]>
Commit | Line | Data |
---|---|---|
4963bb2b NT |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | ||
3 | /* | |
4 | * Important notes about in-place decompression | |
5 | * | |
6 | * At least on x86, the kernel is decompressed in place: the compressed data | |
7 | * is placed to the end of the output buffer, and the decompressor overwrites | |
8 | * most of the compressed data. There must be enough safety margin to | |
9 | * guarantee that the write position is always behind the read position. | |
10 | * | |
11 | * The safety margin for ZSTD with a 128 KB block size is calculated below. | |
12 | * Note that the margin with ZSTD is bigger than with GZIP or XZ! | |
13 | * | |
14 | * The worst case for in-place decompression is that the beginning of | |
15 | * the file is compressed extremely well, and the rest of the file is | |
16 | * uncompressible. Thus, we must look for worst-case expansion when the | |
17 | * compressor is encoding uncompressible data. | |
18 | * | |
19 | * The structure of the .zst file in case of a compresed kernel is as follows. | |
20 | * Maximum sizes (as bytes) of the fields are in parenthesis. | |
21 | * | |
22 | * Frame Header: (18) | |
23 | * Blocks: (N) | |
24 | * Checksum: (4) | |
25 | * | |
26 | * The frame header and checksum overhead is at most 22 bytes. | |
27 | * | |
28 | * ZSTD stores the data in blocks. Each block has a header whose size is | |
29 | * a 3 bytes. After the block header, there is up to 128 KB of payload. | |
30 | * The maximum uncompressed size of the payload is 128 KB. The minimum | |
31 | * uncompressed size of the payload is never less than the payload size | |
32 | * (excluding the block header). | |
33 | * | |
34 | * The assumption, that the uncompressed size of the payload is never | |
35 | * smaller than the payload itself, is valid only when talking about | |
36 | * the payload as a whole. It is possible that the payload has parts where | |
37 | * the decompressor consumes more input than it produces output. Calculating | |
38 | * the worst case for this would be tricky. Instead of trying to do that, | |
39 | * let's simply make sure that the decompressor never overwrites any bytes | |
40 | * of the payload which it is currently reading. | |
41 | * | |
42 | * Now we have enough information to calculate the safety margin. We need | |
43 | * - 22 bytes for the .zst file format headers; | |
44 | * - 3 bytes per every 128 KiB of uncompressed size (one block header per | |
45 | * block); and | |
46 | * - 128 KiB (biggest possible zstd block size) to make sure that the | |
47 | * decompressor never overwrites anything from the block it is currently | |
48 | * reading. | |
49 | * | |
50 | * We get the following formula: | |
51 | * | |
52 | * safety_margin = 22 + uncompressed_size * 3 / 131072 + 131072 | |
53 | * <= 22 + (uncompressed_size >> 15) + 131072 | |
54 | */ | |
55 | ||
56 | /* | |
57 | * Preboot environments #include "path/to/decompress_unzstd.c". | |
58 | * All of the source files we depend on must be #included. | |
59 | * zstd's only source dependeny is xxhash, which has no source | |
60 | * dependencies. | |
61 | * | |
62 | * When UNZSTD_PREBOOT is defined we declare __decompress(), which is | |
63 | * used for kernel decompression, instead of unzstd(). | |
64 | * | |
65 | * Define __DISABLE_EXPORTS in preboot environments to prevent symbols | |
66 | * from xxhash and zstd from being exported by the EXPORT_SYMBOL macro. | |
67 | */ | |
68 | #ifdef STATIC | |
69 | # define UNZSTD_PREBOOT | |
70 | # include "xxhash.c" | |
71 | # include "zstd/entropy_common.c" | |
72 | # include "zstd/fse_decompress.c" | |
73 | # include "zstd/huf_decompress.c" | |
74 | # include "zstd/zstd_common.c" | |
75 | # include "zstd/decompress.c" | |
76 | #endif | |
77 | ||
78 | #include <linux/decompress/mm.h> | |
79 | #include <linux/kernel.h> | |
80 | #include <linux/zstd.h> | |
81 | ||
82 | /* 128MB is the maximum window size supported by zstd. */ | |
83 | #define ZSTD_WINDOWSIZE_MAX (1 << ZSTD_WINDOWLOG_MAX) | |
84 | /* | |
85 | * Size of the input and output buffers in multi-call mode. | |
86 | * Pick a larger size because it isn't used during kernel decompression, | |
87 | * since that is single pass, and we have to allocate a large buffer for | |
88 | * zstd's window anyway. The larger size speeds up initramfs decompression. | |
89 | */ | |
90 | #define ZSTD_IOBUF_SIZE (1 << 17) | |
91 | ||
92 | static int INIT handle_zstd_error(size_t ret, void (*error)(char *x)) | |
93 | { | |
94 | const int err = ZSTD_getErrorCode(ret); | |
95 | ||
96 | if (!ZSTD_isError(ret)) | |
97 | return 0; | |
98 | ||
99 | switch (err) { | |
100 | case ZSTD_error_memory_allocation: | |
101 | error("ZSTD decompressor ran out of memory"); | |
102 | break; | |
103 | case ZSTD_error_prefix_unknown: | |
104 | error("Input is not in the ZSTD format (wrong magic bytes)"); | |
105 | break; | |
106 | case ZSTD_error_dstSize_tooSmall: | |
107 | case ZSTD_error_corruption_detected: | |
108 | case ZSTD_error_checksum_wrong: | |
109 | error("ZSTD-compressed data is corrupt"); | |
110 | break; | |
111 | default: | |
112 | error("ZSTD-compressed data is probably corrupt"); | |
113 | break; | |
114 | } | |
115 | return -1; | |
116 | } | |
117 | ||
118 | /* | |
119 | * Handle the case where we have the entire input and output in one segment. | |
120 | * We can allocate less memory (no circular buffer for the sliding window), | |
121 | * and avoid some memcpy() calls. | |
122 | */ | |
123 | static int INIT decompress_single(const u8 *in_buf, long in_len, u8 *out_buf, | |
124 | long out_len, long *in_pos, | |
125 | void (*error)(char *x)) | |
126 | { | |
127 | const size_t wksp_size = ZSTD_DCtxWorkspaceBound(); | |
128 | void *wksp = large_malloc(wksp_size); | |
129 | ZSTD_DCtx *dctx = ZSTD_initDCtx(wksp, wksp_size); | |
130 | int err; | |
131 | size_t ret; | |
132 | ||
133 | if (dctx == NULL) { | |
134 | error("Out of memory while allocating ZSTD_DCtx"); | |
135 | err = -1; | |
136 | goto out; | |
137 | } | |
138 | /* | |
139 | * Find out how large the frame actually is, there may be junk at | |
140 | * the end of the frame that ZSTD_decompressDCtx() can't handle. | |
141 | */ | |
142 | ret = ZSTD_findFrameCompressedSize(in_buf, in_len); | |
143 | err = handle_zstd_error(ret, error); | |
144 | if (err) | |
145 | goto out; | |
146 | in_len = (long)ret; | |
147 | ||
148 | ret = ZSTD_decompressDCtx(dctx, out_buf, out_len, in_buf, in_len); | |
149 | err = handle_zstd_error(ret, error); | |
150 | if (err) | |
151 | goto out; | |
152 | ||
153 | if (in_pos != NULL) | |
154 | *in_pos = in_len; | |
155 | ||
156 | err = 0; | |
157 | out: | |
158 | if (wksp != NULL) | |
159 | large_free(wksp); | |
160 | return err; | |
161 | } | |
162 | ||
163 | static int INIT __unzstd(unsigned char *in_buf, long in_len, | |
164 | long (*fill)(void*, unsigned long), | |
165 | long (*flush)(void*, unsigned long), | |
166 | unsigned char *out_buf, long out_len, | |
167 | long *in_pos, | |
168 | void (*error)(char *x)) | |
169 | { | |
170 | ZSTD_inBuffer in; | |
171 | ZSTD_outBuffer out; | |
172 | ZSTD_frameParams params; | |
173 | void *in_allocated = NULL; | |
174 | void *out_allocated = NULL; | |
175 | void *wksp = NULL; | |
176 | size_t wksp_size; | |
177 | ZSTD_DStream *dstream; | |
178 | int err; | |
179 | size_t ret; | |
180 | ||
1c4dd334 PC |
181 | /* |
182 | * ZSTD decompression code won't be happy if the buffer size is so big | |
183 | * that its end address overflows. When the size is not provided, make | |
184 | * it as big as possible without having the end address overflow. | |
185 | */ | |
4963bb2b | 186 | if (out_len == 0) |
1c4dd334 | 187 | out_len = UINTPTR_MAX - (uintptr_t)out_buf; |
4963bb2b NT |
188 | |
189 | if (fill == NULL && flush == NULL) | |
190 | /* | |
191 | * We can decompress faster and with less memory when we have a | |
192 | * single chunk. | |
193 | */ | |
194 | return decompress_single(in_buf, in_len, out_buf, out_len, | |
195 | in_pos, error); | |
196 | ||
197 | /* | |
198 | * If in_buf is not provided, we must be using fill(), so allocate | |
199 | * a large enough buffer. If it is provided, it must be at least | |
200 | * ZSTD_IOBUF_SIZE large. | |
201 | */ | |
202 | if (in_buf == NULL) { | |
203 | in_allocated = large_malloc(ZSTD_IOBUF_SIZE); | |
204 | if (in_allocated == NULL) { | |
205 | error("Out of memory while allocating input buffer"); | |
206 | err = -1; | |
207 | goto out; | |
208 | } | |
209 | in_buf = in_allocated; | |
210 | in_len = 0; | |
211 | } | |
212 | /* Read the first chunk, since we need to decode the frame header. */ | |
213 | if (fill != NULL) | |
214 | in_len = fill(in_buf, ZSTD_IOBUF_SIZE); | |
215 | if (in_len < 0) { | |
216 | error("ZSTD-compressed data is truncated"); | |
217 | err = -1; | |
218 | goto out; | |
219 | } | |
220 | /* Set the first non-empty input buffer. */ | |
221 | in.src = in_buf; | |
222 | in.pos = 0; | |
223 | in.size = in_len; | |
224 | /* Allocate the output buffer if we are using flush(). */ | |
225 | if (flush != NULL) { | |
226 | out_allocated = large_malloc(ZSTD_IOBUF_SIZE); | |
227 | if (out_allocated == NULL) { | |
228 | error("Out of memory while allocating output buffer"); | |
229 | err = -1; | |
230 | goto out; | |
231 | } | |
232 | out_buf = out_allocated; | |
233 | out_len = ZSTD_IOBUF_SIZE; | |
234 | } | |
235 | /* Set the output buffer. */ | |
236 | out.dst = out_buf; | |
237 | out.pos = 0; | |
238 | out.size = out_len; | |
239 | ||
240 | /* | |
241 | * We need to know the window size to allocate the ZSTD_DStream. | |
242 | * Since we are streaming, we need to allocate a buffer for the sliding | |
243 | * window. The window size varies from 1 KB to ZSTD_WINDOWSIZE_MAX | |
244 | * (8 MB), so it is important to use the actual value so as not to | |
245 | * waste memory when it is smaller. | |
246 | */ | |
247 | ret = ZSTD_getFrameParams(¶ms, in.src, in.size); | |
248 | err = handle_zstd_error(ret, error); | |
249 | if (err) | |
250 | goto out; | |
251 | if (ret != 0) { | |
252 | error("ZSTD-compressed data has an incomplete frame header"); | |
253 | err = -1; | |
254 | goto out; | |
255 | } | |
256 | if (params.windowSize > ZSTD_WINDOWSIZE_MAX) { | |
257 | error("ZSTD-compressed data has too large a window size"); | |
258 | err = -1; | |
259 | goto out; | |
260 | } | |
261 | ||
262 | /* | |
263 | * Allocate the ZSTD_DStream now that we know how much memory is | |
264 | * required. | |
265 | */ | |
266 | wksp_size = ZSTD_DStreamWorkspaceBound(params.windowSize); | |
267 | wksp = large_malloc(wksp_size); | |
268 | dstream = ZSTD_initDStream(params.windowSize, wksp, wksp_size); | |
269 | if (dstream == NULL) { | |
270 | error("Out of memory while allocating ZSTD_DStream"); | |
271 | err = -1; | |
272 | goto out; | |
273 | } | |
274 | ||
275 | /* | |
276 | * Decompression loop: | |
277 | * Read more data if necessary (error if no more data can be read). | |
278 | * Call the decompression function, which returns 0 when finished. | |
279 | * Flush any data produced if using flush(). | |
280 | */ | |
281 | if (in_pos != NULL) | |
282 | *in_pos = 0; | |
283 | do { | |
284 | /* | |
285 | * If we need to reload data, either we have fill() and can | |
286 | * try to get more data, or we don't and the input is truncated. | |
287 | */ | |
288 | if (in.pos == in.size) { | |
289 | if (in_pos != NULL) | |
290 | *in_pos += in.pos; | |
291 | in_len = fill ? fill(in_buf, ZSTD_IOBUF_SIZE) : -1; | |
292 | if (in_len < 0) { | |
293 | error("ZSTD-compressed data is truncated"); | |
294 | err = -1; | |
295 | goto out; | |
296 | } | |
297 | in.pos = 0; | |
298 | in.size = in_len; | |
299 | } | |
300 | /* Returns zero when the frame is complete. */ | |
301 | ret = ZSTD_decompressStream(dstream, &out, &in); | |
302 | err = handle_zstd_error(ret, error); | |
303 | if (err) | |
304 | goto out; | |
305 | /* Flush all of the data produced if using flush(). */ | |
306 | if (flush != NULL && out.pos > 0) { | |
307 | if (out.pos != flush(out.dst, out.pos)) { | |
308 | error("Failed to flush()"); | |
309 | err = -1; | |
310 | goto out; | |
311 | } | |
312 | out.pos = 0; | |
313 | } | |
314 | } while (ret != 0); | |
315 | ||
316 | if (in_pos != NULL) | |
317 | *in_pos += in.pos; | |
318 | ||
319 | err = 0; | |
320 | out: | |
321 | if (in_allocated != NULL) | |
322 | large_free(in_allocated); | |
323 | if (out_allocated != NULL) | |
324 | large_free(out_allocated); | |
325 | if (wksp != NULL) | |
326 | large_free(wksp); | |
327 | return err; | |
328 | } | |
329 | ||
330 | #ifndef UNZSTD_PREBOOT | |
331 | STATIC int INIT unzstd(unsigned char *buf, long len, | |
332 | long (*fill)(void*, unsigned long), | |
333 | long (*flush)(void*, unsigned long), | |
334 | unsigned char *out_buf, | |
335 | long *pos, | |
336 | void (*error)(char *x)) | |
337 | { | |
338 | return __unzstd(buf, len, fill, flush, out_buf, 0, pos, error); | |
339 | } | |
340 | #else | |
341 | STATIC int INIT __decompress(unsigned char *buf, long len, | |
342 | long (*fill)(void*, unsigned long), | |
343 | long (*flush)(void*, unsigned long), | |
344 | unsigned char *out_buf, long out_len, | |
345 | long *pos, | |
346 | void (*error)(char *x)) | |
347 | { | |
348 | return __unzstd(buf, len, fill, flush, out_buf, out_len, pos, error); | |
349 | } | |
350 | #endif |