]>
Commit | Line | Data |
---|---|---|
2b27bdcc | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1e51764a AB |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation. | |
6 | * Copyright (C) 2006, 2007 University of Szeged, Hungary | |
7 | * | |
1e51764a AB |
8 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
9 | * Adrian Hunter | |
10 | * Zoltan Sogor | |
11 | */ | |
12 | ||
13 | /* | |
14 | * This file implements UBIFS I/O subsystem which provides various I/O-related | |
15 | * helper functions (reading/writing/checking/validating nodes) and implements | |
16 | * write-buffering support. Write buffers help to save space which otherwise | |
17 | * would have been wasted for padding to the nearest minimal I/O unit boundary. | |
18 | * Instead, data first goes to the write-buffer and is flushed when the | |
19 | * buffer is full or when it is not used for some time (by timer). This is | |
6f7ab6d4 | 20 | * similar to the mechanism is used by JFFS2. |
1e51764a | 21 | * |
6c7f74f7 AB |
22 | * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum |
23 | * write size (@c->max_write_size). The latter is the maximum amount of bytes | |
24 | * the underlying flash is able to program at a time, and writing in | |
25 | * @c->max_write_size units should presumably be faster. Obviously, | |
26 | * @c->min_io_size <= @c->max_write_size. Write-buffers are of | |
27 | * @c->max_write_size bytes in size for maximum performance. However, when a | |
28 | * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size | |
29 | * boundary) which contains data is written, not the whole write-buffer, | |
30 | * because this is more space-efficient. | |
31 | * | |
32 | * This optimization adds few complications to the code. Indeed, on the one | |
33 | * hand, we want to write in optimal @c->max_write_size bytes chunks, which | |
34 | * also means aligning writes at the @c->max_write_size bytes offsets. On the | |
35 | * other hand, we do not want to waste space when synchronizing the write | |
36 | * buffer, so during synchronization we writes in smaller chunks. And this makes | |
37 | * the next write offset to be not aligned to @c->max_write_size bytes. So the | |
38 | * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned | |
39 | * to @c->max_write_size bytes again. We do this by temporarily shrinking | |
40 | * write-buffer size (@wbuf->size). | |
41 | * | |
1e51764a AB |
42 | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by |
43 | * mutexes defined inside these objects. Since sometimes upper-level code | |
44 | * has to lock the write-buffer (e.g. journal space reservation code), many | |
45 | * functions related to write-buffers have "nolock" suffix which means that the | |
46 | * caller has to lock the write-buffer before calling this function. | |
47 | * | |
48 | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not | |
49 | * aligned, UBIFS starts the next node from the aligned address, and the padded | |
50 | * bytes may contain any rubbish. In other words, UBIFS does not put padding | |
51 | * bytes in those small gaps. Common headers of nodes store real node lengths, | |
52 | * not aligned lengths. Indexing nodes also store real lengths in branches. | |
53 | * | |
54 | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it | |
55 | * uses padding nodes or padding bytes, if the padding node does not fit. | |
56 | * | |
6c7f74f7 AB |
57 | * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when |
58 | * they are read from the flash media. | |
1e51764a AB |
59 | */ |
60 | ||
61 | #include <linux/crc32.h> | |
5a0e3ad6 | 62 | #include <linux/slab.h> |
1e51764a AB |
63 | #include "ubifs.h" |
64 | ||
ff46d7b3 AH |
65 | /** |
66 | * ubifs_ro_mode - switch UBIFS to read read-only mode. | |
67 | * @c: UBIFS file-system description object | |
68 | * @err: error code which is the reason of switching to R/O mode | |
69 | */ | |
70 | void ubifs_ro_mode(struct ubifs_info *c, int err) | |
71 | { | |
2680d722 AB |
72 | if (!c->ro_error) { |
73 | c->ro_error = 1; | |
ccb3eba7 | 74 | c->no_chk_data_crc = 0; |
1751e8a6 | 75 | c->vfs_sb->s_flags |= SB_RDONLY; |
235c362b | 76 | ubifs_warn(c, "switched to read-only mode, error %d", err); |
d033c98b | 77 | dump_stack(); |
ff46d7b3 AH |
78 | } |
79 | } | |
80 | ||
83cef708 AB |
81 | /* |
82 | * Below are simple wrappers over UBI I/O functions which include some | |
83 | * additional checks and UBIFS debugging stuff. See corresponding UBI function | |
84 | * for more information. | |
85 | */ | |
86 | ||
87 | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, | |
88 | int len, int even_ebadmsg) | |
89 | { | |
90 | int err; | |
91 | ||
92 | err = ubi_read(c->ubi, lnum, buf, offs, len); | |
93 | /* | |
94 | * In case of %-EBADMSG print the error message only if the | |
95 | * @even_ebadmsg is true. | |
96 | */ | |
97 | if (err && (err != -EBADMSG || even_ebadmsg)) { | |
235c362b | 98 | ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", |
83cef708 | 99 | len, lnum, offs, err); |
7c46d0ae | 100 | dump_stack(); |
83cef708 AB |
101 | } |
102 | return err; | |
103 | } | |
104 | ||
105 | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, | |
b36a261e | 106 | int len) |
83cef708 AB |
107 | { |
108 | int err; | |
109 | ||
6eb61d58 | 110 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
83cef708 AB |
111 | if (c->ro_error) |
112 | return -EROFS; | |
113 | if (!dbg_is_tst_rcvry(c)) | |
b36a261e | 114 | err = ubi_leb_write(c->ubi, lnum, buf, offs, len); |
83cef708 | 115 | else |
b36a261e | 116 | err = dbg_leb_write(c, lnum, buf, offs, len); |
83cef708 | 117 | if (err) { |
235c362b | 118 | ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", |
83cef708 AB |
119 | len, lnum, offs, err); |
120 | ubifs_ro_mode(c, err); | |
7c46d0ae | 121 | dump_stack(); |
83cef708 AB |
122 | } |
123 | return err; | |
124 | } | |
125 | ||
b36a261e | 126 | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) |
83cef708 AB |
127 | { |
128 | int err; | |
129 | ||
6eb61d58 | 130 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
83cef708 AB |
131 | if (c->ro_error) |
132 | return -EROFS; | |
133 | if (!dbg_is_tst_rcvry(c)) | |
b36a261e | 134 | err = ubi_leb_change(c->ubi, lnum, buf, len); |
83cef708 | 135 | else |
b36a261e | 136 | err = dbg_leb_change(c, lnum, buf, len); |
83cef708 | 137 | if (err) { |
235c362b | 138 | ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", |
83cef708 AB |
139 | len, lnum, err); |
140 | ubifs_ro_mode(c, err); | |
7c46d0ae | 141 | dump_stack(); |
83cef708 AB |
142 | } |
143 | return err; | |
144 | } | |
145 | ||
146 | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) | |
147 | { | |
148 | int err; | |
149 | ||
6eb61d58 | 150 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
83cef708 AB |
151 | if (c->ro_error) |
152 | return -EROFS; | |
153 | if (!dbg_is_tst_rcvry(c)) | |
154 | err = ubi_leb_unmap(c->ubi, lnum); | |
155 | else | |
f57cb188 | 156 | err = dbg_leb_unmap(c, lnum); |
83cef708 | 157 | if (err) { |
235c362b | 158 | ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); |
83cef708 | 159 | ubifs_ro_mode(c, err); |
7c46d0ae | 160 | dump_stack(); |
83cef708 AB |
161 | } |
162 | return err; | |
163 | } | |
164 | ||
b36a261e | 165 | int ubifs_leb_map(struct ubifs_info *c, int lnum) |
83cef708 AB |
166 | { |
167 | int err; | |
168 | ||
6eb61d58 | 169 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
83cef708 AB |
170 | if (c->ro_error) |
171 | return -EROFS; | |
172 | if (!dbg_is_tst_rcvry(c)) | |
b36a261e | 173 | err = ubi_leb_map(c->ubi, lnum); |
83cef708 | 174 | else |
b36a261e | 175 | err = dbg_leb_map(c, lnum); |
83cef708 | 176 | if (err) { |
235c362b | 177 | ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); |
83cef708 | 178 | ubifs_ro_mode(c, err); |
7c46d0ae | 179 | dump_stack(); |
83cef708 AB |
180 | } |
181 | return err; | |
182 | } | |
183 | ||
184 | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) | |
185 | { | |
186 | int err; | |
187 | ||
188 | err = ubi_is_mapped(c->ubi, lnum); | |
189 | if (err < 0) { | |
235c362b | 190 | ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", |
83cef708 | 191 | lnum, err); |
7c46d0ae | 192 | dump_stack(); |
83cef708 AB |
193 | } |
194 | return err; | |
195 | } | |
196 | ||
2e3cbf42 SS |
197 | static void record_magic_error(struct ubifs_stats_info *stats) |
198 | { | |
199 | if (stats) | |
200 | stats->magic_errors++; | |
201 | } | |
202 | ||
203 | static void record_node_error(struct ubifs_stats_info *stats) | |
204 | { | |
205 | if (stats) | |
206 | stats->node_errors++; | |
207 | } | |
208 | ||
209 | static void record_crc_error(struct ubifs_stats_info *stats) | |
210 | { | |
211 | if (stats) | |
212 | stats->crc_errors++; | |
213 | } | |
214 | ||
1e51764a AB |
215 | /** |
216 | * ubifs_check_node - check node. | |
217 | * @c: UBIFS file-system description object | |
218 | * @buf: node to check | |
a33e30a0 | 219 | * @len: node length |
1e51764a AB |
220 | * @lnum: logical eraseblock number |
221 | * @offs: offset within the logical eraseblock | |
222 | * @quiet: print no messages | |
6f7ab6d4 | 223 | * @must_chk_crc: indicates whether to always check the CRC |
1e51764a AB |
224 | * |
225 | * This function checks node magic number and CRC checksum. This function also | |
226 | * validates node length to prevent UBIFS from becoming crazy when an attacker | |
227 | * feeds it a file-system image with incorrect nodes. For example, too large | |
228 | * node length in the common header could cause UBIFS to read memory outside of | |
229 | * allocated buffer when checking the CRC checksum. | |
230 | * | |
6f7ab6d4 AB |
231 | * This function may skip data nodes CRC checking if @c->no_chk_data_crc is |
232 | * true, which is controlled by corresponding UBIFS mount option. However, if | |
233 | * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is | |
18d1d7fb AB |
234 | * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are |
235 | * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC | |
236 | * is checked. This is because during mounting or re-mounting from R/O mode to | |
237 | * R/W mode we may read journal nodes (when replying the journal or doing the | |
238 | * recovery) and the journal nodes may potentially be corrupted, so checking is | |
239 | * required. | |
6f7ab6d4 AB |
240 | * |
241 | * This function returns zero in case of success and %-EUCLEAN in case of bad | |
242 | * CRC or magic. | |
1e51764a | 243 | */ |
a33e30a0 ZC |
244 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len, |
245 | int lnum, int offs, int quiet, int must_chk_crc) | |
1e51764a | 246 | { |
c8be0975 | 247 | int err = -EINVAL, type, node_len; |
1e51764a AB |
248 | uint32_t crc, node_crc, magic; |
249 | const struct ubifs_ch *ch = buf; | |
250 | ||
6eb61d58 RW |
251 | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
252 | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | |
1e51764a AB |
253 | |
254 | magic = le32_to_cpu(ch->magic); | |
255 | if (magic != UBIFS_NODE_MAGIC) { | |
256 | if (!quiet) | |
235c362b | 257 | ubifs_err(c, "bad magic %#08x, expected %#08x", |
1e51764a | 258 | magic, UBIFS_NODE_MAGIC); |
2e3cbf42 | 259 | record_magic_error(c->stats); |
1e51764a AB |
260 | err = -EUCLEAN; |
261 | goto out; | |
262 | } | |
263 | ||
264 | type = ch->node_type; | |
265 | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | |
266 | if (!quiet) | |
235c362b | 267 | ubifs_err(c, "bad node type %d", type); |
2e3cbf42 | 268 | record_node_error(c->stats); |
1e51764a AB |
269 | goto out; |
270 | } | |
271 | ||
272 | node_len = le32_to_cpu(ch->len); | |
273 | if (node_len + offs > c->leb_size) | |
274 | goto out_len; | |
275 | ||
276 | if (c->ranges[type].max_len == 0) { | |
277 | if (node_len != c->ranges[type].len) | |
278 | goto out_len; | |
279 | } else if (node_len < c->ranges[type].min_len || | |
280 | node_len > c->ranges[type].max_len) | |
281 | goto out_len; | |
282 | ||
18d1d7fb AB |
283 | if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && |
284 | !c->remounting_rw && c->no_chk_data_crc) | |
6f7ab6d4 | 285 | return 0; |
2953e73f | 286 | |
1e51764a AB |
287 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); |
288 | node_crc = le32_to_cpu(ch->crc); | |
289 | if (crc != node_crc) { | |
290 | if (!quiet) | |
235c362b | 291 | ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", |
1e51764a | 292 | crc, node_crc); |
2e3cbf42 | 293 | record_crc_error(c->stats); |
1e51764a AB |
294 | err = -EUCLEAN; |
295 | goto out; | |
296 | } | |
297 | ||
298 | return 0; | |
299 | ||
300 | out_len: | |
301 | if (!quiet) | |
235c362b | 302 | ubifs_err(c, "bad node length %d", node_len); |
1e51764a AB |
303 | out: |
304 | if (!quiet) { | |
235c362b | 305 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
a33e30a0 | 306 | ubifs_dump_node(c, buf, len); |
7c46d0ae | 307 | dump_stack(); |
1e51764a AB |
308 | } |
309 | return err; | |
310 | } | |
311 | ||
312 | /** | |
313 | * ubifs_pad - pad flash space. | |
314 | * @c: UBIFS file-system description object | |
315 | * @buf: buffer to put padding to | |
316 | * @pad: how many bytes to pad | |
317 | * | |
318 | * The flash media obliges us to write only in chunks of %c->min_io_size and | |
319 | * when we have to write less data we add padding node to the write-buffer and | |
320 | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the | |
321 | * media is being scanned. If the amount of wasted space is not enough to fit a | |
322 | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes | |
323 | * pattern (%UBIFS_PADDING_BYTE). | |
324 | * | |
325 | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is | |
326 | * used. | |
327 | */ | |
328 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) | |
329 | { | |
330 | uint32_t crc; | |
331 | ||
20f14311 | 332 | ubifs_assert(c, pad >= 0); |
1e51764a AB |
333 | |
334 | if (pad >= UBIFS_PAD_NODE_SZ) { | |
335 | struct ubifs_ch *ch = buf; | |
336 | struct ubifs_pad_node *pad_node = buf; | |
337 | ||
338 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
339 | ch->node_type = UBIFS_PAD_NODE; | |
340 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
341 | ch->padding[0] = ch->padding[1] = 0; | |
342 | ch->sqnum = 0; | |
343 | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); | |
344 | pad -= UBIFS_PAD_NODE_SZ; | |
345 | pad_node->pad_len = cpu_to_le32(pad); | |
346 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); | |
347 | ch->crc = cpu_to_le32(crc); | |
348 | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); | |
349 | } else if (pad > 0) | |
350 | /* Too little space, padding node won't fit */ | |
351 | memset(buf, UBIFS_PADDING_BYTE, pad); | |
352 | } | |
353 | ||
354 | /** | |
355 | * next_sqnum - get next sequence number. | |
356 | * @c: UBIFS file-system description object | |
357 | */ | |
358 | static unsigned long long next_sqnum(struct ubifs_info *c) | |
359 | { | |
360 | unsigned long long sqnum; | |
361 | ||
362 | spin_lock(&c->cnt_lock); | |
363 | sqnum = ++c->max_sqnum; | |
364 | spin_unlock(&c->cnt_lock); | |
365 | ||
366 | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { | |
367 | if (sqnum >= SQNUM_WATERMARK) { | |
235c362b | 368 | ubifs_err(c, "sequence number overflow %llu, end of life", |
1e51764a AB |
369 | sqnum); |
370 | ubifs_ro_mode(c, -EINVAL); | |
371 | } | |
235c362b | 372 | ubifs_warn(c, "running out of sequence numbers, end of life soon"); |
1e51764a AB |
373 | } |
374 | ||
375 | return sqnum; | |
376 | } | |
377 | ||
dead9726 | 378 | void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad) |
1e51764a | 379 | { |
1e51764a AB |
380 | struct ubifs_ch *ch = node; |
381 | unsigned long long sqnum = next_sqnum(c); | |
382 | ||
6eb61d58 | 383 | ubifs_assert(c, len >= UBIFS_CH_SZ); |
1e51764a AB |
384 | |
385 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
386 | ch->len = cpu_to_le32(len); | |
387 | ch->group_type = UBIFS_NO_NODE_GROUP; | |
388 | ch->sqnum = cpu_to_le64(sqnum); | |
389 | ch->padding[0] = ch->padding[1] = 0; | |
1e51764a AB |
390 | |
391 | if (pad) { | |
392 | len = ALIGN(len, 8); | |
393 | pad = ALIGN(len, c->min_io_size) - len; | |
394 | ubifs_pad(c, node + len, pad); | |
395 | } | |
396 | } | |
397 | ||
dead9726 SH |
398 | void ubifs_crc_node(struct ubifs_info *c, void *node, int len) |
399 | { | |
400 | struct ubifs_ch *ch = node; | |
401 | uint32_t crc; | |
402 | ||
403 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
404 | ch->crc = cpu_to_le32(crc); | |
405 | } | |
406 | ||
a384b47e SH |
407 | /** |
408 | * ubifs_prepare_node_hmac - prepare node to be written to flash. | |
409 | * @c: UBIFS file-system description object | |
410 | * @node: the node to pad | |
411 | * @len: node length | |
412 | * @hmac_offs: offset of the HMAC in the node | |
413 | * @pad: if the buffer has to be padded | |
414 | * | |
415 | * This function prepares node at @node to be written to the media - it | |
416 | * calculates node CRC, fills the common header, and adds proper padding up to | |
417 | * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then | |
418 | * a HMAC is inserted into the node at the given offset. | |
419 | * | |
420 | * This function returns 0 for success or a negative error code otherwise. | |
421 | */ | |
422 | int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, | |
423 | int hmac_offs, int pad) | |
424 | { | |
425 | int err; | |
426 | ||
427 | ubifs_init_node(c, node, len, pad); | |
428 | ||
429 | if (hmac_offs > 0) { | |
430 | err = ubifs_node_insert_hmac(c, node, len, hmac_offs); | |
431 | if (err) | |
432 | return err; | |
433 | } | |
434 | ||
435 | ubifs_crc_node(c, node, len); | |
436 | ||
437 | return 0; | |
438 | } | |
439 | ||
dead9726 SH |
440 | /** |
441 | * ubifs_prepare_node - prepare node to be written to flash. | |
442 | * @c: UBIFS file-system description object | |
443 | * @node: the node to pad | |
444 | * @len: node length | |
445 | * @pad: if the buffer has to be padded | |
446 | * | |
447 | * This function prepares node at @node to be written to the media - it | |
448 | * calculates node CRC, fills the common header, and adds proper padding up to | |
449 | * the next minimum I/O unit if @pad is not zero. | |
450 | */ | |
451 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) | |
452 | { | |
a384b47e SH |
453 | /* |
454 | * Deliberately ignore return value since this function can only fail | |
455 | * when a hmac offset is given. | |
456 | */ | |
457 | ubifs_prepare_node_hmac(c, node, len, 0, pad); | |
dead9726 SH |
458 | } |
459 | ||
1e51764a AB |
460 | /** |
461 | * ubifs_prep_grp_node - prepare node of a group to be written to flash. | |
462 | * @c: UBIFS file-system description object | |
463 | * @node: the node to pad | |
464 | * @len: node length | |
465 | * @last: indicates the last node of the group | |
466 | * | |
467 | * This function prepares node at @node to be written to the media - it | |
468 | * calculates node CRC and fills the common header. | |
469 | */ | |
470 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) | |
471 | { | |
472 | uint32_t crc; | |
473 | struct ubifs_ch *ch = node; | |
474 | unsigned long long sqnum = next_sqnum(c); | |
475 | ||
6eb61d58 | 476 | ubifs_assert(c, len >= UBIFS_CH_SZ); |
1e51764a AB |
477 | |
478 | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | |
479 | ch->len = cpu_to_le32(len); | |
480 | if (last) | |
481 | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; | |
482 | else | |
483 | ch->group_type = UBIFS_IN_NODE_GROUP; | |
484 | ch->sqnum = cpu_to_le64(sqnum); | |
485 | ch->padding[0] = ch->padding[1] = 0; | |
486 | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | |
487 | ch->crc = cpu_to_le32(crc); | |
488 | } | |
489 | ||
490 | /** | |
42212523 | 491 | * wbuf_timer_callback_nolock - write-buffer timer callback function. |
39274a1e | 492 | * @timer: timer data (write-buffer descriptor) |
1e51764a AB |
493 | * |
494 | * This function is called when the write-buffer timer expires. | |
495 | */ | |
f2c5dbd7 | 496 | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) |
1e51764a | 497 | { |
f2c5dbd7 | 498 | struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); |
1e51764a | 499 | |
77a7ae58 | 500 | dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); |
1e51764a AB |
501 | wbuf->need_sync = 1; |
502 | wbuf->c->need_wbuf_sync = 1; | |
503 | ubifs_wake_up_bgt(wbuf->c); | |
f2c5dbd7 | 504 | return HRTIMER_NORESTART; |
1e51764a AB |
505 | } |
506 | ||
507 | /** | |
42212523 | 508 | * new_wbuf_timer_nolock - start new write-buffer timer. |
6eb61d58 | 509 | * @c: UBIFS file-system description object |
1e51764a AB |
510 | * @wbuf: write-buffer descriptor |
511 | */ | |
6eb61d58 | 512 | static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf) |
1e51764a | 513 | { |
1b7fc2c0 RM |
514 | ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10); |
515 | unsigned long long delta = dirty_writeback_interval; | |
854826c9 | 516 | |
1b7fc2c0 RM |
517 | /* centi to milli, milli to nano, then 10% */ |
518 | delta *= 10ULL * NSEC_PER_MSEC / 10ULL; | |
854826c9 | 519 | |
6eb61d58 RW |
520 | ubifs_assert(c, !hrtimer_active(&wbuf->timer)); |
521 | ubifs_assert(c, delta <= ULONG_MAX); | |
1e51764a | 522 | |
0b335b9d | 523 | if (wbuf->no_timer) |
1e51764a | 524 | return; |
77a7ae58 AB |
525 | dbg_io("set timer for jhead %s, %llu-%llu millisecs", |
526 | dbg_jhead(wbuf->jhead), | |
854826c9 RM |
527 | div_u64(ktime_to_ns(softlimit), USEC_PER_SEC), |
528 | div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC)); | |
529 | hrtimer_start_range_ns(&wbuf->timer, softlimit, delta, | |
f2c5dbd7 | 530 | HRTIMER_MODE_REL); |
1e51764a AB |
531 | } |
532 | ||
533 | /** | |
42212523 | 534 | * cancel_wbuf_timer_nolock - cancel write-buffer timer. |
1e51764a AB |
535 | * @wbuf: write-buffer descriptor |
536 | */ | |
537 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | |
538 | { | |
0b335b9d AB |
539 | if (wbuf->no_timer) |
540 | return; | |
1e51764a | 541 | wbuf->need_sync = 0; |
f2c5dbd7 | 542 | hrtimer_cancel(&wbuf->timer); |
1e51764a AB |
543 | } |
544 | ||
545 | /** | |
546 | * ubifs_wbuf_sync_nolock - synchronize write-buffer. | |
547 | * @wbuf: write-buffer to synchronize | |
548 | * | |
549 | * This function synchronizes write-buffer @buf and returns zero in case of | |
550 | * success or a negative error code in case of failure. | |
6c7f74f7 AB |
551 | * |
552 | * Note, although write-buffers are of @c->max_write_size, this function does | |
553 | * not necessarily writes all @c->max_write_size bytes to the flash. Instead, | |
554 | * if the write-buffer is only partially filled with data, only the used part | |
555 | * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. | |
556 | * This way we waste less space. | |
1e51764a AB |
557 | */ |
558 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) | |
559 | { | |
560 | struct ubifs_info *c = wbuf->c; | |
6c7f74f7 | 561 | int err, dirt, sync_len; |
1e51764a AB |
562 | |
563 | cancel_wbuf_timer_nolock(wbuf); | |
564 | if (!wbuf->used || wbuf->lnum == -1) | |
565 | /* Write-buffer is empty or not seeked */ | |
566 | return 0; | |
567 | ||
77a7ae58 AB |
568 | dbg_io("LEB %d:%d, %d bytes, jhead %s", |
569 | wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); | |
6eb61d58 RW |
570 | ubifs_assert(c, !(wbuf->avail & 7)); |
571 | ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size); | |
572 | ubifs_assert(c, wbuf->size >= c->min_io_size); | |
573 | ubifs_assert(c, wbuf->size <= c->max_write_size); | |
574 | ubifs_assert(c, wbuf->size % c->min_io_size == 0); | |
575 | ubifs_assert(c, !c->ro_media && !c->ro_mount); | |
6c7f74f7 | 576 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
6eb61d58 | 577 | ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); |
1e51764a | 578 | |
2680d722 | 579 | if (c->ro_error) |
1e51764a AB |
580 | return -EROFS; |
581 | ||
6c7f74f7 AB |
582 | /* |
583 | * Do not write whole write buffer but write only the minimum necessary | |
584 | * amount of min. I/O units. | |
585 | */ | |
586 | sync_len = ALIGN(wbuf->used, c->min_io_size); | |
587 | dirt = sync_len - wbuf->used; | |
588 | if (dirt) | |
589 | ubifs_pad(c, wbuf->buf + wbuf->used, dirt); | |
b36a261e | 590 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); |
987226a5 | 591 | if (err) |
1e51764a | 592 | return err; |
1e51764a | 593 | |
1e51764a | 594 | spin_lock(&wbuf->lock); |
6c7f74f7 AB |
595 | wbuf->offs += sync_len; |
596 | /* | |
597 | * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. | |
598 | * But our goal is to optimize writes and make sure we write in | |
599 | * @c->max_write_size chunks and to @c->max_write_size-aligned offset. | |
600 | * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make | |
601 | * sure that @wbuf->offs + @wbuf->size is aligned to | |
602 | * @c->max_write_size. This way we make sure that after next | |
603 | * write-buffer flush we are again at the optimal offset (aligned to | |
604 | * @c->max_write_size). | |
605 | */ | |
606 | if (c->leb_size - wbuf->offs < c->max_write_size) | |
607 | wbuf->size = c->leb_size - wbuf->offs; | |
608 | else if (wbuf->offs & (c->max_write_size - 1)) | |
609 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
610 | else | |
611 | wbuf->size = c->max_write_size; | |
612 | wbuf->avail = wbuf->size; | |
1e51764a AB |
613 | wbuf->used = 0; |
614 | wbuf->next_ino = 0; | |
615 | spin_unlock(&wbuf->lock); | |
616 | ||
617 | if (wbuf->sync_callback) | |
618 | err = wbuf->sync_callback(c, wbuf->lnum, | |
619 | c->leb_size - wbuf->offs, dirt); | |
620 | return err; | |
621 | } | |
622 | ||
623 | /** | |
624 | * ubifs_wbuf_seek_nolock - seek write-buffer. | |
625 | * @wbuf: write-buffer | |
626 | * @lnum: logical eraseblock number to seek to | |
627 | * @offs: logical eraseblock offset to seek to | |
1e51764a | 628 | * |
cb54ef8b | 629 | * This function targets the write-buffer to logical eraseblock @lnum:@offs. |
cb14a184 AB |
630 | * The write-buffer has to be empty. Returns zero in case of success and a |
631 | * negative error code in case of failure. | |
1e51764a | 632 | */ |
b36a261e | 633 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) |
1e51764a AB |
634 | { |
635 | const struct ubifs_info *c = wbuf->c; | |
636 | ||
77a7ae58 | 637 | dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); |
6eb61d58 RW |
638 | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt); |
639 | ubifs_assert(c, offs >= 0 && offs <= c->leb_size); | |
640 | ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7)); | |
641 | ubifs_assert(c, lnum != wbuf->lnum); | |
642 | ubifs_assert(c, wbuf->used == 0); | |
1e51764a AB |
643 | |
644 | spin_lock(&wbuf->lock); | |
645 | wbuf->lnum = lnum; | |
646 | wbuf->offs = offs; | |
6c7f74f7 AB |
647 | if (c->leb_size - wbuf->offs < c->max_write_size) |
648 | wbuf->size = c->leb_size - wbuf->offs; | |
649 | else if (wbuf->offs & (c->max_write_size - 1)) | |
650 | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | |
651 | else | |
652 | wbuf->size = c->max_write_size; | |
653 | wbuf->avail = wbuf->size; | |
1e51764a AB |
654 | wbuf->used = 0; |
655 | spin_unlock(&wbuf->lock); | |
1e51764a AB |
656 | |
657 | return 0; | |
658 | } | |
659 | ||
660 | /** | |
661 | * ubifs_bg_wbufs_sync - synchronize write-buffers. | |
662 | * @c: UBIFS file-system description object | |
663 | * | |
664 | * This function is called by background thread to synchronize write-buffers. | |
665 | * Returns zero in case of success and a negative error code in case of | |
666 | * failure. | |
667 | */ | |
668 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) | |
669 | { | |
670 | int err, i; | |
671 | ||
6eb61d58 | 672 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
1e51764a AB |
673 | if (!c->need_wbuf_sync) |
674 | return 0; | |
675 | c->need_wbuf_sync = 0; | |
676 | ||
2680d722 | 677 | if (c->ro_error) { |
1e51764a AB |
678 | err = -EROFS; |
679 | goto out_timers; | |
680 | } | |
681 | ||
682 | dbg_io("synchronize"); | |
683 | for (i = 0; i < c->jhead_cnt; i++) { | |
684 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
685 | ||
686 | cond_resched(); | |
687 | ||
688 | /* | |
689 | * If the mutex is locked then wbuf is being changed, so | |
690 | * synchronization is not necessary. | |
691 | */ | |
692 | if (mutex_is_locked(&wbuf->io_mutex)) | |
693 | continue; | |
694 | ||
695 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
696 | if (!wbuf->need_sync) { | |
697 | mutex_unlock(&wbuf->io_mutex); | |
698 | continue; | |
699 | } | |
700 | ||
701 | err = ubifs_wbuf_sync_nolock(wbuf); | |
702 | mutex_unlock(&wbuf->io_mutex); | |
703 | if (err) { | |
235c362b | 704 | ubifs_err(c, "cannot sync write-buffer, error %d", err); |
1e51764a AB |
705 | ubifs_ro_mode(c, err); |
706 | goto out_timers; | |
707 | } | |
708 | } | |
709 | ||
710 | return 0; | |
711 | ||
712 | out_timers: | |
713 | /* Cancel all timers to prevent repeated errors */ | |
714 | for (i = 0; i < c->jhead_cnt; i++) { | |
715 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
716 | ||
717 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
718 | cancel_wbuf_timer_nolock(wbuf); | |
719 | mutex_unlock(&wbuf->io_mutex); | |
720 | } | |
721 | return err; | |
722 | } | |
723 | ||
724 | /** | |
725 | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. | |
726 | * @wbuf: write-buffer | |
727 | * @buf: node to write | |
728 | * @len: node length | |
729 | * | |
730 | * This function writes data to flash via write-buffer @wbuf. This means that | |
731 | * the last piece of the node won't reach the flash media immediately if it | |
6c7f74f7 AB |
732 | * does not take whole max. write unit (@c->max_write_size). Instead, the node |
733 | * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or | |
734 | * because more data are appended to the write-buffer). | |
1e51764a AB |
735 | * |
736 | * This function returns zero in case of success and a negative error code in | |
737 | * case of failure. If the node cannot be written because there is no more | |
738 | * space in this logical eraseblock, %-ENOSPC is returned. | |
739 | */ | |
740 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) | |
741 | { | |
742 | struct ubifs_info *c = wbuf->c; | |
a33e30a0 | 743 | int err, n, written = 0, aligned_len = ALIGN(len, 8); |
1e51764a | 744 | |
77a7ae58 AB |
745 | dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, |
746 | dbg_ntype(((struct ubifs_ch *)buf)->node_type), | |
747 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); | |
6eb61d58 RW |
748 | ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); |
749 | ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); | |
750 | ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size); | |
751 | ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size); | |
752 | ubifs_assert(c, wbuf->size >= c->min_io_size); | |
753 | ubifs_assert(c, wbuf->size <= c->max_write_size); | |
754 | ubifs_assert(c, wbuf->size % c->min_io_size == 0); | |
755 | ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex)); | |
756 | ubifs_assert(c, !c->ro_media && !c->ro_mount); | |
757 | ubifs_assert(c, !c->space_fixup); | |
6c7f74f7 | 758 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
6eb61d58 | 759 | ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); |
1e51764a AB |
760 | |
761 | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { | |
762 | err = -ENOSPC; | |
763 | goto out; | |
764 | } | |
765 | ||
766 | cancel_wbuf_timer_nolock(wbuf); | |
767 | ||
2680d722 | 768 | if (c->ro_error) |
1e51764a AB |
769 | return -EROFS; |
770 | ||
771 | if (aligned_len <= wbuf->avail) { | |
772 | /* | |
773 | * The node is not very large and fits entirely within | |
774 | * write-buffer. | |
775 | */ | |
776 | memcpy(wbuf->buf + wbuf->used, buf, len); | |
20f14311 RW |
777 | if (aligned_len > len) { |
778 | ubifs_assert(c, aligned_len - len < 8); | |
779 | ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len); | |
780 | } | |
1e51764a AB |
781 | |
782 | if (aligned_len == wbuf->avail) { | |
77a7ae58 AB |
783 | dbg_io("flush jhead %s wbuf to LEB %d:%d", |
784 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
987226a5 | 785 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, |
b36a261e | 786 | wbuf->offs, wbuf->size); |
1e51764a AB |
787 | if (err) |
788 | goto out; | |
789 | ||
790 | spin_lock(&wbuf->lock); | |
6c7f74f7 AB |
791 | wbuf->offs += wbuf->size; |
792 | if (c->leb_size - wbuf->offs >= c->max_write_size) | |
793 | wbuf->size = c->max_write_size; | |
794 | else | |
795 | wbuf->size = c->leb_size - wbuf->offs; | |
796 | wbuf->avail = wbuf->size; | |
1e51764a AB |
797 | wbuf->used = 0; |
798 | wbuf->next_ino = 0; | |
799 | spin_unlock(&wbuf->lock); | |
800 | } else { | |
801 | spin_lock(&wbuf->lock); | |
802 | wbuf->avail -= aligned_len; | |
803 | wbuf->used += aligned_len; | |
804 | spin_unlock(&wbuf->lock); | |
805 | } | |
806 | ||
807 | goto exit; | |
808 | } | |
809 | ||
6c7f74f7 AB |
810 | if (wbuf->used) { |
811 | /* | |
812 | * The node is large enough and does not fit entirely within | |
813 | * current available space. We have to fill and flush | |
814 | * write-buffer and switch to the next max. write unit. | |
815 | */ | |
816 | dbg_io("flush jhead %s wbuf to LEB %d:%d", | |
817 | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | |
818 | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); | |
987226a5 | 819 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, |
b36a261e | 820 | wbuf->size); |
6c7f74f7 AB |
821 | if (err) |
822 | goto out; | |
823 | ||
12f33891 | 824 | wbuf->offs += wbuf->size; |
6c7f74f7 AB |
825 | len -= wbuf->avail; |
826 | aligned_len -= wbuf->avail; | |
827 | written += wbuf->avail; | |
828 | } else if (wbuf->offs & (c->max_write_size - 1)) { | |
829 | /* | |
830 | * The write-buffer offset is not aligned to | |
831 | * @c->max_write_size and @wbuf->size is less than | |
832 | * @c->max_write_size. Write @wbuf->size bytes to make sure the | |
833 | * following writes are done in optimal @c->max_write_size | |
834 | * chunks. | |
835 | */ | |
836 | dbg_io("write %d bytes to LEB %d:%d", | |
837 | wbuf->size, wbuf->lnum, wbuf->offs); | |
987226a5 | 838 | err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, |
b36a261e | 839 | wbuf->size); |
6c7f74f7 AB |
840 | if (err) |
841 | goto out; | |
842 | ||
12f33891 | 843 | wbuf->offs += wbuf->size; |
6c7f74f7 AB |
844 | len -= wbuf->size; |
845 | aligned_len -= wbuf->size; | |
846 | written += wbuf->size; | |
847 | } | |
1e51764a AB |
848 | |
849 | /* | |
6c7f74f7 AB |
850 | * The remaining data may take more whole max. write units, so write the |
851 | * remains multiple to max. write unit size directly to the flash media. | |
1e51764a AB |
852 | * We align node length to 8-byte boundary because we anyway flash wbuf |
853 | * if the remaining space is less than 8 bytes. | |
854 | */ | |
6c7f74f7 | 855 | n = aligned_len >> c->max_write_shift; |
1e51764a | 856 | if (n) { |
4f2262a3 ZC |
857 | int m = n - 1; |
858 | ||
12f33891 AB |
859 | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, |
860 | wbuf->offs); | |
4f2262a3 ZC |
861 | |
862 | if (m) { | |
863 | /* '(n-1)<<c->max_write_shift < len' is always true. */ | |
864 | m <<= c->max_write_shift; | |
865 | err = ubifs_leb_write(c, wbuf->lnum, buf + written, | |
866 | wbuf->offs, m); | |
867 | if (err) | |
868 | goto out; | |
869 | wbuf->offs += m; | |
870 | aligned_len -= m; | |
871 | len -= m; | |
872 | written += m; | |
873 | } | |
874 | ||
875 | /* | |
876 | * The non-written len of buf may be less than 'n' because | |
877 | * parameter 'len' is not 8 bytes aligned, so here we read | |
878 | * min(len, n) bytes from buf. | |
879 | */ | |
880 | n = 1 << c->max_write_shift; | |
881 | memcpy(wbuf->buf, buf + written, min(len, n)); | |
882 | if (n > len) { | |
883 | ubifs_assert(c, n - len < 8); | |
884 | ubifs_pad(c, wbuf->buf + len, n - len); | |
885 | } | |
886 | ||
887 | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n); | |
1e51764a AB |
888 | if (err) |
889 | goto out; | |
12f33891 | 890 | wbuf->offs += n; |
1e51764a | 891 | aligned_len -= n; |
4f2262a3 | 892 | len -= min(len, n); |
1e51764a AB |
893 | written += n; |
894 | } | |
895 | ||
896 | spin_lock(&wbuf->lock); | |
20f14311 | 897 | if (aligned_len) { |
1e51764a AB |
898 | /* |
899 | * And now we have what's left and what does not take whole | |
6c7f74f7 | 900 | * max. write unit, so write it to the write-buffer and we are |
1e51764a AB |
901 | * done. |
902 | */ | |
903 | memcpy(wbuf->buf, buf + written, len); | |
20f14311 RW |
904 | if (aligned_len > len) { |
905 | ubifs_assert(c, aligned_len - len < 8); | |
906 | ubifs_pad(c, wbuf->buf + len, aligned_len - len); | |
907 | } | |
908 | } | |
1e51764a | 909 | |
6c7f74f7 AB |
910 | if (c->leb_size - wbuf->offs >= c->max_write_size) |
911 | wbuf->size = c->max_write_size; | |
912 | else | |
913 | wbuf->size = c->leb_size - wbuf->offs; | |
914 | wbuf->avail = wbuf->size - aligned_len; | |
1e51764a | 915 | wbuf->used = aligned_len; |
1e51764a AB |
916 | wbuf->next_ino = 0; |
917 | spin_unlock(&wbuf->lock); | |
918 | ||
919 | exit: | |
920 | if (wbuf->sync_callback) { | |
921 | int free = c->leb_size - wbuf->offs - wbuf->used; | |
922 | ||
923 | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); | |
924 | if (err) | |
925 | goto out; | |
926 | } | |
927 | ||
928 | if (wbuf->used) | |
6eb61d58 | 929 | new_wbuf_timer_nolock(c, wbuf); |
1e51764a AB |
930 | |
931 | return 0; | |
932 | ||
933 | out: | |
235c362b | 934 | ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", |
1e51764a | 935 | len, wbuf->lnum, wbuf->offs, err); |
a33e30a0 | 936 | ubifs_dump_node(c, buf, written + len); |
7c46d0ae | 937 | dump_stack(); |
edf6be24 | 938 | ubifs_dump_leb(c, wbuf->lnum); |
1e51764a AB |
939 | return err; |
940 | } | |
941 | ||
942 | /** | |
a384b47e | 943 | * ubifs_write_node_hmac - write node to the media. |
1e51764a AB |
944 | * @c: UBIFS file-system description object |
945 | * @buf: the node to write | |
946 | * @len: node length | |
947 | * @lnum: logical eraseblock number | |
948 | * @offs: offset within the logical eraseblock | |
a384b47e | 949 | * @hmac_offs: offset of the HMAC within the node |
1e51764a AB |
950 | * |
951 | * This function automatically fills node magic number, assigns sequence | |
952 | * number, and calculates node CRC checksum. The length of the @buf buffer has | |
953 | * to be aligned to the minimal I/O unit size. This function automatically | |
954 | * appends padding node and padding bytes if needed. Returns zero in case of | |
955 | * success and a negative error code in case of failure. | |
956 | */ | |
a384b47e SH |
957 | int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, |
958 | int offs, int hmac_offs) | |
1e51764a AB |
959 | { |
960 | int err, buf_len = ALIGN(len, c->min_io_size); | |
961 | ||
962 | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", | |
963 | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, | |
964 | buf_len); | |
6eb61d58 RW |
965 | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
966 | ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size); | |
967 | ubifs_assert(c, !c->ro_media && !c->ro_mount); | |
968 | ubifs_assert(c, !c->space_fixup); | |
1e51764a | 969 | |
2680d722 | 970 | if (c->ro_error) |
1e51764a AB |
971 | return -EROFS; |
972 | ||
a384b47e SH |
973 | err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1); |
974 | if (err) | |
975 | return err; | |
976 | ||
b36a261e | 977 | err = ubifs_leb_write(c, lnum, buf, offs, buf_len); |
987226a5 | 978 | if (err) |
a33e30a0 | 979 | ubifs_dump_node(c, buf, len); |
1e51764a AB |
980 | |
981 | return err; | |
982 | } | |
983 | ||
a384b47e SH |
984 | /** |
985 | * ubifs_write_node - write node to the media. | |
986 | * @c: UBIFS file-system description object | |
987 | * @buf: the node to write | |
988 | * @len: node length | |
989 | * @lnum: logical eraseblock number | |
990 | * @offs: offset within the logical eraseblock | |
991 | * | |
992 | * This function automatically fills node magic number, assigns sequence | |
993 | * number, and calculates node CRC checksum. The length of the @buf buffer has | |
994 | * to be aligned to the minimal I/O unit size. This function automatically | |
995 | * appends padding node and padding bytes if needed. Returns zero in case of | |
996 | * success and a negative error code in case of failure. | |
997 | */ | |
998 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, | |
999 | int offs) | |
1000 | { | |
1001 | return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1); | |
1002 | } | |
1003 | ||
1e51764a AB |
1004 | /** |
1005 | * ubifs_read_node_wbuf - read node from the media or write-buffer. | |
1006 | * @wbuf: wbuf to check for un-written data | |
1007 | * @buf: buffer to read to | |
1008 | * @type: node type | |
1009 | * @len: node length | |
1010 | * @lnum: logical eraseblock number | |
1011 | * @offs: offset within the logical eraseblock | |
1012 | * | |
1013 | * This function reads a node of known type and length, checks it and stores | |
1014 | * in @buf. If the node partially or fully sits in the write-buffer, this | |
1015 | * function takes data from the buffer, otherwise it reads the flash media. | |
1016 | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative | |
1017 | * error code in case of failure. | |
1018 | */ | |
1019 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, | |
1020 | int lnum, int offs) | |
1021 | { | |
1022 | const struct ubifs_info *c = wbuf->c; | |
1023 | int err, rlen, overlap; | |
1024 | struct ubifs_ch *ch = buf; | |
1025 | ||
77a7ae58 AB |
1026 | dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, |
1027 | dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); | |
6eb61d58 RW |
1028 | ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
1029 | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | |
1030 | ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
1e51764a AB |
1031 | |
1032 | spin_lock(&wbuf->lock); | |
1033 | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | |
1034 | if (!overlap) { | |
1035 | /* We may safely unlock the write-buffer and read the data */ | |
1036 | spin_unlock(&wbuf->lock); | |
1037 | return ubifs_read_node(c, buf, type, len, lnum, offs); | |
1038 | } | |
1039 | ||
1040 | /* Don't read under wbuf */ | |
1041 | rlen = wbuf->offs - offs; | |
1042 | if (rlen < 0) | |
1043 | rlen = 0; | |
1044 | ||
1045 | /* Copy the rest from the write-buffer */ | |
1046 | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | |
1047 | spin_unlock(&wbuf->lock); | |
1048 | ||
1049 | if (rlen > 0) { | |
1050 | /* Read everything that goes before write-buffer */ | |
d304820a AB |
1051 | err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); |
1052 | if (err && err != -EBADMSG) | |
1e51764a | 1053 | return err; |
1e51764a AB |
1054 | } |
1055 | ||
1056 | if (type != ch->node_type) { | |
235c362b | 1057 | ubifs_err(c, "bad node type (%d but expected %d)", |
1e51764a AB |
1058 | ch->node_type, type); |
1059 | goto out; | |
1060 | } | |
1061 | ||
a33e30a0 | 1062 | err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); |
1e51764a | 1063 | if (err) { |
235c362b | 1064 | ubifs_err(c, "expected node type %d", type); |
1e51764a AB |
1065 | return err; |
1066 | } | |
1067 | ||
1068 | rlen = le32_to_cpu(ch->len); | |
1069 | if (rlen != len) { | |
235c362b | 1070 | ubifs_err(c, "bad node length %d, expected %d", rlen, len); |
1e51764a AB |
1071 | goto out; |
1072 | } | |
1073 | ||
1074 | return 0; | |
1075 | ||
1076 | out: | |
235c362b | 1077 | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); |
a33e30a0 | 1078 | ubifs_dump_node(c, buf, len); |
7c46d0ae | 1079 | dump_stack(); |
1e51764a AB |
1080 | return -EINVAL; |
1081 | } | |
1082 | ||
1083 | /** | |
1084 | * ubifs_read_node - read node. | |
1085 | * @c: UBIFS file-system description object | |
1086 | * @buf: buffer to read to | |
1087 | * @type: node type | |
1088 | * @len: node length (not aligned) | |
1089 | * @lnum: logical eraseblock number | |
1090 | * @offs: offset within the logical eraseblock | |
1091 | * | |
b8f1da98 | 1092 | * This function reads a node of known type and length, checks it and |
1e51764a AB |
1093 | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched |
1094 | * and a negative error code in case of failure. | |
1095 | */ | |
1096 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, | |
1097 | int lnum, int offs) | |
1098 | { | |
1099 | int err, l; | |
1100 | struct ubifs_ch *ch = buf; | |
1101 | ||
1102 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | |
6eb61d58 RW |
1103 | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); |
1104 | ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); | |
1105 | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | |
1106 | ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); | |
1e51764a | 1107 | |
d304820a AB |
1108 | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
1109 | if (err && err != -EBADMSG) | |
1e51764a | 1110 | return err; |
1e51764a AB |
1111 | |
1112 | if (type != ch->node_type) { | |
90bea5a3 DG |
1113 | ubifs_errc(c, "bad node type (%d but expected %d)", |
1114 | ch->node_type, type); | |
1e51764a AB |
1115 | goto out; |
1116 | } | |
1117 | ||
a33e30a0 | 1118 | err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); |
1e51764a | 1119 | if (err) { |
90bea5a3 | 1120 | ubifs_errc(c, "expected node type %d", type); |
1e51764a AB |
1121 | return err; |
1122 | } | |
1123 | ||
1124 | l = le32_to_cpu(ch->len); | |
1125 | if (l != len) { | |
90bea5a3 | 1126 | ubifs_errc(c, "bad node length %d, expected %d", l, len); |
1e51764a AB |
1127 | goto out; |
1128 | } | |
1129 | ||
1130 | return 0; | |
1131 | ||
1132 | out: | |
90bea5a3 DG |
1133 | ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, |
1134 | offs, ubi_is_mapped(c->ubi, lnum)); | |
1135 | if (!c->probing) { | |
a33e30a0 | 1136 | ubifs_dump_node(c, buf, len); |
90bea5a3 DG |
1137 | dump_stack(); |
1138 | } | |
1e51764a AB |
1139 | return -EINVAL; |
1140 | } | |
1141 | ||
1142 | /** | |
1143 | * ubifs_wbuf_init - initialize write-buffer. | |
1144 | * @c: UBIFS file-system description object | |
1145 | * @wbuf: write-buffer to initialize | |
1146 | * | |
cb54ef8b | 1147 | * This function initializes write-buffer. Returns zero in case of success |
1e51764a AB |
1148 | * %-ENOMEM in case of failure. |
1149 | */ | |
1150 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | |
1151 | { | |
1152 | size_t size; | |
1153 | ||
6c7f74f7 | 1154 | wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); |
1e51764a AB |
1155 | if (!wbuf->buf) |
1156 | return -ENOMEM; | |
1157 | ||
6c7f74f7 | 1158 | size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); |
1e51764a AB |
1159 | wbuf->inodes = kmalloc(size, GFP_KERNEL); |
1160 | if (!wbuf->inodes) { | |
1161 | kfree(wbuf->buf); | |
1162 | wbuf->buf = NULL; | |
1163 | return -ENOMEM; | |
1164 | } | |
1165 | ||
1166 | wbuf->used = 0; | |
1167 | wbuf->lnum = wbuf->offs = -1; | |
6c7f74f7 AB |
1168 | /* |
1169 | * If the LEB starts at the max. write size aligned address, then | |
1170 | * write-buffer size has to be set to @c->max_write_size. Otherwise, | |
1171 | * set it to something smaller so that it ends at the closest max. | |
1172 | * write size boundary. | |
1173 | */ | |
1174 | size = c->max_write_size - (c->leb_start % c->max_write_size); | |
1175 | wbuf->avail = wbuf->size = size; | |
1e51764a AB |
1176 | wbuf->sync_callback = NULL; |
1177 | mutex_init(&wbuf->io_mutex); | |
1178 | spin_lock_init(&wbuf->lock); | |
1e51764a | 1179 | wbuf->c = c; |
1e51764a AB |
1180 | wbuf->next_ino = 0; |
1181 | ||
f2c5dbd7 AB |
1182 | hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1183 | wbuf->timer.function = wbuf_timer_callback_nolock; | |
1e51764a AB |
1184 | return 0; |
1185 | } | |
1186 | ||
1187 | /** | |
1188 | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. | |
cb54ef8b | 1189 | * @wbuf: the write-buffer where to add |
1e51764a AB |
1190 | * @inum: the inode number |
1191 | * | |
1192 | * This function adds an inode number to the inode array of the write-buffer. | |
1193 | */ | |
1194 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) | |
1195 | { | |
1196 | if (!wbuf->buf) | |
1197 | /* NOR flash or something similar */ | |
1198 | return; | |
1199 | ||
1200 | spin_lock(&wbuf->lock); | |
1201 | if (wbuf->used) | |
1202 | wbuf->inodes[wbuf->next_ino++] = inum; | |
1203 | spin_unlock(&wbuf->lock); | |
1204 | } | |
1205 | ||
1206 | /** | |
1207 | * wbuf_has_ino - returns if the wbuf contains data from the inode. | |
1208 | * @wbuf: the write-buffer | |
1209 | * @inum: the inode number | |
1210 | * | |
1211 | * This function returns with %1 if the write-buffer contains some data from the | |
1212 | * given inode otherwise it returns with %0. | |
1213 | */ | |
1214 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) | |
1215 | { | |
1216 | int i, ret = 0; | |
1217 | ||
1218 | spin_lock(&wbuf->lock); | |
1219 | for (i = 0; i < wbuf->next_ino; i++) | |
1220 | if (inum == wbuf->inodes[i]) { | |
1221 | ret = 1; | |
1222 | break; | |
1223 | } | |
1224 | spin_unlock(&wbuf->lock); | |
1225 | ||
1226 | return ret; | |
1227 | } | |
1228 | ||
1229 | /** | |
1230 | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. | |
1231 | * @c: UBIFS file-system description object | |
1232 | * @inode: inode to synchronize | |
1233 | * | |
1234 | * This function synchronizes write-buffers which contain nodes belonging to | |
1235 | * @inode. Returns zero in case of success and a negative error code in case of | |
1236 | * failure. | |
1237 | */ | |
1238 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) | |
1239 | { | |
1240 | int i, err = 0; | |
1241 | ||
1242 | for (i = 0; i < c->jhead_cnt; i++) { | |
1243 | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | |
1244 | ||
1245 | if (i == GCHD) | |
1246 | /* | |
1247 | * GC head is special, do not look at it. Even if the | |
1248 | * head contains something related to this inode, it is | |
1249 | * a _copy_ of corresponding on-flash node which sits | |
1250 | * somewhere else. | |
1251 | */ | |
1252 | continue; | |
1253 | ||
1254 | if (!wbuf_has_ino(wbuf, inode->i_ino)) | |
1255 | continue; | |
1256 | ||
1257 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
1258 | if (wbuf_has_ino(wbuf, inode->i_ino)) | |
1259 | err = ubifs_wbuf_sync_nolock(wbuf); | |
1260 | mutex_unlock(&wbuf->io_mutex); | |
1261 | ||
1262 | if (err) { | |
1263 | ubifs_ro_mode(c, err); | |
1264 | return err; | |
1265 | } | |
1266 | } | |
1267 | return 0; | |
1268 | } |