]>
Commit | Line | Data |
---|---|---|
3c7f2550 MS |
1 | /* |
2 | * EFI stub implementation that is shared by arm and arm64 architectures. | |
3 | * This should be #included by the EFI stub implementation files. | |
4 | * | |
5 | * Copyright (C) 2013,2014 Linaro Limited | |
6 | * Roy Franz <[email protected] | |
7 | * Copyright (C) 2013 Red Hat, Inc. | |
8 | * Mark Salter <[email protected]> | |
9 | * | |
10 | * This file is part of the Linux kernel, and is made available under the | |
11 | * terms of the GNU General Public License version 2. | |
12 | * | |
13 | */ | |
14 | ||
bd669475 | 15 | #include <linux/efi.h> |
0ce3cc00 | 16 | #include <linux/sort.h> |
bd669475 AB |
17 | #include <asm/efi.h> |
18 | ||
19 | #include "efistub.h" | |
20 | ||
e69176d6 AB |
21 | /* |
22 | * This is the base address at which to start allocating virtual memory ranges | |
23 | * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use | |
24 | * any allocation we choose, and eliminate the risk of a conflict after kexec. | |
25 | * The value chosen is the largest non-zero power of 2 suitable for this purpose | |
26 | * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can | |
27 | * be mapped efficiently. | |
28 | * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, | |
29 | * map everything below 1 GB. (512 MB is a reasonable upper bound for the | |
30 | * entire footprint of the UEFI runtime services memory regions) | |
31 | */ | |
32 | #define EFI_RT_VIRTUAL_BASE SZ_512M | |
33 | #define EFI_RT_VIRTUAL_SIZE SZ_512M | |
34 | ||
197decef AB |
35 | #ifdef CONFIG_ARM64 |
36 | # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64 | |
37 | #else | |
38 | # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE | |
39 | #endif | |
40 | ||
e69176d6 AB |
41 | static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; |
42 | ||
bd669475 | 43 | void efi_char16_printk(efi_system_table_t *sys_table_arg, |
3c7f2550 MS |
44 | efi_char16_t *str) |
45 | { | |
46 | struct efi_simple_text_output_protocol *out; | |
47 | ||
48 | out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out; | |
49 | out->output_string(out, str); | |
50 | } | |
51 | ||
f0827e18 AB |
52 | static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg) |
53 | { | |
54 | efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; | |
55 | efi_status_t status; | |
56 | unsigned long size; | |
57 | void **gop_handle = NULL; | |
58 | struct screen_info *si = NULL; | |
59 | ||
60 | size = 0; | |
61 | status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, | |
62 | &gop_proto, NULL, &size, gop_handle); | |
63 | if (status == EFI_BUFFER_TOO_SMALL) { | |
64 | si = alloc_screen_info(sys_table_arg); | |
65 | if (!si) | |
66 | return NULL; | |
67 | efi_setup_gop(sys_table_arg, si, &gop_proto, size); | |
68 | } | |
69 | return si; | |
70 | } | |
3c7f2550 | 71 | |
b844470f AB |
72 | void install_memreserve_table(efi_system_table_t *sys_table_arg) |
73 | { | |
74 | struct linux_efi_memreserve *rsv; | |
75 | efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; | |
76 | efi_status_t status; | |
77 | ||
eff89628 AB |
78 | if (IS_ENABLED(CONFIG_ARM)) |
79 | return; | |
80 | ||
b844470f AB |
81 | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), |
82 | (void **)&rsv); | |
83 | if (status != EFI_SUCCESS) { | |
84 | pr_efi_err(sys_table_arg, "Failed to allocate memreserve entry!\n"); | |
85 | return; | |
86 | } | |
87 | ||
88 | rsv->next = 0; | |
89 | rsv->base = 0; | |
90 | rsv->size = 0; | |
91 | ||
92 | status = efi_call_early(install_configuration_table, | |
93 | &memreserve_table_guid, | |
94 | rsv); | |
95 | if (status != EFI_SUCCESS) | |
96 | pr_efi_err(sys_table_arg, "Failed to install memreserve config table!\n"); | |
97 | } | |
98 | ||
99 | ||
3c7f2550 MS |
100 | /* |
101 | * This function handles the architcture specific differences between arm and | |
102 | * arm64 regarding where the kernel image must be loaded and any memory that | |
103 | * must be reserved. On failure it is required to free all | |
104 | * all allocations it has made. | |
105 | */ | |
bd669475 AB |
106 | efi_status_t handle_kernel_image(efi_system_table_t *sys_table, |
107 | unsigned long *image_addr, | |
108 | unsigned long *image_size, | |
109 | unsigned long *reserve_addr, | |
110 | unsigned long *reserve_size, | |
111 | unsigned long dram_base, | |
112 | efi_loaded_image_t *image); | |
3c7f2550 MS |
113 | /* |
114 | * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint | |
115 | * that is described in the PE/COFF header. Most of the code is the same | |
116 | * for both archictectures, with the arch-specific code provided in the | |
117 | * handle_kernel_image() function. | |
118 | */ | |
ddeeefe2 | 119 | unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, |
3c7f2550 MS |
120 | unsigned long *image_addr) |
121 | { | |
122 | efi_loaded_image_t *image; | |
123 | efi_status_t status; | |
124 | unsigned long image_size = 0; | |
125 | unsigned long dram_base; | |
126 | /* addr/point and size pairs for memory management*/ | |
127 | unsigned long initrd_addr; | |
128 | u64 initrd_size = 0; | |
345c736e | 129 | unsigned long fdt_addr = 0; /* Original DTB */ |
a643375f | 130 | unsigned long fdt_size = 0; |
3c7f2550 MS |
131 | char *cmdline_ptr = NULL; |
132 | int cmdline_size = 0; | |
133 | unsigned long new_fdt_addr; | |
134 | efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; | |
135 | unsigned long reserve_addr = 0; | |
136 | unsigned long reserve_size = 0; | |
de8cb458 | 137 | enum efi_secureboot_mode secure_boot; |
f0827e18 | 138 | struct screen_info *si; |
3c7f2550 MS |
139 | |
140 | /* Check if we were booted by the EFI firmware */ | |
141 | if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | |
142 | goto fail; | |
143 | ||
b9d6769b AB |
144 | status = check_platform_features(sys_table); |
145 | if (status != EFI_SUCCESS) | |
146 | goto fail; | |
147 | ||
3c7f2550 MS |
148 | /* |
149 | * Get a handle to the loaded image protocol. This is used to get | |
150 | * information about the running image, such as size and the command | |
151 | * line. | |
152 | */ | |
153 | status = sys_table->boottime->handle_protocol(handle, | |
154 | &loaded_image_proto, (void *)&image); | |
155 | if (status != EFI_SUCCESS) { | |
156 | pr_efi_err(sys_table, "Failed to get loaded image protocol\n"); | |
157 | goto fail; | |
158 | } | |
159 | ||
160 | dram_base = get_dram_base(sys_table); | |
161 | if (dram_base == EFI_ERROR) { | |
162 | pr_efi_err(sys_table, "Failed to find DRAM base\n"); | |
163 | goto fail; | |
164 | } | |
3c7f2550 MS |
165 | |
166 | /* | |
167 | * Get the command line from EFI, using the LOADED_IMAGE | |
168 | * protocol. We are going to copy the command line into the | |
169 | * device tree, so this can be allocated anywhere. | |
170 | */ | |
171 | cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size); | |
172 | if (!cmdline_ptr) { | |
173 | pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n"); | |
2b5fe07a AB |
174 | goto fail; |
175 | } | |
176 | ||
eeff7d63 AB |
177 | if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || |
178 | IS_ENABLED(CONFIG_CMDLINE_FORCE) || | |
179 | cmdline_size == 0) | |
180 | efi_parse_options(CONFIG_CMDLINE); | |
181 | ||
182 | if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) | |
183 | efi_parse_options(cmdline_ptr); | |
184 | ||
185 | pr_efi(sys_table, "Booting Linux Kernel...\n"); | |
186 | ||
f0827e18 AB |
187 | si = setup_graphics(sys_table); |
188 | ||
2b5fe07a AB |
189 | status = handle_kernel_image(sys_table, image_addr, &image_size, |
190 | &reserve_addr, | |
191 | &reserve_size, | |
192 | dram_base, image); | |
193 | if (status != EFI_SUCCESS) { | |
194 | pr_efi_err(sys_table, "Failed to relocate kernel\n"); | |
195 | goto fail_free_cmdline; | |
3c7f2550 MS |
196 | } |
197 | ||
ccc829ba MG |
198 | /* Ask the firmware to clear memory on unclean shutdown */ |
199 | efi_enable_reset_attack_mitigation(sys_table); | |
200 | ||
73a64925 | 201 | secure_boot = efi_get_secureboot(sys_table); |
73a64925 | 202 | |
345c736e | 203 | /* |
de8cb458 DH |
204 | * Unauthenticated device tree data is a security hazard, so ignore |
205 | * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure | |
206 | * boot is enabled if we can't determine its state. | |
345c736e | 207 | */ |
3d7ee348 AB |
208 | if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) || |
209 | secure_boot != efi_secureboot_mode_disabled) { | |
210 | if (strstr(cmdline_ptr, "dtb=")) | |
211 | pr_efi(sys_table, "Ignoring DTB from command line.\n"); | |
345c736e | 212 | } else { |
3c7f2550 MS |
213 | status = handle_cmdline_files(sys_table, image, cmdline_ptr, |
214 | "dtb=", | |
a643375f | 215 | ~0UL, &fdt_addr, &fdt_size); |
3c7f2550 MS |
216 | |
217 | if (status != EFI_SUCCESS) { | |
218 | pr_efi_err(sys_table, "Failed to load device tree!\n"); | |
2b5fe07a | 219 | goto fail_free_image; |
3c7f2550 MS |
220 | } |
221 | } | |
0bcaa904 MR |
222 | |
223 | if (fdt_addr) { | |
224 | pr_efi(sys_table, "Using DTB from command line\n"); | |
225 | } else { | |
345c736e | 226 | /* Look for a device tree configuration table entry. */ |
a643375f | 227 | fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size); |
0bcaa904 MR |
228 | if (fdt_addr) |
229 | pr_efi(sys_table, "Using DTB from configuration table\n"); | |
230 | } | |
231 | ||
232 | if (!fdt_addr) | |
233 | pr_efi(sys_table, "Generating empty DTB\n"); | |
3c7f2550 | 234 | |
138728dd AB |
235 | status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=", |
236 | efi_get_max_initrd_addr(dram_base, | |
237 | *image_addr), | |
3c7f2550 MS |
238 | (unsigned long *)&initrd_addr, |
239 | (unsigned long *)&initrd_size); | |
240 | if (status != EFI_SUCCESS) | |
241 | pr_efi_err(sys_table, "Failed initrd from command line!\n"); | |
242 | ||
568bc4e8 AB |
243 | efi_random_get_seed(sys_table); |
244 | ||
38fb6652 AB |
245 | /* hibernation expects the runtime regions to stay in the same place */ |
246 | if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) { | |
e69176d6 AB |
247 | /* |
248 | * Randomize the base of the UEFI runtime services region. | |
249 | * Preserve the 2 MB alignment of the region by taking a | |
250 | * shift of 21 bit positions into account when scaling | |
251 | * the headroom value using a 32-bit random value. | |
252 | */ | |
197decef AB |
253 | static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - |
254 | EFI_RT_VIRTUAL_BASE - | |
255 | EFI_RT_VIRTUAL_SIZE; | |
e69176d6 AB |
256 | u32 rnd; |
257 | ||
258 | status = efi_get_random_bytes(sys_table, sizeof(rnd), | |
259 | (u8 *)&rnd); | |
260 | if (status == EFI_SUCCESS) { | |
261 | virtmap_base = EFI_RT_VIRTUAL_BASE + | |
262 | (((headroom >> 21) * rnd) >> (32 - 21)); | |
263 | } | |
264 | } | |
265 | ||
b844470f AB |
266 | install_memreserve_table(sys_table); |
267 | ||
3c7f2550 MS |
268 | new_fdt_addr = fdt_addr; |
269 | status = allocate_new_fdt_and_exit_boot(sys_table, handle, | |
138728dd | 270 | &new_fdt_addr, efi_get_max_fdt_addr(dram_base), |
3c7f2550 MS |
271 | initrd_addr, initrd_size, cmdline_ptr, |
272 | fdt_addr, fdt_size); | |
273 | ||
274 | /* | |
275 | * If all went well, we need to return the FDT address to the | |
276 | * calling function so it can be passed to kernel as part of | |
277 | * the kernel boot protocol. | |
278 | */ | |
279 | if (status == EFI_SUCCESS) | |
280 | return new_fdt_addr; | |
281 | ||
282 | pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n"); | |
283 | ||
284 | efi_free(sys_table, initrd_size, initrd_addr); | |
285 | efi_free(sys_table, fdt_size, fdt_addr); | |
286 | ||
3c7f2550 MS |
287 | fail_free_image: |
288 | efi_free(sys_table, image_size, *image_addr); | |
289 | efi_free(sys_table, reserve_size, reserve_addr); | |
2b5fe07a | 290 | fail_free_cmdline: |
f0827e18 | 291 | free_screen_info(sys_table, si); |
2b5fe07a | 292 | efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); |
3c7f2550 MS |
293 | fail: |
294 | return EFI_ERROR; | |
295 | } | |
f3cdfd23 | 296 | |
0ce3cc00 AB |
297 | static int cmp_mem_desc(const void *l, const void *r) |
298 | { | |
299 | const efi_memory_desc_t *left = l, *right = r; | |
300 | ||
301 | return (left->phys_addr > right->phys_addr) ? 1 : -1; | |
302 | } | |
303 | ||
304 | /* | |
305 | * Returns whether region @left ends exactly where region @right starts, | |
306 | * or false if either argument is NULL. | |
307 | */ | |
308 | static bool regions_are_adjacent(efi_memory_desc_t *left, | |
309 | efi_memory_desc_t *right) | |
310 | { | |
311 | u64 left_end; | |
312 | ||
313 | if (left == NULL || right == NULL) | |
314 | return false; | |
315 | ||
316 | left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE; | |
317 | ||
318 | return left_end == right->phys_addr; | |
319 | } | |
320 | ||
321 | /* | |
322 | * Returns whether region @left and region @right have compatible memory type | |
323 | * mapping attributes, and are both EFI_MEMORY_RUNTIME regions. | |
324 | */ | |
325 | static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left, | |
326 | efi_memory_desc_t *right) | |
327 | { | |
328 | static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT | | |
329 | EFI_MEMORY_WC | EFI_MEMORY_UC | | |
330 | EFI_MEMORY_RUNTIME; | |
331 | ||
332 | return ((left->attribute ^ right->attribute) & mem_type_mask) == 0; | |
333 | } | |
334 | ||
f3cdfd23 AB |
335 | /* |
336 | * efi_get_virtmap() - create a virtual mapping for the EFI memory map | |
337 | * | |
338 | * This function populates the virt_addr fields of all memory region descriptors | |
339 | * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors | |
340 | * are also copied to @runtime_map, and their total count is returned in @count. | |
341 | */ | |
342 | void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, | |
343 | unsigned long desc_size, efi_memory_desc_t *runtime_map, | |
344 | int *count) | |
345 | { | |
e69176d6 | 346 | u64 efi_virt_base = virtmap_base; |
0ce3cc00 | 347 | efi_memory_desc_t *in, *prev = NULL, *out = runtime_map; |
f3cdfd23 AB |
348 | int l; |
349 | ||
0ce3cc00 AB |
350 | /* |
351 | * To work around potential issues with the Properties Table feature | |
352 | * introduced in UEFI 2.5, which may split PE/COFF executable images | |
353 | * in memory into several RuntimeServicesCode and RuntimeServicesData | |
354 | * regions, we need to preserve the relative offsets between adjacent | |
355 | * EFI_MEMORY_RUNTIME regions with the same memory type attributes. | |
356 | * The easiest way to find adjacent regions is to sort the memory map | |
357 | * before traversing it. | |
358 | */ | |
29f9007b AB |
359 | if (IS_ENABLED(CONFIG_ARM64)) |
360 | sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, | |
361 | NULL); | |
0ce3cc00 AB |
362 | |
363 | for (l = 0; l < map_size; l += desc_size, prev = in) { | |
f3cdfd23 AB |
364 | u64 paddr, size; |
365 | ||
0ce3cc00 | 366 | in = (void *)memory_map + l; |
f3cdfd23 AB |
367 | if (!(in->attribute & EFI_MEMORY_RUNTIME)) |
368 | continue; | |
369 | ||
0ce3cc00 AB |
370 | paddr = in->phys_addr; |
371 | size = in->num_pages * EFI_PAGE_SIZE; | |
372 | ||
f3cdfd23 AB |
373 | /* |
374 | * Make the mapping compatible with 64k pages: this allows | |
375 | * a 4k page size kernel to kexec a 64k page size kernel and | |
376 | * vice versa. | |
377 | */ | |
29f9007b AB |
378 | if ((IS_ENABLED(CONFIG_ARM64) && |
379 | !regions_are_adjacent(prev, in)) || | |
0ce3cc00 AB |
380 | !regions_have_compatible_memory_type_attrs(prev, in)) { |
381 | ||
382 | paddr = round_down(in->phys_addr, SZ_64K); | |
383 | size += in->phys_addr - paddr; | |
384 | ||
385 | /* | |
386 | * Avoid wasting memory on PTEs by choosing a virtual | |
387 | * base that is compatible with section mappings if this | |
388 | * region has the appropriate size and physical | |
389 | * alignment. (Sections are 2 MB on 4k granule kernels) | |
390 | */ | |
391 | if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) | |
392 | efi_virt_base = round_up(efi_virt_base, SZ_2M); | |
393 | else | |
394 | efi_virt_base = round_up(efi_virt_base, SZ_64K); | |
395 | } | |
f3cdfd23 AB |
396 | |
397 | in->virt_addr = efi_virt_base + in->phys_addr - paddr; | |
398 | efi_virt_base += size; | |
399 | ||
400 | memcpy(out, in, desc_size); | |
401 | out = (void *)out + desc_size; | |
402 | ++*count; | |
403 | } | |
404 | } |