]> Git Repo - linux.git/blame - arch/powerpc/mm/slb.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / powerpc / mm / slb.c
CommitLineData
1da177e4
LT
1/*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <[email protected]>, IBM
5cdcd9d6 5 * Based on earlier code written by:
1da177e4
LT
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <[email protected]>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
48e7b769 17#include <asm/asm-prototypes.h>
1da177e4
LT
18#include <asm/pgtable.h>
19#include <asm/mmu.h>
20#include <asm/mmu_context.h>
21#include <asm/paca.h>
08e6a343 22#include <asm/ppc-opcode.h>
1da177e4 23#include <asm/cputable.h>
3c726f8d 24#include <asm/cacheflush.h>
2f6093c8
MN
25#include <asm/smp.h>
26#include <linux/compiler.h>
f384796c 27#include <linux/context_tracking.h>
589ee628
IM
28#include <linux/mm_types.h>
29
aa39be09 30#include <asm/udbg.h>
b68a70c4 31#include <asm/code-patching.h>
3c726f8d 32
1d15010c
AK
33enum slb_index {
34 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
85376e2a 35 KSTACK_INDEX = 1, /* Kernel stack map */
1d15010c 36};
1da177e4 37
48e7b769 38static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
1da177e4 39
3b575064
PM
40#define slb_esid_mask(ssize) \
41 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42
1189be65 43static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
1d15010c 44 enum slb_index index)
1da177e4 45{
1d15010c 46 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
1da177e4
LT
47}
48
48e7b769 49static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
5e46e29e
NP
50 unsigned long flags)
51{
48e7b769 52 return (vsid << slb_vsid_shift(ssize)) | flags |
54be0b9c 53 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
5e46e29e
NP
54}
55
48e7b769
NP
56static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
57 unsigned long flags)
58{
59 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
60}
61
0ae79068 62static void assert_slb_presence(bool present, unsigned long ea)
e15a4fea
NP
63{
64#ifdef CONFIG_DEBUG_VM
65 unsigned long tmp;
66
67 WARN_ON_ONCE(mfmsr() & MSR_EE);
68
9586d569
ME
69 if (!cpu_has_feature(CPU_FTR_ARCH_206))
70 return;
71
08e6a343 72 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
e15a4fea 73
0ae79068 74 WARN_ON(present == (tmp == 0));
e15a4fea
NP
75#endif
76}
77
1189be65 78static inline void slb_shadow_update(unsigned long ea, int ssize,
67439b76 79 unsigned long flags,
1d15010c 80 enum slb_index index)
1da177e4 81{
26cd835e
ME
82 struct slb_shadow *p = get_slb_shadow();
83
2f6093c8
MN
84 /*
85 * Clear the ESID first so the entry is not valid while we are
00efee7d
MN
86 * updating it. No write barriers are needed here, provided
87 * we only update the current CPU's SLB shadow buffer.
2f6093c8 88 */
926bc2f1
NP
89 WRITE_ONCE(p->save_area[index].esid, 0);
90 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
91 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
2f6093c8
MN
92}
93
1d15010c 94static inline void slb_shadow_clear(enum slb_index index)
2f6093c8 95{
0f52b3a0 96 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
1da177e4
LT
97}
98
1189be65
PM
99static inline void create_shadowed_slbe(unsigned long ea, int ssize,
100 unsigned long flags,
1d15010c 101 enum slb_index index)
175587cc
PM
102{
103 /*
104 * Updating the shadow buffer before writing the SLB ensures
105 * we don't get a stale entry here if we get preempted by PHYP
106 * between these two statements.
107 */
1d15010c 108 slb_shadow_update(ea, ssize, flags, index);
175587cc 109
0ae79068 110 assert_slb_presence(false, ea);
175587cc 111 asm volatile("slbmte %0,%1" :
1189be65 112 : "r" (mk_vsid_data(ea, ssize, flags)),
1d15010c 113 "r" (mk_esid_data(ea, ssize, index))
175587cc
PM
114 : "memory" );
115}
116
e7e81847
NP
117/*
118 * Insert bolted entries into SLB (which may not be empty, so don't clear
119 * slb_cache_ptr).
120 */
121void __slb_restore_bolted_realmode(void)
122{
123 struct slb_shadow *p = get_slb_shadow();
124 enum slb_index index;
125
126 /* No isync needed because realmode. */
127 for (index = 0; index < SLB_NUM_BOLTED; index++) {
128 asm volatile("slbmte %0,%1" :
129 : "r" (be64_to_cpu(p->save_area[index].vsid)),
130 "r" (be64_to_cpu(p->save_area[index].esid)));
131 }
e15a4fea 132
0ae79068 133 assert_slb_presence(true, local_paca->kstack);
e7e81847
NP
134}
135
136/*
137 * Insert the bolted entries into an empty SLB.
e7e81847
NP
138 */
139void slb_restore_bolted_realmode(void)
140{
141 __slb_restore_bolted_realmode();
142 get_paca()->slb_cache_ptr = 0;
126b11b2
NP
143
144 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
145 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
e7e81847
NP
146}
147
148/*
149 * This flushes all SLB entries including 0, so it must be realmode.
150 */
151void slb_flush_all_realmode(void)
152{
e7e81847
NP
153 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
154}
155
94ee4272
NP
156/*
157 * This flushes non-bolted entries, it can be run in virtual mode. Must
158 * be called with interrupts disabled.
159 */
160void slb_flush_and_restore_bolted(void)
1da177e4 161{
94ee4272
NP
162 struct slb_shadow *p = get_slb_shadow();
163
164 BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
1da177e4 165
5141c182
NP
166 WARN_ON(!irqs_disabled());
167
168 /*
169 * We can't take a PMU exception in the following code, so hard
170 * disable interrupts.
171 */
172 hard_irq_disable();
173
1da177e4
LT
174 asm volatile("isync\n"
175 "slbia\n"
94ee4272
NP
176 "slbmte %0, %1\n"
177 "isync\n"
178 :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
179 "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
1da177e4 180 : "memory");
0ae79068 181 assert_slb_presence(true, get_paca()->kstack);
1da177e4 182
9c1e1052 183 get_paca()->slb_cache_ptr = 0;
126b11b2
NP
184
185 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
186 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
9c1e1052
PM
187}
188
c6d15258
MS
189void slb_save_contents(struct slb_entry *slb_ptr)
190{
191 int i;
192 unsigned long e, v;
193
194 /* Save slb_cache_ptr value. */
195 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
196
197 if (!slb_ptr)
198 return;
199
200 for (i = 0; i < mmu_slb_size; i++) {
201 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i));
202 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i));
203 slb_ptr->esid = e;
204 slb_ptr->vsid = v;
205 slb_ptr++;
206 }
207}
208
209void slb_dump_contents(struct slb_entry *slb_ptr)
210{
211 int i, n;
212 unsigned long e, v;
213 unsigned long llp;
214
215 if (!slb_ptr)
216 return;
217
218 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
126b11b2 219 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
c6d15258
MS
220
221 for (i = 0; i < mmu_slb_size; i++) {
222 e = slb_ptr->esid;
223 v = slb_ptr->vsid;
224 slb_ptr++;
225
226 if (!e && !v)
227 continue;
228
229 pr_err("%02d %016lx %016lx\n", i, e, v);
230
231 if (!(e & SLB_ESID_V)) {
232 pr_err("\n");
233 continue;
234 }
235 llp = v & SLB_VSID_LLP;
236 if (v & SLB_VSID_B_1T) {
237 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
238 GET_ESID_1T(e),
239 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
240 } else {
241 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
242 GET_ESID(e),
243 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
244 }
245 }
246 pr_err("----------------------------------\n");
247
248 /* Dump slb cache entires as well. */
249 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
250 pr_err("Valid SLB cache entries:\n");
251 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
252 for (i = 0; i < n; i++)
253 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
254 pr_err("Rest of SLB cache entries:\n");
255 for (i = n; i < SLB_CACHE_ENTRIES; i++)
256 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
257}
258
67439b76
MN
259void slb_vmalloc_update(void)
260{
94ee4272
NP
261 /*
262 * vmalloc is not bolted, so just have to flush non-bolted.
263 */
264 slb_flush_and_restore_bolted();
67439b76
MN
265}
266
5434ae74 267static bool preload_hit(struct thread_info *ti, unsigned long esid)
89ca4e12 268{
5434ae74 269 unsigned char i;
89ca4e12 270
5434ae74
NP
271 for (i = 0; i < ti->slb_preload_nr; i++) {
272 unsigned char idx;
273
274 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
275 if (esid == ti->slb_preload_esid[idx])
276 return true;
277 }
278 return false;
279}
280
281static bool preload_add(struct thread_info *ti, unsigned long ea)
282{
283 unsigned char idx;
284 unsigned long esid;
285
286 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
287 /* EAs are stored >> 28 so 256MB segments don't need clearing */
288 if (ea & ESID_MASK_1T)
289 ea &= ESID_MASK_1T;
290 }
89ca4e12 291
5434ae74 292 esid = ea >> SID_SHIFT;
89ca4e12 293
5434ae74
NP
294 if (preload_hit(ti, esid))
295 return false;
89ca4e12 296
5434ae74
NP
297 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
298 ti->slb_preload_esid[idx] = esid;
299 if (ti->slb_preload_nr == SLB_PRELOAD_NR)
300 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
301 else
302 ti->slb_preload_nr++;
89ca4e12 303
5434ae74 304 return true;
89ca4e12
NP
305}
306
5434ae74
NP
307static void preload_age(struct thread_info *ti)
308{
309 if (!ti->slb_preload_nr)
310 return;
311 ti->slb_preload_nr--;
312 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
313}
314
315void slb_setup_new_exec(void)
316{
317 struct thread_info *ti = current_thread_info();
318 struct mm_struct *mm = current->mm;
319 unsigned long exec = 0x10000000;
320
321 WARN_ON(irqs_disabled());
322
323 /*
324 * preload cache can only be used to determine whether a SLB
325 * entry exists if it does not start to overflow.
326 */
327 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
328 return;
329
330 hard_irq_disable();
331
332 /*
333 * We have no good place to clear the slb preload cache on exec,
334 * flush_thread is about the earliest arch hook but that happens
335 * after we switch to the mm and have aleady preloaded the SLBEs.
336 *
337 * For the most part that's probably okay to use entries from the
338 * previous exec, they will age out if unused. It may turn out to
339 * be an advantage to clear the cache before switching to it,
340 * however.
341 */
342
343 /*
344 * preload some userspace segments into the SLB.
345 * Almost all 32 and 64bit PowerPC executables are linked at
346 * 0x10000000 so it makes sense to preload this segment.
347 */
348 if (!is_kernel_addr(exec)) {
349 if (preload_add(ti, exec))
350 slb_allocate_user(mm, exec);
351 }
352
353 /* Libraries and mmaps. */
354 if (!is_kernel_addr(mm->mmap_base)) {
355 if (preload_add(ti, mm->mmap_base))
356 slb_allocate_user(mm, mm->mmap_base);
357 }
358
359 /* see switch_slb */
360 asm volatile("isync" : : : "memory");
361
362 local_irq_enable();
363}
364
365void preload_new_slb_context(unsigned long start, unsigned long sp)
366{
367 struct thread_info *ti = current_thread_info();
368 struct mm_struct *mm = current->mm;
369 unsigned long heap = mm->start_brk;
370
371 WARN_ON(irqs_disabled());
372
373 /* see above */
374 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
375 return;
376
377 hard_irq_disable();
378
379 /* Userspace entry address. */
380 if (!is_kernel_addr(start)) {
381 if (preload_add(ti, start))
382 slb_allocate_user(mm, start);
383 }
384
385 /* Top of stack, grows down. */
386 if (!is_kernel_addr(sp)) {
387 if (preload_add(ti, sp))
388 slb_allocate_user(mm, sp);
389 }
390
391 /* Bottom of heap, grows up. */
392 if (heap && !is_kernel_addr(heap)) {
393 if (preload_add(ti, heap))
394 slb_allocate_user(mm, heap);
395 }
396
397 /* see switch_slb */
398 asm volatile("isync" : : : "memory");
399
400 local_irq_enable();
401}
402
403
1da177e4
LT
404/* Flush all user entries from the segment table of the current processor. */
405void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
406{
5434ae74
NP
407 struct thread_info *ti = task_thread_info(tsk);
408 unsigned char i;
1da177e4 409
9c1e1052
PM
410 /*
411 * We need interrupts hard-disabled here, not just soft-disabled,
412 * so that a PMU interrupt can't occur, which might try to access
413 * user memory (to get a stack trace) and possible cause an SLB miss
414 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
415 */
416 hard_irq_disable();
5434ae74 417 asm volatile("isync" : : : "memory");
82d8f4c2
NP
418 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
419 /*
420 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
421 * associated lookaside structures, which matches what
422 * switch_slb wants. So ARCH_300 does not use the slb
423 * cache.
424 */
5434ae74 425 asm volatile(PPC_SLBIA(3));
82d8f4c2
NP
426 } else {
427 unsigned long offset = get_paca()->slb_cache_ptr;
428
429 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
430 offset <= SLB_CACHE_ENTRIES) {
431 unsigned long slbie_data = 0;
82d8f4c2 432
82d8f4c2 433 for (i = 0; i < offset; i++) {
e15a4fea
NP
434 unsigned long ea;
435
436 ea = (unsigned long)
82d8f4c2 437 get_paca()->slb_cache[i] << SID_SHIFT;
e15a4fea 438 /*
0ae79068
ME
439 * Could assert_slb_presence(true) here, but
440 * hypervisor or machine check could have come
441 * in and removed the entry at this point.
e15a4fea
NP
442 */
443
444 slbie_data = ea;
82d8f4c2
NP
445 slbie_data |= user_segment_size(slbie_data)
446 << SLBIE_SSIZE_SHIFT;
447 slbie_data |= SLBIE_C; /* user slbs have C=1 */
448 asm volatile("slbie %0" : : "r" (slbie_data));
449 }
450
451 /* Workaround POWER5 < DD2.1 issue */
452 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
453 asm volatile("slbie %0" : : "r" (slbie_data));
454
82d8f4c2
NP
455 } else {
456 struct slb_shadow *p = get_slb_shadow();
457 unsigned long ksp_esid_data =
458 be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
459 unsigned long ksp_vsid_data =
460 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
461
5434ae74 462 asm volatile(PPC_SLBIA(1) "\n"
82d8f4c2
NP
463 "slbmte %0,%1\n"
464 "isync"
465 :: "r"(ksp_vsid_data),
466 "r"(ksp_esid_data));
126b11b2
NP
467
468 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
1da177e4 469 }
1da177e4 470
82d8f4c2 471 get_paca()->slb_cache_ptr = 0;
505ea82e 472 }
126b11b2 473 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
54be0b9c
ME
474
475 copy_mm_to_paca(mm);
1da177e4 476
1da177e4 477 /*
5434ae74
NP
478 * We gradually age out SLBs after a number of context switches to
479 * reduce reload overhead of unused entries (like we do with FP/VEC
480 * reload). Each time we wrap 256 switches, take an entry out of the
481 * SLB preload cache.
1da177e4 482 */
5434ae74
NP
483 tsk->thread.load_slb++;
484 if (!tsk->thread.load_slb) {
485 unsigned long pc = KSTK_EIP(tsk);
1da177e4 486
5434ae74
NP
487 preload_age(ti);
488 preload_add(ti, pc);
489 }
490
491 for (i = 0; i < ti->slb_preload_nr; i++) {
492 unsigned char idx;
493 unsigned long ea;
1da177e4 494
5434ae74
NP
495 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
496 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
1da177e4 497
5434ae74
NP
498 slb_allocate_user(mm, ea);
499 }
1da177e4 500
5434ae74
NP
501 /*
502 * Synchronize slbmte preloads with possible subsequent user memory
503 * address accesses by the kernel (user mode won't happen until
504 * rfid, which is safe).
505 */
506 asm volatile("isync" : : : "memory");
46db2f86
BK
507}
508
54be0b9c
ME
509void slb_set_size(u16 size)
510{
54be0b9c 511 mmu_slb_size = size;
8fed04d0
NP
512}
513
1da177e4
LT
514void slb_initialize(void)
515{
bf72aeba 516 unsigned long linear_llp, vmalloc_llp, io_llp;
85376e2a 517 unsigned long lflags;
3c726f8d 518 static int slb_encoding_inited;
cec08e7a 519#ifdef CONFIG_SPARSEMEM_VMEMMAP
cec08e7a
BH
520 unsigned long vmemmap_llp;
521#endif
3c726f8d
BH
522
523 /* Prepare our SLB miss handler based on our page size */
524 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
bf72aeba
PM
525 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
526 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
527 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
cec08e7a
BH
528#ifdef CONFIG_SPARSEMEM_VMEMMAP
529 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
530#endif
3c726f8d
BH
531 if (!slb_encoding_inited) {
532 slb_encoding_inited = 1;
651e2dd2
ME
533 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
534 pr_devel("SLB: io LLP = %04lx\n", io_llp);
cec08e7a 535#ifdef CONFIG_SPARSEMEM_VMEMMAP
651e2dd2 536 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
cec08e7a 537#endif
3c726f8d
BH
538 }
539
09b4438d 540 get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
126b11b2
NP
541 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
542 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
56291e19 543
3c726f8d 544 lflags = SLB_VSID_KERNEL | linear_llp;
1da177e4 545
2be682af 546 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
175587cc
PM
547 asm volatile("isync":::"memory");
548 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
549 asm volatile("isync; slbia; isync":::"memory");
1d15010c 550 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
175587cc 551
3b575064
PM
552 /* For the boot cpu, we're running on the stack in init_thread_union,
553 * which is in the first segment of the linear mapping, and also
554 * get_paca()->kstack hasn't been initialized yet.
555 * For secondary cpus, we need to bolt the kernel stack entry now.
556 */
1d15010c 557 slb_shadow_clear(KSTACK_INDEX);
3b575064
PM
558 if (raw_smp_processor_id() != boot_cpuid &&
559 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
560 create_shadowed_slbe(get_paca()->kstack,
1d15010c 561 mmu_kernel_ssize, lflags, KSTACK_INDEX);
dfbe0d3b 562
175587cc 563 asm volatile("isync":::"memory");
1da177e4 564}
f384796c 565
48e7b769 566static void slb_cache_update(unsigned long esid_data)
f384796c 567{
f384796c
AK
568 int slb_cache_index;
569
82d8f4c2
NP
570 if (cpu_has_feature(CPU_FTR_ARCH_300))
571 return; /* ISAv3.0B and later does not use slb_cache */
572
54be0b9c 573 /*
48e7b769 574 * Now update slb cache entries
54be0b9c 575 */
48e7b769
NP
576 slb_cache_index = local_paca->slb_cache_ptr;
577 if (slb_cache_index < SLB_CACHE_ENTRIES) {
578 /*
579 * We have space in slb cache for optimized switch_slb().
580 * Top 36 bits from esid_data as per ISA
581 */
582 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
583 local_paca->slb_cache_ptr++;
584 } else {
585 /*
586 * Our cache is full and the current cache content strictly
587 * doesn't indicate the active SLB conents. Bump the ptr
588 * so that switch_slb() will ignore the cache.
589 */
590 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
591 }
592}
54be0b9c 593
126b11b2 594static enum slb_index alloc_slb_index(bool kernel)
48e7b769
NP
595{
596 enum slb_index index;
54be0b9c 597
126b11b2
NP
598 /*
599 * The allocation bitmaps can become out of synch with the SLB
600 * when the _switch code does slbie when bolting a new stack
601 * segment and it must not be anywhere else in the SLB. This leaves
602 * a kernel allocated entry that is unused in the SLB. With very
603 * large systems or small segment sizes, the bitmaps could slowly
604 * fill with these entries. They will eventually be cleared out
605 * by the round robin allocator in that case, so it's probably not
606 * worth accounting for.
607 */
608
609 /*
610 * SLBs beyond 32 entries are allocated with stab_rr only
611 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
612 * future CPU has more.
613 */
614 if (local_paca->slb_used_bitmap != U32_MAX) {
615 index = ffz(local_paca->slb_used_bitmap);
616 local_paca->slb_used_bitmap |= 1U << index;
617 if (kernel)
618 local_paca->slb_kern_bitmap |= 1U << index;
619 } else {
620 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
621 index = local_paca->stab_rr;
622 if (index < (mmu_slb_size - 1))
623 index++;
624 else
625 index = SLB_NUM_BOLTED;
626 local_paca->stab_rr = index;
627 if (index < 32) {
628 if (kernel)
629 local_paca->slb_kern_bitmap |= 1U << index;
630 else
631 local_paca->slb_kern_bitmap &= ~(1U << index);
632 }
633 }
634 BUG_ON(index < SLB_NUM_BOLTED);
54be0b9c 635
48e7b769
NP
636 return index;
637}
638
639static long slb_insert_entry(unsigned long ea, unsigned long context,
640 unsigned long flags, int ssize, bool kernel)
641{
642 unsigned long vsid;
643 unsigned long vsid_data, esid_data;
644 enum slb_index index;
645
646 vsid = get_vsid(context, ea, ssize);
647 if (!vsid)
648 return -EFAULT;
649
650 /*
651 * There must not be a kernel SLB fault in alloc_slb_index or before
652 * slbmte here or the allocation bitmaps could get out of whack with
653 * the SLB.
654 *
655 * User SLB faults or preloads take this path which might get inlined
656 * into the caller, so add compiler barriers here to ensure unsafe
657 * memory accesses do not come between.
658 */
659 barrier();
660
126b11b2 661 index = alloc_slb_index(kernel);
48e7b769
NP
662
663 vsid_data = __mk_vsid_data(vsid, ssize, flags);
54be0b9c
ME
664 esid_data = mk_esid_data(ea, ssize, index);
665
666 /*
667 * No need for an isync before or after this slbmte. The exception
668 * we enter with and the rfid we exit with are context synchronizing.
48e7b769
NP
669 * User preloads should add isync afterwards in case the kernel
670 * accesses user memory before it returns to userspace with rfid.
54be0b9c 671 */
0ae79068 672 assert_slb_presence(false, ea);
48e7b769 673 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
54be0b9c 674
48e7b769
NP
675 barrier();
676
677 if (!kernel)
678 slb_cache_update(esid_data);
679
680 return 0;
681}
682
683static long slb_allocate_kernel(unsigned long ea, unsigned long id)
684{
685 unsigned long context;
686 unsigned long flags;
687 int ssize;
688
48e7b769 689 if (id == KERNEL_REGION_ID) {
4ffe713b
AK
690
691 /* We only support upto MAX_PHYSMEM_BITS */
692 if ((ea & ~REGION_MASK) > (1UL << MAX_PHYSMEM_BITS))
693 return -EFAULT;
694
48e7b769 695 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
4ffe713b 696
48e7b769
NP
697#ifdef CONFIG_SPARSEMEM_VMEMMAP
698 } else if (id == VMEMMAP_REGION_ID) {
4ffe713b
AK
699
700 if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT))
701 return -EFAULT;
702
48e7b769
NP
703 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
704#endif
705 } else if (id == VMALLOC_REGION_ID) {
4ffe713b
AK
706
707 if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT))
708 return -EFAULT;
709
48e7b769 710 if (ea < H_VMALLOC_END)
c8b00bb7 711 flags = local_paca->vmalloc_sllp;
48e7b769
NP
712 else
713 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
f384796c 714 } else {
48e7b769 715 return -EFAULT;
f384796c 716 }
48e7b769
NP
717
718 ssize = MMU_SEGSIZE_1T;
719 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
720 ssize = MMU_SEGSIZE_256M;
721
4ffe713b 722 context = get_kernel_context(ea);
48e7b769 723 return slb_insert_entry(ea, context, flags, ssize, true);
f384796c
AK
724}
725
48e7b769 726static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
5e46e29e 727{
48e7b769
NP
728 unsigned long context;
729 unsigned long flags;
54be0b9c 730 int bpsize;
48e7b769 731 int ssize;
655deecf
NP
732
733 /*
48e7b769
NP
734 * consider this as bad access if we take a SLB miss
735 * on an address above addr limit.
655deecf 736 */
48e7b769
NP
737 if (ea >= mm->context.slb_addr_limit)
738 return -EFAULT;
739
c9f80734 740 context = get_user_context(&mm->context, ea);
48e7b769
NP
741 if (!context)
742 return -EFAULT;
743
744 if (unlikely(ea >= H_PGTABLE_RANGE)) {
745 WARN_ON(1);
746 return -EFAULT;
747 }
748
749 ssize = user_segment_size(ea);
750
54be0b9c 751 bpsize = get_slice_psize(mm, ea);
48e7b769
NP
752 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
753
754 return slb_insert_entry(ea, context, flags, ssize, false);
5e46e29e
NP
755}
756
48e7b769 757long do_slb_fault(struct pt_regs *regs, unsigned long ea)
f384796c 758{
48e7b769 759 unsigned long id = REGION_ID(ea);
5e46e29e 760
48e7b769
NP
761 /* IRQs are not reconciled here, so can't check irqs_disabled */
762 VM_WARN_ON(mfmsr() & MSR_EE);
f384796c 763
48e7b769
NP
764 if (unlikely(!(regs->msr & MSR_RI)))
765 return -EINVAL;
f384796c
AK
766
767 /*
48e7b769
NP
768 * SLB kernel faults must be very careful not to touch anything
769 * that is not bolted. E.g., PACA and global variables are okay,
770 * mm->context stuff is not.
771 *
772 * SLB user faults can access all of kernel memory, but must be
773 * careful not to touch things like IRQ state because it is not
774 * "reconciled" here. The difficulty is that we must use
775 * fast_exception_return to return from kernel SLB faults without
776 * looking at possible non-bolted memory. We could test user vs
777 * kernel faults in the interrupt handler asm and do a full fault,
778 * reconcile, ret_from_except for user faults which would make them
779 * first class kernel code. But for performance it's probably nicer
780 * if they go via fast_exception_return too.
f384796c 781 */
48e7b769 782 if (id >= KERNEL_REGION_ID) {
e15a4fea
NP
783 long err;
784#ifdef CONFIG_DEBUG_VM
785 /* Catch recursive kernel SLB faults. */
786 BUG_ON(local_paca->in_kernel_slb_handler);
787 local_paca->in_kernel_slb_handler = 1;
788#endif
789 err = slb_allocate_kernel(ea, id);
790#ifdef CONFIG_DEBUG_VM
791 local_paca->in_kernel_slb_handler = 0;
792#endif
793 return err;
48e7b769
NP
794 } else {
795 struct mm_struct *mm = current->mm;
5434ae74 796 long err;
f384796c 797
48e7b769
NP
798 if (unlikely(!mm))
799 return -EFAULT;
5e46e29e 800
5434ae74
NP
801 err = slb_allocate_user(mm, ea);
802 if (!err)
803 preload_add(current_thread_info(), ea);
804
805 return err;
48e7b769
NP
806 }
807}
5e46e29e 808
48e7b769
NP
809void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
810{
811 if (err == -EFAULT) {
812 if (user_mode(regs))
813 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
814 else
815 bad_page_fault(regs, ea, SIGSEGV);
816 } else if (err == -EINVAL) {
817 unrecoverable_exception(regs);
818 } else {
819 BUG();
820 }
f384796c 821}
This page took 0.976865 seconds and 4 git commands to generate.