]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
60863c0d MF |
2 | /* |
3 | * Common EFI memory map functions. | |
4 | */ | |
5 | ||
6 | #define pr_fmt(fmt) "efi: " fmt | |
7 | ||
8 | #include <linux/init.h> | |
9 | #include <linux/kernel.h> | |
10 | #include <linux/efi.h> | |
11 | #include <linux/io.h> | |
12 | #include <asm/early_ioremap.h> | |
20b1e22d NS |
13 | #include <linux/memblock.h> |
14 | #include <linux/slab.h> | |
15 | ||
16 | static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) | |
17 | { | |
7e1c4e27 | 18 | return memblock_phys_alloc(size, SMP_CACHE_BYTES); |
20b1e22d NS |
19 | } |
20 | ||
21 | static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) | |
22 | { | |
23 | unsigned int order = get_order(size); | |
24 | struct page *p = alloc_pages(GFP_KERNEL, order); | |
25 | ||
26 | if (!p) | |
27 | return 0; | |
28 | ||
29 | return PFN_PHYS(page_to_pfn(p)); | |
30 | } | |
31 | ||
32 | /** | |
33 | * efi_memmap_alloc - Allocate memory for the EFI memory map | |
34 | * @num_entries: Number of entries in the allocated map. | |
35 | * | |
36 | * Depending on whether mm_init() has already been invoked or not, | |
37 | * either memblock or "normal" page allocation is used. | |
38 | * | |
39 | * Returns the physical address of the allocated memory map on | |
40 | * success, zero on failure. | |
41 | */ | |
42 | phys_addr_t __init efi_memmap_alloc(unsigned int num_entries) | |
43 | { | |
44 | unsigned long size = num_entries * efi.memmap.desc_size; | |
45 | ||
46 | if (slab_is_available()) | |
47 | return __efi_memmap_alloc_late(size); | |
48 | ||
49 | return __efi_memmap_alloc_early(size); | |
50 | } | |
60863c0d MF |
51 | |
52 | /** | |
53 | * __efi_memmap_init - Common code for mapping the EFI memory map | |
54 | * @data: EFI memory map data | |
55 | * @late: Use early or late mapping function? | |
56 | * | |
57 | * This function takes care of figuring out which function to use to | |
58 | * map the EFI memory map in efi.memmap based on how far into the boot | |
59 | * we are. | |
60 | * | |
61 | * During bootup @late should be %false since we only have access to | |
62 | * the early_memremap*() functions as the vmalloc space isn't setup. | |
63 | * Once the kernel is fully booted we can fallback to the more robust | |
64 | * memremap*() API. | |
65 | * | |
66 | * Returns zero on success, a negative error code on failure. | |
67 | */ | |
68 | static int __init | |
69 | __efi_memmap_init(struct efi_memory_map_data *data, bool late) | |
70 | { | |
71 | struct efi_memory_map map; | |
72 | phys_addr_t phys_map; | |
73 | ||
74 | if (efi_enabled(EFI_PARAVIRT)) | |
75 | return 0; | |
76 | ||
77 | phys_map = data->phys_map; | |
78 | ||
79 | if (late) | |
80 | map.map = memremap(phys_map, data->size, MEMREMAP_WB); | |
81 | else | |
82 | map.map = early_memremap(phys_map, data->size); | |
83 | ||
84 | if (!map.map) { | |
85 | pr_err("Could not map the memory map!\n"); | |
86 | return -ENOMEM; | |
87 | } | |
88 | ||
89 | map.phys_map = data->phys_map; | |
90 | map.nr_map = data->size / data->desc_size; | |
91 | map.map_end = map.map + data->size; | |
92 | ||
93 | map.desc_version = data->desc_version; | |
94 | map.desc_size = data->desc_size; | |
95 | map.late = late; | |
96 | ||
97 | set_bit(EFI_MEMMAP, &efi.flags); | |
98 | ||
99 | efi.memmap = map; | |
100 | ||
101 | return 0; | |
102 | } | |
103 | ||
104 | /** | |
105 | * efi_memmap_init_early - Map the EFI memory map data structure | |
106 | * @data: EFI memory map data | |
107 | * | |
108 | * Use early_memremap() to map the passed in EFI memory map and assign | |
109 | * it to efi.memmap. | |
110 | */ | |
111 | int __init efi_memmap_init_early(struct efi_memory_map_data *data) | |
112 | { | |
113 | /* Cannot go backwards */ | |
114 | WARN_ON(efi.memmap.late); | |
115 | ||
116 | return __efi_memmap_init(data, false); | |
117 | } | |
118 | ||
119 | void __init efi_memmap_unmap(void) | |
120 | { | |
33412b86 AB |
121 | if (!efi_enabled(EFI_MEMMAP)) |
122 | return; | |
123 | ||
60863c0d MF |
124 | if (!efi.memmap.late) { |
125 | unsigned long size; | |
126 | ||
127 | size = efi.memmap.desc_size * efi.memmap.nr_map; | |
128 | early_memunmap(efi.memmap.map, size); | |
129 | } else { | |
130 | memunmap(efi.memmap.map); | |
131 | } | |
132 | ||
133 | efi.memmap.map = NULL; | |
134 | clear_bit(EFI_MEMMAP, &efi.flags); | |
135 | } | |
136 | ||
137 | /** | |
138 | * efi_memmap_init_late - Map efi.memmap with memremap() | |
139 | * @phys_addr: Physical address of the new EFI memory map | |
140 | * @size: Size in bytes of the new EFI memory map | |
141 | * | |
142 | * Setup a mapping of the EFI memory map using ioremap_cache(). This | |
143 | * function should only be called once the vmalloc space has been | |
144 | * setup and is therefore not suitable for calling during early EFI | |
145 | * initialise, e.g. in efi_init(). Additionally, it expects | |
146 | * efi_memmap_init_early() to have already been called. | |
147 | * | |
148 | * The reason there are two EFI memmap initialisation | |
149 | * (efi_memmap_init_early() and this late version) is because the | |
150 | * early EFI memmap should be explicitly unmapped once EFI | |
151 | * initialisation is complete as the fixmap space used to map the EFI | |
152 | * memmap (via early_memremap()) is a scarce resource. | |
153 | * | |
154 | * This late mapping is intended to persist for the duration of | |
155 | * runtime so that things like efi_mem_desc_lookup() and | |
156 | * efi_mem_attributes() always work. | |
157 | * | |
158 | * Returns zero on success, a negative error code on failure. | |
159 | */ | |
160 | int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) | |
161 | { | |
162 | struct efi_memory_map_data data = { | |
163 | .phys_map = addr, | |
164 | .size = size, | |
165 | }; | |
166 | ||
167 | /* Did we forget to unmap the early EFI memmap? */ | |
168 | WARN_ON(efi.memmap.map); | |
169 | ||
170 | /* Were we already called? */ | |
171 | WARN_ON(efi.memmap.late); | |
172 | ||
173 | /* | |
174 | * It makes no sense to allow callers to register different | |
175 | * values for the following fields. Copy them out of the | |
176 | * existing early EFI memmap. | |
177 | */ | |
178 | data.desc_version = efi.memmap.desc_version; | |
179 | data.desc_size = efi.memmap.desc_size; | |
180 | ||
181 | return __efi_memmap_init(&data, true); | |
182 | } | |
183 | ||
c45f4da3 MF |
184 | /** |
185 | * efi_memmap_install - Install a new EFI memory map in efi.memmap | |
186 | * @addr: Physical address of the memory map | |
187 | * @nr_map: Number of entries in the memory map | |
188 | * | |
189 | * Unlike efi_memmap_init_*(), this function does not allow the caller | |
190 | * to switch from early to late mappings. It simply uses the existing | |
191 | * mapping function and installs the new memmap. | |
192 | * | |
193 | * Returns zero on success, a negative error code on failure. | |
194 | */ | |
195 | int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map) | |
196 | { | |
197 | struct efi_memory_map_data data; | |
198 | ||
199 | efi_memmap_unmap(); | |
200 | ||
201 | data.phys_map = addr; | |
202 | data.size = efi.memmap.desc_size * nr_map; | |
203 | data.desc_version = efi.memmap.desc_version; | |
204 | data.desc_size = efi.memmap.desc_size; | |
205 | ||
206 | return __efi_memmap_init(&data, efi.memmap.late); | |
207 | } | |
208 | ||
60863c0d MF |
209 | /** |
210 | * efi_memmap_split_count - Count number of additional EFI memmap entries | |
211 | * @md: EFI memory descriptor to split | |
212 | * @range: Address range (start, end) to split around | |
213 | * | |
214 | * Returns the number of additional EFI memmap entries required to | |
215 | * accomodate @range. | |
216 | */ | |
217 | int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) | |
218 | { | |
219 | u64 m_start, m_end; | |
220 | u64 start, end; | |
221 | int count = 0; | |
222 | ||
223 | start = md->phys_addr; | |
224 | end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; | |
225 | ||
226 | /* modifying range */ | |
227 | m_start = range->start; | |
228 | m_end = range->end; | |
229 | ||
230 | if (m_start <= start) { | |
231 | /* split into 2 parts */ | |
232 | if (start < m_end && m_end < end) | |
233 | count++; | |
234 | } | |
235 | ||
236 | if (start < m_start && m_start < end) { | |
237 | /* split into 3 parts */ | |
238 | if (m_end < end) | |
239 | count += 2; | |
240 | /* split into 2 parts */ | |
241 | if (end <= m_end) | |
242 | count++; | |
243 | } | |
244 | ||
245 | return count; | |
246 | } | |
247 | ||
248 | /** | |
249 | * efi_memmap_insert - Insert a memory region in an EFI memmap | |
250 | * @old_memmap: The existing EFI memory map structure | |
251 | * @buf: Address of buffer to store new map | |
252 | * @mem: Memory map entry to insert | |
253 | * | |
254 | * It is suggested that you call efi_memmap_split_count() first | |
255 | * to see how large @buf needs to be. | |
256 | */ | |
257 | void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, | |
258 | struct efi_mem_range *mem) | |
259 | { | |
260 | u64 m_start, m_end, m_attr; | |
261 | efi_memory_desc_t *md; | |
262 | u64 start, end; | |
263 | void *old, *new; | |
264 | ||
265 | /* modifying range */ | |
266 | m_start = mem->range.start; | |
267 | m_end = mem->range.end; | |
268 | m_attr = mem->attribute; | |
269 | ||
92dc3350 MF |
270 | /* |
271 | * The EFI memory map deals with regions in EFI_PAGE_SIZE | |
272 | * units. Ensure that the region described by 'mem' is aligned | |
273 | * correctly. | |
274 | */ | |
275 | if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || | |
276 | !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { | |
277 | WARN_ON(1); | |
278 | return; | |
279 | } | |
280 | ||
60863c0d MF |
281 | for (old = old_memmap->map, new = buf; |
282 | old < old_memmap->map_end; | |
283 | old += old_memmap->desc_size, new += old_memmap->desc_size) { | |
284 | ||
285 | /* copy original EFI memory descriptor */ | |
286 | memcpy(new, old, old_memmap->desc_size); | |
287 | md = new; | |
288 | start = md->phys_addr; | |
289 | end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; | |
290 | ||
291 | if (m_start <= start && end <= m_end) | |
292 | md->attribute |= m_attr; | |
293 | ||
294 | if (m_start <= start && | |
295 | (start < m_end && m_end < end)) { | |
296 | /* first part */ | |
297 | md->attribute |= m_attr; | |
298 | md->num_pages = (m_end - md->phys_addr + 1) >> | |
299 | EFI_PAGE_SHIFT; | |
300 | /* latter part */ | |
301 | new += old_memmap->desc_size; | |
302 | memcpy(new, old, old_memmap->desc_size); | |
303 | md = new; | |
304 | md->phys_addr = m_end + 1; | |
305 | md->num_pages = (end - md->phys_addr + 1) >> | |
306 | EFI_PAGE_SHIFT; | |
307 | } | |
308 | ||
309 | if ((start < m_start && m_start < end) && m_end < end) { | |
310 | /* first part */ | |
311 | md->num_pages = (m_start - md->phys_addr) >> | |
312 | EFI_PAGE_SHIFT; | |
313 | /* middle part */ | |
314 | new += old_memmap->desc_size; | |
315 | memcpy(new, old, old_memmap->desc_size); | |
316 | md = new; | |
317 | md->attribute |= m_attr; | |
318 | md->phys_addr = m_start; | |
319 | md->num_pages = (m_end - m_start + 1) >> | |
320 | EFI_PAGE_SHIFT; | |
321 | /* last part */ | |
322 | new += old_memmap->desc_size; | |
323 | memcpy(new, old, old_memmap->desc_size); | |
324 | md = new; | |
325 | md->phys_addr = m_end + 1; | |
326 | md->num_pages = (end - m_end) >> | |
327 | EFI_PAGE_SHIFT; | |
328 | } | |
329 | ||
330 | if ((start < m_start && m_start < end) && | |
331 | (end <= m_end)) { | |
332 | /* first part */ | |
333 | md->num_pages = (m_start - md->phys_addr) >> | |
334 | EFI_PAGE_SHIFT; | |
335 | /* latter part */ | |
336 | new += old_memmap->desc_size; | |
337 | memcpy(new, old, old_memmap->desc_size); | |
338 | md = new; | |
339 | md->phys_addr = m_start; | |
340 | md->num_pages = (end - md->phys_addr + 1) >> | |
341 | EFI_PAGE_SHIFT; | |
342 | md->attribute |= m_attr; | |
343 | } | |
344 | } | |
345 | } |