]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * IDE I/O functions | |
3 | * | |
4 | * Basic PIO and command management functionality. | |
5 | * | |
6 | * This code was split off from ide.c. See ide.c for history and original | |
7 | * copyrights. | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify it | |
10 | * under the terms of the GNU General Public License as published by the | |
11 | * Free Software Foundation; either version 2, or (at your option) any | |
12 | * later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, but | |
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
17 | * General Public License for more details. | |
18 | * | |
19 | * For the avoidance of doubt the "preferred form" of this code is one which | |
20 | * is in an open non patent encumbered format. Where cryptographic key signing | |
21 | * forms part of the process of creating an executable the information | |
22 | * including keys needed to generate an equivalently functional executable | |
23 | * are deemed to be part of the source code. | |
24 | */ | |
25 | ||
26 | ||
27 | #include <linux/config.h> | |
28 | #include <linux/module.h> | |
29 | #include <linux/types.h> | |
30 | #include <linux/string.h> | |
31 | #include <linux/kernel.h> | |
32 | #include <linux/timer.h> | |
33 | #include <linux/mm.h> | |
34 | #include <linux/interrupt.h> | |
35 | #include <linux/major.h> | |
36 | #include <linux/errno.h> | |
37 | #include <linux/genhd.h> | |
38 | #include <linux/blkpg.h> | |
39 | #include <linux/slab.h> | |
40 | #include <linux/init.h> | |
41 | #include <linux/pci.h> | |
42 | #include <linux/delay.h> | |
43 | #include <linux/ide.h> | |
44 | #include <linux/completion.h> | |
45 | #include <linux/reboot.h> | |
46 | #include <linux/cdrom.h> | |
47 | #include <linux/seq_file.h> | |
48 | #include <linux/device.h> | |
49 | #include <linux/kmod.h> | |
50 | #include <linux/scatterlist.h> | |
51 | ||
52 | #include <asm/byteorder.h> | |
53 | #include <asm/irq.h> | |
54 | #include <asm/uaccess.h> | |
55 | #include <asm/io.h> | |
56 | #include <asm/bitops.h> | |
57 | ||
58 | int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate, | |
59 | int nr_sectors) | |
60 | { | |
61 | int ret = 1; | |
62 | ||
63 | BUG_ON(!(rq->flags & REQ_STARTED)); | |
64 | ||
65 | /* | |
66 | * if failfast is set on a request, override number of sectors and | |
67 | * complete the whole request right now | |
68 | */ | |
69 | if (blk_noretry_request(rq) && end_io_error(uptodate)) | |
70 | nr_sectors = rq->hard_nr_sectors; | |
71 | ||
72 | if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) | |
73 | rq->errors = -EIO; | |
74 | ||
75 | /* | |
76 | * decide whether to reenable DMA -- 3 is a random magic for now, | |
77 | * if we DMA timeout more than 3 times, just stay in PIO | |
78 | */ | |
79 | if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { | |
80 | drive->state = 0; | |
81 | HWGROUP(drive)->hwif->ide_dma_on(drive); | |
82 | } | |
83 | ||
84 | if (!end_that_request_first(rq, uptodate, nr_sectors)) { | |
85 | add_disk_randomness(rq->rq_disk); | |
86 | ||
87 | if (blk_rq_tagged(rq)) | |
88 | blk_queue_end_tag(drive->queue, rq); | |
89 | ||
90 | blkdev_dequeue_request(rq); | |
91 | HWGROUP(drive)->rq = NULL; | |
92 | end_that_request_last(rq); | |
93 | ret = 0; | |
94 | } | |
95 | return ret; | |
96 | } | |
97 | EXPORT_SYMBOL(__ide_end_request); | |
98 | ||
99 | /** | |
100 | * ide_end_request - complete an IDE I/O | |
101 | * @drive: IDE device for the I/O | |
102 | * @uptodate: | |
103 | * @nr_sectors: number of sectors completed | |
104 | * | |
105 | * This is our end_request wrapper function. We complete the I/O | |
106 | * update random number input and dequeue the request, which if | |
107 | * it was tagged may be out of order. | |
108 | */ | |
109 | ||
110 | int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) | |
111 | { | |
112 | struct request *rq; | |
113 | unsigned long flags; | |
114 | int ret = 1; | |
115 | ||
116 | spin_lock_irqsave(&ide_lock, flags); | |
117 | rq = HWGROUP(drive)->rq; | |
118 | ||
119 | if (!nr_sectors) | |
120 | nr_sectors = rq->hard_cur_sectors; | |
121 | ||
122 | if (blk_complete_barrier_rq_locked(drive->queue, rq, nr_sectors)) | |
123 | ret = rq->nr_sectors != 0; | |
124 | else | |
125 | ret = __ide_end_request(drive, rq, uptodate, nr_sectors); | |
126 | ||
127 | spin_unlock_irqrestore(&ide_lock, flags); | |
128 | return ret; | |
129 | } | |
130 | EXPORT_SYMBOL(ide_end_request); | |
131 | ||
132 | /* | |
133 | * Power Management state machine. This one is rather trivial for now, | |
134 | * we should probably add more, like switching back to PIO on suspend | |
135 | * to help some BIOSes, re-do the door locking on resume, etc... | |
136 | */ | |
137 | ||
138 | enum { | |
139 | ide_pm_flush_cache = ide_pm_state_start_suspend, | |
140 | idedisk_pm_standby, | |
141 | ||
142 | idedisk_pm_idle = ide_pm_state_start_resume, | |
143 | ide_pm_restore_dma, | |
144 | }; | |
145 | ||
146 | static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) | |
147 | { | |
148 | if (drive->media != ide_disk) | |
149 | return; | |
150 | ||
151 | switch (rq->pm->pm_step) { | |
152 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ | |
46dacba5 | 153 | if (rq->pm->pm_state == PM_EVENT_FREEZE) |
1da177e4 LT |
154 | rq->pm->pm_step = ide_pm_state_completed; |
155 | else | |
156 | rq->pm->pm_step = idedisk_pm_standby; | |
157 | break; | |
158 | case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ | |
159 | rq->pm->pm_step = ide_pm_state_completed; | |
160 | break; | |
161 | case idedisk_pm_idle: /* Resume step 1 (idle) complete */ | |
162 | rq->pm->pm_step = ide_pm_restore_dma; | |
163 | break; | |
164 | } | |
165 | } | |
166 | ||
167 | static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) | |
168 | { | |
169 | ide_task_t *args = rq->special; | |
170 | ||
171 | memset(args, 0, sizeof(*args)); | |
172 | ||
173 | if (drive->media != ide_disk) { | |
174 | /* skip idedisk_pm_idle for ATAPI devices */ | |
175 | if (rq->pm->pm_step == idedisk_pm_idle) | |
176 | rq->pm->pm_step = ide_pm_restore_dma; | |
177 | } | |
178 | ||
179 | switch (rq->pm->pm_step) { | |
180 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ | |
181 | if (drive->media != ide_disk) | |
182 | break; | |
183 | /* Not supported? Switch to next step now. */ | |
184 | if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { | |
185 | ide_complete_power_step(drive, rq, 0, 0); | |
186 | return ide_stopped; | |
187 | } | |
188 | if (ide_id_has_flush_cache_ext(drive->id)) | |
189 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; | |
190 | else | |
191 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; | |
192 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
193 | args->handler = &task_no_data_intr; | |
194 | return do_rw_taskfile(drive, args); | |
195 | ||
196 | case idedisk_pm_standby: /* Suspend step 2 (standby) */ | |
197 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; | |
198 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
199 | args->handler = &task_no_data_intr; | |
200 | return do_rw_taskfile(drive, args); | |
201 | ||
202 | case idedisk_pm_idle: /* Resume step 1 (idle) */ | |
203 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; | |
204 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
205 | args->handler = task_no_data_intr; | |
206 | return do_rw_taskfile(drive, args); | |
207 | ||
208 | case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */ | |
209 | /* | |
210 | * Right now, all we do is call hwif->ide_dma_check(drive), | |
211 | * we could be smarter and check for current xfer_speed | |
212 | * in struct drive etc... | |
213 | */ | |
214 | if ((drive->id->capability & 1) == 0) | |
215 | break; | |
216 | if (drive->hwif->ide_dma_check == NULL) | |
217 | break; | |
218 | drive->hwif->ide_dma_check(drive); | |
219 | break; | |
220 | } | |
221 | rq->pm->pm_step = ide_pm_state_completed; | |
222 | return ide_stopped; | |
223 | } | |
224 | ||
225 | /** | |
226 | * ide_complete_pm_request - end the current Power Management request | |
227 | * @drive: target drive | |
228 | * @rq: request | |
229 | * | |
230 | * This function cleans up the current PM request and stops the queue | |
231 | * if necessary. | |
232 | */ | |
233 | static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) | |
234 | { | |
235 | unsigned long flags; | |
236 | ||
237 | #ifdef DEBUG_PM | |
238 | printk("%s: completing PM request, %s\n", drive->name, | |
239 | blk_pm_suspend_request(rq) ? "suspend" : "resume"); | |
240 | #endif | |
241 | spin_lock_irqsave(&ide_lock, flags); | |
242 | if (blk_pm_suspend_request(rq)) { | |
243 | blk_stop_queue(drive->queue); | |
244 | } else { | |
245 | drive->blocked = 0; | |
246 | blk_start_queue(drive->queue); | |
247 | } | |
248 | blkdev_dequeue_request(rq); | |
249 | HWGROUP(drive)->rq = NULL; | |
250 | end_that_request_last(rq); | |
251 | spin_unlock_irqrestore(&ide_lock, flags); | |
252 | } | |
253 | ||
254 | /* | |
255 | * FIXME: probably move this somewhere else, name is bad too :) | |
256 | */ | |
257 | u64 ide_get_error_location(ide_drive_t *drive, char *args) | |
258 | { | |
259 | u32 high, low; | |
260 | u8 hcyl, lcyl, sect; | |
261 | u64 sector; | |
262 | ||
263 | high = 0; | |
264 | hcyl = args[5]; | |
265 | lcyl = args[4]; | |
266 | sect = args[3]; | |
267 | ||
268 | if (ide_id_has_flush_cache_ext(drive->id)) { | |
269 | low = (hcyl << 16) | (lcyl << 8) | sect; | |
270 | HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | |
271 | high = ide_read_24(drive); | |
272 | } else { | |
273 | u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); | |
274 | if (cur & 0x40) { | |
275 | high = cur & 0xf; | |
276 | low = (hcyl << 16) | (lcyl << 8) | sect; | |
277 | } else { | |
278 | low = hcyl * drive->head * drive->sect; | |
279 | low += lcyl * drive->sect; | |
280 | low += sect - 1; | |
281 | } | |
282 | } | |
283 | ||
284 | sector = ((u64) high << 24) | low; | |
285 | return sector; | |
286 | } | |
287 | EXPORT_SYMBOL(ide_get_error_location); | |
288 | ||
289 | /** | |
290 | * ide_end_drive_cmd - end an explicit drive command | |
291 | * @drive: command | |
292 | * @stat: status bits | |
293 | * @err: error bits | |
294 | * | |
295 | * Clean up after success/failure of an explicit drive command. | |
296 | * These get thrown onto the queue so they are synchronized with | |
297 | * real I/O operations on the drive. | |
298 | * | |
299 | * In LBA48 mode we have to read the register set twice to get | |
300 | * all the extra information out. | |
301 | */ | |
302 | ||
303 | void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) | |
304 | { | |
305 | ide_hwif_t *hwif = HWIF(drive); | |
306 | unsigned long flags; | |
307 | struct request *rq; | |
308 | ||
309 | spin_lock_irqsave(&ide_lock, flags); | |
310 | rq = HWGROUP(drive)->rq; | |
311 | spin_unlock_irqrestore(&ide_lock, flags); | |
312 | ||
313 | if (rq->flags & REQ_DRIVE_CMD) { | |
314 | u8 *args = (u8 *) rq->buffer; | |
315 | if (rq->errors == 0) | |
316 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
317 | ||
318 | if (args) { | |
319 | args[0] = stat; | |
320 | args[1] = err; | |
321 | args[2] = hwif->INB(IDE_NSECTOR_REG); | |
322 | } | |
323 | } else if (rq->flags & REQ_DRIVE_TASK) { | |
324 | u8 *args = (u8 *) rq->buffer; | |
325 | if (rq->errors == 0) | |
326 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
327 | ||
328 | if (args) { | |
329 | args[0] = stat; | |
330 | args[1] = err; | |
331 | args[2] = hwif->INB(IDE_NSECTOR_REG); | |
332 | args[3] = hwif->INB(IDE_SECTOR_REG); | |
333 | args[4] = hwif->INB(IDE_LCYL_REG); | |
334 | args[5] = hwif->INB(IDE_HCYL_REG); | |
335 | args[6] = hwif->INB(IDE_SELECT_REG); | |
336 | } | |
337 | } else if (rq->flags & REQ_DRIVE_TASKFILE) { | |
338 | ide_task_t *args = (ide_task_t *) rq->special; | |
339 | if (rq->errors == 0) | |
340 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
341 | ||
342 | if (args) { | |
343 | if (args->tf_in_flags.b.data) { | |
344 | u16 data = hwif->INW(IDE_DATA_REG); | |
345 | args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; | |
346 | args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; | |
347 | } | |
348 | args->tfRegister[IDE_ERROR_OFFSET] = err; | |
349 | /* be sure we're looking at the low order bits */ | |
350 | hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); | |
351 | args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); | |
352 | args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); | |
353 | args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); | |
354 | args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); | |
355 | args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); | |
356 | args->tfRegister[IDE_STATUS_OFFSET] = stat; | |
357 | ||
358 | if (drive->addressing == 1) { | |
359 | hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | |
360 | args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); | |
361 | args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); | |
362 | args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); | |
363 | args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); | |
364 | args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); | |
365 | } | |
366 | } | |
367 | } else if (blk_pm_request(rq)) { | |
368 | #ifdef DEBUG_PM | |
369 | printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", | |
370 | drive->name, rq->pm->pm_step, stat, err); | |
371 | #endif | |
372 | ide_complete_power_step(drive, rq, stat, err); | |
373 | if (rq->pm->pm_step == ide_pm_state_completed) | |
374 | ide_complete_pm_request(drive, rq); | |
375 | return; | |
376 | } | |
377 | ||
378 | spin_lock_irqsave(&ide_lock, flags); | |
379 | blkdev_dequeue_request(rq); | |
380 | HWGROUP(drive)->rq = NULL; | |
381 | rq->errors = err; | |
382 | end_that_request_last(rq); | |
383 | spin_unlock_irqrestore(&ide_lock, flags); | |
384 | } | |
385 | ||
386 | EXPORT_SYMBOL(ide_end_drive_cmd); | |
387 | ||
388 | /** | |
389 | * try_to_flush_leftover_data - flush junk | |
390 | * @drive: drive to flush | |
391 | * | |
392 | * try_to_flush_leftover_data() is invoked in response to a drive | |
393 | * unexpectedly having its DRQ_STAT bit set. As an alternative to | |
394 | * resetting the drive, this routine tries to clear the condition | |
395 | * by read a sector's worth of data from the drive. Of course, | |
396 | * this may not help if the drive is *waiting* for data from *us*. | |
397 | */ | |
398 | static void try_to_flush_leftover_data (ide_drive_t *drive) | |
399 | { | |
400 | int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; | |
401 | ||
402 | if (drive->media != ide_disk) | |
403 | return; | |
404 | while (i > 0) { | |
405 | u32 buffer[16]; | |
406 | u32 wcount = (i > 16) ? 16 : i; | |
407 | ||
408 | i -= wcount; | |
409 | HWIF(drive)->ata_input_data(drive, buffer, wcount); | |
410 | } | |
411 | } | |
412 | ||
413 | static void ide_kill_rq(ide_drive_t *drive, struct request *rq) | |
414 | { | |
415 | if (rq->rq_disk) { | |
416 | ide_driver_t *drv; | |
417 | ||
418 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
419 | drv->end_request(drive, 0, 0); | |
420 | } else | |
421 | ide_end_request(drive, 0, 0); | |
422 | } | |
423 | ||
424 | static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
425 | { | |
426 | ide_hwif_t *hwif = drive->hwif; | |
427 | ||
428 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | |
429 | /* other bits are useless when BUSY */ | |
430 | rq->errors |= ERROR_RESET; | |
431 | } else if (stat & ERR_STAT) { | |
432 | /* err has different meaning on cdrom and tape */ | |
433 | if (err == ABRT_ERR) { | |
434 | if (drive->select.b.lba && | |
435 | /* some newer drives don't support WIN_SPECIFY */ | |
436 | hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) | |
437 | return ide_stopped; | |
438 | } else if ((err & BAD_CRC) == BAD_CRC) { | |
439 | /* UDMA crc error, just retry the operation */ | |
440 | drive->crc_count++; | |
441 | } else if (err & (BBD_ERR | ECC_ERR)) { | |
442 | /* retries won't help these */ | |
443 | rq->errors = ERROR_MAX; | |
444 | } else if (err & TRK0_ERR) { | |
445 | /* help it find track zero */ | |
446 | rq->errors |= ERROR_RECAL; | |
447 | } | |
448 | } | |
449 | ||
450 | if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ) | |
451 | try_to_flush_leftover_data(drive); | |
452 | ||
453 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) | |
454 | /* force an abort */ | |
455 | hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); | |
456 | ||
457 | if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) | |
458 | ide_kill_rq(drive, rq); | |
459 | else { | |
460 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { | |
461 | ++rq->errors; | |
462 | return ide_do_reset(drive); | |
463 | } | |
464 | if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) | |
465 | drive->special.b.recalibrate = 1; | |
466 | ++rq->errors; | |
467 | } | |
468 | return ide_stopped; | |
469 | } | |
470 | ||
471 | static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
472 | { | |
473 | ide_hwif_t *hwif = drive->hwif; | |
474 | ||
475 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | |
476 | /* other bits are useless when BUSY */ | |
477 | rq->errors |= ERROR_RESET; | |
478 | } else { | |
479 | /* add decoding error stuff */ | |
480 | } | |
481 | ||
482 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) | |
483 | /* force an abort */ | |
484 | hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); | |
485 | ||
486 | if (rq->errors >= ERROR_MAX) { | |
487 | ide_kill_rq(drive, rq); | |
488 | } else { | |
489 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { | |
490 | ++rq->errors; | |
491 | return ide_do_reset(drive); | |
492 | } | |
493 | ++rq->errors; | |
494 | } | |
495 | ||
496 | return ide_stopped; | |
497 | } | |
498 | ||
499 | ide_startstop_t | |
500 | __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
501 | { | |
502 | if (drive->media == ide_disk) | |
503 | return ide_ata_error(drive, rq, stat, err); | |
504 | return ide_atapi_error(drive, rq, stat, err); | |
505 | } | |
506 | ||
507 | EXPORT_SYMBOL_GPL(__ide_error); | |
508 | ||
509 | /** | |
510 | * ide_error - handle an error on the IDE | |
511 | * @drive: drive the error occurred on | |
512 | * @msg: message to report | |
513 | * @stat: status bits | |
514 | * | |
515 | * ide_error() takes action based on the error returned by the drive. | |
516 | * For normal I/O that may well include retries. We deal with | |
517 | * both new-style (taskfile) and old style command handling here. | |
518 | * In the case of taskfile command handling there is work left to | |
519 | * do | |
520 | */ | |
521 | ||
522 | ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) | |
523 | { | |
524 | struct request *rq; | |
525 | u8 err; | |
526 | ||
527 | err = ide_dump_status(drive, msg, stat); | |
528 | ||
529 | if ((rq = HWGROUP(drive)->rq) == NULL) | |
530 | return ide_stopped; | |
531 | ||
532 | /* retry only "normal" I/O: */ | |
533 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { | |
534 | rq->errors = 1; | |
535 | ide_end_drive_cmd(drive, stat, err); | |
536 | return ide_stopped; | |
537 | } | |
538 | ||
539 | if (rq->rq_disk) { | |
540 | ide_driver_t *drv; | |
541 | ||
542 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
543 | return drv->error(drive, rq, stat, err); | |
544 | } else | |
545 | return __ide_error(drive, rq, stat, err); | |
546 | } | |
547 | ||
548 | EXPORT_SYMBOL_GPL(ide_error); | |
549 | ||
550 | ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) | |
551 | { | |
552 | if (drive->media != ide_disk) | |
553 | rq->errors |= ERROR_RESET; | |
554 | ||
555 | ide_kill_rq(drive, rq); | |
556 | ||
557 | return ide_stopped; | |
558 | } | |
559 | ||
560 | EXPORT_SYMBOL_GPL(__ide_abort); | |
561 | ||
562 | /** | |
338cec32 | 563 | * ide_abort - abort pending IDE operations |
1da177e4 LT |
564 | * @drive: drive the error occurred on |
565 | * @msg: message to report | |
566 | * | |
567 | * ide_abort kills and cleans up when we are about to do a | |
568 | * host initiated reset on active commands. Longer term we | |
569 | * want handlers to have sensible abort handling themselves | |
570 | * | |
571 | * This differs fundamentally from ide_error because in | |
572 | * this case the command is doing just fine when we | |
573 | * blow it away. | |
574 | */ | |
575 | ||
576 | ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) | |
577 | { | |
578 | struct request *rq; | |
579 | ||
580 | if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) | |
581 | return ide_stopped; | |
582 | ||
583 | /* retry only "normal" I/O: */ | |
584 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { | |
585 | rq->errors = 1; | |
586 | ide_end_drive_cmd(drive, BUSY_STAT, 0); | |
587 | return ide_stopped; | |
588 | } | |
589 | ||
590 | if (rq->rq_disk) { | |
591 | ide_driver_t *drv; | |
592 | ||
593 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
594 | return drv->abort(drive, rq); | |
595 | } else | |
596 | return __ide_abort(drive, rq); | |
597 | } | |
598 | ||
599 | /** | |
600 | * ide_cmd - issue a simple drive command | |
601 | * @drive: drive the command is for | |
602 | * @cmd: command byte | |
603 | * @nsect: sector byte | |
604 | * @handler: handler for the command completion | |
605 | * | |
606 | * Issue a simple drive command with interrupts. | |
607 | * The drive must be selected beforehand. | |
608 | */ | |
609 | ||
610 | static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, | |
611 | ide_handler_t *handler) | |
612 | { | |
613 | ide_hwif_t *hwif = HWIF(drive); | |
614 | if (IDE_CONTROL_REG) | |
615 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ | |
616 | SELECT_MASK(drive,0); | |
617 | hwif->OUTB(nsect,IDE_NSECTOR_REG); | |
618 | ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); | |
619 | } | |
620 | ||
621 | /** | |
622 | * drive_cmd_intr - drive command completion interrupt | |
623 | * @drive: drive the completion interrupt occurred on | |
624 | * | |
625 | * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. | |
338cec32 | 626 | * We do any necessary data reading and then wait for the drive to |
1da177e4 LT |
627 | * go non busy. At that point we may read the error data and complete |
628 | * the request | |
629 | */ | |
630 | ||
631 | static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) | |
632 | { | |
633 | struct request *rq = HWGROUP(drive)->rq; | |
634 | ide_hwif_t *hwif = HWIF(drive); | |
635 | u8 *args = (u8 *) rq->buffer; | |
636 | u8 stat = hwif->INB(IDE_STATUS_REG); | |
637 | int retries = 10; | |
638 | ||
639 | local_irq_enable(); | |
640 | if ((stat & DRQ_STAT) && args && args[3]) { | |
641 | u8 io_32bit = drive->io_32bit; | |
642 | drive->io_32bit = 0; | |
643 | hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); | |
644 | drive->io_32bit = io_32bit; | |
645 | while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) | |
646 | udelay(100); | |
647 | } | |
648 | ||
649 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) | |
650 | return ide_error(drive, "drive_cmd", stat); | |
651 | /* calls ide_end_drive_cmd */ | |
652 | ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); | |
653 | return ide_stopped; | |
654 | } | |
655 | ||
656 | static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) | |
657 | { | |
658 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | |
659 | task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; | |
660 | task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; | |
661 | task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; | |
662 | task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; | |
663 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; | |
664 | ||
665 | task->handler = &set_geometry_intr; | |
666 | } | |
667 | ||
668 | static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) | |
669 | { | |
670 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | |
671 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; | |
672 | ||
673 | task->handler = &recal_intr; | |
674 | } | |
675 | ||
676 | static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) | |
677 | { | |
678 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; | |
679 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; | |
680 | ||
681 | task->handler = &set_multmode_intr; | |
682 | } | |
683 | ||
684 | static ide_startstop_t ide_disk_special(ide_drive_t *drive) | |
685 | { | |
686 | special_t *s = &drive->special; | |
687 | ide_task_t args; | |
688 | ||
689 | memset(&args, 0, sizeof(ide_task_t)); | |
690 | args.command_type = IDE_DRIVE_TASK_NO_DATA; | |
691 | ||
692 | if (s->b.set_geometry) { | |
693 | s->b.set_geometry = 0; | |
694 | ide_init_specify_cmd(drive, &args); | |
695 | } else if (s->b.recalibrate) { | |
696 | s->b.recalibrate = 0; | |
697 | ide_init_restore_cmd(drive, &args); | |
698 | } else if (s->b.set_multmode) { | |
699 | s->b.set_multmode = 0; | |
700 | if (drive->mult_req > drive->id->max_multsect) | |
701 | drive->mult_req = drive->id->max_multsect; | |
702 | ide_init_setmult_cmd(drive, &args); | |
703 | } else if (s->all) { | |
704 | int special = s->all; | |
705 | s->all = 0; | |
706 | printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); | |
707 | return ide_stopped; | |
708 | } | |
709 | ||
710 | do_rw_taskfile(drive, &args); | |
711 | ||
712 | return ide_started; | |
713 | } | |
714 | ||
715 | /** | |
716 | * do_special - issue some special commands | |
717 | * @drive: drive the command is for | |
718 | * | |
719 | * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT | |
720 | * commands to a drive. It used to do much more, but has been scaled | |
721 | * back. | |
722 | */ | |
723 | ||
724 | static ide_startstop_t do_special (ide_drive_t *drive) | |
725 | { | |
726 | special_t *s = &drive->special; | |
727 | ||
728 | #ifdef DEBUG | |
729 | printk("%s: do_special: 0x%02x\n", drive->name, s->all); | |
730 | #endif | |
731 | if (s->b.set_tune) { | |
732 | s->b.set_tune = 0; | |
733 | if (HWIF(drive)->tuneproc != NULL) | |
734 | HWIF(drive)->tuneproc(drive, drive->tune_req); | |
735 | return ide_stopped; | |
736 | } else { | |
737 | if (drive->media == ide_disk) | |
738 | return ide_disk_special(drive); | |
739 | ||
740 | s->all = 0; | |
741 | drive->mult_req = 0; | |
742 | return ide_stopped; | |
743 | } | |
744 | } | |
745 | ||
746 | void ide_map_sg(ide_drive_t *drive, struct request *rq) | |
747 | { | |
748 | ide_hwif_t *hwif = drive->hwif; | |
749 | struct scatterlist *sg = hwif->sg_table; | |
750 | ||
751 | if (hwif->sg_mapped) /* needed by ide-scsi */ | |
752 | return; | |
753 | ||
754 | if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) { | |
755 | hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); | |
756 | } else { | |
757 | sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); | |
758 | hwif->sg_nents = 1; | |
759 | } | |
760 | } | |
761 | ||
762 | EXPORT_SYMBOL_GPL(ide_map_sg); | |
763 | ||
764 | void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) | |
765 | { | |
766 | ide_hwif_t *hwif = drive->hwif; | |
767 | ||
768 | hwif->nsect = hwif->nleft = rq->nr_sectors; | |
769 | hwif->cursg = hwif->cursg_ofs = 0; | |
770 | } | |
771 | ||
772 | EXPORT_SYMBOL_GPL(ide_init_sg_cmd); | |
773 | ||
774 | /** | |
775 | * execute_drive_command - issue special drive command | |
338cec32 | 776 | * @drive: the drive to issue the command on |
1da177e4 LT |
777 | * @rq: the request structure holding the command |
778 | * | |
779 | * execute_drive_cmd() issues a special drive command, usually | |
780 | * initiated by ioctl() from the external hdparm program. The | |
781 | * command can be a drive command, drive task or taskfile | |
782 | * operation. Weirdly you can call it with NULL to wait for | |
783 | * all commands to finish. Don't do this as that is due to change | |
784 | */ | |
785 | ||
786 | static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, | |
787 | struct request *rq) | |
788 | { | |
789 | ide_hwif_t *hwif = HWIF(drive); | |
790 | if (rq->flags & REQ_DRIVE_TASKFILE) { | |
791 | ide_task_t *args = rq->special; | |
792 | ||
793 | if (!args) | |
794 | goto done; | |
795 | ||
796 | hwif->data_phase = args->data_phase; | |
797 | ||
798 | switch (hwif->data_phase) { | |
799 | case TASKFILE_MULTI_OUT: | |
800 | case TASKFILE_OUT: | |
801 | case TASKFILE_MULTI_IN: | |
802 | case TASKFILE_IN: | |
803 | ide_init_sg_cmd(drive, rq); | |
804 | ide_map_sg(drive, rq); | |
805 | default: | |
806 | break; | |
807 | } | |
808 | ||
809 | if (args->tf_out_flags.all != 0) | |
810 | return flagged_taskfile(drive, args); | |
811 | return do_rw_taskfile(drive, args); | |
812 | } else if (rq->flags & REQ_DRIVE_TASK) { | |
813 | u8 *args = rq->buffer; | |
814 | u8 sel; | |
815 | ||
816 | if (!args) | |
817 | goto done; | |
818 | #ifdef DEBUG | |
819 | printk("%s: DRIVE_TASK_CMD ", drive->name); | |
820 | printk("cmd=0x%02x ", args[0]); | |
821 | printk("fr=0x%02x ", args[1]); | |
822 | printk("ns=0x%02x ", args[2]); | |
823 | printk("sc=0x%02x ", args[3]); | |
824 | printk("lcyl=0x%02x ", args[4]); | |
825 | printk("hcyl=0x%02x ", args[5]); | |
826 | printk("sel=0x%02x\n", args[6]); | |
827 | #endif | |
828 | hwif->OUTB(args[1], IDE_FEATURE_REG); | |
829 | hwif->OUTB(args[3], IDE_SECTOR_REG); | |
830 | hwif->OUTB(args[4], IDE_LCYL_REG); | |
831 | hwif->OUTB(args[5], IDE_HCYL_REG); | |
832 | sel = (args[6] & ~0x10); | |
833 | if (drive->select.b.unit) | |
834 | sel |= 0x10; | |
835 | hwif->OUTB(sel, IDE_SELECT_REG); | |
836 | ide_cmd(drive, args[0], args[2], &drive_cmd_intr); | |
837 | return ide_started; | |
838 | } else if (rq->flags & REQ_DRIVE_CMD) { | |
839 | u8 *args = rq->buffer; | |
840 | ||
841 | if (!args) | |
842 | goto done; | |
843 | #ifdef DEBUG | |
844 | printk("%s: DRIVE_CMD ", drive->name); | |
845 | printk("cmd=0x%02x ", args[0]); | |
846 | printk("sc=0x%02x ", args[1]); | |
847 | printk("fr=0x%02x ", args[2]); | |
848 | printk("xx=0x%02x\n", args[3]); | |
849 | #endif | |
850 | if (args[0] == WIN_SMART) { | |
851 | hwif->OUTB(0x4f, IDE_LCYL_REG); | |
852 | hwif->OUTB(0xc2, IDE_HCYL_REG); | |
853 | hwif->OUTB(args[2],IDE_FEATURE_REG); | |
854 | hwif->OUTB(args[1],IDE_SECTOR_REG); | |
855 | ide_cmd(drive, args[0], args[3], &drive_cmd_intr); | |
856 | return ide_started; | |
857 | } | |
858 | hwif->OUTB(args[2],IDE_FEATURE_REG); | |
859 | ide_cmd(drive, args[0], args[1], &drive_cmd_intr); | |
860 | return ide_started; | |
861 | } | |
862 | ||
863 | done: | |
864 | /* | |
865 | * NULL is actually a valid way of waiting for | |
866 | * all current requests to be flushed from the queue. | |
867 | */ | |
868 | #ifdef DEBUG | |
869 | printk("%s: DRIVE_CMD (null)\n", drive->name); | |
870 | #endif | |
871 | ide_end_drive_cmd(drive, | |
872 | hwif->INB(IDE_STATUS_REG), | |
873 | hwif->INB(IDE_ERROR_REG)); | |
874 | return ide_stopped; | |
875 | } | |
876 | ||
877 | /** | |
878 | * start_request - start of I/O and command issuing for IDE | |
879 | * | |
880 | * start_request() initiates handling of a new I/O request. It | |
881 | * accepts commands and I/O (read/write) requests. It also does | |
882 | * the final remapping for weird stuff like EZDrive. Once | |
883 | * device mapper can work sector level the EZDrive stuff can go away | |
884 | * | |
885 | * FIXME: this function needs a rename | |
886 | */ | |
887 | ||
888 | static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) | |
889 | { | |
890 | ide_startstop_t startstop; | |
891 | sector_t block; | |
892 | ||
893 | BUG_ON(!(rq->flags & REQ_STARTED)); | |
894 | ||
895 | #ifdef DEBUG | |
896 | printk("%s: start_request: current=0x%08lx\n", | |
897 | HWIF(drive)->name, (unsigned long) rq); | |
898 | #endif | |
899 | ||
900 | /* bail early if we've exceeded max_failures */ | |
901 | if (drive->max_failures && (drive->failures > drive->max_failures)) { | |
902 | goto kill_rq; | |
903 | } | |
904 | ||
905 | block = rq->sector; | |
906 | if (blk_fs_request(rq) && | |
907 | (drive->media == ide_disk || drive->media == ide_floppy)) { | |
908 | block += drive->sect0; | |
909 | } | |
910 | /* Yecch - this will shift the entire interval, | |
911 | possibly killing some innocent following sector */ | |
912 | if (block == 0 && drive->remap_0_to_1 == 1) | |
913 | block = 1; /* redirect MBR access to EZ-Drive partn table */ | |
914 | ||
915 | if (blk_pm_suspend_request(rq) && | |
916 | rq->pm->pm_step == ide_pm_state_start_suspend) | |
917 | /* Mark drive blocked when starting the suspend sequence. */ | |
918 | drive->blocked = 1; | |
919 | else if (blk_pm_resume_request(rq) && | |
920 | rq->pm->pm_step == ide_pm_state_start_resume) { | |
921 | /* | |
922 | * The first thing we do on wakeup is to wait for BSY bit to | |
923 | * go away (with a looong timeout) as a drive on this hwif may | |
924 | * just be POSTing itself. | |
925 | * We do that before even selecting as the "other" device on | |
926 | * the bus may be broken enough to walk on our toes at this | |
927 | * point. | |
928 | */ | |
929 | int rc; | |
930 | #ifdef DEBUG_PM | |
931 | printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); | |
932 | #endif | |
933 | rc = ide_wait_not_busy(HWIF(drive), 35000); | |
934 | if (rc) | |
935 | printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); | |
936 | SELECT_DRIVE(drive); | |
937 | HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); | |
938 | rc = ide_wait_not_busy(HWIF(drive), 10000); | |
939 | if (rc) | |
940 | printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); | |
941 | } | |
942 | ||
943 | SELECT_DRIVE(drive); | |
944 | if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { | |
945 | printk(KERN_ERR "%s: drive not ready for command\n", drive->name); | |
946 | return startstop; | |
947 | } | |
948 | if (!drive->special.all) { | |
949 | ide_driver_t *drv; | |
950 | ||
951 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) | |
952 | return execute_drive_cmd(drive, rq); | |
953 | else if (rq->flags & REQ_DRIVE_TASKFILE) | |
954 | return execute_drive_cmd(drive, rq); | |
955 | else if (blk_pm_request(rq)) { | |
956 | #ifdef DEBUG_PM | |
957 | printk("%s: start_power_step(step: %d)\n", | |
958 | drive->name, rq->pm->pm_step); | |
959 | #endif | |
960 | startstop = ide_start_power_step(drive, rq); | |
961 | if (startstop == ide_stopped && | |
962 | rq->pm->pm_step == ide_pm_state_completed) | |
963 | ide_complete_pm_request(drive, rq); | |
964 | return startstop; | |
965 | } | |
966 | ||
967 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
968 | return drv->do_request(drive, rq, block); | |
969 | } | |
970 | return do_special(drive); | |
971 | kill_rq: | |
972 | ide_kill_rq(drive, rq); | |
973 | return ide_stopped; | |
974 | } | |
975 | ||
976 | /** | |
977 | * ide_stall_queue - pause an IDE device | |
978 | * @drive: drive to stall | |
979 | * @timeout: time to stall for (jiffies) | |
980 | * | |
981 | * ide_stall_queue() can be used by a drive to give excess bandwidth back | |
982 | * to the hwgroup by sleeping for timeout jiffies. | |
983 | */ | |
984 | ||
985 | void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) | |
986 | { | |
987 | if (timeout > WAIT_WORSTCASE) | |
988 | timeout = WAIT_WORSTCASE; | |
989 | drive->sleep = timeout + jiffies; | |
990 | drive->sleeping = 1; | |
991 | } | |
992 | ||
993 | EXPORT_SYMBOL(ide_stall_queue); | |
994 | ||
995 | #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) | |
996 | ||
997 | /** | |
998 | * choose_drive - select a drive to service | |
999 | * @hwgroup: hardware group to select on | |
1000 | * | |
1001 | * choose_drive() selects the next drive which will be serviced. | |
1002 | * This is necessary because the IDE layer can't issue commands | |
1003 | * to both drives on the same cable, unlike SCSI. | |
1004 | */ | |
1005 | ||
1006 | static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) | |
1007 | { | |
1008 | ide_drive_t *drive, *best; | |
1009 | ||
1010 | repeat: | |
1011 | best = NULL; | |
1012 | drive = hwgroup->drive; | |
1013 | ||
1014 | /* | |
1015 | * drive is doing pre-flush, ordered write, post-flush sequence. even | |
1016 | * though that is 3 requests, it must be seen as a single transaction. | |
1017 | * we must not preempt this drive until that is complete | |
1018 | */ | |
1019 | if (blk_queue_flushing(drive->queue)) { | |
1020 | /* | |
1021 | * small race where queue could get replugged during | |
1022 | * the 3-request flush cycle, just yank the plug since | |
1023 | * we want it to finish asap | |
1024 | */ | |
1025 | blk_remove_plug(drive->queue); | |
1026 | return drive; | |
1027 | } | |
1028 | ||
1029 | do { | |
1030 | if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) | |
1031 | && !elv_queue_empty(drive->queue)) { | |
1032 | if (!best | |
1033 | || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) | |
1034 | || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) | |
1035 | { | |
1036 | if (!blk_queue_plugged(drive->queue)) | |
1037 | best = drive; | |
1038 | } | |
1039 | } | |
1040 | } while ((drive = drive->next) != hwgroup->drive); | |
1041 | if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { | |
1042 | long t = (signed long)(WAKEUP(best) - jiffies); | |
1043 | if (t >= WAIT_MIN_SLEEP) { | |
1044 | /* | |
1045 | * We *may* have some time to spare, but first let's see if | |
1046 | * someone can potentially benefit from our nice mood today.. | |
1047 | */ | |
1048 | drive = best->next; | |
1049 | do { | |
1050 | if (!drive->sleeping | |
1051 | && time_before(jiffies - best->service_time, WAKEUP(drive)) | |
1052 | && time_before(WAKEUP(drive), jiffies + t)) | |
1053 | { | |
1054 | ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); | |
1055 | goto repeat; | |
1056 | } | |
1057 | } while ((drive = drive->next) != best); | |
1058 | } | |
1059 | } | |
1060 | return best; | |
1061 | } | |
1062 | ||
1063 | /* | |
1064 | * Issue a new request to a drive from hwgroup | |
1065 | * Caller must have already done spin_lock_irqsave(&ide_lock, ..); | |
1066 | * | |
1067 | * A hwgroup is a serialized group of IDE interfaces. Usually there is | |
1068 | * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) | |
1069 | * may have both interfaces in a single hwgroup to "serialize" access. | |
1070 | * Or possibly multiple ISA interfaces can share a common IRQ by being grouped | |
1071 | * together into one hwgroup for serialized access. | |
1072 | * | |
1073 | * Note also that several hwgroups can end up sharing a single IRQ, | |
1074 | * possibly along with many other devices. This is especially common in | |
1075 | * PCI-based systems with off-board IDE controller cards. | |
1076 | * | |
1077 | * The IDE driver uses the single global ide_lock spinlock to protect | |
1078 | * access to the request queues, and to protect the hwgroup->busy flag. | |
1079 | * | |
1080 | * The first thread into the driver for a particular hwgroup sets the | |
1081 | * hwgroup->busy flag to indicate that this hwgroup is now active, | |
1082 | * and then initiates processing of the top request from the request queue. | |
1083 | * | |
1084 | * Other threads attempting entry notice the busy setting, and will simply | |
1085 | * queue their new requests and exit immediately. Note that hwgroup->busy | |
1086 | * remains set even when the driver is merely awaiting the next interrupt. | |
1087 | * Thus, the meaning is "this hwgroup is busy processing a request". | |
1088 | * | |
1089 | * When processing of a request completes, the completing thread or IRQ-handler | |
1090 | * will start the next request from the queue. If no more work remains, | |
1091 | * the driver will clear the hwgroup->busy flag and exit. | |
1092 | * | |
1093 | * The ide_lock (spinlock) is used to protect all access to the | |
1094 | * hwgroup->busy flag, but is otherwise not needed for most processing in | |
1095 | * the driver. This makes the driver much more friendlier to shared IRQs | |
1096 | * than previous designs, while remaining 100% (?) SMP safe and capable. | |
1097 | */ | |
1098 | static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) | |
1099 | { | |
1100 | ide_drive_t *drive; | |
1101 | ide_hwif_t *hwif; | |
1102 | struct request *rq; | |
1103 | ide_startstop_t startstop; | |
867f8b4e | 1104 | int loops = 0; |
1da177e4 LT |
1105 | |
1106 | /* for atari only: POSSIBLY BROKEN HERE(?) */ | |
1107 | ide_get_lock(ide_intr, hwgroup); | |
1108 | ||
1109 | /* caller must own ide_lock */ | |
1110 | BUG_ON(!irqs_disabled()); | |
1111 | ||
1112 | while (!hwgroup->busy) { | |
1113 | hwgroup->busy = 1; | |
1114 | drive = choose_drive(hwgroup); | |
1115 | if (drive == NULL) { | |
1116 | int sleeping = 0; | |
1117 | unsigned long sleep = 0; /* shut up, gcc */ | |
1118 | hwgroup->rq = NULL; | |
1119 | drive = hwgroup->drive; | |
1120 | do { | |
1121 | if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { | |
1122 | sleeping = 1; | |
1123 | sleep = drive->sleep; | |
1124 | } | |
1125 | } while ((drive = drive->next) != hwgroup->drive); | |
1126 | if (sleeping) { | |
1127 | /* | |
1128 | * Take a short snooze, and then wake up this hwgroup again. | |
1129 | * This gives other hwgroups on the same a chance to | |
1130 | * play fairly with us, just in case there are big differences | |
1131 | * in relative throughputs.. don't want to hog the cpu too much. | |
1132 | */ | |
1133 | if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) | |
1134 | sleep = jiffies + WAIT_MIN_SLEEP; | |
1135 | #if 1 | |
1136 | if (timer_pending(&hwgroup->timer)) | |
1137 | printk(KERN_CRIT "ide_set_handler: timer already active\n"); | |
1138 | #endif | |
1139 | /* so that ide_timer_expiry knows what to do */ | |
1140 | hwgroup->sleeping = 1; | |
1141 | mod_timer(&hwgroup->timer, sleep); | |
1142 | /* we purposely leave hwgroup->busy==1 | |
1143 | * while sleeping */ | |
1144 | } else { | |
1145 | /* Ugly, but how can we sleep for the lock | |
1146 | * otherwise? perhaps from tq_disk? | |
1147 | */ | |
1148 | ||
1149 | /* for atari only */ | |
1150 | ide_release_lock(); | |
1151 | hwgroup->busy = 0; | |
1152 | } | |
1153 | ||
1154 | /* no more work for this hwgroup (for now) */ | |
1155 | return; | |
1156 | } | |
867f8b4e | 1157 | again: |
1da177e4 LT |
1158 | hwif = HWIF(drive); |
1159 | if (hwgroup->hwif->sharing_irq && | |
1160 | hwif != hwgroup->hwif && | |
1161 | hwif->io_ports[IDE_CONTROL_OFFSET]) { | |
1162 | /* set nIEN for previous hwif */ | |
1163 | SELECT_INTERRUPT(drive); | |
1164 | } | |
1165 | hwgroup->hwif = hwif; | |
1166 | hwgroup->drive = drive; | |
1167 | drive->sleeping = 0; | |
1168 | drive->service_start = jiffies; | |
1169 | ||
1170 | if (blk_queue_plugged(drive->queue)) { | |
1171 | printk(KERN_ERR "ide: huh? queue was plugged!\n"); | |
1172 | break; | |
1173 | } | |
1174 | ||
1175 | /* | |
1176 | * we know that the queue isn't empty, but this can happen | |
1177 | * if the q->prep_rq_fn() decides to kill a request | |
1178 | */ | |
1179 | rq = elv_next_request(drive->queue); | |
1180 | if (!rq) { | |
1181 | hwgroup->busy = 0; | |
1182 | break; | |
1183 | } | |
1184 | ||
1185 | /* | |
1186 | * Sanity: don't accept a request that isn't a PM request | |
1187 | * if we are currently power managed. This is very important as | |
1188 | * blk_stop_queue() doesn't prevent the elv_next_request() | |
1189 | * above to return us whatever is in the queue. Since we call | |
1190 | * ide_do_request() ourselves, we end up taking requests while | |
1191 | * the queue is blocked... | |
1192 | * | |
1193 | * We let requests forced at head of queue with ide-preempt | |
1194 | * though. I hope that doesn't happen too much, hopefully not | |
1195 | * unless the subdriver triggers such a thing in its own PM | |
1196 | * state machine. | |
867f8b4e BH |
1197 | * |
1198 | * We count how many times we loop here to make sure we service | |
1199 | * all drives in the hwgroup without looping for ever | |
1da177e4 LT |
1200 | */ |
1201 | if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) { | |
867f8b4e BH |
1202 | drive = drive->next ? drive->next : hwgroup->drive; |
1203 | if (loops++ < 4 && !blk_queue_plugged(drive->queue)) | |
1204 | goto again; | |
1da177e4 LT |
1205 | /* We clear busy, there should be no pending ATA command at this point. */ |
1206 | hwgroup->busy = 0; | |
1207 | break; | |
1208 | } | |
1209 | ||
1210 | hwgroup->rq = rq; | |
1211 | ||
1212 | /* | |
1213 | * Some systems have trouble with IDE IRQs arriving while | |
1214 | * the driver is still setting things up. So, here we disable | |
1215 | * the IRQ used by this interface while the request is being started. | |
1216 | * This may look bad at first, but pretty much the same thing | |
1217 | * happens anyway when any interrupt comes in, IDE or otherwise | |
1218 | * -- the kernel masks the IRQ while it is being handled. | |
1219 | */ | |
1220 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | |
1221 | disable_irq_nosync(hwif->irq); | |
1222 | spin_unlock(&ide_lock); | |
1223 | local_irq_enable(); | |
1224 | /* allow other IRQs while we start this request */ | |
1225 | startstop = start_request(drive, rq); | |
1226 | spin_lock_irq(&ide_lock); | |
1227 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | |
1228 | enable_irq(hwif->irq); | |
1229 | if (startstop == ide_stopped) | |
1230 | hwgroup->busy = 0; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * Passes the stuff to ide_do_request | |
1236 | */ | |
1237 | void do_ide_request(request_queue_t *q) | |
1238 | { | |
1239 | ide_drive_t *drive = q->queuedata; | |
1240 | ||
1241 | ide_do_request(HWGROUP(drive), IDE_NO_IRQ); | |
1242 | } | |
1243 | ||
1244 | /* | |
1245 | * un-busy the hwgroup etc, and clear any pending DMA status. we want to | |
1246 | * retry the current request in pio mode instead of risking tossing it | |
1247 | * all away | |
1248 | */ | |
1249 | static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) | |
1250 | { | |
1251 | ide_hwif_t *hwif = HWIF(drive); | |
1252 | struct request *rq; | |
1253 | ide_startstop_t ret = ide_stopped; | |
1254 | ||
1255 | /* | |
1256 | * end current dma transaction | |
1257 | */ | |
1258 | ||
1259 | if (error < 0) { | |
1260 | printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); | |
1261 | (void)HWIF(drive)->ide_dma_end(drive); | |
1262 | ret = ide_error(drive, "dma timeout error", | |
1263 | hwif->INB(IDE_STATUS_REG)); | |
1264 | } else { | |
1265 | printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); | |
1266 | (void) hwif->ide_dma_timeout(drive); | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * disable dma for now, but remember that we did so because of | |
1271 | * a timeout -- we'll reenable after we finish this next request | |
1272 | * (or rather the first chunk of it) in pio. | |
1273 | */ | |
1274 | drive->retry_pio++; | |
1275 | drive->state = DMA_PIO_RETRY; | |
1276 | (void) hwif->ide_dma_off_quietly(drive); | |
1277 | ||
1278 | /* | |
1279 | * un-busy drive etc (hwgroup->busy is cleared on return) and | |
1280 | * make sure request is sane | |
1281 | */ | |
1282 | rq = HWGROUP(drive)->rq; | |
1283 | HWGROUP(drive)->rq = NULL; | |
1284 | ||
1285 | rq->errors = 0; | |
1286 | ||
1287 | if (!rq->bio) | |
1288 | goto out; | |
1289 | ||
1290 | rq->sector = rq->bio->bi_sector; | |
1291 | rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; | |
1292 | rq->hard_cur_sectors = rq->current_nr_sectors; | |
1293 | rq->buffer = bio_data(rq->bio); | |
1294 | out: | |
1295 | return ret; | |
1296 | } | |
1297 | ||
1298 | /** | |
1299 | * ide_timer_expiry - handle lack of an IDE interrupt | |
1300 | * @data: timer callback magic (hwgroup) | |
1301 | * | |
1302 | * An IDE command has timed out before the expected drive return | |
1303 | * occurred. At this point we attempt to clean up the current | |
1304 | * mess. If the current handler includes an expiry handler then | |
1305 | * we invoke the expiry handler, and providing it is happy the | |
1306 | * work is done. If that fails we apply generic recovery rules | |
1307 | * invoking the handler and checking the drive DMA status. We | |
1308 | * have an excessively incestuous relationship with the DMA | |
1309 | * logic that wants cleaning up. | |
1310 | */ | |
1311 | ||
1312 | void ide_timer_expiry (unsigned long data) | |
1313 | { | |
1314 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; | |
1315 | ide_handler_t *handler; | |
1316 | ide_expiry_t *expiry; | |
1317 | unsigned long flags; | |
1318 | unsigned long wait = -1; | |
1319 | ||
1320 | spin_lock_irqsave(&ide_lock, flags); | |
1321 | ||
1322 | if ((handler = hwgroup->handler) == NULL) { | |
1323 | /* | |
1324 | * Either a marginal timeout occurred | |
1325 | * (got the interrupt just as timer expired), | |
1326 | * or we were "sleeping" to give other devices a chance. | |
1327 | * Either way, we don't really want to complain about anything. | |
1328 | */ | |
1329 | if (hwgroup->sleeping) { | |
1330 | hwgroup->sleeping = 0; | |
1331 | hwgroup->busy = 0; | |
1332 | } | |
1333 | } else { | |
1334 | ide_drive_t *drive = hwgroup->drive; | |
1335 | if (!drive) { | |
1336 | printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); | |
1337 | hwgroup->handler = NULL; | |
1338 | } else { | |
1339 | ide_hwif_t *hwif; | |
1340 | ide_startstop_t startstop = ide_stopped; | |
1341 | if (!hwgroup->busy) { | |
1342 | hwgroup->busy = 1; /* paranoia */ | |
1343 | printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); | |
1344 | } | |
1345 | if ((expiry = hwgroup->expiry) != NULL) { | |
1346 | /* continue */ | |
1347 | if ((wait = expiry(drive)) > 0) { | |
1348 | /* reset timer */ | |
1349 | hwgroup->timer.expires = jiffies + wait; | |
1350 | add_timer(&hwgroup->timer); | |
1351 | spin_unlock_irqrestore(&ide_lock, flags); | |
1352 | return; | |
1353 | } | |
1354 | } | |
1355 | hwgroup->handler = NULL; | |
1356 | /* | |
1357 | * We need to simulate a real interrupt when invoking | |
1358 | * the handler() function, which means we need to | |
1359 | * globally mask the specific IRQ: | |
1360 | */ | |
1361 | spin_unlock(&ide_lock); | |
1362 | hwif = HWIF(drive); | |
1363 | #if DISABLE_IRQ_NOSYNC | |
1364 | disable_irq_nosync(hwif->irq); | |
1365 | #else | |
1366 | /* disable_irq_nosync ?? */ | |
1367 | disable_irq(hwif->irq); | |
1368 | #endif /* DISABLE_IRQ_NOSYNC */ | |
1369 | /* local CPU only, | |
1370 | * as if we were handling an interrupt */ | |
1371 | local_irq_disable(); | |
1372 | if (hwgroup->polling) { | |
1373 | startstop = handler(drive); | |
1374 | } else if (drive_is_ready(drive)) { | |
1375 | if (drive->waiting_for_dma) | |
1376 | (void) hwgroup->hwif->ide_dma_lostirq(drive); | |
1377 | (void)ide_ack_intr(hwif); | |
1378 | printk(KERN_WARNING "%s: lost interrupt\n", drive->name); | |
1379 | startstop = handler(drive); | |
1380 | } else { | |
1381 | if (drive->waiting_for_dma) { | |
1382 | startstop = ide_dma_timeout_retry(drive, wait); | |
1383 | } else | |
1384 | startstop = | |
1385 | ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); | |
1386 | } | |
1387 | drive->service_time = jiffies - drive->service_start; | |
1388 | spin_lock_irq(&ide_lock); | |
1389 | enable_irq(hwif->irq); | |
1390 | if (startstop == ide_stopped) | |
1391 | hwgroup->busy = 0; | |
1392 | } | |
1393 | } | |
1394 | ide_do_request(hwgroup, IDE_NO_IRQ); | |
1395 | spin_unlock_irqrestore(&ide_lock, flags); | |
1396 | } | |
1397 | ||
1398 | /** | |
1399 | * unexpected_intr - handle an unexpected IDE interrupt | |
1400 | * @irq: interrupt line | |
1401 | * @hwgroup: hwgroup being processed | |
1402 | * | |
1403 | * There's nothing really useful we can do with an unexpected interrupt, | |
1404 | * other than reading the status register (to clear it), and logging it. | |
1405 | * There should be no way that an irq can happen before we're ready for it, | |
1406 | * so we needn't worry much about losing an "important" interrupt here. | |
1407 | * | |
1408 | * On laptops (and "green" PCs), an unexpected interrupt occurs whenever | |
1409 | * the drive enters "idle", "standby", or "sleep" mode, so if the status | |
1410 | * looks "good", we just ignore the interrupt completely. | |
1411 | * | |
1412 | * This routine assumes __cli() is in effect when called. | |
1413 | * | |
1414 | * If an unexpected interrupt happens on irq15 while we are handling irq14 | |
1415 | * and if the two interfaces are "serialized" (CMD640), then it looks like | |
1416 | * we could screw up by interfering with a new request being set up for | |
1417 | * irq15. | |
1418 | * | |
1419 | * In reality, this is a non-issue. The new command is not sent unless | |
1420 | * the drive is ready to accept one, in which case we know the drive is | |
1421 | * not trying to interrupt us. And ide_set_handler() is always invoked | |
1422 | * before completing the issuance of any new drive command, so we will not | |
1423 | * be accidentally invoked as a result of any valid command completion | |
1424 | * interrupt. | |
1425 | * | |
1426 | * Note that we must walk the entire hwgroup here. We know which hwif | |
1427 | * is doing the current command, but we don't know which hwif burped | |
1428 | * mysteriously. | |
1429 | */ | |
1430 | ||
1431 | static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) | |
1432 | { | |
1433 | u8 stat; | |
1434 | ide_hwif_t *hwif = hwgroup->hwif; | |
1435 | ||
1436 | /* | |
1437 | * handle the unexpected interrupt | |
1438 | */ | |
1439 | do { | |
1440 | if (hwif->irq == irq) { | |
1441 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | |
1442 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { | |
1443 | /* Try to not flood the console with msgs */ | |
1444 | static unsigned long last_msgtime, count; | |
1445 | ++count; | |
1446 | if (time_after(jiffies, last_msgtime + HZ)) { | |
1447 | last_msgtime = jiffies; | |
1448 | printk(KERN_ERR "%s%s: unexpected interrupt, " | |
1449 | "status=0x%02x, count=%ld\n", | |
1450 | hwif->name, | |
1451 | (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); | |
1452 | } | |
1453 | } | |
1454 | } | |
1455 | } while ((hwif = hwif->next) != hwgroup->hwif); | |
1456 | } | |
1457 | ||
1458 | /** | |
1459 | * ide_intr - default IDE interrupt handler | |
1460 | * @irq: interrupt number | |
1461 | * @dev_id: hwif group | |
1462 | * @regs: unused weirdness from the kernel irq layer | |
1463 | * | |
1464 | * This is the default IRQ handler for the IDE layer. You should | |
1465 | * not need to override it. If you do be aware it is subtle in | |
1466 | * places | |
1467 | * | |
1468 | * hwgroup->hwif is the interface in the group currently performing | |
1469 | * a command. hwgroup->drive is the drive and hwgroup->handler is | |
1470 | * the IRQ handler to call. As we issue a command the handlers | |
1471 | * step through multiple states, reassigning the handler to the | |
1472 | * next step in the process. Unlike a smart SCSI controller IDE | |
1473 | * expects the main processor to sequence the various transfer | |
1474 | * stages. We also manage a poll timer to catch up with most | |
1475 | * timeout situations. There are still a few where the handlers | |
1476 | * don't ever decide to give up. | |
1477 | * | |
1478 | * The handler eventually returns ide_stopped to indicate the | |
1479 | * request completed. At this point we issue the next request | |
1480 | * on the hwgroup and the process begins again. | |
1481 | */ | |
1482 | ||
1483 | irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs) | |
1484 | { | |
1485 | unsigned long flags; | |
1486 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; | |
1487 | ide_hwif_t *hwif; | |
1488 | ide_drive_t *drive; | |
1489 | ide_handler_t *handler; | |
1490 | ide_startstop_t startstop; | |
1491 | ||
1492 | spin_lock_irqsave(&ide_lock, flags); | |
1493 | hwif = hwgroup->hwif; | |
1494 | ||
1495 | if (!ide_ack_intr(hwif)) { | |
1496 | spin_unlock_irqrestore(&ide_lock, flags); | |
1497 | return IRQ_NONE; | |
1498 | } | |
1499 | ||
1500 | if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { | |
1501 | /* | |
1502 | * Not expecting an interrupt from this drive. | |
1503 | * That means this could be: | |
1504 | * (1) an interrupt from another PCI device | |
1505 | * sharing the same PCI INT# as us. | |
1506 | * or (2) a drive just entered sleep or standby mode, | |
1507 | * and is interrupting to let us know. | |
1508 | * or (3) a spurious interrupt of unknown origin. | |
1509 | * | |
1510 | * For PCI, we cannot tell the difference, | |
1511 | * so in that case we just ignore it and hope it goes away. | |
1512 | * | |
1513 | * FIXME: unexpected_intr should be hwif-> then we can | |
1514 | * remove all the ifdef PCI crap | |
1515 | */ | |
1516 | #ifdef CONFIG_BLK_DEV_IDEPCI | |
1517 | if (hwif->pci_dev && !hwif->pci_dev->vendor) | |
1518 | #endif /* CONFIG_BLK_DEV_IDEPCI */ | |
1519 | { | |
1520 | /* | |
1521 | * Probably not a shared PCI interrupt, | |
1522 | * so we can safely try to do something about it: | |
1523 | */ | |
1524 | unexpected_intr(irq, hwgroup); | |
1525 | #ifdef CONFIG_BLK_DEV_IDEPCI | |
1526 | } else { | |
1527 | /* | |
1528 | * Whack the status register, just in case | |
1529 | * we have a leftover pending IRQ. | |
1530 | */ | |
1531 | (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | |
1532 | #endif /* CONFIG_BLK_DEV_IDEPCI */ | |
1533 | } | |
1534 | spin_unlock_irqrestore(&ide_lock, flags); | |
1535 | return IRQ_NONE; | |
1536 | } | |
1537 | drive = hwgroup->drive; | |
1538 | if (!drive) { | |
1539 | /* | |
1540 | * This should NEVER happen, and there isn't much | |
1541 | * we could do about it here. | |
1542 | * | |
1543 | * [Note - this can occur if the drive is hot unplugged] | |
1544 | */ | |
1545 | spin_unlock_irqrestore(&ide_lock, flags); | |
1546 | return IRQ_HANDLED; | |
1547 | } | |
1548 | if (!drive_is_ready(drive)) { | |
1549 | /* | |
1550 | * This happens regularly when we share a PCI IRQ with | |
1551 | * another device. Unfortunately, it can also happen | |
1552 | * with some buggy drives that trigger the IRQ before | |
1553 | * their status register is up to date. Hopefully we have | |
1554 | * enough advance overhead that the latter isn't a problem. | |
1555 | */ | |
1556 | spin_unlock_irqrestore(&ide_lock, flags); | |
1557 | return IRQ_NONE; | |
1558 | } | |
1559 | if (!hwgroup->busy) { | |
1560 | hwgroup->busy = 1; /* paranoia */ | |
1561 | printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); | |
1562 | } | |
1563 | hwgroup->handler = NULL; | |
1564 | del_timer(&hwgroup->timer); | |
1565 | spin_unlock(&ide_lock); | |
1566 | ||
1567 | if (drive->unmask) | |
1568 | local_irq_enable(); | |
1569 | /* service this interrupt, may set handler for next interrupt */ | |
1570 | startstop = handler(drive); | |
1571 | spin_lock_irq(&ide_lock); | |
1572 | ||
1573 | /* | |
1574 | * Note that handler() may have set things up for another | |
1575 | * interrupt to occur soon, but it cannot happen until | |
1576 | * we exit from this routine, because it will be the | |
1577 | * same irq as is currently being serviced here, and Linux | |
1578 | * won't allow another of the same (on any CPU) until we return. | |
1579 | */ | |
1580 | drive->service_time = jiffies - drive->service_start; | |
1581 | if (startstop == ide_stopped) { | |
1582 | if (hwgroup->handler == NULL) { /* paranoia */ | |
1583 | hwgroup->busy = 0; | |
1584 | ide_do_request(hwgroup, hwif->irq); | |
1585 | } else { | |
1586 | printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " | |
1587 | "on exit\n", drive->name); | |
1588 | } | |
1589 | } | |
1590 | spin_unlock_irqrestore(&ide_lock, flags); | |
1591 | return IRQ_HANDLED; | |
1592 | } | |
1593 | ||
1594 | /** | |
1595 | * ide_init_drive_cmd - initialize a drive command request | |
1596 | * @rq: request object | |
1597 | * | |
1598 | * Initialize a request before we fill it in and send it down to | |
1599 | * ide_do_drive_cmd. Commands must be set up by this function. Right | |
1600 | * now it doesn't do a lot, but if that changes abusers will have a | |
1601 | * nasty suprise. | |
1602 | */ | |
1603 | ||
1604 | void ide_init_drive_cmd (struct request *rq) | |
1605 | { | |
1606 | memset(rq, 0, sizeof(*rq)); | |
1607 | rq->flags = REQ_DRIVE_CMD; | |
1608 | rq->ref_count = 1; | |
1609 | } | |
1610 | ||
1611 | EXPORT_SYMBOL(ide_init_drive_cmd); | |
1612 | ||
1613 | /** | |
1614 | * ide_do_drive_cmd - issue IDE special command | |
1615 | * @drive: device to issue command | |
1616 | * @rq: request to issue | |
1617 | * @action: action for processing | |
1618 | * | |
1619 | * This function issues a special IDE device request | |
1620 | * onto the request queue. | |
1621 | * | |
1622 | * If action is ide_wait, then the rq is queued at the end of the | |
1623 | * request queue, and the function sleeps until it has been processed. | |
1624 | * This is for use when invoked from an ioctl handler. | |
1625 | * | |
1626 | * If action is ide_preempt, then the rq is queued at the head of | |
1627 | * the request queue, displacing the currently-being-processed | |
1628 | * request and this function returns immediately without waiting | |
1629 | * for the new rq to be completed. This is VERY DANGEROUS, and is | |
1630 | * intended for careful use by the ATAPI tape/cdrom driver code. | |
1631 | * | |
1632 | * If action is ide_next, then the rq is queued immediately after | |
1633 | * the currently-being-processed-request (if any), and the function | |
1634 | * returns without waiting for the new rq to be completed. As above, | |
1635 | * This is VERY DANGEROUS, and is intended for careful use by the | |
1636 | * ATAPI tape/cdrom driver code. | |
1637 | * | |
1638 | * If action is ide_end, then the rq is queued at the end of the | |
1639 | * request queue, and the function returns immediately without waiting | |
1640 | * for the new rq to be completed. This is again intended for careful | |
1641 | * use by the ATAPI tape/cdrom driver code. | |
1642 | */ | |
1643 | ||
1644 | int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) | |
1645 | { | |
1646 | unsigned long flags; | |
1647 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | |
1648 | DECLARE_COMPLETION(wait); | |
1649 | int where = ELEVATOR_INSERT_BACK, err; | |
1650 | int must_wait = (action == ide_wait || action == ide_head_wait); | |
1651 | ||
1652 | rq->errors = 0; | |
1653 | rq->rq_status = RQ_ACTIVE; | |
1654 | ||
1655 | /* | |
1656 | * we need to hold an extra reference to request for safe inspection | |
1657 | * after completion | |
1658 | */ | |
1659 | if (must_wait) { | |
1660 | rq->ref_count++; | |
1661 | rq->waiting = &wait; | |
1662 | rq->end_io = blk_end_sync_rq; | |
1663 | } | |
1664 | ||
1665 | spin_lock_irqsave(&ide_lock, flags); | |
1666 | if (action == ide_preempt) | |
1667 | hwgroup->rq = NULL; | |
1668 | if (action == ide_preempt || action == ide_head_wait) { | |
1669 | where = ELEVATOR_INSERT_FRONT; | |
1670 | rq->flags |= REQ_PREEMPT; | |
1671 | } | |
1672 | __elv_add_request(drive->queue, rq, where, 0); | |
1673 | ide_do_request(hwgroup, IDE_NO_IRQ); | |
1674 | spin_unlock_irqrestore(&ide_lock, flags); | |
1675 | ||
1676 | err = 0; | |
1677 | if (must_wait) { | |
1678 | wait_for_completion(&wait); | |
1679 | rq->waiting = NULL; | |
1680 | if (rq->errors) | |
1681 | err = -EIO; | |
1682 | ||
1683 | blk_put_request(rq); | |
1684 | } | |
1685 | ||
1686 | return err; | |
1687 | } | |
1688 | ||
1689 | EXPORT_SYMBOL(ide_do_drive_cmd); |