]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * PowerPC64 SLB support. | |
3 | * | |
4 | * Copyright (C) 2004 David Gibson <[email protected]>, IBM | |
5cdcd9d6 | 5 | * Based on earlier code written by: |
1da177e4 LT |
6 | * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com |
7 | * Copyright (c) 2001 Dave Engebretsen | |
8 | * Copyright (C) 2002 Anton Blanchard <[email protected]>, IBM | |
9 | * | |
10 | * | |
11 | * This program is free software; you can redistribute it and/or | |
12 | * modify it under the terms of the GNU General Public License | |
13 | * as published by the Free Software Foundation; either version | |
14 | * 2 of the License, or (at your option) any later version. | |
15 | */ | |
16 | ||
48e7b769 | 17 | #include <asm/asm-prototypes.h> |
1da177e4 LT |
18 | #include <asm/pgtable.h> |
19 | #include <asm/mmu.h> | |
20 | #include <asm/mmu_context.h> | |
21 | #include <asm/paca.h> | |
08e6a343 | 22 | #include <asm/ppc-opcode.h> |
1da177e4 | 23 | #include <asm/cputable.h> |
3c726f8d | 24 | #include <asm/cacheflush.h> |
2f6093c8 MN |
25 | #include <asm/smp.h> |
26 | #include <linux/compiler.h> | |
f384796c | 27 | #include <linux/context_tracking.h> |
589ee628 IM |
28 | #include <linux/mm_types.h> |
29 | ||
aa39be09 | 30 | #include <asm/udbg.h> |
b68a70c4 | 31 | #include <asm/code-patching.h> |
3c726f8d | 32 | |
1d15010c AK |
33 | enum slb_index { |
34 | LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ | |
85376e2a | 35 | KSTACK_INDEX = 1, /* Kernel stack map */ |
1d15010c | 36 | }; |
1da177e4 | 37 | |
48e7b769 | 38 | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); |
1da177e4 | 39 | |
3b575064 PM |
40 | #define slb_esid_mask(ssize) \ |
41 | (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) | |
42 | ||
1189be65 | 43 | static inline unsigned long mk_esid_data(unsigned long ea, int ssize, |
1d15010c | 44 | enum slb_index index) |
1da177e4 | 45 | { |
1d15010c | 46 | return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; |
1da177e4 LT |
47 | } |
48 | ||
48e7b769 | 49 | static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, |
5e46e29e NP |
50 | unsigned long flags) |
51 | { | |
48e7b769 | 52 | return (vsid << slb_vsid_shift(ssize)) | flags | |
54be0b9c | 53 | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); |
5e46e29e NP |
54 | } |
55 | ||
48e7b769 NP |
56 | static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, |
57 | unsigned long flags) | |
58 | { | |
59 | return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); | |
60 | } | |
61 | ||
0ae79068 | 62 | static void assert_slb_presence(bool present, unsigned long ea) |
e15a4fea NP |
63 | { |
64 | #ifdef CONFIG_DEBUG_VM | |
65 | unsigned long tmp; | |
66 | ||
67 | WARN_ON_ONCE(mfmsr() & MSR_EE); | |
68 | ||
9586d569 ME |
69 | if (!cpu_has_feature(CPU_FTR_ARCH_206)) |
70 | return; | |
71 | ||
08e6a343 | 72 | asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); |
e15a4fea | 73 | |
0ae79068 | 74 | WARN_ON(present == (tmp == 0)); |
e15a4fea NP |
75 | #endif |
76 | } | |
77 | ||
1189be65 | 78 | static inline void slb_shadow_update(unsigned long ea, int ssize, |
67439b76 | 79 | unsigned long flags, |
1d15010c | 80 | enum slb_index index) |
1da177e4 | 81 | { |
26cd835e ME |
82 | struct slb_shadow *p = get_slb_shadow(); |
83 | ||
2f6093c8 MN |
84 | /* |
85 | * Clear the ESID first so the entry is not valid while we are | |
00efee7d MN |
86 | * updating it. No write barriers are needed here, provided |
87 | * we only update the current CPU's SLB shadow buffer. | |
2f6093c8 | 88 | */ |
926bc2f1 NP |
89 | WRITE_ONCE(p->save_area[index].esid, 0); |
90 | WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); | |
91 | WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); | |
2f6093c8 MN |
92 | } |
93 | ||
1d15010c | 94 | static inline void slb_shadow_clear(enum slb_index index) |
2f6093c8 | 95 | { |
0f52b3a0 | 96 | WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); |
1da177e4 LT |
97 | } |
98 | ||
1189be65 PM |
99 | static inline void create_shadowed_slbe(unsigned long ea, int ssize, |
100 | unsigned long flags, | |
1d15010c | 101 | enum slb_index index) |
175587cc PM |
102 | { |
103 | /* | |
104 | * Updating the shadow buffer before writing the SLB ensures | |
105 | * we don't get a stale entry here if we get preempted by PHYP | |
106 | * between these two statements. | |
107 | */ | |
1d15010c | 108 | slb_shadow_update(ea, ssize, flags, index); |
175587cc | 109 | |
0ae79068 | 110 | assert_slb_presence(false, ea); |
175587cc | 111 | asm volatile("slbmte %0,%1" : |
1189be65 | 112 | : "r" (mk_vsid_data(ea, ssize, flags)), |
1d15010c | 113 | "r" (mk_esid_data(ea, ssize, index)) |
175587cc PM |
114 | : "memory" ); |
115 | } | |
116 | ||
e7e81847 NP |
117 | /* |
118 | * Insert bolted entries into SLB (which may not be empty, so don't clear | |
119 | * slb_cache_ptr). | |
120 | */ | |
121 | void __slb_restore_bolted_realmode(void) | |
122 | { | |
123 | struct slb_shadow *p = get_slb_shadow(); | |
124 | enum slb_index index; | |
125 | ||
126 | /* No isync needed because realmode. */ | |
127 | for (index = 0; index < SLB_NUM_BOLTED; index++) { | |
128 | asm volatile("slbmte %0,%1" : | |
129 | : "r" (be64_to_cpu(p->save_area[index].vsid)), | |
130 | "r" (be64_to_cpu(p->save_area[index].esid))); | |
131 | } | |
e15a4fea | 132 | |
0ae79068 | 133 | assert_slb_presence(true, local_paca->kstack); |
e7e81847 NP |
134 | } |
135 | ||
136 | /* | |
137 | * Insert the bolted entries into an empty SLB. | |
e7e81847 NP |
138 | */ |
139 | void slb_restore_bolted_realmode(void) | |
140 | { | |
141 | __slb_restore_bolted_realmode(); | |
142 | get_paca()->slb_cache_ptr = 0; | |
126b11b2 NP |
143 | |
144 | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | |
145 | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | |
e7e81847 NP |
146 | } |
147 | ||
148 | /* | |
149 | * This flushes all SLB entries including 0, so it must be realmode. | |
150 | */ | |
151 | void slb_flush_all_realmode(void) | |
152 | { | |
e7e81847 NP |
153 | asm volatile("slbmte %0,%0; slbia" : : "r" (0)); |
154 | } | |
155 | ||
94ee4272 NP |
156 | /* |
157 | * This flushes non-bolted entries, it can be run in virtual mode. Must | |
158 | * be called with interrupts disabled. | |
159 | */ | |
160 | void slb_flush_and_restore_bolted(void) | |
1da177e4 | 161 | { |
94ee4272 NP |
162 | struct slb_shadow *p = get_slb_shadow(); |
163 | ||
164 | BUILD_BUG_ON(SLB_NUM_BOLTED != 2); | |
1da177e4 | 165 | |
5141c182 NP |
166 | WARN_ON(!irqs_disabled()); |
167 | ||
168 | /* | |
169 | * We can't take a PMU exception in the following code, so hard | |
170 | * disable interrupts. | |
171 | */ | |
172 | hard_irq_disable(); | |
173 | ||
1da177e4 LT |
174 | asm volatile("isync\n" |
175 | "slbia\n" | |
94ee4272 NP |
176 | "slbmte %0, %1\n" |
177 | "isync\n" | |
178 | :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)), | |
179 | "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid)) | |
1da177e4 | 180 | : "memory"); |
0ae79068 | 181 | assert_slb_presence(true, get_paca()->kstack); |
1da177e4 | 182 | |
9c1e1052 | 183 | get_paca()->slb_cache_ptr = 0; |
126b11b2 NP |
184 | |
185 | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | |
186 | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | |
9c1e1052 PM |
187 | } |
188 | ||
c6d15258 MS |
189 | void slb_save_contents(struct slb_entry *slb_ptr) |
190 | { | |
191 | int i; | |
192 | unsigned long e, v; | |
193 | ||
194 | /* Save slb_cache_ptr value. */ | |
195 | get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; | |
196 | ||
197 | if (!slb_ptr) | |
198 | return; | |
199 | ||
200 | for (i = 0; i < mmu_slb_size; i++) { | |
201 | asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); | |
202 | asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); | |
203 | slb_ptr->esid = e; | |
204 | slb_ptr->vsid = v; | |
205 | slb_ptr++; | |
206 | } | |
207 | } | |
208 | ||
209 | void slb_dump_contents(struct slb_entry *slb_ptr) | |
210 | { | |
211 | int i, n; | |
212 | unsigned long e, v; | |
213 | unsigned long llp; | |
214 | ||
215 | if (!slb_ptr) | |
216 | return; | |
217 | ||
218 | pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); | |
126b11b2 | 219 | pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); |
c6d15258 MS |
220 | |
221 | for (i = 0; i < mmu_slb_size; i++) { | |
222 | e = slb_ptr->esid; | |
223 | v = slb_ptr->vsid; | |
224 | slb_ptr++; | |
225 | ||
226 | if (!e && !v) | |
227 | continue; | |
228 | ||
229 | pr_err("%02d %016lx %016lx\n", i, e, v); | |
230 | ||
231 | if (!(e & SLB_ESID_V)) { | |
232 | pr_err("\n"); | |
233 | continue; | |
234 | } | |
235 | llp = v & SLB_VSID_LLP; | |
236 | if (v & SLB_VSID_B_1T) { | |
237 | pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", | |
238 | GET_ESID_1T(e), | |
239 | (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); | |
240 | } else { | |
241 | pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", | |
242 | GET_ESID(e), | |
243 | (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); | |
244 | } | |
245 | } | |
246 | pr_err("----------------------------------\n"); | |
247 | ||
248 | /* Dump slb cache entires as well. */ | |
249 | pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); | |
250 | pr_err("Valid SLB cache entries:\n"); | |
251 | n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); | |
252 | for (i = 0; i < n; i++) | |
253 | pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | |
254 | pr_err("Rest of SLB cache entries:\n"); | |
255 | for (i = n; i < SLB_CACHE_ENTRIES; i++) | |
256 | pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | |
257 | } | |
258 | ||
67439b76 MN |
259 | void slb_vmalloc_update(void) |
260 | { | |
94ee4272 NP |
261 | /* |
262 | * vmalloc is not bolted, so just have to flush non-bolted. | |
263 | */ | |
264 | slb_flush_and_restore_bolted(); | |
67439b76 MN |
265 | } |
266 | ||
5434ae74 | 267 | static bool preload_hit(struct thread_info *ti, unsigned long esid) |
89ca4e12 | 268 | { |
5434ae74 | 269 | unsigned char i; |
89ca4e12 | 270 | |
5434ae74 NP |
271 | for (i = 0; i < ti->slb_preload_nr; i++) { |
272 | unsigned char idx; | |
273 | ||
274 | idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; | |
275 | if (esid == ti->slb_preload_esid[idx]) | |
276 | return true; | |
277 | } | |
278 | return false; | |
279 | } | |
280 | ||
281 | static bool preload_add(struct thread_info *ti, unsigned long ea) | |
282 | { | |
283 | unsigned char idx; | |
284 | unsigned long esid; | |
285 | ||
286 | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { | |
287 | /* EAs are stored >> 28 so 256MB segments don't need clearing */ | |
288 | if (ea & ESID_MASK_1T) | |
289 | ea &= ESID_MASK_1T; | |
290 | } | |
89ca4e12 | 291 | |
5434ae74 | 292 | esid = ea >> SID_SHIFT; |
89ca4e12 | 293 | |
5434ae74 NP |
294 | if (preload_hit(ti, esid)) |
295 | return false; | |
89ca4e12 | 296 | |
5434ae74 NP |
297 | idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; |
298 | ti->slb_preload_esid[idx] = esid; | |
299 | if (ti->slb_preload_nr == SLB_PRELOAD_NR) | |
300 | ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | |
301 | else | |
302 | ti->slb_preload_nr++; | |
89ca4e12 | 303 | |
5434ae74 | 304 | return true; |
89ca4e12 NP |
305 | } |
306 | ||
5434ae74 NP |
307 | static void preload_age(struct thread_info *ti) |
308 | { | |
309 | if (!ti->slb_preload_nr) | |
310 | return; | |
311 | ti->slb_preload_nr--; | |
312 | ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | |
313 | } | |
314 | ||
315 | void slb_setup_new_exec(void) | |
316 | { | |
317 | struct thread_info *ti = current_thread_info(); | |
318 | struct mm_struct *mm = current->mm; | |
319 | unsigned long exec = 0x10000000; | |
320 | ||
321 | WARN_ON(irqs_disabled()); | |
322 | ||
323 | /* | |
324 | * preload cache can only be used to determine whether a SLB | |
325 | * entry exists if it does not start to overflow. | |
326 | */ | |
327 | if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) | |
328 | return; | |
329 | ||
330 | hard_irq_disable(); | |
331 | ||
332 | /* | |
333 | * We have no good place to clear the slb preload cache on exec, | |
334 | * flush_thread is about the earliest arch hook but that happens | |
335 | * after we switch to the mm and have aleady preloaded the SLBEs. | |
336 | * | |
337 | * For the most part that's probably okay to use entries from the | |
338 | * previous exec, they will age out if unused. It may turn out to | |
339 | * be an advantage to clear the cache before switching to it, | |
340 | * however. | |
341 | */ | |
342 | ||
343 | /* | |
344 | * preload some userspace segments into the SLB. | |
345 | * Almost all 32 and 64bit PowerPC executables are linked at | |
346 | * 0x10000000 so it makes sense to preload this segment. | |
347 | */ | |
348 | if (!is_kernel_addr(exec)) { | |
349 | if (preload_add(ti, exec)) | |
350 | slb_allocate_user(mm, exec); | |
351 | } | |
352 | ||
353 | /* Libraries and mmaps. */ | |
354 | if (!is_kernel_addr(mm->mmap_base)) { | |
355 | if (preload_add(ti, mm->mmap_base)) | |
356 | slb_allocate_user(mm, mm->mmap_base); | |
357 | } | |
358 | ||
359 | /* see switch_slb */ | |
360 | asm volatile("isync" : : : "memory"); | |
361 | ||
362 | local_irq_enable(); | |
363 | } | |
364 | ||
365 | void preload_new_slb_context(unsigned long start, unsigned long sp) | |
366 | { | |
367 | struct thread_info *ti = current_thread_info(); | |
368 | struct mm_struct *mm = current->mm; | |
369 | unsigned long heap = mm->start_brk; | |
370 | ||
371 | WARN_ON(irqs_disabled()); | |
372 | ||
373 | /* see above */ | |
374 | if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) | |
375 | return; | |
376 | ||
377 | hard_irq_disable(); | |
378 | ||
379 | /* Userspace entry address. */ | |
380 | if (!is_kernel_addr(start)) { | |
381 | if (preload_add(ti, start)) | |
382 | slb_allocate_user(mm, start); | |
383 | } | |
384 | ||
385 | /* Top of stack, grows down. */ | |
386 | if (!is_kernel_addr(sp)) { | |
387 | if (preload_add(ti, sp)) | |
388 | slb_allocate_user(mm, sp); | |
389 | } | |
390 | ||
391 | /* Bottom of heap, grows up. */ | |
392 | if (heap && !is_kernel_addr(heap)) { | |
393 | if (preload_add(ti, heap)) | |
394 | slb_allocate_user(mm, heap); | |
395 | } | |
396 | ||
397 | /* see switch_slb */ | |
398 | asm volatile("isync" : : : "memory"); | |
399 | ||
400 | local_irq_enable(); | |
401 | } | |
402 | ||
403 | ||
1da177e4 LT |
404 | /* Flush all user entries from the segment table of the current processor. */ |
405 | void switch_slb(struct task_struct *tsk, struct mm_struct *mm) | |
406 | { | |
5434ae74 NP |
407 | struct thread_info *ti = task_thread_info(tsk); |
408 | unsigned char i; | |
1da177e4 | 409 | |
9c1e1052 PM |
410 | /* |
411 | * We need interrupts hard-disabled here, not just soft-disabled, | |
412 | * so that a PMU interrupt can't occur, which might try to access | |
413 | * user memory (to get a stack trace) and possible cause an SLB miss | |
414 | * which would update the slb_cache/slb_cache_ptr fields in the PACA. | |
415 | */ | |
416 | hard_irq_disable(); | |
5434ae74 | 417 | asm volatile("isync" : : : "memory"); |
82d8f4c2 NP |
418 | if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
419 | /* | |
420 | * SLBIA IH=3 invalidates all Class=1 SLBEs and their | |
421 | * associated lookaside structures, which matches what | |
422 | * switch_slb wants. So ARCH_300 does not use the slb | |
423 | * cache. | |
424 | */ | |
5434ae74 | 425 | asm volatile(PPC_SLBIA(3)); |
82d8f4c2 NP |
426 | } else { |
427 | unsigned long offset = get_paca()->slb_cache_ptr; | |
428 | ||
429 | if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && | |
430 | offset <= SLB_CACHE_ENTRIES) { | |
431 | unsigned long slbie_data = 0; | |
82d8f4c2 | 432 | |
82d8f4c2 | 433 | for (i = 0; i < offset; i++) { |
e15a4fea NP |
434 | unsigned long ea; |
435 | ||
436 | ea = (unsigned long) | |
82d8f4c2 | 437 | get_paca()->slb_cache[i] << SID_SHIFT; |
e15a4fea | 438 | /* |
0ae79068 ME |
439 | * Could assert_slb_presence(true) here, but |
440 | * hypervisor or machine check could have come | |
441 | * in and removed the entry at this point. | |
e15a4fea NP |
442 | */ |
443 | ||
444 | slbie_data = ea; | |
82d8f4c2 NP |
445 | slbie_data |= user_segment_size(slbie_data) |
446 | << SLBIE_SSIZE_SHIFT; | |
447 | slbie_data |= SLBIE_C; /* user slbs have C=1 */ | |
448 | asm volatile("slbie %0" : : "r" (slbie_data)); | |
449 | } | |
450 | ||
451 | /* Workaround POWER5 < DD2.1 issue */ | |
452 | if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) | |
453 | asm volatile("slbie %0" : : "r" (slbie_data)); | |
454 | ||
82d8f4c2 NP |
455 | } else { |
456 | struct slb_shadow *p = get_slb_shadow(); | |
457 | unsigned long ksp_esid_data = | |
458 | be64_to_cpu(p->save_area[KSTACK_INDEX].esid); | |
459 | unsigned long ksp_vsid_data = | |
460 | be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); | |
461 | ||
5434ae74 | 462 | asm volatile(PPC_SLBIA(1) "\n" |
82d8f4c2 NP |
463 | "slbmte %0,%1\n" |
464 | "isync" | |
465 | :: "r"(ksp_vsid_data), | |
466 | "r"(ksp_esid_data)); | |
126b11b2 NP |
467 | |
468 | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | |
1da177e4 | 469 | } |
1da177e4 | 470 | |
82d8f4c2 | 471 | get_paca()->slb_cache_ptr = 0; |
505ea82e | 472 | } |
126b11b2 | 473 | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; |
54be0b9c ME |
474 | |
475 | copy_mm_to_paca(mm); | |
1da177e4 | 476 | |
1da177e4 | 477 | /* |
5434ae74 NP |
478 | * We gradually age out SLBs after a number of context switches to |
479 | * reduce reload overhead of unused entries (like we do with FP/VEC | |
480 | * reload). Each time we wrap 256 switches, take an entry out of the | |
481 | * SLB preload cache. | |
1da177e4 | 482 | */ |
5434ae74 NP |
483 | tsk->thread.load_slb++; |
484 | if (!tsk->thread.load_slb) { | |
485 | unsigned long pc = KSTK_EIP(tsk); | |
1da177e4 | 486 | |
5434ae74 NP |
487 | preload_age(ti); |
488 | preload_add(ti, pc); | |
489 | } | |
490 | ||
491 | for (i = 0; i < ti->slb_preload_nr; i++) { | |
492 | unsigned char idx; | |
493 | unsigned long ea; | |
1da177e4 | 494 | |
5434ae74 NP |
495 | idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; |
496 | ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; | |
1da177e4 | 497 | |
5434ae74 NP |
498 | slb_allocate_user(mm, ea); |
499 | } | |
1da177e4 | 500 | |
5434ae74 NP |
501 | /* |
502 | * Synchronize slbmte preloads with possible subsequent user memory | |
503 | * address accesses by the kernel (user mode won't happen until | |
504 | * rfid, which is safe). | |
505 | */ | |
506 | asm volatile("isync" : : : "memory"); | |
46db2f86 BK |
507 | } |
508 | ||
54be0b9c ME |
509 | void slb_set_size(u16 size) |
510 | { | |
54be0b9c | 511 | mmu_slb_size = size; |
8fed04d0 NP |
512 | } |
513 | ||
1da177e4 LT |
514 | void slb_initialize(void) |
515 | { | |
bf72aeba | 516 | unsigned long linear_llp, vmalloc_llp, io_llp; |
85376e2a | 517 | unsigned long lflags; |
3c726f8d | 518 | static int slb_encoding_inited; |
cec08e7a | 519 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
cec08e7a BH |
520 | unsigned long vmemmap_llp; |
521 | #endif | |
3c726f8d BH |
522 | |
523 | /* Prepare our SLB miss handler based on our page size */ | |
524 | linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; | |
bf72aeba PM |
525 | io_llp = mmu_psize_defs[mmu_io_psize].sllp; |
526 | vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; | |
527 | get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; | |
cec08e7a BH |
528 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
529 | vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; | |
530 | #endif | |
3c726f8d BH |
531 | if (!slb_encoding_inited) { |
532 | slb_encoding_inited = 1; | |
651e2dd2 ME |
533 | pr_devel("SLB: linear LLP = %04lx\n", linear_llp); |
534 | pr_devel("SLB: io LLP = %04lx\n", io_llp); | |
cec08e7a | 535 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
651e2dd2 | 536 | pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); |
cec08e7a | 537 | #endif |
3c726f8d BH |
538 | } |
539 | ||
09b4438d | 540 | get_paca()->stab_rr = SLB_NUM_BOLTED - 1; |
126b11b2 NP |
541 | get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; |
542 | get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | |
56291e19 | 543 | |
3c726f8d | 544 | lflags = SLB_VSID_KERNEL | linear_llp; |
1da177e4 | 545 | |
2be682af | 546 | /* Invalidate the entire SLB (even entry 0) & all the ERATS */ |
175587cc PM |
547 | asm volatile("isync":::"memory"); |
548 | asm volatile("slbmte %0,%0"::"r" (0) : "memory"); | |
549 | asm volatile("isync; slbia; isync":::"memory"); | |
1d15010c | 550 | create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); |
175587cc | 551 | |
3b575064 PM |
552 | /* For the boot cpu, we're running on the stack in init_thread_union, |
553 | * which is in the first segment of the linear mapping, and also | |
554 | * get_paca()->kstack hasn't been initialized yet. | |
555 | * For secondary cpus, we need to bolt the kernel stack entry now. | |
556 | */ | |
1d15010c | 557 | slb_shadow_clear(KSTACK_INDEX); |
3b575064 PM |
558 | if (raw_smp_processor_id() != boot_cpuid && |
559 | (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) | |
560 | create_shadowed_slbe(get_paca()->kstack, | |
1d15010c | 561 | mmu_kernel_ssize, lflags, KSTACK_INDEX); |
dfbe0d3b | 562 | |
175587cc | 563 | asm volatile("isync":::"memory"); |
1da177e4 | 564 | } |
f384796c | 565 | |
48e7b769 | 566 | static void slb_cache_update(unsigned long esid_data) |
f384796c | 567 | { |
f384796c AK |
568 | int slb_cache_index; |
569 | ||
82d8f4c2 NP |
570 | if (cpu_has_feature(CPU_FTR_ARCH_300)) |
571 | return; /* ISAv3.0B and later does not use slb_cache */ | |
572 | ||
54be0b9c | 573 | /* |
48e7b769 | 574 | * Now update slb cache entries |
54be0b9c | 575 | */ |
48e7b769 NP |
576 | slb_cache_index = local_paca->slb_cache_ptr; |
577 | if (slb_cache_index < SLB_CACHE_ENTRIES) { | |
578 | /* | |
579 | * We have space in slb cache for optimized switch_slb(). | |
580 | * Top 36 bits from esid_data as per ISA | |
581 | */ | |
582 | local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; | |
583 | local_paca->slb_cache_ptr++; | |
584 | } else { | |
585 | /* | |
586 | * Our cache is full and the current cache content strictly | |
587 | * doesn't indicate the active SLB conents. Bump the ptr | |
588 | * so that switch_slb() will ignore the cache. | |
589 | */ | |
590 | local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; | |
591 | } | |
592 | } | |
54be0b9c | 593 | |
126b11b2 | 594 | static enum slb_index alloc_slb_index(bool kernel) |
48e7b769 NP |
595 | { |
596 | enum slb_index index; | |
54be0b9c | 597 | |
126b11b2 NP |
598 | /* |
599 | * The allocation bitmaps can become out of synch with the SLB | |
600 | * when the _switch code does slbie when bolting a new stack | |
601 | * segment and it must not be anywhere else in the SLB. This leaves | |
602 | * a kernel allocated entry that is unused in the SLB. With very | |
603 | * large systems or small segment sizes, the bitmaps could slowly | |
604 | * fill with these entries. They will eventually be cleared out | |
605 | * by the round robin allocator in that case, so it's probably not | |
606 | * worth accounting for. | |
607 | */ | |
608 | ||
609 | /* | |
610 | * SLBs beyond 32 entries are allocated with stab_rr only | |
611 | * POWER7/8/9 have 32 SLB entries, this could be expanded if a | |
612 | * future CPU has more. | |
613 | */ | |
614 | if (local_paca->slb_used_bitmap != U32_MAX) { | |
615 | index = ffz(local_paca->slb_used_bitmap); | |
616 | local_paca->slb_used_bitmap |= 1U << index; | |
617 | if (kernel) | |
618 | local_paca->slb_kern_bitmap |= 1U << index; | |
619 | } else { | |
620 | /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ | |
621 | index = local_paca->stab_rr; | |
622 | if (index < (mmu_slb_size - 1)) | |
623 | index++; | |
624 | else | |
625 | index = SLB_NUM_BOLTED; | |
626 | local_paca->stab_rr = index; | |
627 | if (index < 32) { | |
628 | if (kernel) | |
629 | local_paca->slb_kern_bitmap |= 1U << index; | |
630 | else | |
631 | local_paca->slb_kern_bitmap &= ~(1U << index); | |
632 | } | |
633 | } | |
634 | BUG_ON(index < SLB_NUM_BOLTED); | |
54be0b9c | 635 | |
48e7b769 NP |
636 | return index; |
637 | } | |
638 | ||
639 | static long slb_insert_entry(unsigned long ea, unsigned long context, | |
640 | unsigned long flags, int ssize, bool kernel) | |
641 | { | |
642 | unsigned long vsid; | |
643 | unsigned long vsid_data, esid_data; | |
644 | enum slb_index index; | |
645 | ||
646 | vsid = get_vsid(context, ea, ssize); | |
647 | if (!vsid) | |
648 | return -EFAULT; | |
649 | ||
650 | /* | |
651 | * There must not be a kernel SLB fault in alloc_slb_index or before | |
652 | * slbmte here or the allocation bitmaps could get out of whack with | |
653 | * the SLB. | |
654 | * | |
655 | * User SLB faults or preloads take this path which might get inlined | |
656 | * into the caller, so add compiler barriers here to ensure unsafe | |
657 | * memory accesses do not come between. | |
658 | */ | |
659 | barrier(); | |
660 | ||
126b11b2 | 661 | index = alloc_slb_index(kernel); |
48e7b769 NP |
662 | |
663 | vsid_data = __mk_vsid_data(vsid, ssize, flags); | |
54be0b9c ME |
664 | esid_data = mk_esid_data(ea, ssize, index); |
665 | ||
666 | /* | |
667 | * No need for an isync before or after this slbmte. The exception | |
668 | * we enter with and the rfid we exit with are context synchronizing. | |
48e7b769 NP |
669 | * User preloads should add isync afterwards in case the kernel |
670 | * accesses user memory before it returns to userspace with rfid. | |
54be0b9c | 671 | */ |
0ae79068 | 672 | assert_slb_presence(false, ea); |
48e7b769 | 673 | asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); |
54be0b9c | 674 | |
48e7b769 NP |
675 | barrier(); |
676 | ||
677 | if (!kernel) | |
678 | slb_cache_update(esid_data); | |
679 | ||
680 | return 0; | |
681 | } | |
682 | ||
683 | static long slb_allocate_kernel(unsigned long ea, unsigned long id) | |
684 | { | |
685 | unsigned long context; | |
686 | unsigned long flags; | |
687 | int ssize; | |
688 | ||
48e7b769 | 689 | if (id == KERNEL_REGION_ID) { |
4ffe713b AK |
690 | |
691 | /* We only support upto MAX_PHYSMEM_BITS */ | |
692 | if ((ea & ~REGION_MASK) > (1UL << MAX_PHYSMEM_BITS)) | |
693 | return -EFAULT; | |
694 | ||
48e7b769 | 695 | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; |
4ffe713b | 696 | |
48e7b769 NP |
697 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
698 | } else if (id == VMEMMAP_REGION_ID) { | |
4ffe713b AK |
699 | |
700 | if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT)) | |
701 | return -EFAULT; | |
702 | ||
48e7b769 NP |
703 | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; |
704 | #endif | |
705 | } else if (id == VMALLOC_REGION_ID) { | |
4ffe713b AK |
706 | |
707 | if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT)) | |
708 | return -EFAULT; | |
709 | ||
48e7b769 | 710 | if (ea < H_VMALLOC_END) |
c8b00bb7 | 711 | flags = local_paca->vmalloc_sllp; |
48e7b769 NP |
712 | else |
713 | flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; | |
f384796c | 714 | } else { |
48e7b769 | 715 | return -EFAULT; |
f384796c | 716 | } |
48e7b769 NP |
717 | |
718 | ssize = MMU_SEGSIZE_1T; | |
719 | if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) | |
720 | ssize = MMU_SEGSIZE_256M; | |
721 | ||
4ffe713b | 722 | context = get_kernel_context(ea); |
48e7b769 | 723 | return slb_insert_entry(ea, context, flags, ssize, true); |
f384796c AK |
724 | } |
725 | ||
48e7b769 | 726 | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) |
5e46e29e | 727 | { |
48e7b769 NP |
728 | unsigned long context; |
729 | unsigned long flags; | |
54be0b9c | 730 | int bpsize; |
48e7b769 | 731 | int ssize; |
655deecf NP |
732 | |
733 | /* | |
48e7b769 NP |
734 | * consider this as bad access if we take a SLB miss |
735 | * on an address above addr limit. | |
655deecf | 736 | */ |
48e7b769 NP |
737 | if (ea >= mm->context.slb_addr_limit) |
738 | return -EFAULT; | |
739 | ||
c9f80734 | 740 | context = get_user_context(&mm->context, ea); |
48e7b769 NP |
741 | if (!context) |
742 | return -EFAULT; | |
743 | ||
744 | if (unlikely(ea >= H_PGTABLE_RANGE)) { | |
745 | WARN_ON(1); | |
746 | return -EFAULT; | |
747 | } | |
748 | ||
749 | ssize = user_segment_size(ea); | |
750 | ||
54be0b9c | 751 | bpsize = get_slice_psize(mm, ea); |
48e7b769 NP |
752 | flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; |
753 | ||
754 | return slb_insert_entry(ea, context, flags, ssize, false); | |
5e46e29e NP |
755 | } |
756 | ||
48e7b769 | 757 | long do_slb_fault(struct pt_regs *regs, unsigned long ea) |
f384796c | 758 | { |
48e7b769 | 759 | unsigned long id = REGION_ID(ea); |
5e46e29e | 760 | |
48e7b769 NP |
761 | /* IRQs are not reconciled here, so can't check irqs_disabled */ |
762 | VM_WARN_ON(mfmsr() & MSR_EE); | |
f384796c | 763 | |
48e7b769 NP |
764 | if (unlikely(!(regs->msr & MSR_RI))) |
765 | return -EINVAL; | |
f384796c AK |
766 | |
767 | /* | |
48e7b769 NP |
768 | * SLB kernel faults must be very careful not to touch anything |
769 | * that is not bolted. E.g., PACA and global variables are okay, | |
770 | * mm->context stuff is not. | |
771 | * | |
772 | * SLB user faults can access all of kernel memory, but must be | |
773 | * careful not to touch things like IRQ state because it is not | |
774 | * "reconciled" here. The difficulty is that we must use | |
775 | * fast_exception_return to return from kernel SLB faults without | |
776 | * looking at possible non-bolted memory. We could test user vs | |
777 | * kernel faults in the interrupt handler asm and do a full fault, | |
778 | * reconcile, ret_from_except for user faults which would make them | |
779 | * first class kernel code. But for performance it's probably nicer | |
780 | * if they go via fast_exception_return too. | |
f384796c | 781 | */ |
48e7b769 | 782 | if (id >= KERNEL_REGION_ID) { |
e15a4fea NP |
783 | long err; |
784 | #ifdef CONFIG_DEBUG_VM | |
785 | /* Catch recursive kernel SLB faults. */ | |
786 | BUG_ON(local_paca->in_kernel_slb_handler); | |
787 | local_paca->in_kernel_slb_handler = 1; | |
788 | #endif | |
789 | err = slb_allocate_kernel(ea, id); | |
790 | #ifdef CONFIG_DEBUG_VM | |
791 | local_paca->in_kernel_slb_handler = 0; | |
792 | #endif | |
793 | return err; | |
48e7b769 NP |
794 | } else { |
795 | struct mm_struct *mm = current->mm; | |
5434ae74 | 796 | long err; |
f384796c | 797 | |
48e7b769 NP |
798 | if (unlikely(!mm)) |
799 | return -EFAULT; | |
5e46e29e | 800 | |
5434ae74 NP |
801 | err = slb_allocate_user(mm, ea); |
802 | if (!err) | |
803 | preload_add(current_thread_info(), ea); | |
804 | ||
805 | return err; | |
48e7b769 NP |
806 | } |
807 | } | |
5e46e29e | 808 | |
48e7b769 NP |
809 | void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) |
810 | { | |
811 | if (err == -EFAULT) { | |
812 | if (user_mode(regs)) | |
813 | _exception(SIGSEGV, regs, SEGV_BNDERR, ea); | |
814 | else | |
815 | bad_page_fault(regs, ea, SIGSEGV); | |
816 | } else if (err == -EINVAL) { | |
817 | unrecoverable_exception(regs); | |
818 | } else { | |
819 | BUG(); | |
820 | } | |
f384796c | 821 | } |