]>
Commit | Line | Data |
---|---|---|
c76b78d8 AT |
1 | /* |
2 | * Copyright (c) 2016, The Linux Foundation. All rights reserved. | |
3 | * | |
4 | * This software is licensed under the terms of the GNU General Public | |
5 | * License version 2, as published by the Free Software Foundation, and | |
6 | * may be copied, distributed, and modified under those terms. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | */ | |
13 | ||
14 | #include <linux/clk.h> | |
15 | #include <linux/slab.h> | |
16 | #include <linux/bitops.h> | |
17 | #include <linux/dma-mapping.h> | |
18 | #include <linux/dmaengine.h> | |
19 | #include <linux/module.h> | |
d4092d76 | 20 | #include <linux/mtd/rawnand.h> |
c76b78d8 AT |
21 | #include <linux/mtd/partitions.h> |
22 | #include <linux/of.h> | |
23 | #include <linux/of_device.h> | |
c76b78d8 | 24 | #include <linux/delay.h> |
8c4cdce8 | 25 | #include <linux/dma/qcom_bam_dma.h> |
c76b78d8 AT |
26 | |
27 | /* NANDc reg offsets */ | |
28 | #define NAND_FLASH_CMD 0x00 | |
29 | #define NAND_ADDR0 0x04 | |
30 | #define NAND_ADDR1 0x08 | |
31 | #define NAND_FLASH_CHIP_SELECT 0x0c | |
32 | #define NAND_EXEC_CMD 0x10 | |
33 | #define NAND_FLASH_STATUS 0x14 | |
34 | #define NAND_BUFFER_STATUS 0x18 | |
35 | #define NAND_DEV0_CFG0 0x20 | |
36 | #define NAND_DEV0_CFG1 0x24 | |
37 | #define NAND_DEV0_ECC_CFG 0x28 | |
38 | #define NAND_DEV1_ECC_CFG 0x2c | |
39 | #define NAND_DEV1_CFG0 0x30 | |
40 | #define NAND_DEV1_CFG1 0x34 | |
41 | #define NAND_READ_ID 0x40 | |
42 | #define NAND_READ_STATUS 0x44 | |
43 | #define NAND_DEV_CMD0 0xa0 | |
44 | #define NAND_DEV_CMD1 0xa4 | |
45 | #define NAND_DEV_CMD2 0xa8 | |
46 | #define NAND_DEV_CMD_VLD 0xac | |
47 | #define SFLASHC_BURST_CFG 0xe0 | |
48 | #define NAND_ERASED_CW_DETECT_CFG 0xe8 | |
49 | #define NAND_ERASED_CW_DETECT_STATUS 0xec | |
50 | #define NAND_EBI2_ECC_BUF_CFG 0xf0 | |
51 | #define FLASH_BUF_ACC 0x100 | |
52 | ||
53 | #define NAND_CTRL 0xf00 | |
54 | #define NAND_VERSION 0xf08 | |
55 | #define NAND_READ_LOCATION_0 0xf20 | |
56 | #define NAND_READ_LOCATION_1 0xf24 | |
91af95c1 AS |
57 | #define NAND_READ_LOCATION_2 0xf28 |
58 | #define NAND_READ_LOCATION_3 0xf2c | |
c76b78d8 AT |
59 | |
60 | /* dummy register offsets, used by write_reg_dma */ | |
61 | #define NAND_DEV_CMD1_RESTORE 0xdead | |
62 | #define NAND_DEV_CMD_VLD_RESTORE 0xbeef | |
63 | ||
64 | /* NAND_FLASH_CMD bits */ | |
65 | #define PAGE_ACC BIT(4) | |
66 | #define LAST_PAGE BIT(5) | |
67 | ||
68 | /* NAND_FLASH_CHIP_SELECT bits */ | |
69 | #define NAND_DEV_SEL 0 | |
70 | #define DM_EN BIT(2) | |
71 | ||
72 | /* NAND_FLASH_STATUS bits */ | |
73 | #define FS_OP_ERR BIT(4) | |
74 | #define FS_READY_BSY_N BIT(5) | |
75 | #define FS_MPU_ERR BIT(8) | |
76 | #define FS_DEVICE_STS_ERR BIT(16) | |
77 | #define FS_DEVICE_WP BIT(23) | |
78 | ||
79 | /* NAND_BUFFER_STATUS bits */ | |
80 | #define BS_UNCORRECTABLE_BIT BIT(8) | |
81 | #define BS_CORRECTABLE_ERR_MSK 0x1f | |
82 | ||
83 | /* NAND_DEVn_CFG0 bits */ | |
84 | #define DISABLE_STATUS_AFTER_WRITE 4 | |
85 | #define CW_PER_PAGE 6 | |
86 | #define UD_SIZE_BYTES 9 | |
87 | #define ECC_PARITY_SIZE_BYTES_RS 19 | |
88 | #define SPARE_SIZE_BYTES 23 | |
89 | #define NUM_ADDR_CYCLES 27 | |
90 | #define STATUS_BFR_READ 30 | |
91 | #define SET_RD_MODE_AFTER_STATUS 31 | |
92 | ||
93 | /* NAND_DEVn_CFG0 bits */ | |
94 | #define DEV0_CFG1_ECC_DISABLE 0 | |
95 | #define WIDE_FLASH 1 | |
96 | #define NAND_RECOVERY_CYCLES 2 | |
97 | #define CS_ACTIVE_BSY 5 | |
98 | #define BAD_BLOCK_BYTE_NUM 6 | |
99 | #define BAD_BLOCK_IN_SPARE_AREA 16 | |
100 | #define WR_RD_BSY_GAP 17 | |
101 | #define ENABLE_BCH_ECC 27 | |
102 | ||
103 | /* NAND_DEV0_ECC_CFG bits */ | |
104 | #define ECC_CFG_ECC_DISABLE 0 | |
105 | #define ECC_SW_RESET 1 | |
106 | #define ECC_MODE 4 | |
107 | #define ECC_PARITY_SIZE_BYTES_BCH 8 | |
108 | #define ECC_NUM_DATA_BYTES 16 | |
109 | #define ECC_FORCE_CLK_OPEN 30 | |
110 | ||
111 | /* NAND_DEV_CMD1 bits */ | |
112 | #define READ_ADDR 0 | |
113 | ||
114 | /* NAND_DEV_CMD_VLD bits */ | |
d8a9b320 AS |
115 | #define READ_START_VLD BIT(0) |
116 | #define READ_STOP_VLD BIT(1) | |
117 | #define WRITE_START_VLD BIT(2) | |
118 | #define ERASE_START_VLD BIT(3) | |
119 | #define SEQ_READ_START_VLD BIT(4) | |
c76b78d8 AT |
120 | |
121 | /* NAND_EBI2_ECC_BUF_CFG bits */ | |
122 | #define NUM_STEPS 0 | |
123 | ||
124 | /* NAND_ERASED_CW_DETECT_CFG bits */ | |
125 | #define ERASED_CW_ECC_MASK 1 | |
126 | #define AUTO_DETECT_RES 0 | |
127 | #define MASK_ECC (1 << ERASED_CW_ECC_MASK) | |
128 | #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) | |
129 | #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) | |
130 | #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) | |
131 | #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) | |
132 | ||
133 | /* NAND_ERASED_CW_DETECT_STATUS bits */ | |
134 | #define PAGE_ALL_ERASED BIT(7) | |
135 | #define CODEWORD_ALL_ERASED BIT(6) | |
136 | #define PAGE_ERASED BIT(5) | |
137 | #define CODEWORD_ERASED BIT(4) | |
138 | #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) | |
139 | #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) | |
140 | ||
91af95c1 AS |
141 | /* NAND_READ_LOCATION_n bits */ |
142 | #define READ_LOCATION_OFFSET 0 | |
143 | #define READ_LOCATION_SIZE 16 | |
144 | #define READ_LOCATION_LAST 31 | |
145 | ||
c76b78d8 AT |
146 | /* Version Mask */ |
147 | #define NAND_VERSION_MAJOR_MASK 0xf0000000 | |
148 | #define NAND_VERSION_MAJOR_SHIFT 28 | |
149 | #define NAND_VERSION_MINOR_MASK 0x0fff0000 | |
150 | #define NAND_VERSION_MINOR_SHIFT 16 | |
151 | ||
152 | /* NAND OP_CMDs */ | |
33bf5519 OJ |
153 | #define OP_PAGE_READ 0x2 |
154 | #define OP_PAGE_READ_WITH_ECC 0x3 | |
155 | #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 | |
156 | #define OP_PROGRAM_PAGE 0x6 | |
157 | #define OP_PAGE_PROGRAM_WITH_ECC 0x7 | |
158 | #define OP_PROGRAM_PAGE_SPARE 0x9 | |
159 | #define OP_BLOCK_ERASE 0xa | |
160 | #define OP_FETCH_ID 0xb | |
161 | #define OP_RESET_DEVICE 0xd | |
c76b78d8 | 162 | |
d8a9b320 AS |
163 | /* Default Value for NAND_DEV_CMD_VLD */ |
164 | #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ | |
165 | ERASE_START_VLD | SEQ_READ_START_VLD) | |
166 | ||
9d43f915 AS |
167 | /* NAND_CTRL bits */ |
168 | #define BAM_MODE_EN BIT(0) | |
169 | ||
c76b78d8 AT |
170 | /* |
171 | * the NAND controller performs reads/writes with ECC in 516 byte chunks. | |
172 | * the driver calls the chunks 'step' or 'codeword' interchangeably | |
173 | */ | |
174 | #define NANDC_STEP_SIZE 512 | |
175 | ||
176 | /* | |
177 | * the largest page size we support is 8K, this will have 16 steps/codewords | |
178 | * of 512 bytes each | |
179 | */ | |
180 | #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) | |
181 | ||
182 | /* we read at most 3 registers per codeword scan */ | |
183 | #define MAX_REG_RD (3 * MAX_NUM_STEPS) | |
184 | ||
185 | /* ECC modes supported by the controller */ | |
186 | #define ECC_NONE BIT(0) | |
187 | #define ECC_RS_4BIT BIT(1) | |
188 | #define ECC_BCH_4BIT BIT(2) | |
189 | #define ECC_BCH_8BIT BIT(3) | |
190 | ||
91af95c1 AS |
191 | #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \ |
192 | nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \ | |
193 | ((offset) << READ_LOCATION_OFFSET) | \ | |
194 | ((size) << READ_LOCATION_SIZE) | \ | |
195 | ((is_last) << READ_LOCATION_LAST)) | |
196 | ||
cc409b9a AS |
197 | /* |
198 | * Returns the actual register address for all NAND_DEV_ registers | |
199 | * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) | |
200 | */ | |
201 | #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) | |
202 | ||
8d6b6d7e AS |
203 | /* Returns the NAND register physical address */ |
204 | #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) | |
205 | ||
206 | /* Returns the dma address for reg read buffer */ | |
207 | #define reg_buf_dma_addr(chip, vaddr) \ | |
208 | ((chip)->reg_read_dma + \ | |
209 | ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) | |
210 | ||
8c4cdce8 | 211 | #define QPIC_PER_CW_CMD_ELEMENTS 32 |
cb80f114 AS |
212 | #define QPIC_PER_CW_CMD_SGL 32 |
213 | #define QPIC_PER_CW_DATA_SGL 8 | |
214 | ||
6f20070d AS |
215 | #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) |
216 | ||
67e830ae AS |
217 | /* |
218 | * Flags used in DMA descriptor preparation helper functions | |
219 | * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) | |
220 | */ | |
221 | /* Don't set the EOT in current tx BAM sgl */ | |
222 | #define NAND_BAM_NO_EOT BIT(0) | |
223 | /* Set the NWD flag in current BAM sgl */ | |
224 | #define NAND_BAM_NWD BIT(1) | |
225 | /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ | |
226 | #define NAND_BAM_NEXT_SGL BIT(2) | |
a86b9c4f AS |
227 | /* |
228 | * Erased codeword status is being used two times in single transfer so this | |
229 | * flag will determine the current value of erased codeword status register | |
230 | */ | |
231 | #define NAND_ERASED_CW_SET BIT(4) | |
67e830ae | 232 | |
cb80f114 AS |
233 | /* |
234 | * This data type corresponds to the BAM transaction which will be used for all | |
235 | * NAND transfers. | |
8c4cdce8 | 236 | * @bam_ce - the array of BAM command elements |
cb80f114 AS |
237 | * @cmd_sgl - sgl for NAND BAM command pipe |
238 | * @data_sgl - sgl for NAND BAM consumer/producer pipe | |
8c4cdce8 AS |
239 | * @bam_ce_pos - the index in bam_ce which is available for next sgl |
240 | * @bam_ce_start - the index in bam_ce which marks the start position ce | |
241 | * for current sgl. It will be used for size calculation | |
242 | * for current sgl | |
cb80f114 AS |
243 | * @cmd_sgl_pos - current index in command sgl. |
244 | * @cmd_sgl_start - start index in command sgl. | |
245 | * @tx_sgl_pos - current index in data sgl for tx. | |
246 | * @tx_sgl_start - start index in data sgl for tx. | |
247 | * @rx_sgl_pos - current index in data sgl for rx. | |
248 | * @rx_sgl_start - start index in data sgl for rx. | |
6f20070d AS |
249 | * @wait_second_completion - wait for second DMA desc completion before making |
250 | * the NAND transfer completion. | |
251 | * @txn_done - completion for NAND transfer. | |
252 | * @last_data_desc - last DMA desc in data channel (tx/rx). | |
253 | * @last_cmd_desc - last DMA desc in command channel. | |
cb80f114 AS |
254 | */ |
255 | struct bam_transaction { | |
8c4cdce8 | 256 | struct bam_cmd_element *bam_ce; |
cb80f114 AS |
257 | struct scatterlist *cmd_sgl; |
258 | struct scatterlist *data_sgl; | |
8c4cdce8 AS |
259 | u32 bam_ce_pos; |
260 | u32 bam_ce_start; | |
cb80f114 AS |
261 | u32 cmd_sgl_pos; |
262 | u32 cmd_sgl_start; | |
263 | u32 tx_sgl_pos; | |
264 | u32 tx_sgl_start; | |
265 | u32 rx_sgl_pos; | |
266 | u32 rx_sgl_start; | |
6f20070d AS |
267 | bool wait_second_completion; |
268 | struct completion txn_done; | |
269 | struct dma_async_tx_descriptor *last_data_desc; | |
270 | struct dma_async_tx_descriptor *last_cmd_desc; | |
cb80f114 AS |
271 | }; |
272 | ||
381dd245 AS |
273 | /* |
274 | * This data type corresponds to the nand dma descriptor | |
275 | * @list - list for desc_info | |
276 | * @dir - DMA transfer direction | |
277 | * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by | |
278 | * ADM | |
279 | * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM | |
280 | * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM | |
281 | * @dma_desc - low level DMA engine descriptor | |
282 | */ | |
c76b78d8 AT |
283 | struct desc_info { |
284 | struct list_head node; | |
285 | ||
286 | enum dma_data_direction dir; | |
381dd245 AS |
287 | union { |
288 | struct scatterlist adm_sgl; | |
289 | struct { | |
290 | struct scatterlist *bam_sgl; | |
291 | int sgl_cnt; | |
292 | }; | |
293 | }; | |
c76b78d8 AT |
294 | struct dma_async_tx_descriptor *dma_desc; |
295 | }; | |
296 | ||
297 | /* | |
298 | * holds the current register values that we want to write. acts as a contiguous | |
299 | * chunk of memory which we use to write the controller registers through DMA. | |
300 | */ | |
301 | struct nandc_regs { | |
302 | __le32 cmd; | |
303 | __le32 addr0; | |
304 | __le32 addr1; | |
305 | __le32 chip_sel; | |
306 | __le32 exec; | |
307 | ||
308 | __le32 cfg0; | |
309 | __le32 cfg1; | |
310 | __le32 ecc_bch_cfg; | |
311 | ||
312 | __le32 clrflashstatus; | |
313 | __le32 clrreadstatus; | |
314 | ||
315 | __le32 cmd1; | |
316 | __le32 vld; | |
317 | ||
318 | __le32 orig_cmd1; | |
319 | __le32 orig_vld; | |
320 | ||
321 | __le32 ecc_buf_cfg; | |
91af95c1 AS |
322 | __le32 read_location0; |
323 | __le32 read_location1; | |
324 | __le32 read_location2; | |
325 | __le32 read_location3; | |
326 | ||
a86b9c4f AS |
327 | __le32 erased_cw_detect_cfg_clr; |
328 | __le32 erased_cw_detect_cfg_set; | |
c76b78d8 AT |
329 | }; |
330 | ||
331 | /* | |
332 | * NAND controller data struct | |
333 | * | |
334 | * @controller: base controller structure | |
335 | * @host_list: list containing all the chips attached to the | |
336 | * controller | |
337 | * @dev: parent device | |
338 | * @base: MMIO base | |
8d6b6d7e AS |
339 | * @base_phys: physical base address of controller registers |
340 | * @base_dma: dma base address of controller registers | |
c76b78d8 AT |
341 | * @core_clk: controller clock |
342 | * @aon_clk: another controller clock | |
343 | * | |
344 | * @chan: dma channel | |
345 | * @cmd_crci: ADM DMA CRCI for command flow control | |
346 | * @data_crci: ADM DMA CRCI for data flow control | |
347 | * @desc_list: DMA descriptor list (list of desc_infos) | |
348 | * | |
349 | * @data_buffer: our local DMA buffer for page read/writes, | |
350 | * used when we can't use the buffer provided | |
351 | * by upper layers directly | |
716bbbab BB |
352 | * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf |
353 | * functions | |
c76b78d8 | 354 | * @reg_read_buf: local buffer for reading back registers via DMA |
6192ff7a | 355 | * @reg_read_dma: contains dma address for register read buffer |
c76b78d8 AT |
356 | * @reg_read_pos: marker for data read in reg_read_buf |
357 | * | |
358 | * @regs: a contiguous chunk of memory for DMA register | |
359 | * writes. contains the register values to be | |
360 | * written to controller | |
361 | * @cmd1/vld: some fixed controller register values | |
58f1f22a | 362 | * @props: properties of current NAND controller, |
c76b78d8 | 363 | * initialized via DT match data |
cb80f114 AS |
364 | * @max_cwperpage: maximum QPIC codewords required. calculated |
365 | * from all connected NAND devices pagesize | |
c76b78d8 AT |
366 | */ |
367 | struct qcom_nand_controller { | |
7da45139 | 368 | struct nand_controller controller; |
c76b78d8 AT |
369 | struct list_head host_list; |
370 | ||
371 | struct device *dev; | |
372 | ||
373 | void __iomem *base; | |
8d6b6d7e | 374 | phys_addr_t base_phys; |
c76b78d8 AT |
375 | dma_addr_t base_dma; |
376 | ||
377 | struct clk *core_clk; | |
378 | struct clk *aon_clk; | |
379 | ||
497d7d85 AS |
380 | union { |
381 | /* will be used only by QPIC for BAM DMA */ | |
382 | struct { | |
383 | struct dma_chan *tx_chan; | |
384 | struct dma_chan *rx_chan; | |
385 | struct dma_chan *cmd_chan; | |
386 | }; | |
387 | ||
388 | /* will be used only by EBI2 for ADM DMA */ | |
389 | struct { | |
390 | struct dma_chan *chan; | |
391 | unsigned int cmd_crci; | |
392 | unsigned int data_crci; | |
393 | }; | |
394 | }; | |
395 | ||
c76b78d8 | 396 | struct list_head desc_list; |
cb80f114 | 397 | struct bam_transaction *bam_txn; |
c76b78d8 AT |
398 | |
399 | u8 *data_buffer; | |
400 | int buf_size; | |
401 | int buf_count; | |
402 | int buf_start; | |
cb80f114 | 403 | unsigned int max_cwperpage; |
c76b78d8 AT |
404 | |
405 | __le32 *reg_read_buf; | |
6192ff7a | 406 | dma_addr_t reg_read_dma; |
c76b78d8 AT |
407 | int reg_read_pos; |
408 | ||
409 | struct nandc_regs *regs; | |
410 | ||
411 | u32 cmd1, vld; | |
58f1f22a | 412 | const struct qcom_nandc_props *props; |
c76b78d8 AT |
413 | }; |
414 | ||
415 | /* | |
416 | * NAND chip structure | |
417 | * | |
418 | * @chip: base NAND chip structure | |
419 | * @node: list node to add itself to host_list in | |
420 | * qcom_nand_controller | |
421 | * | |
422 | * @cs: chip select value for this chip | |
423 | * @cw_size: the number of bytes in a single step/codeword | |
424 | * of a page, consisting of all data, ecc, spare | |
425 | * and reserved bytes | |
426 | * @cw_data: the number of bytes within a codeword protected | |
427 | * by ECC | |
428 | * @use_ecc: request the controller to use ECC for the | |
429 | * upcoming read/write | |
430 | * @bch_enabled: flag to tell whether BCH ECC mode is used | |
431 | * @ecc_bytes_hw: ECC bytes used by controller hardware for this | |
432 | * chip | |
433 | * @status: value to be returned if NAND_CMD_STATUS command | |
434 | * is executed | |
435 | * @last_command: keeps track of last command on this chip. used | |
436 | * for reading correct status | |
437 | * | |
438 | * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for | |
439 | * ecc/non-ecc mode for the current nand flash | |
440 | * device | |
441 | */ | |
442 | struct qcom_nand_host { | |
443 | struct nand_chip chip; | |
444 | struct list_head node; | |
445 | ||
446 | int cs; | |
447 | int cw_size; | |
448 | int cw_data; | |
449 | bool use_ecc; | |
450 | bool bch_enabled; | |
451 | int ecc_bytes_hw; | |
452 | int spare_bytes; | |
453 | int bbm_size; | |
454 | u8 status; | |
455 | int last_command; | |
456 | ||
457 | u32 cfg0, cfg1; | |
458 | u32 cfg0_raw, cfg1_raw; | |
459 | u32 ecc_buf_cfg; | |
460 | u32 ecc_bch_cfg; | |
461 | u32 clrflashstatus; | |
462 | u32 clrreadstatus; | |
463 | }; | |
464 | ||
58f1f22a AS |
465 | /* |
466 | * This data type corresponds to the NAND controller properties which varies | |
467 | * among different NAND controllers. | |
468 | * @ecc_modes - ecc mode for NAND | |
8c5d5d6a | 469 | * @is_bam - whether NAND controller is using BAM |
cc409b9a | 470 | * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset |
58f1f22a AS |
471 | */ |
472 | struct qcom_nandc_props { | |
473 | u32 ecc_modes; | |
8c5d5d6a | 474 | bool is_bam; |
cc409b9a | 475 | u32 dev_cmd_reg_start; |
58f1f22a AS |
476 | }; |
477 | ||
cb80f114 AS |
478 | /* Frees the BAM transaction memory */ |
479 | static void free_bam_transaction(struct qcom_nand_controller *nandc) | |
480 | { | |
481 | struct bam_transaction *bam_txn = nandc->bam_txn; | |
482 | ||
483 | devm_kfree(nandc->dev, bam_txn); | |
484 | } | |
485 | ||
486 | /* Allocates and Initializes the BAM transaction */ | |
487 | static struct bam_transaction * | |
488 | alloc_bam_transaction(struct qcom_nand_controller *nandc) | |
489 | { | |
490 | struct bam_transaction *bam_txn; | |
491 | size_t bam_txn_size; | |
492 | unsigned int num_cw = nandc->max_cwperpage; | |
493 | void *bam_txn_buf; | |
494 | ||
495 | bam_txn_size = | |
496 | sizeof(*bam_txn) + num_cw * | |
8c4cdce8 AS |
497 | ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + |
498 | (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + | |
cb80f114 AS |
499 | (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); |
500 | ||
501 | bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); | |
502 | if (!bam_txn_buf) | |
503 | return NULL; | |
504 | ||
505 | bam_txn = bam_txn_buf; | |
506 | bam_txn_buf += sizeof(*bam_txn); | |
507 | ||
8c4cdce8 AS |
508 | bam_txn->bam_ce = bam_txn_buf; |
509 | bam_txn_buf += | |
510 | sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; | |
511 | ||
cb80f114 AS |
512 | bam_txn->cmd_sgl = bam_txn_buf; |
513 | bam_txn_buf += | |
514 | sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; | |
515 | ||
516 | bam_txn->data_sgl = bam_txn_buf; | |
517 | ||
6f20070d AS |
518 | init_completion(&bam_txn->txn_done); |
519 | ||
cb80f114 AS |
520 | return bam_txn; |
521 | } | |
522 | ||
4e2f6c52 AS |
523 | /* Clears the BAM transaction indexes */ |
524 | static void clear_bam_transaction(struct qcom_nand_controller *nandc) | |
525 | { | |
526 | struct bam_transaction *bam_txn = nandc->bam_txn; | |
527 | ||
528 | if (!nandc->props->is_bam) | |
529 | return; | |
530 | ||
8c4cdce8 AS |
531 | bam_txn->bam_ce_pos = 0; |
532 | bam_txn->bam_ce_start = 0; | |
4e2f6c52 AS |
533 | bam_txn->cmd_sgl_pos = 0; |
534 | bam_txn->cmd_sgl_start = 0; | |
535 | bam_txn->tx_sgl_pos = 0; | |
536 | bam_txn->tx_sgl_start = 0; | |
537 | bam_txn->rx_sgl_pos = 0; | |
538 | bam_txn->rx_sgl_start = 0; | |
6f20070d AS |
539 | bam_txn->last_data_desc = NULL; |
540 | bam_txn->wait_second_completion = false; | |
4e2f6c52 AS |
541 | |
542 | sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * | |
543 | QPIC_PER_CW_CMD_SGL); | |
544 | sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * | |
545 | QPIC_PER_CW_DATA_SGL); | |
6f20070d AS |
546 | |
547 | reinit_completion(&bam_txn->txn_done); | |
548 | } | |
549 | ||
550 | /* Callback for DMA descriptor completion */ | |
551 | static void qpic_bam_dma_done(void *data) | |
552 | { | |
553 | struct bam_transaction *bam_txn = data; | |
554 | ||
555 | /* | |
556 | * In case of data transfer with NAND, 2 callbacks will be generated. | |
557 | * One for command channel and another one for data channel. | |
558 | * If current transaction has data descriptors | |
559 | * (i.e. wait_second_completion is true), then set this to false | |
560 | * and wait for second DMA descriptor completion. | |
561 | */ | |
562 | if (bam_txn->wait_second_completion) | |
563 | bam_txn->wait_second_completion = false; | |
564 | else | |
565 | complete(&bam_txn->txn_done); | |
4e2f6c52 AS |
566 | } |
567 | ||
c76b78d8 AT |
568 | static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) |
569 | { | |
570 | return container_of(chip, struct qcom_nand_host, chip); | |
571 | } | |
572 | ||
573 | static inline struct qcom_nand_controller * | |
574 | get_qcom_nand_controller(struct nand_chip *chip) | |
575 | { | |
576 | return container_of(chip->controller, struct qcom_nand_controller, | |
577 | controller); | |
578 | } | |
579 | ||
580 | static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) | |
581 | { | |
582 | return ioread32(nandc->base + offset); | |
583 | } | |
584 | ||
585 | static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, | |
586 | u32 val) | |
587 | { | |
588 | iowrite32(val, nandc->base + offset); | |
589 | } | |
590 | ||
6192ff7a AS |
591 | static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, |
592 | bool is_cpu) | |
593 | { | |
594 | if (!nandc->props->is_bam) | |
595 | return; | |
596 | ||
597 | if (is_cpu) | |
598 | dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, | |
599 | MAX_REG_RD * | |
600 | sizeof(*nandc->reg_read_buf), | |
601 | DMA_FROM_DEVICE); | |
602 | else | |
603 | dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, | |
604 | MAX_REG_RD * | |
605 | sizeof(*nandc->reg_read_buf), | |
606 | DMA_FROM_DEVICE); | |
607 | } | |
608 | ||
c76b78d8 AT |
609 | static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) |
610 | { | |
611 | switch (offset) { | |
612 | case NAND_FLASH_CMD: | |
613 | return ®s->cmd; | |
614 | case NAND_ADDR0: | |
615 | return ®s->addr0; | |
616 | case NAND_ADDR1: | |
617 | return ®s->addr1; | |
618 | case NAND_FLASH_CHIP_SELECT: | |
619 | return ®s->chip_sel; | |
620 | case NAND_EXEC_CMD: | |
621 | return ®s->exec; | |
622 | case NAND_FLASH_STATUS: | |
623 | return ®s->clrflashstatus; | |
624 | case NAND_DEV0_CFG0: | |
625 | return ®s->cfg0; | |
626 | case NAND_DEV0_CFG1: | |
627 | return ®s->cfg1; | |
628 | case NAND_DEV0_ECC_CFG: | |
629 | return ®s->ecc_bch_cfg; | |
630 | case NAND_READ_STATUS: | |
631 | return ®s->clrreadstatus; | |
632 | case NAND_DEV_CMD1: | |
633 | return ®s->cmd1; | |
634 | case NAND_DEV_CMD1_RESTORE: | |
635 | return ®s->orig_cmd1; | |
636 | case NAND_DEV_CMD_VLD: | |
637 | return ®s->vld; | |
638 | case NAND_DEV_CMD_VLD_RESTORE: | |
639 | return ®s->orig_vld; | |
640 | case NAND_EBI2_ECC_BUF_CFG: | |
641 | return ®s->ecc_buf_cfg; | |
91af95c1 AS |
642 | case NAND_READ_LOCATION_0: |
643 | return ®s->read_location0; | |
644 | case NAND_READ_LOCATION_1: | |
645 | return ®s->read_location1; | |
646 | case NAND_READ_LOCATION_2: | |
647 | return ®s->read_location2; | |
648 | case NAND_READ_LOCATION_3: | |
649 | return ®s->read_location3; | |
c76b78d8 AT |
650 | default: |
651 | return NULL; | |
652 | } | |
653 | } | |
654 | ||
655 | static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, | |
656 | u32 val) | |
657 | { | |
658 | struct nandc_regs *regs = nandc->regs; | |
659 | __le32 *reg; | |
660 | ||
661 | reg = offset_to_nandc_reg(regs, offset); | |
662 | ||
663 | if (reg) | |
664 | *reg = cpu_to_le32(val); | |
665 | } | |
666 | ||
667 | /* helper to configure address register values */ | |
668 | static void set_address(struct qcom_nand_host *host, u16 column, int page) | |
669 | { | |
670 | struct nand_chip *chip = &host->chip; | |
671 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
672 | ||
673 | if (chip->options & NAND_BUSWIDTH_16) | |
674 | column >>= 1; | |
675 | ||
676 | nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); | |
677 | nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); | |
678 | } | |
679 | ||
680 | /* | |
681 | * update_rw_regs: set up read/write register values, these will be | |
682 | * written to the NAND controller registers via DMA | |
683 | * | |
684 | * @num_cw: number of steps for the read/write operation | |
685 | * @read: read or write operation | |
686 | */ | |
687 | static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) | |
688 | { | |
689 | struct nand_chip *chip = &host->chip; | |
690 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
691 | u32 cmd, cfg0, cfg1, ecc_bch_cfg; | |
692 | ||
693 | if (read) { | |
694 | if (host->use_ecc) | |
33bf5519 | 695 | cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; |
c76b78d8 | 696 | else |
33bf5519 | 697 | cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; |
c76b78d8 | 698 | } else { |
33bf5519 | 699 | cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; |
c76b78d8 AT |
700 | } |
701 | ||
702 | if (host->use_ecc) { | |
703 | cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | | |
704 | (num_cw - 1) << CW_PER_PAGE; | |
705 | ||
706 | cfg1 = host->cfg1; | |
707 | ecc_bch_cfg = host->ecc_bch_cfg; | |
708 | } else { | |
709 | cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | | |
710 | (num_cw - 1) << CW_PER_PAGE; | |
711 | ||
712 | cfg1 = host->cfg1_raw; | |
713 | ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; | |
714 | } | |
715 | ||
716 | nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); | |
717 | nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); | |
718 | nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); | |
719 | nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); | |
720 | nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); | |
721 | nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); | |
722 | nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); | |
723 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); | |
91af95c1 AS |
724 | |
725 | if (read) | |
726 | nandc_set_read_loc(nandc, 0, 0, host->use_ecc ? | |
727 | host->cw_data : host->cw_size, 1); | |
c76b78d8 AT |
728 | } |
729 | ||
381dd245 AS |
730 | /* |
731 | * Maps the scatter gather list for DMA transfer and forms the DMA descriptor | |
732 | * for BAM. This descriptor will be added in the NAND DMA descriptor queue | |
733 | * which will be submitted to DMA engine. | |
734 | */ | |
735 | static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, | |
736 | struct dma_chan *chan, | |
737 | unsigned long flags) | |
738 | { | |
739 | struct desc_info *desc; | |
740 | struct scatterlist *sgl; | |
741 | unsigned int sgl_cnt; | |
742 | int ret; | |
743 | struct bam_transaction *bam_txn = nandc->bam_txn; | |
744 | enum dma_transfer_direction dir_eng; | |
745 | struct dma_async_tx_descriptor *dma_desc; | |
746 | ||
747 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); | |
748 | if (!desc) | |
749 | return -ENOMEM; | |
750 | ||
751 | if (chan == nandc->cmd_chan) { | |
752 | sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; | |
753 | sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; | |
754 | bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; | |
755 | dir_eng = DMA_MEM_TO_DEV; | |
756 | desc->dir = DMA_TO_DEVICE; | |
757 | } else if (chan == nandc->tx_chan) { | |
758 | sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; | |
759 | sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; | |
760 | bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; | |
761 | dir_eng = DMA_MEM_TO_DEV; | |
762 | desc->dir = DMA_TO_DEVICE; | |
763 | } else { | |
764 | sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; | |
765 | sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; | |
766 | bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; | |
767 | dir_eng = DMA_DEV_TO_MEM; | |
768 | desc->dir = DMA_FROM_DEVICE; | |
769 | } | |
770 | ||
771 | sg_mark_end(sgl + sgl_cnt - 1); | |
772 | ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); | |
773 | if (ret == 0) { | |
774 | dev_err(nandc->dev, "failure in mapping desc\n"); | |
775 | kfree(desc); | |
776 | return -ENOMEM; | |
777 | } | |
778 | ||
779 | desc->sgl_cnt = sgl_cnt; | |
780 | desc->bam_sgl = sgl; | |
781 | ||
782 | dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, | |
783 | flags); | |
784 | ||
785 | if (!dma_desc) { | |
786 | dev_err(nandc->dev, "failure in prep desc\n"); | |
787 | dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); | |
788 | kfree(desc); | |
789 | return -EINVAL; | |
790 | } | |
791 | ||
792 | desc->dma_desc = dma_desc; | |
793 | ||
6f20070d AS |
794 | /* update last data/command descriptor */ |
795 | if (chan == nandc->cmd_chan) | |
796 | bam_txn->last_cmd_desc = dma_desc; | |
797 | else | |
798 | bam_txn->last_data_desc = dma_desc; | |
799 | ||
381dd245 AS |
800 | list_add_tail(&desc->node, &nandc->desc_list); |
801 | ||
802 | return 0; | |
803 | } | |
804 | ||
8d6b6d7e AS |
805 | /* |
806 | * Prepares the command descriptor for BAM DMA which will be used for NAND | |
807 | * register reads and writes. The command descriptor requires the command | |
808 | * to be formed in command element type so this function uses the command | |
809 | * element from bam transaction ce array and fills the same with required | |
810 | * data. A single SGL can contain multiple command elements so | |
811 | * NAND_BAM_NEXT_SGL will be used for starting the separate SGL | |
812 | * after the current command element. | |
813 | */ | |
814 | static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, | |
815 | int reg_off, const void *vaddr, | |
816 | int size, unsigned int flags) | |
817 | { | |
818 | int bam_ce_size; | |
819 | int i, ret; | |
820 | struct bam_cmd_element *bam_ce_buffer; | |
821 | struct bam_transaction *bam_txn = nandc->bam_txn; | |
822 | ||
823 | bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; | |
824 | ||
825 | /* fill the command desc */ | |
826 | for (i = 0; i < size; i++) { | |
827 | if (read) | |
828 | bam_prep_ce(&bam_ce_buffer[i], | |
829 | nandc_reg_phys(nandc, reg_off + 4 * i), | |
830 | BAM_READ_COMMAND, | |
831 | reg_buf_dma_addr(nandc, | |
832 | (__le32 *)vaddr + i)); | |
833 | else | |
834 | bam_prep_ce_le32(&bam_ce_buffer[i], | |
835 | nandc_reg_phys(nandc, reg_off + 4 * i), | |
836 | BAM_WRITE_COMMAND, | |
837 | *((__le32 *)vaddr + i)); | |
838 | } | |
839 | ||
840 | bam_txn->bam_ce_pos += size; | |
841 | ||
842 | /* use the separate sgl after this command */ | |
843 | if (flags & NAND_BAM_NEXT_SGL) { | |
844 | bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; | |
845 | bam_ce_size = (bam_txn->bam_ce_pos - | |
846 | bam_txn->bam_ce_start) * | |
847 | sizeof(struct bam_cmd_element); | |
848 | sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], | |
849 | bam_ce_buffer, bam_ce_size); | |
850 | bam_txn->cmd_sgl_pos++; | |
851 | bam_txn->bam_ce_start = bam_txn->bam_ce_pos; | |
852 | ||
853 | if (flags & NAND_BAM_NWD) { | |
854 | ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, | |
855 | DMA_PREP_FENCE | | |
856 | DMA_PREP_CMD); | |
857 | if (ret) | |
858 | return ret; | |
859 | } | |
860 | } | |
861 | ||
862 | return 0; | |
863 | } | |
864 | ||
4e2f6c52 AS |
865 | /* |
866 | * Prepares the data descriptor for BAM DMA which will be used for NAND | |
867 | * data reads and writes. | |
868 | */ | |
869 | static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, | |
870 | const void *vaddr, | |
871 | int size, unsigned int flags) | |
872 | { | |
873 | int ret; | |
874 | struct bam_transaction *bam_txn = nandc->bam_txn; | |
875 | ||
876 | if (read) { | |
877 | sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], | |
878 | vaddr, size); | |
879 | bam_txn->rx_sgl_pos++; | |
880 | } else { | |
881 | sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], | |
882 | vaddr, size); | |
883 | bam_txn->tx_sgl_pos++; | |
884 | ||
885 | /* | |
886 | * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag | |
887 | * is not set, form the DMA descriptor | |
888 | */ | |
889 | if (!(flags & NAND_BAM_NO_EOT)) { | |
890 | ret = prepare_bam_async_desc(nandc, nandc->tx_chan, | |
891 | DMA_PREP_INTERRUPT); | |
892 | if (ret) | |
893 | return ret; | |
894 | } | |
895 | } | |
896 | ||
897 | return 0; | |
898 | } | |
899 | ||
381dd245 AS |
900 | static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, |
901 | int reg_off, const void *vaddr, int size, | |
902 | bool flow_control) | |
c76b78d8 AT |
903 | { |
904 | struct desc_info *desc; | |
905 | struct dma_async_tx_descriptor *dma_desc; | |
906 | struct scatterlist *sgl; | |
907 | struct dma_slave_config slave_conf; | |
908 | enum dma_transfer_direction dir_eng; | |
909 | int ret; | |
910 | ||
911 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); | |
912 | if (!desc) | |
913 | return -ENOMEM; | |
914 | ||
381dd245 | 915 | sgl = &desc->adm_sgl; |
c76b78d8 AT |
916 | |
917 | sg_init_one(sgl, vaddr, size); | |
918 | ||
919 | if (read) { | |
920 | dir_eng = DMA_DEV_TO_MEM; | |
921 | desc->dir = DMA_FROM_DEVICE; | |
922 | } else { | |
923 | dir_eng = DMA_MEM_TO_DEV; | |
924 | desc->dir = DMA_TO_DEVICE; | |
925 | } | |
926 | ||
927 | ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); | |
928 | if (ret == 0) { | |
929 | ret = -ENOMEM; | |
930 | goto err; | |
931 | } | |
932 | ||
933 | memset(&slave_conf, 0x00, sizeof(slave_conf)); | |
934 | ||
935 | slave_conf.device_fc = flow_control; | |
936 | if (read) { | |
937 | slave_conf.src_maxburst = 16; | |
938 | slave_conf.src_addr = nandc->base_dma + reg_off; | |
939 | slave_conf.slave_id = nandc->data_crci; | |
940 | } else { | |
941 | slave_conf.dst_maxburst = 16; | |
942 | slave_conf.dst_addr = nandc->base_dma + reg_off; | |
943 | slave_conf.slave_id = nandc->cmd_crci; | |
944 | } | |
945 | ||
946 | ret = dmaengine_slave_config(nandc->chan, &slave_conf); | |
947 | if (ret) { | |
948 | dev_err(nandc->dev, "failed to configure dma channel\n"); | |
949 | goto err; | |
950 | } | |
951 | ||
952 | dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); | |
953 | if (!dma_desc) { | |
954 | dev_err(nandc->dev, "failed to prepare desc\n"); | |
955 | ret = -EINVAL; | |
956 | goto err; | |
957 | } | |
958 | ||
959 | desc->dma_desc = dma_desc; | |
960 | ||
961 | list_add_tail(&desc->node, &nandc->desc_list); | |
962 | ||
963 | return 0; | |
964 | err: | |
965 | kfree(desc); | |
966 | ||
967 | return ret; | |
968 | } | |
969 | ||
970 | /* | |
971 | * read_reg_dma: prepares a descriptor to read a given number of | |
972 | * contiguous registers to the reg_read_buf pointer | |
973 | * | |
974 | * @first: offset of the first register in the contiguous block | |
975 | * @num_regs: number of registers to read | |
67e830ae | 976 | * @flags: flags to control DMA descriptor preparation |
c76b78d8 AT |
977 | */ |
978 | static int read_reg_dma(struct qcom_nand_controller *nandc, int first, | |
67e830ae | 979 | int num_regs, unsigned int flags) |
c76b78d8 AT |
980 | { |
981 | bool flow_control = false; | |
982 | void *vaddr; | |
c76b78d8 | 983 | |
8d6b6d7e AS |
984 | vaddr = nandc->reg_read_buf + nandc->reg_read_pos; |
985 | nandc->reg_read_pos += num_regs; | |
c76b78d8 | 986 | |
cc409b9a AS |
987 | if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) |
988 | first = dev_cmd_reg_addr(nandc, first); | |
989 | ||
8d6b6d7e AS |
990 | if (nandc->props->is_bam) |
991 | return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, | |
992 | num_regs, flags); | |
c76b78d8 | 993 | |
8d6b6d7e AS |
994 | if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) |
995 | flow_control = true; | |
996 | ||
997 | return prep_adm_dma_desc(nandc, true, first, vaddr, | |
998 | num_regs * sizeof(u32), flow_control); | |
c76b78d8 AT |
999 | } |
1000 | ||
1001 | /* | |
1002 | * write_reg_dma: prepares a descriptor to write a given number of | |
1003 | * contiguous registers | |
1004 | * | |
1005 | * @first: offset of the first register in the contiguous block | |
1006 | * @num_regs: number of registers to write | |
67e830ae | 1007 | * @flags: flags to control DMA descriptor preparation |
c76b78d8 AT |
1008 | */ |
1009 | static int write_reg_dma(struct qcom_nand_controller *nandc, int first, | |
67e830ae | 1010 | int num_regs, unsigned int flags) |
c76b78d8 AT |
1011 | { |
1012 | bool flow_control = false; | |
1013 | struct nandc_regs *regs = nandc->regs; | |
1014 | void *vaddr; | |
c76b78d8 AT |
1015 | |
1016 | vaddr = offset_to_nandc_reg(regs, first); | |
1017 | ||
a86b9c4f AS |
1018 | if (first == NAND_ERASED_CW_DETECT_CFG) { |
1019 | if (flags & NAND_ERASED_CW_SET) | |
1020 | vaddr = ®s->erased_cw_detect_cfg_set; | |
1021 | else | |
1022 | vaddr = ®s->erased_cw_detect_cfg_clr; | |
1023 | } | |
1024 | ||
67e830ae AS |
1025 | if (first == NAND_EXEC_CMD) |
1026 | flags |= NAND_BAM_NWD; | |
1027 | ||
cc409b9a AS |
1028 | if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) |
1029 | first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); | |
c76b78d8 | 1030 | |
cc409b9a AS |
1031 | if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) |
1032 | first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); | |
c76b78d8 | 1033 | |
8d6b6d7e AS |
1034 | if (nandc->props->is_bam) |
1035 | return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, | |
1036 | num_regs, flags); | |
1037 | ||
1038 | if (first == NAND_FLASH_CMD) | |
1039 | flow_control = true; | |
c76b78d8 | 1040 | |
8d6b6d7e AS |
1041 | return prep_adm_dma_desc(nandc, false, first, vaddr, |
1042 | num_regs * sizeof(u32), flow_control); | |
c76b78d8 AT |
1043 | } |
1044 | ||
1045 | /* | |
1046 | * read_data_dma: prepares a DMA descriptor to transfer data from the | |
1047 | * controller's internal buffer to the buffer 'vaddr' | |
1048 | * | |
1049 | * @reg_off: offset within the controller's data buffer | |
1050 | * @vaddr: virtual address of the buffer we want to write to | |
1051 | * @size: DMA transaction size in bytes | |
67e830ae | 1052 | * @flags: flags to control DMA descriptor preparation |
c76b78d8 AT |
1053 | */ |
1054 | static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, | |
67e830ae | 1055 | const u8 *vaddr, int size, unsigned int flags) |
c76b78d8 | 1056 | { |
4e2f6c52 AS |
1057 | if (nandc->props->is_bam) |
1058 | return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); | |
1059 | ||
381dd245 | 1060 | return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); |
c76b78d8 AT |
1061 | } |
1062 | ||
1063 | /* | |
1064 | * write_data_dma: prepares a DMA descriptor to transfer data from | |
1065 | * 'vaddr' to the controller's internal buffer | |
1066 | * | |
1067 | * @reg_off: offset within the controller's data buffer | |
1068 | * @vaddr: virtual address of the buffer we want to read from | |
1069 | * @size: DMA transaction size in bytes | |
67e830ae | 1070 | * @flags: flags to control DMA descriptor preparation |
c76b78d8 AT |
1071 | */ |
1072 | static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, | |
67e830ae | 1073 | const u8 *vaddr, int size, unsigned int flags) |
c76b78d8 | 1074 | { |
4e2f6c52 AS |
1075 | if (nandc->props->is_bam) |
1076 | return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); | |
1077 | ||
381dd245 | 1078 | return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); |
c76b78d8 AT |
1079 | } |
1080 | ||
1081 | /* | |
bde4330a AS |
1082 | * Helper to prepare DMA descriptors for configuring registers |
1083 | * before reading a NAND page. | |
c76b78d8 | 1084 | */ |
bde4330a | 1085 | static void config_nand_page_read(struct qcom_nand_controller *nandc) |
c76b78d8 | 1086 | { |
67e830ae AS |
1087 | write_reg_dma(nandc, NAND_ADDR0, 2, 0); |
1088 | write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); | |
1089 | write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); | |
a86b9c4f AS |
1090 | write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); |
1091 | write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, | |
1092 | NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); | |
bde4330a | 1093 | } |
c76b78d8 | 1094 | |
bde4330a AS |
1095 | /* |
1096 | * Helper to prepare DMA descriptors for configuring registers | |
1097 | * before reading each codeword in NAND page. | |
1098 | */ | |
5bc36b2b AS |
1099 | static void |
1100 | config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc) | |
bde4330a | 1101 | { |
91af95c1 AS |
1102 | if (nandc->props->is_bam) |
1103 | write_reg_dma(nandc, NAND_READ_LOCATION_0, 4, | |
1104 | NAND_BAM_NEXT_SGL); | |
1105 | ||
67e830ae AS |
1106 | write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
1107 | write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 | 1108 | |
5bc36b2b AS |
1109 | if (use_ecc) { |
1110 | read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); | |
1111 | read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, | |
1112 | NAND_BAM_NEXT_SGL); | |
1113 | } else { | |
1114 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); | |
1115 | } | |
c76b78d8 AT |
1116 | } |
1117 | ||
1118 | /* | |
bde4330a AS |
1119 | * Helper to prepare dma descriptors to configure registers needed for reading a |
1120 | * single codeword in page | |
c76b78d8 | 1121 | */ |
5bc36b2b AS |
1122 | static void |
1123 | config_nand_single_cw_page_read(struct qcom_nand_controller *nandc, | |
1124 | bool use_ecc) | |
bde4330a AS |
1125 | { |
1126 | config_nand_page_read(nandc); | |
5bc36b2b | 1127 | config_nand_cw_read(nandc, use_ecc); |
bde4330a AS |
1128 | } |
1129 | ||
77cc5364 AS |
1130 | /* |
1131 | * Helper to prepare DMA descriptors used to configure registers needed for | |
1132 | * before writing a NAND page. | |
1133 | */ | |
1134 | static void config_nand_page_write(struct qcom_nand_controller *nandc) | |
c76b78d8 | 1135 | { |
67e830ae AS |
1136 | write_reg_dma(nandc, NAND_ADDR0, 2, 0); |
1137 | write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); | |
1138 | write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, | |
1139 | NAND_BAM_NEXT_SGL); | |
c76b78d8 AT |
1140 | } |
1141 | ||
77cc5364 AS |
1142 | /* |
1143 | * Helper to prepare DMA descriptors for configuring registers | |
1144 | * before writing each codeword in NAND page. | |
1145 | */ | |
1146 | static void config_nand_cw_write(struct qcom_nand_controller *nandc) | |
c76b78d8 | 1147 | { |
67e830ae AS |
1148 | write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
1149 | write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 | 1150 | |
67e830ae | 1151 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
c76b78d8 | 1152 | |
67e830ae AS |
1153 | write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); |
1154 | write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 AT |
1155 | } |
1156 | ||
1157 | /* | |
bf6065c6 BB |
1158 | * the following functions are used within chip->legacy.cmdfunc() to |
1159 | * perform different NAND_CMD_* commands | |
c76b78d8 AT |
1160 | */ |
1161 | ||
1162 | /* sets up descriptors for NAND_CMD_PARAM */ | |
1163 | static int nandc_param(struct qcom_nand_host *host) | |
1164 | { | |
1165 | struct nand_chip *chip = &host->chip; | |
1166 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1167 | ||
1168 | /* | |
1169 | * NAND_CMD_PARAM is called before we know much about the FLASH chip | |
1170 | * in use. we configure the controller to perform a raw read of 512 | |
1171 | * bytes to read onfi params | |
1172 | */ | |
33bf5519 | 1173 | nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE); |
c76b78d8 AT |
1174 | nandc_set_reg(nandc, NAND_ADDR0, 0); |
1175 | nandc_set_reg(nandc, NAND_ADDR1, 0); | |
1176 | nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE | |
1177 | | 512 << UD_SIZE_BYTES | |
1178 | | 5 << NUM_ADDR_CYCLES | |
1179 | | 0 << SPARE_SIZE_BYTES); | |
1180 | nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES | |
1181 | | 0 << CS_ACTIVE_BSY | |
1182 | | 17 << BAD_BLOCK_BYTE_NUM | |
1183 | | 1 << BAD_BLOCK_IN_SPARE_AREA | |
1184 | | 2 << WR_RD_BSY_GAP | |
1185 | | 0 << WIDE_FLASH | |
1186 | | 1 << DEV0_CFG1_ECC_DISABLE); | |
1187 | nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); | |
1188 | ||
1189 | /* configure CMD1 and VLD for ONFI param probing */ | |
1190 | nandc_set_reg(nandc, NAND_DEV_CMD_VLD, | |
d8a9b320 | 1191 | (nandc->vld & ~READ_START_VLD)); |
c76b78d8 AT |
1192 | nandc_set_reg(nandc, NAND_DEV_CMD1, |
1193 | (nandc->cmd1 & ~(0xFF << READ_ADDR)) | |
1194 | | NAND_CMD_PARAM << READ_ADDR); | |
1195 | ||
1196 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); | |
1197 | ||
1198 | nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); | |
1199 | nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); | |
91af95c1 | 1200 | nandc_set_read_loc(nandc, 0, 0, 512, 1); |
c76b78d8 | 1201 | |
67e830ae AS |
1202 | write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); |
1203 | write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 AT |
1204 | |
1205 | nandc->buf_count = 512; | |
1206 | memset(nandc->data_buffer, 0xff, nandc->buf_count); | |
1207 | ||
5bc36b2b | 1208 | config_nand_single_cw_page_read(nandc, false); |
c76b78d8 AT |
1209 | |
1210 | read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, | |
67e830ae | 1211 | nandc->buf_count, 0); |
c76b78d8 AT |
1212 | |
1213 | /* restore CMD1 and VLD regs */ | |
67e830ae AS |
1214 | write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); |
1215 | write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 AT |
1216 | |
1217 | return 0; | |
1218 | } | |
1219 | ||
1220 | /* sets up descriptors for NAND_CMD_ERASE1 */ | |
1221 | static int erase_block(struct qcom_nand_host *host, int page_addr) | |
1222 | { | |
1223 | struct nand_chip *chip = &host->chip; | |
1224 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1225 | ||
1226 | nandc_set_reg(nandc, NAND_FLASH_CMD, | |
33bf5519 | 1227 | OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE); |
c76b78d8 AT |
1228 | nandc_set_reg(nandc, NAND_ADDR0, page_addr); |
1229 | nandc_set_reg(nandc, NAND_ADDR1, 0); | |
1230 | nandc_set_reg(nandc, NAND_DEV0_CFG0, | |
1231 | host->cfg0_raw & ~(7 << CW_PER_PAGE)); | |
1232 | nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); | |
1233 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); | |
1234 | nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); | |
1235 | nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); | |
1236 | ||
67e830ae AS |
1237 | write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); |
1238 | write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); | |
1239 | write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 | 1240 | |
67e830ae | 1241 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
c76b78d8 | 1242 | |
67e830ae AS |
1243 | write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); |
1244 | write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 AT |
1245 | |
1246 | return 0; | |
1247 | } | |
1248 | ||
1249 | /* sets up descriptors for NAND_CMD_READID */ | |
1250 | static int read_id(struct qcom_nand_host *host, int column) | |
1251 | { | |
1252 | struct nand_chip *chip = &host->chip; | |
1253 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1254 | ||
1255 | if (column == -1) | |
1256 | return 0; | |
1257 | ||
33bf5519 | 1258 | nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID); |
c76b78d8 AT |
1259 | nandc_set_reg(nandc, NAND_ADDR0, column); |
1260 | nandc_set_reg(nandc, NAND_ADDR1, 0); | |
9d43f915 AS |
1261 | nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, |
1262 | nandc->props->is_bam ? 0 : DM_EN); | |
c76b78d8 AT |
1263 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
1264 | ||
67e830ae AS |
1265 | write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); |
1266 | write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 | 1267 | |
67e830ae | 1268 | read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); |
c76b78d8 AT |
1269 | |
1270 | return 0; | |
1271 | } | |
1272 | ||
1273 | /* sets up descriptors for NAND_CMD_RESET */ | |
1274 | static int reset(struct qcom_nand_host *host) | |
1275 | { | |
1276 | struct nand_chip *chip = &host->chip; | |
1277 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1278 | ||
33bf5519 | 1279 | nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE); |
c76b78d8 AT |
1280 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
1281 | ||
67e830ae AS |
1282 | write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
1283 | write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); | |
c76b78d8 | 1284 | |
67e830ae | 1285 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
c76b78d8 AT |
1286 | |
1287 | return 0; | |
1288 | } | |
1289 | ||
1290 | /* helpers to submit/free our list of dma descriptors */ | |
1291 | static int submit_descs(struct qcom_nand_controller *nandc) | |
1292 | { | |
1293 | struct desc_info *desc; | |
1294 | dma_cookie_t cookie = 0; | |
381dd245 AS |
1295 | struct bam_transaction *bam_txn = nandc->bam_txn; |
1296 | int r; | |
1297 | ||
1298 | if (nandc->props->is_bam) { | |
1299 | if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { | |
1300 | r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); | |
1301 | if (r) | |
1302 | return r; | |
1303 | } | |
1304 | ||
1305 | if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { | |
1306 | r = prepare_bam_async_desc(nandc, nandc->tx_chan, | |
1307 | DMA_PREP_INTERRUPT); | |
1308 | if (r) | |
1309 | return r; | |
1310 | } | |
1311 | ||
1312 | if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { | |
8d6b6d7e AS |
1313 | r = prepare_bam_async_desc(nandc, nandc->cmd_chan, |
1314 | DMA_PREP_CMD); | |
381dd245 AS |
1315 | if (r) |
1316 | return r; | |
1317 | } | |
1318 | } | |
c76b78d8 AT |
1319 | |
1320 | list_for_each_entry(desc, &nandc->desc_list, node) | |
1321 | cookie = dmaengine_submit(desc->dma_desc); | |
1322 | ||
381dd245 | 1323 | if (nandc->props->is_bam) { |
6f20070d AS |
1324 | bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; |
1325 | bam_txn->last_cmd_desc->callback_param = bam_txn; | |
1326 | if (bam_txn->last_data_desc) { | |
1327 | bam_txn->last_data_desc->callback = qpic_bam_dma_done; | |
1328 | bam_txn->last_data_desc->callback_param = bam_txn; | |
1329 | bam_txn->wait_second_completion = true; | |
1330 | } | |
1331 | ||
381dd245 AS |
1332 | dma_async_issue_pending(nandc->tx_chan); |
1333 | dma_async_issue_pending(nandc->rx_chan); | |
6f20070d | 1334 | dma_async_issue_pending(nandc->cmd_chan); |
381dd245 | 1335 | |
6f20070d AS |
1336 | if (!wait_for_completion_timeout(&bam_txn->txn_done, |
1337 | QPIC_NAND_COMPLETION_TIMEOUT)) | |
381dd245 AS |
1338 | return -ETIMEDOUT; |
1339 | } else { | |
1340 | if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) | |
1341 | return -ETIMEDOUT; | |
1342 | } | |
c76b78d8 AT |
1343 | |
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | static void free_descs(struct qcom_nand_controller *nandc) | |
1348 | { | |
1349 | struct desc_info *desc, *n; | |
1350 | ||
1351 | list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { | |
1352 | list_del(&desc->node); | |
381dd245 AS |
1353 | |
1354 | if (nandc->props->is_bam) | |
1355 | dma_unmap_sg(nandc->dev, desc->bam_sgl, | |
1356 | desc->sgl_cnt, desc->dir); | |
1357 | else | |
1358 | dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, | |
1359 | desc->dir); | |
1360 | ||
c76b78d8 AT |
1361 | kfree(desc); |
1362 | } | |
1363 | } | |
1364 | ||
1365 | /* reset the register read buffer for next NAND operation */ | |
1366 | static void clear_read_regs(struct qcom_nand_controller *nandc) | |
1367 | { | |
1368 | nandc->reg_read_pos = 0; | |
6192ff7a | 1369 | nandc_read_buffer_sync(nandc, false); |
c76b78d8 AT |
1370 | } |
1371 | ||
1372 | static void pre_command(struct qcom_nand_host *host, int command) | |
1373 | { | |
1374 | struct nand_chip *chip = &host->chip; | |
1375 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1376 | ||
1377 | nandc->buf_count = 0; | |
1378 | nandc->buf_start = 0; | |
1379 | host->use_ecc = false; | |
1380 | host->last_command = command; | |
1381 | ||
1382 | clear_read_regs(nandc); | |
4e2f6c52 AS |
1383 | |
1384 | if (command == NAND_CMD_RESET || command == NAND_CMD_READID || | |
1385 | command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) | |
1386 | clear_bam_transaction(nandc); | |
c76b78d8 AT |
1387 | } |
1388 | ||
1389 | /* | |
1390 | * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our | |
1391 | * privately maintained status byte, this status byte can be read after | |
1392 | * NAND_CMD_STATUS is called | |
1393 | */ | |
1394 | static void parse_erase_write_errors(struct qcom_nand_host *host, int command) | |
1395 | { | |
1396 | struct nand_chip *chip = &host->chip; | |
1397 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1398 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
1399 | int num_cw; | |
1400 | int i; | |
1401 | ||
1402 | num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; | |
6192ff7a | 1403 | nandc_read_buffer_sync(nandc, true); |
c76b78d8 AT |
1404 | |
1405 | for (i = 0; i < num_cw; i++) { | |
1406 | u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); | |
1407 | ||
1408 | if (flash_status & FS_MPU_ERR) | |
1409 | host->status &= ~NAND_STATUS_WP; | |
1410 | ||
1411 | if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && | |
1412 | (flash_status & | |
1413 | FS_DEVICE_STS_ERR))) | |
1414 | host->status |= NAND_STATUS_FAIL; | |
1415 | } | |
1416 | } | |
1417 | ||
1418 | static void post_command(struct qcom_nand_host *host, int command) | |
1419 | { | |
1420 | struct nand_chip *chip = &host->chip; | |
1421 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1422 | ||
1423 | switch (command) { | |
1424 | case NAND_CMD_READID: | |
6192ff7a | 1425 | nandc_read_buffer_sync(nandc, true); |
c76b78d8 AT |
1426 | memcpy(nandc->data_buffer, nandc->reg_read_buf, |
1427 | nandc->buf_count); | |
1428 | break; | |
1429 | case NAND_CMD_PAGEPROG: | |
1430 | case NAND_CMD_ERASE1: | |
1431 | parse_erase_write_errors(host, command); | |
1432 | break; | |
1433 | default: | |
1434 | break; | |
1435 | } | |
1436 | } | |
1437 | ||
1438 | /* | |
bf6065c6 BB |
1439 | * Implements chip->legacy.cmdfunc. It's only used for a limited set of |
1440 | * commands. The rest of the commands wouldn't be called by upper layers. | |
1441 | * For example, NAND_CMD_READOOB would never be called because we have our own | |
1442 | * versions of read_oob ops for nand_ecc_ctrl. | |
c76b78d8 | 1443 | */ |
5295cf2e | 1444 | static void qcom_nandc_command(struct nand_chip *chip, unsigned int command, |
c76b78d8 AT |
1445 | int column, int page_addr) |
1446 | { | |
c76b78d8 AT |
1447 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1448 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
1449 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1450 | bool wait = false; | |
1451 | int ret = 0; | |
1452 | ||
1453 | pre_command(host, command); | |
1454 | ||
1455 | switch (command) { | |
1456 | case NAND_CMD_RESET: | |
1457 | ret = reset(host); | |
1458 | wait = true; | |
1459 | break; | |
1460 | ||
1461 | case NAND_CMD_READID: | |
1462 | nandc->buf_count = 4; | |
1463 | ret = read_id(host, column); | |
1464 | wait = true; | |
1465 | break; | |
1466 | ||
1467 | case NAND_CMD_PARAM: | |
1468 | ret = nandc_param(host); | |
1469 | wait = true; | |
1470 | break; | |
1471 | ||
1472 | case NAND_CMD_ERASE1: | |
1473 | ret = erase_block(host, page_addr); | |
1474 | wait = true; | |
1475 | break; | |
1476 | ||
1477 | case NAND_CMD_READ0: | |
1478 | /* we read the entire page for now */ | |
1479 | WARN_ON(column != 0); | |
1480 | ||
1481 | host->use_ecc = true; | |
1482 | set_address(host, 0, page_addr); | |
1483 | update_rw_regs(host, ecc->steps, true); | |
1484 | break; | |
1485 | ||
1486 | case NAND_CMD_SEQIN: | |
1487 | WARN_ON(column != 0); | |
1488 | set_address(host, 0, page_addr); | |
1489 | break; | |
1490 | ||
1491 | case NAND_CMD_PAGEPROG: | |
1492 | case NAND_CMD_STATUS: | |
1493 | case NAND_CMD_NONE: | |
1494 | default: | |
1495 | break; | |
1496 | } | |
1497 | ||
1498 | if (ret) { | |
1499 | dev_err(nandc->dev, "failure executing command %d\n", | |
1500 | command); | |
1501 | free_descs(nandc); | |
1502 | return; | |
1503 | } | |
1504 | ||
1505 | if (wait) { | |
1506 | ret = submit_descs(nandc); | |
1507 | if (ret) | |
1508 | dev_err(nandc->dev, | |
1509 | "failure submitting descs for command %d\n", | |
1510 | command); | |
1511 | } | |
1512 | ||
1513 | free_descs(nandc); | |
1514 | ||
1515 | post_command(host, command); | |
1516 | } | |
1517 | ||
1518 | /* | |
1519 | * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read | |
1520 | * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. | |
1521 | * | |
1522 | * when using RS ECC, the HW reports the same erros when reading an erased CW, | |
1523 | * but it notifies that it is an erased CW by placing special characters at | |
1524 | * certain offsets in the buffer. | |
1525 | * | |
1526 | * verify if the page is erased or not, and fix up the page for RS ECC by | |
1527 | * replacing the special characters with 0xff. | |
1528 | */ | |
1529 | static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) | |
1530 | { | |
1531 | u8 empty1, empty2; | |
1532 | ||
1533 | /* | |
1534 | * an erased page flags an error in NAND_FLASH_STATUS, check if the page | |
1535 | * is erased by looking for 0x54s at offsets 3 and 175 from the | |
1536 | * beginning of each codeword | |
1537 | */ | |
1538 | ||
1539 | empty1 = data_buf[3]; | |
1540 | empty2 = data_buf[175]; | |
1541 | ||
1542 | /* | |
1543 | * if the erased codework markers, if they exist override them with | |
1544 | * 0xffs | |
1545 | */ | |
1546 | if ((empty1 == 0x54 && empty2 == 0xff) || | |
1547 | (empty1 == 0xff && empty2 == 0x54)) { | |
1548 | data_buf[3] = 0xff; | |
1549 | data_buf[175] = 0xff; | |
1550 | } | |
1551 | ||
1552 | /* | |
1553 | * check if the entire chunk contains 0xffs or not. if it doesn't, then | |
1554 | * restore the original values at the special offsets | |
1555 | */ | |
1556 | if (memchr_inv(data_buf, 0xff, data_len)) { | |
1557 | data_buf[3] = empty1; | |
1558 | data_buf[175] = empty2; | |
1559 | ||
1560 | return false; | |
1561 | } | |
1562 | ||
1563 | return true; | |
1564 | } | |
1565 | ||
1566 | struct read_stats { | |
1567 | __le32 flash; | |
1568 | __le32 buffer; | |
1569 | __le32 erased_cw; | |
1570 | }; | |
1571 | ||
5bc36b2b AS |
1572 | /* reads back FLASH_STATUS register set by the controller */ |
1573 | static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) | |
1574 | { | |
1575 | struct nand_chip *chip = &host->chip; | |
1576 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1577 | int i; | |
1578 | ||
1579 | for (i = 0; i < cw_cnt; i++) { | |
1580 | u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); | |
1581 | ||
1582 | if (flash & (FS_OP_ERR | FS_MPU_ERR)) | |
1583 | return -EIO; | |
1584 | } | |
1585 | ||
1586 | return 0; | |
1587 | } | |
1588 | ||
85632c17 AS |
1589 | /* performs raw read for one codeword */ |
1590 | static int | |
1591 | qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, | |
1592 | u8 *data_buf, u8 *oob_buf, int page, int cw) | |
1593 | { | |
1594 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
1595 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1596 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
1597 | int data_size1, data_size2, oob_size1, oob_size2; | |
1598 | int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; | |
1599 | ||
1600 | nand_read_page_op(chip, page, 0, NULL, 0); | |
1601 | host->use_ecc = false; | |
1602 | ||
1603 | clear_bam_transaction(nandc); | |
1604 | set_address(host, host->cw_size * cw, page); | |
1605 | update_rw_regs(host, 1, true); | |
1606 | config_nand_page_read(nandc); | |
1607 | ||
1608 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); | |
1609 | oob_size1 = host->bbm_size; | |
1610 | ||
1611 | if (cw == (ecc->steps - 1)) { | |
1612 | data_size2 = ecc->size - data_size1 - | |
1613 | ((ecc->steps - 1) * 4); | |
1614 | oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + | |
1615 | host->spare_bytes; | |
1616 | } else { | |
1617 | data_size2 = host->cw_data - data_size1; | |
1618 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; | |
1619 | } | |
1620 | ||
1621 | if (nandc->props->is_bam) { | |
1622 | nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0); | |
1623 | read_loc += data_size1; | |
1624 | ||
1625 | nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0); | |
1626 | read_loc += oob_size1; | |
1627 | ||
1628 | nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0); | |
1629 | read_loc += data_size2; | |
1630 | ||
1631 | nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1); | |
1632 | } | |
1633 | ||
1634 | config_nand_cw_read(nandc, false); | |
1635 | ||
1636 | read_data_dma(nandc, reg_off, data_buf, data_size1, 0); | |
1637 | reg_off += data_size1; | |
1638 | ||
1639 | read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); | |
1640 | reg_off += oob_size1; | |
1641 | ||
1642 | read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); | |
1643 | reg_off += data_size2; | |
1644 | ||
1645 | read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); | |
1646 | ||
1647 | ret = submit_descs(nandc); | |
1648 | free_descs(nandc); | |
1649 | if (ret) { | |
1650 | dev_err(nandc->dev, "failure to read raw cw %d\n", cw); | |
1651 | return ret; | |
1652 | } | |
1653 | ||
1654 | return check_flash_errors(host, 1); | |
1655 | } | |
1656 | ||
9f43deee AS |
1657 | /* |
1658 | * Bitflips can happen in erased codewords also so this function counts the | |
1659 | * number of 0 in each CW for which ECC engine returns the uncorrectable | |
1660 | * error. The page will be assumed as erased if this count is less than or | |
1661 | * equal to the ecc->strength for each CW. | |
1662 | * | |
1663 | * 1. Both DATA and OOB need to be checked for number of 0. The | |
1664 | * top-level API can be called with only data buf or OOB buf so use | |
1665 | * chip->data_buf if data buf is null and chip->oob_poi if oob buf | |
1666 | * is null for copying the raw bytes. | |
1667 | * 2. Perform raw read for all the CW which has uncorrectable errors. | |
1668 | * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. | |
1669 | * The BBM and spare bytes bit flip won’t affect the ECC so don’t check | |
1670 | * the number of bitflips in this area. | |
1671 | */ | |
1672 | static int | |
1673 | check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, | |
1674 | u8 *oob_buf, unsigned long uncorrectable_cws, | |
1675 | int page, unsigned int max_bitflips) | |
1676 | { | |
1677 | struct nand_chip *chip = &host->chip; | |
1678 | struct mtd_info *mtd = nand_to_mtd(chip); | |
1679 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
1680 | u8 *cw_data_buf, *cw_oob_buf; | |
1681 | int cw, data_size, oob_size, ret = 0; | |
1682 | ||
1683 | if (!data_buf) { | |
1684 | data_buf = chip->data_buf; | |
1685 | chip->pagebuf = -1; | |
1686 | } | |
1687 | ||
1688 | if (!oob_buf) { | |
1689 | oob_buf = chip->oob_poi; | |
1690 | chip->pagebuf = -1; | |
1691 | } | |
1692 | ||
1693 | for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { | |
1694 | if (cw == (ecc->steps - 1)) { | |
1695 | data_size = ecc->size - ((ecc->steps - 1) * 4); | |
1696 | oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; | |
1697 | } else { | |
1698 | data_size = host->cw_data; | |
1699 | oob_size = host->ecc_bytes_hw; | |
1700 | } | |
1701 | ||
1702 | /* determine starting buffer address for current CW */ | |
1703 | cw_data_buf = data_buf + (cw * host->cw_data); | |
1704 | cw_oob_buf = oob_buf + (cw * ecc->bytes); | |
1705 | ||
1706 | ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, | |
1707 | cw_oob_buf, page, cw); | |
1708 | if (ret) | |
1709 | return ret; | |
1710 | ||
1711 | /* | |
1712 | * make sure it isn't an erased page reported | |
1713 | * as not-erased by HW because of a few bitflips | |
1714 | */ | |
1715 | ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, | |
1716 | cw_oob_buf + host->bbm_size, | |
1717 | oob_size, NULL, | |
1718 | 0, ecc->strength); | |
1719 | if (ret < 0) { | |
1720 | mtd->ecc_stats.failed++; | |
1721 | } else { | |
1722 | mtd->ecc_stats.corrected += ret; | |
1723 | max_bitflips = max_t(unsigned int, max_bitflips, ret); | |
1724 | } | |
1725 | } | |
1726 | ||
1727 | return max_bitflips; | |
1728 | } | |
1729 | ||
c76b78d8 AT |
1730 | /* |
1731 | * reads back status registers set by the controller to notify page read | |
1732 | * errors. this is equivalent to what 'ecc->correct()' would do. | |
1733 | */ | |
1734 | static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, | |
9f43deee | 1735 | u8 *oob_buf, int page) |
c76b78d8 AT |
1736 | { |
1737 | struct nand_chip *chip = &host->chip; | |
1738 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1739 | struct mtd_info *mtd = nand_to_mtd(chip); | |
1740 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
9f43deee | 1741 | unsigned int max_bitflips = 0, uncorrectable_cws = 0; |
c76b78d8 | 1742 | struct read_stats *buf; |
9f43deee | 1743 | bool flash_op_err = false, erased; |
c76b78d8 | 1744 | int i; |
9f43deee | 1745 | u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
c76b78d8 AT |
1746 | |
1747 | buf = (struct read_stats *)nandc->reg_read_buf; | |
6192ff7a | 1748 | nandc_read_buffer_sync(nandc, true); |
c76b78d8 AT |
1749 | |
1750 | for (i = 0; i < ecc->steps; i++, buf++) { | |
1751 | u32 flash, buffer, erased_cw; | |
1752 | int data_len, oob_len; | |
1753 | ||
1754 | if (i == (ecc->steps - 1)) { | |
1755 | data_len = ecc->size - ((ecc->steps - 1) << 2); | |
1756 | oob_len = ecc->steps << 2; | |
1757 | } else { | |
1758 | data_len = host->cw_data; | |
1759 | oob_len = 0; | |
1760 | } | |
1761 | ||
1762 | flash = le32_to_cpu(buf->flash); | |
1763 | buffer = le32_to_cpu(buf->buffer); | |
1764 | erased_cw = le32_to_cpu(buf->erased_cw); | |
1765 | ||
8eab7214 AS |
1766 | /* |
1767 | * Check ECC failure for each codeword. ECC failure can | |
1768 | * happen in either of the following conditions | |
1769 | * 1. If number of bitflips are greater than ECC engine | |
1770 | * capability. | |
1771 | * 2. If this codeword contains all 0xff for which erased | |
1772 | * codeword detection check will be done. | |
1773 | */ | |
1774 | if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { | |
2f610386 AS |
1775 | /* |
1776 | * For BCH ECC, ignore erased codeword errors, if | |
1777 | * ERASED_CW bits are set. | |
1778 | */ | |
c76b78d8 AT |
1779 | if (host->bch_enabled) { |
1780 | erased = (erased_cw & ERASED_CW) == ERASED_CW ? | |
1781 | true : false; | |
2f610386 AS |
1782 | /* |
1783 | * For RS ECC, HW reports the erased CW by placing | |
1784 | * special characters at certain offsets in the buffer. | |
1785 | * These special characters will be valid only if | |
1786 | * complete page is read i.e. data_buf is not NULL. | |
1787 | */ | |
1788 | } else if (data_buf) { | |
c76b78d8 AT |
1789 | erased = erased_chunk_check_and_fixup(data_buf, |
1790 | data_len); | |
2f610386 AS |
1791 | } else { |
1792 | erased = false; | |
c76b78d8 AT |
1793 | } |
1794 | ||
9f43deee AS |
1795 | if (!erased) |
1796 | uncorrectable_cws |= BIT(i); | |
8eab7214 AS |
1797 | /* |
1798 | * Check if MPU or any other operational error (timeout, | |
1799 | * device failure, etc.) happened for this codeword and | |
1800 | * make flash_op_err true. If flash_op_err is set, then | |
1801 | * EIO will be returned for page read. | |
1802 | */ | |
1803 | } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { | |
1804 | flash_op_err = true; | |
1805 | /* | |
1806 | * No ECC or operational errors happened. Check the number of | |
1807 | * bits corrected and update the ecc_stats.corrected. | |
1808 | */ | |
c76b78d8 AT |
1809 | } else { |
1810 | unsigned int stat; | |
1811 | ||
1812 | stat = buffer & BS_CORRECTABLE_ERR_MSK; | |
1813 | mtd->ecc_stats.corrected += stat; | |
1814 | max_bitflips = max(max_bitflips, stat); | |
1815 | } | |
1816 | ||
2f610386 AS |
1817 | if (data_buf) |
1818 | data_buf += data_len; | |
c76b78d8 AT |
1819 | if (oob_buf) |
1820 | oob_buf += oob_len + ecc->bytes; | |
1821 | } | |
1822 | ||
8eab7214 AS |
1823 | if (flash_op_err) |
1824 | return -EIO; | |
1825 | ||
9f43deee AS |
1826 | if (!uncorrectable_cws) |
1827 | return max_bitflips; | |
1828 | ||
1829 | return check_for_erased_page(host, data_buf_start, oob_buf_start, | |
1830 | uncorrectable_cws, page, | |
1831 | max_bitflips); | |
c76b78d8 AT |
1832 | } |
1833 | ||
1834 | /* | |
1835 | * helper to perform the actual page read operation, used by ecc->read_page(), | |
1836 | * ecc->read_oob() | |
1837 | */ | |
1838 | static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, | |
9f43deee | 1839 | u8 *oob_buf, int page) |
c76b78d8 AT |
1840 | { |
1841 | struct nand_chip *chip = &host->chip; | |
1842 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1843 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
add0cfa3 | 1844 | u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
c76b78d8 AT |
1845 | int i, ret; |
1846 | ||
bde4330a AS |
1847 | config_nand_page_read(nandc); |
1848 | ||
c76b78d8 AT |
1849 | /* queue cmd descs for each codeword */ |
1850 | for (i = 0; i < ecc->steps; i++) { | |
1851 | int data_size, oob_size; | |
1852 | ||
1853 | if (i == (ecc->steps - 1)) { | |
1854 | data_size = ecc->size - ((ecc->steps - 1) << 2); | |
1855 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + | |
1856 | host->spare_bytes; | |
1857 | } else { | |
1858 | data_size = host->cw_data; | |
1859 | oob_size = host->ecc_bytes_hw + host->spare_bytes; | |
1860 | } | |
1861 | ||
91af95c1 AS |
1862 | if (nandc->props->is_bam) { |
1863 | if (data_buf && oob_buf) { | |
1864 | nandc_set_read_loc(nandc, 0, 0, data_size, 0); | |
1865 | nandc_set_read_loc(nandc, 1, data_size, | |
1866 | oob_size, 1); | |
1867 | } else if (data_buf) { | |
1868 | nandc_set_read_loc(nandc, 0, 0, data_size, 1); | |
1869 | } else { | |
1870 | nandc_set_read_loc(nandc, 0, data_size, | |
1871 | oob_size, 1); | |
1872 | } | |
1873 | } | |
1874 | ||
5bc36b2b | 1875 | config_nand_cw_read(nandc, true); |
c76b78d8 AT |
1876 | |
1877 | if (data_buf) | |
1878 | read_data_dma(nandc, FLASH_BUF_ACC, data_buf, | |
67e830ae | 1879 | data_size, 0); |
c76b78d8 AT |
1880 | |
1881 | /* | |
1882 | * when ecc is enabled, the controller doesn't read the real | |
1883 | * or dummy bad block markers in each chunk. To maintain a | |
1884 | * consistent layout across RAW and ECC reads, we just | |
1885 | * leave the real/dummy BBM offsets empty (i.e, filled with | |
1886 | * 0xffs) | |
1887 | */ | |
1888 | if (oob_buf) { | |
1889 | int j; | |
1890 | ||
1891 | for (j = 0; j < host->bbm_size; j++) | |
1892 | *oob_buf++ = 0xff; | |
1893 | ||
1894 | read_data_dma(nandc, FLASH_BUF_ACC + data_size, | |
67e830ae | 1895 | oob_buf, oob_size, 0); |
c76b78d8 AT |
1896 | } |
1897 | ||
1898 | if (data_buf) | |
1899 | data_buf += data_size; | |
1900 | if (oob_buf) | |
1901 | oob_buf += oob_size; | |
1902 | } | |
1903 | ||
1904 | ret = submit_descs(nandc); | |
c76b78d8 AT |
1905 | free_descs(nandc); |
1906 | ||
add0cfa3 AS |
1907 | if (ret) { |
1908 | dev_err(nandc->dev, "failure to read page/oob\n"); | |
1909 | return ret; | |
1910 | } | |
1911 | ||
9f43deee | 1912 | return parse_read_errors(host, data_buf_start, oob_buf_start, page); |
c76b78d8 AT |
1913 | } |
1914 | ||
1915 | /* | |
1916 | * a helper that copies the last step/codeword of a page (containing free oob) | |
1917 | * into our local buffer | |
1918 | */ | |
1919 | static int copy_last_cw(struct qcom_nand_host *host, int page) | |
1920 | { | |
1921 | struct nand_chip *chip = &host->chip; | |
1922 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1923 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
1924 | int size; | |
1925 | int ret; | |
1926 | ||
1927 | clear_read_regs(nandc); | |
1928 | ||
1929 | size = host->use_ecc ? host->cw_data : host->cw_size; | |
1930 | ||
1931 | /* prepare a clean read buffer */ | |
1932 | memset(nandc->data_buffer, 0xff, size); | |
1933 | ||
1934 | set_address(host, host->cw_size * (ecc->steps - 1), page); | |
1935 | update_rw_regs(host, 1, true); | |
1936 | ||
5bc36b2b | 1937 | config_nand_single_cw_page_read(nandc, host->use_ecc); |
c76b78d8 | 1938 | |
67e830ae | 1939 | read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); |
c76b78d8 AT |
1940 | |
1941 | ret = submit_descs(nandc); | |
1942 | if (ret) | |
1943 | dev_err(nandc->dev, "failed to copy last codeword\n"); | |
1944 | ||
1945 | free_descs(nandc); | |
1946 | ||
1947 | return ret; | |
1948 | } | |
1949 | ||
1950 | /* implements ecc->read_page() */ | |
b9761687 BB |
1951 | static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf, |
1952 | int oob_required, int page) | |
c76b78d8 AT |
1953 | { |
1954 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
1955 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1956 | u8 *data_buf, *oob_buf = NULL; | |
c76b78d8 | 1957 | |
25f815f6 | 1958 | nand_read_page_op(chip, page, 0, NULL, 0); |
c76b78d8 AT |
1959 | data_buf = buf; |
1960 | oob_buf = oob_required ? chip->oob_poi : NULL; | |
1961 | ||
4e2f6c52 | 1962 | clear_bam_transaction(nandc); |
c76b78d8 | 1963 | |
9f43deee | 1964 | return read_page_ecc(host, data_buf, oob_buf, page); |
c76b78d8 AT |
1965 | } |
1966 | ||
1967 | /* implements ecc->read_page_raw() */ | |
b9761687 | 1968 | static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf, |
c76b78d8 AT |
1969 | int oob_required, int page) |
1970 | { | |
b9761687 | 1971 | struct mtd_info *mtd = nand_to_mtd(chip); |
c76b78d8 | 1972 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
c76b78d8 | 1973 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
85632c17 AS |
1974 | int cw, ret; |
1975 | u8 *data_buf = buf, *oob_buf = chip->oob_poi; | |
c76b78d8 | 1976 | |
85632c17 AS |
1977 | for (cw = 0; cw < ecc->steps; cw++) { |
1978 | ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, | |
1979 | page, cw); | |
1980 | if (ret) | |
1981 | return ret; | |
c76b78d8 | 1982 | |
85632c17 AS |
1983 | data_buf += host->cw_data; |
1984 | oob_buf += ecc->bytes; | |
5bc36b2b | 1985 | } |
c76b78d8 | 1986 | |
85632c17 | 1987 | return 0; |
c76b78d8 AT |
1988 | } |
1989 | ||
1990 | /* implements ecc->read_oob() */ | |
b9761687 | 1991 | static int qcom_nandc_read_oob(struct nand_chip *chip, int page) |
c76b78d8 AT |
1992 | { |
1993 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
1994 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
1995 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
c76b78d8 AT |
1996 | |
1997 | clear_read_regs(nandc); | |
4e2f6c52 | 1998 | clear_bam_transaction(nandc); |
c76b78d8 AT |
1999 | |
2000 | host->use_ecc = true; | |
2001 | set_address(host, 0, page); | |
2002 | update_rw_regs(host, ecc->steps, true); | |
2003 | ||
9f43deee | 2004 | return read_page_ecc(host, NULL, chip->oob_poi, page); |
c76b78d8 AT |
2005 | } |
2006 | ||
2007 | /* implements ecc->write_page() */ | |
767eb6fb BB |
2008 | static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf, |
2009 | int oob_required, int page) | |
c76b78d8 AT |
2010 | { |
2011 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
2012 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2013 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
2014 | u8 *data_buf, *oob_buf; | |
2015 | int i, ret; | |
2016 | ||
25f815f6 BB |
2017 | nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
2018 | ||
c76b78d8 | 2019 | clear_read_regs(nandc); |
4e2f6c52 | 2020 | clear_bam_transaction(nandc); |
c76b78d8 AT |
2021 | |
2022 | data_buf = (u8 *)buf; | |
2023 | oob_buf = chip->oob_poi; | |
2024 | ||
2025 | host->use_ecc = true; | |
2026 | update_rw_regs(host, ecc->steps, false); | |
77cc5364 | 2027 | config_nand_page_write(nandc); |
c76b78d8 AT |
2028 | |
2029 | for (i = 0; i < ecc->steps; i++) { | |
2030 | int data_size, oob_size; | |
2031 | ||
2032 | if (i == (ecc->steps - 1)) { | |
2033 | data_size = ecc->size - ((ecc->steps - 1) << 2); | |
2034 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + | |
2035 | host->spare_bytes; | |
2036 | } else { | |
2037 | data_size = host->cw_data; | |
2038 | oob_size = ecc->bytes; | |
2039 | } | |
2040 | ||
c76b78d8 | 2041 | |
67e830ae AS |
2042 | write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, |
2043 | i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); | |
c76b78d8 AT |
2044 | |
2045 | /* | |
2046 | * when ECC is enabled, we don't really need to write anything | |
2047 | * to oob for the first n - 1 codewords since these oob regions | |
2048 | * just contain ECC bytes that's written by the controller | |
2049 | * itself. For the last codeword, we skip the bbm positions and | |
2050 | * write to the free oob area. | |
2051 | */ | |
2052 | if (i == (ecc->steps - 1)) { | |
2053 | oob_buf += host->bbm_size; | |
2054 | ||
2055 | write_data_dma(nandc, FLASH_BUF_ACC + data_size, | |
67e830ae | 2056 | oob_buf, oob_size, 0); |
c76b78d8 AT |
2057 | } |
2058 | ||
77cc5364 | 2059 | config_nand_cw_write(nandc); |
c76b78d8 AT |
2060 | |
2061 | data_buf += data_size; | |
2062 | oob_buf += oob_size; | |
2063 | } | |
2064 | ||
2065 | ret = submit_descs(nandc); | |
2066 | if (ret) | |
2067 | dev_err(nandc->dev, "failure to write page\n"); | |
2068 | ||
2069 | free_descs(nandc); | |
2070 | ||
25f815f6 BB |
2071 | if (!ret) |
2072 | ret = nand_prog_page_end_op(chip); | |
2073 | ||
c76b78d8 AT |
2074 | return ret; |
2075 | } | |
2076 | ||
2077 | /* implements ecc->write_page_raw() */ | |
767eb6fb BB |
2078 | static int qcom_nandc_write_page_raw(struct nand_chip *chip, |
2079 | const uint8_t *buf, int oob_required, | |
2080 | int page) | |
c76b78d8 | 2081 | { |
767eb6fb | 2082 | struct mtd_info *mtd = nand_to_mtd(chip); |
c76b78d8 AT |
2083 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
2084 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2085 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
2086 | u8 *data_buf, *oob_buf; | |
2087 | int i, ret; | |
2088 | ||
25f815f6 | 2089 | nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
c76b78d8 | 2090 | clear_read_regs(nandc); |
4e2f6c52 | 2091 | clear_bam_transaction(nandc); |
c76b78d8 AT |
2092 | |
2093 | data_buf = (u8 *)buf; | |
2094 | oob_buf = chip->oob_poi; | |
2095 | ||
2096 | host->use_ecc = false; | |
2097 | update_rw_regs(host, ecc->steps, false); | |
77cc5364 | 2098 | config_nand_page_write(nandc); |
c76b78d8 AT |
2099 | |
2100 | for (i = 0; i < ecc->steps; i++) { | |
2101 | int data_size1, data_size2, oob_size1, oob_size2; | |
2102 | int reg_off = FLASH_BUF_ACC; | |
2103 | ||
2104 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); | |
2105 | oob_size1 = host->bbm_size; | |
2106 | ||
2107 | if (i == (ecc->steps - 1)) { | |
2108 | data_size2 = ecc->size - data_size1 - | |
2109 | ((ecc->steps - 1) << 2); | |
2110 | oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + | |
2111 | host->spare_bytes; | |
2112 | } else { | |
2113 | data_size2 = host->cw_data - data_size1; | |
2114 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; | |
2115 | } | |
2116 | ||
67e830ae AS |
2117 | write_data_dma(nandc, reg_off, data_buf, data_size1, |
2118 | NAND_BAM_NO_EOT); | |
c76b78d8 AT |
2119 | reg_off += data_size1; |
2120 | data_buf += data_size1; | |
2121 | ||
67e830ae AS |
2122 | write_data_dma(nandc, reg_off, oob_buf, oob_size1, |
2123 | NAND_BAM_NO_EOT); | |
c76b78d8 AT |
2124 | reg_off += oob_size1; |
2125 | oob_buf += oob_size1; | |
2126 | ||
67e830ae AS |
2127 | write_data_dma(nandc, reg_off, data_buf, data_size2, |
2128 | NAND_BAM_NO_EOT); | |
c76b78d8 AT |
2129 | reg_off += data_size2; |
2130 | data_buf += data_size2; | |
2131 | ||
67e830ae | 2132 | write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); |
c76b78d8 AT |
2133 | oob_buf += oob_size2; |
2134 | ||
77cc5364 | 2135 | config_nand_cw_write(nandc); |
c76b78d8 AT |
2136 | } |
2137 | ||
2138 | ret = submit_descs(nandc); | |
2139 | if (ret) | |
2140 | dev_err(nandc->dev, "failure to write raw page\n"); | |
2141 | ||
2142 | free_descs(nandc); | |
2143 | ||
25f815f6 BB |
2144 | if (!ret) |
2145 | ret = nand_prog_page_end_op(chip); | |
2146 | ||
c76b78d8 AT |
2147 | return ret; |
2148 | } | |
2149 | ||
2150 | /* | |
2151 | * implements ecc->write_oob() | |
2152 | * | |
28eed9f6 AS |
2153 | * the NAND controller cannot write only data or only OOB within a codeword |
2154 | * since ECC is calculated for the combined codeword. So update the OOB from | |
2155 | * chip->oob_poi, and pad the data area with OxFF before writing. | |
c76b78d8 | 2156 | */ |
767eb6fb | 2157 | static int qcom_nandc_write_oob(struct nand_chip *chip, int page) |
c76b78d8 | 2158 | { |
767eb6fb | 2159 | struct mtd_info *mtd = nand_to_mtd(chip); |
c76b78d8 AT |
2160 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
2161 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2162 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
2163 | u8 *oob = chip->oob_poi; | |
c76b78d8 | 2164 | int data_size, oob_size; |
97d90da8 | 2165 | int ret; |
c76b78d8 AT |
2166 | |
2167 | host->use_ecc = true; | |
4e2f6c52 | 2168 | clear_bam_transaction(nandc); |
c76b78d8 AT |
2169 | |
2170 | /* calculate the data and oob size for the last codeword/step */ | |
2171 | data_size = ecc->size - ((ecc->steps - 1) << 2); | |
aa02fcf5 | 2172 | oob_size = mtd->oobavail; |
c76b78d8 | 2173 | |
28eed9f6 | 2174 | memset(nandc->data_buffer, 0xff, host->cw_data); |
c76b78d8 | 2175 | /* override new oob content to last codeword */ |
aa02fcf5 BB |
2176 | mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, |
2177 | 0, mtd->oobavail); | |
c76b78d8 AT |
2178 | |
2179 | set_address(host, host->cw_size * (ecc->steps - 1), page); | |
2180 | update_rw_regs(host, 1, false); | |
2181 | ||
77cc5364 | 2182 | config_nand_page_write(nandc); |
67e830ae AS |
2183 | write_data_dma(nandc, FLASH_BUF_ACC, |
2184 | nandc->data_buffer, data_size + oob_size, 0); | |
77cc5364 | 2185 | config_nand_cw_write(nandc); |
c76b78d8 AT |
2186 | |
2187 | ret = submit_descs(nandc); | |
2188 | ||
2189 | free_descs(nandc); | |
2190 | ||
2191 | if (ret) { | |
2192 | dev_err(nandc->dev, "failure to write oob\n"); | |
2193 | return -EIO; | |
2194 | } | |
2195 | ||
97d90da8 | 2196 | return nand_prog_page_end_op(chip); |
c76b78d8 AT |
2197 | } |
2198 | ||
c17556f5 | 2199 | static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) |
c76b78d8 | 2200 | { |
c17556f5 | 2201 | struct mtd_info *mtd = nand_to_mtd(chip); |
c76b78d8 AT |
2202 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
2203 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2204 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
2205 | int page, ret, bbpos, bad = 0; | |
c76b78d8 AT |
2206 | |
2207 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; | |
2208 | ||
2209 | /* | |
2210 | * configure registers for a raw sub page read, the address is set to | |
2211 | * the beginning of the last codeword, we don't care about reading ecc | |
2212 | * portion of oob. we just want the first few bytes from this codeword | |
2213 | * that contains the BBM | |
2214 | */ | |
2215 | host->use_ecc = false; | |
2216 | ||
4e2f6c52 | 2217 | clear_bam_transaction(nandc); |
c76b78d8 AT |
2218 | ret = copy_last_cw(host, page); |
2219 | if (ret) | |
2220 | goto err; | |
2221 | ||
5bc36b2b | 2222 | if (check_flash_errors(host, 1)) { |
c76b78d8 AT |
2223 | dev_warn(nandc->dev, "error when trying to read BBM\n"); |
2224 | goto err; | |
2225 | } | |
2226 | ||
2227 | bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); | |
2228 | ||
2229 | bad = nandc->data_buffer[bbpos] != 0xff; | |
2230 | ||
2231 | if (chip->options & NAND_BUSWIDTH_16) | |
2232 | bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); | |
2233 | err: | |
2234 | return bad; | |
2235 | } | |
2236 | ||
c17556f5 | 2237 | static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) |
c76b78d8 | 2238 | { |
c76b78d8 AT |
2239 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
2240 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2241 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
97d90da8 | 2242 | int page, ret; |
c76b78d8 AT |
2243 | |
2244 | clear_read_regs(nandc); | |
4e2f6c52 | 2245 | clear_bam_transaction(nandc); |
c76b78d8 AT |
2246 | |
2247 | /* | |
2248 | * to mark the BBM as bad, we flash the entire last codeword with 0s. | |
2249 | * we don't care about the rest of the content in the codeword since | |
2250 | * we aren't going to use this block again | |
2251 | */ | |
2252 | memset(nandc->data_buffer, 0x00, host->cw_size); | |
2253 | ||
2254 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; | |
2255 | ||
2256 | /* prepare write */ | |
2257 | host->use_ecc = false; | |
2258 | set_address(host, host->cw_size * (ecc->steps - 1), page); | |
2259 | update_rw_regs(host, 1, false); | |
2260 | ||
77cc5364 | 2261 | config_nand_page_write(nandc); |
67e830ae AS |
2262 | write_data_dma(nandc, FLASH_BUF_ACC, |
2263 | nandc->data_buffer, host->cw_size, 0); | |
77cc5364 | 2264 | config_nand_cw_write(nandc); |
c76b78d8 AT |
2265 | |
2266 | ret = submit_descs(nandc); | |
2267 | ||
2268 | free_descs(nandc); | |
2269 | ||
2270 | if (ret) { | |
2271 | dev_err(nandc->dev, "failure to update BBM\n"); | |
2272 | return -EIO; | |
2273 | } | |
2274 | ||
97d90da8 | 2275 | return nand_prog_page_end_op(chip); |
c76b78d8 AT |
2276 | } |
2277 | ||
2278 | /* | |
716bbbab BB |
2279 | * the three functions below implement chip->legacy.read_byte(), |
2280 | * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these | |
2281 | * aren't used for reading/writing page data, they are used for smaller data | |
2282 | * like reading id, status etc | |
c76b78d8 | 2283 | */ |
7e534323 | 2284 | static uint8_t qcom_nandc_read_byte(struct nand_chip *chip) |
c76b78d8 | 2285 | { |
c76b78d8 AT |
2286 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
2287 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
2288 | u8 *buf = nandc->data_buffer; | |
2289 | u8 ret = 0x0; | |
2290 | ||
2291 | if (host->last_command == NAND_CMD_STATUS) { | |
2292 | ret = host->status; | |
2293 | ||
2294 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; | |
2295 | ||
2296 | return ret; | |
2297 | } | |
2298 | ||
2299 | if (nandc->buf_start < nandc->buf_count) | |
2300 | ret = buf[nandc->buf_start++]; | |
2301 | ||
2302 | return ret; | |
2303 | } | |
2304 | ||
7e534323 | 2305 | static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len) |
c76b78d8 | 2306 | { |
c76b78d8 AT |
2307 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
2308 | int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); | |
2309 | ||
2310 | memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); | |
2311 | nandc->buf_start += real_len; | |
2312 | } | |
2313 | ||
c0739d85 | 2314 | static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf, |
c76b78d8 AT |
2315 | int len) |
2316 | { | |
c76b78d8 AT |
2317 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
2318 | int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); | |
2319 | ||
2320 | memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); | |
2321 | ||
2322 | nandc->buf_start += real_len; | |
2323 | } | |
2324 | ||
2325 | /* we support only one external chip for now */ | |
758b56f5 | 2326 | static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr) |
c76b78d8 | 2327 | { |
c76b78d8 AT |
2328 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
2329 | ||
2330 | if (chipnr <= 0) | |
2331 | return; | |
2332 | ||
2333 | dev_warn(nandc->dev, "invalid chip select\n"); | |
2334 | } | |
2335 | ||
2336 | /* | |
2337 | * NAND controller page layout info | |
2338 | * | |
2339 | * Layout with ECC enabled: | |
2340 | * | |
2341 | * |----------------------| |---------------------------------| | |
2342 | * | xx.......yy| | *********xx.......yy| | |
2343 | * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| | |
2344 | * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| | |
2345 | * | xx.......yy| | *********xx.......yy| | |
2346 | * |----------------------| |---------------------------------| | |
2347 | * codeword 1,2..n-1 codeword n | |
2348 | * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> | |
2349 | * | |
2350 | * n = Number of codewords in the page | |
2351 | * . = ECC bytes | |
2352 | * * = Spare/free bytes | |
2353 | * x = Unused byte(s) | |
2354 | * y = Reserved byte(s) | |
2355 | * | |
2356 | * 2K page: n = 4, spare = 16 bytes | |
2357 | * 4K page: n = 8, spare = 32 bytes | |
2358 | * 8K page: n = 16, spare = 64 bytes | |
2359 | * | |
2360 | * the qcom nand controller operates at a sub page/codeword level. each | |
2361 | * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. | |
2362 | * the number of ECC bytes vary based on the ECC strength and the bus width. | |
2363 | * | |
2364 | * the first n - 1 codewords contains 516 bytes of user data, the remaining | |
2365 | * 12/16 bytes consist of ECC and reserved data. The nth codeword contains | |
2366 | * both user data and spare(oobavail) bytes that sum up to 516 bytes. | |
2367 | * | |
2368 | * When we access a page with ECC enabled, the reserved bytes(s) are not | |
2369 | * accessible at all. When reading, we fill up these unreadable positions | |
2370 | * with 0xffs. When writing, the controller skips writing the inaccessible | |
2371 | * bytes. | |
2372 | * | |
2373 | * Layout with ECC disabled: | |
2374 | * | |
2375 | * |------------------------------| |---------------------------------------| | |
2376 | * | yy xx.......| | bb *********xx.......| | |
2377 | * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| | |
2378 | * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| | |
2379 | * | yy xx.......| | bb *********xx.......| | |
2380 | * |------------------------------| |---------------------------------------| | |
2381 | * codeword 1,2..n-1 codeword n | |
2382 | * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> | |
2383 | * | |
2384 | * n = Number of codewords in the page | |
2385 | * . = ECC bytes | |
2386 | * * = Spare/free bytes | |
2387 | * x = Unused byte(s) | |
2388 | * y = Dummy Bad Bock byte(s) | |
2389 | * b = Real Bad Block byte(s) | |
2390 | * size1/size2 = function of codeword size and 'n' | |
2391 | * | |
2392 | * when the ECC block is disabled, one reserved byte (or two for 16 bit bus | |
2393 | * width) is now accessible. For the first n - 1 codewords, these are dummy Bad | |
2394 | * Block Markers. In the last codeword, this position contains the real BBM | |
2395 | * | |
2396 | * In order to have a consistent layout between RAW and ECC modes, we assume | |
2397 | * the following OOB layout arrangement: | |
2398 | * | |
2399 | * |-----------| |--------------------| | |
2400 | * |yyxx.......| |bb*********xx.......| | |
2401 | * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| | |
2402 | * |yyxx.......| |bb*********xx.......| | |
2403 | * |yyxx.......| |bb*********xx.......| | |
2404 | * |-----------| |--------------------| | |
2405 | * first n - 1 nth OOB region | |
2406 | * OOB regions | |
2407 | * | |
2408 | * n = Number of codewords in the page | |
2409 | * . = ECC bytes | |
2410 | * * = FREE OOB bytes | |
2411 | * y = Dummy bad block byte(s) (inaccessible when ECC enabled) | |
2412 | * x = Unused byte(s) | |
2413 | * b = Real bad block byte(s) (inaccessible when ECC enabled) | |
2414 | * | |
2415 | * This layout is read as is when ECC is disabled. When ECC is enabled, the | |
2416 | * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, | |
2417 | * and assumed as 0xffs when we read a page/oob. The ECC, unused and | |
421e81c4 BB |
2418 | * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is |
2419 | * the sum of the three). | |
c76b78d8 | 2420 | */ |
421e81c4 BB |
2421 | static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
2422 | struct mtd_oob_region *oobregion) | |
c76b78d8 | 2423 | { |
421e81c4 BB |
2424 | struct nand_chip *chip = mtd_to_nand(mtd); |
2425 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
c76b78d8 | 2426 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
c76b78d8 | 2427 | |
421e81c4 BB |
2428 | if (section > 1) |
2429 | return -ERANGE; | |
c76b78d8 | 2430 | |
421e81c4 BB |
2431 | if (!section) { |
2432 | oobregion->length = (ecc->bytes * (ecc->steps - 1)) + | |
2433 | host->bbm_size; | |
2434 | oobregion->offset = 0; | |
2435 | } else { | |
2436 | oobregion->length = host->ecc_bytes_hw + host->spare_bytes; | |
2437 | oobregion->offset = mtd->oobsize - oobregion->length; | |
c76b78d8 AT |
2438 | } |
2439 | ||
421e81c4 BB |
2440 | return 0; |
2441 | } | |
c76b78d8 | 2442 | |
421e81c4 BB |
2443 | static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, |
2444 | struct mtd_oob_region *oobregion) | |
2445 | { | |
2446 | struct nand_chip *chip = mtd_to_nand(mtd); | |
2447 | struct qcom_nand_host *host = to_qcom_nand_host(chip); | |
2448 | struct nand_ecc_ctrl *ecc = &chip->ecc; | |
c76b78d8 | 2449 | |
421e81c4 BB |
2450 | if (section) |
2451 | return -ERANGE; | |
c76b78d8 | 2452 | |
421e81c4 BB |
2453 | oobregion->length = ecc->steps * 4; |
2454 | oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; | |
c76b78d8 | 2455 | |
421e81c4 | 2456 | return 0; |
c76b78d8 AT |
2457 | } |
2458 | ||
421e81c4 BB |
2459 | static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { |
2460 | .ecc = qcom_nand_ooblayout_ecc, | |
2461 | .free = qcom_nand_ooblayout_free, | |
2462 | }; | |
2463 | ||
7ddb937f AS |
2464 | static int |
2465 | qcom_nandc_calc_ecc_bytes(int step_size, int strength) | |
2466 | { | |
2467 | return strength == 4 ? 12 : 16; | |
2468 | } | |
2469 | NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, | |
2470 | NANDC_STEP_SIZE, 4, 8); | |
2471 | ||
6a3cec64 | 2472 | static int qcom_nand_attach_chip(struct nand_chip *chip) |
c76b78d8 | 2473 | { |
c76b78d8 | 2474 | struct mtd_info *mtd = nand_to_mtd(chip); |
6a3cec64 | 2475 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
c76b78d8 AT |
2476 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
2477 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); | |
7ddb937f | 2478 | int cwperpage, bad_block_byte, ret; |
c76b78d8 AT |
2479 | bool wide_bus; |
2480 | int ecc_mode = 1; | |
2481 | ||
320bdb5f AS |
2482 | /* controller only supports 512 bytes data steps */ |
2483 | ecc->size = NANDC_STEP_SIZE; | |
c76b78d8 | 2484 | wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; |
7ddb937f AS |
2485 | cwperpage = mtd->writesize / NANDC_STEP_SIZE; |
2486 | ||
2487 | /* | |
2488 | * Each CW has 4 available OOB bytes which will be protected with ECC | |
2489 | * so remaining bytes can be used for ECC. | |
2490 | */ | |
2491 | ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, | |
2492 | mtd->oobsize - (cwperpage * 4)); | |
2493 | if (ret) { | |
2494 | dev_err(nandc->dev, "No valid ECC settings possible\n"); | |
2495 | return ret; | |
2496 | } | |
c76b78d8 AT |
2497 | |
2498 | if (ecc->strength >= 8) { | |
2499 | /* 8 bit ECC defaults to BCH ECC on all platforms */ | |
2500 | host->bch_enabled = true; | |
2501 | ecc_mode = 1; | |
2502 | ||
2503 | if (wide_bus) { | |
2504 | host->ecc_bytes_hw = 14; | |
2505 | host->spare_bytes = 0; | |
2506 | host->bbm_size = 2; | |
2507 | } else { | |
2508 | host->ecc_bytes_hw = 13; | |
2509 | host->spare_bytes = 2; | |
2510 | host->bbm_size = 1; | |
2511 | } | |
2512 | } else { | |
2513 | /* | |
2514 | * if the controller supports BCH for 4 bit ECC, the controller | |
2515 | * uses lesser bytes for ECC. If RS is used, the ECC bytes is | |
2516 | * always 10 bytes | |
2517 | */ | |
58f1f22a | 2518 | if (nandc->props->ecc_modes & ECC_BCH_4BIT) { |
c76b78d8 AT |
2519 | /* BCH */ |
2520 | host->bch_enabled = true; | |
2521 | ecc_mode = 0; | |
2522 | ||
2523 | if (wide_bus) { | |
2524 | host->ecc_bytes_hw = 8; | |
2525 | host->spare_bytes = 2; | |
2526 | host->bbm_size = 2; | |
2527 | } else { | |
2528 | host->ecc_bytes_hw = 7; | |
2529 | host->spare_bytes = 4; | |
2530 | host->bbm_size = 1; | |
2531 | } | |
2532 | } else { | |
2533 | /* RS */ | |
2534 | host->ecc_bytes_hw = 10; | |
2535 | ||
2536 | if (wide_bus) { | |
2537 | host->spare_bytes = 0; | |
2538 | host->bbm_size = 2; | |
2539 | } else { | |
2540 | host->spare_bytes = 1; | |
2541 | host->bbm_size = 1; | |
2542 | } | |
2543 | } | |
2544 | } | |
2545 | ||
2546 | /* | |
2547 | * we consider ecc->bytes as the sum of all the non-data content in a | |
2548 | * step. It gives us a clean representation of the oob area (even if | |
2549 | * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit | |
2550 | * ECC and 12 bytes for 4 bit ECC | |
2551 | */ | |
2552 | ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; | |
2553 | ||
2554 | ecc->read_page = qcom_nandc_read_page; | |
2555 | ecc->read_page_raw = qcom_nandc_read_page_raw; | |
2556 | ecc->read_oob = qcom_nandc_read_oob; | |
2557 | ecc->write_page = qcom_nandc_write_page; | |
2558 | ecc->write_page_raw = qcom_nandc_write_page_raw; | |
2559 | ecc->write_oob = qcom_nandc_write_oob; | |
2560 | ||
2561 | ecc->mode = NAND_ECC_HW; | |
2562 | ||
421e81c4 | 2563 | mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); |
c76b78d8 | 2564 | |
cb80f114 AS |
2565 | nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, |
2566 | cwperpage); | |
c76b78d8 AT |
2567 | |
2568 | /* | |
2569 | * DATA_UD_BYTES varies based on whether the read/write command protects | |
2570 | * spare data with ECC too. We protect spare data by default, so we set | |
2571 | * it to main + spare data, which are 512 and 4 bytes respectively. | |
2572 | */ | |
2573 | host->cw_data = 516; | |
2574 | ||
2575 | /* | |
2576 | * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes | |
2577 | * for 8 bit ECC | |
2578 | */ | |
2579 | host->cw_size = host->cw_data + ecc->bytes; | |
c76b78d8 AT |
2580 | bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; |
2581 | ||
2582 | host->cfg0 = (cwperpage - 1) << CW_PER_PAGE | |
2583 | | host->cw_data << UD_SIZE_BYTES | |
2584 | | 0 << DISABLE_STATUS_AFTER_WRITE | |
2585 | | 5 << NUM_ADDR_CYCLES | |
2586 | | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS | |
2587 | | 0 << STATUS_BFR_READ | |
2588 | | 1 << SET_RD_MODE_AFTER_STATUS | |
2589 | | host->spare_bytes << SPARE_SIZE_BYTES; | |
2590 | ||
2591 | host->cfg1 = 7 << NAND_RECOVERY_CYCLES | |
2592 | | 0 << CS_ACTIVE_BSY | |
2593 | | bad_block_byte << BAD_BLOCK_BYTE_NUM | |
2594 | | 0 << BAD_BLOCK_IN_SPARE_AREA | |
2595 | | 2 << WR_RD_BSY_GAP | |
2596 | | wide_bus << WIDE_FLASH | |
2597 | | host->bch_enabled << ENABLE_BCH_ECC; | |
2598 | ||
2599 | host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE | |
2600 | | host->cw_size << UD_SIZE_BYTES | |
2601 | | 5 << NUM_ADDR_CYCLES | |
2602 | | 0 << SPARE_SIZE_BYTES; | |
2603 | ||
2604 | host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES | |
2605 | | 0 << CS_ACTIVE_BSY | |
2606 | | 17 << BAD_BLOCK_BYTE_NUM | |
2607 | | 1 << BAD_BLOCK_IN_SPARE_AREA | |
2608 | | 2 << WR_RD_BSY_GAP | |
2609 | | wide_bus << WIDE_FLASH | |
2610 | | 1 << DEV0_CFG1_ECC_DISABLE; | |
2611 | ||
10777de5 | 2612 | host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE |
c76b78d8 AT |
2613 | | 0 << ECC_SW_RESET |
2614 | | host->cw_data << ECC_NUM_DATA_BYTES | |
2615 | | 1 << ECC_FORCE_CLK_OPEN | |
2616 | | ecc_mode << ECC_MODE | |
2617 | | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; | |
2618 | ||
2619 | host->ecc_buf_cfg = 0x203 << NUM_STEPS; | |
2620 | ||
2621 | host->clrflashstatus = FS_READY_BSY_N; | |
2622 | host->clrreadstatus = 0xc0; | |
a86b9c4f AS |
2623 | nandc->regs->erased_cw_detect_cfg_clr = |
2624 | cpu_to_le32(CLR_ERASED_PAGE_DET); | |
2625 | nandc->regs->erased_cw_detect_cfg_set = | |
2626 | cpu_to_le32(SET_ERASED_PAGE_DET); | |
c76b78d8 AT |
2627 | |
2628 | dev_dbg(nandc->dev, | |
2629 | "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", | |
2630 | host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, | |
2631 | host->cw_size, host->cw_data, ecc->strength, ecc->bytes, | |
2632 | cwperpage); | |
2633 | ||
2634 | return 0; | |
2635 | } | |
2636 | ||
6a3cec64 MR |
2637 | static const struct nand_controller_ops qcom_nandc_ops = { |
2638 | .attach_chip = qcom_nand_attach_chip, | |
2639 | }; | |
2640 | ||
c76b78d8 AT |
2641 | static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) |
2642 | { | |
2643 | int ret; | |
2644 | ||
2645 | ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); | |
2646 | if (ret) { | |
2647 | dev_err(nandc->dev, "failed to set DMA mask\n"); | |
2648 | return ret; | |
2649 | } | |
2650 | ||
2651 | /* | |
2652 | * we use the internal buffer for reading ONFI params, reading small | |
2653 | * data like ID and status, and preforming read-copy-write operations | |
2654 | * when writing to a codeword partially. 532 is the maximum possible | |
2655 | * size of a codeword for our nand controller | |
2656 | */ | |
2657 | nandc->buf_size = 532; | |
2658 | ||
2659 | nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, | |
2660 | GFP_KERNEL); | |
2661 | if (!nandc->data_buffer) | |
2662 | return -ENOMEM; | |
2663 | ||
2664 | nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), | |
2665 | GFP_KERNEL); | |
2666 | if (!nandc->regs) | |
2667 | return -ENOMEM; | |
2668 | ||
a86854d0 KC |
2669 | nandc->reg_read_buf = devm_kcalloc(nandc->dev, |
2670 | MAX_REG_RD, sizeof(*nandc->reg_read_buf), | |
c76b78d8 AT |
2671 | GFP_KERNEL); |
2672 | if (!nandc->reg_read_buf) | |
2673 | return -ENOMEM; | |
2674 | ||
497d7d85 | 2675 | if (nandc->props->is_bam) { |
6192ff7a AS |
2676 | nandc->reg_read_dma = |
2677 | dma_map_single(nandc->dev, nandc->reg_read_buf, | |
2678 | MAX_REG_RD * | |
2679 | sizeof(*nandc->reg_read_buf), | |
2680 | DMA_FROM_DEVICE); | |
2681 | if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { | |
2682 | dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); | |
2683 | return -EIO; | |
2684 | } | |
2685 | ||
497d7d85 AS |
2686 | nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx"); |
2687 | if (!nandc->tx_chan) { | |
2688 | dev_err(nandc->dev, "failed to request tx channel\n"); | |
2689 | return -ENODEV; | |
2690 | } | |
2691 | ||
2692 | nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx"); | |
2693 | if (!nandc->rx_chan) { | |
2694 | dev_err(nandc->dev, "failed to request rx channel\n"); | |
2695 | return -ENODEV; | |
2696 | } | |
2697 | ||
2698 | nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd"); | |
2699 | if (!nandc->cmd_chan) { | |
2700 | dev_err(nandc->dev, "failed to request cmd channel\n"); | |
2701 | return -ENODEV; | |
2702 | } | |
cb80f114 AS |
2703 | |
2704 | /* | |
2705 | * Initially allocate BAM transaction to read ONFI param page. | |
2706 | * After detecting all the devices, this BAM transaction will | |
2707 | * be freed and the next BAM tranasction will be allocated with | |
2708 | * maximum codeword size | |
2709 | */ | |
2710 | nandc->max_cwperpage = 1; | |
2711 | nandc->bam_txn = alloc_bam_transaction(nandc); | |
2712 | if (!nandc->bam_txn) { | |
2713 | dev_err(nandc->dev, | |
2714 | "failed to allocate bam transaction\n"); | |
2715 | return -ENOMEM; | |
2716 | } | |
497d7d85 AS |
2717 | } else { |
2718 | nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); | |
2719 | if (!nandc->chan) { | |
2720 | dev_err(nandc->dev, | |
2721 | "failed to request slave channel\n"); | |
2722 | return -ENODEV; | |
2723 | } | |
c76b78d8 AT |
2724 | } |
2725 | ||
2726 | INIT_LIST_HEAD(&nandc->desc_list); | |
2727 | INIT_LIST_HEAD(&nandc->host_list); | |
2728 | ||
7da45139 | 2729 | nand_controller_init(&nandc->controller); |
6a3cec64 | 2730 | nandc->controller.ops = &qcom_nandc_ops; |
c76b78d8 AT |
2731 | |
2732 | return 0; | |
2733 | } | |
2734 | ||
2735 | static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) | |
2736 | { | |
497d7d85 | 2737 | if (nandc->props->is_bam) { |
6192ff7a AS |
2738 | if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) |
2739 | dma_unmap_single(nandc->dev, nandc->reg_read_dma, | |
2740 | MAX_REG_RD * | |
2741 | sizeof(*nandc->reg_read_buf), | |
2742 | DMA_FROM_DEVICE); | |
2743 | ||
497d7d85 AS |
2744 | if (nandc->tx_chan) |
2745 | dma_release_channel(nandc->tx_chan); | |
2746 | ||
2747 | if (nandc->rx_chan) | |
2748 | dma_release_channel(nandc->rx_chan); | |
2749 | ||
2750 | if (nandc->cmd_chan) | |
2751 | dma_release_channel(nandc->cmd_chan); | |
2752 | } else { | |
2753 | if (nandc->chan) | |
2754 | dma_release_channel(nandc->chan); | |
2755 | } | |
c76b78d8 AT |
2756 | } |
2757 | ||
2758 | /* one time setup of a few nand controller registers */ | |
2759 | static int qcom_nandc_setup(struct qcom_nand_controller *nandc) | |
2760 | { | |
9d43f915 AS |
2761 | u32 nand_ctrl; |
2762 | ||
c76b78d8 AT |
2763 | /* kill onenand */ |
2764 | nandc_write(nandc, SFLASHC_BURST_CFG, 0); | |
cc409b9a AS |
2765 | nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), |
2766 | NAND_DEV_CMD_VLD_VAL); | |
c76b78d8 | 2767 | |
9d43f915 AS |
2768 | /* enable ADM or BAM DMA */ |
2769 | if (nandc->props->is_bam) { | |
2770 | nand_ctrl = nandc_read(nandc, NAND_CTRL); | |
2771 | nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); | |
2772 | } else { | |
2773 | nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); | |
2774 | } | |
c76b78d8 AT |
2775 | |
2776 | /* save the original values of these registers */ | |
cc409b9a | 2777 | nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); |
d8a9b320 | 2778 | nandc->vld = NAND_DEV_CMD_VLD_VAL; |
c76b78d8 AT |
2779 | |
2780 | return 0; | |
2781 | } | |
2782 | ||
6a3cec64 MR |
2783 | static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, |
2784 | struct qcom_nand_host *host, | |
2785 | struct device_node *dn) | |
c76b78d8 AT |
2786 | { |
2787 | struct nand_chip *chip = &host->chip; | |
2788 | struct mtd_info *mtd = nand_to_mtd(chip); | |
2789 | struct device *dev = nandc->dev; | |
2790 | int ret; | |
2791 | ||
2792 | ret = of_property_read_u32(dn, "reg", &host->cs); | |
2793 | if (ret) { | |
2794 | dev_err(dev, "can't get chip-select\n"); | |
2795 | return -ENXIO; | |
2796 | } | |
2797 | ||
2798 | nand_set_flash_node(chip, dn); | |
2799 | mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); | |
069f0534 FE |
2800 | if (!mtd->name) |
2801 | return -ENOMEM; | |
2802 | ||
c76b78d8 AT |
2803 | mtd->owner = THIS_MODULE; |
2804 | mtd->dev.parent = dev; | |
2805 | ||
bf6065c6 | 2806 | chip->legacy.cmdfunc = qcom_nandc_command; |
c76b78d8 | 2807 | chip->select_chip = qcom_nandc_select_chip; |
716bbbab BB |
2808 | chip->legacy.read_byte = qcom_nandc_read_byte; |
2809 | chip->legacy.read_buf = qcom_nandc_read_buf; | |
2810 | chip->legacy.write_buf = qcom_nandc_write_buf; | |
45240367 BB |
2811 | chip->legacy.set_features = nand_get_set_features_notsupp; |
2812 | chip->legacy.get_features = nand_get_set_features_notsupp; | |
c76b78d8 AT |
2813 | |
2814 | /* | |
2815 | * the bad block marker is readable only when we read the last codeword | |
2816 | * of a page with ECC disabled. currently, the nand_base and nand_bbt | |
2817 | * helpers don't allow us to read BB from a nand chip with ECC | |
2818 | * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad | |
2819 | * and block_markbad helpers until we permanently switch to using | |
2820 | * MTD_OPS_RAW for all drivers (with the help of badblockbits) | |
2821 | */ | |
cdc784c7 BB |
2822 | chip->legacy.block_bad = qcom_nandc_block_bad; |
2823 | chip->legacy.block_markbad = qcom_nandc_block_markbad; | |
c76b78d8 AT |
2824 | |
2825 | chip->controller = &nandc->controller; | |
2826 | chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | | |
2827 | NAND_SKIP_BBTSCAN; | |
2828 | ||
2829 | /* set up initial status value */ | |
2830 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; | |
2831 | ||
00ad378f | 2832 | ret = nand_scan(chip, 1); |
c76b78d8 AT |
2833 | if (ret) |
2834 | return ret; | |
2835 | ||
89f5127c AS |
2836 | ret = mtd_device_register(mtd, NULL, 0); |
2837 | if (ret) | |
6a3cec64 | 2838 | nand_cleanup(chip); |
89f5127c AS |
2839 | |
2840 | return ret; | |
2841 | } | |
2842 | ||
2843 | static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) | |
2844 | { | |
2845 | struct device *dev = nandc->dev; | |
2846 | struct device_node *dn = dev->of_node, *child; | |
6a3cec64 | 2847 | struct qcom_nand_host *host; |
89f5127c AS |
2848 | int ret; |
2849 | ||
cb80f114 AS |
2850 | if (nandc->props->is_bam) { |
2851 | free_bam_transaction(nandc); | |
2852 | nandc->bam_txn = alloc_bam_transaction(nandc); | |
2853 | if (!nandc->bam_txn) { | |
2854 | dev_err(nandc->dev, | |
2855 | "failed to allocate bam transaction\n"); | |
2856 | return -ENOMEM; | |
2857 | } | |
2858 | } | |
2859 | ||
6a3cec64 MR |
2860 | for_each_available_child_of_node(dn, child) { |
2861 | host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); | |
2862 | if (!host) { | |
2863 | of_node_put(child); | |
2864 | return -ENOMEM; | |
2865 | } | |
2866 | ||
2867 | ret = qcom_nand_host_init_and_register(nandc, host, child); | |
89f5127c | 2868 | if (ret) { |
89f5127c | 2869 | devm_kfree(dev, host); |
6a3cec64 | 2870 | continue; |
89f5127c | 2871 | } |
6a3cec64 MR |
2872 | |
2873 | list_add_tail(&host->node, &nandc->host_list); | |
89f5127c AS |
2874 | } |
2875 | ||
2876 | if (list_empty(&nandc->host_list)) | |
2877 | return -ENODEV; | |
2878 | ||
2879 | return 0; | |
c76b78d8 AT |
2880 | } |
2881 | ||
2882 | /* parse custom DT properties here */ | |
2883 | static int qcom_nandc_parse_dt(struct platform_device *pdev) | |
2884 | { | |
2885 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); | |
2886 | struct device_node *np = nandc->dev->of_node; | |
2887 | int ret; | |
2888 | ||
497d7d85 AS |
2889 | if (!nandc->props->is_bam) { |
2890 | ret = of_property_read_u32(np, "qcom,cmd-crci", | |
2891 | &nandc->cmd_crci); | |
2892 | if (ret) { | |
2893 | dev_err(nandc->dev, "command CRCI unspecified\n"); | |
2894 | return ret; | |
2895 | } | |
c76b78d8 | 2896 | |
497d7d85 AS |
2897 | ret = of_property_read_u32(np, "qcom,data-crci", |
2898 | &nandc->data_crci); | |
2899 | if (ret) { | |
2900 | dev_err(nandc->dev, "data CRCI unspecified\n"); | |
2901 | return ret; | |
2902 | } | |
c76b78d8 AT |
2903 | } |
2904 | ||
2905 | return 0; | |
2906 | } | |
2907 | ||
2908 | static int qcom_nandc_probe(struct platform_device *pdev) | |
2909 | { | |
2910 | struct qcom_nand_controller *nandc; | |
c76b78d8 AT |
2911 | const void *dev_data; |
2912 | struct device *dev = &pdev->dev; | |
c76b78d8 AT |
2913 | struct resource *res; |
2914 | int ret; | |
2915 | ||
2916 | nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); | |
2917 | if (!nandc) | |
2918 | return -ENOMEM; | |
2919 | ||
2920 | platform_set_drvdata(pdev, nandc); | |
2921 | nandc->dev = dev; | |
2922 | ||
2923 | dev_data = of_device_get_match_data(dev); | |
2924 | if (!dev_data) { | |
2925 | dev_err(&pdev->dev, "failed to get device data\n"); | |
2926 | return -ENODEV; | |
2927 | } | |
2928 | ||
58f1f22a | 2929 | nandc->props = dev_data; |
c76b78d8 | 2930 | |
c76b78d8 AT |
2931 | nandc->core_clk = devm_clk_get(dev, "core"); |
2932 | if (IS_ERR(nandc->core_clk)) | |
2933 | return PTR_ERR(nandc->core_clk); | |
2934 | ||
2935 | nandc->aon_clk = devm_clk_get(dev, "aon"); | |
2936 | if (IS_ERR(nandc->aon_clk)) | |
2937 | return PTR_ERR(nandc->aon_clk); | |
2938 | ||
2939 | ret = qcom_nandc_parse_dt(pdev); | |
2940 | if (ret) | |
2941 | return ret; | |
2942 | ||
7330fc50 AB |
2943 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
2944 | nandc->base = devm_ioremap_resource(dev, res); | |
2945 | if (IS_ERR(nandc->base)) | |
2946 | return PTR_ERR(nandc->base); | |
2947 | ||
2948 | nandc->base_phys = res->start; | |
2949 | nandc->base_dma = dma_map_resource(dev, res->start, | |
2950 | resource_size(res), | |
2951 | DMA_BIDIRECTIONAL, 0); | |
2952 | if (!nandc->base_dma) | |
2953 | return -ENXIO; | |
2954 | ||
c76b78d8 AT |
2955 | ret = qcom_nandc_alloc(nandc); |
2956 | if (ret) | |
7330fc50 | 2957 | goto err_nandc_alloc; |
c76b78d8 AT |
2958 | |
2959 | ret = clk_prepare_enable(nandc->core_clk); | |
2960 | if (ret) | |
2961 | goto err_core_clk; | |
2962 | ||
2963 | ret = clk_prepare_enable(nandc->aon_clk); | |
2964 | if (ret) | |
2965 | goto err_aon_clk; | |
2966 | ||
2967 | ret = qcom_nandc_setup(nandc); | |
2968 | if (ret) | |
2969 | goto err_setup; | |
2970 | ||
89f5127c AS |
2971 | ret = qcom_probe_nand_devices(nandc); |
2972 | if (ret) | |
2973 | goto err_setup; | |
c76b78d8 AT |
2974 | |
2975 | return 0; | |
2976 | ||
c76b78d8 AT |
2977 | err_setup: |
2978 | clk_disable_unprepare(nandc->aon_clk); | |
2979 | err_aon_clk: | |
2980 | clk_disable_unprepare(nandc->core_clk); | |
2981 | err_core_clk: | |
2982 | qcom_nandc_unalloc(nandc); | |
7330fc50 AB |
2983 | err_nandc_alloc: |
2984 | dma_unmap_resource(dev, res->start, resource_size(res), | |
2985 | DMA_BIDIRECTIONAL, 0); | |
c76b78d8 AT |
2986 | |
2987 | return ret; | |
2988 | } | |
2989 | ||
2990 | static int qcom_nandc_remove(struct platform_device *pdev) | |
2991 | { | |
2992 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); | |
7330fc50 | 2993 | struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
c76b78d8 AT |
2994 | struct qcom_nand_host *host; |
2995 | ||
2996 | list_for_each_entry(host, &nandc->host_list, node) | |
59ac276f | 2997 | nand_release(&host->chip); |
c76b78d8 | 2998 | |
7330fc50 | 2999 | |
c76b78d8 AT |
3000 | qcom_nandc_unalloc(nandc); |
3001 | ||
3002 | clk_disable_unprepare(nandc->aon_clk); | |
3003 | clk_disable_unprepare(nandc->core_clk); | |
3004 | ||
7330fc50 AB |
3005 | dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), |
3006 | DMA_BIDIRECTIONAL, 0); | |
3007 | ||
c76b78d8 AT |
3008 | return 0; |
3009 | } | |
3010 | ||
58f1f22a AS |
3011 | static const struct qcom_nandc_props ipq806x_nandc_props = { |
3012 | .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), | |
8c5d5d6a | 3013 | .is_bam = false, |
cc409b9a | 3014 | .dev_cmd_reg_start = 0x0, |
58f1f22a | 3015 | }; |
c76b78d8 | 3016 | |
a0637834 AS |
3017 | static const struct qcom_nandc_props ipq4019_nandc_props = { |
3018 | .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), | |
3019 | .is_bam = true, | |
3020 | .dev_cmd_reg_start = 0x0, | |
3021 | }; | |
3022 | ||
dce84760 AS |
3023 | static const struct qcom_nandc_props ipq8074_nandc_props = { |
3024 | .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), | |
3025 | .is_bam = true, | |
3026 | .dev_cmd_reg_start = 0x7000, | |
3027 | }; | |
3028 | ||
c76b78d8 AT |
3029 | /* |
3030 | * data will hold a struct pointer containing more differences once we support | |
3031 | * more controller variants | |
3032 | */ | |
3033 | static const struct of_device_id qcom_nandc_of_match[] = { | |
58f1f22a AS |
3034 | { |
3035 | .compatible = "qcom,ipq806x-nand", | |
3036 | .data = &ipq806x_nandc_props, | |
c76b78d8 | 3037 | }, |
a0637834 AS |
3038 | { |
3039 | .compatible = "qcom,ipq4019-nand", | |
3040 | .data = &ipq4019_nandc_props, | |
3041 | }, | |
dce84760 AS |
3042 | { |
3043 | .compatible = "qcom,ipq8074-nand", | |
3044 | .data = &ipq8074_nandc_props, | |
3045 | }, | |
c76b78d8 AT |
3046 | {} |
3047 | }; | |
3048 | MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); | |
3049 | ||
3050 | static struct platform_driver qcom_nandc_driver = { | |
3051 | .driver = { | |
3052 | .name = "qcom-nandc", | |
3053 | .of_match_table = qcom_nandc_of_match, | |
3054 | }, | |
3055 | .probe = qcom_nandc_probe, | |
3056 | .remove = qcom_nandc_remove, | |
3057 | }; | |
3058 | module_platform_driver(qcom_nandc_driver); | |
3059 | ||
3060 | MODULE_AUTHOR("Archit Taneja <[email protected]>"); | |
3061 | MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); | |
3062 | MODULE_LICENSE("GPL v2"); |