->workers =
cb001095
JM
2147 btrfs_alloc_workqueue(fs_info, "worker",
2148 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2149
2150 fs_info->delalloc_workers =
cb001095
JM
2151 btrfs_alloc_workqueue(fs_info, "delalloc",
2152 flags, max_active, 2);
2a458198
ES
2153
2154 fs_info->flush_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2156 flags, max_active, 0);
2a458198
ES
2157
2158 fs_info->caching_workers =
cb001095 2159 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2160
2161 /*
2162 * a higher idle thresh on the submit workers makes it much more
2163 * likely that bios will be send down in a sane order to the
2164 * devices
2165 */
2166 fs_info->submit_workers =
cb001095 2167 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2168 min_t(u64, fs_devices->num_devices,
2169 max_active), 64);
2170
2171 fs_info->fixup_workers =
cb001095 2172 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2173
2174 /*
2175 * endios are largely parallel and should have a very
2176 * low idle thresh
2177 */
2178 fs_info->endio_workers =
cb001095 2179 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2180 fs_info->endio_meta_workers =
cb001095
JM
2181 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2182 max_active, 4);
2a458198 2183 fs_info->endio_meta_write_workers =
cb001095
JM
2184 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2185 max_active, 2);
2a458198 2186 fs_info->endio_raid56_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2188 max_active, 4);
2a458198 2189 fs_info->endio_repair_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2191 fs_info->rmw_workers =
cb001095 2192 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2193 fs_info->endio_write_workers =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2195 max_active, 2);
2a458198 2196 fs_info->endio_freespace_worker =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2198 max_active, 0);
2a458198 2199 fs_info->delayed_workers =
cb001095
JM
2200 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2201 max_active, 0);
2a458198 2202 fs_info->readahead_workers =
cb001095
JM
2203 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2204 max_active, 2);
2a458198 2205 fs_info->qgroup_rescan_workers =
cb001095 2206 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2207 fs_info->extent_workers =
cb001095 2208 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2209 min_t(u64, fs_devices->num_devices,
2210 max_active), 8);
2211
2212 if (!(fs_info->workers && fs_info->delalloc_workers &&
2213 fs_info->submit_workers && fs_info->flush_workers &&
2214 fs_info->endio_workers && fs_info->endio_meta_workers &&
2215 fs_info->endio_meta_write_workers &&
2216 fs_info->endio_repair_workers &&
2217 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2218 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2219 fs_info->caching_workers && fs_info->readahead_workers &&
2220 fs_info->fixup_workers && fs_info->delayed_workers &&
2221 fs_info->extent_workers &&
2222 fs_info->qgroup_rescan_workers)) {
2223 return -ENOMEM;
2224 }
2225
2226 return 0;
2227}
2228
63443bf5
ES
2229static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2230 struct btrfs_fs_devices *fs_devices)
2231{
2232 int ret;
63443bf5
ES
2233 struct btrfs_root *log_tree_root;
2234 struct btrfs_super_block *disk_super = fs_info->super_copy;
2235 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2236 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2237
2238 if (fs_devices->rw_devices == 0) {
f14d104d 2239 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2240 return -EIO;
2241 }
2242
74e4d827 2243 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2244 if (!log_tree_root)
2245 return -ENOMEM;
2246
da17066c 2247 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2248
2ff7e61e 2249 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2250 fs_info->generation + 1,
2251 level, NULL);
64c043de 2252 if (IS_ERR(log_tree_root->node)) {
f14d104d 2253 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2254 ret = PTR_ERR(log_tree_root->node);
64c043de 2255 kfree(log_tree_root);
0eeff236 2256 return ret;
64c043de 2257 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2258 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2259 free_extent_buffer(log_tree_root->node);
2260 kfree(log_tree_root);
2261 return -EIO;
2262 }
2263 /* returns with log_tree_root freed on success */
2264 ret = btrfs_recover_log_trees(log_tree_root);
2265 if (ret) {
0b246afa
JM
2266 btrfs_handle_fs_error(fs_info, ret,
2267 "Failed to recover log tree");
63443bf5
ES
2268 free_extent_buffer(log_tree_root->node);
2269 kfree(log_tree_root);
2270 return ret;
2271 }
2272
bc98a42c 2273 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2274 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2275 if (ret)
2276 return ret;
2277 }
2278
2279 return 0;
2280}
2281
6bccf3ab 2282static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2283{
6bccf3ab 2284 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2285 struct btrfs_root *root;
4bbcaa64
ES
2286 struct btrfs_key location;
2287 int ret;
2288
6bccf3ab
JM
2289 BUG_ON(!fs_info->tree_root);
2290
4bbcaa64
ES
2291 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2292 location.type = BTRFS_ROOT_ITEM_KEY;
2293 location.offset = 0;
2294
a4f3d2c4 2295 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2296 if (IS_ERR(root)) {
2297 ret = PTR_ERR(root);
2298 goto out;
2299 }
a4f3d2c4
DS
2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2301 fs_info->extent_root = root;
4bbcaa64
ES
2302
2303 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2304 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2305 if (IS_ERR(root)) {
2306 ret = PTR_ERR(root);
2307 goto out;
2308 }
a4f3d2c4
DS
2309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2310 fs_info->dev_root = root;
4bbcaa64
ES
2311 btrfs_init_devices_late(fs_info);
2312
2313 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2314 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2315 if (IS_ERR(root)) {
2316 ret = PTR_ERR(root);
2317 goto out;
2318 }
a4f3d2c4
DS
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 fs_info->csum_root = root;
4bbcaa64
ES
2321
2322 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2323 root = btrfs_read_tree_root(tree_root, &location);
2324 if (!IS_ERR(root)) {
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2326 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2327 fs_info->quota_root = root;
4bbcaa64
ES
2328 }
2329
2330 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2331 root = btrfs_read_tree_root(tree_root, &location);
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
4bbcaa64 2334 if (ret != -ENOENT)
f50f4353 2335 goto out;
4bbcaa64 2336 } else {
a4f3d2c4
DS
2337 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338 fs_info->uuid_root = root;
4bbcaa64
ES
2339 }
2340
70f6d82e
OS
2341 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2342 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2343 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2344 if (IS_ERR(root)) {
2345 ret = PTR_ERR(root);
2346 goto out;
2347 }
70f6d82e
OS
2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349 fs_info->free_space_root = root;
2350 }
2351
4bbcaa64 2352 return 0;
f50f4353
LB
2353out:
2354 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2355 location.objectid, ret);
2356 return ret;
4bbcaa64
ES
2357}
2358
069ec957
QW
2359/*
2360 * Real super block validation
2361 * NOTE: super csum type and incompat features will not be checked here.
2362 *
2363 * @sb: super block to check
2364 * @mirror_num: the super block number to check its bytenr:
2365 * 0 the primary (1st) sb
2366 * 1, 2 2nd and 3rd backup copy
2367 * -1 skip bytenr check
2368 */
2369static int validate_super(struct btrfs_fs_info *fs_info,
2370 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2371{
21a852b0
QW
2372 u64 nodesize = btrfs_super_nodesize(sb);
2373 u64 sectorsize = btrfs_super_sectorsize(sb);
2374 int ret = 0;
2375
2376 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2377 btrfs_err(fs_info, "no valid FS found");
2378 ret = -EINVAL;
2379 }
2380 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2381 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2382 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2383 ret = -EINVAL;
2384 }
2385 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2386 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2387 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2388 ret = -EINVAL;
2389 }
2390 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2391 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2392 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2393 ret = -EINVAL;
2394 }
2395 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2396 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2397 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2398 ret = -EINVAL;
2399 }
2400
2401 /*
2402 * Check sectorsize and nodesize first, other check will need it.
2403 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2404 */
2405 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2406 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2408 ret = -EINVAL;
2409 }
2410 /* Only PAGE SIZE is supported yet */
2411 if (sectorsize != PAGE_SIZE) {
2412 btrfs_err(fs_info,
2413 "sectorsize %llu not supported yet, only support %lu",
2414 sectorsize, PAGE_SIZE);
2415 ret = -EINVAL;
2416 }
2417 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2418 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2419 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2420 ret = -EINVAL;
2421 }
2422 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2423 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2424 le32_to_cpu(sb->__unused_leafsize), nodesize);
2425 ret = -EINVAL;
2426 }
2427
2428 /* Root alignment check */
2429 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2430 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2431 btrfs_super_root(sb));
2432 ret = -EINVAL;
2433 }
2434 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2435 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2436 btrfs_super_chunk_root(sb));
2437 ret = -EINVAL;
2438 }
2439 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2440 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2441 btrfs_super_log_root(sb));
2442 ret = -EINVAL;
2443 }
2444
2445 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2446 btrfs_err(fs_info,
2447 "dev_item UUID does not match fsid: %pU != %pU",
2448 fs_info->fsid, sb->dev_item.fsid);
2449 ret = -EINVAL;
2450 }
2451
2452 /*
2453 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2454 * done later
2455 */
2456 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2457 btrfs_err(fs_info, "bytes_used is too small %llu",
2458 btrfs_super_bytes_used(sb));
2459 ret = -EINVAL;
2460 }
2461 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2462 btrfs_err(fs_info, "invalid stripesize %u",
2463 btrfs_super_stripesize(sb));
2464 ret = -EINVAL;
2465 }
2466 if (btrfs_super_num_devices(sb) > (1UL << 31))
2467 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2468 btrfs_super_num_devices(sb));
2469 if (btrfs_super_num_devices(sb) == 0) {
2470 btrfs_err(fs_info, "number of devices is 0");
2471 ret = -EINVAL;
2472 }
2473
069ec957
QW
2474 if (mirror_num >= 0 &&
2475 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2476 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2477 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2478 ret = -EINVAL;
2479 }
2480
2481 /*
2482 * Obvious sys_chunk_array corruptions, it must hold at least one key
2483 * and one chunk
2484 */
2485 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2486 btrfs_err(fs_info, "system chunk array too big %u > %u",
2487 btrfs_super_sys_array_size(sb),
2488 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2489 ret = -EINVAL;
2490 }
2491 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2492 + sizeof(struct btrfs_chunk)) {
2493 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2494 btrfs_super_sys_array_size(sb),
2495 sizeof(struct btrfs_disk_key)
2496 + sizeof(struct btrfs_chunk));
2497 ret = -EINVAL;
2498 }
2499
2500 /*
2501 * The generation is a global counter, we'll trust it more than the others
2502 * but it's still possible that it's the one that's wrong.
2503 */
2504 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2505 btrfs_warn(fs_info,
2506 "suspicious: generation < chunk_root_generation: %llu < %llu",
2507 btrfs_super_generation(sb),
2508 btrfs_super_chunk_root_generation(sb));
2509 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2510 && btrfs_super_cache_generation(sb) != (u64)-1)
2511 btrfs_warn(fs_info,
2512 "suspicious: generation < cache_generation: %llu < %llu",
2513 btrfs_super_generation(sb),
2514 btrfs_super_cache_generation(sb));
2515
2516 return ret;
2517}
2518
069ec957
QW
2519/*
2520 * Validation of super block at mount time.
2521 * Some checks already done early at mount time, like csum type and incompat
2522 * flags will be skipped.
2523 */
2524static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2525{
2526 return validate_super(fs_info, fs_info->super_copy, 0);
2527}
2528
75cb857d
QW
2529/*
2530 * Validation of super block at write time.
2531 * Some checks like bytenr check will be skipped as their values will be
2532 * overwritten soon.
2533 * Extra checks like csum type and incompat flags will be done here.
2534 */
2535static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2536 struct btrfs_super_block *sb)
2537{
2538 int ret;
2539
2540 ret = validate_super(fs_info, sb, -1);
2541 if (ret < 0)
2542 goto out;
2543 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2544 ret = -EUCLEAN;
2545 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2546 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2547 goto out;
2548 }
2549 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2550 ret = -EUCLEAN;
2551 btrfs_err(fs_info,
2552 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2553 btrfs_super_incompat_flags(sb),
2554 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2555 goto out;
2556 }
2557out:
2558 if (ret < 0)
2559 btrfs_err(fs_info,
2560 "super block corruption detected before writing it to disk");
2561 return ret;
2562}
2563
ad2b2c80
AV
2564int open_ctree(struct super_block *sb,
2565 struct btrfs_fs_devices *fs_devices,
2566 char *options)
2e635a27 2567{
db94535d
CM
2568 u32 sectorsize;
2569 u32 nodesize;
87ee04eb 2570 u32 stripesize;
84234f3a 2571 u64 generation;
f2b636e8 2572 u64 features;
3de4586c 2573 struct btrfs_key location;
a061fc8d 2574 struct buffer_head *bh;
4d34b278 2575 struct btrfs_super_block *disk_super;
815745cf 2576 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2577 struct btrfs_root *tree_root;
4d34b278 2578 struct btrfs_root *chunk_root;
eb60ceac 2579 int ret;
e58ca020 2580 int err = -EINVAL;
af31f5e5
CM
2581 int num_backups_tried = 0;
2582 int backup_index = 0;
6675df31 2583 int clear_free_space_tree = 0;
581c1760 2584 int level;
4543df7e 2585
74e4d827
DS
2586 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2587 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2588 if (!tree_root || !chunk_root) {
39279cc3
CM
2589 err = -ENOMEM;
2590 goto fail;
2591 }
76dda93c
YZ
2592
2593 ret = init_srcu_struct(&fs_info->subvol_srcu);
2594 if (ret) {
2595 err = ret;
2596 goto fail;
2597 }
2598
908c7f19 2599 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2600 if (ret) {
2601 err = ret;
9e11ceee 2602 goto fail_srcu;
e2d84521 2603 }
09cbfeaf 2604 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2605 (1 + ilog2(nr_cpu_ids));
2606
908c7f19 2607 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2608 if (ret) {
2609 err = ret;
2610 goto fail_dirty_metadata_bytes;
2611 }
2612
7f8d236a
DS
2613 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2614 GFP_KERNEL);
c404e0dc
MX
2615 if (ret) {
2616 err = ret;
2617 goto fail_delalloc_bytes;
2618 }
2619
76dda93c 2620 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2621 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2622 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2623 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2624 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2625 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2626 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2627 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2628 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2629 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2630 spin_lock_init(&fs_info->trans_lock);
76dda93c 2631 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2632 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2633 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2634 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2635 spin_lock_init(&fs_info->super_lock);
fcebe456 2636 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2637 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2638 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2639 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2640 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2641 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2642 mutex_init(&fs_info->reloc_mutex);
573bfb72 2643 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2644 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2645 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2646
0b86a832 2647 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2648 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2649 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2650 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2651 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2652 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2653 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2654 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2655 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2656 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2657 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2658 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2659 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2660 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2661 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2662 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2663 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2664 fs_info->sb = sb;
95ac567a 2665 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2666 fs_info->metadata_ratio = 0;
4cb5300b 2667 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2668 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2669 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2670 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2671 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2672 /* readahead state */
d0164adc 2673 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2674 spin_lock_init(&fs_info->reada_lock);
fd708b81 2675 btrfs_init_ref_verify(fs_info);
c8b97818 2676
b34b086c
CM
2677 fs_info->thread_pool_size = min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
0afbaf8c 2679
199c2a9c
MX
2680 INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2682
2683 fs_info->btree_inode = new_inode(sb);
2684 if (!fs_info->btree_inode) {
2685 err = -ENOMEM;
2686 goto fail_bio_counter;
2687 }
2688 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2689
16cdcec7 2690 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2691 GFP_KERNEL);
16cdcec7
MX
2692 if (!fs_info->delayed_root) {
2693 err = -ENOMEM;
2694 goto fail_iput;
2695 }
2696 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2697
638aa7ed 2698 btrfs_init_scrub(fs_info);
21adbd5c
SB
2699#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2700 fs_info->check_integrity_print_mask = 0;
2701#endif
779a65a4 2702 btrfs_init_balance(fs_info);
21c7e756 2703 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2704
9f6d2510
DS
2705 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2706 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2707
6bccf3ab 2708 btrfs_init_btree_inode(fs_info);
76dda93c 2709
0f9dd46c 2710 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2711 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2712 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2713
c6100a4b
JB
2714 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2715 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2716 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2717 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2718
5a3f23d5 2719 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2720 mutex_init(&fs_info->tree_log_mutex);
925baedd 2721 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2722 mutex_init(&fs_info->transaction_kthread_mutex);
2723 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2724 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2725 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2726 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2727 init_rwsem(&fs_info->subvol_sem);
803b2f54 2728 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2729
ad618368 2730 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2731 btrfs_init_qgroup(fs_info);
416ac51d 2732
fa9c0d79
CM
2733 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2734 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2735
e6dcd2dc 2736 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2737 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2738 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2739 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2740
04216820
FM
2741 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2742
da17066c
JM
2743 /* Usable values until the real ones are cached from the superblock */
2744 fs_info->nodesize = 4096;
2745 fs_info->sectorsize = 4096;
2746 fs_info->stripesize = 4096;
2747
53b381b3
DW
2748 ret = btrfs_alloc_stripe_hash_table(fs_info);
2749 if (ret) {
83c8266a 2750 err = ret;
53b381b3
DW
2751 goto fail_alloc;
2752 }
2753
da17066c 2754 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2755
3c4bb26b 2756 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2757
2758 /*
2759 * Read super block and check the signature bytes only
2760 */
a512bbf8 2761 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2762 if (IS_ERR(bh)) {
2763 err = PTR_ERR(bh);
16cdcec7 2764 goto fail_alloc;
20b45077 2765 }
39279cc3 2766
1104a885
DS
2767 /*
2768 * We want to check superblock checksum, the type is stored inside.
2769 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2770 */
ab8d0fc4 2771 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2772 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2773 err = -EINVAL;
b2acdddf 2774 brelse(bh);
1104a885
DS
2775 goto fail_alloc;
2776 }
2777
2778 /*
2779 * super_copy is zeroed at allocation time and we never touch the
2780 * following bytes up to INFO_SIZE, the checksum is calculated from
2781 * the whole block of INFO_SIZE
2782 */
6c41761f
DS
2783 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2784 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2785 sizeof(*fs_info->super_for_commit));
a061fc8d 2786 brelse(bh);
5f39d397 2787
6c41761f 2788 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2789
069ec957 2790 ret = btrfs_validate_mount_super(fs_info);
1104a885 2791 if (ret) {
05135f59 2792 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2793 err = -EINVAL;
2794 goto fail_alloc;
2795 }
2796
6c41761f 2797 disk_super = fs_info->super_copy;
0f7d52f4 2798 if (!btrfs_super_root(disk_super))
16cdcec7 2799 goto fail_alloc;
0f7d52f4 2800
acce952b 2801 /* check FS state, whether FS is broken. */
87533c47
MX
2802 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2803 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2804
af31f5e5
CM
2805 /*
2806 * run through our array of backup supers and setup
2807 * our ring pointer to the oldest one
2808 */
2809 generation = btrfs_super_generation(disk_super);
2810 find_oldest_super_backup(fs_info, generation);
2811
75e7cb7f
LB
2812 /*
2813 * In the long term, we'll store the compression type in the super
2814 * block, and it'll be used for per file compression control.
2815 */
2816 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2817
2ff7e61e 2818 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2819 if (ret) {
2820 err = ret;
16cdcec7 2821 goto fail_alloc;
2b82032c 2822 }
dfe25020 2823
f2b636e8
JB
2824 features = btrfs_super_incompat_flags(disk_super) &
2825 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2826 if (features) {
05135f59
DS
2827 btrfs_err(fs_info,
2828 "cannot mount because of unsupported optional features (%llx)",
2829 features);
f2b636e8 2830 err = -EINVAL;
16cdcec7 2831 goto fail_alloc;
f2b636e8
JB
2832 }
2833
5d4f98a2 2834 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2835 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2836 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2837 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2838 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2839 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2840
3173a18f 2841 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2842 btrfs_info(fs_info, "has skinny extents");
3173a18f 2843
727011e0
CM
2844 /*
2845 * flag our filesystem as having big metadata blocks if
2846 * they are bigger than the page size
2847 */
09cbfeaf 2848 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2849 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2850 btrfs_info(fs_info,
2851 "flagging fs with big metadata feature");
727011e0
CM
2852 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2853 }
2854
bc3f116f 2855 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2856 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2857 stripesize = sectorsize;
707e8a07 2858 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2859 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2860
da17066c
JM
2861 /* Cache block sizes */
2862 fs_info->nodesize = nodesize;
2863 fs_info->sectorsize = sectorsize;
2864 fs_info->stripesize = stripesize;
2865
bc3f116f
CM
2866 /*
2867 * mixed block groups end up with duplicate but slightly offset
2868 * extent buffers for the same range. It leads to corruptions
2869 */
2870 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2871 (sectorsize != nodesize)) {
05135f59
DS
2872 btrfs_err(fs_info,
2873"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2874 nodesize, sectorsize);
bc3f116f
CM
2875 goto fail_alloc;
2876 }
2877
ceda0864
MX
2878 /*
2879 * Needn't use the lock because there is no other task which will
2880 * update the flag.
2881 */
a6fa6fae 2882 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2883
f2b636e8
JB
2884 features = btrfs_super_compat_ro_flags(disk_super) &
2885 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2886 if (!sb_rdonly(sb) && features) {
05135f59
DS
2887 btrfs_err(fs_info,
2888 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2889 features);
f2b636e8 2890 err = -EINVAL;
16cdcec7 2891 goto fail_alloc;
f2b636e8 2892 }
61d92c32 2893
2a458198
ES
2894 ret = btrfs_init_workqueues(fs_info, fs_devices);
2895 if (ret) {
2896 err = ret;
0dc3b84a
JB
2897 goto fail_sb_buffer;
2898 }
4543df7e 2899
9e11ceee
JK
2900 sb->s_bdi->congested_fn = btrfs_congested_fn;
2901 sb->s_bdi->congested_data = fs_info;
2902 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2903 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2904 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2905 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2906
a061fc8d
CM
2907 sb->s_blocksize = sectorsize;
2908 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2909 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2910
925baedd 2911 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2912 ret = btrfs_read_sys_array(fs_info);
925baedd 2913 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2914 if (ret) {
05135f59 2915 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2916 goto fail_sb_buffer;
84eed90f 2917 }
0b86a832 2918
84234f3a 2919 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2920 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2921
da17066c 2922 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2923
2ff7e61e 2924 chunk_root->node = read_tree_block(fs_info,
0b86a832 2925 btrfs_super_chunk_root(disk_super),
581c1760 2926 generation, level, NULL);
64c043de
LB
2927 if (IS_ERR(chunk_root->node) ||
2928 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2929 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2930 if (!IS_ERR(chunk_root->node))
2931 free_extent_buffer(chunk_root->node);
95ab1f64 2932 chunk_root->node = NULL;
af31f5e5 2933 goto fail_tree_roots;
83121942 2934 }
5d4f98a2
YZ
2935 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2936 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2937
e17cade2 2938 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2939 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2940
5b4aacef 2941 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2942 if (ret) {
05135f59 2943 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2944 goto fail_tree_roots;
2b82032c 2945 }
0b86a832 2946
8dabb742 2947 /*
9b99b115
AJ
2948 * Keep the devid that is marked to be the target device for the
2949 * device replace procedure
8dabb742 2950 */
9b99b115 2951 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2952
a6b0d5c8 2953 if (!fs_devices->latest_bdev) {
05135f59 2954 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2955 goto fail_tree_roots;
2956 }
2957
af31f5e5 2958retry_root_backup:
84234f3a 2959 generation = btrfs_super_generation(disk_super);
581c1760 2960 level = btrfs_super_root_level(disk_super);
0b86a832 2961
2ff7e61e 2962 tree_root->node = read_tree_block(fs_info,
db94535d 2963 btrfs_super_root(disk_super),
581c1760 2964 generation, level, NULL);
64c043de
LB
2965 if (IS_ERR(tree_root->node) ||
2966 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2967 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2968 if (!IS_ERR(tree_root->node))
2969 free_extent_buffer(tree_root->node);
95ab1f64 2970 tree_root->node = NULL;
af31f5e5 2971 goto recovery_tree_root;
83121942 2972 }
af31f5e5 2973
5d4f98a2
YZ
2974 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2975 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2976 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2977
f32e48e9
CR
2978 mutex_lock(&tree_root->objectid_mutex);
2979 ret = btrfs_find_highest_objectid(tree_root,
2980 &tree_root->highest_objectid);
2981 if (ret) {
2982 mutex_unlock(&tree_root->objectid_mutex);
2983 goto recovery_tree_root;
2984 }
2985
2986 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2987
2988 mutex_unlock(&tree_root->objectid_mutex);
2989
6bccf3ab 2990 ret = btrfs_read_roots(fs_info);
4bbcaa64 2991 if (ret)
af31f5e5 2992 goto recovery_tree_root;
f7a81ea4 2993
8929ecfa
YZ
2994 fs_info->generation = generation;
2995 fs_info->last_trans_committed = generation;
8929ecfa 2996
cf90d884
QW
2997 ret = btrfs_verify_dev_extents(fs_info);
2998 if (ret) {
2999 btrfs_err(fs_info,
3000 "failed to verify dev extents against chunks: %d",
3001 ret);
3002 goto fail_block_groups;
3003 }
68310a5e
ID
3004 ret = btrfs_recover_balance(fs_info);
3005 if (ret) {
05135f59 3006 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3007 goto fail_block_groups;
3008 }
3009
733f4fbb
SB
3010 ret = btrfs_init_dev_stats(fs_info);
3011 if (ret) {
05135f59 3012 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3013 goto fail_block_groups;
3014 }
3015
8dabb742
SB
3016 ret = btrfs_init_dev_replace(fs_info);
3017 if (ret) {
05135f59 3018 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3019 goto fail_block_groups;
3020 }
3021
9b99b115 3022 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3023
b7c35e81
AJ
3024 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3025 if (ret) {
05135f59
DS
3026 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3027 ret);
b7c35e81
AJ
3028 goto fail_block_groups;
3029 }
3030
3031 ret = btrfs_sysfs_add_device(fs_devices);
3032 if (ret) {
05135f59
DS
3033 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3034 ret);
b7c35e81
AJ
3035 goto fail_fsdev_sysfs;
3036 }
3037
96f3136e 3038 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3039 if (ret) {
05135f59 3040 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3041 goto fail_fsdev_sysfs;
c59021f8 3042 }
3043
c59021f8 3044 ret = btrfs_init_space_info(fs_info);
3045 if (ret) {
05135f59 3046 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3047 goto fail_sysfs;
c59021f8 3048 }
3049
5b4aacef 3050 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3051 if (ret) {
05135f59 3052 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3053 goto fail_sysfs;
1b1d1f66 3054 }
4330e183 3055
6528b99d 3056 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3057 btrfs_warn(fs_info,
4330e183 3058 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3059 goto fail_sysfs;
292fd7fc 3060 }
9078a3e1 3061
a74a4b97
CM
3062 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3063 "btrfs-cleaner");
57506d50 3064 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3065 goto fail_sysfs;
a74a4b97
CM
3066
3067 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3068 tree_root,
3069 "btrfs-transaction");
57506d50 3070 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3071 goto fail_cleaner;
a74a4b97 3072
583b7231 3073 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3074 !fs_info->fs_devices->rotating) {
583b7231 3075 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3076 }
3077
572d9ab7 3078 /*
01327610 3079 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3080 * not have to wait for transaction commit
3081 */
3082 btrfs_apply_pending_changes(fs_info);
3818aea2 3083
21adbd5c 3084#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3085 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3086 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3087 btrfs_test_opt(fs_info,
21adbd5c
SB
3088 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3089 1 : 0,
3090 fs_info->check_integrity_print_mask);
3091 if (ret)
05135f59
DS
3092 btrfs_warn(fs_info,
3093 "failed to initialize integrity check module: %d",
3094 ret);
21adbd5c
SB
3095 }
3096#endif
bcef60f2
AJ
3097 ret = btrfs_read_qgroup_config(fs_info);
3098 if (ret)
3099 goto fail_trans_kthread;
21adbd5c 3100
fd708b81
JB
3101 if (btrfs_build_ref_tree(fs_info))
3102 btrfs_err(fs_info, "couldn't build ref tree");
3103
96da0919
QW
3104 /* do not make disk changes in broken FS or nologreplay is given */
3105 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3106 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3107 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3108 if (ret) {
63443bf5 3109 err = ret;
28c16cbb 3110 goto fail_qgroup;
79787eaa 3111 }
e02119d5 3112 }
1a40e23b 3113
6bccf3ab 3114 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3115 if (ret)
28c16cbb 3116 goto fail_qgroup;
76dda93c 3117
bc98a42c 3118 if (!sb_rdonly(sb)) {
d68fc57b 3119 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3120 if (ret)
28c16cbb 3121 goto fail_qgroup;
90c711ab
ZB
3122
3123 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3124 ret = btrfs_recover_relocation(tree_root);
90c711ab 3125 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3126 if (ret < 0) {
05135f59
DS
3127 btrfs_warn(fs_info, "failed to recover relocation: %d",
3128 ret);
d7ce5843 3129 err = -EINVAL;
bcef60f2 3130 goto fail_qgroup;
d7ce5843 3131 }
7c2ca468 3132 }
1a40e23b 3133
3de4586c
CM
3134 location.objectid = BTRFS_FS_TREE_OBJECTID;
3135 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3136 location.offset = 0;
3de4586c 3137
3de4586c 3138 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3139 if (IS_ERR(fs_info->fs_root)) {
3140 err = PTR_ERR(fs_info->fs_root);
f50f4353 3141 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3142 goto fail_qgroup;
3140c9a3 3143 }
c289811c 3144
bc98a42c 3145 if (sb_rdonly(sb))
2b6ba629 3146 return 0;
59641015 3147
f8d468a1
OS
3148 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3149 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3150 clear_free_space_tree = 1;
3151 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3152 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3153 btrfs_warn(fs_info, "free space tree is invalid");
3154 clear_free_space_tree = 1;
3155 }
3156
3157 if (clear_free_space_tree) {
f8d468a1
OS
3158 btrfs_info(fs_info, "clearing free space tree");
3159 ret = btrfs_clear_free_space_tree(fs_info);
3160 if (ret) {
3161 btrfs_warn(fs_info,
3162 "failed to clear free space tree: %d", ret);
6bccf3ab 3163 close_ctree(fs_info);
f8d468a1
OS
3164 return ret;
3165 }
3166 }
3167
0b246afa 3168 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3169 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3170 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3171 ret = btrfs_create_free_space_tree(fs_info);
3172 if (ret) {
05135f59
DS
3173 btrfs_warn(fs_info,
3174 "failed to create free space tree: %d", ret);
6bccf3ab 3175 close_ctree(fs_info);
511711af
CM
3176 return ret;
3177 }
3178 }
3179
2b6ba629
ID
3180 down_read(&fs_info->cleanup_work_sem);
3181 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3182 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3183 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3184 close_ctree(fs_info);
2b6ba629
ID
3185 return ret;
3186 }
3187 up_read(&fs_info->cleanup_work_sem);
59641015 3188
2b6ba629
ID
3189 ret = btrfs_resume_balance_async(fs_info);
3190 if (ret) {
05135f59 3191 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3192 close_ctree(fs_info);
2b6ba629 3193 return ret;
e3acc2a6
JB
3194 }
3195
8dabb742
SB
3196 ret = btrfs_resume_dev_replace_async(fs_info);
3197 if (ret) {
05135f59 3198 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3199 close_ctree(fs_info);
8dabb742
SB
3200 return ret;
3201 }
3202
b382a324
JS
3203 btrfs_qgroup_rescan_resume(fs_info);
3204
4bbcaa64 3205 if (!fs_info->uuid_root) {
05135f59 3206 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3207 ret = btrfs_create_uuid_tree(fs_info);
3208 if (ret) {
05135f59
DS
3209 btrfs_warn(fs_info,
3210 "failed to create the UUID tree: %d", ret);
6bccf3ab 3211 close_ctree(fs_info);
f7a81ea4
SB
3212 return ret;
3213 }
0b246afa 3214 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3215 fs_info->generation !=
3216 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3217 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3218 ret = btrfs_check_uuid_tree(fs_info);
3219 if (ret) {
05135f59
DS
3220 btrfs_warn(fs_info,
3221 "failed to check the UUID tree: %d", ret);
6bccf3ab 3222 close_ctree(fs_info);
70f80175
SB
3223 return ret;
3224 }
3225 } else {
afcdd129 3226 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3227 }
afcdd129 3228 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3229
8dcddfa0
QW
3230 /*
3231 * backuproot only affect mount behavior, and if open_ctree succeeded,
3232 * no need to keep the flag
3233 */
3234 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3235
ad2b2c80 3236 return 0;
39279cc3 3237
bcef60f2
AJ
3238fail_qgroup:
3239 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3240fail_trans_kthread:
3241 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3242 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3243 btrfs_free_fs_roots(fs_info);
3f157a2f 3244fail_cleaner:
a74a4b97 3245 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3246
3247 /*
3248 * make sure we're done with the btree inode before we stop our
3249 * kthreads
3250 */
3251 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3252
2365dd3c 3253fail_sysfs:
6618a59b 3254 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3255
b7c35e81
AJ
3256fail_fsdev_sysfs:
3257 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3258
1b1d1f66 3259fail_block_groups:
54067ae9 3260 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3261
3262fail_tree_roots:
3263 free_root_pointers(fs_info, 1);
2b8195bb 3264 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3265
39279cc3 3266fail_sb_buffer:
7abadb64 3267 btrfs_stop_all_workers(fs_info);
5cdd7db6 3268 btrfs_free_block_groups(fs_info);
16cdcec7 3269fail_alloc:
4543df7e 3270fail_iput:
586e46e2
ID
3271 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3272
4543df7e 3273 iput(fs_info->btree_inode);
c404e0dc 3274fail_bio_counter:
7f8d236a 3275 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3276fail_delalloc_bytes:
3277 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3278fail_dirty_metadata_bytes:
3279 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3280fail_srcu:
3281 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3282fail:
53b381b3 3283 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3284 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3285 return err;
af31f5e5
CM
3286
3287recovery_tree_root:
0b246afa 3288 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3289 goto fail_tree_roots;
3290
3291 free_root_pointers(fs_info, 0);
3292
3293 /* don't use the log in recovery mode, it won't be valid */
3294 btrfs_set_super_log_root(disk_super, 0);
3295
3296 /* we can't trust the free space cache either */
3297 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3298
3299 ret = next_root_backup(fs_info, fs_info->super_copy,
3300 &num_backups_tried, &backup_index);
3301 if (ret == -1)
3302 goto fail_block_groups;
3303 goto retry_root_backup;
eb60ceac 3304}
663faf9f 3305ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3306
f2984462
CM
3307static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3308{
f2984462
CM
3309 if (uptodate) {
3310 set_buffer_uptodate(bh);
3311 } else {
442a4f63
SB
3312 struct btrfs_device *device = (struct btrfs_device *)
3313 bh->b_private;
3314
fb456252 3315 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3316 "lost page write due to IO error on %s",
606686ee 3317 rcu_str_deref(device->name));
01327610 3318 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3319 * our own ways of dealing with the IO errors
3320 */
f2984462 3321 clear_buffer_uptodate(bh);
442a4f63 3322 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3323 }
3324 unlock_buffer(bh);
3325 put_bh(bh);
3326}
3327
29c36d72
AJ
3328int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3329 struct buffer_head **bh_ret)
3330{
3331 struct buffer_head *bh;
3332 struct btrfs_super_block *super;
3333 u64 bytenr;
3334
3335 bytenr = btrfs_sb_offset(copy_num);
3336 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3337 return -EINVAL;
3338
9f6d2510 3339 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3340 /*
3341 * If we fail to read from the underlying devices, as of now
3342 * the best option we have is to mark it EIO.
3343 */
3344 if (!bh)
3345 return -EIO;
3346
3347 super = (struct btrfs_super_block *)bh->b_data;
3348 if (btrfs_super_bytenr(super) != bytenr ||
3349 btrfs_super_magic(super) != BTRFS_MAGIC) {
3350 brelse(bh);
3351 return -EINVAL;
3352 }
3353
3354 *bh_ret = bh;
3355 return 0;
3356}
3357
3358
a512bbf8
YZ
3359struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3360{
3361 struct buffer_head *bh;
3362 struct buffer_head *latest = NULL;
3363 struct btrfs_super_block *super;
3364 int i;
3365 u64 transid = 0;
92fc03fb 3366 int ret = -EINVAL;
a512bbf8
YZ
3367
3368 /* we would like to check all the supers, but that would make
3369 * a btrfs mount succeed after a mkfs from a different FS.
3370 * So, we need to add a special mount option to scan for
3371 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3372 */
3373 for (i = 0; i < 1; i++) {
29c36d72
AJ
3374 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3375 if (ret)
a512bbf8
YZ
3376 continue;
3377
3378 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3379
3380 if (!latest || btrfs_super_generation(super) > transid) {
3381 brelse(latest);
3382 latest = bh;
3383 transid = btrfs_super_generation(super);
3384 } else {
3385 brelse(bh);
3386 }
3387 }
92fc03fb
AJ
3388
3389 if (!latest)
3390 return ERR_PTR(ret);
3391
a512bbf8
YZ
3392 return latest;
3393}
3394
4eedeb75 3395/*
abbb3b8e
DS
3396 * Write superblock @sb to the @device. Do not wait for completion, all the
3397 * buffer heads we write are pinned.
4eedeb75 3398 *
abbb3b8e
DS
3399 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3400 * the expected device size at commit time. Note that max_mirrors must be
3401 * same for write and wait phases.
4eedeb75 3402 *
abbb3b8e 3403 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3404 */
a512bbf8 3405static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3406 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3407{
3408 struct buffer_head *bh;
3409 int i;
3410 int ret;
3411 int errors = 0;
3412 u32 crc;
3413 u64 bytenr;
1b9e619c 3414 int op_flags;
a512bbf8
YZ
3415
3416 if (max_mirrors == 0)
3417 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3418
a512bbf8
YZ
3419 for (i = 0; i < max_mirrors; i++) {
3420 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3421 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3422 device->commit_total_bytes)
a512bbf8
YZ
3423 break;
3424
abbb3b8e 3425 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3426
abbb3b8e
DS
3427 crc = ~(u32)0;
3428 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3429 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3430 btrfs_csum_final(crc, sb->csum);
4eedeb75 3431
abbb3b8e 3432 /* One reference for us, and we leave it for the caller */
9f6d2510 3433 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3434 BTRFS_SUPER_INFO_SIZE);
3435 if (!bh) {
3436 btrfs_err(device->fs_info,
3437 "couldn't get super buffer head for bytenr %llu",
3438 bytenr);
3439 errors++;
4eedeb75 3440 continue;
abbb3b8e 3441 }
634554dc 3442
abbb3b8e 3443 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3444
abbb3b8e
DS
3445 /* one reference for submit_bh */
3446 get_bh(bh);
4eedeb75 3447
abbb3b8e
DS
3448 set_buffer_uptodate(bh);
3449 lock_buffer(bh);
3450 bh->b_end_io = btrfs_end_buffer_write_sync;
3451 bh->b_private = device;
a512bbf8 3452
387125fc
CM
3453 /*
3454 * we fua the first super. The others we allow
3455 * to go down lazy.
3456 */
1b9e619c
OS
3457 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3458 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3459 op_flags |= REQ_FUA;
3460 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3461 if (ret)
a512bbf8 3462 errors++;
a512bbf8
YZ
3463 }
3464 return errors < i ? 0 : -1;
3465}
3466
abbb3b8e
DS
3467/*
3468 * Wait for write completion of superblocks done by write_dev_supers,
3469 * @max_mirrors same for write and wait phases.
3470 *
3471 * Return number of errors when buffer head is not found or not marked up to
3472 * date.
3473 */
3474static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3475{
3476 struct buffer_head *bh;
3477 int i;
3478 int errors = 0;
b6a535fa 3479 bool primary_failed = false;
abbb3b8e
DS
3480 u64 bytenr;
3481
3482 if (max_mirrors == 0)
3483 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3484
3485 for (i = 0; i < max_mirrors; i++) {
3486 bytenr = btrfs_sb_offset(i);
3487 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3488 device->commit_total_bytes)
3489 break;
3490
9f6d2510
DS
3491 bh = __find_get_block(device->bdev,
3492 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3493 BTRFS_SUPER_INFO_SIZE);
3494 if (!bh) {
3495 errors++;
b6a535fa
HM
3496 if (i == 0)
3497 primary_failed = true;
abbb3b8e
DS
3498 continue;
3499 }
3500 wait_on_buffer(bh);
b6a535fa 3501 if (!buffer_uptodate(bh)) {
abbb3b8e 3502 errors++;
b6a535fa
HM
3503 if (i == 0)
3504 primary_failed = true;
3505 }
abbb3b8e
DS
3506
3507 /* drop our reference */
3508 brelse(bh);
3509
3510 /* drop the reference from the writing run */
3511 brelse(bh);
3512 }
3513
b6a535fa
HM
3514 /* log error, force error return */
3515 if (primary_failed) {
3516 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3517 device->devid);
3518 return -1;
3519 }
3520
abbb3b8e
DS
3521 return errors < i ? 0 : -1;
3522}
3523
387125fc
CM
3524/*
3525 * endio for the write_dev_flush, this will wake anyone waiting
3526 * for the barrier when it is done
3527 */
4246a0b6 3528static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3529{
e0ae9994 3530 complete(bio->bi_private);
387125fc
CM
3531}
3532
3533/*
4fc6441a
AJ
3534 * Submit a flush request to the device if it supports it. Error handling is
3535 * done in the waiting counterpart.
387125fc 3536 */
4fc6441a 3537static void write_dev_flush(struct btrfs_device *device)
387125fc 3538{
c2a9c7ab 3539 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3540 struct bio *bio = device->flush_bio;
387125fc 3541
c2a9c7ab 3542 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3543 return;
387125fc 3544
e0ae9994 3545 bio_reset(bio);
387125fc 3546 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3547 bio_set_dev(bio, device->bdev);
8d910125 3548 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3549 init_completion(&device->flush_wait);
3550 bio->bi_private = &device->flush_wait;
387125fc 3551
43a01111 3552 btrfsic_submit_bio(bio);
1c3063b6 3553 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3554}
387125fc 3555
4fc6441a
AJ
3556/*
3557 * If the flush bio has been submitted by write_dev_flush, wait for it.
3558 */
8c27cb35 3559static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3560{
4fc6441a 3561 struct bio *bio = device->flush_bio;
387125fc 3562
1c3063b6 3563 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3564 return BLK_STS_OK;
387125fc 3565
1c3063b6 3566 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3567 wait_for_completion_io(&device->flush_wait);
387125fc 3568
8c27cb35 3569 return bio->bi_status;
387125fc 3570}
387125fc 3571
d10b82fe 3572static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3573{
6528b99d 3574 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3575 return -EIO;
387125fc
CM
3576 return 0;
3577}
3578
3579/*
3580 * send an empty flush down to each device in parallel,
3581 * then wait for them
3582 */
3583static int barrier_all_devices(struct btrfs_fs_info *info)
3584{
3585 struct list_head *head;
3586 struct btrfs_device *dev;
5af3e8cc 3587 int errors_wait = 0;
4e4cbee9 3588 blk_status_t ret;
387125fc 3589
1538e6c5 3590 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3591 /* send down all the barriers */
3592 head = &info->fs_devices->devices;
1538e6c5 3593 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3594 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3595 continue;
cea7c8bf 3596 if (!dev->bdev)
387125fc 3597 continue;
e12c9621 3598 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3599 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3600 continue;
3601
4fc6441a 3602 write_dev_flush(dev);
58efbc9f 3603 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3604 }
3605
3606 /* wait for all the barriers */
1538e6c5 3607 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3608 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3609 continue;
387125fc 3610 if (!dev->bdev) {
5af3e8cc 3611 errors_wait++;
387125fc
CM
3612 continue;
3613 }
e12c9621 3614 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3615 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3616 continue;
3617
4fc6441a 3618 ret = wait_dev_flush(dev);
401b41e5
AJ
3619 if (ret) {
3620 dev->last_flush_error = ret;
66b4993e
DS
3621 btrfs_dev_stat_inc_and_print(dev,
3622 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3623 errors_wait++;
401b41e5
AJ
3624 }
3625 }
3626
cea7c8bf 3627 if (errors_wait) {
401b41e5
AJ
3628 /*
3629 * At some point we need the status of all disks
3630 * to arrive at the volume status. So error checking
3631 * is being pushed to a separate loop.
3632 */
d10b82fe 3633 return check_barrier_error(info);
387125fc 3634 }
387125fc
CM
3635 return 0;
3636}
3637
943c6e99
ZL
3638int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3639{
8789f4fe
ZL
3640 int raid_type;
3641 int min_tolerated = INT_MAX;
943c6e99 3642
8789f4fe
ZL
3643 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3644 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3645 min_tolerated = min(min_tolerated,
3646 btrfs_raid_array[BTRFS_RAID_SINGLE].
3647 tolerated_failures);
943c6e99 3648
8789f4fe
ZL
3649 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3650 if (raid_type == BTRFS_RAID_SINGLE)
3651 continue;
41a6e891 3652 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3653 continue;
3654 min_tolerated = min(min_tolerated,
3655 btrfs_raid_array[raid_type].
3656 tolerated_failures);
3657 }
943c6e99 3658
8789f4fe 3659 if (min_tolerated == INT_MAX) {
ab8d0fc4 3660 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3661 min_tolerated = 0;
3662 }
3663
3664 return min_tolerated;
943c6e99
ZL
3665}
3666
eece6a9c 3667int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3668{
e5e9a520 3669 struct list_head *head;
f2984462 3670 struct btrfs_device *dev;
a061fc8d 3671 struct btrfs_super_block *sb;
f2984462 3672 struct btrfs_dev_item *dev_item;
f2984462
CM
3673 int ret;
3674 int do_barriers;
a236aed1
CM
3675 int max_errors;
3676 int total_errors = 0;
a061fc8d 3677 u64 flags;
f2984462 3678
0b246afa 3679 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3680
3681 /*
3682 * max_mirrors == 0 indicates we're from commit_transaction,
3683 * not from fsync where the tree roots in fs_info have not
3684 * been consistent on disk.
3685 */
3686 if (max_mirrors == 0)
3687 backup_super_roots(fs_info);
f2984462 3688
0b246afa 3689 sb = fs_info->super_for_commit;
a061fc8d 3690 dev_item = &sb->dev_item;
e5e9a520 3691
0b246afa
JM
3692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3693 head = &fs_info->fs_devices->devices;
3694 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3695
5af3e8cc 3696 if (do_barriers) {
0b246afa 3697 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3698 if (ret) {
3699 mutex_unlock(
0b246afa
JM
3700 &fs_info->fs_devices->device_list_mutex);
3701 btrfs_handle_fs_error(fs_info, ret,
3702 "errors while submitting device barriers.");
5af3e8cc
SB
3703 return ret;
3704 }
3705 }
387125fc 3706
1538e6c5 3707 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3708 if (!dev->bdev) {
3709 total_errors++;
3710 continue;
3711 }
e12c9621 3712 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3713 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3714 continue;
3715
2b82032c 3716 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3717 btrfs_set_stack_device_type(dev_item, dev->type);
3718 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3719 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3720 dev->commit_total_bytes);
ce7213c7
MX
3721 btrfs_set_stack_device_bytes_used(dev_item,
3722 dev->commit_bytes_used);
a061fc8d
CM
3723 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3724 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3725 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3726 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3727 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3728
a061fc8d
CM
3729 flags = btrfs_super_flags(sb);
3730 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3731
75cb857d
QW
3732 ret = btrfs_validate_write_super(fs_info, sb);
3733 if (ret < 0) {
3734 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3735 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3736 "unexpected superblock corruption detected");
3737 return -EUCLEAN;
3738 }
3739
abbb3b8e 3740 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3741 if (ret)
3742 total_errors++;
f2984462 3743 }
a236aed1 3744 if (total_errors > max_errors) {
0b246afa
JM
3745 btrfs_err(fs_info, "%d errors while writing supers",
3746 total_errors);
3747 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3748
9d565ba4 3749 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3750 btrfs_handle_fs_error(fs_info, -EIO,
3751 "%d errors while writing supers",
3752 total_errors);
9d565ba4 3753 return -EIO;
a236aed1 3754 }
f2984462 3755
a512bbf8 3756 total_errors = 0;
1538e6c5 3757 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3758 if (!dev->bdev)
3759 continue;
e12c9621 3760 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3761 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3762 continue;
3763
abbb3b8e 3764 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3765 if (ret)
3766 total_errors++;
f2984462 3767 }
0b246afa 3768 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3769 if (total_errors > max_errors) {
0b246afa
JM
3770 btrfs_handle_fs_error(fs_info, -EIO,
3771 "%d errors while writing supers",
3772 total_errors);
79787eaa 3773 return -EIO;
a236aed1 3774 }
f2984462
CM
3775 return 0;
3776}
3777
cb517eab
MX
3778/* Drop a fs root from the radix tree and free it. */
3779void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3780 struct btrfs_root *root)
2619ba1f 3781{
4df27c4d 3782 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3783 radix_tree_delete(&fs_info->fs_roots_radix,
3784 (unsigned long)root->root_key.objectid);
4df27c4d 3785 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3786
3787 if (btrfs_root_refs(&root->root_item) == 0)
3788 synchronize_srcu(&fs_info->subvol_srcu);
3789
1c1ea4f7 3790 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3791 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3792 if (root->reloc_root) {
3793 free_extent_buffer(root->reloc_root->node);
3794 free_extent_buffer(root->reloc_root->commit_root);
3795 btrfs_put_fs_root(root->reloc_root);
3796 root->reloc_root = NULL;
3797 }
3798 }
3321719e 3799
faa2dbf0
JB
3800 if (root->free_ino_pinned)
3801 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3802 if (root->free_ino_ctl)
3803 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3804 btrfs_free_fs_root(root);
4df27c4d
YZ
3805}
3806
84db5ccf 3807void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3808{
57cdc8db 3809 iput(root->ino_cache_inode);
4df27c4d 3810 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3811 if (root->anon_dev)
3812 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3813 if (root->subv_writers)
3814 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3815 free_extent_buffer(root->node);
3816 free_extent_buffer(root->commit_root);
581bb050
LZ
3817 kfree(root->free_ino_ctl);
3818 kfree(root->free_ino_pinned);
b0feb9d9 3819 btrfs_put_fs_root(root);
2619ba1f
CM
3820}
3821
c146afad 3822int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3823{
c146afad
YZ
3824 u64 root_objectid = 0;
3825 struct btrfs_root *gang[8];
65d33fd7
QW
3826 int i = 0;
3827 int err = 0;
3828 unsigned int ret = 0;
3829 int index;
e089f05c 3830
c146afad 3831 while (1) {
65d33fd7 3832 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3833 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3834 (void **)gang, root_objectid,
3835 ARRAY_SIZE(gang));
65d33fd7
QW
3836 if (!ret) {
3837 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3838 break;
65d33fd7 3839 }
5d4f98a2 3840 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3841
c146afad 3842 for (i = 0; i < ret; i++) {
65d33fd7
QW
3843 /* Avoid to grab roots in dead_roots */
3844 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3845 gang[i] = NULL;
3846 continue;
3847 }
3848 /* grab all the search result for later use */
3849 gang[i] = btrfs_grab_fs_root(gang[i]);
3850 }
3851 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3852
65d33fd7
QW
3853 for (i = 0; i < ret; i++) {
3854 if (!gang[i])
3855 continue;
c146afad 3856 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3857 err = btrfs_orphan_cleanup(gang[i]);
3858 if (err)
65d33fd7
QW
3859 break;
3860 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3861 }
3862 root_objectid++;
3863 }
65d33fd7
QW
3864
3865 /* release the uncleaned roots due to error */
3866 for (; i < ret; i++) {
3867 if (gang[i])
3868 btrfs_put_fs_root(gang[i]);
3869 }
3870 return err;
c146afad 3871}
a2135011 3872
6bccf3ab 3873int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3874{
6bccf3ab 3875 struct btrfs_root *root = fs_info->tree_root;
c146afad 3876 struct btrfs_trans_handle *trans;
a74a4b97 3877
0b246afa 3878 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3879 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3880 mutex_unlock(&fs_info->cleaner_mutex);
3881 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3882
3883 /* wait until ongoing cleanup work done */
0b246afa
JM
3884 down_write(&fs_info->cleanup_work_sem);
3885 up_write(&fs_info->cleanup_work_sem);
c71bf099 3886
7a7eaa40 3887 trans = btrfs_join_transaction(root);
3612b495
TI
3888 if (IS_ERR(trans))
3889 return PTR_ERR(trans);
3a45bb20 3890 return btrfs_commit_transaction(trans);
c146afad
YZ
3891}
3892
6bccf3ab 3893void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3894{
c146afad
YZ
3895 int ret;
3896
afcdd129 3897 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3898 /*
3899 * We don't want the cleaner to start new transactions, add more delayed
3900 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3901 * because that frees the task_struct, and the transaction kthread might
3902 * still try to wake up the cleaner.
3903 */
3904 kthread_park(fs_info->cleaner_kthread);
c146afad 3905
7343dd61 3906 /* wait for the qgroup rescan worker to stop */
d06f23d6 3907 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3908
803b2f54
SB
3909 /* wait for the uuid_scan task to finish */
3910 down(&fs_info->uuid_tree_rescan_sem);
3911 /* avoid complains from lockdep et al., set sem back to initial state */
3912 up(&fs_info->uuid_tree_rescan_sem);
3913
837d5b6e 3914 /* pause restriper - we want to resume on mount */
aa1b8cd4 3915 btrfs_pause_balance(fs_info);
837d5b6e 3916
8dabb742
SB
3917 btrfs_dev_replace_suspend_for_unmount(fs_info);
3918
aa1b8cd4 3919 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3920
3921 /* wait for any defraggers to finish */
3922 wait_event(fs_info->transaction_wait,
3923 (atomic_read(&fs_info->defrag_running) == 0));
3924
3925 /* clear out the rbtree of defraggable inodes */
26176e7c 3926 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3927
21c7e756
MX
3928 cancel_work_sync(&fs_info->async_reclaim_work);
3929
bc98a42c 3930 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3931 /*
d6fd0ae2
OS
3932 * The cleaner kthread is stopped, so do one final pass over
3933 * unused block groups.
e44163e1 3934 */
0b246afa 3935 btrfs_delete_unused_bgs(fs_info);
e44163e1 3936
6bccf3ab 3937 ret = btrfs_commit_super(fs_info);
acce952b 3938 if (ret)
04892340 3939 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3940 }
3941
af722733
LB
3942 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3943 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3944 btrfs_error_commit_super(fs_info);
0f7d52f4 3945
e3029d9f
AV
3946 kthread_stop(fs_info->transaction_kthread);
3947 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3948
e187831e 3949 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3951
04892340 3952 btrfs_free_qgroup_config(fs_info);
fe816d0f 3953 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3954
963d678b 3955 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3956 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3957 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3958 }
bcc63abb 3959
6618a59b 3960 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3961 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3962
faa2dbf0 3963 btrfs_free_fs_roots(fs_info);
d10c5f31 3964
1a4319cc
LB
3965 btrfs_put_block_group_cache(fs_info);
3966
de348ee0
WS
3967 /*
3968 * we must make sure there is not any read request to
3969 * submit after we stopping all workers.
3970 */
3971 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3972 btrfs_stop_all_workers(fs_info);
3973
5cdd7db6
FM
3974 btrfs_free_block_groups(fs_info);
3975
afcdd129 3976 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3977 free_root_pointers(fs_info, 1);
9ad6b7bc 3978
13e6c37b 3979 iput(fs_info->btree_inode);
d6bfde87 3980
21adbd5c 3981#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3982 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3983 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3984#endif
3985
dfe25020 3986 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3987 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3988
e2d84521 3989 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3990 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 3991 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 3992 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3993
53b381b3 3994 btrfs_free_stripe_hash_table(fs_info);
fd708b81 3995 btrfs_free_ref_cache(fs_info);
53b381b3 3996
04216820
FM
3997 while (!list_empty(&fs_info->pinned_chunks)) {
3998 struct extent_map *em;
3999
4000 em = list_first_entry(&fs_info->pinned_chunks,
4001 struct extent_map, list);
4002 list_del_init(&em->list);
4003 free_extent_map(em);
4004 }
eb60ceac
CM
4005}
4006
b9fab919
CM
4007int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4008 int atomic)
5f39d397 4009{
1259ab75 4010 int ret;
727011e0 4011 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4012
0b32f4bb 4013 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4014 if (!ret)
4015 return ret;
4016
4017 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4018 parent_transid, atomic);
4019 if (ret == -EAGAIN)
4020 return ret;
1259ab75 4021 return !ret;
5f39d397
CM
4022}
4023
5f39d397
CM
4024void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4025{
0b246afa 4026 struct btrfs_fs_info *fs_info;
06ea65a3 4027 struct btrfs_root *root;
5f39d397 4028 u64 transid = btrfs_header_generation(buf);
b9473439 4029 int was_dirty;
b4ce94de 4030
06ea65a3
JB
4031#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4032 /*
4033 * This is a fast path so only do this check if we have sanity tests
b0132a3b 4034 * enabled. Normal people shouldn't be using umapped buffers as dirty
06ea65a3
JB
4035 * outside of the sanity tests.
4036 */
b0132a3b 4037 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4038 return;
4039#endif
4040 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4041 fs_info = root->fs_info;
b9447ef8 4042 btrfs_assert_tree_locked(buf);
0b246afa 4043 if (transid != fs_info->generation)
5d163e0e 4044 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4045 buf->start, transid, fs_info->generation);
0b32f4bb 4046 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4047 if (!was_dirty)
104b4e51
NB
4048 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4049 buf->len,
4050 fs_info->dirty_metadata_batch);
1f21ef0a 4051#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4052 /*
4053 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4054 * but item data not updated.
4055 * So here we should only check item pointers, not item data.
4056 */
4057 if (btrfs_header_level(buf) == 0 &&
2f659546 4058 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4059 btrfs_print_leaf(buf);
1f21ef0a
FM
4060 ASSERT(0);
4061 }
4062#endif
eb60ceac
CM
4063}
4064
2ff7e61e 4065static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4066 int flush_delayed)
16cdcec7
MX
4067{
4068 /*
4069 * looks as though older kernels can get into trouble with
4070 * this code, they end up stuck in balance_dirty_pages forever
4071 */
e2d84521 4072 int ret;
16cdcec7
MX
4073
4074 if (current->flags & PF_MEMALLOC)
4075 return;
4076
b53d3f5d 4077 if (flush_delayed)
2ff7e61e 4078 btrfs_balance_delayed_items(fs_info);
16cdcec7 4079
d814a491
EL
4080 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4081 BTRFS_DIRTY_METADATA_THRESH,
4082 fs_info->dirty_metadata_batch);
e2d84521 4083 if (ret > 0) {
0b246afa 4084 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4085 }
16cdcec7
MX
4086}
4087
2ff7e61e 4088void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4089{
2ff7e61e 4090 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4091}
585ad2c3 4092
2ff7e61e 4093void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4094{
2ff7e61e 4095 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4096}
6b80053d 4097
581c1760
QW
4098int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4099 struct btrfs_key *first_key)
6b80053d 4100{
727011e0 4101 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4102 struct btrfs_fs_info *fs_info = root->fs_info;
4103
581c1760
QW
4104 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4105 level, first_key);
6b80053d 4106}
0da5468f 4107
2ff7e61e 4108static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4109{
fe816d0f
NB
4110 /* cleanup FS via transaction */
4111 btrfs_cleanup_transaction(fs_info);
4112
0b246afa 4113 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4114 btrfs_run_delayed_iputs(fs_info);
0b246afa 4115 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4116
0b246afa
JM
4117 down_write(&fs_info->cleanup_work_sem);
4118 up_write(&fs_info->cleanup_work_sem);
acce952b 4119}
4120
143bede5 4121static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4122{
acce952b 4123 struct btrfs_ordered_extent *ordered;
acce952b 4124
199c2a9c 4125 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4126 /*
4127 * This will just short circuit the ordered completion stuff which will
4128 * make sure the ordered extent gets properly cleaned up.
4129 */
199c2a9c 4130 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4131 root_extent_list)
4132 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4133 spin_unlock(&root->ordered_extent_lock);
4134}
4135
4136static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4137{
4138 struct btrfs_root *root;
4139 struct list_head splice;
4140
4141 INIT_LIST_HEAD(&splice);
4142
4143 spin_lock(&fs_info->ordered_root_lock);
4144 list_splice_init(&fs_info->ordered_roots, &splice);
4145 while (!list_empty(&splice)) {
4146 root = list_first_entry(&splice, struct btrfs_root,
4147 ordered_root);
1de2cfde
JB
4148 list_move_tail(&root->ordered_root,
4149 &fs_info->ordered_roots);
199c2a9c 4150
2a85d9ca 4151 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4152 btrfs_destroy_ordered_extents(root);
4153
2a85d9ca
LB
4154 cond_resched();
4155 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4156 }
4157 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4158}
4159
35a3621b 4160static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4161 struct btrfs_fs_info *fs_info)
acce952b 4162{
4163 struct rb_node *node;
4164 struct btrfs_delayed_ref_root *delayed_refs;
4165 struct btrfs_delayed_ref_node *ref;
4166 int ret = 0;
4167
4168 delayed_refs = &trans->delayed_refs;
4169
4170 spin_lock(&delayed_refs->lock);
d7df2c79 4171 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4172 spin_unlock(&delayed_refs->lock);
0b246afa 4173 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4174 return ret;
4175 }
4176
5c9d028b 4177 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4178 struct btrfs_delayed_ref_head *head;
0e0adbcf 4179 struct rb_node *n;
e78417d1 4180 bool pin_bytes = false;
acce952b 4181
d7df2c79
JB
4182 head = rb_entry(node, struct btrfs_delayed_ref_head,
4183 href_node);
4184 if (!mutex_trylock(&head->mutex)) {
d278850e 4185 refcount_inc(&head->refs);
d7df2c79 4186 spin_unlock(&delayed_refs->lock);
eb12db69 4187
d7df2c79 4188 mutex_lock(&head->mutex);
e78417d1 4189 mutex_unlock(&head->mutex);
d278850e 4190 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4191 spin_lock(&delayed_refs->lock);
4192 continue;
4193 }
4194 spin_lock(&head->lock);
e3d03965 4195 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4196 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4197 ref_node);
d7df2c79 4198 ref->in_tree = 0;
e3d03965 4199 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4200 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4201 if (!list_empty(&ref->add_list))
4202 list_del(&ref->add_list);
d7df2c79
JB
4203 atomic_dec(&delayed_refs->num_entries);
4204 btrfs_put_delayed_ref(ref);
e78417d1 4205 }
d7df2c79
JB
4206 if (head->must_insert_reserved)
4207 pin_bytes = true;
4208 btrfs_free_delayed_extent_op(head->extent_op);
4209 delayed_refs->num_heads--;
4210 if (head->processing == 0)
4211 delayed_refs->num_heads_ready--;
4212 atomic_dec(&delayed_refs->num_entries);
5c9d028b 4213 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 4214 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4215 spin_unlock(&head->lock);
4216 spin_unlock(&delayed_refs->lock);
4217 mutex_unlock(&head->mutex);
acce952b 4218
d7df2c79 4219 if (pin_bytes)
d278850e
JB
4220 btrfs_pin_extent(fs_info, head->bytenr,
4221 head->num_bytes, 1);
4222 btrfs_put_delayed_ref_head(head);
acce952b 4223 cond_resched();
4224 spin_lock(&delayed_refs->lock);
4225 }
4226
4227 spin_unlock(&delayed_refs->lock);
4228
4229 return ret;
4230}
4231
143bede5 4232static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4233{
4234 struct btrfs_inode *btrfs_inode;
4235 struct list_head splice;
4236
4237 INIT_LIST_HEAD(&splice);
4238
eb73c1b7
MX
4239 spin_lock(&root->delalloc_lock);
4240 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4241
4242 while (!list_empty(&splice)) {
fe816d0f 4243 struct inode *inode = NULL;
eb73c1b7
MX
4244 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4245 delalloc_inodes);
fe816d0f 4246 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4247 spin_unlock(&root->delalloc_lock);
acce952b 4248
fe816d0f
NB
4249 /*
4250 * Make sure we get a live inode and that it'll not disappear
4251 * meanwhile.
4252 */
4253 inode = igrab(&btrfs_inode->vfs_inode);
4254 if (inode) {
4255 invalidate_inode_pages2(inode->i_mapping);
4256 iput(inode);
4257 }
eb73c1b7 4258 spin_lock(&root->delalloc_lock);
acce952b 4259 }
eb73c1b7
MX
4260 spin_unlock(&root->delalloc_lock);
4261}
4262
4263static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4264{
4265 struct btrfs_root *root;
4266 struct list_head splice;
4267
4268 INIT_LIST_HEAD(&splice);
4269
4270 spin_lock(&fs_info->delalloc_root_lock);
4271 list_splice_init(&fs_info->delalloc_roots, &splice);
4272 while (!list_empty(&splice)) {
4273 root = list_first_entry(&splice, struct btrfs_root,
4274 delalloc_root);
eb73c1b7
MX
4275 root = btrfs_grab_fs_root(root);
4276 BUG_ON(!root);
4277 spin_unlock(&fs_info->delalloc_root_lock);
4278
4279 btrfs_destroy_delalloc_inodes(root);
4280 btrfs_put_fs_root(root);
4281
4282 spin_lock(&fs_info->delalloc_root_lock);
4283 }
4284 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4285}
4286
2ff7e61e 4287static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4288 struct extent_io_tree *dirty_pages,
4289 int mark)
4290{
4291 int ret;
acce952b 4292 struct extent_buffer *eb;
4293 u64 start = 0;
4294 u64 end;
acce952b 4295
4296 while (1) {
4297 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4298 mark, NULL);
acce952b 4299 if (ret)
4300 break;
4301
91166212 4302 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4303 while (start <= end) {
0b246afa
JM
4304 eb = find_extent_buffer(fs_info, start);
4305 start += fs_info->nodesize;
fd8b2b61 4306 if (!eb)
acce952b 4307 continue;
fd8b2b61 4308 wait_on_extent_buffer_writeback(eb);
acce952b 4309
fd8b2b61
JB
4310 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4311 &eb->bflags))
4312 clear_extent_buffer_dirty(eb);
4313 free_extent_buffer_stale(eb);
acce952b 4314 }
4315 }
4316
4317 return ret;
4318}
4319
2ff7e61e 4320static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4321 struct extent_io_tree *pinned_extents)
4322{
4323 struct extent_io_tree *unpin;
4324 u64 start;
4325 u64 end;
4326 int ret;
ed0eaa14 4327 bool loop = true;
acce952b 4328
4329 unpin = pinned_extents;
ed0eaa14 4330again:
acce952b 4331 while (1) {
fcd5e742
LF
4332 /*
4333 * The btrfs_finish_extent_commit() may get the same range as
4334 * ours between find_first_extent_bit and clear_extent_dirty.
4335 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4336 * the same extent range.
4337 */
4338 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4339 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4340 EXTENT_DIRTY, NULL);
fcd5e742
LF
4341 if (ret) {
4342 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4343 break;
fcd5e742 4344 }
acce952b 4345
af6f8f60 4346 clear_extent_dirty(unpin, start, end);
2ff7e61e 4347 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4348 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4349 cond_resched();
4350 }
4351
ed0eaa14 4352 if (loop) {
0b246afa
JM
4353 if (unpin == &fs_info->freed_extents[0])
4354 unpin = &fs_info->freed_extents[1];
ed0eaa14 4355 else
0b246afa 4356 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4357 loop = false;
4358 goto again;
4359 }
4360
acce952b 4361 return 0;
4362}
4363
c79a1751
LB
4364static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4365{
4366 struct inode *inode;
4367
4368 inode = cache->io_ctl.inode;
4369 if (inode) {
4370 invalidate_inode_pages2(inode->i_mapping);
4371 BTRFS_I(inode)->generation = 0;
4372 cache->io_ctl.inode = NULL;
4373 iput(inode);
4374 }
4375 btrfs_put_block_group(cache);
4376}
4377
4378void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4379 struct btrfs_fs_info *fs_info)
c79a1751
LB
4380{
4381 struct btrfs_block_group_cache *cache;
4382
4383 spin_lock(&cur_trans->dirty_bgs_lock);
4384 while (!list_empty(&cur_trans->dirty_bgs)) {
4385 cache = list_first_entry(&cur_trans->dirty_bgs,
4386 struct btrfs_block_group_cache,
4387 dirty_list);
c79a1751
LB
4388
4389 if (!list_empty(&cache->io_list)) {
4390 spin_unlock(&cur_trans->dirty_bgs_lock);
4391 list_del_init(&cache->io_list);
4392 btrfs_cleanup_bg_io(cache);
4393 spin_lock(&cur_trans->dirty_bgs_lock);
4394 }
4395
4396 list_del_init(&cache->dirty_list);
4397 spin_lock(&cache->lock);
4398 cache->disk_cache_state = BTRFS_DC_ERROR;
4399 spin_unlock(&cache->lock);
4400
4401 spin_unlock(&cur_trans->dirty_bgs_lock);
4402 btrfs_put_block_group(cache);
4403 spin_lock(&cur_trans->dirty_bgs_lock);
4404 }
4405 spin_unlock(&cur_trans->dirty_bgs_lock);
4406
45ae2c18
NB
4407 /*
4408 * Refer to the definition of io_bgs member for details why it's safe
4409 * to use it without any locking
4410 */
c79a1751
LB
4411 while (!list_empty(&cur_trans->io_bgs)) {
4412 cache = list_first_entry(&cur_trans->io_bgs,
4413 struct btrfs_block_group_cache,
4414 io_list);
c79a1751
LB
4415
4416 list_del_init(&cache->io_list);
4417 spin_lock(&cache->lock);
4418 cache->disk_cache_state = BTRFS_DC_ERROR;
4419 spin_unlock(&cache->lock);
4420 btrfs_cleanup_bg_io(cache);
4421 }
4422}
4423
49b25e05 4424void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4425 struct btrfs_fs_info *fs_info)
49b25e05 4426{
2ff7e61e 4427 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4428 ASSERT(list_empty(&cur_trans->dirty_bgs));
4429 ASSERT(list_empty(&cur_trans->io_bgs));
4430
2ff7e61e 4431 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4432
4a9d8bde 4433 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4434 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4435
4a9d8bde 4436 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4437 wake_up(&fs_info->transaction_wait);
49b25e05 4438
ccdf9b30
JM
4439 btrfs_destroy_delayed_inodes(fs_info);
4440 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4441
2ff7e61e 4442 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4443 EXTENT_DIRTY);
2ff7e61e 4444 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4445 fs_info->pinned_extents);
49b25e05 4446
4a9d8bde
MX
4447 cur_trans->state =TRANS_STATE_COMPLETED;
4448 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4449}
4450
2ff7e61e 4451static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4452{
4453 struct btrfs_transaction *t;
acce952b 4454
0b246afa 4455 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4456
0b246afa
JM
4457 spin_lock(&fs_info->trans_lock);
4458 while (!list_empty(&fs_info->trans_list)) {
4459 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4460 struct btrfs_transaction, list);
4461 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4462 refcount_inc(&t->use_count);
0b246afa 4463 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4464 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4465 btrfs_put_transaction(t);
0b246afa 4466 spin_lock(&fs_info->trans_lock);
724e2315
JB
4467 continue;
4468 }
0b246afa 4469 if (t == fs_info->running_transaction) {
724e2315 4470 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4471 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4472 /*
4473 * We wait for 0 num_writers since we don't hold a trans
4474 * handle open currently for this transaction.
4475 */
4476 wait_event(t->writer_wait,
4477 atomic_read(&t->num_writers) == 0);
4478 } else {
0b246afa 4479 spin_unlock(&fs_info->trans_lock);
724e2315 4480 }
2ff7e61e 4481 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4482
0b246afa
JM
4483 spin_lock(&fs_info->trans_lock);
4484 if (t == fs_info->running_transaction)
4485 fs_info->running_transaction = NULL;
acce952b 4486 list_del_init(&t->list);
0b246afa 4487 spin_unlock(&fs_info->trans_lock);
acce952b 4488
724e2315 4489 btrfs_put_transaction(t);
2ff7e61e 4490 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4491 spin_lock(&fs_info->trans_lock);
724e2315 4492 }
0b246afa
JM
4493 spin_unlock(&fs_info->trans_lock);
4494 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4495 btrfs_destroy_delayed_inodes(fs_info);
4496 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4497 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4498 btrfs_destroy_all_delalloc_inodes(fs_info);
4499 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4500
4501 return 0;
4502}
4503
e8c9f186 4504static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4505 /* mandatory callbacks */
0b86a832 4506 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4507 .readpage_end_io_hook = btree_readpage_end_io_hook,
20a7db8a 4508 .readpage_io_failed_hook = btree_io_failed_hook,
4d53dddb
DS
4509
4510 /* optional callbacks */
0da5468f 4511};
This page took 1.891585 seconds and 4 git commands to generate.