]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | |
3 | * Copyright (c) 1997 Dan Malek ([email protected]) | |
4 | * | |
5 | * This version of the driver is specific to the FADS implementation, | |
6 | * since the board contains control registers external to the processor | |
7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual | |
8 | * describes connections using the internal parallel port I/O, which | |
9 | * is basically all of Port D. | |
10 | * | |
7dd6a2aa | 11 | * Right now, I am very wasteful with the buffers. I allocate memory |
1da177e4 LT |
12 | * pages and then divide them into 2K frame buffers. This way I know I |
13 | * have buffers large enough to hold one frame within one buffer descriptor. | |
14 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which | |
15 | * will be much more memory efficient and will easily handle lots of | |
16 | * small packets. | |
17 | * | |
18 | * Much better multiple PHY support by Magnus Damm. | |
19 | * Copyright (c) 2000 Ericsson Radio Systems AB. | |
20 | * | |
562d2f8c GU |
21 | * Support for FEC controller of ColdFire processors. |
22 | * Copyright (c) 2001-2005 Greg Ungerer ([email protected]) | |
7dd6a2aa GU |
23 | * |
24 | * Bug fixes and cleanup by Philippe De Muyter ([email protected]) | |
25 | * Copyright (c) 2004-2005 Macq Electronique SA. | |
1da177e4 LT |
26 | */ |
27 | ||
28 | #include <linux/config.h> | |
29 | #include <linux/module.h> | |
30 | #include <linux/kernel.h> | |
31 | #include <linux/string.h> | |
32 | #include <linux/ptrace.h> | |
33 | #include <linux/errno.h> | |
34 | #include <linux/ioport.h> | |
35 | #include <linux/slab.h> | |
36 | #include <linux/interrupt.h> | |
37 | #include <linux/pci.h> | |
38 | #include <linux/init.h> | |
39 | #include <linux/delay.h> | |
40 | #include <linux/netdevice.h> | |
41 | #include <linux/etherdevice.h> | |
42 | #include <linux/skbuff.h> | |
43 | #include <linux/spinlock.h> | |
44 | #include <linux/workqueue.h> | |
45 | #include <linux/bitops.h> | |
46 | ||
47 | #include <asm/irq.h> | |
48 | #include <asm/uaccess.h> | |
49 | #include <asm/io.h> | |
50 | #include <asm/pgtable.h> | |
51 | ||
7dd6a2aa | 52 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \ |
562d2f8c GU |
53 | defined(CONFIG_M5272) || defined(CONFIG_M528x) || \ |
54 | defined(CONFIG_M520x) | |
1da177e4 LT |
55 | #include <asm/coldfire.h> |
56 | #include <asm/mcfsim.h> | |
57 | #include "fec.h" | |
58 | #else | |
59 | #include <asm/8xx_immap.h> | |
60 | #include <asm/mpc8xx.h> | |
61 | #include "commproc.h" | |
62 | #endif | |
63 | ||
64 | #if defined(CONFIG_FEC2) | |
65 | #define FEC_MAX_PORTS 2 | |
66 | #else | |
67 | #define FEC_MAX_PORTS 1 | |
68 | #endif | |
69 | ||
70 | /* | |
71 | * Define the fixed address of the FEC hardware. | |
72 | */ | |
73 | static unsigned int fec_hw[] = { | |
74 | #if defined(CONFIG_M5272) | |
75 | (MCF_MBAR + 0x840), | |
76 | #elif defined(CONFIG_M527x) | |
77 | (MCF_MBAR + 0x1000), | |
78 | (MCF_MBAR + 0x1800), | |
7dd6a2aa | 79 | #elif defined(CONFIG_M523x) || defined(CONFIG_M528x) |
1da177e4 | 80 | (MCF_MBAR + 0x1000), |
562d2f8c GU |
81 | #elif defined(CONFIG_M520x) |
82 | (MCF_MBAR+0x30000), | |
1da177e4 LT |
83 | #else |
84 | &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), | |
85 | #endif | |
86 | }; | |
87 | ||
88 | static unsigned char fec_mac_default[] = { | |
89 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
90 | }; | |
91 | ||
92 | /* | |
93 | * Some hardware gets it MAC address out of local flash memory. | |
94 | * if this is non-zero then assume it is the address to get MAC from. | |
95 | */ | |
96 | #if defined(CONFIG_NETtel) | |
97 | #define FEC_FLASHMAC 0xf0006006 | |
98 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | |
99 | #define FEC_FLASHMAC 0xf0006000 | |
100 | #elif defined (CONFIG_MTD_KeyTechnology) | |
101 | #define FEC_FLASHMAC 0xffe04000 | |
102 | #elif defined(CONFIG_CANCam) | |
103 | #define FEC_FLASHMAC 0xf0020000 | |
7dd6a2aa GU |
104 | #elif defined (CONFIG_M5272C3) |
105 | #define FEC_FLASHMAC (0xffe04000 + 4) | |
106 | #elif defined(CONFIG_MOD5272) | |
107 | #define FEC_FLASHMAC 0xffc0406b | |
1da177e4 LT |
108 | #else |
109 | #define FEC_FLASHMAC 0 | |
110 | #endif | |
111 | ||
1da177e4 LT |
112 | /* Forward declarations of some structures to support different PHYs |
113 | */ | |
114 | ||
115 | typedef struct { | |
116 | uint mii_data; | |
117 | void (*funct)(uint mii_reg, struct net_device *dev); | |
118 | } phy_cmd_t; | |
119 | ||
120 | typedef struct { | |
121 | uint id; | |
122 | char *name; | |
123 | ||
124 | const phy_cmd_t *config; | |
125 | const phy_cmd_t *startup; | |
126 | const phy_cmd_t *ack_int; | |
127 | const phy_cmd_t *shutdown; | |
128 | } phy_info_t; | |
129 | ||
130 | /* The number of Tx and Rx buffers. These are allocated from the page | |
131 | * pool. The code may assume these are power of two, so it it best | |
132 | * to keep them that size. | |
133 | * We don't need to allocate pages for the transmitter. We just use | |
134 | * the skbuffer directly. | |
135 | */ | |
136 | #define FEC_ENET_RX_PAGES 8 | |
137 | #define FEC_ENET_RX_FRSIZE 2048 | |
138 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) | |
139 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | |
140 | #define FEC_ENET_TX_FRSIZE 2048 | |
141 | #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) | |
142 | #define TX_RING_SIZE 16 /* Must be power of two */ | |
143 | #define TX_RING_MOD_MASK 15 /* for this to work */ | |
144 | ||
562d2f8c GU |
145 | #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) |
146 | #error "FEC: descriptor ring size contants too large" | |
147 | #endif | |
148 | ||
1da177e4 LT |
149 | /* Interrupt events/masks. |
150 | */ | |
151 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ | |
152 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ | |
153 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ | |
154 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ | |
155 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ | |
156 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ | |
157 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ | |
158 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ | |
159 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ | |
160 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ | |
161 | ||
162 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | |
163 | */ | |
164 | #define PKT_MAXBUF_SIZE 1518 | |
165 | #define PKT_MINBUF_SIZE 64 | |
166 | #define PKT_MAXBLR_SIZE 1520 | |
167 | ||
168 | ||
169 | /* | |
170 | * The 5270/5271/5280/5282 RX control register also contains maximum frame | |
171 | * size bits. Other FEC hardware does not, so we need to take that into | |
172 | * account when setting it. | |
173 | */ | |
562d2f8c GU |
174 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
175 | defined(CONFIG_M520x) | |
1da177e4 LT |
176 | #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
177 | #else | |
178 | #define OPT_FRAME_SIZE 0 | |
179 | #endif | |
180 | ||
181 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and | |
182 | * tx_bd_base always point to the base of the buffer descriptors. The | |
183 | * cur_rx and cur_tx point to the currently available buffer. | |
184 | * The dirty_tx tracks the current buffer that is being sent by the | |
185 | * controller. The cur_tx and dirty_tx are equal under both completely | |
186 | * empty and completely full conditions. The empty/ready indicator in | |
187 | * the buffer descriptor determines the actual condition. | |
188 | */ | |
189 | struct fec_enet_private { | |
190 | /* Hardware registers of the FEC device */ | |
191 | volatile fec_t *hwp; | |
192 | ||
193 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | |
194 | unsigned char *tx_bounce[TX_RING_SIZE]; | |
195 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; | |
196 | ushort skb_cur; | |
197 | ushort skb_dirty; | |
198 | ||
199 | /* CPM dual port RAM relative addresses. | |
200 | */ | |
201 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ | |
202 | cbd_t *tx_bd_base; | |
203 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ | |
204 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ | |
205 | struct net_device_stats stats; | |
206 | uint tx_full; | |
207 | spinlock_t lock; | |
208 | ||
209 | uint phy_id; | |
210 | uint phy_id_done; | |
211 | uint phy_status; | |
212 | uint phy_speed; | |
7dd6a2aa | 213 | phy_info_t const *phy; |
1da177e4 LT |
214 | struct work_struct phy_task; |
215 | ||
216 | uint sequence_done; | |
217 | uint mii_phy_task_queued; | |
218 | ||
219 | uint phy_addr; | |
220 | ||
221 | int index; | |
222 | int opened; | |
223 | int link; | |
224 | int old_link; | |
225 | int full_duplex; | |
1da177e4 LT |
226 | }; |
227 | ||
228 | static int fec_enet_open(struct net_device *dev); | |
229 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | |
230 | static void fec_enet_mii(struct net_device *dev); | |
231 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); | |
232 | static void fec_enet_tx(struct net_device *dev); | |
233 | static void fec_enet_rx(struct net_device *dev); | |
234 | static int fec_enet_close(struct net_device *dev); | |
235 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); | |
236 | static void set_multicast_list(struct net_device *dev); | |
237 | static void fec_restart(struct net_device *dev, int duplex); | |
238 | static void fec_stop(struct net_device *dev); | |
239 | static void fec_set_mac_address(struct net_device *dev); | |
240 | ||
241 | ||
242 | /* MII processing. We keep this as simple as possible. Requests are | |
243 | * placed on the list (if there is room). When the request is finished | |
244 | * by the MII, an optional function may be called. | |
245 | */ | |
246 | typedef struct mii_list { | |
247 | uint mii_regval; | |
248 | void (*mii_func)(uint val, struct net_device *dev); | |
249 | struct mii_list *mii_next; | |
250 | } mii_list_t; | |
251 | ||
252 | #define NMII 20 | |
7dd6a2aa GU |
253 | static mii_list_t mii_cmds[NMII]; |
254 | static mii_list_t *mii_free; | |
255 | static mii_list_t *mii_head; | |
256 | static mii_list_t *mii_tail; | |
1da177e4 LT |
257 | |
258 | static int mii_queue(struct net_device *dev, int request, | |
259 | void (*func)(uint, struct net_device *)); | |
260 | ||
261 | /* Make MII read/write commands for the FEC. | |
262 | */ | |
263 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) | |
264 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ | |
265 | (VAL & 0xffff)) | |
266 | #define mk_mii_end 0 | |
267 | ||
268 | /* Transmitter timeout. | |
269 | */ | |
270 | #define TX_TIMEOUT (2*HZ) | |
271 | ||
272 | /* Register definitions for the PHY. | |
273 | */ | |
274 | ||
275 | #define MII_REG_CR 0 /* Control Register */ | |
276 | #define MII_REG_SR 1 /* Status Register */ | |
277 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ | |
278 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ | |
279 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ | |
280 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ | |
281 | #define MII_REG_ANER 6 /* A-N Expansion Register */ | |
282 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ | |
283 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ | |
284 | ||
285 | /* values for phy_status */ | |
286 | ||
287 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ | |
288 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ | |
289 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ | |
290 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ | |
291 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ | |
292 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ | |
293 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ | |
294 | ||
295 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ | |
296 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ | |
297 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ | |
298 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ | |
299 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ | |
300 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ | |
301 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ | |
302 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ | |
303 | ||
304 | ||
305 | static int | |
306 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
307 | { | |
308 | struct fec_enet_private *fep; | |
309 | volatile fec_t *fecp; | |
310 | volatile cbd_t *bdp; | |
311 | ||
312 | fep = netdev_priv(dev); | |
313 | fecp = (volatile fec_t*)dev->base_addr; | |
314 | ||
315 | if (!fep->link) { | |
316 | /* Link is down or autonegotiation is in progress. */ | |
317 | return 1; | |
318 | } | |
319 | ||
320 | /* Fill in a Tx ring entry */ | |
321 | bdp = fep->cur_tx; | |
322 | ||
323 | #ifndef final_version | |
324 | if (bdp->cbd_sc & BD_ENET_TX_READY) { | |
325 | /* Ooops. All transmit buffers are full. Bail out. | |
326 | * This should not happen, since dev->tbusy should be set. | |
327 | */ | |
328 | printk("%s: tx queue full!.\n", dev->name); | |
329 | return 1; | |
330 | } | |
331 | #endif | |
332 | ||
333 | /* Clear all of the status flags. | |
334 | */ | |
335 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; | |
336 | ||
337 | /* Set buffer length and buffer pointer. | |
338 | */ | |
339 | bdp->cbd_bufaddr = __pa(skb->data); | |
340 | bdp->cbd_datlen = skb->len; | |
341 | ||
342 | /* | |
343 | * On some FEC implementations data must be aligned on | |
344 | * 4-byte boundaries. Use bounce buffers to copy data | |
345 | * and get it aligned. Ugh. | |
346 | */ | |
347 | if (bdp->cbd_bufaddr & 0x3) { | |
348 | unsigned int index; | |
349 | index = bdp - fep->tx_bd_base; | |
350 | memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); | |
351 | bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); | |
352 | } | |
353 | ||
354 | /* Save skb pointer. | |
355 | */ | |
356 | fep->tx_skbuff[fep->skb_cur] = skb; | |
357 | ||
358 | fep->stats.tx_bytes += skb->len; | |
359 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | |
360 | ||
361 | /* Push the data cache so the CPM does not get stale memory | |
362 | * data. | |
363 | */ | |
364 | flush_dcache_range((unsigned long)skb->data, | |
365 | (unsigned long)skb->data + skb->len); | |
366 | ||
367 | spin_lock_irq(&fep->lock); | |
368 | ||
369 | /* Send it on its way. Tell FEC its ready, interrupt when done, | |
370 | * its the last BD of the frame, and to put the CRC on the end. | |
371 | */ | |
372 | ||
373 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | |
374 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); | |
375 | ||
376 | dev->trans_start = jiffies; | |
377 | ||
378 | /* Trigger transmission start */ | |
379 | fecp->fec_x_des_active = 0x01000000; | |
380 | ||
381 | /* If this was the last BD in the ring, start at the beginning again. | |
382 | */ | |
383 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { | |
384 | bdp = fep->tx_bd_base; | |
385 | } else { | |
386 | bdp++; | |
387 | } | |
388 | ||
389 | if (bdp == fep->dirty_tx) { | |
390 | fep->tx_full = 1; | |
391 | netif_stop_queue(dev); | |
392 | } | |
393 | ||
394 | fep->cur_tx = (cbd_t *)bdp; | |
395 | ||
396 | spin_unlock_irq(&fep->lock); | |
397 | ||
398 | return 0; | |
399 | } | |
400 | ||
401 | static void | |
402 | fec_timeout(struct net_device *dev) | |
403 | { | |
404 | struct fec_enet_private *fep = netdev_priv(dev); | |
405 | ||
406 | printk("%s: transmit timed out.\n", dev->name); | |
407 | fep->stats.tx_errors++; | |
408 | #ifndef final_version | |
409 | { | |
410 | int i; | |
411 | cbd_t *bdp; | |
412 | ||
413 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", | |
414 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", | |
415 | (unsigned long)fep->dirty_tx, | |
416 | (unsigned long)fep->cur_rx); | |
417 | ||
418 | bdp = fep->tx_bd_base; | |
419 | printk(" tx: %u buffers\n", TX_RING_SIZE); | |
420 | for (i = 0 ; i < TX_RING_SIZE; i++) { | |
421 | printk(" %08x: %04x %04x %08x\n", | |
422 | (uint) bdp, | |
423 | bdp->cbd_sc, | |
424 | bdp->cbd_datlen, | |
425 | (int) bdp->cbd_bufaddr); | |
426 | bdp++; | |
427 | } | |
428 | ||
429 | bdp = fep->rx_bd_base; | |
430 | printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); | |
431 | for (i = 0 ; i < RX_RING_SIZE; i++) { | |
432 | printk(" %08x: %04x %04x %08x\n", | |
433 | (uint) bdp, | |
434 | bdp->cbd_sc, | |
435 | bdp->cbd_datlen, | |
436 | (int) bdp->cbd_bufaddr); | |
437 | bdp++; | |
438 | } | |
439 | } | |
440 | #endif | |
7dd6a2aa | 441 | fec_restart(dev, fep->full_duplex); |
1da177e4 LT |
442 | netif_wake_queue(dev); |
443 | } | |
444 | ||
445 | /* The interrupt handler. | |
446 | * This is called from the MPC core interrupt. | |
447 | */ | |
448 | static irqreturn_t | |
449 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) | |
450 | { | |
451 | struct net_device *dev = dev_id; | |
452 | volatile fec_t *fecp; | |
453 | uint int_events; | |
454 | int handled = 0; | |
455 | ||
456 | fecp = (volatile fec_t*)dev->base_addr; | |
457 | ||
458 | /* Get the interrupt events that caused us to be here. | |
459 | */ | |
460 | while ((int_events = fecp->fec_ievent) != 0) { | |
461 | fecp->fec_ievent = int_events; | |
462 | ||
463 | /* Handle receive event in its own function. | |
464 | */ | |
465 | if (int_events & FEC_ENET_RXF) { | |
466 | handled = 1; | |
467 | fec_enet_rx(dev); | |
468 | } | |
469 | ||
470 | /* Transmit OK, or non-fatal error. Update the buffer | |
471 | descriptors. FEC handles all errors, we just discover | |
472 | them as part of the transmit process. | |
473 | */ | |
474 | if (int_events & FEC_ENET_TXF) { | |
475 | handled = 1; | |
476 | fec_enet_tx(dev); | |
477 | } | |
478 | ||
479 | if (int_events & FEC_ENET_MII) { | |
480 | handled = 1; | |
481 | fec_enet_mii(dev); | |
482 | } | |
483 | ||
484 | } | |
485 | return IRQ_RETVAL(handled); | |
486 | } | |
487 | ||
488 | ||
489 | static void | |
490 | fec_enet_tx(struct net_device *dev) | |
491 | { | |
492 | struct fec_enet_private *fep; | |
493 | volatile cbd_t *bdp; | |
494 | struct sk_buff *skb; | |
495 | ||
496 | fep = netdev_priv(dev); | |
497 | spin_lock(&fep->lock); | |
498 | bdp = fep->dirty_tx; | |
499 | ||
500 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { | |
501 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; | |
502 | ||
503 | skb = fep->tx_skbuff[fep->skb_dirty]; | |
504 | /* Check for errors. */ | |
505 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | | |
506 | BD_ENET_TX_RL | BD_ENET_TX_UN | | |
507 | BD_ENET_TX_CSL)) { | |
508 | fep->stats.tx_errors++; | |
509 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ | |
510 | fep->stats.tx_heartbeat_errors++; | |
511 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ | |
512 | fep->stats.tx_window_errors++; | |
513 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ | |
514 | fep->stats.tx_aborted_errors++; | |
515 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ | |
516 | fep->stats.tx_fifo_errors++; | |
517 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ | |
518 | fep->stats.tx_carrier_errors++; | |
519 | } else { | |
520 | fep->stats.tx_packets++; | |
521 | } | |
522 | ||
523 | #ifndef final_version | |
524 | if (bdp->cbd_sc & BD_ENET_TX_READY) | |
525 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); | |
526 | #endif | |
527 | /* Deferred means some collisions occurred during transmit, | |
528 | * but we eventually sent the packet OK. | |
529 | */ | |
530 | if (bdp->cbd_sc & BD_ENET_TX_DEF) | |
531 | fep->stats.collisions++; | |
532 | ||
533 | /* Free the sk buffer associated with this last transmit. | |
534 | */ | |
535 | dev_kfree_skb_any(skb); | |
536 | fep->tx_skbuff[fep->skb_dirty] = NULL; | |
537 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | |
538 | ||
539 | /* Update pointer to next buffer descriptor to be transmitted. | |
540 | */ | |
541 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) | |
542 | bdp = fep->tx_bd_base; | |
543 | else | |
544 | bdp++; | |
545 | ||
546 | /* Since we have freed up a buffer, the ring is no longer | |
547 | * full. | |
548 | */ | |
549 | if (fep->tx_full) { | |
550 | fep->tx_full = 0; | |
551 | if (netif_queue_stopped(dev)) | |
552 | netif_wake_queue(dev); | |
553 | } | |
554 | } | |
555 | fep->dirty_tx = (cbd_t *)bdp; | |
556 | spin_unlock(&fep->lock); | |
557 | } | |
558 | ||
559 | ||
560 | /* During a receive, the cur_rx points to the current incoming buffer. | |
561 | * When we update through the ring, if the next incoming buffer has | |
562 | * not been given to the system, we just set the empty indicator, | |
563 | * effectively tossing the packet. | |
564 | */ | |
565 | static void | |
566 | fec_enet_rx(struct net_device *dev) | |
567 | { | |
568 | struct fec_enet_private *fep; | |
569 | volatile fec_t *fecp; | |
570 | volatile cbd_t *bdp; | |
571 | struct sk_buff *skb; | |
572 | ushort pkt_len; | |
573 | __u8 *data; | |
574 | ||
575 | fep = netdev_priv(dev); | |
576 | fecp = (volatile fec_t*)dev->base_addr; | |
577 | ||
578 | /* First, grab all of the stats for the incoming packet. | |
579 | * These get messed up if we get called due to a busy condition. | |
580 | */ | |
581 | bdp = fep->cur_rx; | |
582 | ||
583 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { | |
584 | ||
585 | #ifndef final_version | |
586 | /* Since we have allocated space to hold a complete frame, | |
587 | * the last indicator should be set. | |
588 | */ | |
589 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) | |
590 | printk("FEC ENET: rcv is not +last\n"); | |
591 | #endif | |
592 | ||
593 | if (!fep->opened) | |
594 | goto rx_processing_done; | |
595 | ||
596 | /* Check for errors. */ | |
597 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | |
598 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { | |
599 | fep->stats.rx_errors++; | |
600 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | |
601 | /* Frame too long or too short. */ | |
602 | fep->stats.rx_length_errors++; | |
603 | } | |
604 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ | |
605 | fep->stats.rx_frame_errors++; | |
606 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ | |
607 | fep->stats.rx_crc_errors++; | |
608 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ | |
609 | fep->stats.rx_crc_errors++; | |
610 | } | |
611 | ||
612 | /* Report late collisions as a frame error. | |
613 | * On this error, the BD is closed, but we don't know what we | |
614 | * have in the buffer. So, just drop this frame on the floor. | |
615 | */ | |
616 | if (bdp->cbd_sc & BD_ENET_RX_CL) { | |
617 | fep->stats.rx_errors++; | |
618 | fep->stats.rx_frame_errors++; | |
619 | goto rx_processing_done; | |
620 | } | |
621 | ||
622 | /* Process the incoming frame. | |
623 | */ | |
624 | fep->stats.rx_packets++; | |
625 | pkt_len = bdp->cbd_datlen; | |
626 | fep->stats.rx_bytes += pkt_len; | |
627 | data = (__u8*)__va(bdp->cbd_bufaddr); | |
628 | ||
629 | /* This does 16 byte alignment, exactly what we need. | |
630 | * The packet length includes FCS, but we don't want to | |
631 | * include that when passing upstream as it messes up | |
632 | * bridging applications. | |
633 | */ | |
634 | skb = dev_alloc_skb(pkt_len-4); | |
635 | ||
636 | if (skb == NULL) { | |
637 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); | |
638 | fep->stats.rx_dropped++; | |
639 | } else { | |
640 | skb->dev = dev; | |
641 | skb_put(skb,pkt_len-4); /* Make room */ | |
642 | eth_copy_and_sum(skb, | |
643 | (unsigned char *)__va(bdp->cbd_bufaddr), | |
644 | pkt_len-4, 0); | |
645 | skb->protocol=eth_type_trans(skb,dev); | |
646 | netif_rx(skb); | |
647 | } | |
648 | rx_processing_done: | |
649 | ||
650 | /* Clear the status flags for this buffer. | |
651 | */ | |
652 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; | |
653 | ||
654 | /* Mark the buffer empty. | |
655 | */ | |
656 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; | |
657 | ||
658 | /* Update BD pointer to next entry. | |
659 | */ | |
660 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) | |
661 | bdp = fep->rx_bd_base; | |
662 | else | |
663 | bdp++; | |
664 | ||
665 | #if 1 | |
666 | /* Doing this here will keep the FEC running while we process | |
667 | * incoming frames. On a heavily loaded network, we should be | |
668 | * able to keep up at the expense of system resources. | |
669 | */ | |
670 | fecp->fec_r_des_active = 0x01000000; | |
671 | #endif | |
672 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ | |
673 | fep->cur_rx = (cbd_t *)bdp; | |
674 | ||
675 | #if 0 | |
676 | /* Doing this here will allow us to process all frames in the | |
677 | * ring before the FEC is allowed to put more there. On a heavily | |
678 | * loaded network, some frames may be lost. Unfortunately, this | |
679 | * increases the interrupt overhead since we can potentially work | |
680 | * our way back to the interrupt return only to come right back | |
681 | * here. | |
682 | */ | |
683 | fecp->fec_r_des_active = 0x01000000; | |
684 | #endif | |
685 | } | |
686 | ||
687 | ||
688 | static void | |
689 | fec_enet_mii(struct net_device *dev) | |
690 | { | |
691 | struct fec_enet_private *fep; | |
692 | volatile fec_t *ep; | |
693 | mii_list_t *mip; | |
694 | uint mii_reg; | |
695 | ||
696 | fep = netdev_priv(dev); | |
697 | ep = fep->hwp; | |
698 | mii_reg = ep->fec_mii_data; | |
699 | ||
700 | if ((mip = mii_head) == NULL) { | |
701 | printk("MII and no head!\n"); | |
702 | return; | |
703 | } | |
704 | ||
705 | if (mip->mii_func != NULL) | |
706 | (*(mip->mii_func))(mii_reg, dev); | |
707 | ||
708 | mii_head = mip->mii_next; | |
709 | mip->mii_next = mii_free; | |
710 | mii_free = mip; | |
711 | ||
712 | if ((mip = mii_head) != NULL) | |
713 | ep->fec_mii_data = mip->mii_regval; | |
714 | } | |
715 | ||
716 | static int | |
717 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) | |
718 | { | |
719 | struct fec_enet_private *fep; | |
720 | unsigned long flags; | |
721 | mii_list_t *mip; | |
722 | int retval; | |
723 | ||
724 | /* Add PHY address to register command. | |
725 | */ | |
726 | fep = netdev_priv(dev); | |
727 | regval |= fep->phy_addr << 23; | |
728 | ||
729 | retval = 0; | |
730 | ||
731 | save_flags(flags); | |
732 | cli(); | |
733 | ||
734 | if ((mip = mii_free) != NULL) { | |
735 | mii_free = mip->mii_next; | |
736 | mip->mii_regval = regval; | |
737 | mip->mii_func = func; | |
738 | mip->mii_next = NULL; | |
739 | if (mii_head) { | |
740 | mii_tail->mii_next = mip; | |
741 | mii_tail = mip; | |
742 | } | |
743 | else { | |
744 | mii_head = mii_tail = mip; | |
745 | fep->hwp->fec_mii_data = regval; | |
746 | } | |
747 | } | |
748 | else { | |
749 | retval = 1; | |
750 | } | |
751 | ||
752 | restore_flags(flags); | |
753 | ||
754 | return(retval); | |
755 | } | |
756 | ||
757 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | |
758 | { | |
759 | int k; | |
760 | ||
761 | if(!c) | |
762 | return; | |
763 | ||
764 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { | |
765 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); | |
766 | } | |
767 | } | |
768 | ||
769 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | |
770 | { | |
771 | struct fec_enet_private *fep = netdev_priv(dev); | |
772 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 773 | uint status; |
1da177e4 | 774 | |
7dd6a2aa | 775 | status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
1da177e4 LT |
776 | |
777 | if (mii_reg & 0x0004) | |
7dd6a2aa | 778 | status |= PHY_STAT_LINK; |
1da177e4 | 779 | if (mii_reg & 0x0010) |
7dd6a2aa | 780 | status |= PHY_STAT_FAULT; |
1da177e4 | 781 | if (mii_reg & 0x0020) |
7dd6a2aa GU |
782 | status |= PHY_STAT_ANC; |
783 | ||
784 | *s = status; | |
1da177e4 LT |
785 | } |
786 | ||
787 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | |
788 | { | |
789 | struct fec_enet_private *fep = netdev_priv(dev); | |
790 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 791 | uint status; |
1da177e4 | 792 | |
7dd6a2aa | 793 | status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
1da177e4 LT |
794 | |
795 | if (mii_reg & 0x1000) | |
7dd6a2aa | 796 | status |= PHY_CONF_ANE; |
1da177e4 | 797 | if (mii_reg & 0x4000) |
7dd6a2aa GU |
798 | status |= PHY_CONF_LOOP; |
799 | *s = status; | |
1da177e4 LT |
800 | } |
801 | ||
802 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | |
803 | { | |
804 | struct fec_enet_private *fep = netdev_priv(dev); | |
805 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 806 | uint status; |
1da177e4 | 807 | |
7dd6a2aa | 808 | status = *s & ~(PHY_CONF_SPMASK); |
1da177e4 LT |
809 | |
810 | if (mii_reg & 0x0020) | |
7dd6a2aa | 811 | status |= PHY_CONF_10HDX; |
1da177e4 | 812 | if (mii_reg & 0x0040) |
7dd6a2aa | 813 | status |= PHY_CONF_10FDX; |
1da177e4 | 814 | if (mii_reg & 0x0080) |
7dd6a2aa | 815 | status |= PHY_CONF_100HDX; |
1da177e4 | 816 | if (mii_reg & 0x00100) |
7dd6a2aa GU |
817 | status |= PHY_CONF_100FDX; |
818 | *s = status; | |
1da177e4 LT |
819 | } |
820 | ||
821 | /* ------------------------------------------------------------------------- */ | |
822 | /* The Level one LXT970 is used by many boards */ | |
823 | ||
824 | #define MII_LXT970_MIRROR 16 /* Mirror register */ | |
825 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ | |
826 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ | |
827 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ | |
828 | #define MII_LXT970_CSR 20 /* Chip Status Register */ | |
829 | ||
830 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | |
831 | { | |
832 | struct fec_enet_private *fep = netdev_priv(dev); | |
833 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 834 | uint status; |
1da177e4 | 835 | |
7dd6a2aa | 836 | status = *s & ~(PHY_STAT_SPMASK); |
1da177e4 LT |
837 | if (mii_reg & 0x0800) { |
838 | if (mii_reg & 0x1000) | |
7dd6a2aa | 839 | status |= PHY_STAT_100FDX; |
1da177e4 | 840 | else |
7dd6a2aa | 841 | status |= PHY_STAT_100HDX; |
1da177e4 LT |
842 | } else { |
843 | if (mii_reg & 0x1000) | |
7dd6a2aa | 844 | status |= PHY_STAT_10FDX; |
1da177e4 | 845 | else |
7dd6a2aa | 846 | status |= PHY_STAT_10HDX; |
1da177e4 | 847 | } |
7dd6a2aa | 848 | *s = status; |
1da177e4 LT |
849 | } |
850 | ||
7dd6a2aa | 851 | static phy_cmd_t const phy_cmd_lxt970_config[] = { |
1da177e4 LT |
852 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
853 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
854 | { mk_mii_end, } | |
7dd6a2aa GU |
855 | }; |
856 | static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
857 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
858 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
859 | { mk_mii_end, } | |
7dd6a2aa GU |
860 | }; |
861 | static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { | |
1da177e4 LT |
862 | /* read SR and ISR to acknowledge */ |
863 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
864 | { mk_mii_read(MII_LXT970_ISR), NULL }, | |
865 | ||
866 | /* find out the current status */ | |
867 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | |
868 | { mk_mii_end, } | |
7dd6a2aa GU |
869 | }; |
870 | static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
871 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
872 | { mk_mii_end, } | |
7dd6a2aa GU |
873 | }; |
874 | static phy_info_t const phy_info_lxt970 = { | |
875 | .id = 0x07810000, | |
876 | .name = "LXT970", | |
877 | .config = phy_cmd_lxt970_config, | |
878 | .startup = phy_cmd_lxt970_startup, | |
879 | .ack_int = phy_cmd_lxt970_ack_int, | |
880 | .shutdown = phy_cmd_lxt970_shutdown | |
1da177e4 LT |
881 | }; |
882 | ||
883 | /* ------------------------------------------------------------------------- */ | |
884 | /* The Level one LXT971 is used on some of my custom boards */ | |
885 | ||
886 | /* register definitions for the 971 */ | |
887 | ||
888 | #define MII_LXT971_PCR 16 /* Port Control Register */ | |
889 | #define MII_LXT971_SR2 17 /* Status Register 2 */ | |
890 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ | |
891 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ | |
892 | #define MII_LXT971_LCR 20 /* LED Control Register */ | |
893 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ | |
894 | ||
895 | /* | |
896 | * I had some nice ideas of running the MDIO faster... | |
897 | * The 971 should support 8MHz and I tried it, but things acted really | |
898 | * weird, so 2.5 MHz ought to be enough for anyone... | |
899 | */ | |
900 | ||
901 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | |
902 | { | |
903 | struct fec_enet_private *fep = netdev_priv(dev); | |
904 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 905 | uint status; |
1da177e4 | 906 | |
7dd6a2aa | 907 | status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); |
1da177e4 LT |
908 | |
909 | if (mii_reg & 0x0400) { | |
910 | fep->link = 1; | |
7dd6a2aa | 911 | status |= PHY_STAT_LINK; |
1da177e4 LT |
912 | } else { |
913 | fep->link = 0; | |
914 | } | |
915 | if (mii_reg & 0x0080) | |
7dd6a2aa | 916 | status |= PHY_STAT_ANC; |
1da177e4 LT |
917 | if (mii_reg & 0x4000) { |
918 | if (mii_reg & 0x0200) | |
7dd6a2aa | 919 | status |= PHY_STAT_100FDX; |
1da177e4 | 920 | else |
7dd6a2aa | 921 | status |= PHY_STAT_100HDX; |
1da177e4 LT |
922 | } else { |
923 | if (mii_reg & 0x0200) | |
7dd6a2aa | 924 | status |= PHY_STAT_10FDX; |
1da177e4 | 925 | else |
7dd6a2aa | 926 | status |= PHY_STAT_10HDX; |
1da177e4 LT |
927 | } |
928 | if (mii_reg & 0x0008) | |
7dd6a2aa | 929 | status |= PHY_STAT_FAULT; |
1da177e4 | 930 | |
7dd6a2aa GU |
931 | *s = status; |
932 | } | |
1da177e4 | 933 | |
7dd6a2aa GU |
934 | static phy_cmd_t const phy_cmd_lxt971_config[] = { |
935 | /* limit to 10MBit because my prototype board | |
1da177e4 LT |
936 | * doesn't work with 100. */ |
937 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | |
938 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
939 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | |
940 | { mk_mii_end, } | |
7dd6a2aa GU |
941 | }; |
942 | static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
943 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
944 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
945 | { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ | |
946 | /* Somehow does the 971 tell me that the link is down | |
947 | * the first read after power-up. | |
948 | * read here to get a valid value in ack_int */ | |
949 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
950 | { mk_mii_end, } | |
7dd6a2aa GU |
951 | }; |
952 | static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { | |
953 | /* acknowledge the int before reading status ! */ | |
954 | { mk_mii_read(MII_LXT971_ISR), NULL }, | |
1da177e4 LT |
955 | /* find out the current status */ |
956 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
957 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | |
1da177e4 | 958 | { mk_mii_end, } |
7dd6a2aa GU |
959 | }; |
960 | static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
961 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
962 | { mk_mii_end, } | |
7dd6a2aa GU |
963 | }; |
964 | static phy_info_t const phy_info_lxt971 = { | |
965 | .id = 0x0001378e, | |
966 | .name = "LXT971", | |
967 | .config = phy_cmd_lxt971_config, | |
968 | .startup = phy_cmd_lxt971_startup, | |
969 | .ack_int = phy_cmd_lxt971_ack_int, | |
970 | .shutdown = phy_cmd_lxt971_shutdown | |
1da177e4 LT |
971 | }; |
972 | ||
973 | /* ------------------------------------------------------------------------- */ | |
974 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ | |
975 | ||
976 | /* register definitions */ | |
977 | ||
978 | #define MII_QS6612_MCR 17 /* Mode Control Register */ | |
979 | #define MII_QS6612_FTR 27 /* Factory Test Register */ | |
980 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ | |
981 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ | |
982 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ | |
983 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ | |
984 | ||
985 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | |
986 | { | |
987 | struct fec_enet_private *fep = netdev_priv(dev); | |
988 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 989 | uint status; |
1da177e4 | 990 | |
7dd6a2aa | 991 | status = *s & ~(PHY_STAT_SPMASK); |
1da177e4 LT |
992 | |
993 | switch((mii_reg >> 2) & 7) { | |
7dd6a2aa GU |
994 | case 1: status |= PHY_STAT_10HDX; break; |
995 | case 2: status |= PHY_STAT_100HDX; break; | |
996 | case 5: status |= PHY_STAT_10FDX; break; | |
997 | case 6: status |= PHY_STAT_100FDX; break; | |
1da177e4 LT |
998 | } |
999 | ||
7dd6a2aa GU |
1000 | *s = status; |
1001 | } | |
1002 | ||
1003 | static phy_cmd_t const phy_cmd_qs6612_config[] = { | |
1da177e4 LT |
1004 | /* The PHY powers up isolated on the RPX, |
1005 | * so send a command to allow operation. | |
1006 | */ | |
1007 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | |
1008 | ||
1009 | /* parse cr and anar to get some info */ | |
1010 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | |
1011 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1012 | { mk_mii_end, } | |
7dd6a2aa GU |
1013 | }; |
1014 | static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1015 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
1016 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1017 | { mk_mii_end, } | |
7dd6a2aa GU |
1018 | }; |
1019 | static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { | |
1da177e4 LT |
1020 | /* we need to read ISR, SR and ANER to acknowledge */ |
1021 | { mk_mii_read(MII_QS6612_ISR), NULL }, | |
1022 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1023 | { mk_mii_read(MII_REG_ANER), NULL }, | |
1024 | ||
1025 | /* read pcr to get info */ | |
1026 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | |
1027 | { mk_mii_end, } | |
7dd6a2aa GU |
1028 | }; |
1029 | static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1030 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
1031 | { mk_mii_end, } | |
7dd6a2aa GU |
1032 | }; |
1033 | static phy_info_t const phy_info_qs6612 = { | |
1034 | .id = 0x00181440, | |
1035 | .name = "QS6612", | |
1036 | .config = phy_cmd_qs6612_config, | |
1037 | .startup = phy_cmd_qs6612_startup, | |
1038 | .ack_int = phy_cmd_qs6612_ack_int, | |
1039 | .shutdown = phy_cmd_qs6612_shutdown | |
1da177e4 LT |
1040 | }; |
1041 | ||
1042 | /* ------------------------------------------------------------------------- */ | |
1043 | /* AMD AM79C874 phy */ | |
1044 | ||
1045 | /* register definitions for the 874 */ | |
1046 | ||
1047 | #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ | |
1048 | #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ | |
1049 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ | |
1050 | #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ | |
1051 | #define MII_AM79C874_MCR 21 /* ModeControl Register */ | |
1052 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ | |
1053 | #define MII_AM79C874_REC 24 /* Recieve Error Counter */ | |
1054 | ||
1055 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) | |
1056 | { | |
1057 | struct fec_enet_private *fep = netdev_priv(dev); | |
1058 | volatile uint *s = &(fep->phy_status); | |
7dd6a2aa | 1059 | uint status; |
1da177e4 | 1060 | |
7dd6a2aa | 1061 | status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); |
1da177e4 LT |
1062 | |
1063 | if (mii_reg & 0x0080) | |
7dd6a2aa | 1064 | status |= PHY_STAT_ANC; |
1da177e4 | 1065 | if (mii_reg & 0x0400) |
7dd6a2aa | 1066 | status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); |
1da177e4 | 1067 | else |
7dd6a2aa GU |
1068 | status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); |
1069 | ||
1070 | *s = status; | |
1da177e4 LT |
1071 | } |
1072 | ||
7dd6a2aa | 1073 | static phy_cmd_t const phy_cmd_am79c874_config[] = { |
1da177e4 LT |
1074 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
1075 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1076 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | |
1077 | { mk_mii_end, } | |
7dd6a2aa GU |
1078 | }; |
1079 | static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1080 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, |
1081 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1082 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1083 | { mk_mii_end, } | |
7dd6a2aa GU |
1084 | }; |
1085 | static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { | |
1da177e4 LT |
1086 | /* find out the current status */ |
1087 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1088 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | |
1089 | /* we only need to read ISR to acknowledge */ | |
1090 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, | |
1091 | { mk_mii_end, } | |
7dd6a2aa GU |
1092 | }; |
1093 | static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1094 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, |
1095 | { mk_mii_end, } | |
7dd6a2aa GU |
1096 | }; |
1097 | static phy_info_t const phy_info_am79c874 = { | |
1098 | .id = 0x00022561, | |
1099 | .name = "AM79C874", | |
1100 | .config = phy_cmd_am79c874_config, | |
1101 | .startup = phy_cmd_am79c874_startup, | |
1102 | .ack_int = phy_cmd_am79c874_ack_int, | |
1103 | .shutdown = phy_cmd_am79c874_shutdown | |
1da177e4 LT |
1104 | }; |
1105 | ||
7dd6a2aa | 1106 | |
1da177e4 LT |
1107 | /* ------------------------------------------------------------------------- */ |
1108 | /* Kendin KS8721BL phy */ | |
1109 | ||
1110 | /* register definitions for the 8721 */ | |
1111 | ||
1112 | #define MII_KS8721BL_RXERCR 21 | |
1113 | #define MII_KS8721BL_ICSR 22 | |
1114 | #define MII_KS8721BL_PHYCR 31 | |
1115 | ||
7dd6a2aa | 1116 | static phy_cmd_t const phy_cmd_ks8721bl_config[] = { |
1da177e4 LT |
1117 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
1118 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1119 | { mk_mii_end, } | |
7dd6a2aa GU |
1120 | }; |
1121 | static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */ | |
1da177e4 LT |
1122 | { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, |
1123 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1124 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1125 | { mk_mii_end, } | |
7dd6a2aa GU |
1126 | }; |
1127 | static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { | |
1da177e4 LT |
1128 | /* find out the current status */ |
1129 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1130 | /* we only need to read ISR to acknowledge */ | |
1131 | { mk_mii_read(MII_KS8721BL_ICSR), NULL }, | |
1132 | { mk_mii_end, } | |
7dd6a2aa GU |
1133 | }; |
1134 | static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ | |
1da177e4 LT |
1135 | { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, |
1136 | { mk_mii_end, } | |
7dd6a2aa GU |
1137 | }; |
1138 | static phy_info_t const phy_info_ks8721bl = { | |
1139 | .id = 0x00022161, | |
1140 | .name = "KS8721BL", | |
1141 | .config = phy_cmd_ks8721bl_config, | |
1142 | .startup = phy_cmd_ks8721bl_startup, | |
1143 | .ack_int = phy_cmd_ks8721bl_ack_int, | |
1144 | .shutdown = phy_cmd_ks8721bl_shutdown | |
1da177e4 LT |
1145 | }; |
1146 | ||
562d2f8c GU |
1147 | /* ------------------------------------------------------------------------- */ |
1148 | /* register definitions for the DP83848 */ | |
1149 | ||
1150 | #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */ | |
1151 | ||
1152 | static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev) | |
1153 | { | |
1154 | struct fec_enet_private *fep = dev->priv; | |
1155 | volatile uint *s = &(fep->phy_status); | |
1156 | ||
1157 | *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | |
1158 | ||
1159 | /* Link up */ | |
1160 | if (mii_reg & 0x0001) { | |
1161 | fep->link = 1; | |
1162 | *s |= PHY_STAT_LINK; | |
1163 | } else | |
1164 | fep->link = 0; | |
1165 | /* Status of link */ | |
1166 | if (mii_reg & 0x0010) /* Autonegotioation complete */ | |
1167 | *s |= PHY_STAT_ANC; | |
1168 | if (mii_reg & 0x0002) { /* 10MBps? */ | |
1169 | if (mii_reg & 0x0004) /* Full Duplex? */ | |
1170 | *s |= PHY_STAT_10FDX; | |
1171 | else | |
1172 | *s |= PHY_STAT_10HDX; | |
1173 | } else { /* 100 Mbps? */ | |
1174 | if (mii_reg & 0x0004) /* Full Duplex? */ | |
1175 | *s |= PHY_STAT_100FDX; | |
1176 | else | |
1177 | *s |= PHY_STAT_100HDX; | |
1178 | } | |
1179 | if (mii_reg & 0x0008) | |
1180 | *s |= PHY_STAT_FAULT; | |
1181 | } | |
1182 | ||
1183 | static phy_info_t phy_info_dp83848= { | |
1184 | 0x020005c9, | |
1185 | "DP83848", | |
1186 | ||
1187 | (const phy_cmd_t []) { /* config */ | |
1188 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | |
1189 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | |
1190 | { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, | |
1191 | { mk_mii_end, } | |
1192 | }, | |
1193 | (const phy_cmd_t []) { /* startup - enable interrupts */ | |
1194 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | |
1195 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | |
1196 | { mk_mii_end, } | |
1197 | }, | |
1198 | (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */ | |
1199 | { mk_mii_end, } | |
1200 | }, | |
1201 | (const phy_cmd_t []) { /* shutdown */ | |
1202 | { mk_mii_end, } | |
1203 | }, | |
1204 | }; | |
1205 | ||
1da177e4 LT |
1206 | /* ------------------------------------------------------------------------- */ |
1207 | ||
7dd6a2aa | 1208 | static phy_info_t const * const phy_info[] = { |
1da177e4 LT |
1209 | &phy_info_lxt970, |
1210 | &phy_info_lxt971, | |
1211 | &phy_info_qs6612, | |
1212 | &phy_info_am79c874, | |
1213 | &phy_info_ks8721bl, | |
562d2f8c | 1214 | &phy_info_dp83848, |
1da177e4 LT |
1215 | NULL |
1216 | }; | |
1217 | ||
1218 | /* ------------------------------------------------------------------------- */ | |
1219 | ||
1220 | #ifdef CONFIG_RPXCLASSIC | |
1221 | static void | |
1222 | mii_link_interrupt(void *dev_id); | |
1223 | #else | |
1224 | static irqreturn_t | |
1225 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); | |
1226 | #endif | |
1227 | ||
1228 | #if defined(CONFIG_M5272) | |
1229 | ||
1230 | /* | |
1231 | * Code specific to Coldfire 5272 setup. | |
1232 | */ | |
1233 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1234 | { | |
1235 | volatile unsigned long *icrp; | |
7dd6a2aa GU |
1236 | static const struct idesc { |
1237 | char *name; | |
1238 | unsigned short irq; | |
1239 | irqreturn_t (*handler)(int, void *, struct pt_regs *); | |
1240 | } *idp, id[] = { | |
1241 | { "fec(RX)", 86, fec_enet_interrupt }, | |
1242 | { "fec(TX)", 87, fec_enet_interrupt }, | |
1243 | { "fec(OTHER)", 88, fec_enet_interrupt }, | |
1244 | { "fec(MII)", 66, mii_link_interrupt }, | |
1245 | { NULL }, | |
1246 | }; | |
1da177e4 LT |
1247 | |
1248 | /* Setup interrupt handlers. */ | |
7dd6a2aa GU |
1249 | for (idp = id; idp->name; idp++) { |
1250 | if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0) | |
1251 | printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq); | |
1252 | } | |
1da177e4 LT |
1253 | |
1254 | /* Unmask interrupt at ColdFire 5272 SIM */ | |
1255 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); | |
1256 | *icrp = 0x00000ddd; | |
1257 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1258 | *icrp = (*icrp & 0x70777777) | 0x0d000000; | |
1259 | } | |
1260 | ||
1261 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1262 | { | |
1263 | volatile fec_t *fecp; | |
1264 | ||
1265 | fecp = fep->hwp; | |
1266 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | |
1267 | fecp->fec_x_cntrl = 0x00; | |
1268 | ||
1269 | /* | |
1270 | * Set MII speed to 2.5 MHz | |
1271 | * See 5272 manual section 11.5.8: MSCR | |
1272 | */ | |
1273 | fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; | |
1274 | fecp->fec_mii_speed = fep->phy_speed; | |
1275 | ||
1276 | fec_restart(dev, 0); | |
1277 | } | |
1278 | ||
1279 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1280 | { | |
1281 | struct fec_enet_private *fep = netdev_priv(dev); | |
1282 | volatile fec_t *fecp; | |
7dd6a2aa | 1283 | unsigned char *iap, tmpaddr[ETH_ALEN]; |
1da177e4 LT |
1284 | |
1285 | fecp = fep->hwp; | |
1286 | ||
7dd6a2aa | 1287 | if (FEC_FLASHMAC) { |
1da177e4 LT |
1288 | /* |
1289 | * Get MAC address from FLASH. | |
1290 | * If it is all 1's or 0's, use the default. | |
1291 | */ | |
7dd6a2aa | 1292 | iap = (unsigned char *)FEC_FLASHMAC; |
1da177e4 LT |
1293 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
1294 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | |
1295 | iap = fec_mac_default; | |
1296 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | |
1297 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | |
1298 | iap = fec_mac_default; | |
1299 | } else { | |
1300 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | |
1301 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | |
1302 | iap = &tmpaddr[0]; | |
1303 | } | |
1304 | ||
7dd6a2aa | 1305 | memcpy(dev->dev_addr, iap, ETH_ALEN); |
1da177e4 LT |
1306 | |
1307 | /* Adjust MAC if using default MAC address */ | |
7dd6a2aa GU |
1308 | if (iap == fec_mac_default) |
1309 | dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | |
1da177e4 LT |
1310 | } |
1311 | ||
1312 | static void __inline__ fec_enable_phy_intr(void) | |
1313 | { | |
1314 | } | |
1315 | ||
1316 | static void __inline__ fec_disable_phy_intr(void) | |
1317 | { | |
1318 | volatile unsigned long *icrp; | |
1319 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1320 | *icrp = (*icrp & 0x70777777) | 0x08000000; | |
1321 | } | |
1322 | ||
1323 | static void __inline__ fec_phy_ack_intr(void) | |
1324 | { | |
1325 | volatile unsigned long *icrp; | |
1326 | /* Acknowledge the interrupt */ | |
1327 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | |
1328 | *icrp = (*icrp & 0x77777777) | 0x08000000; | |
1329 | } | |
1330 | ||
1331 | static void __inline__ fec_localhw_setup(void) | |
1332 | { | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * Do not need to make region uncached on 5272. | |
1337 | */ | |
1338 | static void __inline__ fec_uncache(unsigned long addr) | |
1339 | { | |
1340 | } | |
1341 | ||
1342 | /* ------------------------------------------------------------------------- */ | |
1343 | ||
7dd6a2aa | 1344 | #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) |
1da177e4 LT |
1345 | |
1346 | /* | |
7dd6a2aa GU |
1347 | * Code specific to Coldfire 5230/5231/5232/5234/5235, |
1348 | * the 5270/5271/5274/5275 and 5280/5282 setups. | |
1da177e4 LT |
1349 | */ |
1350 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1351 | { | |
1352 | struct fec_enet_private *fep; | |
1353 | int b; | |
7dd6a2aa GU |
1354 | static const struct idesc { |
1355 | char *name; | |
1356 | unsigned short irq; | |
1357 | } *idp, id[] = { | |
1358 | { "fec(TXF)", 23 }, | |
1359 | { "fec(TXB)", 24 }, | |
1360 | { "fec(TXFIFO)", 25 }, | |
1361 | { "fec(TXCR)", 26 }, | |
1362 | { "fec(RXF)", 27 }, | |
1363 | { "fec(RXB)", 28 }, | |
1364 | { "fec(MII)", 29 }, | |
1365 | { "fec(LC)", 30 }, | |
1366 | { "fec(HBERR)", 31 }, | |
1367 | { "fec(GRA)", 32 }, | |
1368 | { "fec(EBERR)", 33 }, | |
1369 | { "fec(BABT)", 34 }, | |
1370 | { "fec(BABR)", 35 }, | |
1371 | { NULL }, | |
1372 | }; | |
1da177e4 LT |
1373 | |
1374 | fep = netdev_priv(dev); | |
1375 | b = (fep->index) ? 128 : 64; | |
1376 | ||
1377 | /* Setup interrupt handlers. */ | |
7dd6a2aa GU |
1378 | for (idp = id; idp->name; idp++) { |
1379 | if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0) | |
1380 | printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); | |
1381 | } | |
1da177e4 LT |
1382 | |
1383 | /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ | |
1384 | { | |
1385 | volatile unsigned char *icrp; | |
1386 | volatile unsigned long *imrp; | |
1387 | int i; | |
1388 | ||
1389 | b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; | |
1390 | icrp = (volatile unsigned char *) (MCF_IPSBAR + b + | |
1391 | MCFINTC_ICR0); | |
1392 | for (i = 23; (i < 36); i++) | |
1393 | icrp[i] = 0x23; | |
1394 | ||
1395 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | |
1396 | MCFINTC_IMRH); | |
1397 | *imrp &= ~0x0000000f; | |
1398 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | |
1399 | MCFINTC_IMRL); | |
1400 | *imrp &= ~0xff800001; | |
1401 | } | |
1402 | ||
1403 | #if defined(CONFIG_M528x) | |
1404 | /* Set up gpio outputs for MII lines */ | |
1405 | { | |
7dd6a2aa GU |
1406 | volatile u16 *gpio_paspar; |
1407 | volatile u8 *gpio_pehlpar; | |
1da177e4 | 1408 | |
7dd6a2aa GU |
1409 | gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056); |
1410 | gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058); | |
1411 | *gpio_paspar |= 0x0f00; | |
1412 | *gpio_pehlpar = 0xc0; | |
1da177e4 LT |
1413 | } |
1414 | #endif | |
1415 | } | |
1416 | ||
1417 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1418 | { | |
1419 | volatile fec_t *fecp; | |
1420 | ||
1421 | fecp = fep->hwp; | |
1422 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | |
1423 | fecp->fec_x_cntrl = 0x00; | |
1424 | ||
1425 | /* | |
1426 | * Set MII speed to 2.5 MHz | |
1427 | * See 5282 manual section 17.5.4.7: MSCR | |
1428 | */ | |
1429 | fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | |
1430 | fecp->fec_mii_speed = fep->phy_speed; | |
1431 | ||
1432 | fec_restart(dev, 0); | |
1433 | } | |
1434 | ||
1435 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1436 | { | |
1437 | struct fec_enet_private *fep = netdev_priv(dev); | |
1438 | volatile fec_t *fecp; | |
7dd6a2aa | 1439 | unsigned char *iap, tmpaddr[ETH_ALEN]; |
1da177e4 LT |
1440 | |
1441 | fecp = fep->hwp; | |
1442 | ||
7dd6a2aa | 1443 | if (FEC_FLASHMAC) { |
1da177e4 LT |
1444 | /* |
1445 | * Get MAC address from FLASH. | |
1446 | * If it is all 1's or 0's, use the default. | |
1447 | */ | |
7dd6a2aa | 1448 | iap = FEC_FLASHMAC; |
1da177e4 LT |
1449 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
1450 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | |
1451 | iap = fec_mac_default; | |
1452 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | |
1453 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | |
1454 | iap = fec_mac_default; | |
1455 | } else { | |
1456 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | |
1457 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | |
1458 | iap = &tmpaddr[0]; | |
1459 | } | |
1460 | ||
7dd6a2aa | 1461 | memcpy(dev->dev_addr, iap, ETH_ALEN); |
1da177e4 LT |
1462 | |
1463 | /* Adjust MAC if using default MAC address */ | |
7dd6a2aa GU |
1464 | if (iap == fec_mac_default) |
1465 | dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | |
1da177e4 LT |
1466 | } |
1467 | ||
1468 | static void __inline__ fec_enable_phy_intr(void) | |
1469 | { | |
1470 | } | |
1471 | ||
1472 | static void __inline__ fec_disable_phy_intr(void) | |
1473 | { | |
1474 | } | |
1475 | ||
1476 | static void __inline__ fec_phy_ack_intr(void) | |
1477 | { | |
1478 | } | |
1479 | ||
1480 | static void __inline__ fec_localhw_setup(void) | |
1481 | { | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * Do not need to make region uncached on 5272. | |
1486 | */ | |
1487 | static void __inline__ fec_uncache(unsigned long addr) | |
1488 | { | |
1489 | } | |
1490 | ||
1491 | /* ------------------------------------------------------------------------- */ | |
1492 | ||
562d2f8c GU |
1493 | #elif defined(CONFIG_M520x) |
1494 | ||
1495 | /* | |
1496 | * Code specific to Coldfire 520x | |
1497 | */ | |
1498 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1499 | { | |
1500 | struct fec_enet_private *fep; | |
1501 | int b; | |
1502 | static const struct idesc { | |
1503 | char *name; | |
1504 | unsigned short irq; | |
1505 | } *idp, id[] = { | |
1506 | { "fec(TXF)", 23 }, | |
1507 | { "fec(TXB)", 24 }, | |
1508 | { "fec(TXFIFO)", 25 }, | |
1509 | { "fec(TXCR)", 26 }, | |
1510 | { "fec(RXF)", 27 }, | |
1511 | { "fec(RXB)", 28 }, | |
1512 | { "fec(MII)", 29 }, | |
1513 | { "fec(LC)", 30 }, | |
1514 | { "fec(HBERR)", 31 }, | |
1515 | { "fec(GRA)", 32 }, | |
1516 | { "fec(EBERR)", 33 }, | |
1517 | { "fec(BABT)", 34 }, | |
1518 | { "fec(BABR)", 35 }, | |
1519 | { NULL }, | |
1520 | }; | |
1521 | ||
1522 | fep = netdev_priv(dev); | |
1523 | b = 64 + 13; | |
1524 | ||
1525 | /* Setup interrupt handlers. */ | |
1526 | for (idp = id; idp->name; idp++) { | |
1527 | if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0) | |
1528 | printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); | |
1529 | } | |
1530 | ||
1531 | /* Unmask interrupts at ColdFire interrupt controller */ | |
1532 | { | |
1533 | volatile unsigned char *icrp; | |
1534 | volatile unsigned long *imrp; | |
1535 | ||
1536 | icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 + | |
1537 | MCFINTC_ICR0); | |
1538 | for (b = 36; (b < 49); b++) | |
1539 | icrp[b] = 0x04; | |
1540 | imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 + | |
1541 | MCFINTC_IMRH); | |
1542 | *imrp &= ~0x0001FFF0; | |
1543 | } | |
1544 | *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0; | |
1545 | *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f; | |
1546 | } | |
1547 | ||
1548 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1549 | { | |
1550 | volatile fec_t *fecp; | |
1551 | ||
1552 | fecp = fep->hwp; | |
1553 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | |
1554 | fecp->fec_x_cntrl = 0x00; | |
1555 | ||
1556 | /* | |
1557 | * Set MII speed to 2.5 MHz | |
1558 | * See 5282 manual section 17.5.4.7: MSCR | |
1559 | */ | |
1560 | fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | |
1561 | fecp->fec_mii_speed = fep->phy_speed; | |
1562 | ||
1563 | fec_restart(dev, 0); | |
1564 | } | |
1565 | ||
1566 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1567 | { | |
1568 | struct fec_enet_private *fep = netdev_priv(dev); | |
1569 | volatile fec_t *fecp; | |
1570 | unsigned char *iap, tmpaddr[ETH_ALEN]; | |
1571 | ||
1572 | fecp = fep->hwp; | |
1573 | ||
1574 | if (FEC_FLASHMAC) { | |
1575 | /* | |
1576 | * Get MAC address from FLASH. | |
1577 | * If it is all 1's or 0's, use the default. | |
1578 | */ | |
1579 | iap = FEC_FLASHMAC; | |
1580 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | |
1581 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | |
1582 | iap = fec_mac_default; | |
1583 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | |
1584 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | |
1585 | iap = fec_mac_default; | |
1586 | } else { | |
1587 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | |
1588 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | |
1589 | iap = &tmpaddr[0]; | |
1590 | } | |
1591 | ||
1592 | memcpy(dev->dev_addr, iap, ETH_ALEN); | |
1593 | ||
1594 | /* Adjust MAC if using default MAC address */ | |
1595 | if (iap == fec_mac_default) | |
1596 | dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | |
1597 | } | |
1598 | ||
1599 | static void __inline__ fec_enable_phy_intr(void) | |
1600 | { | |
1601 | } | |
1602 | ||
1603 | static void __inline__ fec_disable_phy_intr(void) | |
1604 | { | |
1605 | } | |
1606 | ||
1607 | static void __inline__ fec_phy_ack_intr(void) | |
1608 | { | |
1609 | } | |
1610 | ||
1611 | static void __inline__ fec_localhw_setup(void) | |
1612 | { | |
1613 | } | |
1614 | ||
1615 | static void __inline__ fec_uncache(unsigned long addr) | |
1616 | { | |
1617 | } | |
1618 | ||
1619 | /* ------------------------------------------------------------------------- */ | |
1620 | ||
1da177e4 LT |
1621 | #else |
1622 | ||
1623 | /* | |
7dd6a2aa | 1624 | * Code specific to the MPC860T setup. |
1da177e4 LT |
1625 | */ |
1626 | static void __inline__ fec_request_intrs(struct net_device *dev) | |
1627 | { | |
1628 | volatile immap_t *immap; | |
1629 | ||
1630 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | |
1631 | ||
1632 | if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) | |
1633 | panic("Could not allocate FEC IRQ!"); | |
1634 | ||
1635 | #ifdef CONFIG_RPXCLASSIC | |
1636 | /* Make Port C, bit 15 an input that causes interrupts. | |
1637 | */ | |
1638 | immap->im_ioport.iop_pcpar &= ~0x0001; | |
1639 | immap->im_ioport.iop_pcdir &= ~0x0001; | |
1640 | immap->im_ioport.iop_pcso &= ~0x0001; | |
1641 | immap->im_ioport.iop_pcint |= 0x0001; | |
1642 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); | |
1643 | ||
1644 | /* Make LEDS reflect Link status. | |
1645 | */ | |
1646 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; | |
1647 | #endif | |
1648 | #ifdef CONFIG_FADS | |
1649 | if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) | |
1650 | panic("Could not allocate MII IRQ!"); | |
1651 | #endif | |
1652 | } | |
1653 | ||
1654 | static void __inline__ fec_get_mac(struct net_device *dev) | |
1655 | { | |
1da177e4 | 1656 | bd_t *bd; |
1da177e4 | 1657 | |
1da177e4 | 1658 | bd = (bd_t *)__res; |
7dd6a2aa | 1659 | memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN); |
1da177e4 LT |
1660 | |
1661 | #ifdef CONFIG_RPXCLASSIC | |
1662 | /* The Embedded Planet boards have only one MAC address in | |
1663 | * the EEPROM, but can have two Ethernet ports. For the | |
1664 | * FEC port, we create another address by setting one of | |
1665 | * the address bits above something that would have (up to | |
1666 | * now) been allocated. | |
1667 | */ | |
7dd6a2aa | 1668 | dev->dev_adrd[3] |= 0x80; |
1da177e4 | 1669 | #endif |
1da177e4 LT |
1670 | } |
1671 | ||
1672 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | |
1673 | { | |
1674 | extern uint _get_IMMR(void); | |
1675 | volatile immap_t *immap; | |
1676 | volatile fec_t *fecp; | |
1677 | ||
1678 | fecp = fep->hwp; | |
1679 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | |
1680 | ||
1681 | /* Configure all of port D for MII. | |
1682 | */ | |
1683 | immap->im_ioport.iop_pdpar = 0x1fff; | |
1684 | ||
1685 | /* Bits moved from Rev. D onward. | |
1686 | */ | |
1687 | if ((_get_IMMR() & 0xffff) < 0x0501) | |
1688 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ | |
1689 | else | |
1690 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ | |
1691 | ||
1692 | /* Set MII speed to 2.5 MHz | |
1693 | */ | |
1694 | fecp->fec_mii_speed = fep->phy_speed = | |
1695 | ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; | |
1696 | } | |
1697 | ||
1698 | static void __inline__ fec_enable_phy_intr(void) | |
1699 | { | |
1700 | volatile fec_t *fecp; | |
1701 | ||
1702 | fecp = fep->hwp; | |
1703 | ||
1704 | /* Enable MII command finished interrupt | |
1705 | */ | |
1706 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | |
1707 | } | |
1708 | ||
1709 | static void __inline__ fec_disable_phy_intr(void) | |
1710 | { | |
1711 | } | |
1712 | ||
1713 | static void __inline__ fec_phy_ack_intr(void) | |
1714 | { | |
1715 | } | |
1716 | ||
1717 | static void __inline__ fec_localhw_setup(void) | |
1718 | { | |
1719 | volatile fec_t *fecp; | |
1720 | ||
1721 | fecp = fep->hwp; | |
1722 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; | |
1723 | /* Enable big endian and don't care about SDMA FC. | |
1724 | */ | |
1725 | fecp->fec_fun_code = 0x78000000; | |
1726 | } | |
1727 | ||
1728 | static void __inline__ fec_uncache(unsigned long addr) | |
1729 | { | |
1730 | pte_t *pte; | |
1731 | pte = va_to_pte(mem_addr); | |
1732 | pte_val(*pte) |= _PAGE_NO_CACHE; | |
1733 | flush_tlb_page(init_mm.mmap, mem_addr); | |
1734 | } | |
1735 | ||
1736 | #endif | |
1737 | ||
1738 | /* ------------------------------------------------------------------------- */ | |
1739 | ||
1740 | static void mii_display_status(struct net_device *dev) | |
1741 | { | |
1742 | struct fec_enet_private *fep = netdev_priv(dev); | |
1743 | volatile uint *s = &(fep->phy_status); | |
1744 | ||
1745 | if (!fep->link && !fep->old_link) { | |
1746 | /* Link is still down - don't print anything */ | |
1747 | return; | |
1748 | } | |
1749 | ||
1750 | printk("%s: status: ", dev->name); | |
1751 | ||
1752 | if (!fep->link) { | |
1753 | printk("link down"); | |
1754 | } else { | |
1755 | printk("link up"); | |
1756 | ||
1757 | switch(*s & PHY_STAT_SPMASK) { | |
1758 | case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; | |
1759 | case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; | |
1760 | case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; | |
1761 | case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; | |
1762 | default: | |
1763 | printk(", Unknown speed/duplex"); | |
1764 | } | |
1765 | ||
1766 | if (*s & PHY_STAT_ANC) | |
1767 | printk(", auto-negotiation complete"); | |
1768 | } | |
1769 | ||
1770 | if (*s & PHY_STAT_FAULT) | |
1771 | printk(", remote fault"); | |
1772 | ||
1773 | printk(".\n"); | |
1774 | } | |
1775 | ||
1776 | static void mii_display_config(struct net_device *dev) | |
1777 | { | |
1778 | struct fec_enet_private *fep = netdev_priv(dev); | |
7dd6a2aa | 1779 | uint status = fep->phy_status; |
1da177e4 LT |
1780 | |
1781 | /* | |
1782 | ** When we get here, phy_task is already removed from | |
1783 | ** the workqueue. It is thus safe to allow to reuse it. | |
1784 | */ | |
1785 | fep->mii_phy_task_queued = 0; | |
1786 | printk("%s: config: auto-negotiation ", dev->name); | |
1787 | ||
7dd6a2aa | 1788 | if (status & PHY_CONF_ANE) |
1da177e4 LT |
1789 | printk("on"); |
1790 | else | |
1791 | printk("off"); | |
1792 | ||
7dd6a2aa | 1793 | if (status & PHY_CONF_100FDX) |
1da177e4 | 1794 | printk(", 100FDX"); |
7dd6a2aa | 1795 | if (status & PHY_CONF_100HDX) |
1da177e4 | 1796 | printk(", 100HDX"); |
7dd6a2aa | 1797 | if (status & PHY_CONF_10FDX) |
1da177e4 | 1798 | printk(", 10FDX"); |
7dd6a2aa | 1799 | if (status & PHY_CONF_10HDX) |
1da177e4 | 1800 | printk(", 10HDX"); |
7dd6a2aa | 1801 | if (!(status & PHY_CONF_SPMASK)) |
1da177e4 LT |
1802 | printk(", No speed/duplex selected?"); |
1803 | ||
7dd6a2aa | 1804 | if (status & PHY_CONF_LOOP) |
1da177e4 LT |
1805 | printk(", loopback enabled"); |
1806 | ||
1807 | printk(".\n"); | |
1808 | ||
1809 | fep->sequence_done = 1; | |
1810 | } | |
1811 | ||
1812 | static void mii_relink(struct net_device *dev) | |
1813 | { | |
1814 | struct fec_enet_private *fep = netdev_priv(dev); | |
1815 | int duplex; | |
1816 | ||
1817 | /* | |
1818 | ** When we get here, phy_task is already removed from | |
1819 | ** the workqueue. It is thus safe to allow to reuse it. | |
1820 | */ | |
1821 | fep->mii_phy_task_queued = 0; | |
1822 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | |
1823 | mii_display_status(dev); | |
1824 | fep->old_link = fep->link; | |
1825 | ||
1826 | if (fep->link) { | |
1827 | duplex = 0; | |
1828 | if (fep->phy_status | |
1829 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | |
1830 | duplex = 1; | |
1831 | fec_restart(dev, duplex); | |
1832 | } | |
1833 | else | |
1834 | fec_stop(dev); | |
1835 | ||
1836 | #if 0 | |
1837 | enable_irq(fep->mii_irq); | |
1838 | #endif | |
1839 | ||
1840 | } | |
1841 | ||
1842 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ | |
1843 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | |
1844 | { | |
1845 | struct fec_enet_private *fep = netdev_priv(dev); | |
1846 | ||
1847 | /* | |
1848 | ** We cannot queue phy_task twice in the workqueue. It | |
1849 | ** would cause an endless loop in the workqueue. | |
1850 | ** Fortunately, if the last mii_relink entry has not yet been | |
1851 | ** executed now, it will do the job for the current interrupt, | |
1852 | ** which is just what we want. | |
1853 | */ | |
1854 | if (fep->mii_phy_task_queued) | |
1855 | return; | |
1856 | ||
1857 | fep->mii_phy_task_queued = 1; | |
1858 | INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); | |
1859 | schedule_work(&fep->phy_task); | |
1860 | } | |
1861 | ||
7dd6a2aa | 1862 | /* mii_queue_config is called in interrupt context from fec_enet_mii */ |
1da177e4 LT |
1863 | static void mii_queue_config(uint mii_reg, struct net_device *dev) |
1864 | { | |
1865 | struct fec_enet_private *fep = netdev_priv(dev); | |
1866 | ||
1867 | if (fep->mii_phy_task_queued) | |
1868 | return; | |
1869 | ||
1870 | fep->mii_phy_task_queued = 1; | |
1871 | INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); | |
1872 | schedule_work(&fep->phy_task); | |
1873 | } | |
1874 | ||
7dd6a2aa GU |
1875 | phy_cmd_t const phy_cmd_relink[] = { |
1876 | { mk_mii_read(MII_REG_CR), mii_queue_relink }, | |
1877 | { mk_mii_end, } | |
1878 | }; | |
1879 | phy_cmd_t const phy_cmd_config[] = { | |
1880 | { mk_mii_read(MII_REG_CR), mii_queue_config }, | |
1881 | { mk_mii_end, } | |
1882 | }; | |
1da177e4 LT |
1883 | |
1884 | /* Read remainder of PHY ID. | |
1885 | */ | |
1886 | static void | |
1887 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | |
1888 | { | |
1889 | struct fec_enet_private *fep; | |
1890 | int i; | |
1891 | ||
1892 | fep = netdev_priv(dev); | |
1893 | fep->phy_id |= (mii_reg & 0xffff); | |
1894 | printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); | |
1895 | ||
1896 | for(i = 0; phy_info[i]; i++) { | |
1897 | if(phy_info[i]->id == (fep->phy_id >> 4)) | |
1898 | break; | |
1899 | } | |
1900 | ||
1901 | if (phy_info[i]) | |
1902 | printk(" -- %s\n", phy_info[i]->name); | |
1903 | else | |
1904 | printk(" -- unknown PHY!\n"); | |
1905 | ||
1906 | fep->phy = phy_info[i]; | |
1907 | fep->phy_id_done = 1; | |
1908 | } | |
1909 | ||
1910 | /* Scan all of the MII PHY addresses looking for someone to respond | |
1911 | * with a valid ID. This usually happens quickly. | |
1912 | */ | |
1913 | static void | |
1914 | mii_discover_phy(uint mii_reg, struct net_device *dev) | |
1915 | { | |
1916 | struct fec_enet_private *fep; | |
1917 | volatile fec_t *fecp; | |
1918 | uint phytype; | |
1919 | ||
1920 | fep = netdev_priv(dev); | |
1921 | fecp = fep->hwp; | |
1922 | ||
1923 | if (fep->phy_addr < 32) { | |
1924 | if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { | |
1925 | ||
1926 | /* Got first part of ID, now get remainder. | |
1927 | */ | |
1928 | fep->phy_id = phytype << 16; | |
1929 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), | |
1930 | mii_discover_phy3); | |
1931 | } | |
1932 | else { | |
1933 | fep->phy_addr++; | |
1934 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), | |
1935 | mii_discover_phy); | |
1936 | } | |
1937 | } else { | |
1938 | printk("FEC: No PHY device found.\n"); | |
1939 | /* Disable external MII interface */ | |
1940 | fecp->fec_mii_speed = fep->phy_speed = 0; | |
1941 | fec_disable_phy_intr(); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | /* This interrupt occurs when the PHY detects a link change. | |
1946 | */ | |
1947 | #ifdef CONFIG_RPXCLASSIC | |
1948 | static void | |
1949 | mii_link_interrupt(void *dev_id) | |
1950 | #else | |
1951 | static irqreturn_t | |
1952 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) | |
1953 | #endif | |
1954 | { | |
1955 | struct net_device *dev = dev_id; | |
1956 | struct fec_enet_private *fep = netdev_priv(dev); | |
1957 | ||
1958 | fec_phy_ack_intr(); | |
1959 | ||
1960 | #if 0 | |
1961 | disable_irq(fep->mii_irq); /* disable now, enable later */ | |
1962 | #endif | |
1963 | ||
1964 | mii_do_cmd(dev, fep->phy->ack_int); | |
1965 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ | |
1966 | ||
1967 | return IRQ_HANDLED; | |
1968 | } | |
1969 | ||
1970 | static int | |
1971 | fec_enet_open(struct net_device *dev) | |
1972 | { | |
1973 | struct fec_enet_private *fep = netdev_priv(dev); | |
1974 | ||
1975 | /* I should reset the ring buffers here, but I don't yet know | |
1976 | * a simple way to do that. | |
1977 | */ | |
1978 | fec_set_mac_address(dev); | |
1979 | ||
1980 | fep->sequence_done = 0; | |
1981 | fep->link = 0; | |
1982 | ||
1983 | if (fep->phy) { | |
1984 | mii_do_cmd(dev, fep->phy->ack_int); | |
1985 | mii_do_cmd(dev, fep->phy->config); | |
1986 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ | |
1987 | ||
1988 | /* FIXME: use netif_carrier_{on,off} ; this polls | |
1989 | * until link is up which is wrong... could be | |
1990 | * 30 seconds or more we are trapped in here. -jgarzik | |
1991 | */ | |
1992 | while(!fep->sequence_done) | |
1993 | schedule(); | |
1994 | ||
1995 | mii_do_cmd(dev, fep->phy->startup); | |
1996 | ||
1997 | /* Set the initial link state to true. A lot of hardware | |
1998 | * based on this device does not implement a PHY interrupt, | |
1999 | * so we are never notified of link change. | |
2000 | */ | |
2001 | fep->link = 1; | |
2002 | } else { | |
2003 | fep->link = 1; /* lets just try it and see */ | |
2004 | /* no phy, go full duplex, it's most likely a hub chip */ | |
2005 | fec_restart(dev, 1); | |
2006 | } | |
2007 | ||
2008 | netif_start_queue(dev); | |
2009 | fep->opened = 1; | |
2010 | return 0; /* Success */ | |
2011 | } | |
2012 | ||
2013 | static int | |
2014 | fec_enet_close(struct net_device *dev) | |
2015 | { | |
2016 | struct fec_enet_private *fep = netdev_priv(dev); | |
2017 | ||
2018 | /* Don't know what to do yet. | |
2019 | */ | |
2020 | fep->opened = 0; | |
2021 | netif_stop_queue(dev); | |
2022 | fec_stop(dev); | |
2023 | ||
2024 | return 0; | |
2025 | } | |
2026 | ||
2027 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) | |
2028 | { | |
2029 | struct fec_enet_private *fep = netdev_priv(dev); | |
2030 | ||
2031 | return &fep->stats; | |
2032 | } | |
2033 | ||
2034 | /* Set or clear the multicast filter for this adaptor. | |
2035 | * Skeleton taken from sunlance driver. | |
2036 | * The CPM Ethernet implementation allows Multicast as well as individual | |
2037 | * MAC address filtering. Some of the drivers check to make sure it is | |
2038 | * a group multicast address, and discard those that are not. I guess I | |
2039 | * will do the same for now, but just remove the test if you want | |
2040 | * individual filtering as well (do the upper net layers want or support | |
2041 | * this kind of feature?). | |
2042 | */ | |
2043 | ||
2044 | #define HASH_BITS 6 /* #bits in hash */ | |
2045 | #define CRC32_POLY 0xEDB88320 | |
2046 | ||
2047 | static void set_multicast_list(struct net_device *dev) | |
2048 | { | |
2049 | struct fec_enet_private *fep; | |
2050 | volatile fec_t *ep; | |
2051 | struct dev_mc_list *dmi; | |
2052 | unsigned int i, j, bit, data, crc; | |
2053 | unsigned char hash; | |
2054 | ||
2055 | fep = netdev_priv(dev); | |
2056 | ep = fep->hwp; | |
2057 | ||
2058 | if (dev->flags&IFF_PROMISC) { | |
2059 | /* Log any net taps. */ | |
2060 | printk("%s: Promiscuous mode enabled.\n", dev->name); | |
2061 | ep->fec_r_cntrl |= 0x0008; | |
2062 | } else { | |
2063 | ||
2064 | ep->fec_r_cntrl &= ~0x0008; | |
2065 | ||
2066 | if (dev->flags & IFF_ALLMULTI) { | |
2067 | /* Catch all multicast addresses, so set the | |
2068 | * filter to all 1's. | |
2069 | */ | |
2070 | ep->fec_hash_table_high = 0xffffffff; | |
2071 | ep->fec_hash_table_low = 0xffffffff; | |
2072 | } else { | |
2073 | /* Clear filter and add the addresses in hash register. | |
2074 | */ | |
2075 | ep->fec_hash_table_high = 0; | |
2076 | ep->fec_hash_table_low = 0; | |
2077 | ||
2078 | dmi = dev->mc_list; | |
2079 | ||
2080 | for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) | |
2081 | { | |
2082 | /* Only support group multicast for now. | |
2083 | */ | |
2084 | if (!(dmi->dmi_addr[0] & 1)) | |
2085 | continue; | |
2086 | ||
2087 | /* calculate crc32 value of mac address | |
2088 | */ | |
2089 | crc = 0xffffffff; | |
2090 | ||
2091 | for (i = 0; i < dmi->dmi_addrlen; i++) | |
2092 | { | |
2093 | data = dmi->dmi_addr[i]; | |
2094 | for (bit = 0; bit < 8; bit++, data >>= 1) | |
2095 | { | |
2096 | crc = (crc >> 1) ^ | |
2097 | (((crc ^ data) & 1) ? CRC32_POLY : 0); | |
2098 | } | |
2099 | } | |
2100 | ||
2101 | /* only upper 6 bits (HASH_BITS) are used | |
2102 | which point to specific bit in he hash registers | |
2103 | */ | |
2104 | hash = (crc >> (32 - HASH_BITS)) & 0x3f; | |
2105 | ||
2106 | if (hash > 31) | |
2107 | ep->fec_hash_table_high |= 1 << (hash - 32); | |
2108 | else | |
2109 | ep->fec_hash_table_low |= 1 << hash; | |
2110 | } | |
2111 | } | |
2112 | } | |
2113 | } | |
2114 | ||
2115 | /* Set a MAC change in hardware. | |
2116 | */ | |
2117 | static void | |
2118 | fec_set_mac_address(struct net_device *dev) | |
2119 | { | |
1da177e4 LT |
2120 | volatile fec_t *fecp; |
2121 | ||
7dd6a2aa | 2122 | fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp; |
1da177e4 LT |
2123 | |
2124 | /* Set station address. */ | |
7dd6a2aa GU |
2125 | fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) | |
2126 | (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24); | |
2127 | fecp->fec_addr_high = (dev->dev_addr[5] << 16) | | |
2128 | (dev->dev_addr[4] << 24); | |
1da177e4 LT |
2129 | |
2130 | } | |
2131 | ||
2132 | /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). | |
2133 | */ | |
2134 | /* | |
2135 | * XXX: We need to clean up on failure exits here. | |
2136 | */ | |
2137 | int __init fec_enet_init(struct net_device *dev) | |
2138 | { | |
2139 | struct fec_enet_private *fep = netdev_priv(dev); | |
2140 | unsigned long mem_addr; | |
2141 | volatile cbd_t *bdp; | |
2142 | cbd_t *cbd_base; | |
2143 | volatile fec_t *fecp; | |
2144 | int i, j; | |
2145 | static int index = 0; | |
2146 | ||
2147 | /* Only allow us to be probed once. */ | |
2148 | if (index >= FEC_MAX_PORTS) | |
2149 | return -ENXIO; | |
2150 | ||
562d2f8c GU |
2151 | /* Allocate memory for buffer descriptors. |
2152 | */ | |
2153 | mem_addr = __get_free_page(GFP_KERNEL); | |
2154 | if (mem_addr == 0) { | |
2155 | printk("FEC: allocate descriptor memory failed?\n"); | |
2156 | return -ENOMEM; | |
2157 | } | |
2158 | ||
1da177e4 LT |
2159 | /* Create an Ethernet device instance. |
2160 | */ | |
2161 | fecp = (volatile fec_t *) fec_hw[index]; | |
2162 | ||
2163 | fep->index = index; | |
2164 | fep->hwp = fecp; | |
2165 | ||
2166 | /* Whack a reset. We should wait for this. | |
2167 | */ | |
2168 | fecp->fec_ecntrl = 1; | |
2169 | udelay(10); | |
2170 | ||
1da177e4 LT |
2171 | /* Set the Ethernet address. If using multiple Enets on the 8xx, |
2172 | * this needs some work to get unique addresses. | |
2173 | * | |
2174 | * This is our default MAC address unless the user changes | |
2175 | * it via eth_mac_addr (our dev->set_mac_addr handler). | |
2176 | */ | |
2177 | fec_get_mac(dev); | |
2178 | ||
1da177e4 LT |
2179 | cbd_base = (cbd_t *)mem_addr; |
2180 | /* XXX: missing check for allocation failure */ | |
2181 | ||
2182 | fec_uncache(mem_addr); | |
2183 | ||
2184 | /* Set receive and transmit descriptor base. | |
2185 | */ | |
2186 | fep->rx_bd_base = cbd_base; | |
2187 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; | |
2188 | ||
2189 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | |
2190 | fep->cur_rx = fep->rx_bd_base; | |
2191 | ||
2192 | fep->skb_cur = fep->skb_dirty = 0; | |
2193 | ||
2194 | /* Initialize the receive buffer descriptors. | |
2195 | */ | |
2196 | bdp = fep->rx_bd_base; | |
2197 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { | |
2198 | ||
2199 | /* Allocate a page. | |
2200 | */ | |
2201 | mem_addr = __get_free_page(GFP_KERNEL); | |
2202 | /* XXX: missing check for allocation failure */ | |
2203 | ||
2204 | fec_uncache(mem_addr); | |
2205 | ||
2206 | /* Initialize the BD for every fragment in the page. | |
2207 | */ | |
2208 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { | |
2209 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | |
2210 | bdp->cbd_bufaddr = __pa(mem_addr); | |
2211 | mem_addr += FEC_ENET_RX_FRSIZE; | |
2212 | bdp++; | |
2213 | } | |
2214 | } | |
2215 | ||
2216 | /* Set the last buffer to wrap. | |
2217 | */ | |
2218 | bdp--; | |
2219 | bdp->cbd_sc |= BD_SC_WRAP; | |
2220 | ||
2221 | /* ...and the same for transmmit. | |
2222 | */ | |
2223 | bdp = fep->tx_bd_base; | |
2224 | for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { | |
2225 | if (j >= FEC_ENET_TX_FRPPG) { | |
2226 | mem_addr = __get_free_page(GFP_KERNEL); | |
2227 | j = 1; | |
2228 | } else { | |
2229 | mem_addr += FEC_ENET_TX_FRSIZE; | |
2230 | j++; | |
2231 | } | |
2232 | fep->tx_bounce[i] = (unsigned char *) mem_addr; | |
2233 | ||
2234 | /* Initialize the BD for every fragment in the page. | |
2235 | */ | |
2236 | bdp->cbd_sc = 0; | |
2237 | bdp->cbd_bufaddr = 0; | |
2238 | bdp++; | |
2239 | } | |
2240 | ||
2241 | /* Set the last buffer to wrap. | |
2242 | */ | |
2243 | bdp--; | |
2244 | bdp->cbd_sc |= BD_SC_WRAP; | |
2245 | ||
2246 | /* Set receive and transmit descriptor base. | |
2247 | */ | |
2248 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | |
2249 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | |
2250 | ||
2251 | /* Install our interrupt handlers. This varies depending on | |
2252 | * the architecture. | |
2253 | */ | |
2254 | fec_request_intrs(dev); | |
2255 | ||
562d2f8c GU |
2256 | /* Clear and enable interrupts */ |
2257 | fecp->fec_ievent = 0xffc00000; | |
2258 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | |
2259 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | |
2260 | fecp->fec_hash_table_high = 0; | |
2261 | fecp->fec_hash_table_low = 0; | |
2262 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | |
2263 | fecp->fec_ecntrl = 2; | |
2264 | fecp->fec_r_des_active = 0x01000000; | |
2265 | ||
1da177e4 LT |
2266 | dev->base_addr = (unsigned long)fecp; |
2267 | ||
2268 | /* The FEC Ethernet specific entries in the device structure. */ | |
2269 | dev->open = fec_enet_open; | |
2270 | dev->hard_start_xmit = fec_enet_start_xmit; | |
2271 | dev->tx_timeout = fec_timeout; | |
2272 | dev->watchdog_timeo = TX_TIMEOUT; | |
2273 | dev->stop = fec_enet_close; | |
2274 | dev->get_stats = fec_enet_get_stats; | |
2275 | dev->set_multicast_list = set_multicast_list; | |
2276 | ||
2277 | for (i=0; i<NMII-1; i++) | |
2278 | mii_cmds[i].mii_next = &mii_cmds[i+1]; | |
2279 | mii_free = mii_cmds; | |
2280 | ||
2281 | /* setup MII interface */ | |
2282 | fec_set_mii(dev, fep); | |
2283 | ||
1da177e4 LT |
2284 | /* Queue up command to detect the PHY and initialize the |
2285 | * remainder of the interface. | |
2286 | */ | |
2287 | fep->phy_id_done = 0; | |
2288 | fep->phy_addr = 0; | |
2289 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | |
2290 | ||
2291 | index++; | |
2292 | return 0; | |
2293 | } | |
2294 | ||
2295 | /* This function is called to start or restart the FEC during a link | |
2296 | * change. This only happens when switching between half and full | |
2297 | * duplex. | |
2298 | */ | |
2299 | static void | |
2300 | fec_restart(struct net_device *dev, int duplex) | |
2301 | { | |
2302 | struct fec_enet_private *fep; | |
2303 | volatile cbd_t *bdp; | |
2304 | volatile fec_t *fecp; | |
2305 | int i; | |
2306 | ||
2307 | fep = netdev_priv(dev); | |
2308 | fecp = fep->hwp; | |
2309 | ||
2310 | /* Whack a reset. We should wait for this. | |
2311 | */ | |
2312 | fecp->fec_ecntrl = 1; | |
2313 | udelay(10); | |
2314 | ||
2315 | /* Enable interrupts we wish to service. | |
2316 | */ | |
2317 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | |
2318 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | |
2319 | ||
2320 | /* Clear any outstanding interrupt. | |
2321 | */ | |
7dd6a2aa | 2322 | fecp->fec_ievent = 0xffc00000; |
1da177e4 LT |
2323 | fec_enable_phy_intr(); |
2324 | ||
2325 | /* Set station address. | |
2326 | */ | |
7dd6a2aa | 2327 | fec_set_mac_address(dev); |
1da177e4 LT |
2328 | |
2329 | /* Reset all multicast. | |
2330 | */ | |
2331 | fecp->fec_hash_table_high = 0; | |
2332 | fecp->fec_hash_table_low = 0; | |
2333 | ||
2334 | /* Set maximum receive buffer size. | |
2335 | */ | |
2336 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | |
2337 | ||
2338 | fec_localhw_setup(); | |
2339 | ||
2340 | /* Set receive and transmit descriptor base. | |
2341 | */ | |
2342 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | |
2343 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | |
2344 | ||
2345 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | |
2346 | fep->cur_rx = fep->rx_bd_base; | |
2347 | ||
2348 | /* Reset SKB transmit buffers. | |
2349 | */ | |
2350 | fep->skb_cur = fep->skb_dirty = 0; | |
2351 | for (i=0; i<=TX_RING_MOD_MASK; i++) { | |
2352 | if (fep->tx_skbuff[i] != NULL) { | |
2353 | dev_kfree_skb_any(fep->tx_skbuff[i]); | |
2354 | fep->tx_skbuff[i] = NULL; | |
2355 | } | |
2356 | } | |
2357 | ||
2358 | /* Initialize the receive buffer descriptors. | |
2359 | */ | |
2360 | bdp = fep->rx_bd_base; | |
2361 | for (i=0; i<RX_RING_SIZE; i++) { | |
2362 | ||
2363 | /* Initialize the BD for every fragment in the page. | |
2364 | */ | |
2365 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | |
2366 | bdp++; | |
2367 | } | |
2368 | ||
2369 | /* Set the last buffer to wrap. | |
2370 | */ | |
2371 | bdp--; | |
2372 | bdp->cbd_sc |= BD_SC_WRAP; | |
2373 | ||
2374 | /* ...and the same for transmmit. | |
2375 | */ | |
2376 | bdp = fep->tx_bd_base; | |
2377 | for (i=0; i<TX_RING_SIZE; i++) { | |
2378 | ||
2379 | /* Initialize the BD for every fragment in the page. | |
2380 | */ | |
2381 | bdp->cbd_sc = 0; | |
2382 | bdp->cbd_bufaddr = 0; | |
2383 | bdp++; | |
2384 | } | |
2385 | ||
2386 | /* Set the last buffer to wrap. | |
2387 | */ | |
2388 | bdp--; | |
2389 | bdp->cbd_sc |= BD_SC_WRAP; | |
2390 | ||
2391 | /* Enable MII mode. | |
2392 | */ | |
2393 | if (duplex) { | |
2394 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ | |
2395 | fecp->fec_x_cntrl = 0x04; /* FD enable */ | |
2396 | } | |
2397 | else { | |
2398 | /* MII enable|No Rcv on Xmit */ | |
2399 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; | |
2400 | fecp->fec_x_cntrl = 0x00; | |
2401 | } | |
2402 | fep->full_duplex = duplex; | |
2403 | ||
2404 | /* Set MII speed. | |
2405 | */ | |
2406 | fecp->fec_mii_speed = fep->phy_speed; | |
2407 | ||
2408 | /* And last, enable the transmit and receive processing. | |
2409 | */ | |
2410 | fecp->fec_ecntrl = 2; | |
2411 | fecp->fec_r_des_active = 0x01000000; | |
2412 | } | |
2413 | ||
2414 | static void | |
2415 | fec_stop(struct net_device *dev) | |
2416 | { | |
2417 | volatile fec_t *fecp; | |
2418 | struct fec_enet_private *fep; | |
2419 | ||
2420 | fep = netdev_priv(dev); | |
2421 | fecp = fep->hwp; | |
2422 | ||
2423 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ | |
2424 | ||
7dd6a2aa | 2425 | while(!(fecp->fec_ievent & FEC_ENET_GRA)); |
1da177e4 LT |
2426 | |
2427 | /* Whack a reset. We should wait for this. | |
2428 | */ | |
2429 | fecp->fec_ecntrl = 1; | |
2430 | udelay(10); | |
2431 | ||
2432 | /* Clear outstanding MII command interrupts. | |
2433 | */ | |
2434 | fecp->fec_ievent = FEC_ENET_MII; | |
2435 | fec_enable_phy_intr(); | |
2436 | ||
2437 | fecp->fec_imask = FEC_ENET_MII; | |
2438 | fecp->fec_mii_speed = fep->phy_speed; | |
2439 | } | |
2440 | ||
2441 | static int __init fec_enet_module_init(void) | |
2442 | { | |
2443 | struct net_device *dev; | |
7dd6a2aa GU |
2444 | int i, j, err; |
2445 | ||
2446 | printk("FEC ENET Version 0.2\n"); | |
1da177e4 LT |
2447 | |
2448 | for (i = 0; (i < FEC_MAX_PORTS); i++) { | |
2449 | dev = alloc_etherdev(sizeof(struct fec_enet_private)); | |
2450 | if (!dev) | |
2451 | return -ENOMEM; | |
2452 | err = fec_enet_init(dev); | |
2453 | if (err) { | |
2454 | free_netdev(dev); | |
2455 | continue; | |
2456 | } | |
2457 | if (register_netdev(dev) != 0) { | |
2458 | /* XXX: missing cleanup here */ | |
2459 | free_netdev(dev); | |
2460 | return -EIO; | |
2461 | } | |
7dd6a2aa GU |
2462 | |
2463 | printk("%s: ethernet ", dev->name); | |
2464 | for (j = 0; (j < 5); j++) | |
2465 | printk("%02x:", dev->dev_addr[j]); | |
2466 | printk("%02x\n", dev->dev_addr[5]); | |
1da177e4 LT |
2467 | } |
2468 | return 0; | |
2469 | } | |
2470 | ||
2471 | module_init(fec_enet_module_init); | |
2472 | ||
2473 | MODULE_LICENSE("GPL"); |