]> Git Repo - linux.git/blame - arch/x86/kvm/mmu.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <[email protected]>
14 * Avi Kivity <[email protected]>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
d0ec49d4 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
6aa8b732 128
53166229 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 131
fe135d2c
AK
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
f160c7b7
JS
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
90bb6fc5
AK
141#include <trace/events/kvm.h>
142
07420171
AK
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
49fde340
XG
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 148
135f8c2b
AK
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
220f773a
TY
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
9b8ebbdb
PB
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
53c07b18
XG
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
cd4a4e53
AK
171};
172
2d11123a
AK
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
2d11123a 176 u64 *sptep;
dd3bfd59 177 int level;
2d11123a
AK
178 unsigned index;
179};
180
9fa72119
JS
181static const union kvm_mmu_page_role mmu_base_role_mask = {
182 .cr0_wp = 1,
183 .cr4_pae = 1,
184 .nxe = 1,
185 .smep_andnot_wp = 1,
186 .smap_andnot_wp = 1,
187 .smm = 1,
188 .guest_mode = 1,
189 .ad_disabled = 1,
190};
191
7eb77e9f
JS
192#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
194 (_root), (_addr)); \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
197
198#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
202
c2a2ac2b
XG
203#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
208
53c07b18 209static struct kmem_cache *pte_list_desc_cache;
d3d25b04 210static struct kmem_cache *mmu_page_header_cache;
45221ab6 211static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 212
7b52345e
SY
213static u64 __read_mostly shadow_nx_mask;
214static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215static u64 __read_mostly shadow_user_mask;
216static u64 __read_mostly shadow_accessed_mask;
217static u64 __read_mostly shadow_dirty_mask;
ce88decf 218static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 219static u64 __read_mostly shadow_mmio_value;
ffb128c8 220static u64 __read_mostly shadow_present_mask;
d0ec49d4 221static u64 __read_mostly shadow_me_mask;
ce88decf 222
f160c7b7 223/*
ac8d57e5
PF
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
226 * tracking.
f160c7b7
JS
227 */
228static u64 __read_mostly shadow_acc_track_mask;
229static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231/*
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
236 */
237static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
28a1f3ac
JS
241/*
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
244 */
245static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247/*
248 * The number of high-order 1 bits to use in the mask above.
249 */
250static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
daa07cbc
SC
252/*
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
259 */
260static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
ce88decf 263static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
264static union kvm_mmu_page_role
265kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 266
dcdca5fe 267void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 268{
dcdca5fe
PF
269 BUG_ON((mmio_mask & mmio_value) != mmio_value);
270 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 271 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
272}
273EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
274
ac8d57e5
PF
275static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
276{
277 return sp->role.ad_disabled;
278}
279
280static inline bool spte_ad_enabled(u64 spte)
281{
282 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283 return !(spte & shadow_acc_track_value);
284}
285
286static inline u64 spte_shadow_accessed_mask(u64 spte)
287{
288 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
290}
291
292static inline u64 spte_shadow_dirty_mask(u64 spte)
293{
294 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
296}
297
f160c7b7
JS
298static inline bool is_access_track_spte(u64 spte)
299{
ac8d57e5 300 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
301}
302
f2fd125d 303/*
ee3d1570
DM
304 * the low bit of the generation number is always presumed to be zero.
305 * This disables mmio caching during memslot updates. The concept is
306 * similar to a seqcount but instead of retrying the access we just punt
307 * and ignore the cache.
308 *
309 * spte bits 3-11 are used as bits 1-9 of the generation number,
310 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 311 */
ee3d1570 312#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
313#define MMIO_SPTE_GEN_HIGH_SHIFT 52
314
ee3d1570
DM
315#define MMIO_GEN_SHIFT 20
316#define MMIO_GEN_LOW_SHIFT 10
317#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 318#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
319
320static u64 generation_mmio_spte_mask(unsigned int gen)
321{
322 u64 mask;
323
842bb26a 324 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
325
326 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
328 return mask;
329}
330
331static unsigned int get_mmio_spte_generation(u64 spte)
332{
333 unsigned int gen;
334
335 spte &= ~shadow_mmio_mask;
336
337 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
339 return gen;
340}
341
54bf36aa 342static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 343{
54bf36aa 344 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
345}
346
54bf36aa 347static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 348 unsigned access)
ce88decf 349{
54bf36aa 350 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 351 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 352 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 353
ce88decf 354 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
355 mask |= shadow_mmio_value | access;
356 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 359
f8f55942 360 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 361 mmu_spte_set(sptep, mask);
ce88decf
XG
362}
363
364static bool is_mmio_spte(u64 spte)
365{
dcdca5fe 366 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
367}
368
369static gfn_t get_mmio_spte_gfn(u64 spte)
370{
daa07cbc 371 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
372
373 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374 & shadow_nonpresent_or_rsvd_mask;
375
376 return gpa >> PAGE_SHIFT;
ce88decf
XG
377}
378
379static unsigned get_mmio_spte_access(u64 spte)
380{
842bb26a 381 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 382 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
383}
384
54bf36aa 385static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 386 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
387{
388 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 389 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
390 return true;
391 }
392
393 return false;
394}
c7addb90 395
54bf36aa 396static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 397{
089504c0
XG
398 unsigned int kvm_gen, spte_gen;
399
54bf36aa 400 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
401 spte_gen = get_mmio_spte_generation(spte);
402
403 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404 return likely(kvm_gen == spte_gen);
f8f55942
XG
405}
406
ce00053b
PF
407/*
408 * Sets the shadow PTE masks used by the MMU.
409 *
410 * Assumptions:
411 * - Setting either @accessed_mask or @dirty_mask requires setting both
412 * - At least one of @accessed_mask or @acc_track_mask must be set
413 */
7b52345e 414void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 415 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 416 u64 acc_track_mask, u64 me_mask)
7b52345e 417{
ce00053b
PF
418 BUG_ON(!dirty_mask != !accessed_mask);
419 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 420 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 421
7b52345e
SY
422 shadow_user_mask = user_mask;
423 shadow_accessed_mask = accessed_mask;
424 shadow_dirty_mask = dirty_mask;
425 shadow_nx_mask = nx_mask;
426 shadow_x_mask = x_mask;
ffb128c8 427 shadow_present_mask = p_mask;
f160c7b7 428 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 429 shadow_me_mask = me_mask;
7b52345e
SY
430}
431EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
432
28a1f3ac 433static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 434{
daa07cbc
SC
435 u8 low_phys_bits;
436
f160c7b7
JS
437 shadow_user_mask = 0;
438 shadow_accessed_mask = 0;
439 shadow_dirty_mask = 0;
440 shadow_nx_mask = 0;
441 shadow_x_mask = 0;
442 shadow_mmio_mask = 0;
443 shadow_present_mask = 0;
444 shadow_acc_track_mask = 0;
28a1f3ac
JS
445
446 /*
447 * If the CPU has 46 or less physical address bits, then set an
448 * appropriate mask to guard against L1TF attacks. Otherwise, it is
449 * assumed that the CPU is not vulnerable to L1TF.
450 */
daa07cbc 451 low_phys_bits = boot_cpu_data.x86_phys_bits;
28a1f3ac 452 if (boot_cpu_data.x86_phys_bits <
daa07cbc 453 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac
JS
454 shadow_nonpresent_or_rsvd_mask =
455 rsvd_bits(boot_cpu_data.x86_phys_bits -
456 shadow_nonpresent_or_rsvd_mask_len,
457 boot_cpu_data.x86_phys_bits - 1);
daa07cbc
SC
458 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
459 }
460 shadow_nonpresent_or_rsvd_lower_gfn_mask =
461 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
462}
463
6aa8b732
AK
464static int is_cpuid_PSE36(void)
465{
466 return 1;
467}
468
73b1087e
AK
469static int is_nx(struct kvm_vcpu *vcpu)
470{
f6801dff 471 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
472}
473
c7addb90
AK
474static int is_shadow_present_pte(u64 pte)
475{
f160c7b7 476 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
477}
478
05da4558
MT
479static int is_large_pte(u64 pte)
480{
481 return pte & PT_PAGE_SIZE_MASK;
482}
483
776e6633
MT
484static int is_last_spte(u64 pte, int level)
485{
486 if (level == PT_PAGE_TABLE_LEVEL)
487 return 1;
852e3c19 488 if (is_large_pte(pte))
776e6633
MT
489 return 1;
490 return 0;
491}
492
d3e328f2
JS
493static bool is_executable_pte(u64 spte)
494{
495 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
496}
497
ba049e93 498static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 499{
35149e21 500 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
501}
502
da928521
AK
503static gfn_t pse36_gfn_delta(u32 gpte)
504{
505 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
506
507 return (gpte & PT32_DIR_PSE36_MASK) << shift;
508}
509
603e0651 510#ifdef CONFIG_X86_64
d555c333 511static void __set_spte(u64 *sptep, u64 spte)
e663ee64 512{
b19ee2ff 513 WRITE_ONCE(*sptep, spte);
e663ee64
AK
514}
515
603e0651 516static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 517{
b19ee2ff 518 WRITE_ONCE(*sptep, spte);
603e0651
XG
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 return xchg(sptep, spte);
524}
c2a2ac2b
XG
525
526static u64 __get_spte_lockless(u64 *sptep)
527{
6aa7de05 528 return READ_ONCE(*sptep);
c2a2ac2b 529}
a9221dd5 530#else
603e0651
XG
531union split_spte {
532 struct {
533 u32 spte_low;
534 u32 spte_high;
535 };
536 u64 spte;
537};
a9221dd5 538
c2a2ac2b
XG
539static void count_spte_clear(u64 *sptep, u64 spte)
540{
541 struct kvm_mmu_page *sp = page_header(__pa(sptep));
542
543 if (is_shadow_present_pte(spte))
544 return;
545
546 /* Ensure the spte is completely set before we increase the count */
547 smp_wmb();
548 sp->clear_spte_count++;
549}
550
603e0651
XG
551static void __set_spte(u64 *sptep, u64 spte)
552{
553 union split_spte *ssptep, sspte;
a9221dd5 554
603e0651
XG
555 ssptep = (union split_spte *)sptep;
556 sspte = (union split_spte)spte;
557
558 ssptep->spte_high = sspte.spte_high;
559
560 /*
561 * If we map the spte from nonpresent to present, We should store
562 * the high bits firstly, then set present bit, so cpu can not
563 * fetch this spte while we are setting the spte.
564 */
565 smp_wmb();
566
b19ee2ff 567 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
568}
569
603e0651
XG
570static void __update_clear_spte_fast(u64 *sptep, u64 spte)
571{
572 union split_spte *ssptep, sspte;
573
574 ssptep = (union split_spte *)sptep;
575 sspte = (union split_spte)spte;
576
b19ee2ff 577 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
578
579 /*
580 * If we map the spte from present to nonpresent, we should clear
581 * present bit firstly to avoid vcpu fetch the old high bits.
582 */
583 smp_wmb();
584
585 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 586 count_spte_clear(sptep, spte);
603e0651
XG
587}
588
589static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
590{
591 union split_spte *ssptep, sspte, orig;
592
593 ssptep = (union split_spte *)sptep;
594 sspte = (union split_spte)spte;
595
596 /* xchg acts as a barrier before the setting of the high bits */
597 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
598 orig.spte_high = ssptep->spte_high;
599 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 600 count_spte_clear(sptep, spte);
603e0651
XG
601
602 return orig.spte;
603}
c2a2ac2b
XG
604
605/*
606 * The idea using the light way get the spte on x86_32 guest is from
607 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
608 *
609 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610 * coalesces them and we are running out of the MMU lock. Therefore
611 * we need to protect against in-progress updates of the spte.
612 *
613 * Reading the spte while an update is in progress may get the old value
614 * for the high part of the spte. The race is fine for a present->non-present
615 * change (because the high part of the spte is ignored for non-present spte),
616 * but for a present->present change we must reread the spte.
617 *
618 * All such changes are done in two steps (present->non-present and
619 * non-present->present), hence it is enough to count the number of
620 * present->non-present updates: if it changed while reading the spte,
621 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
622 */
623static u64 __get_spte_lockless(u64 *sptep)
624{
625 struct kvm_mmu_page *sp = page_header(__pa(sptep));
626 union split_spte spte, *orig = (union split_spte *)sptep;
627 int count;
628
629retry:
630 count = sp->clear_spte_count;
631 smp_rmb();
632
633 spte.spte_low = orig->spte_low;
634 smp_rmb();
635
636 spte.spte_high = orig->spte_high;
637 smp_rmb();
638
639 if (unlikely(spte.spte_low != orig->spte_low ||
640 count != sp->clear_spte_count))
641 goto retry;
642
643 return spte.spte;
644}
603e0651
XG
645#endif
646
ea4114bc 647static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 648{
feb3eb70
GN
649 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
651}
652
8672b721
XG
653static bool spte_has_volatile_bits(u64 spte)
654{
f160c7b7
JS
655 if (!is_shadow_present_pte(spte))
656 return false;
657
c7ba5b48 658 /*
6a6256f9 659 * Always atomically update spte if it can be updated
c7ba5b48
XG
660 * out of mmu-lock, it can ensure dirty bit is not lost,
661 * also, it can help us to get a stable is_writable_pte()
662 * to ensure tlb flush is not missed.
663 */
f160c7b7
JS
664 if (spte_can_locklessly_be_made_writable(spte) ||
665 is_access_track_spte(spte))
c7ba5b48
XG
666 return true;
667
ac8d57e5 668 if (spte_ad_enabled(spte)) {
f160c7b7
JS
669 if ((spte & shadow_accessed_mask) == 0 ||
670 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
671 return true;
672 }
8672b721 673
f160c7b7 674 return false;
8672b721
XG
675}
676
83ef6c81 677static bool is_accessed_spte(u64 spte)
4132779b 678{
ac8d57e5
PF
679 u64 accessed_mask = spte_shadow_accessed_mask(spte);
680
681 return accessed_mask ? spte & accessed_mask
682 : !is_access_track_spte(spte);
4132779b
XG
683}
684
83ef6c81 685static bool is_dirty_spte(u64 spte)
7e71a59b 686{
ac8d57e5
PF
687 u64 dirty_mask = spte_shadow_dirty_mask(spte);
688
689 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
690}
691
1df9f2dc
XG
692/* Rules for using mmu_spte_set:
693 * Set the sptep from nonpresent to present.
694 * Note: the sptep being assigned *must* be either not present
695 * or in a state where the hardware will not attempt to update
696 * the spte.
697 */
698static void mmu_spte_set(u64 *sptep, u64 new_spte)
699{
700 WARN_ON(is_shadow_present_pte(*sptep));
701 __set_spte(sptep, new_spte);
702}
703
f39a058d
JS
704/*
705 * Update the SPTE (excluding the PFN), but do not track changes in its
706 * accessed/dirty status.
1df9f2dc 707 */
f39a058d 708static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 709{
c7ba5b48 710 u64 old_spte = *sptep;
4132779b 711
afd28fe1 712 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 713
6e7d0354
XG
714 if (!is_shadow_present_pte(old_spte)) {
715 mmu_spte_set(sptep, new_spte);
f39a058d 716 return old_spte;
6e7d0354 717 }
4132779b 718
c7ba5b48 719 if (!spte_has_volatile_bits(old_spte))
603e0651 720 __update_clear_spte_fast(sptep, new_spte);
4132779b 721 else
603e0651 722 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 723
83ef6c81
JS
724 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
725
f39a058d
JS
726 return old_spte;
727}
728
729/* Rules for using mmu_spte_update:
730 * Update the state bits, it means the mapped pfn is not changed.
731 *
732 * Whenever we overwrite a writable spte with a read-only one we
733 * should flush remote TLBs. Otherwise rmap_write_protect
734 * will find a read-only spte, even though the writable spte
735 * might be cached on a CPU's TLB, the return value indicates this
736 * case.
737 *
738 * Returns true if the TLB needs to be flushed
739 */
740static bool mmu_spte_update(u64 *sptep, u64 new_spte)
741{
742 bool flush = false;
743 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
744
745 if (!is_shadow_present_pte(old_spte))
746 return false;
747
c7ba5b48
XG
748 /*
749 * For the spte updated out of mmu-lock is safe, since
6a6256f9 750 * we always atomically update it, see the comments in
c7ba5b48
XG
751 * spte_has_volatile_bits().
752 */
ea4114bc 753 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 754 !is_writable_pte(new_spte))
83ef6c81 755 flush = true;
4132779b 756
7e71a59b 757 /*
83ef6c81 758 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
759 * to guarantee consistency between TLB and page tables.
760 */
7e71a59b 761
83ef6c81
JS
762 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
763 flush = true;
4132779b 764 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
765 }
766
767 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
768 flush = true;
4132779b 769 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 770 }
6e7d0354 771
83ef6c81 772 return flush;
b79b93f9
AK
773}
774
1df9f2dc
XG
775/*
776 * Rules for using mmu_spte_clear_track_bits:
777 * It sets the sptep from present to nonpresent, and track the
778 * state bits, it is used to clear the last level sptep.
83ef6c81 779 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
780 */
781static int mmu_spte_clear_track_bits(u64 *sptep)
782{
ba049e93 783 kvm_pfn_t pfn;
1df9f2dc
XG
784 u64 old_spte = *sptep;
785
786 if (!spte_has_volatile_bits(old_spte))
603e0651 787 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 788 else
603e0651 789 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 790
afd28fe1 791 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
792 return 0;
793
794 pfn = spte_to_pfn(old_spte);
86fde74c
XG
795
796 /*
797 * KVM does not hold the refcount of the page used by
798 * kvm mmu, before reclaiming the page, we should
799 * unmap it from mmu first.
800 */
bf4bea8e 801 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 802
83ef6c81 803 if (is_accessed_spte(old_spte))
1df9f2dc 804 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
805
806 if (is_dirty_spte(old_spte))
1df9f2dc 807 kvm_set_pfn_dirty(pfn);
83ef6c81 808
1df9f2dc
XG
809 return 1;
810}
811
812/*
813 * Rules for using mmu_spte_clear_no_track:
814 * Directly clear spte without caring the state bits of sptep,
815 * it is used to set the upper level spte.
816 */
817static void mmu_spte_clear_no_track(u64 *sptep)
818{
603e0651 819 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
820}
821
c2a2ac2b
XG
822static u64 mmu_spte_get_lockless(u64 *sptep)
823{
824 return __get_spte_lockless(sptep);
825}
826
f160c7b7
JS
827static u64 mark_spte_for_access_track(u64 spte)
828{
ac8d57e5 829 if (spte_ad_enabled(spte))
f160c7b7
JS
830 return spte & ~shadow_accessed_mask;
831
ac8d57e5 832 if (is_access_track_spte(spte))
f160c7b7
JS
833 return spte;
834
835 /*
20d65236
JS
836 * Making an Access Tracking PTE will result in removal of write access
837 * from the PTE. So, verify that we will be able to restore the write
838 * access in the fast page fault path later on.
f160c7b7
JS
839 */
840 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841 !spte_can_locklessly_be_made_writable(spte),
842 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
843
844 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845 shadow_acc_track_saved_bits_shift),
846 "kvm: Access Tracking saved bit locations are not zero\n");
847
848 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849 shadow_acc_track_saved_bits_shift;
850 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
851
852 return spte;
853}
854
d3e328f2
JS
855/* Restore an acc-track PTE back to a regular PTE */
856static u64 restore_acc_track_spte(u64 spte)
857{
858 u64 new_spte = spte;
859 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860 & shadow_acc_track_saved_bits_mask;
861
ac8d57e5 862 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
863 WARN_ON_ONCE(!is_access_track_spte(spte));
864
865 new_spte &= ~shadow_acc_track_mask;
866 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867 shadow_acc_track_saved_bits_shift);
868 new_spte |= saved_bits;
869
870 return new_spte;
871}
872
f160c7b7
JS
873/* Returns the Accessed status of the PTE and resets it at the same time. */
874static bool mmu_spte_age(u64 *sptep)
875{
876 u64 spte = mmu_spte_get_lockless(sptep);
877
878 if (!is_accessed_spte(spte))
879 return false;
880
ac8d57e5 881 if (spte_ad_enabled(spte)) {
f160c7b7
JS
882 clear_bit((ffs(shadow_accessed_mask) - 1),
883 (unsigned long *)sptep);
884 } else {
885 /*
886 * Capture the dirty status of the page, so that it doesn't get
887 * lost when the SPTE is marked for access tracking.
888 */
889 if (is_writable_pte(spte))
890 kvm_set_pfn_dirty(spte_to_pfn(spte));
891
892 spte = mark_spte_for_access_track(spte);
893 mmu_spte_update_no_track(sptep, spte);
894 }
895
896 return true;
897}
898
c2a2ac2b
XG
899static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
900{
c142786c
AK
901 /*
902 * Prevent page table teardown by making any free-er wait during
903 * kvm_flush_remote_tlbs() IPI to all active vcpus.
904 */
905 local_irq_disable();
36ca7e0a 906
c142786c
AK
907 /*
908 * Make sure a following spte read is not reordered ahead of the write
909 * to vcpu->mode.
910 */
36ca7e0a 911 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
912}
913
914static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
915{
c142786c
AK
916 /*
917 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 918 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
919 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
920 */
36ca7e0a 921 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 922 local_irq_enable();
c2a2ac2b
XG
923}
924
e2dec939 925static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 926 struct kmem_cache *base_cache, int min)
714b93da
AK
927{
928 void *obj;
929
930 if (cache->nobjs >= min)
e2dec939 931 return 0;
714b93da 932 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 933 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 934 if (!obj)
daefb794 935 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
936 cache->objects[cache->nobjs++] = obj;
937 }
e2dec939 938 return 0;
714b93da
AK
939}
940
f759e2b4
XG
941static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
942{
943 return cache->nobjs;
944}
945
e8ad9a70
XG
946static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947 struct kmem_cache *cache)
714b93da
AK
948{
949 while (mc->nobjs)
e8ad9a70 950 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
951}
952
c1158e63 953static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 954 int min)
c1158e63 955{
842f22ed 956 void *page;
c1158e63
AK
957
958 if (cache->nobjs >= min)
959 return 0;
960 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 961 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 962 if (!page)
daefb794 963 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 964 cache->objects[cache->nobjs++] = page;
c1158e63
AK
965 }
966 return 0;
967}
968
969static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
970{
971 while (mc->nobjs)
c4d198d5 972 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
973}
974
2e3e5882 975static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 976{
e2dec939
AK
977 int r;
978
53c07b18 979 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 980 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
981 if (r)
982 goto out;
ad312c7c 983 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
984 if (r)
985 goto out;
ad312c7c 986 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 987 mmu_page_header_cache, 4);
e2dec939
AK
988out:
989 return r;
714b93da
AK
990}
991
992static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
993{
53c07b18
XG
994 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995 pte_list_desc_cache);
ad312c7c 996 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
997 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998 mmu_page_header_cache);
714b93da
AK
999}
1000
80feb89a 1001static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1002{
1003 void *p;
1004
1005 BUG_ON(!mc->nobjs);
1006 p = mc->objects[--mc->nobjs];
714b93da
AK
1007 return p;
1008}
1009
53c07b18 1010static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1011{
80feb89a 1012 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1013}
1014
53c07b18 1015static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1016{
53c07b18 1017 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1018}
1019
2032a93d
LJ
1020static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1021{
1022 if (!sp->role.direct)
1023 return sp->gfns[index];
1024
1025 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1026}
1027
1028static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1029{
1030 if (sp->role.direct)
1031 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1032 else
1033 sp->gfns[index] = gfn;
1034}
1035
05da4558 1036/*
d4dbf470
TY
1037 * Return the pointer to the large page information for a given gfn,
1038 * handling slots that are not large page aligned.
05da4558 1039 */
d4dbf470
TY
1040static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041 struct kvm_memory_slot *slot,
1042 int level)
05da4558
MT
1043{
1044 unsigned long idx;
1045
fb03cb6f 1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1047 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1048}
1049
547ffaed
XG
1050static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051 gfn_t gfn, int count)
1052{
1053 struct kvm_lpage_info *linfo;
1054 int i;
1055
1056 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 linfo = lpage_info_slot(gfn, slot, i);
1058 linfo->disallow_lpage += count;
1059 WARN_ON(linfo->disallow_lpage < 0);
1060 }
1061}
1062
1063void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1064{
1065 update_gfn_disallow_lpage_count(slot, gfn, 1);
1066}
1067
1068void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1069{
1070 update_gfn_disallow_lpage_count(slot, gfn, -1);
1071}
1072
3ed1a478 1073static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1074{
699023e2 1075 struct kvm_memslots *slots;
d25797b2 1076 struct kvm_memory_slot *slot;
3ed1a478 1077 gfn_t gfn;
05da4558 1078
56ca57f9 1079 kvm->arch.indirect_shadow_pages++;
3ed1a478 1080 gfn = sp->gfn;
699023e2
PB
1081 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1083
1084 /* the non-leaf shadow pages are keeping readonly. */
1085 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087 KVM_PAGE_TRACK_WRITE);
1088
547ffaed 1089 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1090}
1091
3ed1a478 1092static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1093{
699023e2 1094 struct kvm_memslots *slots;
d25797b2 1095 struct kvm_memory_slot *slot;
3ed1a478 1096 gfn_t gfn;
05da4558 1097
56ca57f9 1098 kvm->arch.indirect_shadow_pages--;
3ed1a478 1099 gfn = sp->gfn;
699023e2
PB
1100 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1102 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104 KVM_PAGE_TRACK_WRITE);
1105
547ffaed 1106 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1107}
1108
92f94f1e
XG
1109static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110 struct kvm_memory_slot *slot)
05da4558 1111{
d4dbf470 1112 struct kvm_lpage_info *linfo;
05da4558
MT
1113
1114 if (slot) {
d4dbf470 1115 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1116 return !!linfo->disallow_lpage;
05da4558
MT
1117 }
1118
92f94f1e 1119 return true;
05da4558
MT
1120}
1121
92f94f1e
XG
1122static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1123 int level)
5225fdf8
TY
1124{
1125 struct kvm_memory_slot *slot;
1126
1127 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1128 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1129}
1130
d25797b2 1131static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1132{
8f0b1ab6 1133 unsigned long page_size;
d25797b2 1134 int i, ret = 0;
05da4558 1135
8f0b1ab6 1136 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1137
8a3d08f1 1138 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1139 if (page_size >= KVM_HPAGE_SIZE(i))
1140 ret = i;
1141 else
1142 break;
1143 }
1144
4c2155ce 1145 return ret;
05da4558
MT
1146}
1147
d8aacf5d
TY
1148static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1149 bool no_dirty_log)
1150{
1151 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1152 return false;
1153 if (no_dirty_log && slot->dirty_bitmap)
1154 return false;
1155
1156 return true;
1157}
1158
5d163b1c
XG
1159static struct kvm_memory_slot *
1160gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1161 bool no_dirty_log)
05da4558
MT
1162{
1163 struct kvm_memory_slot *slot;
5d163b1c 1164
54bf36aa 1165 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1166 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1167 slot = NULL;
1168
1169 return slot;
1170}
1171
fd136902
TY
1172static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173 bool *force_pt_level)
936a5fe6
AA
1174{
1175 int host_level, level, max_level;
d8aacf5d
TY
1176 struct kvm_memory_slot *slot;
1177
8c85ac1c
TY
1178 if (unlikely(*force_pt_level))
1179 return PT_PAGE_TABLE_LEVEL;
05da4558 1180
8c85ac1c
TY
1181 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1183 if (unlikely(*force_pt_level))
1184 return PT_PAGE_TABLE_LEVEL;
1185
d25797b2
JR
1186 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1187
1188 if (host_level == PT_PAGE_TABLE_LEVEL)
1189 return host_level;
1190
55dd98c3 1191 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1192
1193 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1194 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1195 break;
d25797b2
JR
1196
1197 return level - 1;
05da4558
MT
1198}
1199
290fc38d 1200/*
018aabb5 1201 * About rmap_head encoding:
cd4a4e53 1202 *
018aabb5
TY
1203 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1205 * pte_list_desc containing more mappings.
018aabb5
TY
1206 */
1207
1208/*
1209 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1210 */
53c07b18 1211static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1212 struct kvm_rmap_head *rmap_head)
cd4a4e53 1213{
53c07b18 1214 struct pte_list_desc *desc;
53a27b39 1215 int i, count = 0;
cd4a4e53 1216
018aabb5 1217 if (!rmap_head->val) {
53c07b18 1218 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1219 rmap_head->val = (unsigned long)spte;
1220 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1221 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1223 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1224 desc->sptes[1] = spte;
018aabb5 1225 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1226 ++count;
cd4a4e53 1227 } else {
53c07b18 1228 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1229 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1230 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1231 desc = desc->more;
53c07b18 1232 count += PTE_LIST_EXT;
53a27b39 1233 }
53c07b18
XG
1234 if (desc->sptes[PTE_LIST_EXT-1]) {
1235 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1236 desc = desc->more;
1237 }
d555c333 1238 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1239 ++count;
d555c333 1240 desc->sptes[i] = spte;
cd4a4e53 1241 }
53a27b39 1242 return count;
cd4a4e53
AK
1243}
1244
53c07b18 1245static void
018aabb5
TY
1246pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247 struct pte_list_desc *desc, int i,
1248 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1249{
1250 int j;
1251
53c07b18 1252 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1253 ;
d555c333
AK
1254 desc->sptes[i] = desc->sptes[j];
1255 desc->sptes[j] = NULL;
cd4a4e53
AK
1256 if (j != 0)
1257 return;
1258 if (!prev_desc && !desc->more)
018aabb5 1259 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1260 else
1261 if (prev_desc)
1262 prev_desc->more = desc->more;
1263 else
018aabb5 1264 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1265 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1266}
1267
8daf3462 1268static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1269{
53c07b18
XG
1270 struct pte_list_desc *desc;
1271 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1272 int i;
1273
018aabb5 1274 if (!rmap_head->val) {
8daf3462 1275 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1276 BUG();
018aabb5 1277 } else if (!(rmap_head->val & 1)) {
8daf3462 1278 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1279 if ((u64 *)rmap_head->val != spte) {
8daf3462 1280 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1281 BUG();
1282 }
018aabb5 1283 rmap_head->val = 0;
cd4a4e53 1284 } else {
8daf3462 1285 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1286 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1287 prev_desc = NULL;
1288 while (desc) {
018aabb5 1289 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1290 if (desc->sptes[i] == spte) {
018aabb5
TY
1291 pte_list_desc_remove_entry(rmap_head,
1292 desc, i, prev_desc);
cd4a4e53
AK
1293 return;
1294 }
018aabb5 1295 }
cd4a4e53
AK
1296 prev_desc = desc;
1297 desc = desc->more;
1298 }
8daf3462 1299 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1300 BUG();
1301 }
1302}
1303
e7912386
WY
1304static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1305{
1306 mmu_spte_clear_track_bits(sptep);
1307 __pte_list_remove(sptep, rmap_head);
1308}
1309
018aabb5
TY
1310static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1311 struct kvm_memory_slot *slot)
53c07b18 1312{
77d11309 1313 unsigned long idx;
53c07b18 1314
77d11309 1315 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1316 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1317}
1318
018aabb5
TY
1319static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1320 struct kvm_mmu_page *sp)
9b9b1492 1321{
699023e2 1322 struct kvm_memslots *slots;
9b9b1492
TY
1323 struct kvm_memory_slot *slot;
1324
699023e2
PB
1325 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1326 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1327 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1328}
1329
f759e2b4
XG
1330static bool rmap_can_add(struct kvm_vcpu *vcpu)
1331{
1332 struct kvm_mmu_memory_cache *cache;
1333
1334 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1335 return mmu_memory_cache_free_objects(cache);
1336}
1337
53c07b18
XG
1338static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1339{
1340 struct kvm_mmu_page *sp;
018aabb5 1341 struct kvm_rmap_head *rmap_head;
53c07b18 1342
53c07b18
XG
1343 sp = page_header(__pa(spte));
1344 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1345 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1346 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1347}
1348
53c07b18
XG
1349static void rmap_remove(struct kvm *kvm, u64 *spte)
1350{
1351 struct kvm_mmu_page *sp;
1352 gfn_t gfn;
018aabb5 1353 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1354
1355 sp = page_header(__pa(spte));
1356 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1357 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1358 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1359}
1360
1e3f42f0
TY
1361/*
1362 * Used by the following functions to iterate through the sptes linked by a
1363 * rmap. All fields are private and not assumed to be used outside.
1364 */
1365struct rmap_iterator {
1366 /* private fields */
1367 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1368 int pos; /* index of the sptep */
1369};
1370
1371/*
1372 * Iteration must be started by this function. This should also be used after
1373 * removing/dropping sptes from the rmap link because in such cases the
1374 * information in the itererator may not be valid.
1375 *
1376 * Returns sptep if found, NULL otherwise.
1377 */
018aabb5
TY
1378static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1379 struct rmap_iterator *iter)
1e3f42f0 1380{
77fbbbd2
TY
1381 u64 *sptep;
1382
018aabb5 1383 if (!rmap_head->val)
1e3f42f0
TY
1384 return NULL;
1385
018aabb5 1386 if (!(rmap_head->val & 1)) {
1e3f42f0 1387 iter->desc = NULL;
77fbbbd2
TY
1388 sptep = (u64 *)rmap_head->val;
1389 goto out;
1e3f42f0
TY
1390 }
1391
018aabb5 1392 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1393 iter->pos = 0;
77fbbbd2
TY
1394 sptep = iter->desc->sptes[iter->pos];
1395out:
1396 BUG_ON(!is_shadow_present_pte(*sptep));
1397 return sptep;
1e3f42f0
TY
1398}
1399
1400/*
1401 * Must be used with a valid iterator: e.g. after rmap_get_first().
1402 *
1403 * Returns sptep if found, NULL otherwise.
1404 */
1405static u64 *rmap_get_next(struct rmap_iterator *iter)
1406{
77fbbbd2
TY
1407 u64 *sptep;
1408
1e3f42f0
TY
1409 if (iter->desc) {
1410 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1411 ++iter->pos;
1412 sptep = iter->desc->sptes[iter->pos];
1413 if (sptep)
77fbbbd2 1414 goto out;
1e3f42f0
TY
1415 }
1416
1417 iter->desc = iter->desc->more;
1418
1419 if (iter->desc) {
1420 iter->pos = 0;
1421 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1422 sptep = iter->desc->sptes[iter->pos];
1423 goto out;
1e3f42f0
TY
1424 }
1425 }
1426
1427 return NULL;
77fbbbd2
TY
1428out:
1429 BUG_ON(!is_shadow_present_pte(*sptep));
1430 return sptep;
1e3f42f0
TY
1431}
1432
018aabb5
TY
1433#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1434 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1435 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1436
c3707958 1437static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1438{
1df9f2dc 1439 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1440 rmap_remove(kvm, sptep);
be38d276
AK
1441}
1442
8e22f955
XG
1443
1444static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1445{
1446 if (is_large_pte(*sptep)) {
1447 WARN_ON(page_header(__pa(sptep))->role.level ==
1448 PT_PAGE_TABLE_LEVEL);
1449 drop_spte(kvm, sptep);
1450 --kvm->stat.lpages;
1451 return true;
1452 }
1453
1454 return false;
1455}
1456
1457static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1458{
1459 if (__drop_large_spte(vcpu->kvm, sptep))
1460 kvm_flush_remote_tlbs(vcpu->kvm);
1461}
1462
1463/*
49fde340 1464 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1465 * spte write-protection is caused by protecting shadow page table.
49fde340 1466 *
b4619660 1467 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1468 * protection:
1469 * - for dirty logging, the spte can be set to writable at anytime if
1470 * its dirty bitmap is properly set.
1471 * - for spte protection, the spte can be writable only after unsync-ing
1472 * shadow page.
8e22f955 1473 *
c126d94f 1474 * Return true if tlb need be flushed.
8e22f955 1475 */
c4f138b4 1476static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1477{
1478 u64 spte = *sptep;
1479
49fde340 1480 if (!is_writable_pte(spte) &&
ea4114bc 1481 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1482 return false;
1483
1484 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1485
49fde340
XG
1486 if (pt_protect)
1487 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1488 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1489
c126d94f 1490 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1491}
1492
018aabb5
TY
1493static bool __rmap_write_protect(struct kvm *kvm,
1494 struct kvm_rmap_head *rmap_head,
245c3912 1495 bool pt_protect)
98348e95 1496{
1e3f42f0
TY
1497 u64 *sptep;
1498 struct rmap_iterator iter;
d13bc5b5 1499 bool flush = false;
374cbac0 1500
018aabb5 1501 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1502 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1503
d13bc5b5 1504 return flush;
a0ed4607
TY
1505}
1506
c4f138b4 1507static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1508{
1509 u64 spte = *sptep;
1510
1511 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1512
1513 spte &= ~shadow_dirty_mask;
1514
1515 return mmu_spte_update(sptep, spte);
1516}
1517
ac8d57e5
PF
1518static bool wrprot_ad_disabled_spte(u64 *sptep)
1519{
1520 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1521 (unsigned long *)sptep);
1522 if (was_writable)
1523 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1524
1525 return was_writable;
1526}
1527
1528/*
1529 * Gets the GFN ready for another round of dirty logging by clearing the
1530 * - D bit on ad-enabled SPTEs, and
1531 * - W bit on ad-disabled SPTEs.
1532 * Returns true iff any D or W bits were cleared.
1533 */
018aabb5 1534static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1535{
1536 u64 *sptep;
1537 struct rmap_iterator iter;
1538 bool flush = false;
1539
018aabb5 1540 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1541 if (spte_ad_enabled(*sptep))
1542 flush |= spte_clear_dirty(sptep);
1543 else
1544 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1545
1546 return flush;
1547}
1548
c4f138b4 1549static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1550{
1551 u64 spte = *sptep;
1552
1553 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1554
1555 spte |= shadow_dirty_mask;
1556
1557 return mmu_spte_update(sptep, spte);
1558}
1559
018aabb5 1560static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1561{
1562 u64 *sptep;
1563 struct rmap_iterator iter;
1564 bool flush = false;
1565
018aabb5 1566 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1567 if (spte_ad_enabled(*sptep))
1568 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1569
1570 return flush;
1571}
1572
5dc99b23 1573/**
3b0f1d01 1574 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1575 * @kvm: kvm instance
1576 * @slot: slot to protect
1577 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1578 * @mask: indicates which pages we should protect
1579 *
1580 * Used when we do not need to care about huge page mappings: e.g. during dirty
1581 * logging we do not have any such mappings.
1582 */
3b0f1d01 1583static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1584 struct kvm_memory_slot *slot,
1585 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1586{
018aabb5 1587 struct kvm_rmap_head *rmap_head;
a0ed4607 1588
5dc99b23 1589 while (mask) {
018aabb5
TY
1590 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1591 PT_PAGE_TABLE_LEVEL, slot);
1592 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1593
5dc99b23
TY
1594 /* clear the first set bit */
1595 mask &= mask - 1;
1596 }
374cbac0
AK
1597}
1598
f4b4b180 1599/**
ac8d57e5
PF
1600 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1601 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1602 * @kvm: kvm instance
1603 * @slot: slot to clear D-bit
1604 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1605 * @mask: indicates which pages we should clear D-bit
1606 *
1607 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1608 */
1609void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1610 struct kvm_memory_slot *slot,
1611 gfn_t gfn_offset, unsigned long mask)
1612{
018aabb5 1613 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1614
1615 while (mask) {
018aabb5
TY
1616 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1617 PT_PAGE_TABLE_LEVEL, slot);
1618 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1619
1620 /* clear the first set bit */
1621 mask &= mask - 1;
1622 }
1623}
1624EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1625
3b0f1d01
KH
1626/**
1627 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1628 * PT level pages.
1629 *
1630 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1631 * enable dirty logging for them.
1632 *
1633 * Used when we do not need to care about huge page mappings: e.g. during dirty
1634 * logging we do not have any such mappings.
1635 */
1636void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1637 struct kvm_memory_slot *slot,
1638 gfn_t gfn_offset, unsigned long mask)
1639{
88178fd4
KH
1640 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1641 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1642 mask);
1643 else
1644 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1645}
1646
bab4165e
BD
1647/**
1648 * kvm_arch_write_log_dirty - emulate dirty page logging
1649 * @vcpu: Guest mode vcpu
1650 *
1651 * Emulate arch specific page modification logging for the
1652 * nested hypervisor
1653 */
1654int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1655{
1656 if (kvm_x86_ops->write_log_dirty)
1657 return kvm_x86_ops->write_log_dirty(vcpu);
1658
1659 return 0;
1660}
1661
aeecee2e
XG
1662bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1663 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1664{
018aabb5 1665 struct kvm_rmap_head *rmap_head;
5dc99b23 1666 int i;
2f84569f 1667 bool write_protected = false;
95d4c16c 1668
8a3d08f1 1669 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1670 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1671 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1672 }
1673
1674 return write_protected;
95d4c16c
TY
1675}
1676
aeecee2e
XG
1677static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1678{
1679 struct kvm_memory_slot *slot;
1680
1681 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1682 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1683}
1684
018aabb5 1685static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1686{
1e3f42f0
TY
1687 u64 *sptep;
1688 struct rmap_iterator iter;
6a49f85c 1689 bool flush = false;
e930bffe 1690
018aabb5 1691 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1692 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1693
e7912386 1694 pte_list_remove(rmap_head, sptep);
6a49f85c 1695 flush = true;
e930bffe 1696 }
1e3f42f0 1697
6a49f85c
XG
1698 return flush;
1699}
1700
018aabb5 1701static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1702 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1703 unsigned long data)
1704{
018aabb5 1705 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1706}
1707
018aabb5 1708static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1709 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1710 unsigned long data)
3da0dd43 1711{
1e3f42f0
TY
1712 u64 *sptep;
1713 struct rmap_iterator iter;
3da0dd43 1714 int need_flush = 0;
1e3f42f0 1715 u64 new_spte;
3da0dd43 1716 pte_t *ptep = (pte_t *)data;
ba049e93 1717 kvm_pfn_t new_pfn;
3da0dd43
IE
1718
1719 WARN_ON(pte_huge(*ptep));
1720 new_pfn = pte_pfn(*ptep);
1e3f42f0 1721
0d536790 1722restart:
018aabb5 1723 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1724 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1725 sptep, *sptep, gfn, level);
1e3f42f0 1726
3da0dd43 1727 need_flush = 1;
1e3f42f0 1728
3da0dd43 1729 if (pte_write(*ptep)) {
e7912386 1730 pte_list_remove(rmap_head, sptep);
0d536790 1731 goto restart;
3da0dd43 1732 } else {
1e3f42f0 1733 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1734 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1735
1736 new_spte &= ~PT_WRITABLE_MASK;
1737 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1738
1739 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1740
1741 mmu_spte_clear_track_bits(sptep);
1742 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1743 }
1744 }
1e3f42f0 1745
3da0dd43
IE
1746 if (need_flush)
1747 kvm_flush_remote_tlbs(kvm);
1748
1749 return 0;
1750}
1751
6ce1f4e2
XG
1752struct slot_rmap_walk_iterator {
1753 /* input fields. */
1754 struct kvm_memory_slot *slot;
1755 gfn_t start_gfn;
1756 gfn_t end_gfn;
1757 int start_level;
1758 int end_level;
1759
1760 /* output fields. */
1761 gfn_t gfn;
018aabb5 1762 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1763 int level;
1764
1765 /* private field. */
018aabb5 1766 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1767};
1768
1769static void
1770rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1771{
1772 iterator->level = level;
1773 iterator->gfn = iterator->start_gfn;
1774 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1775 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1776 iterator->slot);
1777}
1778
1779static void
1780slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1781 struct kvm_memory_slot *slot, int start_level,
1782 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1783{
1784 iterator->slot = slot;
1785 iterator->start_level = start_level;
1786 iterator->end_level = end_level;
1787 iterator->start_gfn = start_gfn;
1788 iterator->end_gfn = end_gfn;
1789
1790 rmap_walk_init_level(iterator, iterator->start_level);
1791}
1792
1793static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1794{
1795 return !!iterator->rmap;
1796}
1797
1798static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1799{
1800 if (++iterator->rmap <= iterator->end_rmap) {
1801 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1802 return;
1803 }
1804
1805 if (++iterator->level > iterator->end_level) {
1806 iterator->rmap = NULL;
1807 return;
1808 }
1809
1810 rmap_walk_init_level(iterator, iterator->level);
1811}
1812
1813#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1814 _start_gfn, _end_gfn, _iter_) \
1815 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1816 _end_level_, _start_gfn, _end_gfn); \
1817 slot_rmap_walk_okay(_iter_); \
1818 slot_rmap_walk_next(_iter_))
1819
84504ef3
TY
1820static int kvm_handle_hva_range(struct kvm *kvm,
1821 unsigned long start,
1822 unsigned long end,
1823 unsigned long data,
1824 int (*handler)(struct kvm *kvm,
018aabb5 1825 struct kvm_rmap_head *rmap_head,
048212d0 1826 struct kvm_memory_slot *slot,
8a9522d2
ALC
1827 gfn_t gfn,
1828 int level,
84504ef3 1829 unsigned long data))
e930bffe 1830{
bc6678a3 1831 struct kvm_memslots *slots;
be6ba0f0 1832 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1833 struct slot_rmap_walk_iterator iterator;
1834 int ret = 0;
9da0e4d5 1835 int i;
bc6678a3 1836
9da0e4d5
PB
1837 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1838 slots = __kvm_memslots(kvm, i);
1839 kvm_for_each_memslot(memslot, slots) {
1840 unsigned long hva_start, hva_end;
1841 gfn_t gfn_start, gfn_end;
e930bffe 1842
9da0e4d5
PB
1843 hva_start = max(start, memslot->userspace_addr);
1844 hva_end = min(end, memslot->userspace_addr +
1845 (memslot->npages << PAGE_SHIFT));
1846 if (hva_start >= hva_end)
1847 continue;
1848 /*
1849 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1850 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1851 */
1852 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1853 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1854
1855 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1856 PT_MAX_HUGEPAGE_LEVEL,
1857 gfn_start, gfn_end - 1,
1858 &iterator)
1859 ret |= handler(kvm, iterator.rmap, memslot,
1860 iterator.gfn, iterator.level, data);
1861 }
e930bffe
AA
1862 }
1863
f395302e 1864 return ret;
e930bffe
AA
1865}
1866
84504ef3
TY
1867static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1868 unsigned long data,
018aabb5
TY
1869 int (*handler)(struct kvm *kvm,
1870 struct kvm_rmap_head *rmap_head,
048212d0 1871 struct kvm_memory_slot *slot,
8a9522d2 1872 gfn_t gfn, int level,
84504ef3
TY
1873 unsigned long data))
1874{
1875 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1876}
1877
b3ae2096
TY
1878int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1879{
1880 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1881}
1882
3da0dd43
IE
1883void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1884{
8a8365c5 1885 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1886}
1887
018aabb5 1888static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1889 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1890 unsigned long data)
e930bffe 1891{
1e3f42f0 1892 u64 *sptep;
79f702a6 1893 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1894 int young = 0;
1895
f160c7b7
JS
1896 for_each_rmap_spte(rmap_head, &iter, sptep)
1897 young |= mmu_spte_age(sptep);
0d536790 1898
8a9522d2 1899 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1900 return young;
1901}
1902
018aabb5 1903static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1904 struct kvm_memory_slot *slot, gfn_t gfn,
1905 int level, unsigned long data)
8ee53820 1906{
1e3f42f0
TY
1907 u64 *sptep;
1908 struct rmap_iterator iter;
8ee53820 1909
83ef6c81
JS
1910 for_each_rmap_spte(rmap_head, &iter, sptep)
1911 if (is_accessed_spte(*sptep))
1912 return 1;
83ef6c81 1913 return 0;
8ee53820
AA
1914}
1915
53a27b39
MT
1916#define RMAP_RECYCLE_THRESHOLD 1000
1917
852e3c19 1918static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1919{
018aabb5 1920 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1921 struct kvm_mmu_page *sp;
1922
1923 sp = page_header(__pa(spte));
53a27b39 1924
018aabb5 1925 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1926
018aabb5 1927 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1928 kvm_flush_remote_tlbs(vcpu->kvm);
1929}
1930
57128468 1931int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1932{
57128468 1933 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1934}
1935
8ee53820
AA
1936int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1937{
1938 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1939}
1940
d6c69ee9 1941#ifdef MMU_DEBUG
47ad8e68 1942static int is_empty_shadow_page(u64 *spt)
6aa8b732 1943{
139bdb2d
AK
1944 u64 *pos;
1945 u64 *end;
1946
47ad8e68 1947 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1948 if (is_shadow_present_pte(*pos)) {
b8688d51 1949 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1950 pos, *pos);
6aa8b732 1951 return 0;
139bdb2d 1952 }
6aa8b732
AK
1953 return 1;
1954}
d6c69ee9 1955#endif
6aa8b732 1956
45221ab6
DH
1957/*
1958 * This value is the sum of all of the kvm instances's
1959 * kvm->arch.n_used_mmu_pages values. We need a global,
1960 * aggregate version in order to make the slab shrinker
1961 * faster
1962 */
1963static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1964{
1965 kvm->arch.n_used_mmu_pages += nr;
1966 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1967}
1968
834be0d8 1969static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1970{
fa4a2c08 1971 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1972 hlist_del(&sp->hash_link);
bd4c86ea
XG
1973 list_del(&sp->link);
1974 free_page((unsigned long)sp->spt);
834be0d8
GN
1975 if (!sp->role.direct)
1976 free_page((unsigned long)sp->gfns);
e8ad9a70 1977 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1978}
1979
cea0f0e7
AK
1980static unsigned kvm_page_table_hashfn(gfn_t gfn)
1981{
114df303 1982 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1983}
1984
714b93da 1985static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1986 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1987{
cea0f0e7
AK
1988 if (!parent_pte)
1989 return;
cea0f0e7 1990
67052b35 1991 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1992}
1993
4db35314 1994static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1995 u64 *parent_pte)
1996{
8daf3462 1997 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1998}
1999
bcdd9a93
XG
2000static void drop_parent_pte(struct kvm_mmu_page *sp,
2001 u64 *parent_pte)
2002{
2003 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2004 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2005}
2006
47005792 2007static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2008{
67052b35 2009 struct kvm_mmu_page *sp;
7ddca7e4 2010
80feb89a
TY
2011 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2012 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2013 if (!direct)
80feb89a 2014 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2015 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
2016
2017 /*
2018 * The active_mmu_pages list is the FIFO list, do not move the
2019 * page until it is zapped. kvm_zap_obsolete_pages depends on
2020 * this feature. See the comments in kvm_zap_obsolete_pages().
2021 */
67052b35 2022 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2023 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2024 return sp;
ad8cfbe3
MT
2025}
2026
67052b35 2027static void mark_unsync(u64 *spte);
1047df1f 2028static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2029{
74c4e63a
TY
2030 u64 *sptep;
2031 struct rmap_iterator iter;
2032
2033 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2034 mark_unsync(sptep);
2035 }
0074ff63
MT
2036}
2037
67052b35 2038static void mark_unsync(u64 *spte)
0074ff63 2039{
67052b35 2040 struct kvm_mmu_page *sp;
1047df1f 2041 unsigned int index;
0074ff63 2042
67052b35 2043 sp = page_header(__pa(spte));
1047df1f
XG
2044 index = spte - sp->spt;
2045 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2046 return;
1047df1f 2047 if (sp->unsync_children++)
0074ff63 2048 return;
1047df1f 2049 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2050}
2051
e8bc217a 2052static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2053 struct kvm_mmu_page *sp)
e8bc217a 2054{
1f50f1b3 2055 return 0;
e8bc217a
MT
2056}
2057
7eb77e9f 2058static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2059{
2060}
2061
0f53b5b1
XG
2062static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2063 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2064 const void *pte)
0f53b5b1
XG
2065{
2066 WARN_ON(1);
2067}
2068
60c8aec6
MT
2069#define KVM_PAGE_ARRAY_NR 16
2070
2071struct kvm_mmu_pages {
2072 struct mmu_page_and_offset {
2073 struct kvm_mmu_page *sp;
2074 unsigned int idx;
2075 } page[KVM_PAGE_ARRAY_NR];
2076 unsigned int nr;
2077};
2078
cded19f3
HE
2079static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2080 int idx)
4731d4c7 2081{
60c8aec6 2082 int i;
4731d4c7 2083
60c8aec6
MT
2084 if (sp->unsync)
2085 for (i=0; i < pvec->nr; i++)
2086 if (pvec->page[i].sp == sp)
2087 return 0;
2088
2089 pvec->page[pvec->nr].sp = sp;
2090 pvec->page[pvec->nr].idx = idx;
2091 pvec->nr++;
2092 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2093}
2094
fd951457
TY
2095static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2096{
2097 --sp->unsync_children;
2098 WARN_ON((int)sp->unsync_children < 0);
2099 __clear_bit(idx, sp->unsync_child_bitmap);
2100}
2101
60c8aec6
MT
2102static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2103 struct kvm_mmu_pages *pvec)
2104{
2105 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2106
37178b8b 2107 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2108 struct kvm_mmu_page *child;
4731d4c7
MT
2109 u64 ent = sp->spt[i];
2110
fd951457
TY
2111 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2112 clear_unsync_child_bit(sp, i);
2113 continue;
2114 }
7a8f1a74
XG
2115
2116 child = page_header(ent & PT64_BASE_ADDR_MASK);
2117
2118 if (child->unsync_children) {
2119 if (mmu_pages_add(pvec, child, i))
2120 return -ENOSPC;
2121
2122 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2123 if (!ret) {
2124 clear_unsync_child_bit(sp, i);
2125 continue;
2126 } else if (ret > 0) {
7a8f1a74 2127 nr_unsync_leaf += ret;
fd951457 2128 } else
7a8f1a74
XG
2129 return ret;
2130 } else if (child->unsync) {
2131 nr_unsync_leaf++;
2132 if (mmu_pages_add(pvec, child, i))
2133 return -ENOSPC;
2134 } else
fd951457 2135 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2136 }
2137
60c8aec6
MT
2138 return nr_unsync_leaf;
2139}
2140
e23d3fef
XG
2141#define INVALID_INDEX (-1)
2142
60c8aec6
MT
2143static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2144 struct kvm_mmu_pages *pvec)
2145{
0a47cd85 2146 pvec->nr = 0;
60c8aec6
MT
2147 if (!sp->unsync_children)
2148 return 0;
2149
e23d3fef 2150 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2151 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2152}
2153
4731d4c7
MT
2154static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2155{
2156 WARN_ON(!sp->unsync);
5e1b3ddb 2157 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2158 sp->unsync = 0;
2159 --kvm->stat.mmu_unsync;
2160}
2161
7775834a
XG
2162static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163 struct list_head *invalid_list);
2164static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2165 struct list_head *invalid_list);
4731d4c7 2166
f34d251d
XG
2167/*
2168 * NOTE: we should pay more attention on the zapped-obsolete page
2169 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2170 * since it has been deleted from active_mmu_pages but still can be found
2171 * at hast list.
2172 *
f3414bc7 2173 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2174 */
f3414bc7 2175#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2176 hlist_for_each_entry(_sp, \
2177 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2178 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2179 } else
1044b030
TY
2180
2181#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2182 for_each_valid_sp(_kvm, _sp, _gfn) \
2183 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2184
f918b443 2185/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2186static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2187 struct list_head *invalid_list)
4731d4c7 2188{
450917b6 2189 if (sp->role.cr4_pae != !!is_pae(vcpu)
44dd3ffa 2190 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2191 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2192 return false;
4731d4c7
MT
2193 }
2194
1f50f1b3 2195 return true;
4731d4c7
MT
2196}
2197
35a70510
PB
2198static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2199 struct list_head *invalid_list,
2200 bool remote_flush, bool local_flush)
1d9dc7e0 2201{
35a70510
PB
2202 if (!list_empty(invalid_list)) {
2203 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2204 return;
2205 }
d98ba053 2206
35a70510
PB
2207 if (remote_flush)
2208 kvm_flush_remote_tlbs(vcpu->kvm);
2209 else if (local_flush)
2210 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2211}
2212
e37fa785
XG
2213#ifdef CONFIG_KVM_MMU_AUDIT
2214#include "mmu_audit.c"
2215#else
2216static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2217static void mmu_audit_disable(void) { }
2218#endif
2219
46971a2f
XG
2220static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2221{
2222 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2223}
2224
1f50f1b3 2225static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2226 struct list_head *invalid_list)
1d9dc7e0 2227{
9a43c5d9
PB
2228 kvm_unlink_unsync_page(vcpu->kvm, sp);
2229 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2230}
2231
9f1a122f 2232/* @gfn should be write-protected at the call site */
2a74003a
PB
2233static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2234 struct list_head *invalid_list)
9f1a122f 2235{
9f1a122f 2236 struct kvm_mmu_page *s;
2a74003a 2237 bool ret = false;
9f1a122f 2238
b67bfe0d 2239 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2240 if (!s->unsync)
9f1a122f
XG
2241 continue;
2242
2243 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2244 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2245 }
2246
2a74003a 2247 return ret;
9f1a122f
XG
2248}
2249
60c8aec6 2250struct mmu_page_path {
2a7266a8
YZ
2251 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2252 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2253};
2254
60c8aec6 2255#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2256 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2257 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2258 i = mmu_pages_next(&pvec, &parents, i))
2259
cded19f3
HE
2260static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2261 struct mmu_page_path *parents,
2262 int i)
60c8aec6
MT
2263{
2264 int n;
2265
2266 for (n = i+1; n < pvec->nr; n++) {
2267 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2268 unsigned idx = pvec->page[n].idx;
2269 int level = sp->role.level;
60c8aec6 2270
0a47cd85
PB
2271 parents->idx[level-1] = idx;
2272 if (level == PT_PAGE_TABLE_LEVEL)
2273 break;
60c8aec6 2274
0a47cd85 2275 parents->parent[level-2] = sp;
60c8aec6
MT
2276 }
2277
2278 return n;
2279}
2280
0a47cd85
PB
2281static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2282 struct mmu_page_path *parents)
2283{
2284 struct kvm_mmu_page *sp;
2285 int level;
2286
2287 if (pvec->nr == 0)
2288 return 0;
2289
e23d3fef
XG
2290 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2291
0a47cd85
PB
2292 sp = pvec->page[0].sp;
2293 level = sp->role.level;
2294 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2295
2296 parents->parent[level-2] = sp;
2297
2298 /* Also set up a sentinel. Further entries in pvec are all
2299 * children of sp, so this element is never overwritten.
2300 */
2301 parents->parent[level-1] = NULL;
2302 return mmu_pages_next(pvec, parents, 0);
2303}
2304
cded19f3 2305static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2306{
60c8aec6
MT
2307 struct kvm_mmu_page *sp;
2308 unsigned int level = 0;
2309
2310 do {
2311 unsigned int idx = parents->idx[level];
60c8aec6
MT
2312 sp = parents->parent[level];
2313 if (!sp)
2314 return;
2315
e23d3fef 2316 WARN_ON(idx == INVALID_INDEX);
fd951457 2317 clear_unsync_child_bit(sp, idx);
60c8aec6 2318 level++;
0a47cd85 2319 } while (!sp->unsync_children);
60c8aec6 2320}
4731d4c7 2321
60c8aec6
MT
2322static void mmu_sync_children(struct kvm_vcpu *vcpu,
2323 struct kvm_mmu_page *parent)
2324{
2325 int i;
2326 struct kvm_mmu_page *sp;
2327 struct mmu_page_path parents;
2328 struct kvm_mmu_pages pages;
d98ba053 2329 LIST_HEAD(invalid_list);
50c9e6f3 2330 bool flush = false;
60c8aec6 2331
60c8aec6 2332 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2333 bool protected = false;
b1a36821
MT
2334
2335 for_each_sp(pages, sp, parents, i)
54bf36aa 2336 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2337
50c9e6f3 2338 if (protected) {
b1a36821 2339 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2340 flush = false;
2341 }
b1a36821 2342
60c8aec6 2343 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2344 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2345 mmu_pages_clear_parents(&parents);
2346 }
50c9e6f3
PB
2347 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2348 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2349 cond_resched_lock(&vcpu->kvm->mmu_lock);
2350 flush = false;
2351 }
60c8aec6 2352 }
50c9e6f3
PB
2353
2354 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2355}
2356
a30f47cb
XG
2357static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2358{
e5691a81 2359 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2360}
2361
2362static void clear_sp_write_flooding_count(u64 *spte)
2363{
2364 struct kvm_mmu_page *sp = page_header(__pa(spte));
2365
2366 __clear_sp_write_flooding_count(sp);
2367}
2368
cea0f0e7
AK
2369static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2370 gfn_t gfn,
2371 gva_t gaddr,
2372 unsigned level,
f6e2c02b 2373 int direct,
bb11c6c9 2374 unsigned access)
cea0f0e7
AK
2375{
2376 union kvm_mmu_page_role role;
cea0f0e7 2377 unsigned quadrant;
9f1a122f 2378 struct kvm_mmu_page *sp;
9f1a122f 2379 bool need_sync = false;
2a74003a 2380 bool flush = false;
f3414bc7 2381 int collisions = 0;
2a74003a 2382 LIST_HEAD(invalid_list);
cea0f0e7 2383
36d9594d 2384 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2385 role.level = level;
f6e2c02b 2386 role.direct = direct;
84b0c8c6 2387 if (role.direct)
5b7e0102 2388 role.cr4_pae = 0;
41074d07 2389 role.access = access;
44dd3ffa
VK
2390 if (!vcpu->arch.mmu->direct_map
2391 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2392 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2393 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2394 role.quadrant = quadrant;
2395 }
f3414bc7
DM
2396 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2397 if (sp->gfn != gfn) {
2398 collisions++;
2399 continue;
2400 }
2401
7ae680eb
XG
2402 if (!need_sync && sp->unsync)
2403 need_sync = true;
4731d4c7 2404
7ae680eb
XG
2405 if (sp->role.word != role.word)
2406 continue;
4731d4c7 2407
2a74003a
PB
2408 if (sp->unsync) {
2409 /* The page is good, but __kvm_sync_page might still end
2410 * up zapping it. If so, break in order to rebuild it.
2411 */
2412 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2413 break;
2414
2415 WARN_ON(!list_empty(&invalid_list));
2416 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2417 }
e02aa901 2418
98bba238 2419 if (sp->unsync_children)
a8eeb04a 2420 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2421
a30f47cb 2422 __clear_sp_write_flooding_count(sp);
7ae680eb 2423 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2424 goto out;
7ae680eb 2425 }
47005792 2426
dfc5aa00 2427 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2428
2429 sp = kvm_mmu_alloc_page(vcpu, direct);
2430
4db35314
AK
2431 sp->gfn = gfn;
2432 sp->role = role;
7ae680eb
XG
2433 hlist_add_head(&sp->hash_link,
2434 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2435 if (!direct) {
56ca57f9
XG
2436 /*
2437 * we should do write protection before syncing pages
2438 * otherwise the content of the synced shadow page may
2439 * be inconsistent with guest page table.
2440 */
2441 account_shadowed(vcpu->kvm, sp);
2442 if (level == PT_PAGE_TABLE_LEVEL &&
2443 rmap_write_protect(vcpu, gfn))
b1a36821 2444 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2445
9f1a122f 2446 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2447 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2448 }
5304b8d3 2449 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2450 clear_page(sp->spt);
f691fe1d 2451 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2452
2453 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2454out:
2455 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2456 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2457 return sp;
cea0f0e7
AK
2458}
2459
7eb77e9f
JS
2460static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2461 struct kvm_vcpu *vcpu, hpa_t root,
2462 u64 addr)
2d11123a
AK
2463{
2464 iterator->addr = addr;
7eb77e9f 2465 iterator->shadow_addr = root;
44dd3ffa 2466 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2467
2a7266a8 2468 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2469 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2470 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2471 --iterator->level;
2472
2d11123a 2473 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2474 /*
2475 * prev_root is currently only used for 64-bit hosts. So only
2476 * the active root_hpa is valid here.
2477 */
44dd3ffa 2478 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2479
2d11123a 2480 iterator->shadow_addr
44dd3ffa 2481 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2482 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2483 --iterator->level;
2484 if (!iterator->shadow_addr)
2485 iterator->level = 0;
2486 }
2487}
2488
7eb77e9f
JS
2489static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2490 struct kvm_vcpu *vcpu, u64 addr)
2491{
44dd3ffa 2492 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2493 addr);
2494}
2495
2d11123a
AK
2496static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2497{
2498 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2499 return false;
4d88954d 2500
2d11123a
AK
2501 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2502 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2503 return true;
2504}
2505
c2a2ac2b
XG
2506static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2507 u64 spte)
2d11123a 2508{
c2a2ac2b 2509 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2510 iterator->level = 0;
2511 return;
2512 }
2513
c2a2ac2b 2514 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2515 --iterator->level;
2516}
2517
c2a2ac2b
XG
2518static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2519{
bb606a9b 2520 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2521}
2522
98bba238
TY
2523static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2524 struct kvm_mmu_page *sp)
32ef26a3
AK
2525{
2526 u64 spte;
2527
ffb128c8 2528 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2529
ffb128c8 2530 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2531 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2532
2533 if (sp_ad_disabled(sp))
2534 spte |= shadow_acc_track_value;
2535 else
2536 spte |= shadow_accessed_mask;
24db2734 2537
1df9f2dc 2538 mmu_spte_set(sptep, spte);
98bba238
TY
2539
2540 mmu_page_add_parent_pte(vcpu, sp, sptep);
2541
2542 if (sp->unsync_children || sp->unsync)
2543 mark_unsync(sptep);
32ef26a3
AK
2544}
2545
a357bd22
AK
2546static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2547 unsigned direct_access)
2548{
2549 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2550 struct kvm_mmu_page *child;
2551
2552 /*
2553 * For the direct sp, if the guest pte's dirty bit
2554 * changed form clean to dirty, it will corrupt the
2555 * sp's access: allow writable in the read-only sp,
2556 * so we should update the spte at this point to get
2557 * a new sp with the correct access.
2558 */
2559 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2560 if (child->role.access == direct_access)
2561 return;
2562
bcdd9a93 2563 drop_parent_pte(child, sptep);
a357bd22
AK
2564 kvm_flush_remote_tlbs(vcpu->kvm);
2565 }
2566}
2567
505aef8f 2568static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2569 u64 *spte)
2570{
2571 u64 pte;
2572 struct kvm_mmu_page *child;
2573
2574 pte = *spte;
2575 if (is_shadow_present_pte(pte)) {
505aef8f 2576 if (is_last_spte(pte, sp->role.level)) {
c3707958 2577 drop_spte(kvm, spte);
505aef8f
XG
2578 if (is_large_pte(pte))
2579 --kvm->stat.lpages;
2580 } else {
38e3b2b2 2581 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2582 drop_parent_pte(child, spte);
38e3b2b2 2583 }
505aef8f
XG
2584 return true;
2585 }
2586
2587 if (is_mmio_spte(pte))
ce88decf 2588 mmu_spte_clear_no_track(spte);
c3707958 2589
505aef8f 2590 return false;
38e3b2b2
XG
2591}
2592
90cb0529 2593static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2594 struct kvm_mmu_page *sp)
a436036b 2595{
697fe2e2 2596 unsigned i;
697fe2e2 2597
38e3b2b2
XG
2598 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2599 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2600}
2601
31aa2b44 2602static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2603{
1e3f42f0
TY
2604 u64 *sptep;
2605 struct rmap_iterator iter;
a436036b 2606
018aabb5 2607 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2608 drop_parent_pte(sp, sptep);
31aa2b44
AK
2609}
2610
60c8aec6 2611static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2612 struct kvm_mmu_page *parent,
2613 struct list_head *invalid_list)
4731d4c7 2614{
60c8aec6
MT
2615 int i, zapped = 0;
2616 struct mmu_page_path parents;
2617 struct kvm_mmu_pages pages;
4731d4c7 2618
60c8aec6 2619 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2620 return 0;
60c8aec6 2621
60c8aec6
MT
2622 while (mmu_unsync_walk(parent, &pages)) {
2623 struct kvm_mmu_page *sp;
2624
2625 for_each_sp(pages, sp, parents, i) {
7775834a 2626 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2627 mmu_pages_clear_parents(&parents);
77662e00 2628 zapped++;
60c8aec6 2629 }
60c8aec6
MT
2630 }
2631
2632 return zapped;
4731d4c7
MT
2633}
2634
7775834a
XG
2635static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2636 struct list_head *invalid_list)
31aa2b44 2637{
4731d4c7 2638 int ret;
f691fe1d 2639
7775834a 2640 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2641 ++kvm->stat.mmu_shadow_zapped;
7775834a 2642 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2643 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2644 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2645
f6e2c02b 2646 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2647 unaccount_shadowed(kvm, sp);
5304b8d3 2648
4731d4c7
MT
2649 if (sp->unsync)
2650 kvm_unlink_unsync_page(kvm, sp);
4db35314 2651 if (!sp->root_count) {
54a4f023
GJ
2652 /* Count self */
2653 ret++;
7775834a 2654 list_move(&sp->link, invalid_list);
aa6bd187 2655 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2656 } else {
5b5c6a5a 2657 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2658
2659 /*
2660 * The obsolete pages can not be used on any vcpus.
2661 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2662 */
2663 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2664 kvm_reload_remote_mmus(kvm);
2e53d63a 2665 }
7775834a
XG
2666
2667 sp->role.invalid = 1;
4731d4c7 2668 return ret;
a436036b
AK
2669}
2670
7775834a
XG
2671static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2672 struct list_head *invalid_list)
2673{
945315b9 2674 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2675
2676 if (list_empty(invalid_list))
2677 return;
2678
c142786c 2679 /*
9753f529
LT
2680 * We need to make sure everyone sees our modifications to
2681 * the page tables and see changes to vcpu->mode here. The barrier
2682 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2683 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2684 *
2685 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2686 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2687 */
2688 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2689
945315b9 2690 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2691 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2692 kvm_mmu_free_page(sp);
945315b9 2693 }
7775834a
XG
2694}
2695
5da59607
TY
2696static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2697 struct list_head *invalid_list)
2698{
2699 struct kvm_mmu_page *sp;
2700
2701 if (list_empty(&kvm->arch.active_mmu_pages))
2702 return false;
2703
d74c0e6b
GT
2704 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2705 struct kvm_mmu_page, link);
42bcbebf 2706 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2707}
2708
82ce2c96
IE
2709/*
2710 * Changing the number of mmu pages allocated to the vm
49d5ca26 2711 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2712 */
49d5ca26 2713void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2714{
d98ba053 2715 LIST_HEAD(invalid_list);
82ce2c96 2716
b34cb590
TY
2717 spin_lock(&kvm->mmu_lock);
2718
49d5ca26 2719 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2720 /* Need to free some mmu pages to achieve the goal. */
2721 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2722 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2723 break;
82ce2c96 2724
aa6bd187 2725 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2726 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2727 }
82ce2c96 2728
49d5ca26 2729 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2730
2731 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2732}
2733
1cb3f3ae 2734int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2735{
4db35314 2736 struct kvm_mmu_page *sp;
d98ba053 2737 LIST_HEAD(invalid_list);
a436036b
AK
2738 int r;
2739
9ad17b10 2740 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2741 r = 0;
1cb3f3ae 2742 spin_lock(&kvm->mmu_lock);
b67bfe0d 2743 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2744 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2745 sp->role.word);
2746 r = 1;
f41d335a 2747 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2748 }
d98ba053 2749 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2750 spin_unlock(&kvm->mmu_lock);
2751
a436036b 2752 return r;
cea0f0e7 2753}
1cb3f3ae 2754EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2755
5c520e90 2756static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2757{
2758 trace_kvm_mmu_unsync_page(sp);
2759 ++vcpu->kvm->stat.mmu_unsync;
2760 sp->unsync = 1;
2761
2762 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2763}
2764
3d0c27ad
XG
2765static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2766 bool can_unsync)
4731d4c7 2767{
5c520e90 2768 struct kvm_mmu_page *sp;
4731d4c7 2769
3d0c27ad
XG
2770 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2771 return true;
9cf5cf5a 2772
5c520e90 2773 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2774 if (!can_unsync)
3d0c27ad 2775 return true;
36a2e677 2776
5c520e90
XG
2777 if (sp->unsync)
2778 continue;
9cf5cf5a 2779
5c520e90
XG
2780 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2781 kvm_unsync_page(vcpu, sp);
4731d4c7 2782 }
3d0c27ad 2783
578e1c4d
JS
2784 /*
2785 * We need to ensure that the marking of unsync pages is visible
2786 * before the SPTE is updated to allow writes because
2787 * kvm_mmu_sync_roots() checks the unsync flags without holding
2788 * the MMU lock and so can race with this. If the SPTE was updated
2789 * before the page had been marked as unsync-ed, something like the
2790 * following could happen:
2791 *
2792 * CPU 1 CPU 2
2793 * ---------------------------------------------------------------------
2794 * 1.2 Host updates SPTE
2795 * to be writable
2796 * 2.1 Guest writes a GPTE for GVA X.
2797 * (GPTE being in the guest page table shadowed
2798 * by the SP from CPU 1.)
2799 * This reads SPTE during the page table walk.
2800 * Since SPTE.W is read as 1, there is no
2801 * fault.
2802 *
2803 * 2.2 Guest issues TLB flush.
2804 * That causes a VM Exit.
2805 *
2806 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2807 * Since it is false, so it just returns.
2808 *
2809 * 2.4 Guest accesses GVA X.
2810 * Since the mapping in the SP was not updated,
2811 * so the old mapping for GVA X incorrectly
2812 * gets used.
2813 * 1.1 Host marks SP
2814 * as unsync
2815 * (sp->unsync = true)
2816 *
2817 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2818 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2819 * pairs with this write barrier.
2820 */
2821 smp_wmb();
2822
3d0c27ad 2823 return false;
4731d4c7
MT
2824}
2825
ba049e93 2826static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2827{
2828 if (pfn_valid(pfn))
aa2e063a
HZ
2829 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2830 /*
2831 * Some reserved pages, such as those from NVDIMM
2832 * DAX devices, are not for MMIO, and can be mapped
2833 * with cached memory type for better performance.
2834 * However, the above check misconceives those pages
2835 * as MMIO, and results in KVM mapping them with UC
2836 * memory type, which would hurt the performance.
2837 * Therefore, we check the host memory type in addition
2838 * and only treat UC/UC-/WC pages as MMIO.
2839 */
2840 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2841
2842 return true;
2843}
2844
5ce4786f
JS
2845/* Bits which may be returned by set_spte() */
2846#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2847#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2848
d555c333 2849static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2850 unsigned pte_access, int level,
ba049e93 2851 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2852 bool can_unsync, bool host_writable)
1c4f1fd6 2853{
ffb128c8 2854 u64 spte = 0;
1e73f9dd 2855 int ret = 0;
ac8d57e5 2856 struct kvm_mmu_page *sp;
64d4d521 2857
54bf36aa 2858 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2859 return 0;
2860
ac8d57e5
PF
2861 sp = page_header(__pa(sptep));
2862 if (sp_ad_disabled(sp))
2863 spte |= shadow_acc_track_value;
2864
d95c5568
BD
2865 /*
2866 * For the EPT case, shadow_present_mask is 0 if hardware
2867 * supports exec-only page table entries. In that case,
2868 * ACC_USER_MASK and shadow_user_mask are used to represent
2869 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2870 */
ffb128c8 2871 spte |= shadow_present_mask;
947da538 2872 if (!speculative)
ac8d57e5 2873 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2874
7b52345e
SY
2875 if (pte_access & ACC_EXEC_MASK)
2876 spte |= shadow_x_mask;
2877 else
2878 spte |= shadow_nx_mask;
49fde340 2879
1c4f1fd6 2880 if (pte_access & ACC_USER_MASK)
7b52345e 2881 spte |= shadow_user_mask;
49fde340 2882
852e3c19 2883 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2884 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2885 if (tdp_enabled)
4b12f0de 2886 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2887 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2888
9bdbba13 2889 if (host_writable)
1403283a 2890 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2891 else
2892 pte_access &= ~ACC_WRITE_MASK;
1403283a 2893
daaf216c
TL
2894 if (!kvm_is_mmio_pfn(pfn))
2895 spte |= shadow_me_mask;
2896
35149e21 2897 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2898
c2288505 2899 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2900
c2193463 2901 /*
7751babd
XG
2902 * Other vcpu creates new sp in the window between
2903 * mapping_level() and acquiring mmu-lock. We can
2904 * allow guest to retry the access, the mapping can
2905 * be fixed if guest refault.
c2193463 2906 */
852e3c19 2907 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2908 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2909 goto done;
38187c83 2910
49fde340 2911 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2912
ecc5589f
MT
2913 /*
2914 * Optimization: for pte sync, if spte was writable the hash
2915 * lookup is unnecessary (and expensive). Write protection
2916 * is responsibility of mmu_get_page / kvm_sync_page.
2917 * Same reasoning can be applied to dirty page accounting.
2918 */
8dae4445 2919 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2920 goto set_pte;
2921
4731d4c7 2922 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2923 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2924 __func__, gfn);
5ce4786f 2925 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2926 pte_access &= ~ACC_WRITE_MASK;
49fde340 2927 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2928 }
2929 }
2930
9b51a630 2931 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2932 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2933 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2934 }
1c4f1fd6 2935
f160c7b7
JS
2936 if (speculative)
2937 spte = mark_spte_for_access_track(spte);
2938
38187c83 2939set_pte:
6e7d0354 2940 if (mmu_spte_update(sptep, spte))
5ce4786f 2941 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 2942done:
1e73f9dd
MT
2943 return ret;
2944}
2945
9b8ebbdb
PB
2946static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2947 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2948 bool speculative, bool host_writable)
1e73f9dd
MT
2949{
2950 int was_rmapped = 0;
53a27b39 2951 int rmap_count;
5ce4786f 2952 int set_spte_ret;
9b8ebbdb 2953 int ret = RET_PF_RETRY;
c2a4eadf 2954 bool flush = false;
1e73f9dd 2955
f7616203
XG
2956 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2957 *sptep, write_fault, gfn);
1e73f9dd 2958
afd28fe1 2959 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2960 /*
2961 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2962 * the parent of the now unreachable PTE.
2963 */
852e3c19
JR
2964 if (level > PT_PAGE_TABLE_LEVEL &&
2965 !is_large_pte(*sptep)) {
1e73f9dd 2966 struct kvm_mmu_page *child;
d555c333 2967 u64 pte = *sptep;
1e73f9dd
MT
2968
2969 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2970 drop_parent_pte(child, sptep);
c2a4eadf 2971 flush = true;
d555c333 2972 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2973 pgprintk("hfn old %llx new %llx\n",
d555c333 2974 spte_to_pfn(*sptep), pfn);
c3707958 2975 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2976 flush = true;
6bed6b9e
JR
2977 } else
2978 was_rmapped = 1;
1e73f9dd 2979 }
852e3c19 2980
5ce4786f
JS
2981 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2982 speculative, true, host_writable);
2983 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2984 if (write_fault)
9b8ebbdb 2985 ret = RET_PF_EMULATE;
77c3913b 2986 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2987 }
c2a4eadf 2988 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
5ce4786f 2989 kvm_flush_remote_tlbs(vcpu->kvm);
1e73f9dd 2990
029499b4 2991 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2992 ret = RET_PF_EMULATE;
ce88decf 2993
d555c333 2994 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2995 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2996 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2997 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2998 *sptep, sptep);
d555c333 2999 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3000 ++vcpu->kvm->stat.lpages;
3001
ffb61bb3 3002 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3003 if (!was_rmapped) {
3004 rmap_count = rmap_add(vcpu, sptep, gfn);
3005 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3006 rmap_recycle(vcpu, sptep, gfn);
3007 }
1c4f1fd6 3008 }
cb9aaa30 3009
f3ac1a4b 3010 kvm_release_pfn_clean(pfn);
029499b4 3011
9b8ebbdb 3012 return ret;
1c4f1fd6
AK
3013}
3014
ba049e93 3015static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3016 bool no_dirty_log)
3017{
3018 struct kvm_memory_slot *slot;
957ed9ef 3019
5d163b1c 3020 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3021 if (!slot)
6c8ee57b 3022 return KVM_PFN_ERR_FAULT;
957ed9ef 3023
037d92dc 3024 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3025}
3026
3027static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3028 struct kvm_mmu_page *sp,
3029 u64 *start, u64 *end)
3030{
3031 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3032 struct kvm_memory_slot *slot;
957ed9ef
XG
3033 unsigned access = sp->role.access;
3034 int i, ret;
3035 gfn_t gfn;
3036
3037 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3038 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3039 if (!slot)
957ed9ef
XG
3040 return -1;
3041
d9ef13c2 3042 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3043 if (ret <= 0)
3044 return -1;
3045
3046 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3047 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3048 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3049
3050 return 0;
3051}
3052
3053static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3054 struct kvm_mmu_page *sp, u64 *sptep)
3055{
3056 u64 *spte, *start = NULL;
3057 int i;
3058
3059 WARN_ON(!sp->role.direct);
3060
3061 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3062 spte = sp->spt + i;
3063
3064 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3065 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3066 if (!start)
3067 continue;
3068 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3069 break;
3070 start = NULL;
3071 } else if (!start)
3072 start = spte;
3073 }
3074}
3075
3076static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3077{
3078 struct kvm_mmu_page *sp;
3079
ac8d57e5
PF
3080 sp = page_header(__pa(sptep));
3081
957ed9ef 3082 /*
ac8d57e5
PF
3083 * Without accessed bits, there's no way to distinguish between
3084 * actually accessed translations and prefetched, so disable pte
3085 * prefetch if accessed bits aren't available.
957ed9ef 3086 */
ac8d57e5 3087 if (sp_ad_disabled(sp))
957ed9ef
XG
3088 return;
3089
957ed9ef
XG
3090 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3091 return;
3092
3093 __direct_pte_prefetch(vcpu, sp, sptep);
3094}
3095
7ee0e5b2 3096static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3097 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3098{
9f652d21 3099 struct kvm_shadow_walk_iterator iterator;
140754bc 3100 struct kvm_mmu_page *sp;
b90a0e6c 3101 int emulate = 0;
140754bc 3102 gfn_t pseudo_gfn;
6aa8b732 3103
44dd3ffa 3104 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3105 return 0;
3106
9f652d21 3107 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3108 if (iterator.level == level) {
029499b4
TY
3109 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3110 write, level, gfn, pfn, prefault,
3111 map_writable);
957ed9ef 3112 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3113 ++vcpu->stat.pf_fixed;
3114 break;
6aa8b732
AK
3115 }
3116
404381c5 3117 drop_large_spte(vcpu, iterator.sptep);
c3707958 3118 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3119 u64 base_addr = iterator.addr;
3120
3121 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3122 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3123 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3124 iterator.level - 1, 1, ACC_ALL);
140754bc 3125
98bba238 3126 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3127 }
3128 }
b90a0e6c 3129 return emulate;
6aa8b732
AK
3130}
3131
77db5cbd 3132static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3133{
585a8b9b 3134 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
YH
3135}
3136
ba049e93 3137static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3138{
4d8b81ab
XG
3139 /*
3140 * Do not cache the mmio info caused by writing the readonly gfn
3141 * into the spte otherwise read access on readonly gfn also can
3142 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3143 */
3144 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3145 return RET_PF_EMULATE;
4d8b81ab 3146
e6c1502b 3147 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3148 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3149 return RET_PF_RETRY;
d7c55201 3150 }
edba23e5 3151
2c151b25 3152 return -EFAULT;
bf998156
YH
3153}
3154
936a5fe6 3155static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3156 gfn_t *gfnp, kvm_pfn_t *pfnp,
3157 int *levelp)
936a5fe6 3158{
ba049e93 3159 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3160 gfn_t gfn = *gfnp;
3161 int level = *levelp;
3162
3163 /*
3164 * Check if it's a transparent hugepage. If this would be an
3165 * hugetlbfs page, level wouldn't be set to
3166 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3167 * here.
3168 */
bf4bea8e 3169 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3170 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3171 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3172 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3173 unsigned long mask;
3174 /*
3175 * mmu_notifier_retry was successful and we hold the
3176 * mmu_lock here, so the pmd can't become splitting
3177 * from under us, and in turn
3178 * __split_huge_page_refcount() can't run from under
3179 * us and we can safely transfer the refcount from
3180 * PG_tail to PG_head as we switch the pfn to tail to
3181 * head.
3182 */
3183 *levelp = level = PT_DIRECTORY_LEVEL;
3184 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3185 VM_BUG_ON((gfn & mask) != (pfn & mask));
3186 if (pfn & mask) {
3187 gfn &= ~mask;
3188 *gfnp = gfn;
3189 kvm_release_pfn_clean(pfn);
3190 pfn &= ~mask;
c3586667 3191 kvm_get_pfn(pfn);
936a5fe6
AA
3192 *pfnp = pfn;
3193 }
3194 }
3195}
3196
d7c55201 3197static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3198 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3199{
d7c55201 3200 /* The pfn is invalid, report the error! */
81c52c56 3201 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3202 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3203 return true;
d7c55201
XG
3204 }
3205
ce88decf 3206 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3207 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3208
798e88b3 3209 return false;
d7c55201
XG
3210}
3211
e5552fd2 3212static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3213{
1c118b82
XG
3214 /*
3215 * Do not fix the mmio spte with invalid generation number which
3216 * need to be updated by slow page fault path.
3217 */
3218 if (unlikely(error_code & PFERR_RSVD_MASK))
3219 return false;
3220
f160c7b7
JS
3221 /* See if the page fault is due to an NX violation */
3222 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3223 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3224 return false;
3225
c7ba5b48 3226 /*
f160c7b7
JS
3227 * #PF can be fast if:
3228 * 1. The shadow page table entry is not present, which could mean that
3229 * the fault is potentially caused by access tracking (if enabled).
3230 * 2. The shadow page table entry is present and the fault
3231 * is caused by write-protect, that means we just need change the W
3232 * bit of the spte which can be done out of mmu-lock.
3233 *
3234 * However, if access tracking is disabled we know that a non-present
3235 * page must be a genuine page fault where we have to create a new SPTE.
3236 * So, if access tracking is disabled, we return true only for write
3237 * accesses to a present page.
c7ba5b48 3238 */
c7ba5b48 3239
f160c7b7
JS
3240 return shadow_acc_track_mask != 0 ||
3241 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3242 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3243}
3244
97dceba2
JS
3245/*
3246 * Returns true if the SPTE was fixed successfully. Otherwise,
3247 * someone else modified the SPTE from its original value.
3248 */
c7ba5b48 3249static bool
92a476cb 3250fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3251 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3252{
c7ba5b48
XG
3253 gfn_t gfn;
3254
3255 WARN_ON(!sp->role.direct);
3256
9b51a630
KH
3257 /*
3258 * Theoretically we could also set dirty bit (and flush TLB) here in
3259 * order to eliminate unnecessary PML logging. See comments in
3260 * set_spte. But fast_page_fault is very unlikely to happen with PML
3261 * enabled, so we do not do this. This might result in the same GPA
3262 * to be logged in PML buffer again when the write really happens, and
3263 * eventually to be called by mark_page_dirty twice. But it's also no
3264 * harm. This also avoids the TLB flush needed after setting dirty bit
3265 * so non-PML cases won't be impacted.
3266 *
3267 * Compare with set_spte where instead shadow_dirty_mask is set.
3268 */
f160c7b7 3269 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3270 return false;
3271
d3e328f2 3272 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3273 /*
3274 * The gfn of direct spte is stable since it is
3275 * calculated by sp->gfn.
3276 */
3277 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3278 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3279 }
c7ba5b48
XG
3280
3281 return true;
3282}
3283
d3e328f2
JS
3284static bool is_access_allowed(u32 fault_err_code, u64 spte)
3285{
3286 if (fault_err_code & PFERR_FETCH_MASK)
3287 return is_executable_pte(spte);
3288
3289 if (fault_err_code & PFERR_WRITE_MASK)
3290 return is_writable_pte(spte);
3291
3292 /* Fault was on Read access */
3293 return spte & PT_PRESENT_MASK;
3294}
3295
c7ba5b48
XG
3296/*
3297 * Return value:
3298 * - true: let the vcpu to access on the same address again.
3299 * - false: let the real page fault path to fix it.
3300 */
3301static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3302 u32 error_code)
3303{
3304 struct kvm_shadow_walk_iterator iterator;
92a476cb 3305 struct kvm_mmu_page *sp;
97dceba2 3306 bool fault_handled = false;
c7ba5b48 3307 u64 spte = 0ull;
97dceba2 3308 uint retry_count = 0;
c7ba5b48 3309
44dd3ffa 3310 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3311 return false;
3312
e5552fd2 3313 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3314 return false;
3315
3316 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3317
97dceba2 3318 do {
d3e328f2 3319 u64 new_spte;
c7ba5b48 3320
d162f30a
JS
3321 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3322 if (!is_shadow_present_pte(spte) ||
3323 iterator.level < level)
3324 break;
3325
97dceba2
JS
3326 sp = page_header(__pa(iterator.sptep));
3327 if (!is_last_spte(spte, sp->role.level))
3328 break;
c7ba5b48 3329
97dceba2 3330 /*
f160c7b7
JS
3331 * Check whether the memory access that caused the fault would
3332 * still cause it if it were to be performed right now. If not,
3333 * then this is a spurious fault caused by TLB lazily flushed,
3334 * or some other CPU has already fixed the PTE after the
3335 * current CPU took the fault.
97dceba2
JS
3336 *
3337 * Need not check the access of upper level table entries since
3338 * they are always ACC_ALL.
3339 */
d3e328f2
JS
3340 if (is_access_allowed(error_code, spte)) {
3341 fault_handled = true;
3342 break;
3343 }
f160c7b7 3344
d3e328f2
JS
3345 new_spte = spte;
3346
3347 if (is_access_track_spte(spte))
3348 new_spte = restore_acc_track_spte(new_spte);
3349
3350 /*
3351 * Currently, to simplify the code, write-protection can
3352 * be removed in the fast path only if the SPTE was
3353 * write-protected for dirty-logging or access tracking.
3354 */
3355 if ((error_code & PFERR_WRITE_MASK) &&
3356 spte_can_locklessly_be_made_writable(spte))
3357 {
3358 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3359
3360 /*
d3e328f2
JS
3361 * Do not fix write-permission on the large spte. Since
3362 * we only dirty the first page into the dirty-bitmap in
3363 * fast_pf_fix_direct_spte(), other pages are missed
3364 * if its slot has dirty logging enabled.
3365 *
3366 * Instead, we let the slow page fault path create a
3367 * normal spte to fix the access.
3368 *
3369 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3370 */
d3e328f2 3371 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3372 break;
97dceba2 3373 }
c7ba5b48 3374
f160c7b7 3375 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3376 if (new_spte == spte ||
3377 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3378 break;
3379
3380 /*
3381 * Currently, fast page fault only works for direct mapping
3382 * since the gfn is not stable for indirect shadow page. See
3383 * Documentation/virtual/kvm/locking.txt to get more detail.
3384 */
3385 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3386 iterator.sptep, spte,
d3e328f2 3387 new_spte);
97dceba2
JS
3388 if (fault_handled)
3389 break;
3390
3391 if (++retry_count > 4) {
3392 printk_once(KERN_WARNING
3393 "kvm: Fast #PF retrying more than 4 times.\n");
3394 break;
3395 }
3396
97dceba2 3397 } while (true);
c126d94f 3398
a72faf25 3399 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3400 spte, fault_handled);
c7ba5b48
XG
3401 walk_shadow_page_lockless_end(vcpu);
3402
97dceba2 3403 return fault_handled;
c7ba5b48
XG
3404}
3405
78b2c54a 3406static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3407 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3408static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3409
c7ba5b48
XG
3410static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3411 gfn_t gfn, bool prefault)
10589a46
MT
3412{
3413 int r;
852e3c19 3414 int level;
fd136902 3415 bool force_pt_level = false;
ba049e93 3416 kvm_pfn_t pfn;
e930bffe 3417 unsigned long mmu_seq;
c7ba5b48 3418 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3419
fd136902 3420 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3421 if (likely(!force_pt_level)) {
936a5fe6
AA
3422 /*
3423 * This path builds a PAE pagetable - so we can map
3424 * 2mb pages at maximum. Therefore check if the level
3425 * is larger than that.
3426 */
3427 if (level > PT_DIRECTORY_LEVEL)
3428 level = PT_DIRECTORY_LEVEL;
852e3c19 3429
936a5fe6 3430 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3431 }
05da4558 3432
c7ba5b48 3433 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3434 return RET_PF_RETRY;
c7ba5b48 3435
e930bffe 3436 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3437 smp_rmb();
060c2abe 3438
78b2c54a 3439 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3440 return RET_PF_RETRY;
aaee2c94 3441
d7c55201
XG
3442 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3443 return r;
d196e343 3444
aaee2c94 3445 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3446 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3447 goto out_unlock;
26eeb53c
WL
3448 if (make_mmu_pages_available(vcpu) < 0)
3449 goto out_unlock;
936a5fe6
AA
3450 if (likely(!force_pt_level))
3451 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3452 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3453 spin_unlock(&vcpu->kvm->mmu_lock);
3454
10589a46 3455 return r;
e930bffe
AA
3456
3457out_unlock:
3458 spin_unlock(&vcpu->kvm->mmu_lock);
3459 kvm_release_pfn_clean(pfn);
9b8ebbdb 3460 return RET_PF_RETRY;
10589a46
MT
3461}
3462
74b566e6
JS
3463static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3464 struct list_head *invalid_list)
17ac10ad 3465{
4db35314 3466 struct kvm_mmu_page *sp;
17ac10ad 3467
74b566e6 3468 if (!VALID_PAGE(*root_hpa))
7b53aa56 3469 return;
35af577a 3470
74b566e6
JS
3471 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3472 --sp->root_count;
3473 if (!sp->root_count && sp->role.invalid)
3474 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3475
74b566e6
JS
3476 *root_hpa = INVALID_PAGE;
3477}
3478
08fb59d8 3479/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3480void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3481 ulong roots_to_free)
74b566e6
JS
3482{
3483 int i;
3484 LIST_HEAD(invalid_list);
08fb59d8 3485 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3486
b94742c9 3487 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3488
08fb59d8 3489 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3490 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3491 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3492 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3493 VALID_PAGE(mmu->prev_roots[i].hpa))
3494 break;
3495
3496 if (i == KVM_MMU_NUM_PREV_ROOTS)
3497 return;
3498 }
35af577a
GN
3499
3500 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3501
b94742c9
JS
3502 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3503 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3504 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3505 &invalid_list);
7c390d35 3506
08fb59d8
JS
3507 if (free_active_root) {
3508 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3509 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3510 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3511 &invalid_list);
3512 } else {
3513 for (i = 0; i < 4; ++i)
3514 if (mmu->pae_root[i] != 0)
3515 mmu_free_root_page(vcpu->kvm,
3516 &mmu->pae_root[i],
3517 &invalid_list);
3518 mmu->root_hpa = INVALID_PAGE;
3519 }
17ac10ad 3520 }
74b566e6 3521
d98ba053 3522 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3523 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3524}
74b566e6 3525EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3526
8986ecc0
MT
3527static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3528{
3529 int ret = 0;
3530
3531 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3532 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3533 ret = 1;
3534 }
3535
3536 return ret;
3537}
3538
651dd37a
JR
3539static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3540{
3541 struct kvm_mmu_page *sp;
7ebaf15e 3542 unsigned i;
651dd37a 3543
44dd3ffa 3544 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3545 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3546 if(make_mmu_pages_available(vcpu) < 0) {
3547 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3548 return -ENOSPC;
26eeb53c 3549 }
855feb67 3550 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3551 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3552 ++sp->root_count;
3553 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3554 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3555 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3556 for (i = 0; i < 4; ++i) {
44dd3ffa 3557 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3558
fa4a2c08 3559 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3560 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3561 if (make_mmu_pages_available(vcpu) < 0) {
3562 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3563 return -ENOSPC;
26eeb53c 3564 }
649497d1 3565 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3566 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3567 root = __pa(sp->spt);
3568 ++sp->root_count;
3569 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3570 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3571 }
44dd3ffa 3572 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3573 } else
3574 BUG();
3575
3576 return 0;
3577}
3578
3579static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3580{
4db35314 3581 struct kvm_mmu_page *sp;
81407ca5
JR
3582 u64 pdptr, pm_mask;
3583 gfn_t root_gfn;
3584 int i;
3bb65a22 3585
44dd3ffa 3586 root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3587
651dd37a
JR
3588 if (mmu_check_root(vcpu, root_gfn))
3589 return 1;
3590
3591 /*
3592 * Do we shadow a long mode page table? If so we need to
3593 * write-protect the guests page table root.
3594 */
44dd3ffa
VK
3595 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3596 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3597
fa4a2c08 3598 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3599
8facbbff 3600 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3601 if (make_mmu_pages_available(vcpu) < 0) {
3602 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3603 return -ENOSPC;
26eeb53c 3604 }
855feb67 3605 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3606 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3607 root = __pa(sp->spt);
3608 ++sp->root_count;
8facbbff 3609 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3610 vcpu->arch.mmu->root_hpa = root;
8986ecc0 3611 return 0;
17ac10ad 3612 }
f87f9288 3613
651dd37a
JR
3614 /*
3615 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3616 * or a PAE 3-level page table. In either case we need to be aware that
3617 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3618 */
81407ca5 3619 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3620 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3621 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3622
17ac10ad 3623 for (i = 0; i < 4; ++i) {
44dd3ffa 3624 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3625
fa4a2c08 3626 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3627 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3628 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3629 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3630 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3631 continue;
3632 }
6de4f3ad 3633 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3634 if (mmu_check_root(vcpu, root_gfn))
3635 return 1;
5a7388c2 3636 }
8facbbff 3637 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3638 if (make_mmu_pages_available(vcpu) < 0) {
3639 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3640 return -ENOSPC;
26eeb53c 3641 }
bb11c6c9
TY
3642 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3643 0, ACC_ALL);
4db35314
AK
3644 root = __pa(sp->spt);
3645 ++sp->root_count;
8facbbff
AK
3646 spin_unlock(&vcpu->kvm->mmu_lock);
3647
44dd3ffa 3648 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3649 }
44dd3ffa 3650 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3651
3652 /*
3653 * If we shadow a 32 bit page table with a long mode page
3654 * table we enter this path.
3655 */
44dd3ffa
VK
3656 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3657 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3658 /*
3659 * The additional page necessary for this is only
3660 * allocated on demand.
3661 */
3662
3663 u64 *lm_root;
3664
3665 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3666 if (lm_root == NULL)
3667 return 1;
3668
44dd3ffa 3669 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3670
44dd3ffa 3671 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3672 }
3673
44dd3ffa 3674 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3675 }
3676
8986ecc0 3677 return 0;
17ac10ad
AK
3678}
3679
651dd37a
JR
3680static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3681{
44dd3ffa 3682 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3683 return mmu_alloc_direct_roots(vcpu);
3684 else
3685 return mmu_alloc_shadow_roots(vcpu);
3686}
3687
578e1c4d 3688void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3689{
3690 int i;
3691 struct kvm_mmu_page *sp;
3692
44dd3ffa 3693 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3694 return;
3695
44dd3ffa 3696 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3697 return;
6903074c 3698
56f17dd3 3699 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3700
44dd3ffa
VK
3701 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3702 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3703 sp = page_header(root);
578e1c4d
JS
3704
3705 /*
3706 * Even if another CPU was marking the SP as unsync-ed
3707 * simultaneously, any guest page table changes are not
3708 * guaranteed to be visible anyway until this VCPU issues a TLB
3709 * flush strictly after those changes are made. We only need to
3710 * ensure that the other CPU sets these flags before any actual
3711 * changes to the page tables are made. The comments in
3712 * mmu_need_write_protect() describe what could go wrong if this
3713 * requirement isn't satisfied.
3714 */
3715 if (!smp_load_acquire(&sp->unsync) &&
3716 !smp_load_acquire(&sp->unsync_children))
3717 return;
3718
3719 spin_lock(&vcpu->kvm->mmu_lock);
3720 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3721
0ba73cda 3722 mmu_sync_children(vcpu, sp);
578e1c4d 3723
0375f7fa 3724 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3725 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3726 return;
3727 }
578e1c4d
JS
3728
3729 spin_lock(&vcpu->kvm->mmu_lock);
3730 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3731
0ba73cda 3732 for (i = 0; i < 4; ++i) {
44dd3ffa 3733 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3734
8986ecc0 3735 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3736 root &= PT64_BASE_ADDR_MASK;
3737 sp = page_header(root);
3738 mmu_sync_children(vcpu, sp);
3739 }
3740 }
0ba73cda 3741
578e1c4d 3742 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3743 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3744}
bfd0a56b 3745EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3746
1871c602 3747static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3748 u32 access, struct x86_exception *exception)
6aa8b732 3749{
ab9ae313
AK
3750 if (exception)
3751 exception->error_code = 0;
6aa8b732
AK
3752 return vaddr;
3753}
3754
6539e738 3755static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3756 u32 access,
3757 struct x86_exception *exception)
6539e738 3758{
ab9ae313
AK
3759 if (exception)
3760 exception->error_code = 0;
54987b7a 3761 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3762}
3763
d625b155
XG
3764static bool
3765__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3766{
3767 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3768
3769 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3770 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3771}
3772
3773static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3774{
3775 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3776}
3777
3778static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3779{
3780 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3781}
3782
ded58749 3783static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3784{
9034e6e8
PB
3785 /*
3786 * A nested guest cannot use the MMIO cache if it is using nested
3787 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3788 */
3789 if (mmu_is_nested(vcpu))
3790 return false;
3791
ce88decf
XG
3792 if (direct)
3793 return vcpu_match_mmio_gpa(vcpu, addr);
3794
3795 return vcpu_match_mmio_gva(vcpu, addr);
3796}
3797
47ab8751
XG
3798/* return true if reserved bit is detected on spte. */
3799static bool
3800walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3801{
3802 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3803 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3804 int root, leaf;
3805 bool reserved = false;
ce88decf 3806
44dd3ffa 3807 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3808 goto exit;
37f6a4e2 3809
ce88decf 3810 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3811
29ecd660
PB
3812 for (shadow_walk_init(&iterator, vcpu, addr),
3813 leaf = root = iterator.level;
47ab8751
XG
3814 shadow_walk_okay(&iterator);
3815 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3816 spte = mmu_spte_get_lockless(iterator.sptep);
3817
3818 sptes[leaf - 1] = spte;
29ecd660 3819 leaf--;
47ab8751 3820
ce88decf
XG
3821 if (!is_shadow_present_pte(spte))
3822 break;
47ab8751 3823
44dd3ffa 3824 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3825 iterator.level);
47ab8751
XG
3826 }
3827
ce88decf
XG
3828 walk_shadow_page_lockless_end(vcpu);
3829
47ab8751
XG
3830 if (reserved) {
3831 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3832 __func__, addr);
29ecd660 3833 while (root > leaf) {
47ab8751
XG
3834 pr_err("------ spte 0x%llx level %d.\n",
3835 sptes[root - 1], root);
3836 root--;
3837 }
3838 }
3839exit:
3840 *sptep = spte;
3841 return reserved;
ce88decf
XG
3842}
3843
e08d26f0 3844static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3845{
3846 u64 spte;
47ab8751 3847 bool reserved;
ce88decf 3848
ded58749 3849 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3850 return RET_PF_EMULATE;
ce88decf 3851
47ab8751 3852 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3853 if (WARN_ON(reserved))
9b8ebbdb 3854 return -EINVAL;
ce88decf
XG
3855
3856 if (is_mmio_spte(spte)) {
3857 gfn_t gfn = get_mmio_spte_gfn(spte);
3858 unsigned access = get_mmio_spte_access(spte);
3859
54bf36aa 3860 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3861 return RET_PF_INVALID;
f8f55942 3862
ce88decf
XG
3863 if (direct)
3864 addr = 0;
4f022648
XG
3865
3866 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3867 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3868 return RET_PF_EMULATE;
ce88decf
XG
3869 }
3870
ce88decf
XG
3871 /*
3872 * If the page table is zapped by other cpus, let CPU fault again on
3873 * the address.
3874 */
9b8ebbdb 3875 return RET_PF_RETRY;
ce88decf 3876}
ce88decf 3877
3d0c27ad
XG
3878static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3879 u32 error_code, gfn_t gfn)
3880{
3881 if (unlikely(error_code & PFERR_RSVD_MASK))
3882 return false;
3883
3884 if (!(error_code & PFERR_PRESENT_MASK) ||
3885 !(error_code & PFERR_WRITE_MASK))
3886 return false;
3887
3888 /*
3889 * guest is writing the page which is write tracked which can
3890 * not be fixed by page fault handler.
3891 */
3892 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3893 return true;
3894
3895 return false;
3896}
3897
e5691a81
XG
3898static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3899{
3900 struct kvm_shadow_walk_iterator iterator;
3901 u64 spte;
3902
44dd3ffa 3903 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3904 return;
3905
3906 walk_shadow_page_lockless_begin(vcpu);
3907 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3908 clear_sp_write_flooding_count(iterator.sptep);
3909 if (!is_shadow_present_pte(spte))
3910 break;
3911 }
3912 walk_shadow_page_lockless_end(vcpu);
3913}
3914
6aa8b732 3915static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3916 u32 error_code, bool prefault)
6aa8b732 3917{
3d0c27ad 3918 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3919 int r;
6aa8b732 3920
b8688d51 3921 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3922
3d0c27ad 3923 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3924 return RET_PF_EMULATE;
ce88decf 3925
e2dec939
AK
3926 r = mmu_topup_memory_caches(vcpu);
3927 if (r)
3928 return r;
714b93da 3929
44dd3ffa 3930 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 3931
6aa8b732 3932
e833240f 3933 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3934 error_code, gfn, prefault);
6aa8b732
AK
3935}
3936
7e1fbeac 3937static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3938{
3939 struct kvm_arch_async_pf arch;
fb67e14f 3940
7c90705b 3941 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3942 arch.gfn = gfn;
44dd3ffa
VK
3943 arch.direct_map = vcpu->arch.mmu->direct_map;
3944 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 3945
54bf36aa 3946 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3947}
3948
9bc1f09f 3949bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3950{
35754c98 3951 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
3952 kvm_event_needs_reinjection(vcpu) ||
3953 vcpu->arch.exception.pending))
af585b92
GN
3954 return false;
3955
52a5c155 3956 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3957 return false;
3958
af585b92
GN
3959 return kvm_x86_ops->interrupt_allowed(vcpu);
3960}
3961
78b2c54a 3962static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3963 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3964{
3520469d 3965 struct kvm_memory_slot *slot;
af585b92
GN
3966 bool async;
3967
3a2936de
JM
3968 /*
3969 * Don't expose private memslots to L2.
3970 */
3971 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3972 *pfn = KVM_PFN_NOSLOT;
3973 return false;
3974 }
3975
54bf36aa 3976 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3977 async = false;
3978 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3979 if (!async)
3980 return false; /* *pfn has correct page already */
3981
9bc1f09f 3982 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3983 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3984 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3985 trace_kvm_async_pf_doublefault(gva, gfn);
3986 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3987 return true;
3988 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3989 return true;
3990 }
3991
3520469d 3992 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3993 return false;
3994}
3995
1261bfa3 3996int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3997 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3998{
3999 int r = 1;
4000
c595ceee 4001 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4002 switch (vcpu->arch.apf.host_apf_reason) {
4003 default:
4004 trace_kvm_page_fault(fault_address, error_code);
4005
d0006530 4006 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4007 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4008 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4009 insn_len);
4010 break;
4011 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4012 vcpu->arch.apf.host_apf_reason = 0;
4013 local_irq_disable();
a2b7861b 4014 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4015 local_irq_enable();
4016 break;
4017 case KVM_PV_REASON_PAGE_READY:
4018 vcpu->arch.apf.host_apf_reason = 0;
4019 local_irq_disable();
4020 kvm_async_pf_task_wake(fault_address);
4021 local_irq_enable();
4022 break;
4023 }
4024 return r;
4025}
4026EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4027
6a39bbc5
XG
4028static bool
4029check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4030{
4031 int page_num = KVM_PAGES_PER_HPAGE(level);
4032
4033 gfn &= ~(page_num - 1);
4034
4035 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4036}
4037
56028d08 4038static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4039 bool prefault)
fb72d167 4040{
ba049e93 4041 kvm_pfn_t pfn;
fb72d167 4042 int r;
852e3c19 4043 int level;
cd1872f0 4044 bool force_pt_level;
05da4558 4045 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4046 unsigned long mmu_seq;
612819c3
MT
4047 int write = error_code & PFERR_WRITE_MASK;
4048 bool map_writable;
fb72d167 4049
44dd3ffa 4050 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4051
3d0c27ad 4052 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4053 return RET_PF_EMULATE;
ce88decf 4054
fb72d167
JR
4055 r = mmu_topup_memory_caches(vcpu);
4056 if (r)
4057 return r;
4058
fd136902
TY
4059 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4060 PT_DIRECTORY_LEVEL);
4061 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4062 if (likely(!force_pt_level)) {
6a39bbc5
XG
4063 if (level > PT_DIRECTORY_LEVEL &&
4064 !check_hugepage_cache_consistency(vcpu, gfn, level))
4065 level = PT_DIRECTORY_LEVEL;
936a5fe6 4066 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4067 }
852e3c19 4068
c7ba5b48 4069 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4070 return RET_PF_RETRY;
c7ba5b48 4071
e930bffe 4072 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4073 smp_rmb();
af585b92 4074
78b2c54a 4075 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4076 return RET_PF_RETRY;
af585b92 4077
d7c55201
XG
4078 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4079 return r;
4080
fb72d167 4081 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4082 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4083 goto out_unlock;
26eeb53c
WL
4084 if (make_mmu_pages_available(vcpu) < 0)
4085 goto out_unlock;
936a5fe6
AA
4086 if (likely(!force_pt_level))
4087 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4088 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4089 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4090
4091 return r;
e930bffe
AA
4092
4093out_unlock:
4094 spin_unlock(&vcpu->kvm->mmu_lock);
4095 kvm_release_pfn_clean(pfn);
9b8ebbdb 4096 return RET_PF_RETRY;
fb72d167
JR
4097}
4098
8a3c1a33
PB
4099static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4100 struct kvm_mmu *context)
6aa8b732 4101{
6aa8b732 4102 context->page_fault = nonpaging_page_fault;
6aa8b732 4103 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4104 context->sync_page = nonpaging_sync_page;
a7052897 4105 context->invlpg = nonpaging_invlpg;
0f53b5b1 4106 context->update_pte = nonpaging_update_pte;
cea0f0e7 4107 context->root_level = 0;
6aa8b732 4108 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4109 context->direct_map = true;
2d48a985 4110 context->nx = false;
6aa8b732
AK
4111}
4112
b94742c9
JS
4113/*
4114 * Find out if a previously cached root matching the new CR3/role is available.
4115 * The current root is also inserted into the cache.
4116 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4117 * returned.
4118 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4119 * false is returned. This root should now be freed by the caller.
4120 */
4121static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4122 union kvm_mmu_page_role new_role)
4123{
4124 uint i;
4125 struct kvm_mmu_root_info root;
44dd3ffa 4126 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9
JS
4127
4128 root.cr3 = mmu->get_cr3(vcpu);
4129 root.hpa = mmu->root_hpa;
4130
4131 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4132 swap(root, mmu->prev_roots[i]);
4133
4134 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4135 page_header(root.hpa) != NULL &&
4136 new_role.word == page_header(root.hpa)->role.word)
4137 break;
4138 }
4139
4140 mmu->root_hpa = root.hpa;
4141
4142 return i < KVM_MMU_NUM_PREV_ROOTS;
4143}
4144
0aab33e4 4145static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4146 union kvm_mmu_page_role new_role,
4147 bool skip_tlb_flush)
6aa8b732 4148{
44dd3ffa 4149 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4150
4151 /*
4152 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4153 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4154 * later if necessary.
4155 */
4156 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4157 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4158 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4159 return false;
4160
b94742c9 4161 if (cached_root_available(vcpu, new_cr3, new_role)) {
7c390d35
JS
4162 /*
4163 * It is possible that the cached previous root page is
4164 * obsolete because of a change in the MMU
4165 * generation number. However, that is accompanied by
4166 * KVM_REQ_MMU_RELOAD, which will free the root that we
4167 * have set here and allocate a new one.
4168 */
4169
0aab33e4 4170 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4171 if (!skip_tlb_flush) {
4172 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4173 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4174 }
4175
4176 /*
4177 * The last MMIO access's GVA and GPA are cached in the
4178 * VCPU. When switching to a new CR3, that GVA->GPA
4179 * mapping may no longer be valid. So clear any cached
4180 * MMIO info even when we don't need to sync the shadow
4181 * page tables.
4182 */
4183 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4184
7c390d35
JS
4185 __clear_sp_write_flooding_count(
4186 page_header(mmu->root_hpa));
4187
7c390d35
JS
4188 return true;
4189 }
4190 }
4191
4192 return false;
6aa8b732
AK
4193}
4194
0aab33e4 4195static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4196 union kvm_mmu_page_role new_role,
4197 bool skip_tlb_flush)
6aa8b732 4198{
ade61e28 4199 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4200 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4201 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4202}
4203
ade61e28 4204void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4205{
ade61e28
JS
4206 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4207 skip_tlb_flush);
0aab33e4 4208}
50c28f21 4209EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4210
5777ed34
JR
4211static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4212{
9f8fe504 4213 return kvm_read_cr3(vcpu);
5777ed34
JR
4214}
4215
6389ee94
AK
4216static void inject_page_fault(struct kvm_vcpu *vcpu,
4217 struct x86_exception *fault)
6aa8b732 4218{
44dd3ffa 4219 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4220}
4221
54bf36aa 4222static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4223 unsigned access, int *nr_present)
ce88decf
XG
4224{
4225 if (unlikely(is_mmio_spte(*sptep))) {
4226 if (gfn != get_mmio_spte_gfn(*sptep)) {
4227 mmu_spte_clear_no_track(sptep);
4228 return true;
4229 }
4230
4231 (*nr_present)++;
54bf36aa 4232 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4233 return true;
4234 }
4235
4236 return false;
4237}
4238
6bb69c9b
PB
4239static inline bool is_last_gpte(struct kvm_mmu *mmu,
4240 unsigned level, unsigned gpte)
6fd01b71 4241{
6bb69c9b
PB
4242 /*
4243 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4244 * If it is clear, there are no large pages at this level, so clear
4245 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4246 */
4247 gpte &= level - mmu->last_nonleaf_level;
4248
829ee279
LP
4249 /*
4250 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4251 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4252 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4253 */
4254 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4255
6bb69c9b 4256 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4257}
4258
37406aaa
NHE
4259#define PTTYPE_EPT 18 /* arbitrary */
4260#define PTTYPE PTTYPE_EPT
4261#include "paging_tmpl.h"
4262#undef PTTYPE
4263
6aa8b732
AK
4264#define PTTYPE 64
4265#include "paging_tmpl.h"
4266#undef PTTYPE
4267
4268#define PTTYPE 32
4269#include "paging_tmpl.h"
4270#undef PTTYPE
4271
6dc98b86
XG
4272static void
4273__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4274 struct rsvd_bits_validate *rsvd_check,
4275 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4276 bool pse, bool amd)
82725b20 4277{
82725b20 4278 u64 exb_bit_rsvd = 0;
5f7dde7b 4279 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4280 u64 nonleaf_bit8_rsvd = 0;
82725b20 4281
a0a64f50 4282 rsvd_check->bad_mt_xwr = 0;
25d92081 4283
6dc98b86 4284 if (!nx)
82725b20 4285 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4286 if (!gbpages)
5f7dde7b 4287 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4288
4289 /*
4290 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4291 * leaf entries) on AMD CPUs only.
4292 */
6fec2144 4293 if (amd)
a0c0feb5
PB
4294 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4295
6dc98b86 4296 switch (level) {
82725b20
DE
4297 case PT32_ROOT_LEVEL:
4298 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4299 rsvd_check->rsvd_bits_mask[0][1] = 0;
4300 rsvd_check->rsvd_bits_mask[0][0] = 0;
4301 rsvd_check->rsvd_bits_mask[1][0] =
4302 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4303
6dc98b86 4304 if (!pse) {
a0a64f50 4305 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4306 break;
4307 }
4308
82725b20
DE
4309 if (is_cpuid_PSE36())
4310 /* 36bits PSE 4MB page */
a0a64f50 4311 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4312 else
4313 /* 32 bits PSE 4MB page */
a0a64f50 4314 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4315 break;
4316 case PT32E_ROOT_LEVEL:
a0a64f50 4317 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4318 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4319 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4320 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4321 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4322 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4323 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4324 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4325 rsvd_bits(maxphyaddr, 62) |
4326 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4327 rsvd_check->rsvd_bits_mask[1][0] =
4328 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4329 break;
855feb67
YZ
4330 case PT64_ROOT_5LEVEL:
4331 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4332 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4333 rsvd_bits(maxphyaddr, 51);
4334 rsvd_check->rsvd_bits_mask[1][4] =
4335 rsvd_check->rsvd_bits_mask[0][4];
2a7266a8 4336 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4337 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4338 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4339 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4340 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4341 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4342 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4343 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4344 rsvd_bits(maxphyaddr, 51);
4345 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4346 rsvd_bits(maxphyaddr, 51);
4347 rsvd_check->rsvd_bits_mask[1][3] =
4348 rsvd_check->rsvd_bits_mask[0][3];
4349 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4350 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4351 rsvd_bits(13, 29);
a0a64f50 4352 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4353 rsvd_bits(maxphyaddr, 51) |
4354 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4355 rsvd_check->rsvd_bits_mask[1][0] =
4356 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4357 break;
4358 }
4359}
4360
6dc98b86
XG
4361static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4362 struct kvm_mmu *context)
4363{
4364 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4365 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4366 context->nx,
4367 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4368 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4369}
4370
81b8eebb
XG
4371static void
4372__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4373 int maxphyaddr, bool execonly)
25d92081 4374{
951f9fd7 4375 u64 bad_mt_xwr;
25d92081 4376
855feb67
YZ
4377 rsvd_check->rsvd_bits_mask[0][4] =
4378 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4379 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4380 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4381 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4382 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4383 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4384 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4385 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4386
4387 /* large page */
855feb67 4388 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4389 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4390 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4391 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4392 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4393 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4394 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4395
951f9fd7
PB
4396 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4397 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4398 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4399 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4400 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4401 if (!execonly) {
4402 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4403 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4404 }
951f9fd7 4405 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4406}
4407
81b8eebb
XG
4408static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4409 struct kvm_mmu *context, bool execonly)
4410{
4411 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4412 cpuid_maxphyaddr(vcpu), execonly);
4413}
4414
c258b62b
XG
4415/*
4416 * the page table on host is the shadow page table for the page
4417 * table in guest or amd nested guest, its mmu features completely
4418 * follow the features in guest.
4419 */
4420void
4421reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4422{
36d9594d
VK
4423 bool uses_nx = context->nx ||
4424 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4425 struct rsvd_bits_validate *shadow_zero_check;
4426 int i;
5f0b8199 4427
6fec2144
PB
4428 /*
4429 * Passing "true" to the last argument is okay; it adds a check
4430 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4431 */
ea2800dd
BS
4432 shadow_zero_check = &context->shadow_zero_check;
4433 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4434 boot_cpu_data.x86_phys_bits,
5f0b8199 4435 context->shadow_root_level, uses_nx,
d6321d49
RK
4436 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4437 is_pse(vcpu), true);
ea2800dd
BS
4438
4439 if (!shadow_me_mask)
4440 return;
4441
4442 for (i = context->shadow_root_level; --i >= 0;) {
4443 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4444 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4445 }
4446
c258b62b
XG
4447}
4448EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4449
6fec2144
PB
4450static inline bool boot_cpu_is_amd(void)
4451{
4452 WARN_ON_ONCE(!tdp_enabled);
4453 return shadow_x_mask == 0;
4454}
4455
c258b62b
XG
4456/*
4457 * the direct page table on host, use as much mmu features as
4458 * possible, however, kvm currently does not do execution-protection.
4459 */
4460static void
4461reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4462 struct kvm_mmu *context)
4463{
ea2800dd
BS
4464 struct rsvd_bits_validate *shadow_zero_check;
4465 int i;
4466
4467 shadow_zero_check = &context->shadow_zero_check;
4468
6fec2144 4469 if (boot_cpu_is_amd())
ea2800dd 4470 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4471 boot_cpu_data.x86_phys_bits,
4472 context->shadow_root_level, false,
b8291adc
BP
4473 boot_cpu_has(X86_FEATURE_GBPAGES),
4474 true, true);
c258b62b 4475 else
ea2800dd 4476 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4477 boot_cpu_data.x86_phys_bits,
4478 false);
4479
ea2800dd
BS
4480 if (!shadow_me_mask)
4481 return;
4482
4483 for (i = context->shadow_root_level; --i >= 0;) {
4484 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4485 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4486 }
c258b62b
XG
4487}
4488
4489/*
4490 * as the comments in reset_shadow_zero_bits_mask() except it
4491 * is the shadow page table for intel nested guest.
4492 */
4493static void
4494reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4495 struct kvm_mmu *context, bool execonly)
4496{
4497 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4498 boot_cpu_data.x86_phys_bits, execonly);
4499}
4500
09f037aa
PB
4501#define BYTE_MASK(access) \
4502 ((1 & (access) ? 2 : 0) | \
4503 (2 & (access) ? 4 : 0) | \
4504 (3 & (access) ? 8 : 0) | \
4505 (4 & (access) ? 16 : 0) | \
4506 (5 & (access) ? 32 : 0) | \
4507 (6 & (access) ? 64 : 0) | \
4508 (7 & (access) ? 128 : 0))
4509
4510
edc90b7d
XG
4511static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4512 struct kvm_mmu *mmu, bool ept)
97d64b78 4513{
09f037aa
PB
4514 unsigned byte;
4515
4516 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4517 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4518 const u8 u = BYTE_MASK(ACC_USER_MASK);
4519
4520 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4521 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4522 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4523
97d64b78 4524 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4525 unsigned pfec = byte << 1;
4526
97ec8c06 4527 /*
09f037aa
PB
4528 * Each "*f" variable has a 1 bit for each UWX value
4529 * that causes a fault with the given PFEC.
97ec8c06 4530 */
97d64b78 4531
09f037aa
PB
4532 /* Faults from writes to non-writable pages */
4533 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4534 /* Faults from user mode accesses to supervisor pages */
4535 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4536 /* Faults from fetches of non-executable pages*/
4537 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4538 /* Faults from kernel mode fetches of user pages */
4539 u8 smepf = 0;
4540 /* Faults from kernel mode accesses of user pages */
4541 u8 smapf = 0;
4542
4543 if (!ept) {
4544 /* Faults from kernel mode accesses to user pages */
4545 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4546
4547 /* Not really needed: !nx will cause pte.nx to fault */
4548 if (!mmu->nx)
4549 ff = 0;
4550
4551 /* Allow supervisor writes if !cr0.wp */
4552 if (!cr0_wp)
4553 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4554
4555 /* Disallow supervisor fetches of user code if cr4.smep */
4556 if (cr4_smep)
4557 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4558
4559 /*
4560 * SMAP:kernel-mode data accesses from user-mode
4561 * mappings should fault. A fault is considered
4562 * as a SMAP violation if all of the following
39337ad1 4563 * conditions are true:
09f037aa
PB
4564 * - X86_CR4_SMAP is set in CR4
4565 * - A user page is accessed
4566 * - The access is not a fetch
4567 * - Page fault in kernel mode
4568 * - if CPL = 3 or X86_EFLAGS_AC is clear
4569 *
4570 * Here, we cover the first three conditions.
4571 * The fourth is computed dynamically in permission_fault();
4572 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4573 * *not* subject to SMAP restrictions.
4574 */
4575 if (cr4_smap)
4576 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4577 }
09f037aa
PB
4578
4579 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4580 }
4581}
4582
2d344105
HH
4583/*
4584* PKU is an additional mechanism by which the paging controls access to
4585* user-mode addresses based on the value in the PKRU register. Protection
4586* key violations are reported through a bit in the page fault error code.
4587* Unlike other bits of the error code, the PK bit is not known at the
4588* call site of e.g. gva_to_gpa; it must be computed directly in
4589* permission_fault based on two bits of PKRU, on some machine state (CR4,
4590* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4591*
4592* In particular the following conditions come from the error code, the
4593* page tables and the machine state:
4594* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4595* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4596* - PK is always zero if U=0 in the page tables
4597* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4598*
4599* The PKRU bitmask caches the result of these four conditions. The error
4600* code (minus the P bit) and the page table's U bit form an index into the
4601* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4602* with the two bits of the PKRU register corresponding to the protection key.
4603* For the first three conditions above the bits will be 00, thus masking
4604* away both AD and WD. For all reads or if the last condition holds, WD
4605* only will be masked away.
4606*/
4607static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4608 bool ept)
4609{
4610 unsigned bit;
4611 bool wp;
4612
4613 if (ept) {
4614 mmu->pkru_mask = 0;
4615 return;
4616 }
4617
4618 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4619 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4620 mmu->pkru_mask = 0;
4621 return;
4622 }
4623
4624 wp = is_write_protection(vcpu);
4625
4626 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4627 unsigned pfec, pkey_bits;
4628 bool check_pkey, check_write, ff, uf, wf, pte_user;
4629
4630 pfec = bit << 1;
4631 ff = pfec & PFERR_FETCH_MASK;
4632 uf = pfec & PFERR_USER_MASK;
4633 wf = pfec & PFERR_WRITE_MASK;
4634
4635 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4636 pte_user = pfec & PFERR_RSVD_MASK;
4637
4638 /*
4639 * Only need to check the access which is not an
4640 * instruction fetch and is to a user page.
4641 */
4642 check_pkey = (!ff && pte_user);
4643 /*
4644 * write access is controlled by PKRU if it is a
4645 * user access or CR0.WP = 1.
4646 */
4647 check_write = check_pkey && wf && (uf || wp);
4648
4649 /* PKRU.AD stops both read and write access. */
4650 pkey_bits = !!check_pkey;
4651 /* PKRU.WD stops write access. */
4652 pkey_bits |= (!!check_write) << 1;
4653
4654 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4655 }
4656}
4657
6bb69c9b 4658static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4659{
6bb69c9b
PB
4660 unsigned root_level = mmu->root_level;
4661
4662 mmu->last_nonleaf_level = root_level;
4663 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4664 mmu->last_nonleaf_level++;
6fd01b71
AK
4665}
4666
8a3c1a33
PB
4667static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4668 struct kvm_mmu *context,
4669 int level)
6aa8b732 4670{
2d48a985 4671 context->nx = is_nx(vcpu);
4d6931c3 4672 context->root_level = level;
2d48a985 4673
4d6931c3 4674 reset_rsvds_bits_mask(vcpu, context);
25d92081 4675 update_permission_bitmask(vcpu, context, false);
2d344105 4676 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4677 update_last_nonleaf_level(vcpu, context);
6aa8b732 4678
fa4a2c08 4679 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4680 context->page_fault = paging64_page_fault;
6aa8b732 4681 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4682 context->sync_page = paging64_sync_page;
a7052897 4683 context->invlpg = paging64_invlpg;
0f53b5b1 4684 context->update_pte = paging64_update_pte;
17ac10ad 4685 context->shadow_root_level = level;
c5a78f2b 4686 context->direct_map = false;
6aa8b732
AK
4687}
4688
8a3c1a33
PB
4689static void paging64_init_context(struct kvm_vcpu *vcpu,
4690 struct kvm_mmu *context)
17ac10ad 4691{
855feb67
YZ
4692 int root_level = is_la57_mode(vcpu) ?
4693 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4694
4695 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4696}
4697
8a3c1a33
PB
4698static void paging32_init_context(struct kvm_vcpu *vcpu,
4699 struct kvm_mmu *context)
6aa8b732 4700{
2d48a985 4701 context->nx = false;
4d6931c3 4702 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4703
4d6931c3 4704 reset_rsvds_bits_mask(vcpu, context);
25d92081 4705 update_permission_bitmask(vcpu, context, false);
2d344105 4706 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4707 update_last_nonleaf_level(vcpu, context);
6aa8b732 4708
6aa8b732 4709 context->page_fault = paging32_page_fault;
6aa8b732 4710 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4711 context->sync_page = paging32_sync_page;
a7052897 4712 context->invlpg = paging32_invlpg;
0f53b5b1 4713 context->update_pte = paging32_update_pte;
6aa8b732 4714 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4715 context->direct_map = false;
6aa8b732
AK
4716}
4717
8a3c1a33
PB
4718static void paging32E_init_context(struct kvm_vcpu *vcpu,
4719 struct kvm_mmu *context)
6aa8b732 4720{
8a3c1a33 4721 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4722}
4723
a336282d
VK
4724static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4725{
4726 union kvm_mmu_extended_role ext = {0};
4727
7dcd5755 4728 ext.cr0_pg = !!is_paging(vcpu);
a336282d
VK
4729 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4730 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4731 ext.cr4_pse = !!is_pse(vcpu);
4732 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4733 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
a336282d
VK
4734
4735 ext.valid = 1;
4736
4737 return ext;
4738}
4739
7dcd5755
VK
4740static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4741 bool base_only)
4742{
4743 union kvm_mmu_role role = {0};
4744
4745 role.base.access = ACC_ALL;
4746 role.base.nxe = !!is_nx(vcpu);
4747 role.base.cr4_pae = !!is_pae(vcpu);
4748 role.base.cr0_wp = is_write_protection(vcpu);
4749 role.base.smm = is_smm(vcpu);
4750 role.base.guest_mode = is_guest_mode(vcpu);
4751
4752 if (base_only)
4753 return role;
4754
4755 role.ext = kvm_calc_mmu_role_ext(vcpu);
4756
4757 return role;
4758}
4759
4760static union kvm_mmu_role
4761kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4762{
7dcd5755 4763 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4764
7dcd5755
VK
4765 role.base.ad_disabled = (shadow_accessed_mask == 0);
4766 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4767 role.base.direct = true;
9fa72119
JS
4768
4769 return role;
4770}
4771
8a3c1a33 4772static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4773{
44dd3ffa 4774 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4775 union kvm_mmu_role new_role =
4776 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4777
7dcd5755
VK
4778 new_role.base.word &= mmu_base_role_mask.word;
4779 if (new_role.as_u64 == context->mmu_role.as_u64)
4780 return;
4781
4782 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4783 context->page_fault = tdp_page_fault;
e8bc217a 4784 context->sync_page = nonpaging_sync_page;
a7052897 4785 context->invlpg = nonpaging_invlpg;
0f53b5b1 4786 context->update_pte = nonpaging_update_pte;
855feb67 4787 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4788 context->direct_map = true;
1c97f0a0 4789 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4790 context->get_cr3 = get_cr3;
e4e517b4 4791 context->get_pdptr = kvm_pdptr_read;
cb659db8 4792 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4793
4794 if (!is_paging(vcpu)) {
2d48a985 4795 context->nx = false;
fb72d167
JR
4796 context->gva_to_gpa = nonpaging_gva_to_gpa;
4797 context->root_level = 0;
4798 } else if (is_long_mode(vcpu)) {
2d48a985 4799 context->nx = is_nx(vcpu);
855feb67
YZ
4800 context->root_level = is_la57_mode(vcpu) ?
4801 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4802 reset_rsvds_bits_mask(vcpu, context);
4803 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4804 } else if (is_pae(vcpu)) {
2d48a985 4805 context->nx = is_nx(vcpu);
fb72d167 4806 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4807 reset_rsvds_bits_mask(vcpu, context);
4808 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4809 } else {
2d48a985 4810 context->nx = false;
fb72d167 4811 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4812 reset_rsvds_bits_mask(vcpu, context);
4813 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4814 }
4815
25d92081 4816 update_permission_bitmask(vcpu, context, false);
2d344105 4817 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4818 update_last_nonleaf_level(vcpu, context);
c258b62b 4819 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4820}
4821
7dcd5755
VK
4822static union kvm_mmu_role
4823kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4824{
4825 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4826
4827 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4828 !is_write_protection(vcpu);
4829 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4830 !is_write_protection(vcpu);
4831 role.base.direct = !is_paging(vcpu);
9fa72119
JS
4832
4833 if (!is_long_mode(vcpu))
7dcd5755 4834 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4835 else if (is_la57_mode(vcpu))
7dcd5755 4836 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4837 else
7dcd5755 4838 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4839
4840 return role;
4841}
4842
4843void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4844{
44dd3ffa 4845 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4846 union kvm_mmu_role new_role =
4847 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4848
4849 new_role.base.word &= mmu_base_role_mask.word;
4850 if (new_role.as_u64 == context->mmu_role.as_u64)
4851 return;
6aa8b732
AK
4852
4853 if (!is_paging(vcpu))
8a3c1a33 4854 nonpaging_init_context(vcpu, context);
a9058ecd 4855 else if (is_long_mode(vcpu))
8a3c1a33 4856 paging64_init_context(vcpu, context);
6aa8b732 4857 else if (is_pae(vcpu))
8a3c1a33 4858 paging32E_init_context(vcpu, context);
6aa8b732 4859 else
8a3c1a33 4860 paging32_init_context(vcpu, context);
a770f6f2 4861
7dcd5755 4862 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4863 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4864}
4865EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4866
a336282d
VK
4867static union kvm_mmu_role
4868kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4869 bool execonly)
9fa72119 4870{
a336282d 4871 union kvm_mmu_role role;
14c07ad8 4872
a336282d
VK
4873 /* Base role is inherited from root_mmu */
4874 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4875 role.ext = kvm_calc_mmu_role_ext(vcpu);
9fa72119 4876
a336282d
VK
4877 role.base.level = PT64_ROOT_4LEVEL;
4878 role.base.direct = false;
4879 role.base.ad_disabled = !accessed_dirty;
4880 role.base.guest_mode = true;
4881 role.base.access = ACC_ALL;
9fa72119 4882
a336282d 4883 role.ext.execonly = execonly;
9fa72119
JS
4884
4885 return role;
4886}
4887
ae1e2d10 4888void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4889 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4890{
44dd3ffa 4891 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4892 union kvm_mmu_role new_role =
4893 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4894 execonly);
4895
4896 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4897
4898 new_role.base.word &= mmu_base_role_mask.word;
4899 if (new_role.as_u64 == context->mmu_role.as_u64)
4900 return;
ad896af0 4901
855feb67 4902 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4903
4904 context->nx = true;
ae1e2d10 4905 context->ept_ad = accessed_dirty;
155a97a3
NHE
4906 context->page_fault = ept_page_fault;
4907 context->gva_to_gpa = ept_gva_to_gpa;
4908 context->sync_page = ept_sync_page;
4909 context->invlpg = ept_invlpg;
4910 context->update_pte = ept_update_pte;
855feb67 4911 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4912 context->direct_map = false;
a336282d 4913 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4914
155a97a3 4915 update_permission_bitmask(vcpu, context, true);
2d344105 4916 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4917 update_last_nonleaf_level(vcpu, context);
155a97a3 4918 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4919 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4920}
4921EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4922
8a3c1a33 4923static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4924{
44dd3ffa 4925 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
4926
4927 kvm_init_shadow_mmu(vcpu);
4928 context->set_cr3 = kvm_x86_ops->set_cr3;
4929 context->get_cr3 = get_cr3;
4930 context->get_pdptr = kvm_pdptr_read;
4931 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4932}
4933
8a3c1a33 4934static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4935{
bf627a92 4936 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4937 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4938
bf627a92
VK
4939 new_role.base.word &= mmu_base_role_mask.word;
4940 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4941 return;
4942
4943 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 4944 g_context->get_cr3 = get_cr3;
e4e517b4 4945 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4946 g_context->inject_page_fault = kvm_inject_page_fault;
4947
4948 /*
44dd3ffa 4949 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4950 * L1's nested page tables (e.g. EPT12). The nested translation
4951 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4952 * L2's page tables as the first level of translation and L1's
4953 * nested page tables as the second level of translation. Basically
4954 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4955 */
4956 if (!is_paging(vcpu)) {
2d48a985 4957 g_context->nx = false;
02f59dc9
JR
4958 g_context->root_level = 0;
4959 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4960 } else if (is_long_mode(vcpu)) {
2d48a985 4961 g_context->nx = is_nx(vcpu);
855feb67
YZ
4962 g_context->root_level = is_la57_mode(vcpu) ?
4963 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4964 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4965 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4966 } else if (is_pae(vcpu)) {
2d48a985 4967 g_context->nx = is_nx(vcpu);
02f59dc9 4968 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4969 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4970 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4971 } else {
2d48a985 4972 g_context->nx = false;
02f59dc9 4973 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4974 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4975 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4976 }
4977
25d92081 4978 update_permission_bitmask(vcpu, g_context, false);
2d344105 4979 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4980 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4981}
4982
1c53da3f 4983void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4984{
1c53da3f 4985 if (reset_roots) {
b94742c9
JS
4986 uint i;
4987
44dd3ffa 4988 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4989
4990 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4991 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4992 }
4993
02f59dc9 4994 if (mmu_is_nested(vcpu))
e0c6db3e 4995 init_kvm_nested_mmu(vcpu);
02f59dc9 4996 else if (tdp_enabled)
e0c6db3e 4997 init_kvm_tdp_mmu(vcpu);
fb72d167 4998 else
e0c6db3e 4999 init_kvm_softmmu(vcpu);
fb72d167 5000}
1c53da3f 5001EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5002
9fa72119
JS
5003static union kvm_mmu_page_role
5004kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5005{
7dcd5755
VK
5006 union kvm_mmu_role role;
5007
9fa72119 5008 if (tdp_enabled)
7dcd5755 5009 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5010 else
7dcd5755
VK
5011 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5012
5013 return role.base;
9fa72119 5014}
fb72d167 5015
8a3c1a33 5016void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5017{
95f93af4 5018 kvm_mmu_unload(vcpu);
1c53da3f 5019 kvm_init_mmu(vcpu, true);
17c3ba9d 5020}
8668a3c4 5021EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5022
5023int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5024{
714b93da
AK
5025 int r;
5026
e2dec939 5027 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5028 if (r)
5029 goto out;
8986ecc0 5030 r = mmu_alloc_roots(vcpu);
e2858b4a 5031 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5032 if (r)
5033 goto out;
6e42782f 5034 kvm_mmu_load_cr3(vcpu);
afe828d1 5035 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5036out:
5037 return r;
6aa8b732 5038}
17c3ba9d
AK
5039EXPORT_SYMBOL_GPL(kvm_mmu_load);
5040
5041void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5042{
14c07ad8
VK
5043 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5044 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5045 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5046 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5047}
4b16184c 5048EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5049
0028425f 5050static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5051 struct kvm_mmu_page *sp, u64 *spte,
5052 const void *new)
0028425f 5053{
30945387 5054 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5055 ++vcpu->kvm->stat.mmu_pde_zapped;
5056 return;
30945387 5057 }
0028425f 5058
4cee5764 5059 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5060 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5061}
5062
79539cec
AK
5063static bool need_remote_flush(u64 old, u64 new)
5064{
5065 if (!is_shadow_present_pte(old))
5066 return false;
5067 if (!is_shadow_present_pte(new))
5068 return true;
5069 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5070 return true;
53166229
GN
5071 old ^= shadow_nx_mask;
5072 new ^= shadow_nx_mask;
79539cec
AK
5073 return (old & ~new & PT64_PERM_MASK) != 0;
5074}
5075
889e5cbc 5076static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5077 int *bytes)
da4a00f0 5078{
0e0fee5c 5079 u64 gentry = 0;
889e5cbc 5080 int r;
72016f3a 5081
72016f3a
AK
5082 /*
5083 * Assume that the pte write on a page table of the same type
49b26e26
XG
5084 * as the current vcpu paging mode since we update the sptes only
5085 * when they have the same mode.
72016f3a 5086 */
889e5cbc 5087 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5088 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5089 *gpa &= ~(gpa_t)7;
5090 *bytes = 8;
08e850c6
AK
5091 }
5092
0e0fee5c
JS
5093 if (*bytes == 4 || *bytes == 8) {
5094 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5095 if (r)
5096 gentry = 0;
72016f3a
AK
5097 }
5098
889e5cbc
XG
5099 return gentry;
5100}
5101
5102/*
5103 * If we're seeing too many writes to a page, it may no longer be a page table,
5104 * or we may be forking, in which case it is better to unmap the page.
5105 */
a138fe75 5106static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5107{
a30f47cb
XG
5108 /*
5109 * Skip write-flooding detected for the sp whose level is 1, because
5110 * it can become unsync, then the guest page is not write-protected.
5111 */
f71fa31f 5112 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5113 return false;
3246af0e 5114
e5691a81
XG
5115 atomic_inc(&sp->write_flooding_count);
5116 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5117}
5118
5119/*
5120 * Misaligned accesses are too much trouble to fix up; also, they usually
5121 * indicate a page is not used as a page table.
5122 */
5123static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5124 int bytes)
5125{
5126 unsigned offset, pte_size, misaligned;
5127
5128 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5129 gpa, bytes, sp->role.word);
5130
5131 offset = offset_in_page(gpa);
5132 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
5133
5134 /*
5135 * Sometimes, the OS only writes the last one bytes to update status
5136 * bits, for example, in linux, andb instruction is used in clear_bit().
5137 */
5138 if (!(offset & (pte_size - 1)) && bytes == 1)
5139 return false;
5140
889e5cbc
XG
5141 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5142 misaligned |= bytes < 4;
5143
5144 return misaligned;
5145}
5146
5147static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5148{
5149 unsigned page_offset, quadrant;
5150 u64 *spte;
5151 int level;
5152
5153 page_offset = offset_in_page(gpa);
5154 level = sp->role.level;
5155 *nspte = 1;
5156 if (!sp->role.cr4_pae) {
5157 page_offset <<= 1; /* 32->64 */
5158 /*
5159 * A 32-bit pde maps 4MB while the shadow pdes map
5160 * only 2MB. So we need to double the offset again
5161 * and zap two pdes instead of one.
5162 */
5163 if (level == PT32_ROOT_LEVEL) {
5164 page_offset &= ~7; /* kill rounding error */
5165 page_offset <<= 1;
5166 *nspte = 2;
5167 }
5168 quadrant = page_offset >> PAGE_SHIFT;
5169 page_offset &= ~PAGE_MASK;
5170 if (quadrant != sp->role.quadrant)
5171 return NULL;
5172 }
5173
5174 spte = &sp->spt[page_offset / sizeof(*spte)];
5175 return spte;
5176}
5177
13d268ca 5178static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5179 const u8 *new, int bytes,
5180 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5181{
5182 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5183 struct kvm_mmu_page *sp;
889e5cbc
XG
5184 LIST_HEAD(invalid_list);
5185 u64 entry, gentry, *spte;
5186 int npte;
b8c67b7a 5187 bool remote_flush, local_flush;
889e5cbc
XG
5188
5189 /*
5190 * If we don't have indirect shadow pages, it means no page is
5191 * write-protected, so we can exit simply.
5192 */
6aa7de05 5193 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5194 return;
5195
b8c67b7a 5196 remote_flush = local_flush = false;
889e5cbc
XG
5197
5198 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5199
889e5cbc
XG
5200 /*
5201 * No need to care whether allocation memory is successful
5202 * or not since pte prefetch is skiped if it does not have
5203 * enough objects in the cache.
5204 */
5205 mmu_topup_memory_caches(vcpu);
5206
5207 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5208
5209 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5210
889e5cbc 5211 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5212 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5213
b67bfe0d 5214 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5215 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5216 detect_write_flooding(sp)) {
b8c67b7a 5217 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5218 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5219 continue;
5220 }
889e5cbc
XG
5221
5222 spte = get_written_sptes(sp, gpa, &npte);
5223 if (!spte)
5224 continue;
5225
0671a8e7 5226 local_flush = true;
ac1b714e 5227 while (npte--) {
36d9594d
VK
5228 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5229
79539cec 5230 entry = *spte;
38e3b2b2 5231 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5232 if (gentry &&
36d9594d 5233 !((sp->role.word ^ base_role)
9fa72119 5234 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5235 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5236 if (need_remote_flush(entry, *spte))
0671a8e7 5237 remote_flush = true;
ac1b714e 5238 ++spte;
9b7a0325 5239 }
9b7a0325 5240 }
b8c67b7a 5241 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5242 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5243 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5244}
5245
a436036b
AK
5246int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5247{
10589a46
MT
5248 gpa_t gpa;
5249 int r;
a436036b 5250
44dd3ffa 5251 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5252 return 0;
5253
1871c602 5254 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5255
10589a46 5256 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5257
10589a46 5258 return r;
a436036b 5259}
577bdc49 5260EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5261
26eeb53c 5262static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5263{
d98ba053 5264 LIST_HEAD(invalid_list);
103ad25a 5265
81f4f76b 5266 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5267 return 0;
81f4f76b 5268
5da59607
TY
5269 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5270 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5271 break;
ebeace86 5272
4cee5764 5273 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5274 }
aa6bd187 5275 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5276
5277 if (!kvm_mmu_available_pages(vcpu->kvm))
5278 return -ENOSPC;
5279 return 0;
ebeace86 5280}
ebeace86 5281
14727754 5282int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5283 void *insn, int insn_len)
3067714c 5284{
472faffa 5285 int r, emulation_type = 0;
3067714c 5286 enum emulation_result er;
44dd3ffa 5287 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5288
618232e2 5289 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5290 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5291 vcpu->arch.gpa_available = true;
5292 vcpu->arch.gpa_val = cr2;
5293 }
3067714c 5294
9b8ebbdb 5295 r = RET_PF_INVALID;
e9ee956e
TY
5296 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5297 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5298 if (r == RET_PF_EMULATE)
e9ee956e 5299 goto emulate;
e9ee956e 5300 }
3067714c 5301
9b8ebbdb 5302 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5303 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5304 lower_32_bits(error_code),
5305 false);
9b8ebbdb
PB
5306 WARN_ON(r == RET_PF_INVALID);
5307 }
5308
5309 if (r == RET_PF_RETRY)
5310 return 1;
3067714c 5311 if (r < 0)
e9ee956e 5312 return r;
3067714c 5313
14727754
TL
5314 /*
5315 * Before emulating the instruction, check if the error code
5316 * was due to a RO violation while translating the guest page.
5317 * This can occur when using nested virtualization with nested
5318 * paging in both guests. If true, we simply unprotect the page
5319 * and resume the guest.
14727754 5320 */
44dd3ffa 5321 if (vcpu->arch.mmu->direct_map &&
eebed243 5322 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5323 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5324 return 1;
5325 }
5326
472faffa
SC
5327 /*
5328 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5329 * optimistically try to just unprotect the page and let the processor
5330 * re-execute the instruction that caused the page fault. Do not allow
5331 * retrying MMIO emulation, as it's not only pointless but could also
5332 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5333 * faulting on the non-existent MMIO address. Retrying an instruction
5334 * from a nested guest is also pointless and dangerous as we are only
5335 * explicitly shadowing L1's page tables, i.e. unprotecting something
5336 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5337 */
6c3dfeb6 5338 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5339 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5340emulate:
00b10fe1
BS
5341 /*
5342 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5343 * This can happen if a guest gets a page-fault on data access but the HW
5344 * table walker is not able to read the instruction page (e.g instruction
5345 * page is not present in memory). In those cases we simply restart the
5346 * guest.
5347 */
5348 if (unlikely(insn && !insn_len))
5349 return 1;
5350
1cb3f3ae 5351 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5352
5353 switch (er) {
5354 case EMULATE_DONE:
5355 return 1;
ac0a48c3 5356 case EMULATE_USER_EXIT:
3067714c 5357 ++vcpu->stat.mmio_exits;
6d77dbfc 5358 /* fall through */
3067714c 5359 case EMULATE_FAIL:
3f5d18a9 5360 return 0;
3067714c
AK
5361 default:
5362 BUG();
5363 }
3067714c
AK
5364}
5365EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5366
a7052897
MT
5367void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5368{
44dd3ffa 5369 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5370 int i;
7eb77e9f 5371
faff8758
JS
5372 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5373 if (is_noncanonical_address(gva, vcpu))
5374 return;
5375
7eb77e9f 5376 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5377
5378 /*
5379 * INVLPG is required to invalidate any global mappings for the VA,
5380 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5381 * of work to determine whether any of the prev_root mappings of the VA
5382 * is marked global, or to just sync it blindly, so we might as well
5383 * just always sync it.
956bf353 5384 *
b94742c9
JS
5385 * Mappings not reachable via the current cr3 or the prev_roots will be
5386 * synced when switching to that cr3, so nothing needs to be done here
5387 * for them.
956bf353 5388 */
b94742c9
JS
5389 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5390 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5391 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5392
faff8758 5393 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5394 ++vcpu->stat.invlpg;
5395}
5396EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5397
eb4b248e
JS
5398void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5399{
44dd3ffa 5400 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5401 bool tlb_flush = false;
b94742c9 5402 uint i;
eb4b248e
JS
5403
5404 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5405 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5406 tlb_flush = true;
eb4b248e
JS
5407 }
5408
b94742c9
JS
5409 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5410 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5411 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5412 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5413 tlb_flush = true;
5414 }
956bf353 5415 }
ade61e28 5416
faff8758
JS
5417 if (tlb_flush)
5418 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5419
eb4b248e
JS
5420 ++vcpu->stat.invlpg;
5421
5422 /*
b94742c9
JS
5423 * Mappings not reachable via the current cr3 or the prev_roots will be
5424 * synced when switching to that cr3, so nothing needs to be done here
5425 * for them.
eb4b248e
JS
5426 */
5427}
5428EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5429
18552672
JR
5430void kvm_enable_tdp(void)
5431{
5432 tdp_enabled = true;
5433}
5434EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5435
5f4cb662
JR
5436void kvm_disable_tdp(void)
5437{
5438 tdp_enabled = false;
5439}
5440EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5441
6aa8b732
AK
5442static void free_mmu_pages(struct kvm_vcpu *vcpu)
5443{
44dd3ffa
VK
5444 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5445 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5446}
5447
5448static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5449{
17ac10ad 5450 struct page *page;
6aa8b732
AK
5451 int i;
5452
ee6268ba
LC
5453 if (tdp_enabled)
5454 return 0;
5455
17ac10ad
AK
5456 /*
5457 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5458 * Therefore we need to allocate shadow page tables in the first
5459 * 4GB of memory, which happens to fit the DMA32 zone.
5460 */
5461 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5462 if (!page)
d7fa6ab2
WY
5463 return -ENOMEM;
5464
44dd3ffa 5465 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5466 for (i = 0; i < 4; ++i)
44dd3ffa 5467 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5468
6aa8b732 5469 return 0;
6aa8b732
AK
5470}
5471
8018c27b 5472int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5473{
b94742c9
JS
5474 uint i;
5475
44dd3ffa
VK
5476 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5477 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5478
44dd3ffa
VK
5479 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5480 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5481 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5482 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5483
14c07ad8
VK
5484 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5485 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5486 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5487 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5488
14c07ad8 5489 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5490 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5491}
5492
b5f5fdca 5493static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5494 struct kvm_memory_slot *slot,
5495 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5496{
5497 kvm_mmu_invalidate_zap_all_pages(kvm);
5498}
5499
13d268ca
XG
5500void kvm_mmu_init_vm(struct kvm *kvm)
5501{
5502 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5503
5504 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5505 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5506 kvm_page_track_register_notifier(kvm, node);
5507}
5508
5509void kvm_mmu_uninit_vm(struct kvm *kvm)
5510{
5511 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5512
5513 kvm_page_track_unregister_notifier(kvm, node);
5514}
5515
1bad2b2a 5516/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5517typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5518
5519/* The caller should hold mmu-lock before calling this function. */
928a4c39 5520static __always_inline bool
1bad2b2a
XG
5521slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5522 slot_level_handler fn, int start_level, int end_level,
5523 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5524{
5525 struct slot_rmap_walk_iterator iterator;
5526 bool flush = false;
5527
5528 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5529 end_gfn, &iterator) {
5530 if (iterator.rmap)
5531 flush |= fn(kvm, iterator.rmap);
5532
5533 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5534 if (flush && lock_flush_tlb) {
5535 kvm_flush_remote_tlbs(kvm);
5536 flush = false;
5537 }
5538 cond_resched_lock(&kvm->mmu_lock);
5539 }
5540 }
5541
5542 if (flush && lock_flush_tlb) {
5543 kvm_flush_remote_tlbs(kvm);
5544 flush = false;
5545 }
5546
5547 return flush;
5548}
5549
928a4c39 5550static __always_inline bool
1bad2b2a
XG
5551slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5552 slot_level_handler fn, int start_level, int end_level,
5553 bool lock_flush_tlb)
5554{
5555 return slot_handle_level_range(kvm, memslot, fn, start_level,
5556 end_level, memslot->base_gfn,
5557 memslot->base_gfn + memslot->npages - 1,
5558 lock_flush_tlb);
5559}
5560
928a4c39 5561static __always_inline bool
1bad2b2a
XG
5562slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5563 slot_level_handler fn, bool lock_flush_tlb)
5564{
5565 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5566 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5567}
5568
928a4c39 5569static __always_inline bool
1bad2b2a
XG
5570slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5571 slot_level_handler fn, bool lock_flush_tlb)
5572{
5573 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5574 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5575}
5576
928a4c39 5577static __always_inline bool
1bad2b2a
XG
5578slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5579 slot_level_handler fn, bool lock_flush_tlb)
5580{
5581 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5582 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5583}
5584
efdfe536
XG
5585void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5586{
5587 struct kvm_memslots *slots;
5588 struct kvm_memory_slot *memslot;
9da0e4d5 5589 int i;
efdfe536
XG
5590
5591 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5592 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5593 slots = __kvm_memslots(kvm, i);
5594 kvm_for_each_memslot(memslot, slots) {
5595 gfn_t start, end;
5596
5597 start = max(gfn_start, memslot->base_gfn);
5598 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5599 if (start >= end)
5600 continue;
efdfe536 5601
9da0e4d5
PB
5602 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5603 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5604 start, end - 1, true);
5605 }
efdfe536
XG
5606 }
5607
5608 spin_unlock(&kvm->mmu_lock);
5609}
5610
018aabb5
TY
5611static bool slot_rmap_write_protect(struct kvm *kvm,
5612 struct kvm_rmap_head *rmap_head)
d77aa73c 5613{
018aabb5 5614 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5615}
5616
1c91cad4
KH
5617void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5618 struct kvm_memory_slot *memslot)
6aa8b732 5619{
d77aa73c 5620 bool flush;
6aa8b732 5621
9d1beefb 5622 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5623 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5624 false);
9d1beefb 5625 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5626
5627 /*
5628 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5629 * which do tlb flush out of mmu-lock should be serialized by
5630 * kvm->slots_lock otherwise tlb flush would be missed.
5631 */
5632 lockdep_assert_held(&kvm->slots_lock);
5633
5634 /*
5635 * We can flush all the TLBs out of the mmu lock without TLB
5636 * corruption since we just change the spte from writable to
5637 * readonly so that we only need to care the case of changing
5638 * spte from present to present (changing the spte from present
5639 * to nonpresent will flush all the TLBs immediately), in other
5640 * words, the only case we care is mmu_spte_update() where we
5641 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5642 * instead of PT_WRITABLE_MASK, that means it does not depend
5643 * on PT_WRITABLE_MASK anymore.
5644 */
d91ffee9
KH
5645 if (flush)
5646 kvm_flush_remote_tlbs(kvm);
6aa8b732 5647}
37a7d8b0 5648
3ea3b7fa 5649static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5650 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5651{
5652 u64 *sptep;
5653 struct rmap_iterator iter;
5654 int need_tlb_flush = 0;
ba049e93 5655 kvm_pfn_t pfn;
3ea3b7fa
WL
5656 struct kvm_mmu_page *sp;
5657
0d536790 5658restart:
018aabb5 5659 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5660 sp = page_header(__pa(sptep));
5661 pfn = spte_to_pfn(*sptep);
5662
5663 /*
decf6333
XG
5664 * We cannot do huge page mapping for indirect shadow pages,
5665 * which are found on the last rmap (level = 1) when not using
5666 * tdp; such shadow pages are synced with the page table in
5667 * the guest, and the guest page table is using 4K page size
5668 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5669 */
5670 if (sp->role.direct &&
5671 !kvm_is_reserved_pfn(pfn) &&
127393fb 5672 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5673 pte_list_remove(rmap_head, sptep);
3ea3b7fa 5674 need_tlb_flush = 1;
0d536790
XG
5675 goto restart;
5676 }
3ea3b7fa
WL
5677 }
5678
5679 return need_tlb_flush;
5680}
5681
5682void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5683 const struct kvm_memory_slot *memslot)
3ea3b7fa 5684{
f36f3f28 5685 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5686 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5687 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5688 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5689 spin_unlock(&kvm->mmu_lock);
5690}
5691
f4b4b180
KH
5692void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5693 struct kvm_memory_slot *memslot)
5694{
d77aa73c 5695 bool flush;
f4b4b180
KH
5696
5697 spin_lock(&kvm->mmu_lock);
d77aa73c 5698 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5699 spin_unlock(&kvm->mmu_lock);
5700
5701 lockdep_assert_held(&kvm->slots_lock);
5702
5703 /*
5704 * It's also safe to flush TLBs out of mmu lock here as currently this
5705 * function is only used for dirty logging, in which case flushing TLB
5706 * out of mmu lock also guarantees no dirty pages will be lost in
5707 * dirty_bitmap.
5708 */
5709 if (flush)
5710 kvm_flush_remote_tlbs(kvm);
5711}
5712EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5713
5714void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5715 struct kvm_memory_slot *memslot)
5716{
d77aa73c 5717 bool flush;
f4b4b180
KH
5718
5719 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5720 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5721 false);
f4b4b180
KH
5722 spin_unlock(&kvm->mmu_lock);
5723
5724 /* see kvm_mmu_slot_remove_write_access */
5725 lockdep_assert_held(&kvm->slots_lock);
5726
5727 if (flush)
5728 kvm_flush_remote_tlbs(kvm);
5729}
5730EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5731
5732void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5733 struct kvm_memory_slot *memslot)
5734{
d77aa73c 5735 bool flush;
f4b4b180
KH
5736
5737 spin_lock(&kvm->mmu_lock);
d77aa73c 5738 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5739 spin_unlock(&kvm->mmu_lock);
5740
5741 lockdep_assert_held(&kvm->slots_lock);
5742
5743 /* see kvm_mmu_slot_leaf_clear_dirty */
5744 if (flush)
5745 kvm_flush_remote_tlbs(kvm);
5746}
5747EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5748
e7d11c7a 5749#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5750static void kvm_zap_obsolete_pages(struct kvm *kvm)
5751{
5752 struct kvm_mmu_page *sp, *node;
e7d11c7a 5753 int batch = 0;
5304b8d3
XG
5754
5755restart:
5756 list_for_each_entry_safe_reverse(sp, node,
5757 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5758 int ret;
5759
5304b8d3
XG
5760 /*
5761 * No obsolete page exists before new created page since
5762 * active_mmu_pages is the FIFO list.
5763 */
5764 if (!is_obsolete_sp(kvm, sp))
5765 break;
5766
5767 /*
5304b8d3
XG
5768 * Since we are reversely walking the list and the invalid
5769 * list will be moved to the head, skip the invalid page
5770 * can help us to avoid the infinity list walking.
5771 */
5772 if (sp->role.invalid)
5773 continue;
5774
f34d251d
XG
5775 /*
5776 * Need not flush tlb since we only zap the sp with invalid
5777 * generation number.
5778 */
e7d11c7a 5779 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5780 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5781 batch = 0;
5304b8d3
XG
5782 goto restart;
5783 }
5784
365c8868
XG
5785 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5786 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5787 batch += ret;
5788
5789 if (ret)
5304b8d3
XG
5790 goto restart;
5791 }
5792
f34d251d
XG
5793 /*
5794 * Should flush tlb before free page tables since lockless-walking
5795 * may use the pages.
5796 */
365c8868 5797 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5798}
5799
5800/*
5801 * Fast invalidate all shadow pages and use lock-break technique
5802 * to zap obsolete pages.
5803 *
5804 * It's required when memslot is being deleted or VM is being
5805 * destroyed, in these cases, we should ensure that KVM MMU does
5806 * not use any resource of the being-deleted slot or all slots
5807 * after calling the function.
5808 */
5809void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5810{
5811 spin_lock(&kvm->mmu_lock);
35006126 5812 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5813 kvm->arch.mmu_valid_gen++;
5814
f34d251d
XG
5815 /*
5816 * Notify all vcpus to reload its shadow page table
5817 * and flush TLB. Then all vcpus will switch to new
5818 * shadow page table with the new mmu_valid_gen.
5819 *
5820 * Note: we should do this under the protection of
5821 * mmu-lock, otherwise, vcpu would purge shadow page
5822 * but miss tlb flush.
5823 */
5824 kvm_reload_remote_mmus(kvm);
5825
5304b8d3
XG
5826 kvm_zap_obsolete_pages(kvm);
5827 spin_unlock(&kvm->mmu_lock);
5828}
5829
365c8868
XG
5830static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5831{
5832 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5833}
5834
54bf36aa 5835void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5836{
5837 /*
5838 * The very rare case: if the generation-number is round,
5839 * zap all shadow pages.
f8f55942 5840 */
54bf36aa 5841 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5842 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5843 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5844 }
f8f55942
XG
5845}
5846
70534a73
DC
5847static unsigned long
5848mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5849{
5850 struct kvm *kvm;
1495f230 5851 int nr_to_scan = sc->nr_to_scan;
70534a73 5852 unsigned long freed = 0;
3ee16c81 5853
2f303b74 5854 spin_lock(&kvm_lock);
3ee16c81
IE
5855
5856 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5857 int idx;
d98ba053 5858 LIST_HEAD(invalid_list);
3ee16c81 5859
35f2d16b
TY
5860 /*
5861 * Never scan more than sc->nr_to_scan VM instances.
5862 * Will not hit this condition practically since we do not try
5863 * to shrink more than one VM and it is very unlikely to see
5864 * !n_used_mmu_pages so many times.
5865 */
5866 if (!nr_to_scan--)
5867 break;
19526396
GN
5868 /*
5869 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5870 * here. We may skip a VM instance errorneosly, but we do not
5871 * want to shrink a VM that only started to populate its MMU
5872 * anyway.
5873 */
365c8868
XG
5874 if (!kvm->arch.n_used_mmu_pages &&
5875 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5876 continue;
19526396 5877
f656ce01 5878 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5879 spin_lock(&kvm->mmu_lock);
3ee16c81 5880
365c8868
XG
5881 if (kvm_has_zapped_obsolete_pages(kvm)) {
5882 kvm_mmu_commit_zap_page(kvm,
5883 &kvm->arch.zapped_obsolete_pages);
5884 goto unlock;
5885 }
5886
70534a73
DC
5887 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5888 freed++;
d98ba053 5889 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5890
365c8868 5891unlock:
3ee16c81 5892 spin_unlock(&kvm->mmu_lock);
f656ce01 5893 srcu_read_unlock(&kvm->srcu, idx);
19526396 5894
70534a73
DC
5895 /*
5896 * unfair on small ones
5897 * per-vm shrinkers cry out
5898 * sadness comes quickly
5899 */
19526396
GN
5900 list_move_tail(&kvm->vm_list, &vm_list);
5901 break;
3ee16c81 5902 }
3ee16c81 5903
2f303b74 5904 spin_unlock(&kvm_lock);
70534a73 5905 return freed;
70534a73
DC
5906}
5907
5908static unsigned long
5909mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5910{
45221ab6 5911 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5912}
5913
5914static struct shrinker mmu_shrinker = {
70534a73
DC
5915 .count_objects = mmu_shrink_count,
5916 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5917 .seeks = DEFAULT_SEEKS * 10,
5918};
5919
2ddfd20e 5920static void mmu_destroy_caches(void)
b5a33a75 5921{
c1bd743e
TH
5922 kmem_cache_destroy(pte_list_desc_cache);
5923 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5924}
5925
5926int kvm_mmu_module_init(void)
5927{
ab271bd4
AB
5928 int ret = -ENOMEM;
5929
36d9594d
VK
5930 /*
5931 * MMU roles use union aliasing which is, generally speaking, an
5932 * undefined behavior. However, we supposedly know how compilers behave
5933 * and the current status quo is unlikely to change. Guardians below are
5934 * supposed to let us know if the assumption becomes false.
5935 */
5936 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5937 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5938 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5939
28a1f3ac 5940 kvm_mmu_reset_all_pte_masks();
f160c7b7 5941
53c07b18
XG
5942 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5943 sizeof(struct pte_list_desc),
46bea48a 5944 0, SLAB_ACCOUNT, NULL);
53c07b18 5945 if (!pte_list_desc_cache)
ab271bd4 5946 goto out;
b5a33a75 5947
d3d25b04
AK
5948 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5949 sizeof(struct kvm_mmu_page),
46bea48a 5950 0, SLAB_ACCOUNT, NULL);
d3d25b04 5951 if (!mmu_page_header_cache)
ab271bd4 5952 goto out;
d3d25b04 5953
908c7f19 5954 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5955 goto out;
45bf21a8 5956
ab271bd4
AB
5957 ret = register_shrinker(&mmu_shrinker);
5958 if (ret)
5959 goto out;
3ee16c81 5960
b5a33a75
AK
5961 return 0;
5962
ab271bd4 5963out:
3ee16c81 5964 mmu_destroy_caches();
ab271bd4 5965 return ret;
b5a33a75
AK
5966}
5967
3ad82a7e 5968/*
39337ad1 5969 * Calculate mmu pages needed for kvm.
3ad82a7e
ZX
5970 */
5971unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5972{
3ad82a7e
ZX
5973 unsigned int nr_mmu_pages;
5974 unsigned int nr_pages = 0;
bc6678a3 5975 struct kvm_memslots *slots;
be6ba0f0 5976 struct kvm_memory_slot *memslot;
9da0e4d5 5977 int i;
3ad82a7e 5978
9da0e4d5
PB
5979 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5980 slots = __kvm_memslots(kvm, i);
90d83dc3 5981
9da0e4d5
PB
5982 kvm_for_each_memslot(memslot, slots)
5983 nr_pages += memslot->npages;
5984 }
3ad82a7e
ZX
5985
5986 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5987 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5988 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5989
5990 return nr_mmu_pages;
5991}
5992
c42fffe3
XG
5993void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5994{
95f93af4 5995 kvm_mmu_unload(vcpu);
c42fffe3
XG
5996 free_mmu_pages(vcpu);
5997 mmu_free_memory_caches(vcpu);
b034cf01
XG
5998}
5999
b034cf01
XG
6000void kvm_mmu_module_exit(void)
6001{
6002 mmu_destroy_caches();
6003 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6004 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6005 mmu_audit_disable();
6006}
This page took 2.370224 seconds and 4 git commands to generate.