]> Git Repo - linux.git/blame - mm/memcontrol.c
mm: fix page_freeze_refs and page_unfreeze_refs in comments
[linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <[email protected]>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <[email protected]>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
55007d84 265/*
f7ce3190 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
55007d84 272 *
dbcf73e2
VD
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
55007d84 275 */
dbcf73e2
VD
276static DEFINE_IDA(memcg_cache_ida);
277int memcg_nr_cache_ids;
749c5415 278
05257a1a
VD
279/* Protects memcg_nr_cache_ids */
280static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282void memcg_get_cache_ids(void)
283{
284 down_read(&memcg_cache_ids_sem);
285}
286
287void memcg_put_cache_ids(void)
288{
289 up_read(&memcg_cache_ids_sem);
290}
291
55007d84
GC
292/*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
b8627835 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
302 * increase ours as well if it increases.
303 */
304#define MEMCG_CACHES_MIN_SIZE 4
b8627835 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 306
d7f25f8a
GC
307/*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
ef12947c 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 315
17cc4dfe
TH
316struct workqueue_struct *memcg_kmem_cache_wq;
317
0a4465d3
KT
318static int memcg_shrinker_map_size;
319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322{
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324}
325
326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328{
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354}
355
356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357{
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372}
373
374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375{
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396}
397
398int memcg_expand_shrinker_maps(int new_id)
399{
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424}
fae91d6d
KT
425
426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427{
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
fae91d6d
KT
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438}
439
0a4465d3
KT
440#else /* CONFIG_MEMCG_KMEM */
441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442{
443 return 0;
444}
445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 446#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 447
ad7fa852
TH
448/**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
ad7fa852
TH
458 */
459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460{
461 struct mem_cgroup *memcg;
462
ad7fa852
TH
463 memcg = page->mem_cgroup;
464
9e10a130 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
466 memcg = root_mem_cgroup;
467
ad7fa852
TH
468 return &memcg->css;
469}
470
2fc04524
VD
471/**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484ino_t page_cgroup_ino(struct page *page)
485{
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
ccda7f43 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 684 int event)
e9f8974f 685{
a983b5eb 686 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 690 struct page *page,
f627c2f5 691 bool compound, int nr_pages)
d52aa412 692{
b2402857
KH
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
0a31bc97 697 if (PageAnon(page))
c9019e9b 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 699 else {
c9019e9b 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 701 if (PageSwapBacked(page))
c9019e9b 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 703 }
55e462b0 704
f627c2f5
KS
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 708 }
b070e65c 709
e401f176
KH
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
c9019e9b 712 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 713 else {
c9019e9b 714 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
715 nr_pages = -nr_pages; /* for event */
716 }
e401f176 717
a983b5eb 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
719}
720
0a6b76dd
VD
721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
bb2a0de9 723{
b4536f0c 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 725 unsigned long nr = 0;
ef8f2327 726 enum lru_list lru;
889976db 727
e231875b 728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 729
ef8f2327
MG
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
b4536f0c 733 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
734 }
735 return nr;
889976db 736}
bb2a0de9 737
c0ff4b85 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 739 unsigned int lru_mask)
6d12e2d8 740{
e231875b 741 unsigned long nr = 0;
889976db 742 int nid;
6d12e2d8 743
31aaea4a 744 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
d52aa412
KH
747}
748
f53d7ce3
JW
749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
7a159cc9
JW
751{
752 unsigned long val, next;
753
a983b5eb
JW
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 756 /* from time_after() in jiffies.h */
6a1a8b80 757 if ((long)(next - val) < 0) {
f53d7ce3
JW
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
bb4cc1a8
AM
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
f53d7ce3
JW
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
a983b5eb 771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 772 return true;
7a159cc9 773 }
f53d7ce3 774 return false;
d2265e6f
KH
775}
776
777/*
778 * Check events in order.
779 *
780 */
c0ff4b85 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
782{
783 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 786 bool do_softlimit;
82b3f2a7 787 bool do_numainfo __maybe_unused;
f53d7ce3 788
bb4cc1a8
AM
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
791#if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794#endif
c0ff4b85 795 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
453a9bf3 798#if MAX_NUMNODES > 1
f53d7ce3 799 if (unlikely(do_numainfo))
c0ff4b85 800 atomic_inc(&memcg->numainfo_events);
453a9bf3 801#endif
0a31bc97 802 }
d2265e6f
KH
803}
804
cf475ad2 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 806{
31a78f23
BS
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
073219e9 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 816}
33398cf2 817EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 818
d46eb14b
SB
819/**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 828{
d46eb14b
SB
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
0b7f569e 833
54595fe2
KH
834 rcu_read_lock();
835 do {
6f6acb00
MH
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
df381975 842 memcg = root_mem_cgroup;
6f6acb00
MH
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
ec903c0c 848 } while (!css_tryget_online(&memcg->css));
54595fe2 849 rcu_read_unlock();
c0ff4b85 850 return memcg;
54595fe2 851}
d46eb14b
SB
852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
f745c6f5
SB
854/**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862{
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873}
874EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
d46eb14b
SB
876/**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880{
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891}
54595fe2 892
5660048c
JW
893/**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
b213b54f 906 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 907 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 908 * reclaimers operating on the same node and priority.
5660048c 909 */
694fbc0f 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 911 struct mem_cgroup *prev,
694fbc0f 912 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 913{
33398cf2 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 915 struct cgroup_subsys_state *css = NULL;
9f3a0d09 916 struct mem_cgroup *memcg = NULL;
5ac8fb31 917 struct mem_cgroup *pos = NULL;
711d3d2c 918
694fbc0f
AM
919 if (mem_cgroup_disabled())
920 return NULL;
5660048c 921
9f3a0d09
JW
922 if (!root)
923 root = root_mem_cgroup;
7d74b06f 924
9f3a0d09 925 if (prev && !reclaim)
5ac8fb31 926 pos = prev;
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
5ac8fb31 930 goto out;
694fbc0f 931 return root;
9f3a0d09 932 }
14067bb3 933
542f85f9 934 rcu_read_lock();
5f578161 935
5ac8fb31 936 if (reclaim) {
ef8f2327 937 struct mem_cgroup_per_node *mz;
5ac8fb31 938
ef8f2327 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
6df38689 945 while (1) {
4db0c3c2 946 pos = READ_ONCE(iter->position);
6df38689
VD
947 if (!pos || css_tryget(&pos->css))
948 break;
5ac8fb31 949 /*
6df38689
VD
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
5ac8fb31
JW
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
527a5ec9 976 }
7d74b06f 977
5ac8fb31
JW
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
14067bb3 984
5ac8fb31
JW
985 if (css == &root->css)
986 break;
14067bb3 987
0b8f73e1
JW
988 if (css_tryget(css))
989 break;
9f3a0d09 990
5ac8fb31 991 memcg = NULL;
9f3a0d09 992 }
5ac8fb31
JW
993
994 if (reclaim) {
5ac8fb31 995 /*
6df38689
VD
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 999 */
6df38689
VD
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
5ac8fb31
JW
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
9f3a0d09 1009 }
5ac8fb31 1010
542f85f9
MH
1011out_unlock:
1012 rcu_read_unlock();
5ac8fb31 1013out:
c40046f3
MH
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
9f3a0d09 1017 return memcg;
14067bb3 1018}
7d74b06f 1019
5660048c
JW
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
9f3a0d09
JW
1027{
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032}
7d74b06f 1033
6df38689
VD
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
6df38689
VD
1040 int i;
1041
9f15bde6 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1043 for_each_node(nid) {
ef8f2327
MG
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
6df38689
VD
1049 }
1050 }
1051 }
1052}
1053
7c5f64f8
VD
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
bc2fb7ed 1079 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089}
1090
925b7673 1091/**
dfe0e773 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1093 * @page: the page
f144c390 1094 * @pgdat: pgdat of the page
dfe0e773
JW
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1099 */
599d0c95 1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1101{
ef8f2327 1102 struct mem_cgroup_per_node *mz;
925b7673 1103 struct mem_cgroup *memcg;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150 1106 if (mem_cgroup_disabled()) {
599d0c95 1107 lruvec = &pgdat->lruvec;
bea8c150
HD
1108 goto out;
1109 }
925b7673 1110
1306a85a 1111 memcg = page->mem_cgroup;
7512102c 1112 /*
dfe0e773 1113 * Swapcache readahead pages are added to the LRU - and
29833315 1114 * possibly migrated - before they are charged.
7512102c 1115 */
29833315
JW
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
7512102c 1118
ef8f2327 1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1120 lruvec = &mz->lruvec;
1121out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
599d0c95
MG
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
bea8c150 1129 return lruvec;
08e552c6 1130}
b69408e8 1131
925b7673 1132/**
fa9add64
HD
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
b4536f0c 1136 * @zid: zone id of the accounted pages
fa9add64 1137 * @nr_pages: positive when adding or negative when removing
925b7673 1138 *
ca707239
HD
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1142 */
fa9add64 1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1144 int zid, int nr_pages)
3f58a829 1145{
ef8f2327 1146 struct mem_cgroup_per_node *mz;
fa9add64 1147 unsigned long *lru_size;
ca707239 1148 long size;
3f58a829
MK
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
ef8f2327 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1154 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
b4536f0c
MH
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
08e552c6 1169}
544122e5 1170
2314b42d 1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1172{
2314b42d 1173 struct mem_cgroup *task_memcg;
158e0a2d 1174 struct task_struct *p;
ffbdccf5 1175 bool ret;
4c4a2214 1176
158e0a2d 1177 p = find_lock_task_mm(task);
de077d22 1178 if (p) {
2314b42d 1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
ffbdccf5 1187 rcu_read_lock();
2314b42d
JW
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
ffbdccf5 1190 rcu_read_unlock();
de077d22 1191 }
2314b42d
JW
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
4c4a2214
DR
1194 return ret;
1195}
1196
19942822 1197/**
9d11ea9f 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1199 * @memcg: the memory cgroup
19942822 1200 *
9d11ea9f 1201 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1202 * pages.
19942822 1203 */
c0ff4b85 1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1205{
3e32cb2e
JW
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
9d11ea9f 1209
3e32cb2e 1210 count = page_counter_read(&memcg->memory);
bbec2e15 1211 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1212 if (count < limit)
1213 margin = limit - count;
1214
7941d214 1215 if (do_memsw_account()) {
3e32cb2e 1216 count = page_counter_read(&memcg->memsw);
bbec2e15 1217 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
cbedbac3
LR
1220 else
1221 margin = 0;
3e32cb2e
JW
1222 }
1223
1224 return margin;
19942822
JW
1225}
1226
32047e2a 1227/*
bdcbb659 1228 * A routine for checking "mem" is under move_account() or not.
32047e2a 1229 *
bdcbb659
QH
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
32047e2a 1233 */
c0ff4b85 1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1235{
2bd9bb20
KH
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
4b534334 1238 bool ret = false;
2bd9bb20
KH
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
3e92041d 1248
2314b42d
JW
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1251unlock:
1252 spin_unlock(&mc.lock);
4b534334
KH
1253 return ret;
1254}
1255
c0ff4b85 1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1257{
1258 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1259 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270}
1271
8ad6e404 1272static const unsigned int memcg1_stats[] = {
71cd3113
JW
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292};
1293
58cf188e 1294#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1295/**
58cf188e 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304{
58cf188e
SZ
1305 struct mem_cgroup *iter;
1306 unsigned int i;
e222432b 1307
e222432b
BS
1308 rcu_read_lock();
1309
2415b9f5
BV
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
e61734c5 1318 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1319 pr_cont("\n");
e222432b 1320
e222432b
BS
1321 rcu_read_unlock();
1322
3e32cb2e
JW
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1336 pr_cont(":");
1337
71cd3113
JW
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1340 continue;
71cd3113 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1342 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
e222432b
BS
1351}
1352
a63d83f4
DR
1353/*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
bbec2e15 1356unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1357{
bbec2e15 1358 unsigned long max;
f3e8eb70 1359
bbec2e15 1360 max = memcg->memory.max;
9a5a8f19 1361 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
9a5a8f19 1364
bbec2e15
RG
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
9a5a8f19 1369 }
bbec2e15 1370 return max;
a63d83f4
DR
1371}
1372
b6e6edcf 1373static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1374 int order)
9cbb78bb 1375{
6e0fc46d
DR
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
2a966b77 1379 .memcg = memcg,
6e0fc46d
DR
1380 .gfp_mask = gfp_mask,
1381 .order = order,
6e0fc46d 1382 };
7c5f64f8 1383 bool ret;
9cbb78bb 1384
dc56401f 1385 mutex_lock(&oom_lock);
7c5f64f8 1386 ret = out_of_memory(&oc);
dc56401f 1387 mutex_unlock(&oom_lock);
7c5f64f8 1388 return ret;
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
0edaf86c 1466 node = next_node_in(node, memcg->scan_nodes);
889976db 1467 /*
fda3d69b
MH
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
889976db
YH
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
c0ff4b85 1475 memcg->last_scanned_node = node;
889976db
YH
1476 return node;
1477}
889976db 1478#else
c0ff4b85 1479int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1480{
1481 return 0;
1482}
1483#endif
1484
0608f43d 1485static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1486 pg_data_t *pgdat,
0608f43d
AM
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489{
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1496 .pgdat = pgdat,
0608f43d
AM
1497 .priority = 0,
1498 };
1499
3e32cb2e 1500 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
a9dd0a83 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1527 pgdat, &nr_scanned);
0608f43d 1528 *total_scanned += nr_scanned;
3e32cb2e 1529 if (!soft_limit_excess(root_memcg))
0608f43d 1530 break;
6d61ef40 1531 }
0608f43d
AM
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
6d61ef40
BS
1534}
1535
0056f4e6
JW
1536#ifdef CONFIG_LOCKDEP
1537static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539};
1540#endif
1541
fb2a6fc5
JW
1542static DEFINE_SPINLOCK(memcg_oom_lock);
1543
867578cb
KH
1544/*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
fb2a6fc5 1548static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1549{
79dfdacc 1550 struct mem_cgroup *iter, *failed = NULL;
a636b327 1551
fb2a6fc5
JW
1552 spin_lock(&memcg_oom_lock);
1553
9f3a0d09 1554 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1555 if (iter->oom_lock) {
79dfdacc
MH
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
79dfdacc 1560 failed = iter;
9f3a0d09
JW
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
23751be0
JW
1563 } else
1564 iter->oom_lock = true;
7d74b06f 1565 }
867578cb 1566
fb2a6fc5
JW
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
79dfdacc 1578 }
0056f4e6
JW
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
a636b327 1585}
0b7f569e 1586
fb2a6fc5 1587static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1588{
7d74b06f
KH
1589 struct mem_cgroup *iter;
1590
fb2a6fc5 1591 spin_lock(&memcg_oom_lock);
0056f4e6 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1593 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1594 iter->oom_lock = false;
fb2a6fc5 1595 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1596}
1597
c0ff4b85 1598static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1599{
1600 struct mem_cgroup *iter;
1601
c2b42d3c 1602 spin_lock(&memcg_oom_lock);
c0ff4b85 1603 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1606}
1607
c0ff4b85 1608static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1609{
1610 struct mem_cgroup *iter;
1611
867578cb
KH
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1615 */
c2b42d3c 1616 spin_lock(&memcg_oom_lock);
c0ff4b85 1617 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1621}
1622
867578cb
KH
1623static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
dc98df5a 1625struct oom_wait_info {
d79154bb 1626 struct mem_cgroup *memcg;
ac6424b9 1627 wait_queue_entry_t wait;
dc98df5a
KH
1628};
1629
ac6424b9 1630static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1631 unsigned mode, int sync, void *arg)
1632{
d79154bb
HD
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1638 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1639
2314b42d
JW
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1642 return 0;
dc98df5a
KH
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644}
1645
c0ff4b85 1646static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1647{
c2b42d3c
TH
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
f4b90b70 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1658}
1659
29ef680a
MH
1660enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665};
1666
1667static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1668{
29ef680a
MH
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
867578cb 1672 /*
49426420
JW
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1676 *
29ef680a
MH
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1680 * released.
49426420 1681 *
29ef680a
MH
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1686 *
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
867578cb 1689 */
29ef680a
MH
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1692 return OOM_SKIPPED;
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1697
1698 return OOM_ASYNC;
1699 }
1700
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1702 return OOM_SUCCESS;
1703
1704 WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
1705 "This looks like a misconfiguration or a kernel bug.");
1706 return OOM_FAILED;
3812c8c8
JW
1707}
1708
1709/**
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1711 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1712 *
49426420
JW
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
3812c8c8 1715 *
49426420 1716 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1721 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1722 *
1723 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1724 * completed, %false otherwise.
3812c8c8 1725 */
49426420 1726bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1727{
626ebc41 1728 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1729 struct oom_wait_info owait;
49426420 1730 bool locked;
3812c8c8
JW
1731
1732 /* OOM is global, do not handle */
3812c8c8 1733 if (!memcg)
49426420 1734 return false;
3812c8c8 1735
7c5f64f8 1736 if (!handle)
49426420 1737 goto cleanup;
3812c8c8
JW
1738
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
2055da97 1743 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1744
3812c8c8 1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1746 mem_cgroup_mark_under_oom(memcg);
1747
1748 locked = mem_cgroup_oom_trylock(memcg);
1749
1750 if (locked)
1751 mem_cgroup_oom_notify(memcg);
1752
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
49426420 1758 } else {
3812c8c8 1759 schedule();
49426420
JW
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1762 }
1763
1764 if (locked) {
fb2a6fc5
JW
1765 mem_cgroup_oom_unlock(memcg);
1766 /*
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1770 */
1771 memcg_oom_recover(memcg);
1772 }
49426420 1773cleanup:
626ebc41 1774 current->memcg_in_oom = NULL;
3812c8c8 1775 css_put(&memcg->css);
867578cb 1776 return true;
0b7f569e
KH
1777}
1778
d7365e78 1779/**
81f8c3a4
JW
1780 * lock_page_memcg - lock a page->mem_cgroup binding
1781 * @page: the page
32047e2a 1782 *
81f8c3a4 1783 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1784 * another cgroup.
1785 *
1786 * It ensures lifetime of the returned memcg. Caller is responsible
1787 * for the lifetime of the page; __unlock_page_memcg() is available
1788 * when @page might get freed inside the locked section.
d69b042f 1789 */
739f79fc 1790struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1791{
1792 struct mem_cgroup *memcg;
6de22619 1793 unsigned long flags;
89c06bd5 1794
6de22619
JW
1795 /*
1796 * The RCU lock is held throughout the transaction. The fast
1797 * path can get away without acquiring the memcg->move_lock
1798 * because page moving starts with an RCU grace period.
739f79fc
JW
1799 *
1800 * The RCU lock also protects the memcg from being freed when
1801 * the page state that is going to change is the only thing
1802 * preventing the page itself from being freed. E.g. writeback
1803 * doesn't hold a page reference and relies on PG_writeback to
1804 * keep off truncation, migration and so forth.
1805 */
d7365e78
JW
1806 rcu_read_lock();
1807
1808 if (mem_cgroup_disabled())
739f79fc 1809 return NULL;
89c06bd5 1810again:
1306a85a 1811 memcg = page->mem_cgroup;
29833315 1812 if (unlikely(!memcg))
739f79fc 1813 return NULL;
d7365e78 1814
bdcbb659 1815 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1816 return memcg;
89c06bd5 1817
6de22619 1818 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1819 if (memcg != page->mem_cgroup) {
6de22619 1820 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1821 goto again;
1822 }
6de22619
JW
1823
1824 /*
1825 * When charge migration first begins, we can have locked and
1826 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1827 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1828 */
1829 memcg->move_lock_task = current;
1830 memcg->move_lock_flags = flags;
d7365e78 1831
739f79fc 1832 return memcg;
89c06bd5 1833}
81f8c3a4 1834EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1835
d7365e78 1836/**
739f79fc
JW
1837 * __unlock_page_memcg - unlock and unpin a memcg
1838 * @memcg: the memcg
1839 *
1840 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1841 */
739f79fc 1842void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1843{
6de22619
JW
1844 if (memcg && memcg->move_lock_task == current) {
1845 unsigned long flags = memcg->move_lock_flags;
1846
1847 memcg->move_lock_task = NULL;
1848 memcg->move_lock_flags = 0;
1849
1850 spin_unlock_irqrestore(&memcg->move_lock, flags);
1851 }
89c06bd5 1852
d7365e78 1853 rcu_read_unlock();
89c06bd5 1854}
739f79fc
JW
1855
1856/**
1857 * unlock_page_memcg - unlock a page->mem_cgroup binding
1858 * @page: the page
1859 */
1860void unlock_page_memcg(struct page *page)
1861{
1862 __unlock_page_memcg(page->mem_cgroup);
1863}
81f8c3a4 1864EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1865
cdec2e42
KH
1866struct memcg_stock_pcp {
1867 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1868 unsigned int nr_pages;
cdec2e42 1869 struct work_struct work;
26fe6168 1870 unsigned long flags;
a0db00fc 1871#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1872};
1873static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1874static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1875
a0956d54
SS
1876/**
1877 * consume_stock: Try to consume stocked charge on this cpu.
1878 * @memcg: memcg to consume from.
1879 * @nr_pages: how many pages to charge.
1880 *
1881 * The charges will only happen if @memcg matches the current cpu's memcg
1882 * stock, and at least @nr_pages are available in that stock. Failure to
1883 * service an allocation will refill the stock.
1884 *
1885 * returns true if successful, false otherwise.
cdec2e42 1886 */
a0956d54 1887static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1888{
1889 struct memcg_stock_pcp *stock;
db2ba40c 1890 unsigned long flags;
3e32cb2e 1891 bool ret = false;
cdec2e42 1892
a983b5eb 1893 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1894 return ret;
a0956d54 1895
db2ba40c
JW
1896 local_irq_save(flags);
1897
1898 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1899 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1900 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1901 ret = true;
1902 }
db2ba40c
JW
1903
1904 local_irq_restore(flags);
1905
cdec2e42
KH
1906 return ret;
1907}
1908
1909/*
3e32cb2e 1910 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1911 */
1912static void drain_stock(struct memcg_stock_pcp *stock)
1913{
1914 struct mem_cgroup *old = stock->cached;
1915
11c9ea4e 1916 if (stock->nr_pages) {
3e32cb2e 1917 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1918 if (do_memsw_account())
3e32cb2e 1919 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1920 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1921 stock->nr_pages = 0;
cdec2e42
KH
1922 }
1923 stock->cached = NULL;
cdec2e42
KH
1924}
1925
cdec2e42
KH
1926static void drain_local_stock(struct work_struct *dummy)
1927{
db2ba40c
JW
1928 struct memcg_stock_pcp *stock;
1929 unsigned long flags;
1930
72f0184c
MH
1931 /*
1932 * The only protection from memory hotplug vs. drain_stock races is
1933 * that we always operate on local CPU stock here with IRQ disabled
1934 */
db2ba40c
JW
1935 local_irq_save(flags);
1936
1937 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1938 drain_stock(stock);
26fe6168 1939 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1940
1941 local_irq_restore(flags);
cdec2e42
KH
1942}
1943
1944/*
3e32cb2e 1945 * Cache charges(val) to local per_cpu area.
320cc51d 1946 * This will be consumed by consume_stock() function, later.
cdec2e42 1947 */
c0ff4b85 1948static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1949{
db2ba40c
JW
1950 struct memcg_stock_pcp *stock;
1951 unsigned long flags;
1952
1953 local_irq_save(flags);
cdec2e42 1954
db2ba40c 1955 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1956 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1957 drain_stock(stock);
c0ff4b85 1958 stock->cached = memcg;
cdec2e42 1959 }
11c9ea4e 1960 stock->nr_pages += nr_pages;
db2ba40c 1961
a983b5eb 1962 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1963 drain_stock(stock);
1964
db2ba40c 1965 local_irq_restore(flags);
cdec2e42
KH
1966}
1967
1968/*
c0ff4b85 1969 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1970 * of the hierarchy under it.
cdec2e42 1971 */
6d3d6aa2 1972static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1973{
26fe6168 1974 int cpu, curcpu;
d38144b7 1975
6d3d6aa2
JW
1976 /* If someone's already draining, avoid adding running more workers. */
1977 if (!mutex_trylock(&percpu_charge_mutex))
1978 return;
72f0184c
MH
1979 /*
1980 * Notify other cpus that system-wide "drain" is running
1981 * We do not care about races with the cpu hotplug because cpu down
1982 * as well as workers from this path always operate on the local
1983 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1984 */
5af12d0e 1985 curcpu = get_cpu();
cdec2e42
KH
1986 for_each_online_cpu(cpu) {
1987 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1988 struct mem_cgroup *memcg;
26fe6168 1989
c0ff4b85 1990 memcg = stock->cached;
72f0184c 1991 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1992 continue;
72f0184c
MH
1993 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1994 css_put(&memcg->css);
3e92041d 1995 continue;
72f0184c 1996 }
d1a05b69
MH
1997 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1998 if (cpu == curcpu)
1999 drain_local_stock(&stock->work);
2000 else
2001 schedule_work_on(cpu, &stock->work);
2002 }
72f0184c 2003 css_put(&memcg->css);
cdec2e42 2004 }
5af12d0e 2005 put_cpu();
9f50fad6 2006 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2007}
2008
308167fc 2009static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2010{
cdec2e42 2011 struct memcg_stock_pcp *stock;
a983b5eb 2012 struct mem_cgroup *memcg;
cdec2e42 2013
cdec2e42
KH
2014 stock = &per_cpu(memcg_stock, cpu);
2015 drain_stock(stock);
a983b5eb
JW
2016
2017 for_each_mem_cgroup(memcg) {
2018 int i;
2019
2020 for (i = 0; i < MEMCG_NR_STAT; i++) {
2021 int nid;
2022 long x;
2023
2024 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2025 if (x)
2026 atomic_long_add(x, &memcg->stat[i]);
2027
2028 if (i >= NR_VM_NODE_STAT_ITEMS)
2029 continue;
2030
2031 for_each_node(nid) {
2032 struct mem_cgroup_per_node *pn;
2033
2034 pn = mem_cgroup_nodeinfo(memcg, nid);
2035 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2036 if (x)
2037 atomic_long_add(x, &pn->lruvec_stat[i]);
2038 }
2039 }
2040
e27be240 2041 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2042 long x;
2043
2044 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2045 if (x)
2046 atomic_long_add(x, &memcg->events[i]);
2047 }
2048 }
2049
308167fc 2050 return 0;
cdec2e42
KH
2051}
2052
f7e1cb6e
JW
2053static void reclaim_high(struct mem_cgroup *memcg,
2054 unsigned int nr_pages,
2055 gfp_t gfp_mask)
2056{
2057 do {
2058 if (page_counter_read(&memcg->memory) <= memcg->high)
2059 continue;
e27be240 2060 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2061 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2062 } while ((memcg = parent_mem_cgroup(memcg)));
2063}
2064
2065static void high_work_func(struct work_struct *work)
2066{
2067 struct mem_cgroup *memcg;
2068
2069 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2070 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2071}
2072
b23afb93
TH
2073/*
2074 * Scheduled by try_charge() to be executed from the userland return path
2075 * and reclaims memory over the high limit.
2076 */
2077void mem_cgroup_handle_over_high(void)
2078{
2079 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2080 struct mem_cgroup *memcg;
b23afb93
TH
2081
2082 if (likely(!nr_pages))
2083 return;
2084
f7e1cb6e
JW
2085 memcg = get_mem_cgroup_from_mm(current->mm);
2086 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2087 css_put(&memcg->css);
2088 current->memcg_nr_pages_over_high = 0;
2089}
2090
00501b53
JW
2091static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2092 unsigned int nr_pages)
8a9f3ccd 2093{
a983b5eb 2094 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2095 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2096 struct mem_cgroup *mem_over_limit;
3e32cb2e 2097 struct page_counter *counter;
6539cc05 2098 unsigned long nr_reclaimed;
b70a2a21
JW
2099 bool may_swap = true;
2100 bool drained = false;
29ef680a
MH
2101 bool oomed = false;
2102 enum oom_status oom_status;
a636b327 2103
ce00a967 2104 if (mem_cgroup_is_root(memcg))
10d53c74 2105 return 0;
6539cc05 2106retry:
b6b6cc72 2107 if (consume_stock(memcg, nr_pages))
10d53c74 2108 return 0;
8a9f3ccd 2109
7941d214 2110 if (!do_memsw_account() ||
6071ca52
JW
2111 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2112 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2113 goto done_restock;
7941d214 2114 if (do_memsw_account())
3e32cb2e
JW
2115 page_counter_uncharge(&memcg->memsw, batch);
2116 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2117 } else {
3e32cb2e 2118 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2119 may_swap = false;
3fbe7244 2120 }
7a81b88c 2121
6539cc05
JW
2122 if (batch > nr_pages) {
2123 batch = nr_pages;
2124 goto retry;
2125 }
6d61ef40 2126
06b078fc
JW
2127 /*
2128 * Unlike in global OOM situations, memcg is not in a physical
2129 * memory shortage. Allow dying and OOM-killed tasks to
2130 * bypass the last charges so that they can exit quickly and
2131 * free their memory.
2132 */
da99ecf1 2133 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2134 fatal_signal_pending(current) ||
2135 current->flags & PF_EXITING))
10d53c74 2136 goto force;
06b078fc 2137
89a28483
JW
2138 /*
2139 * Prevent unbounded recursion when reclaim operations need to
2140 * allocate memory. This might exceed the limits temporarily,
2141 * but we prefer facilitating memory reclaim and getting back
2142 * under the limit over triggering OOM kills in these cases.
2143 */
2144 if (unlikely(current->flags & PF_MEMALLOC))
2145 goto force;
2146
06b078fc
JW
2147 if (unlikely(task_in_memcg_oom(current)))
2148 goto nomem;
2149
d0164adc 2150 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2151 goto nomem;
4b534334 2152
e27be240 2153 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2154
b70a2a21
JW
2155 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2156 gfp_mask, may_swap);
6539cc05 2157
61e02c74 2158 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2159 goto retry;
28c34c29 2160
b70a2a21 2161 if (!drained) {
6d3d6aa2 2162 drain_all_stock(mem_over_limit);
b70a2a21
JW
2163 drained = true;
2164 goto retry;
2165 }
2166
28c34c29
JW
2167 if (gfp_mask & __GFP_NORETRY)
2168 goto nomem;
6539cc05
JW
2169 /*
2170 * Even though the limit is exceeded at this point, reclaim
2171 * may have been able to free some pages. Retry the charge
2172 * before killing the task.
2173 *
2174 * Only for regular pages, though: huge pages are rather
2175 * unlikely to succeed so close to the limit, and we fall back
2176 * to regular pages anyway in case of failure.
2177 */
61e02c74 2178 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2179 goto retry;
2180 /*
2181 * At task move, charge accounts can be doubly counted. So, it's
2182 * better to wait until the end of task_move if something is going on.
2183 */
2184 if (mem_cgroup_wait_acct_move(mem_over_limit))
2185 goto retry;
2186
9b130619
JW
2187 if (nr_retries--)
2188 goto retry;
2189
29ef680a
MH
2190 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2191 goto nomem;
2192
06b078fc 2193 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2194 goto force;
06b078fc 2195
6539cc05 2196 if (fatal_signal_pending(current))
10d53c74 2197 goto force;
6539cc05 2198
e27be240 2199 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2200
29ef680a
MH
2201 /*
2202 * keep retrying as long as the memcg oom killer is able to make
2203 * a forward progress or bypass the charge if the oom killer
2204 * couldn't make any progress.
2205 */
2206 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2207 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2208 switch (oom_status) {
2209 case OOM_SUCCESS:
2210 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2211 oomed = true;
2212 goto retry;
2213 case OOM_FAILED:
2214 goto force;
2215 default:
2216 goto nomem;
2217 }
7a81b88c 2218nomem:
6d1fdc48 2219 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2220 return -ENOMEM;
10d53c74
TH
2221force:
2222 /*
2223 * The allocation either can't fail or will lead to more memory
2224 * being freed very soon. Allow memory usage go over the limit
2225 * temporarily by force charging it.
2226 */
2227 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2228 if (do_memsw_account())
10d53c74
TH
2229 page_counter_charge(&memcg->memsw, nr_pages);
2230 css_get_many(&memcg->css, nr_pages);
2231
2232 return 0;
6539cc05
JW
2233
2234done_restock:
e8ea14cc 2235 css_get_many(&memcg->css, batch);
6539cc05
JW
2236 if (batch > nr_pages)
2237 refill_stock(memcg, batch - nr_pages);
b23afb93 2238
241994ed 2239 /*
b23afb93
TH
2240 * If the hierarchy is above the normal consumption range, schedule
2241 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2242 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2243 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2244 * not recorded as it most likely matches current's and won't
2245 * change in the meantime. As high limit is checked again before
2246 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2247 */
2248 do {
b23afb93 2249 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2250 /* Don't bother a random interrupted task */
2251 if (in_interrupt()) {
2252 schedule_work(&memcg->high_work);
2253 break;
2254 }
9516a18a 2255 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2256 set_notify_resume(current);
2257 break;
2258 }
241994ed 2259 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2260
2261 return 0;
7a81b88c 2262}
8a9f3ccd 2263
00501b53 2264static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2265{
ce00a967
JW
2266 if (mem_cgroup_is_root(memcg))
2267 return;
2268
3e32cb2e 2269 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2270 if (do_memsw_account())
3e32cb2e 2271 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2272
e8ea14cc 2273 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2274}
2275
0a31bc97
JW
2276static void lock_page_lru(struct page *page, int *isolated)
2277{
2278 struct zone *zone = page_zone(page);
2279
a52633d8 2280 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2281 if (PageLRU(page)) {
2282 struct lruvec *lruvec;
2283
599d0c95 2284 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2285 ClearPageLRU(page);
2286 del_page_from_lru_list(page, lruvec, page_lru(page));
2287 *isolated = 1;
2288 } else
2289 *isolated = 0;
2290}
2291
2292static void unlock_page_lru(struct page *page, int isolated)
2293{
2294 struct zone *zone = page_zone(page);
2295
2296 if (isolated) {
2297 struct lruvec *lruvec;
2298
599d0c95 2299 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2300 VM_BUG_ON_PAGE(PageLRU(page), page);
2301 SetPageLRU(page);
2302 add_page_to_lru_list(page, lruvec, page_lru(page));
2303 }
a52633d8 2304 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2305}
2306
00501b53 2307static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2308 bool lrucare)
7a81b88c 2309{
0a31bc97 2310 int isolated;
9ce70c02 2311
1306a85a 2312 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2313
2314 /*
2315 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2316 * may already be on some other mem_cgroup's LRU. Take care of it.
2317 */
0a31bc97
JW
2318 if (lrucare)
2319 lock_page_lru(page, &isolated);
9ce70c02 2320
0a31bc97
JW
2321 /*
2322 * Nobody should be changing or seriously looking at
1306a85a 2323 * page->mem_cgroup at this point:
0a31bc97
JW
2324 *
2325 * - the page is uncharged
2326 *
2327 * - the page is off-LRU
2328 *
2329 * - an anonymous fault has exclusive page access, except for
2330 * a locked page table
2331 *
2332 * - a page cache insertion, a swapin fault, or a migration
2333 * have the page locked
2334 */
1306a85a 2335 page->mem_cgroup = memcg;
9ce70c02 2336
0a31bc97
JW
2337 if (lrucare)
2338 unlock_page_lru(page, isolated);
7a81b88c 2339}
66e1707b 2340
84c07d11 2341#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2342static int memcg_alloc_cache_id(void)
55007d84 2343{
f3bb3043
VD
2344 int id, size;
2345 int err;
2346
dbcf73e2 2347 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2348 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2349 if (id < 0)
2350 return id;
55007d84 2351
dbcf73e2 2352 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2353 return id;
2354
2355 /*
2356 * There's no space for the new id in memcg_caches arrays,
2357 * so we have to grow them.
2358 */
05257a1a 2359 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2360
2361 size = 2 * (id + 1);
55007d84
GC
2362 if (size < MEMCG_CACHES_MIN_SIZE)
2363 size = MEMCG_CACHES_MIN_SIZE;
2364 else if (size > MEMCG_CACHES_MAX_SIZE)
2365 size = MEMCG_CACHES_MAX_SIZE;
2366
f3bb3043 2367 err = memcg_update_all_caches(size);
60d3fd32
VD
2368 if (!err)
2369 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2370 if (!err)
2371 memcg_nr_cache_ids = size;
2372
2373 up_write(&memcg_cache_ids_sem);
2374
f3bb3043 2375 if (err) {
dbcf73e2 2376 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2377 return err;
2378 }
2379 return id;
2380}
2381
2382static void memcg_free_cache_id(int id)
2383{
dbcf73e2 2384 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2385}
2386
d5b3cf71 2387struct memcg_kmem_cache_create_work {
5722d094
VD
2388 struct mem_cgroup *memcg;
2389 struct kmem_cache *cachep;
2390 struct work_struct work;
2391};
2392
d5b3cf71 2393static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2394{
d5b3cf71
VD
2395 struct memcg_kmem_cache_create_work *cw =
2396 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2397 struct mem_cgroup *memcg = cw->memcg;
2398 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2399
d5b3cf71 2400 memcg_create_kmem_cache(memcg, cachep);
bd673145 2401
5722d094 2402 css_put(&memcg->css);
d7f25f8a
GC
2403 kfree(cw);
2404}
2405
2406/*
2407 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2408 */
d5b3cf71
VD
2409static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2410 struct kmem_cache *cachep)
d7f25f8a 2411{
d5b3cf71 2412 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2413
c892fd82 2414 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2415 if (!cw)
d7f25f8a 2416 return;
8135be5a
VD
2417
2418 css_get(&memcg->css);
d7f25f8a
GC
2419
2420 cw->memcg = memcg;
2421 cw->cachep = cachep;
d5b3cf71 2422 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2423
17cc4dfe 2424 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2425}
2426
d5b3cf71
VD
2427static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2428 struct kmem_cache *cachep)
0e9d92f2
GC
2429{
2430 /*
2431 * We need to stop accounting when we kmalloc, because if the
2432 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2433 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2434 *
2435 * However, it is better to enclose the whole function. Depending on
2436 * the debugging options enabled, INIT_WORK(), for instance, can
2437 * trigger an allocation. This too, will make us recurse. Because at
2438 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2439 * the safest choice is to do it like this, wrapping the whole function.
2440 */
6f185c29 2441 current->memcg_kmem_skip_account = 1;
d5b3cf71 2442 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2443 current->memcg_kmem_skip_account = 0;
0e9d92f2 2444}
c67a8a68 2445
45264778
VD
2446static inline bool memcg_kmem_bypass(void)
2447{
2448 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2449 return true;
2450 return false;
2451}
2452
2453/**
2454 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2455 * @cachep: the original global kmem cache
2456 *
d7f25f8a
GC
2457 * Return the kmem_cache we're supposed to use for a slab allocation.
2458 * We try to use the current memcg's version of the cache.
2459 *
45264778
VD
2460 * If the cache does not exist yet, if we are the first user of it, we
2461 * create it asynchronously in a workqueue and let the current allocation
2462 * go through with the original cache.
d7f25f8a 2463 *
45264778
VD
2464 * This function takes a reference to the cache it returns to assure it
2465 * won't get destroyed while we are working with it. Once the caller is
2466 * done with it, memcg_kmem_put_cache() must be called to release the
2467 * reference.
d7f25f8a 2468 */
45264778 2469struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2470{
2471 struct mem_cgroup *memcg;
959c8963 2472 struct kmem_cache *memcg_cachep;
2a4db7eb 2473 int kmemcg_id;
d7f25f8a 2474
f7ce3190 2475 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2476
45264778 2477 if (memcg_kmem_bypass())
230e9fc2
VD
2478 return cachep;
2479
9d100c5e 2480 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2481 return cachep;
2482
d46eb14b 2483 memcg = get_mem_cgroup_from_current();
4db0c3c2 2484 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2485 if (kmemcg_id < 0)
ca0dde97 2486 goto out;
d7f25f8a 2487
2a4db7eb 2488 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2489 if (likely(memcg_cachep))
2490 return memcg_cachep;
ca0dde97
LZ
2491
2492 /*
2493 * If we are in a safe context (can wait, and not in interrupt
2494 * context), we could be be predictable and return right away.
2495 * This would guarantee that the allocation being performed
2496 * already belongs in the new cache.
2497 *
2498 * However, there are some clashes that can arrive from locking.
2499 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2500 * memcg_create_kmem_cache, this means no further allocation
2501 * could happen with the slab_mutex held. So it's better to
2502 * defer everything.
ca0dde97 2503 */
d5b3cf71 2504 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2505out:
8135be5a 2506 css_put(&memcg->css);
ca0dde97 2507 return cachep;
d7f25f8a 2508}
d7f25f8a 2509
45264778
VD
2510/**
2511 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2512 * @cachep: the cache returned by memcg_kmem_get_cache
2513 */
2514void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2515{
2516 if (!is_root_cache(cachep))
f7ce3190 2517 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2518}
2519
45264778 2520/**
b213b54f 2521 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2522 * @page: page to charge
2523 * @gfp: reclaim mode
2524 * @order: allocation order
2525 * @memcg: memory cgroup to charge
2526 *
2527 * Returns 0 on success, an error code on failure.
2528 */
2529int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2530 struct mem_cgroup *memcg)
7ae1e1d0 2531{
f3ccb2c4
VD
2532 unsigned int nr_pages = 1 << order;
2533 struct page_counter *counter;
7ae1e1d0
GC
2534 int ret;
2535
f3ccb2c4 2536 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2537 if (ret)
f3ccb2c4 2538 return ret;
52c29b04
JW
2539
2540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2541 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2542 cancel_charge(memcg, nr_pages);
2543 return -ENOMEM;
7ae1e1d0
GC
2544 }
2545
f3ccb2c4 2546 page->mem_cgroup = memcg;
7ae1e1d0 2547
f3ccb2c4 2548 return 0;
7ae1e1d0
GC
2549}
2550
45264778
VD
2551/**
2552 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2553 * @page: page to charge
2554 * @gfp: reclaim mode
2555 * @order: allocation order
2556 *
2557 * Returns 0 on success, an error code on failure.
2558 */
2559int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2560{
f3ccb2c4 2561 struct mem_cgroup *memcg;
fcff7d7e 2562 int ret = 0;
7ae1e1d0 2563
45264778
VD
2564 if (memcg_kmem_bypass())
2565 return 0;
2566
d46eb14b 2567 memcg = get_mem_cgroup_from_current();
c4159a75 2568 if (!mem_cgroup_is_root(memcg)) {
45264778 2569 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2570 if (!ret)
2571 __SetPageKmemcg(page);
2572 }
7ae1e1d0 2573 css_put(&memcg->css);
d05e83a6 2574 return ret;
7ae1e1d0 2575}
45264778
VD
2576/**
2577 * memcg_kmem_uncharge: uncharge a kmem page
2578 * @page: page to uncharge
2579 * @order: allocation order
2580 */
2581void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2582{
1306a85a 2583 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2584 unsigned int nr_pages = 1 << order;
7ae1e1d0 2585
7ae1e1d0
GC
2586 if (!memcg)
2587 return;
2588
309381fe 2589 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2590
52c29b04
JW
2591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2592 page_counter_uncharge(&memcg->kmem, nr_pages);
2593
f3ccb2c4 2594 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2595 if (do_memsw_account())
f3ccb2c4 2596 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2597
1306a85a 2598 page->mem_cgroup = NULL;
c4159a75
VD
2599
2600 /* slab pages do not have PageKmemcg flag set */
2601 if (PageKmemcg(page))
2602 __ClearPageKmemcg(page);
2603
f3ccb2c4 2604 css_put_many(&memcg->css, nr_pages);
60d3fd32 2605}
84c07d11 2606#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2607
ca3e0214
KH
2608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2609
ca3e0214
KH
2610/*
2611 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2612 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2613 */
e94c8a9c 2614void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2615{
e94c8a9c 2616 int i;
ca3e0214 2617
3d37c4a9
KH
2618 if (mem_cgroup_disabled())
2619 return;
b070e65c 2620
29833315 2621 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2622 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2623
c9019e9b 2624 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2625}
12d27107 2626#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2627
c255a458 2628#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2629/**
2630 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2631 * @entry: swap entry to be moved
2632 * @from: mem_cgroup which the entry is moved from
2633 * @to: mem_cgroup which the entry is moved to
2634 *
2635 * It succeeds only when the swap_cgroup's record for this entry is the same
2636 * as the mem_cgroup's id of @from.
2637 *
2638 * Returns 0 on success, -EINVAL on failure.
2639 *
3e32cb2e 2640 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2641 * both res and memsw, and called css_get().
2642 */
2643static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2644 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2645{
2646 unsigned short old_id, new_id;
2647
34c00c31
LZ
2648 old_id = mem_cgroup_id(from);
2649 new_id = mem_cgroup_id(to);
02491447
DN
2650
2651 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2652 mod_memcg_state(from, MEMCG_SWAP, -1);
2653 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2654 return 0;
2655 }
2656 return -EINVAL;
2657}
2658#else
2659static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2660 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2661{
2662 return -EINVAL;
2663}
8c7c6e34 2664#endif
d13d1443 2665
bbec2e15 2666static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2667
bbec2e15
RG
2668static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2669 unsigned long max, bool memsw)
628f4235 2670{
3e32cb2e 2671 bool enlarge = false;
bb4a7ea2 2672 bool drained = false;
3e32cb2e 2673 int ret;
c054a78c
YZ
2674 bool limits_invariant;
2675 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2676
3e32cb2e 2677 do {
628f4235
KH
2678 if (signal_pending(current)) {
2679 ret = -EINTR;
2680 break;
2681 }
3e32cb2e 2682
bbec2e15 2683 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2684 /*
2685 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2686 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2687 */
bbec2e15
RG
2688 limits_invariant = memsw ? max >= memcg->memory.max :
2689 max <= memcg->memsw.max;
c054a78c 2690 if (!limits_invariant) {
bbec2e15 2691 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2692 ret = -EINVAL;
8c7c6e34
KH
2693 break;
2694 }
bbec2e15 2695 if (max > counter->max)
3e32cb2e 2696 enlarge = true;
bbec2e15
RG
2697 ret = page_counter_set_max(counter, max);
2698 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2699
2700 if (!ret)
2701 break;
2702
bb4a7ea2
SB
2703 if (!drained) {
2704 drain_all_stock(memcg);
2705 drained = true;
2706 continue;
2707 }
2708
1ab5c056
AR
2709 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2710 GFP_KERNEL, !memsw)) {
2711 ret = -EBUSY;
2712 break;
2713 }
2714 } while (true);
3e32cb2e 2715
3c11ecf4
KH
2716 if (!ret && enlarge)
2717 memcg_oom_recover(memcg);
3e32cb2e 2718
628f4235
KH
2719 return ret;
2720}
2721
ef8f2327 2722unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2723 gfp_t gfp_mask,
2724 unsigned long *total_scanned)
2725{
2726 unsigned long nr_reclaimed = 0;
ef8f2327 2727 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2728 unsigned long reclaimed;
2729 int loop = 0;
ef8f2327 2730 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2731 unsigned long excess;
0608f43d
AM
2732 unsigned long nr_scanned;
2733
2734 if (order > 0)
2735 return 0;
2736
ef8f2327 2737 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2738
2739 /*
2740 * Do not even bother to check the largest node if the root
2741 * is empty. Do it lockless to prevent lock bouncing. Races
2742 * are acceptable as soft limit is best effort anyway.
2743 */
bfc7228b 2744 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2745 return 0;
2746
0608f43d
AM
2747 /*
2748 * This loop can run a while, specially if mem_cgroup's continuously
2749 * keep exceeding their soft limit and putting the system under
2750 * pressure
2751 */
2752 do {
2753 if (next_mz)
2754 mz = next_mz;
2755 else
2756 mz = mem_cgroup_largest_soft_limit_node(mctz);
2757 if (!mz)
2758 break;
2759
2760 nr_scanned = 0;
ef8f2327 2761 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2762 gfp_mask, &nr_scanned);
2763 nr_reclaimed += reclaimed;
2764 *total_scanned += nr_scanned;
0a31bc97 2765 spin_lock_irq(&mctz->lock);
bc2f2e7f 2766 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2767
2768 /*
2769 * If we failed to reclaim anything from this memory cgroup
2770 * it is time to move on to the next cgroup
2771 */
2772 next_mz = NULL;
bc2f2e7f
VD
2773 if (!reclaimed)
2774 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2775
3e32cb2e 2776 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2777 /*
2778 * One school of thought says that we should not add
2779 * back the node to the tree if reclaim returns 0.
2780 * But our reclaim could return 0, simply because due
2781 * to priority we are exposing a smaller subset of
2782 * memory to reclaim from. Consider this as a longer
2783 * term TODO.
2784 */
2785 /* If excess == 0, no tree ops */
cf2c8127 2786 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2787 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2788 css_put(&mz->memcg->css);
2789 loop++;
2790 /*
2791 * Could not reclaim anything and there are no more
2792 * mem cgroups to try or we seem to be looping without
2793 * reclaiming anything.
2794 */
2795 if (!nr_reclaimed &&
2796 (next_mz == NULL ||
2797 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2798 break;
2799 } while (!nr_reclaimed);
2800 if (next_mz)
2801 css_put(&next_mz->memcg->css);
2802 return nr_reclaimed;
2803}
2804
ea280e7b
TH
2805/*
2806 * Test whether @memcg has children, dead or alive. Note that this
2807 * function doesn't care whether @memcg has use_hierarchy enabled and
2808 * returns %true if there are child csses according to the cgroup
2809 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2810 */
b5f99b53
GC
2811static inline bool memcg_has_children(struct mem_cgroup *memcg)
2812{
ea280e7b
TH
2813 bool ret;
2814
ea280e7b
TH
2815 rcu_read_lock();
2816 ret = css_next_child(NULL, &memcg->css);
2817 rcu_read_unlock();
2818 return ret;
b5f99b53
GC
2819}
2820
c26251f9 2821/*
51038171 2822 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2823 *
2824 * Caller is responsible for holding css reference for memcg.
2825 */
2826static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2827{
2828 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2829
c1e862c1
KH
2830 /* we call try-to-free pages for make this cgroup empty */
2831 lru_add_drain_all();
d12c60f6
JS
2832
2833 drain_all_stock(memcg);
2834
f817ed48 2835 /* try to free all pages in this cgroup */
3e32cb2e 2836 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2837 int progress;
c1e862c1 2838
c26251f9
MH
2839 if (signal_pending(current))
2840 return -EINTR;
2841
b70a2a21
JW
2842 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2843 GFP_KERNEL, true);
c1e862c1 2844 if (!progress) {
f817ed48 2845 nr_retries--;
c1e862c1 2846 /* maybe some writeback is necessary */
8aa7e847 2847 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2848 }
f817ed48
KH
2849
2850 }
ab5196c2
MH
2851
2852 return 0;
cc847582
KH
2853}
2854
6770c64e
TH
2855static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2856 char *buf, size_t nbytes,
2857 loff_t off)
c1e862c1 2858{
6770c64e 2859 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2860
d8423011
MH
2861 if (mem_cgroup_is_root(memcg))
2862 return -EINVAL;
6770c64e 2863 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2864}
2865
182446d0
TH
2866static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2867 struct cftype *cft)
18f59ea7 2868{
182446d0 2869 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2870}
2871
182446d0
TH
2872static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2873 struct cftype *cft, u64 val)
18f59ea7
BS
2874{
2875 int retval = 0;
182446d0 2876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2877 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2878
567fb435 2879 if (memcg->use_hierarchy == val)
0b8f73e1 2880 return 0;
567fb435 2881
18f59ea7 2882 /*
af901ca1 2883 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2884 * in the child subtrees. If it is unset, then the change can
2885 * occur, provided the current cgroup has no children.
2886 *
2887 * For the root cgroup, parent_mem is NULL, we allow value to be
2888 * set if there are no children.
2889 */
c0ff4b85 2890 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2891 (val == 1 || val == 0)) {
ea280e7b 2892 if (!memcg_has_children(memcg))
c0ff4b85 2893 memcg->use_hierarchy = val;
18f59ea7
BS
2894 else
2895 retval = -EBUSY;
2896 } else
2897 retval = -EINVAL;
567fb435 2898
18f59ea7
BS
2899 return retval;
2900}
2901
72b54e73 2902static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2903{
2904 struct mem_cgroup *iter;
72b54e73 2905 int i;
ce00a967 2906
72b54e73 2907 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2908
72b54e73
VD
2909 for_each_mem_cgroup_tree(iter, memcg) {
2910 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2911 stat[i] += memcg_page_state(iter, i);
72b54e73 2912 }
ce00a967
JW
2913}
2914
72b54e73 2915static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2916{
2917 struct mem_cgroup *iter;
72b54e73 2918 int i;
587d9f72 2919
e27be240 2920 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
587d9f72 2921
72b54e73 2922 for_each_mem_cgroup_tree(iter, memcg) {
e27be240 2923 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ccda7f43 2924 events[i] += memcg_sum_events(iter, i);
72b54e73 2925 }
587d9f72
JW
2926}
2927
6f646156 2928static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2929{
72b54e73 2930 unsigned long val = 0;
ce00a967 2931
3e32cb2e 2932 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2933 struct mem_cgroup *iter;
2934
2935 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2936 val += memcg_page_state(iter, MEMCG_CACHE);
2937 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2938 if (swap)
ccda7f43 2939 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2940 }
3e32cb2e 2941 } else {
ce00a967 2942 if (!swap)
3e32cb2e 2943 val = page_counter_read(&memcg->memory);
ce00a967 2944 else
3e32cb2e 2945 val = page_counter_read(&memcg->memsw);
ce00a967 2946 }
c12176d3 2947 return val;
ce00a967
JW
2948}
2949
3e32cb2e
JW
2950enum {
2951 RES_USAGE,
2952 RES_LIMIT,
2953 RES_MAX_USAGE,
2954 RES_FAILCNT,
2955 RES_SOFT_LIMIT,
2956};
ce00a967 2957
791badbd 2958static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2959 struct cftype *cft)
8cdea7c0 2960{
182446d0 2961 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2962 struct page_counter *counter;
af36f906 2963
3e32cb2e 2964 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2965 case _MEM:
3e32cb2e
JW
2966 counter = &memcg->memory;
2967 break;
8c7c6e34 2968 case _MEMSWAP:
3e32cb2e
JW
2969 counter = &memcg->memsw;
2970 break;
510fc4e1 2971 case _KMEM:
3e32cb2e 2972 counter = &memcg->kmem;
510fc4e1 2973 break;
d55f90bf 2974 case _TCP:
0db15298 2975 counter = &memcg->tcpmem;
d55f90bf 2976 break;
8c7c6e34
KH
2977 default:
2978 BUG();
8c7c6e34 2979 }
3e32cb2e
JW
2980
2981 switch (MEMFILE_ATTR(cft->private)) {
2982 case RES_USAGE:
2983 if (counter == &memcg->memory)
c12176d3 2984 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2985 if (counter == &memcg->memsw)
c12176d3 2986 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2987 return (u64)page_counter_read(counter) * PAGE_SIZE;
2988 case RES_LIMIT:
bbec2e15 2989 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2990 case RES_MAX_USAGE:
2991 return (u64)counter->watermark * PAGE_SIZE;
2992 case RES_FAILCNT:
2993 return counter->failcnt;
2994 case RES_SOFT_LIMIT:
2995 return (u64)memcg->soft_limit * PAGE_SIZE;
2996 default:
2997 BUG();
2998 }
8cdea7c0 2999}
510fc4e1 3000
84c07d11 3001#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3002static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3003{
d6441637
VD
3004 int memcg_id;
3005
b313aeee
VD
3006 if (cgroup_memory_nokmem)
3007 return 0;
3008
2a4db7eb 3009 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3010 BUG_ON(memcg->kmem_state);
d6441637 3011
f3bb3043 3012 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3013 if (memcg_id < 0)
3014 return memcg_id;
d6441637 3015
ef12947c 3016 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3017 /*
567e9ab2 3018 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3019 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3020 * guarantee no one starts accounting before all call sites are
3021 * patched.
3022 */
900a38f0 3023 memcg->kmemcg_id = memcg_id;
567e9ab2 3024 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3025 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3026
3027 return 0;
d6441637
VD
3028}
3029
8e0a8912
JW
3030static void memcg_offline_kmem(struct mem_cgroup *memcg)
3031{
3032 struct cgroup_subsys_state *css;
3033 struct mem_cgroup *parent, *child;
3034 int kmemcg_id;
3035
3036 if (memcg->kmem_state != KMEM_ONLINE)
3037 return;
3038 /*
3039 * Clear the online state before clearing memcg_caches array
3040 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3041 * guarantees that no cache will be created for this cgroup
3042 * after we are done (see memcg_create_kmem_cache()).
3043 */
3044 memcg->kmem_state = KMEM_ALLOCATED;
3045
3046 memcg_deactivate_kmem_caches(memcg);
3047
3048 kmemcg_id = memcg->kmemcg_id;
3049 BUG_ON(kmemcg_id < 0);
3050
3051 parent = parent_mem_cgroup(memcg);
3052 if (!parent)
3053 parent = root_mem_cgroup;
3054
3055 /*
3056 * Change kmemcg_id of this cgroup and all its descendants to the
3057 * parent's id, and then move all entries from this cgroup's list_lrus
3058 * to ones of the parent. After we have finished, all list_lrus
3059 * corresponding to this cgroup are guaranteed to remain empty. The
3060 * ordering is imposed by list_lru_node->lock taken by
3061 * memcg_drain_all_list_lrus().
3062 */
3a06bb78 3063 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3064 css_for_each_descendant_pre(css, &memcg->css) {
3065 child = mem_cgroup_from_css(css);
3066 BUG_ON(child->kmemcg_id != kmemcg_id);
3067 child->kmemcg_id = parent->kmemcg_id;
3068 if (!memcg->use_hierarchy)
3069 break;
3070 }
3a06bb78
TH
3071 rcu_read_unlock();
3072
9bec5c35 3073 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3074
3075 memcg_free_cache_id(kmemcg_id);
3076}
3077
3078static void memcg_free_kmem(struct mem_cgroup *memcg)
3079{
0b8f73e1
JW
3080 /* css_alloc() failed, offlining didn't happen */
3081 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3082 memcg_offline_kmem(memcg);
3083
8e0a8912
JW
3084 if (memcg->kmem_state == KMEM_ALLOCATED) {
3085 memcg_destroy_kmem_caches(memcg);
3086 static_branch_dec(&memcg_kmem_enabled_key);
3087 WARN_ON(page_counter_read(&memcg->kmem));
3088 }
8e0a8912 3089}
d6441637 3090#else
0b8f73e1 3091static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3092{
3093 return 0;
3094}
3095static void memcg_offline_kmem(struct mem_cgroup *memcg)
3096{
3097}
3098static void memcg_free_kmem(struct mem_cgroup *memcg)
3099{
3100}
84c07d11 3101#endif /* CONFIG_MEMCG_KMEM */
127424c8 3102
bbec2e15
RG
3103static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3104 unsigned long max)
d6441637 3105{
b313aeee 3106 int ret;
127424c8 3107
bbec2e15
RG
3108 mutex_lock(&memcg_max_mutex);
3109 ret = page_counter_set_max(&memcg->kmem, max);
3110 mutex_unlock(&memcg_max_mutex);
127424c8 3111 return ret;
d6441637 3112}
510fc4e1 3113
bbec2e15 3114static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3115{
3116 int ret;
3117
bbec2e15 3118 mutex_lock(&memcg_max_mutex);
d55f90bf 3119
bbec2e15 3120 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3121 if (ret)
3122 goto out;
3123
0db15298 3124 if (!memcg->tcpmem_active) {
d55f90bf
VD
3125 /*
3126 * The active flag needs to be written after the static_key
3127 * update. This is what guarantees that the socket activation
2d758073
JW
3128 * function is the last one to run. See mem_cgroup_sk_alloc()
3129 * for details, and note that we don't mark any socket as
3130 * belonging to this memcg until that flag is up.
d55f90bf
VD
3131 *
3132 * We need to do this, because static_keys will span multiple
3133 * sites, but we can't control their order. If we mark a socket
3134 * as accounted, but the accounting functions are not patched in
3135 * yet, we'll lose accounting.
3136 *
2d758073 3137 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3138 * because when this value change, the code to process it is not
3139 * patched in yet.
3140 */
3141 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3142 memcg->tcpmem_active = true;
d55f90bf
VD
3143 }
3144out:
bbec2e15 3145 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3146 return ret;
3147}
d55f90bf 3148
628f4235
KH
3149/*
3150 * The user of this function is...
3151 * RES_LIMIT.
3152 */
451af504
TH
3153static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3154 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3155{
451af504 3156 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3157 unsigned long nr_pages;
628f4235
KH
3158 int ret;
3159
451af504 3160 buf = strstrip(buf);
650c5e56 3161 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3162 if (ret)
3163 return ret;
af36f906 3164
3e32cb2e 3165 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3166 case RES_LIMIT:
4b3bde4c
BS
3167 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3168 ret = -EINVAL;
3169 break;
3170 }
3e32cb2e
JW
3171 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3172 case _MEM:
bbec2e15 3173 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3174 break;
3e32cb2e 3175 case _MEMSWAP:
bbec2e15 3176 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3177 break;
3e32cb2e 3178 case _KMEM:
bbec2e15 3179 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3180 break;
d55f90bf 3181 case _TCP:
bbec2e15 3182 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3183 break;
3e32cb2e 3184 }
296c81d8 3185 break;
3e32cb2e
JW
3186 case RES_SOFT_LIMIT:
3187 memcg->soft_limit = nr_pages;
3188 ret = 0;
628f4235
KH
3189 break;
3190 }
451af504 3191 return ret ?: nbytes;
8cdea7c0
BS
3192}
3193
6770c64e
TH
3194static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3195 size_t nbytes, loff_t off)
c84872e1 3196{
6770c64e 3197 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3198 struct page_counter *counter;
c84872e1 3199
3e32cb2e
JW
3200 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3201 case _MEM:
3202 counter = &memcg->memory;
3203 break;
3204 case _MEMSWAP:
3205 counter = &memcg->memsw;
3206 break;
3207 case _KMEM:
3208 counter = &memcg->kmem;
3209 break;
d55f90bf 3210 case _TCP:
0db15298 3211 counter = &memcg->tcpmem;
d55f90bf 3212 break;
3e32cb2e
JW
3213 default:
3214 BUG();
3215 }
af36f906 3216
3e32cb2e 3217 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3218 case RES_MAX_USAGE:
3e32cb2e 3219 page_counter_reset_watermark(counter);
29f2a4da
PE
3220 break;
3221 case RES_FAILCNT:
3e32cb2e 3222 counter->failcnt = 0;
29f2a4da 3223 break;
3e32cb2e
JW
3224 default:
3225 BUG();
29f2a4da 3226 }
f64c3f54 3227
6770c64e 3228 return nbytes;
c84872e1
PE
3229}
3230
182446d0 3231static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3232 struct cftype *cft)
3233{
182446d0 3234 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3235}
3236
02491447 3237#ifdef CONFIG_MMU
182446d0 3238static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3239 struct cftype *cft, u64 val)
3240{
182446d0 3241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3242
1dfab5ab 3243 if (val & ~MOVE_MASK)
7dc74be0 3244 return -EINVAL;
ee5e8472 3245
7dc74be0 3246 /*
ee5e8472
GC
3247 * No kind of locking is needed in here, because ->can_attach() will
3248 * check this value once in the beginning of the process, and then carry
3249 * on with stale data. This means that changes to this value will only
3250 * affect task migrations starting after the change.
7dc74be0 3251 */
c0ff4b85 3252 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3253 return 0;
3254}
02491447 3255#else
182446d0 3256static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3257 struct cftype *cft, u64 val)
3258{
3259 return -ENOSYS;
3260}
3261#endif
7dc74be0 3262
406eb0c9 3263#ifdef CONFIG_NUMA
2da8ca82 3264static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3265{
25485de6
GT
3266 struct numa_stat {
3267 const char *name;
3268 unsigned int lru_mask;
3269 };
3270
3271 static const struct numa_stat stats[] = {
3272 { "total", LRU_ALL },
3273 { "file", LRU_ALL_FILE },
3274 { "anon", LRU_ALL_ANON },
3275 { "unevictable", BIT(LRU_UNEVICTABLE) },
3276 };
3277 const struct numa_stat *stat;
406eb0c9 3278 int nid;
25485de6 3279 unsigned long nr;
2da8ca82 3280 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3281
25485de6
GT
3282 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3283 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3284 seq_printf(m, "%s=%lu", stat->name, nr);
3285 for_each_node_state(nid, N_MEMORY) {
3286 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3287 stat->lru_mask);
3288 seq_printf(m, " N%d=%lu", nid, nr);
3289 }
3290 seq_putc(m, '\n');
406eb0c9 3291 }
406eb0c9 3292
071aee13
YH
3293 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3294 struct mem_cgroup *iter;
3295
3296 nr = 0;
3297 for_each_mem_cgroup_tree(iter, memcg)
3298 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3299 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3300 for_each_node_state(nid, N_MEMORY) {
3301 nr = 0;
3302 for_each_mem_cgroup_tree(iter, memcg)
3303 nr += mem_cgroup_node_nr_lru_pages(
3304 iter, nid, stat->lru_mask);
3305 seq_printf(m, " N%d=%lu", nid, nr);
3306 }
3307 seq_putc(m, '\n');
406eb0c9 3308 }
406eb0c9 3309
406eb0c9
YH
3310 return 0;
3311}
3312#endif /* CONFIG_NUMA */
3313
df0e53d0 3314/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3315static const unsigned int memcg1_events[] = {
df0e53d0
JW
3316 PGPGIN,
3317 PGPGOUT,
3318 PGFAULT,
3319 PGMAJFAULT,
3320};
3321
3322static const char *const memcg1_event_names[] = {
3323 "pgpgin",
3324 "pgpgout",
3325 "pgfault",
3326 "pgmajfault",
3327};
3328
2da8ca82 3329static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3330{
2da8ca82 3331 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3332 unsigned long memory, memsw;
af7c4b0e
JW
3333 struct mem_cgroup *mi;
3334 unsigned int i;
406eb0c9 3335
71cd3113 3336 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3337 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3338
71cd3113
JW
3339 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3340 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3341 continue;
71cd3113 3342 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3343 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3344 PAGE_SIZE);
1dd3a273 3345 }
7b854121 3346
df0e53d0
JW
3347 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3348 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3349 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3350
3351 for (i = 0; i < NR_LRU_LISTS; i++)
3352 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3353 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3354
14067bb3 3355 /* Hierarchical information */
3e32cb2e
JW
3356 memory = memsw = PAGE_COUNTER_MAX;
3357 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3358 memory = min(memory, mi->memory.max);
3359 memsw = min(memsw, mi->memsw.max);
fee7b548 3360 }
3e32cb2e
JW
3361 seq_printf(m, "hierarchical_memory_limit %llu\n",
3362 (u64)memory * PAGE_SIZE);
7941d214 3363 if (do_memsw_account())
3e32cb2e
JW
3364 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3365 (u64)memsw * PAGE_SIZE);
7f016ee8 3366
71cd3113 3367 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3368 unsigned long long val = 0;
af7c4b0e 3369
71cd3113 3370 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3371 continue;
af7c4b0e 3372 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3373 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3374 PAGE_SIZE;
3375 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3376 }
3377
df0e53d0 3378 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3379 unsigned long long val = 0;
3380
3381 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3382 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3383 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3384 }
3385
3386 for (i = 0; i < NR_LRU_LISTS; i++) {
3387 unsigned long long val = 0;
3388
3389 for_each_mem_cgroup_tree(mi, memcg)
3390 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3391 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3392 }
14067bb3 3393
7f016ee8 3394#ifdef CONFIG_DEBUG_VM
7f016ee8 3395 {
ef8f2327
MG
3396 pg_data_t *pgdat;
3397 struct mem_cgroup_per_node *mz;
89abfab1 3398 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3399 unsigned long recent_rotated[2] = {0, 0};
3400 unsigned long recent_scanned[2] = {0, 0};
3401
ef8f2327
MG
3402 for_each_online_pgdat(pgdat) {
3403 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3404 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3405
ef8f2327
MG
3406 recent_rotated[0] += rstat->recent_rotated[0];
3407 recent_rotated[1] += rstat->recent_rotated[1];
3408 recent_scanned[0] += rstat->recent_scanned[0];
3409 recent_scanned[1] += rstat->recent_scanned[1];
3410 }
78ccf5b5
JW
3411 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3412 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3413 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3414 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3415 }
3416#endif
3417
d2ceb9b7
KH
3418 return 0;
3419}
3420
182446d0
TH
3421static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3422 struct cftype *cft)
a7885eb8 3423{
182446d0 3424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3425
1f4c025b 3426 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3427}
3428
182446d0
TH
3429static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3430 struct cftype *cft, u64 val)
a7885eb8 3431{
182446d0 3432 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3433
3dae7fec 3434 if (val > 100)
a7885eb8
KM
3435 return -EINVAL;
3436
14208b0e 3437 if (css->parent)
3dae7fec
JW
3438 memcg->swappiness = val;
3439 else
3440 vm_swappiness = val;
068b38c1 3441
a7885eb8
KM
3442 return 0;
3443}
3444
2e72b634
KS
3445static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3446{
3447 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3448 unsigned long usage;
2e72b634
KS
3449 int i;
3450
3451 rcu_read_lock();
3452 if (!swap)
2c488db2 3453 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3454 else
2c488db2 3455 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3456
3457 if (!t)
3458 goto unlock;
3459
ce00a967 3460 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3461
3462 /*
748dad36 3463 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3464 * If it's not true, a threshold was crossed after last
3465 * call of __mem_cgroup_threshold().
3466 */
5407a562 3467 i = t->current_threshold;
2e72b634
KS
3468
3469 /*
3470 * Iterate backward over array of thresholds starting from
3471 * current_threshold and check if a threshold is crossed.
3472 * If none of thresholds below usage is crossed, we read
3473 * only one element of the array here.
3474 */
3475 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3476 eventfd_signal(t->entries[i].eventfd, 1);
3477
3478 /* i = current_threshold + 1 */
3479 i++;
3480
3481 /*
3482 * Iterate forward over array of thresholds starting from
3483 * current_threshold+1 and check if a threshold is crossed.
3484 * If none of thresholds above usage is crossed, we read
3485 * only one element of the array here.
3486 */
3487 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3488 eventfd_signal(t->entries[i].eventfd, 1);
3489
3490 /* Update current_threshold */
5407a562 3491 t->current_threshold = i - 1;
2e72b634
KS
3492unlock:
3493 rcu_read_unlock();
3494}
3495
3496static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3497{
ad4ca5f4
KS
3498 while (memcg) {
3499 __mem_cgroup_threshold(memcg, false);
7941d214 3500 if (do_memsw_account())
ad4ca5f4
KS
3501 __mem_cgroup_threshold(memcg, true);
3502
3503 memcg = parent_mem_cgroup(memcg);
3504 }
2e72b634
KS
3505}
3506
3507static int compare_thresholds(const void *a, const void *b)
3508{
3509 const struct mem_cgroup_threshold *_a = a;
3510 const struct mem_cgroup_threshold *_b = b;
3511
2bff24a3
GT
3512 if (_a->threshold > _b->threshold)
3513 return 1;
3514
3515 if (_a->threshold < _b->threshold)
3516 return -1;
3517
3518 return 0;
2e72b634
KS
3519}
3520
c0ff4b85 3521static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3522{
3523 struct mem_cgroup_eventfd_list *ev;
3524
2bcf2e92
MH
3525 spin_lock(&memcg_oom_lock);
3526
c0ff4b85 3527 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3528 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3529
3530 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3531 return 0;
3532}
3533
c0ff4b85 3534static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3535{
7d74b06f
KH
3536 struct mem_cgroup *iter;
3537
c0ff4b85 3538 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3539 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3540}
3541
59b6f873 3542static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3543 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3544{
2c488db2
KS
3545 struct mem_cgroup_thresholds *thresholds;
3546 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3547 unsigned long threshold;
3548 unsigned long usage;
2c488db2 3549 int i, size, ret;
2e72b634 3550
650c5e56 3551 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3552 if (ret)
3553 return ret;
3554
3555 mutex_lock(&memcg->thresholds_lock);
2c488db2 3556
05b84301 3557 if (type == _MEM) {
2c488db2 3558 thresholds = &memcg->thresholds;
ce00a967 3559 usage = mem_cgroup_usage(memcg, false);
05b84301 3560 } else if (type == _MEMSWAP) {
2c488db2 3561 thresholds = &memcg->memsw_thresholds;
ce00a967 3562 usage = mem_cgroup_usage(memcg, true);
05b84301 3563 } else
2e72b634
KS
3564 BUG();
3565
2e72b634 3566 /* Check if a threshold crossed before adding a new one */
2c488db2 3567 if (thresholds->primary)
2e72b634
KS
3568 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3569
2c488db2 3570 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3571
3572 /* Allocate memory for new array of thresholds */
2c488db2 3573 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3574 GFP_KERNEL);
2c488db2 3575 if (!new) {
2e72b634
KS
3576 ret = -ENOMEM;
3577 goto unlock;
3578 }
2c488db2 3579 new->size = size;
2e72b634
KS
3580
3581 /* Copy thresholds (if any) to new array */
2c488db2
KS
3582 if (thresholds->primary) {
3583 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3584 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3585 }
3586
2e72b634 3587 /* Add new threshold */
2c488db2
KS
3588 new->entries[size - 1].eventfd = eventfd;
3589 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3590
3591 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3592 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3593 compare_thresholds, NULL);
3594
3595 /* Find current threshold */
2c488db2 3596 new->current_threshold = -1;
2e72b634 3597 for (i = 0; i < size; i++) {
748dad36 3598 if (new->entries[i].threshold <= usage) {
2e72b634 3599 /*
2c488db2
KS
3600 * new->current_threshold will not be used until
3601 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3602 * it here.
3603 */
2c488db2 3604 ++new->current_threshold;
748dad36
SZ
3605 } else
3606 break;
2e72b634
KS
3607 }
3608
2c488db2
KS
3609 /* Free old spare buffer and save old primary buffer as spare */
3610 kfree(thresholds->spare);
3611 thresholds->spare = thresholds->primary;
3612
3613 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3614
907860ed 3615 /* To be sure that nobody uses thresholds */
2e72b634
KS
3616 synchronize_rcu();
3617
2e72b634
KS
3618unlock:
3619 mutex_unlock(&memcg->thresholds_lock);
3620
3621 return ret;
3622}
3623
59b6f873 3624static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3625 struct eventfd_ctx *eventfd, const char *args)
3626{
59b6f873 3627 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3628}
3629
59b6f873 3630static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3631 struct eventfd_ctx *eventfd, const char *args)
3632{
59b6f873 3633 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3634}
3635
59b6f873 3636static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3637 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3638{
2c488db2
KS
3639 struct mem_cgroup_thresholds *thresholds;
3640 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3641 unsigned long usage;
2c488db2 3642 int i, j, size;
2e72b634
KS
3643
3644 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3645
3646 if (type == _MEM) {
2c488db2 3647 thresholds = &memcg->thresholds;
ce00a967 3648 usage = mem_cgroup_usage(memcg, false);
05b84301 3649 } else if (type == _MEMSWAP) {
2c488db2 3650 thresholds = &memcg->memsw_thresholds;
ce00a967 3651 usage = mem_cgroup_usage(memcg, true);
05b84301 3652 } else
2e72b634
KS
3653 BUG();
3654
371528ca
AV
3655 if (!thresholds->primary)
3656 goto unlock;
3657
2e72b634
KS
3658 /* Check if a threshold crossed before removing */
3659 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3660
3661 /* Calculate new number of threshold */
2c488db2
KS
3662 size = 0;
3663 for (i = 0; i < thresholds->primary->size; i++) {
3664 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3665 size++;
3666 }
3667
2c488db2 3668 new = thresholds->spare;
907860ed 3669
2e72b634
KS
3670 /* Set thresholds array to NULL if we don't have thresholds */
3671 if (!size) {
2c488db2
KS
3672 kfree(new);
3673 new = NULL;
907860ed 3674 goto swap_buffers;
2e72b634
KS
3675 }
3676
2c488db2 3677 new->size = size;
2e72b634
KS
3678
3679 /* Copy thresholds and find current threshold */
2c488db2
KS
3680 new->current_threshold = -1;
3681 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3682 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3683 continue;
3684
2c488db2 3685 new->entries[j] = thresholds->primary->entries[i];
748dad36 3686 if (new->entries[j].threshold <= usage) {
2e72b634 3687 /*
2c488db2 3688 * new->current_threshold will not be used
2e72b634
KS
3689 * until rcu_assign_pointer(), so it's safe to increment
3690 * it here.
3691 */
2c488db2 3692 ++new->current_threshold;
2e72b634
KS
3693 }
3694 j++;
3695 }
3696
907860ed 3697swap_buffers:
2c488db2
KS
3698 /* Swap primary and spare array */
3699 thresholds->spare = thresholds->primary;
8c757763 3700
2c488db2 3701 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3702
907860ed 3703 /* To be sure that nobody uses thresholds */
2e72b634 3704 synchronize_rcu();
6611d8d7
MC
3705
3706 /* If all events are unregistered, free the spare array */
3707 if (!new) {
3708 kfree(thresholds->spare);
3709 thresholds->spare = NULL;
3710 }
371528ca 3711unlock:
2e72b634 3712 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3713}
c1e862c1 3714
59b6f873 3715static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3716 struct eventfd_ctx *eventfd)
3717{
59b6f873 3718 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3719}
3720
59b6f873 3721static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3722 struct eventfd_ctx *eventfd)
3723{
59b6f873 3724 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3725}
3726
59b6f873 3727static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3728 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3729{
9490ff27 3730 struct mem_cgroup_eventfd_list *event;
9490ff27 3731
9490ff27
KH
3732 event = kmalloc(sizeof(*event), GFP_KERNEL);
3733 if (!event)
3734 return -ENOMEM;
3735
1af8efe9 3736 spin_lock(&memcg_oom_lock);
9490ff27
KH
3737
3738 event->eventfd = eventfd;
3739 list_add(&event->list, &memcg->oom_notify);
3740
3741 /* already in OOM ? */
c2b42d3c 3742 if (memcg->under_oom)
9490ff27 3743 eventfd_signal(eventfd, 1);
1af8efe9 3744 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3745
3746 return 0;
3747}
3748
59b6f873 3749static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3750 struct eventfd_ctx *eventfd)
9490ff27 3751{
9490ff27 3752 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3753
1af8efe9 3754 spin_lock(&memcg_oom_lock);
9490ff27 3755
c0ff4b85 3756 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3757 if (ev->eventfd == eventfd) {
3758 list_del(&ev->list);
3759 kfree(ev);
3760 }
3761 }
3762
1af8efe9 3763 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3764}
3765
2da8ca82 3766static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3767{
2da8ca82 3768 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3769
791badbd 3770 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3771 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3772 seq_printf(sf, "oom_kill %lu\n",
3773 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3774 return 0;
3775}
3776
182446d0 3777static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3778 struct cftype *cft, u64 val)
3779{
182446d0 3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3781
3782 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3783 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3784 return -EINVAL;
3785
c0ff4b85 3786 memcg->oom_kill_disable = val;
4d845ebf 3787 if (!val)
c0ff4b85 3788 memcg_oom_recover(memcg);
3dae7fec 3789
3c11ecf4
KH
3790 return 0;
3791}
3792
52ebea74
TH
3793#ifdef CONFIG_CGROUP_WRITEBACK
3794
841710aa
TH
3795static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3796{
3797 return wb_domain_init(&memcg->cgwb_domain, gfp);
3798}
3799
3800static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3801{
3802 wb_domain_exit(&memcg->cgwb_domain);
3803}
3804
2529bb3a
TH
3805static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3806{
3807 wb_domain_size_changed(&memcg->cgwb_domain);
3808}
3809
841710aa
TH
3810struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3811{
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3813
3814 if (!memcg->css.parent)
3815 return NULL;
3816
3817 return &memcg->cgwb_domain;
3818}
3819
c2aa723a
TH
3820/**
3821 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3822 * @wb: bdi_writeback in question
c5edf9cd
TH
3823 * @pfilepages: out parameter for number of file pages
3824 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3825 * @pdirty: out parameter for number of dirty pages
3826 * @pwriteback: out parameter for number of pages under writeback
3827 *
c5edf9cd
TH
3828 * Determine the numbers of file, headroom, dirty, and writeback pages in
3829 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3830 * is a bit more involved.
c2aa723a 3831 *
c5edf9cd
TH
3832 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3833 * headroom is calculated as the lowest headroom of itself and the
3834 * ancestors. Note that this doesn't consider the actual amount of
3835 * available memory in the system. The caller should further cap
3836 * *@pheadroom accordingly.
c2aa723a 3837 */
c5edf9cd
TH
3838void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3839 unsigned long *pheadroom, unsigned long *pdirty,
3840 unsigned long *pwriteback)
c2aa723a
TH
3841{
3842 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3843 struct mem_cgroup *parent;
c2aa723a 3844
ccda7f43 3845 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3846
3847 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3848 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3849 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3850 (1 << LRU_ACTIVE_FILE));
3851 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3852
c2aa723a 3853 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3854 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3855 unsigned long used = page_counter_read(&memcg->memory);
3856
c5edf9cd 3857 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3858 memcg = parent;
3859 }
c2aa723a
TH
3860}
3861
841710aa
TH
3862#else /* CONFIG_CGROUP_WRITEBACK */
3863
3864static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3865{
3866 return 0;
3867}
3868
3869static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3870{
3871}
3872
2529bb3a
TH
3873static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3874{
3875}
3876
52ebea74
TH
3877#endif /* CONFIG_CGROUP_WRITEBACK */
3878
3bc942f3
TH
3879/*
3880 * DO NOT USE IN NEW FILES.
3881 *
3882 * "cgroup.event_control" implementation.
3883 *
3884 * This is way over-engineered. It tries to support fully configurable
3885 * events for each user. Such level of flexibility is completely
3886 * unnecessary especially in the light of the planned unified hierarchy.
3887 *
3888 * Please deprecate this and replace with something simpler if at all
3889 * possible.
3890 */
3891
79bd9814
TH
3892/*
3893 * Unregister event and free resources.
3894 *
3895 * Gets called from workqueue.
3896 */
3bc942f3 3897static void memcg_event_remove(struct work_struct *work)
79bd9814 3898{
3bc942f3
TH
3899 struct mem_cgroup_event *event =
3900 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3901 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3902
3903 remove_wait_queue(event->wqh, &event->wait);
3904
59b6f873 3905 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3906
3907 /* Notify userspace the event is going away. */
3908 eventfd_signal(event->eventfd, 1);
3909
3910 eventfd_ctx_put(event->eventfd);
3911 kfree(event);
59b6f873 3912 css_put(&memcg->css);
79bd9814
TH
3913}
3914
3915/*
a9a08845 3916 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3917 *
3918 * Called with wqh->lock held and interrupts disabled.
3919 */
ac6424b9 3920static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3921 int sync, void *key)
79bd9814 3922{
3bc942f3
TH
3923 struct mem_cgroup_event *event =
3924 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3925 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3926 __poll_t flags = key_to_poll(key);
79bd9814 3927
a9a08845 3928 if (flags & EPOLLHUP) {
79bd9814
TH
3929 /*
3930 * If the event has been detached at cgroup removal, we
3931 * can simply return knowing the other side will cleanup
3932 * for us.
3933 *
3934 * We can't race against event freeing since the other
3935 * side will require wqh->lock via remove_wait_queue(),
3936 * which we hold.
3937 */
fba94807 3938 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3939 if (!list_empty(&event->list)) {
3940 list_del_init(&event->list);
3941 /*
3942 * We are in atomic context, but cgroup_event_remove()
3943 * may sleep, so we have to call it in workqueue.
3944 */
3945 schedule_work(&event->remove);
3946 }
fba94807 3947 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3948 }
3949
3950 return 0;
3951}
3952
3bc942f3 3953static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3954 wait_queue_head_t *wqh, poll_table *pt)
3955{
3bc942f3
TH
3956 struct mem_cgroup_event *event =
3957 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3958
3959 event->wqh = wqh;
3960 add_wait_queue(wqh, &event->wait);
3961}
3962
3963/*
3bc942f3
TH
3964 * DO NOT USE IN NEW FILES.
3965 *
79bd9814
TH
3966 * Parse input and register new cgroup event handler.
3967 *
3968 * Input must be in format '<event_fd> <control_fd> <args>'.
3969 * Interpretation of args is defined by control file implementation.
3970 */
451af504
TH
3971static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3972 char *buf, size_t nbytes, loff_t off)
79bd9814 3973{
451af504 3974 struct cgroup_subsys_state *css = of_css(of);
fba94807 3975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3976 struct mem_cgroup_event *event;
79bd9814
TH
3977 struct cgroup_subsys_state *cfile_css;
3978 unsigned int efd, cfd;
3979 struct fd efile;
3980 struct fd cfile;
fba94807 3981 const char *name;
79bd9814
TH
3982 char *endp;
3983 int ret;
3984
451af504
TH
3985 buf = strstrip(buf);
3986
3987 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3988 if (*endp != ' ')
3989 return -EINVAL;
451af504 3990 buf = endp + 1;
79bd9814 3991
451af504 3992 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3993 if ((*endp != ' ') && (*endp != '\0'))
3994 return -EINVAL;
451af504 3995 buf = endp + 1;
79bd9814
TH
3996
3997 event = kzalloc(sizeof(*event), GFP_KERNEL);
3998 if (!event)
3999 return -ENOMEM;
4000
59b6f873 4001 event->memcg = memcg;
79bd9814 4002 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4003 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4004 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4005 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4006
4007 efile = fdget(efd);
4008 if (!efile.file) {
4009 ret = -EBADF;
4010 goto out_kfree;
4011 }
4012
4013 event->eventfd = eventfd_ctx_fileget(efile.file);
4014 if (IS_ERR(event->eventfd)) {
4015 ret = PTR_ERR(event->eventfd);
4016 goto out_put_efile;
4017 }
4018
4019 cfile = fdget(cfd);
4020 if (!cfile.file) {
4021 ret = -EBADF;
4022 goto out_put_eventfd;
4023 }
4024
4025 /* the process need read permission on control file */
4026 /* AV: shouldn't we check that it's been opened for read instead? */
4027 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4028 if (ret < 0)
4029 goto out_put_cfile;
4030
fba94807
TH
4031 /*
4032 * Determine the event callbacks and set them in @event. This used
4033 * to be done via struct cftype but cgroup core no longer knows
4034 * about these events. The following is crude but the whole thing
4035 * is for compatibility anyway.
3bc942f3
TH
4036 *
4037 * DO NOT ADD NEW FILES.
fba94807 4038 */
b583043e 4039 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4040
4041 if (!strcmp(name, "memory.usage_in_bytes")) {
4042 event->register_event = mem_cgroup_usage_register_event;
4043 event->unregister_event = mem_cgroup_usage_unregister_event;
4044 } else if (!strcmp(name, "memory.oom_control")) {
4045 event->register_event = mem_cgroup_oom_register_event;
4046 event->unregister_event = mem_cgroup_oom_unregister_event;
4047 } else if (!strcmp(name, "memory.pressure_level")) {
4048 event->register_event = vmpressure_register_event;
4049 event->unregister_event = vmpressure_unregister_event;
4050 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4051 event->register_event = memsw_cgroup_usage_register_event;
4052 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4053 } else {
4054 ret = -EINVAL;
4055 goto out_put_cfile;
4056 }
4057
79bd9814 4058 /*
b5557c4c
TH
4059 * Verify @cfile should belong to @css. Also, remaining events are
4060 * automatically removed on cgroup destruction but the removal is
4061 * asynchronous, so take an extra ref on @css.
79bd9814 4062 */
b583043e 4063 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4064 &memory_cgrp_subsys);
79bd9814 4065 ret = -EINVAL;
5a17f543 4066 if (IS_ERR(cfile_css))
79bd9814 4067 goto out_put_cfile;
5a17f543
TH
4068 if (cfile_css != css) {
4069 css_put(cfile_css);
79bd9814 4070 goto out_put_cfile;
5a17f543 4071 }
79bd9814 4072
451af504 4073 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4074 if (ret)
4075 goto out_put_css;
4076
9965ed17 4077 vfs_poll(efile.file, &event->pt);
79bd9814 4078
fba94807
TH
4079 spin_lock(&memcg->event_list_lock);
4080 list_add(&event->list, &memcg->event_list);
4081 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4082
4083 fdput(cfile);
4084 fdput(efile);
4085
451af504 4086 return nbytes;
79bd9814
TH
4087
4088out_put_css:
b5557c4c 4089 css_put(css);
79bd9814
TH
4090out_put_cfile:
4091 fdput(cfile);
4092out_put_eventfd:
4093 eventfd_ctx_put(event->eventfd);
4094out_put_efile:
4095 fdput(efile);
4096out_kfree:
4097 kfree(event);
4098
4099 return ret;
4100}
4101
241994ed 4102static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4103 {
0eea1030 4104 .name = "usage_in_bytes",
8c7c6e34 4105 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4106 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4107 },
c84872e1
PE
4108 {
4109 .name = "max_usage_in_bytes",
8c7c6e34 4110 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4111 .write = mem_cgroup_reset,
791badbd 4112 .read_u64 = mem_cgroup_read_u64,
c84872e1 4113 },
8cdea7c0 4114 {
0eea1030 4115 .name = "limit_in_bytes",
8c7c6e34 4116 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4117 .write = mem_cgroup_write,
791badbd 4118 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4119 },
296c81d8
BS
4120 {
4121 .name = "soft_limit_in_bytes",
4122 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4123 .write = mem_cgroup_write,
791badbd 4124 .read_u64 = mem_cgroup_read_u64,
296c81d8 4125 },
8cdea7c0
BS
4126 {
4127 .name = "failcnt",
8c7c6e34 4128 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4129 .write = mem_cgroup_reset,
791badbd 4130 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4131 },
d2ceb9b7
KH
4132 {
4133 .name = "stat",
2da8ca82 4134 .seq_show = memcg_stat_show,
d2ceb9b7 4135 },
c1e862c1
KH
4136 {
4137 .name = "force_empty",
6770c64e 4138 .write = mem_cgroup_force_empty_write,
c1e862c1 4139 },
18f59ea7
BS
4140 {
4141 .name = "use_hierarchy",
4142 .write_u64 = mem_cgroup_hierarchy_write,
4143 .read_u64 = mem_cgroup_hierarchy_read,
4144 },
79bd9814 4145 {
3bc942f3 4146 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4147 .write = memcg_write_event_control,
7dbdb199 4148 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4149 },
a7885eb8
KM
4150 {
4151 .name = "swappiness",
4152 .read_u64 = mem_cgroup_swappiness_read,
4153 .write_u64 = mem_cgroup_swappiness_write,
4154 },
7dc74be0
DN
4155 {
4156 .name = "move_charge_at_immigrate",
4157 .read_u64 = mem_cgroup_move_charge_read,
4158 .write_u64 = mem_cgroup_move_charge_write,
4159 },
9490ff27
KH
4160 {
4161 .name = "oom_control",
2da8ca82 4162 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4163 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4164 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4165 },
70ddf637
AV
4166 {
4167 .name = "pressure_level",
70ddf637 4168 },
406eb0c9
YH
4169#ifdef CONFIG_NUMA
4170 {
4171 .name = "numa_stat",
2da8ca82 4172 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4173 },
4174#endif
510fc4e1
GC
4175 {
4176 .name = "kmem.limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4178 .write = mem_cgroup_write,
791badbd 4179 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4180 },
4181 {
4182 .name = "kmem.usage_in_bytes",
4183 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4184 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4185 },
4186 {
4187 .name = "kmem.failcnt",
4188 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4189 .write = mem_cgroup_reset,
791badbd 4190 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4191 },
4192 {
4193 .name = "kmem.max_usage_in_bytes",
4194 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4195 .write = mem_cgroup_reset,
791badbd 4196 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4197 },
5b365771 4198#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4199 {
4200 .name = "kmem.slabinfo",
bc2791f8
TH
4201 .seq_start = memcg_slab_start,
4202 .seq_next = memcg_slab_next,
4203 .seq_stop = memcg_slab_stop,
b047501c 4204 .seq_show = memcg_slab_show,
749c5415
GC
4205 },
4206#endif
d55f90bf
VD
4207 {
4208 .name = "kmem.tcp.limit_in_bytes",
4209 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4210 .write = mem_cgroup_write,
4211 .read_u64 = mem_cgroup_read_u64,
4212 },
4213 {
4214 .name = "kmem.tcp.usage_in_bytes",
4215 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4216 .read_u64 = mem_cgroup_read_u64,
4217 },
4218 {
4219 .name = "kmem.tcp.failcnt",
4220 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4221 .write = mem_cgroup_reset,
4222 .read_u64 = mem_cgroup_read_u64,
4223 },
4224 {
4225 .name = "kmem.tcp.max_usage_in_bytes",
4226 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4227 .write = mem_cgroup_reset,
4228 .read_u64 = mem_cgroup_read_u64,
4229 },
6bc10349 4230 { }, /* terminate */
af36f906 4231};
8c7c6e34 4232
73f576c0
JW
4233/*
4234 * Private memory cgroup IDR
4235 *
4236 * Swap-out records and page cache shadow entries need to store memcg
4237 * references in constrained space, so we maintain an ID space that is
4238 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4239 * memory-controlled cgroups to 64k.
4240 *
4241 * However, there usually are many references to the oflline CSS after
4242 * the cgroup has been destroyed, such as page cache or reclaimable
4243 * slab objects, that don't need to hang on to the ID. We want to keep
4244 * those dead CSS from occupying IDs, or we might quickly exhaust the
4245 * relatively small ID space and prevent the creation of new cgroups
4246 * even when there are much fewer than 64k cgroups - possibly none.
4247 *
4248 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4249 * be freed and recycled when it's no longer needed, which is usually
4250 * when the CSS is offlined.
4251 *
4252 * The only exception to that are records of swapped out tmpfs/shmem
4253 * pages that need to be attributed to live ancestors on swapin. But
4254 * those references are manageable from userspace.
4255 */
4256
4257static DEFINE_IDR(mem_cgroup_idr);
4258
7e97de0b
KT
4259static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4260{
4261 if (memcg->id.id > 0) {
4262 idr_remove(&mem_cgroup_idr, memcg->id.id);
4263 memcg->id.id = 0;
4264 }
4265}
4266
615d66c3 4267static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4268{
58fa2a55 4269 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4270 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4271}
4272
615d66c3 4273static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4274{
58fa2a55 4275 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4276 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4277 mem_cgroup_id_remove(memcg);
73f576c0
JW
4278
4279 /* Memcg ID pins CSS */
4280 css_put(&memcg->css);
4281 }
4282}
4283
615d66c3
VD
4284static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4285{
4286 mem_cgroup_id_get_many(memcg, 1);
4287}
4288
4289static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4290{
4291 mem_cgroup_id_put_many(memcg, 1);
4292}
4293
73f576c0
JW
4294/**
4295 * mem_cgroup_from_id - look up a memcg from a memcg id
4296 * @id: the memcg id to look up
4297 *
4298 * Caller must hold rcu_read_lock().
4299 */
4300struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4301{
4302 WARN_ON_ONCE(!rcu_read_lock_held());
4303 return idr_find(&mem_cgroup_idr, id);
4304}
4305
ef8f2327 4306static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4307{
4308 struct mem_cgroup_per_node *pn;
ef8f2327 4309 int tmp = node;
1ecaab2b
KH
4310 /*
4311 * This routine is called against possible nodes.
4312 * But it's BUG to call kmalloc() against offline node.
4313 *
4314 * TODO: this routine can waste much memory for nodes which will
4315 * never be onlined. It's better to use memory hotplug callback
4316 * function.
4317 */
41e3355d
KH
4318 if (!node_state(node, N_NORMAL_MEMORY))
4319 tmp = -1;
17295c88 4320 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4321 if (!pn)
4322 return 1;
1ecaab2b 4323
a983b5eb
JW
4324 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4325 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4326 kfree(pn);
4327 return 1;
4328 }
4329
ef8f2327
MG
4330 lruvec_init(&pn->lruvec);
4331 pn->usage_in_excess = 0;
4332 pn->on_tree = false;
4333 pn->memcg = memcg;
4334
54f72fe0 4335 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4336 return 0;
4337}
4338
ef8f2327 4339static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4340{
00f3ca2c
JW
4341 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4342
4eaf431f
MH
4343 if (!pn)
4344 return;
4345
a983b5eb 4346 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4347 kfree(pn);
1ecaab2b
KH
4348}
4349
40e952f9 4350static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4351{
c8b2a36f 4352 int node;
59927fb9 4353
c8b2a36f 4354 for_each_node(node)
ef8f2327 4355 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4356 free_percpu(memcg->stat_cpu);
8ff69e2c 4357 kfree(memcg);
59927fb9 4358}
3afe36b1 4359
40e952f9
TE
4360static void mem_cgroup_free(struct mem_cgroup *memcg)
4361{
4362 memcg_wb_domain_exit(memcg);
4363 __mem_cgroup_free(memcg);
4364}
4365
0b8f73e1 4366static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4367{
d142e3e6 4368 struct mem_cgroup *memcg;
0b8f73e1 4369 size_t size;
6d12e2d8 4370 int node;
8cdea7c0 4371
0b8f73e1
JW
4372 size = sizeof(struct mem_cgroup);
4373 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4374
4375 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4376 if (!memcg)
0b8f73e1
JW
4377 return NULL;
4378
73f576c0
JW
4379 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4380 1, MEM_CGROUP_ID_MAX,
4381 GFP_KERNEL);
4382 if (memcg->id.id < 0)
4383 goto fail;
4384
a983b5eb
JW
4385 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4386 if (!memcg->stat_cpu)
0b8f73e1 4387 goto fail;
78fb7466 4388
3ed28fa1 4389 for_each_node(node)
ef8f2327 4390 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4391 goto fail;
f64c3f54 4392
0b8f73e1
JW
4393 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4394 goto fail;
28dbc4b6 4395
f7e1cb6e 4396 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4397 memcg->last_scanned_node = MAX_NUMNODES;
4398 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4399 mutex_init(&memcg->thresholds_lock);
4400 spin_lock_init(&memcg->move_lock);
70ddf637 4401 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4402 INIT_LIST_HEAD(&memcg->event_list);
4403 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4404 memcg->socket_pressure = jiffies;
84c07d11 4405#ifdef CONFIG_MEMCG_KMEM
900a38f0 4406 memcg->kmemcg_id = -1;
900a38f0 4407#endif
52ebea74
TH
4408#ifdef CONFIG_CGROUP_WRITEBACK
4409 INIT_LIST_HEAD(&memcg->cgwb_list);
4410#endif
73f576c0 4411 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4412 return memcg;
4413fail:
7e97de0b 4414 mem_cgroup_id_remove(memcg);
40e952f9 4415 __mem_cgroup_free(memcg);
0b8f73e1 4416 return NULL;
d142e3e6
GC
4417}
4418
0b8f73e1
JW
4419static struct cgroup_subsys_state * __ref
4420mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4421{
0b8f73e1
JW
4422 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4423 struct mem_cgroup *memcg;
4424 long error = -ENOMEM;
d142e3e6 4425
0b8f73e1
JW
4426 memcg = mem_cgroup_alloc();
4427 if (!memcg)
4428 return ERR_PTR(error);
d142e3e6 4429
0b8f73e1
JW
4430 memcg->high = PAGE_COUNTER_MAX;
4431 memcg->soft_limit = PAGE_COUNTER_MAX;
4432 if (parent) {
4433 memcg->swappiness = mem_cgroup_swappiness(parent);
4434 memcg->oom_kill_disable = parent->oom_kill_disable;
4435 }
4436 if (parent && parent->use_hierarchy) {
4437 memcg->use_hierarchy = true;
3e32cb2e 4438 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4439 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4440 page_counter_init(&memcg->memsw, &parent->memsw);
4441 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4442 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4443 } else {
3e32cb2e 4444 page_counter_init(&memcg->memory, NULL);
37e84351 4445 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4446 page_counter_init(&memcg->memsw, NULL);
4447 page_counter_init(&memcg->kmem, NULL);
0db15298 4448 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4449 /*
4450 * Deeper hierachy with use_hierarchy == false doesn't make
4451 * much sense so let cgroup subsystem know about this
4452 * unfortunate state in our controller.
4453 */
d142e3e6 4454 if (parent != root_mem_cgroup)
073219e9 4455 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4456 }
d6441637 4457
0b8f73e1
JW
4458 /* The following stuff does not apply to the root */
4459 if (!parent) {
4460 root_mem_cgroup = memcg;
4461 return &memcg->css;
4462 }
4463
b313aeee 4464 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4465 if (error)
4466 goto fail;
127424c8 4467
f7e1cb6e 4468 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4469 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4470
0b8f73e1
JW
4471 return &memcg->css;
4472fail:
7e97de0b 4473 mem_cgroup_id_remove(memcg);
0b8f73e1 4474 mem_cgroup_free(memcg);
ea3a9645 4475 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4476}
4477
73f576c0 4478static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4479{
58fa2a55
VD
4480 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4481
0a4465d3
KT
4482 /*
4483 * A memcg must be visible for memcg_expand_shrinker_maps()
4484 * by the time the maps are allocated. So, we allocate maps
4485 * here, when for_each_mem_cgroup() can't skip it.
4486 */
4487 if (memcg_alloc_shrinker_maps(memcg)) {
4488 mem_cgroup_id_remove(memcg);
4489 return -ENOMEM;
4490 }
4491
73f576c0 4492 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4493 atomic_set(&memcg->id.ref, 1);
73f576c0 4494 css_get(css);
2f7dd7a4 4495 return 0;
8cdea7c0
BS
4496}
4497
eb95419b 4498static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4499{
eb95419b 4500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4501 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4502
4503 /*
4504 * Unregister events and notify userspace.
4505 * Notify userspace about cgroup removing only after rmdir of cgroup
4506 * directory to avoid race between userspace and kernelspace.
4507 */
fba94807
TH
4508 spin_lock(&memcg->event_list_lock);
4509 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4510 list_del_init(&event->list);
4511 schedule_work(&event->remove);
4512 }
fba94807 4513 spin_unlock(&memcg->event_list_lock);
ec64f515 4514
bf8d5d52 4515 page_counter_set_min(&memcg->memory, 0);
23067153 4516 page_counter_set_low(&memcg->memory, 0);
63677c74 4517
567e9ab2 4518 memcg_offline_kmem(memcg);
52ebea74 4519 wb_memcg_offline(memcg);
73f576c0
JW
4520
4521 mem_cgroup_id_put(memcg);
df878fb0
KH
4522}
4523
6df38689
VD
4524static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4525{
4526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4527
4528 invalidate_reclaim_iterators(memcg);
4529}
4530
eb95419b 4531static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4532{
eb95419b 4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4534
f7e1cb6e 4535 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4536 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4537
0db15298 4538 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4539 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4540
0b8f73e1
JW
4541 vmpressure_cleanup(&memcg->vmpressure);
4542 cancel_work_sync(&memcg->high_work);
4543 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4544 memcg_free_shrinker_maps(memcg);
d886f4e4 4545 memcg_free_kmem(memcg);
0b8f73e1 4546 mem_cgroup_free(memcg);
8cdea7c0
BS
4547}
4548
1ced953b
TH
4549/**
4550 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4551 * @css: the target css
4552 *
4553 * Reset the states of the mem_cgroup associated with @css. This is
4554 * invoked when the userland requests disabling on the default hierarchy
4555 * but the memcg is pinned through dependency. The memcg should stop
4556 * applying policies and should revert to the vanilla state as it may be
4557 * made visible again.
4558 *
4559 * The current implementation only resets the essential configurations.
4560 * This needs to be expanded to cover all the visible parts.
4561 */
4562static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4563{
4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4565
bbec2e15
RG
4566 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4567 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4568 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4569 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4570 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4571 page_counter_set_min(&memcg->memory, 0);
23067153 4572 page_counter_set_low(&memcg->memory, 0);
241994ed 4573 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4574 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4575 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4576}
4577
02491447 4578#ifdef CONFIG_MMU
7dc74be0 4579/* Handlers for move charge at task migration. */
854ffa8d 4580static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4581{
05b84301 4582 int ret;
9476db97 4583
d0164adc
MG
4584 /* Try a single bulk charge without reclaim first, kswapd may wake */
4585 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4586 if (!ret) {
854ffa8d 4587 mc.precharge += count;
854ffa8d
DN
4588 return ret;
4589 }
9476db97 4590
3674534b 4591 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4592 while (count--) {
3674534b 4593 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4594 if (ret)
38c5d72f 4595 return ret;
854ffa8d 4596 mc.precharge++;
9476db97 4597 cond_resched();
854ffa8d 4598 }
9476db97 4599 return 0;
4ffef5fe
DN
4600}
4601
4ffef5fe
DN
4602union mc_target {
4603 struct page *page;
02491447 4604 swp_entry_t ent;
4ffef5fe
DN
4605};
4606
4ffef5fe 4607enum mc_target_type {
8d32ff84 4608 MC_TARGET_NONE = 0,
4ffef5fe 4609 MC_TARGET_PAGE,
02491447 4610 MC_TARGET_SWAP,
c733a828 4611 MC_TARGET_DEVICE,
4ffef5fe
DN
4612};
4613
90254a65
DN
4614static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4615 unsigned long addr, pte_t ptent)
4ffef5fe 4616{
c733a828 4617 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4618
90254a65
DN
4619 if (!page || !page_mapped(page))
4620 return NULL;
4621 if (PageAnon(page)) {
1dfab5ab 4622 if (!(mc.flags & MOVE_ANON))
90254a65 4623 return NULL;
1dfab5ab
JW
4624 } else {
4625 if (!(mc.flags & MOVE_FILE))
4626 return NULL;
4627 }
90254a65
DN
4628 if (!get_page_unless_zero(page))
4629 return NULL;
4630
4631 return page;
4632}
4633
c733a828 4634#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4635static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4636 pte_t ptent, swp_entry_t *entry)
90254a65 4637{
90254a65
DN
4638 struct page *page = NULL;
4639 swp_entry_t ent = pte_to_swp_entry(ptent);
4640
1dfab5ab 4641 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4642 return NULL;
c733a828
JG
4643
4644 /*
4645 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4646 * a device and because they are not accessible by CPU they are store
4647 * as special swap entry in the CPU page table.
4648 */
4649 if (is_device_private_entry(ent)) {
4650 page = device_private_entry_to_page(ent);
4651 /*
4652 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4653 * a refcount of 1 when free (unlike normal page)
4654 */
4655 if (!page_ref_add_unless(page, 1, 1))
4656 return NULL;
4657 return page;
4658 }
4659
4b91355e
KH
4660 /*
4661 * Because lookup_swap_cache() updates some statistics counter,
4662 * we call find_get_page() with swapper_space directly.
4663 */
f6ab1f7f 4664 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4665 if (do_memsw_account())
90254a65
DN
4666 entry->val = ent.val;
4667
4668 return page;
4669}
4b91355e
KH
4670#else
4671static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4672 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4673{
4674 return NULL;
4675}
4676#endif
90254a65 4677
87946a72
DN
4678static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4679 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4680{
4681 struct page *page = NULL;
87946a72
DN
4682 struct address_space *mapping;
4683 pgoff_t pgoff;
4684
4685 if (!vma->vm_file) /* anonymous vma */
4686 return NULL;
1dfab5ab 4687 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4688 return NULL;
4689
87946a72 4690 mapping = vma->vm_file->f_mapping;
0661a336 4691 pgoff = linear_page_index(vma, addr);
87946a72
DN
4692
4693 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4694#ifdef CONFIG_SWAP
4695 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4696 if (shmem_mapping(mapping)) {
4697 page = find_get_entry(mapping, pgoff);
4698 if (radix_tree_exceptional_entry(page)) {
4699 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4700 if (do_memsw_account())
139b6a6f 4701 *entry = swp;
f6ab1f7f
YH
4702 page = find_get_page(swap_address_space(swp),
4703 swp_offset(swp));
139b6a6f
JW
4704 }
4705 } else
4706 page = find_get_page(mapping, pgoff);
4707#else
4708 page = find_get_page(mapping, pgoff);
aa3b1895 4709#endif
87946a72
DN
4710 return page;
4711}
4712
b1b0deab
CG
4713/**
4714 * mem_cgroup_move_account - move account of the page
4715 * @page: the page
25843c2b 4716 * @compound: charge the page as compound or small page
b1b0deab
CG
4717 * @from: mem_cgroup which the page is moved from.
4718 * @to: mem_cgroup which the page is moved to. @from != @to.
4719 *
3ac808fd 4720 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4721 *
4722 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4723 * from old cgroup.
4724 */
4725static int mem_cgroup_move_account(struct page *page,
f627c2f5 4726 bool compound,
b1b0deab
CG
4727 struct mem_cgroup *from,
4728 struct mem_cgroup *to)
4729{
4730 unsigned long flags;
f627c2f5 4731 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4732 int ret;
c4843a75 4733 bool anon;
b1b0deab
CG
4734
4735 VM_BUG_ON(from == to);
4736 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4737 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4738
4739 /*
6a93ca8f 4740 * Prevent mem_cgroup_migrate() from looking at
45637bab 4741 * page->mem_cgroup of its source page while we change it.
b1b0deab 4742 */
f627c2f5 4743 ret = -EBUSY;
b1b0deab
CG
4744 if (!trylock_page(page))
4745 goto out;
4746
4747 ret = -EINVAL;
4748 if (page->mem_cgroup != from)
4749 goto out_unlock;
4750
c4843a75
GT
4751 anon = PageAnon(page);
4752
b1b0deab
CG
4753 spin_lock_irqsave(&from->move_lock, flags);
4754
c4843a75 4755 if (!anon && page_mapped(page)) {
c9019e9b
JW
4756 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4757 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4758 }
4759
c4843a75
GT
4760 /*
4761 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4762 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4763 * So mapping should be stable for dirty pages.
4764 */
4765 if (!anon && PageDirty(page)) {
4766 struct address_space *mapping = page_mapping(page);
4767
4768 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4769 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4770 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4771 }
4772 }
4773
b1b0deab 4774 if (PageWriteback(page)) {
c9019e9b
JW
4775 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4776 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4777 }
4778
4779 /*
4780 * It is safe to change page->mem_cgroup here because the page
4781 * is referenced, charged, and isolated - we can't race with
4782 * uncharging, charging, migration, or LRU putback.
4783 */
4784
4785 /* caller should have done css_get */
4786 page->mem_cgroup = to;
4787 spin_unlock_irqrestore(&from->move_lock, flags);
4788
4789 ret = 0;
4790
4791 local_irq_disable();
f627c2f5 4792 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4793 memcg_check_events(to, page);
f627c2f5 4794 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4795 memcg_check_events(from, page);
4796 local_irq_enable();
4797out_unlock:
4798 unlock_page(page);
4799out:
4800 return ret;
4801}
4802
7cf7806c
LR
4803/**
4804 * get_mctgt_type - get target type of moving charge
4805 * @vma: the vma the pte to be checked belongs
4806 * @addr: the address corresponding to the pte to be checked
4807 * @ptent: the pte to be checked
4808 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4809 *
4810 * Returns
4811 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4812 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4813 * move charge. if @target is not NULL, the page is stored in target->page
4814 * with extra refcnt got(Callers should handle it).
4815 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4816 * target for charge migration. if @target is not NULL, the entry is stored
4817 * in target->ent.
df6ad698
JG
4818 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4819 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4820 * For now we such page is charge like a regular page would be as for all
4821 * intent and purposes it is just special memory taking the place of a
4822 * regular page.
c733a828
JG
4823 *
4824 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4825 *
4826 * Called with pte lock held.
4827 */
4828
8d32ff84 4829static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4830 unsigned long addr, pte_t ptent, union mc_target *target)
4831{
4832 struct page *page = NULL;
8d32ff84 4833 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4834 swp_entry_t ent = { .val = 0 };
4835
4836 if (pte_present(ptent))
4837 page = mc_handle_present_pte(vma, addr, ptent);
4838 else if (is_swap_pte(ptent))
48406ef8 4839 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4840 else if (pte_none(ptent))
87946a72 4841 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4842
4843 if (!page && !ent.val)
8d32ff84 4844 return ret;
02491447 4845 if (page) {
02491447 4846 /*
0a31bc97 4847 * Do only loose check w/o serialization.
1306a85a 4848 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4849 * not under LRU exclusion.
02491447 4850 */
1306a85a 4851 if (page->mem_cgroup == mc.from) {
02491447 4852 ret = MC_TARGET_PAGE;
df6ad698
JG
4853 if (is_device_private_page(page) ||
4854 is_device_public_page(page))
c733a828 4855 ret = MC_TARGET_DEVICE;
02491447
DN
4856 if (target)
4857 target->page = page;
4858 }
4859 if (!ret || !target)
4860 put_page(page);
4861 }
3e14a57b
YH
4862 /*
4863 * There is a swap entry and a page doesn't exist or isn't charged.
4864 * But we cannot move a tail-page in a THP.
4865 */
4866 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4867 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4868 ret = MC_TARGET_SWAP;
4869 if (target)
4870 target->ent = ent;
4ffef5fe 4871 }
4ffef5fe
DN
4872 return ret;
4873}
4874
12724850
NH
4875#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4876/*
d6810d73
YH
4877 * We don't consider PMD mapped swapping or file mapped pages because THP does
4878 * not support them for now.
12724850
NH
4879 * Caller should make sure that pmd_trans_huge(pmd) is true.
4880 */
4881static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4882 unsigned long addr, pmd_t pmd, union mc_target *target)
4883{
4884 struct page *page = NULL;
12724850
NH
4885 enum mc_target_type ret = MC_TARGET_NONE;
4886
84c3fc4e
ZY
4887 if (unlikely(is_swap_pmd(pmd))) {
4888 VM_BUG_ON(thp_migration_supported() &&
4889 !is_pmd_migration_entry(pmd));
4890 return ret;
4891 }
12724850 4892 page = pmd_page(pmd);
309381fe 4893 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4894 if (!(mc.flags & MOVE_ANON))
12724850 4895 return ret;
1306a85a 4896 if (page->mem_cgroup == mc.from) {
12724850
NH
4897 ret = MC_TARGET_PAGE;
4898 if (target) {
4899 get_page(page);
4900 target->page = page;
4901 }
4902 }
4903 return ret;
4904}
4905#else
4906static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4907 unsigned long addr, pmd_t pmd, union mc_target *target)
4908{
4909 return MC_TARGET_NONE;
4910}
4911#endif
4912
4ffef5fe
DN
4913static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4914 unsigned long addr, unsigned long end,
4915 struct mm_walk *walk)
4916{
26bcd64a 4917 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4918 pte_t *pte;
4919 spinlock_t *ptl;
4920
b6ec57f4
KS
4921 ptl = pmd_trans_huge_lock(pmd, vma);
4922 if (ptl) {
c733a828
JG
4923 /*
4924 * Note their can not be MC_TARGET_DEVICE for now as we do not
4925 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4926 * MEMORY_DEVICE_PRIVATE but this might change.
4927 */
12724850
NH
4928 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4929 mc.precharge += HPAGE_PMD_NR;
bf929152 4930 spin_unlock(ptl);
1a5a9906 4931 return 0;
12724850 4932 }
03319327 4933
45f83cef
AA
4934 if (pmd_trans_unstable(pmd))
4935 return 0;
4ffef5fe
DN
4936 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4937 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4938 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4939 mc.precharge++; /* increment precharge temporarily */
4940 pte_unmap_unlock(pte - 1, ptl);
4941 cond_resched();
4942
7dc74be0
DN
4943 return 0;
4944}
4945
4ffef5fe
DN
4946static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4947{
4948 unsigned long precharge;
4ffef5fe 4949
26bcd64a
NH
4950 struct mm_walk mem_cgroup_count_precharge_walk = {
4951 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4952 .mm = mm,
4953 };
dfe076b0 4954 down_read(&mm->mmap_sem);
0247f3f4
JM
4955 walk_page_range(0, mm->highest_vm_end,
4956 &mem_cgroup_count_precharge_walk);
dfe076b0 4957 up_read(&mm->mmap_sem);
4ffef5fe
DN
4958
4959 precharge = mc.precharge;
4960 mc.precharge = 0;
4961
4962 return precharge;
4963}
4964
4ffef5fe
DN
4965static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4966{
dfe076b0
DN
4967 unsigned long precharge = mem_cgroup_count_precharge(mm);
4968
4969 VM_BUG_ON(mc.moving_task);
4970 mc.moving_task = current;
4971 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4972}
4973
dfe076b0
DN
4974/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4975static void __mem_cgroup_clear_mc(void)
4ffef5fe 4976{
2bd9bb20
KH
4977 struct mem_cgroup *from = mc.from;
4978 struct mem_cgroup *to = mc.to;
4979
4ffef5fe 4980 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4981 if (mc.precharge) {
00501b53 4982 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4983 mc.precharge = 0;
4984 }
4985 /*
4986 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4987 * we must uncharge here.
4988 */
4989 if (mc.moved_charge) {
00501b53 4990 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4991 mc.moved_charge = 0;
4ffef5fe 4992 }
483c30b5
DN
4993 /* we must fixup refcnts and charges */
4994 if (mc.moved_swap) {
483c30b5 4995 /* uncharge swap account from the old cgroup */
ce00a967 4996 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4997 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4998
615d66c3
VD
4999 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5000
05b84301 5001 /*
3e32cb2e
JW
5002 * we charged both to->memory and to->memsw, so we
5003 * should uncharge to->memory.
05b84301 5004 */
ce00a967 5005 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5006 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5007
615d66c3
VD
5008 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5009 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5010
483c30b5
DN
5011 mc.moved_swap = 0;
5012 }
dfe076b0
DN
5013 memcg_oom_recover(from);
5014 memcg_oom_recover(to);
5015 wake_up_all(&mc.waitq);
5016}
5017
5018static void mem_cgroup_clear_mc(void)
5019{
264a0ae1
TH
5020 struct mm_struct *mm = mc.mm;
5021
dfe076b0
DN
5022 /*
5023 * we must clear moving_task before waking up waiters at the end of
5024 * task migration.
5025 */
5026 mc.moving_task = NULL;
5027 __mem_cgroup_clear_mc();
2bd9bb20 5028 spin_lock(&mc.lock);
4ffef5fe
DN
5029 mc.from = NULL;
5030 mc.to = NULL;
264a0ae1 5031 mc.mm = NULL;
2bd9bb20 5032 spin_unlock(&mc.lock);
264a0ae1
TH
5033
5034 mmput(mm);
4ffef5fe
DN
5035}
5036
1f7dd3e5 5037static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5038{
1f7dd3e5 5039 struct cgroup_subsys_state *css;
eed67d75 5040 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5041 struct mem_cgroup *from;
4530eddb 5042 struct task_struct *leader, *p;
9f2115f9 5043 struct mm_struct *mm;
1dfab5ab 5044 unsigned long move_flags;
9f2115f9 5045 int ret = 0;
7dc74be0 5046
1f7dd3e5
TH
5047 /* charge immigration isn't supported on the default hierarchy */
5048 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5049 return 0;
5050
4530eddb
TH
5051 /*
5052 * Multi-process migrations only happen on the default hierarchy
5053 * where charge immigration is not used. Perform charge
5054 * immigration if @tset contains a leader and whine if there are
5055 * multiple.
5056 */
5057 p = NULL;
1f7dd3e5 5058 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5059 WARN_ON_ONCE(p);
5060 p = leader;
1f7dd3e5 5061 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5062 }
5063 if (!p)
5064 return 0;
5065
1f7dd3e5
TH
5066 /*
5067 * We are now commited to this value whatever it is. Changes in this
5068 * tunable will only affect upcoming migrations, not the current one.
5069 * So we need to save it, and keep it going.
5070 */
5071 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5072 if (!move_flags)
5073 return 0;
5074
9f2115f9
TH
5075 from = mem_cgroup_from_task(p);
5076
5077 VM_BUG_ON(from == memcg);
5078
5079 mm = get_task_mm(p);
5080 if (!mm)
5081 return 0;
5082 /* We move charges only when we move a owner of the mm */
5083 if (mm->owner == p) {
5084 VM_BUG_ON(mc.from);
5085 VM_BUG_ON(mc.to);
5086 VM_BUG_ON(mc.precharge);
5087 VM_BUG_ON(mc.moved_charge);
5088 VM_BUG_ON(mc.moved_swap);
5089
5090 spin_lock(&mc.lock);
264a0ae1 5091 mc.mm = mm;
9f2115f9
TH
5092 mc.from = from;
5093 mc.to = memcg;
5094 mc.flags = move_flags;
5095 spin_unlock(&mc.lock);
5096 /* We set mc.moving_task later */
5097
5098 ret = mem_cgroup_precharge_mc(mm);
5099 if (ret)
5100 mem_cgroup_clear_mc();
264a0ae1
TH
5101 } else {
5102 mmput(mm);
7dc74be0
DN
5103 }
5104 return ret;
5105}
5106
1f7dd3e5 5107static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5108{
4e2f245d
JW
5109 if (mc.to)
5110 mem_cgroup_clear_mc();
7dc74be0
DN
5111}
5112
4ffef5fe
DN
5113static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5114 unsigned long addr, unsigned long end,
5115 struct mm_walk *walk)
7dc74be0 5116{
4ffef5fe 5117 int ret = 0;
26bcd64a 5118 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5119 pte_t *pte;
5120 spinlock_t *ptl;
12724850
NH
5121 enum mc_target_type target_type;
5122 union mc_target target;
5123 struct page *page;
4ffef5fe 5124
b6ec57f4
KS
5125 ptl = pmd_trans_huge_lock(pmd, vma);
5126 if (ptl) {
62ade86a 5127 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5128 spin_unlock(ptl);
12724850
NH
5129 return 0;
5130 }
5131 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5132 if (target_type == MC_TARGET_PAGE) {
5133 page = target.page;
5134 if (!isolate_lru_page(page)) {
f627c2f5 5135 if (!mem_cgroup_move_account(page, true,
1306a85a 5136 mc.from, mc.to)) {
12724850
NH
5137 mc.precharge -= HPAGE_PMD_NR;
5138 mc.moved_charge += HPAGE_PMD_NR;
5139 }
5140 putback_lru_page(page);
5141 }
5142 put_page(page);
c733a828
JG
5143 } else if (target_type == MC_TARGET_DEVICE) {
5144 page = target.page;
5145 if (!mem_cgroup_move_account(page, true,
5146 mc.from, mc.to)) {
5147 mc.precharge -= HPAGE_PMD_NR;
5148 mc.moved_charge += HPAGE_PMD_NR;
5149 }
5150 put_page(page);
12724850 5151 }
bf929152 5152 spin_unlock(ptl);
1a5a9906 5153 return 0;
12724850
NH
5154 }
5155
45f83cef
AA
5156 if (pmd_trans_unstable(pmd))
5157 return 0;
4ffef5fe
DN
5158retry:
5159 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5160 for (; addr != end; addr += PAGE_SIZE) {
5161 pte_t ptent = *(pte++);
c733a828 5162 bool device = false;
02491447 5163 swp_entry_t ent;
4ffef5fe
DN
5164
5165 if (!mc.precharge)
5166 break;
5167
8d32ff84 5168 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5169 case MC_TARGET_DEVICE:
5170 device = true;
5171 /* fall through */
4ffef5fe
DN
5172 case MC_TARGET_PAGE:
5173 page = target.page;
53f9263b
KS
5174 /*
5175 * We can have a part of the split pmd here. Moving it
5176 * can be done but it would be too convoluted so simply
5177 * ignore such a partial THP and keep it in original
5178 * memcg. There should be somebody mapping the head.
5179 */
5180 if (PageTransCompound(page))
5181 goto put;
c733a828 5182 if (!device && isolate_lru_page(page))
4ffef5fe 5183 goto put;
f627c2f5
KS
5184 if (!mem_cgroup_move_account(page, false,
5185 mc.from, mc.to)) {
4ffef5fe 5186 mc.precharge--;
854ffa8d
DN
5187 /* we uncharge from mc.from later. */
5188 mc.moved_charge++;
4ffef5fe 5189 }
c733a828
JG
5190 if (!device)
5191 putback_lru_page(page);
8d32ff84 5192put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5193 put_page(page);
5194 break;
02491447
DN
5195 case MC_TARGET_SWAP:
5196 ent = target.ent;
e91cbb42 5197 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5198 mc.precharge--;
483c30b5
DN
5199 /* we fixup refcnts and charges later. */
5200 mc.moved_swap++;
5201 }
02491447 5202 break;
4ffef5fe
DN
5203 default:
5204 break;
5205 }
5206 }
5207 pte_unmap_unlock(pte - 1, ptl);
5208 cond_resched();
5209
5210 if (addr != end) {
5211 /*
5212 * We have consumed all precharges we got in can_attach().
5213 * We try charge one by one, but don't do any additional
5214 * charges to mc.to if we have failed in charge once in attach()
5215 * phase.
5216 */
854ffa8d 5217 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5218 if (!ret)
5219 goto retry;
5220 }
5221
5222 return ret;
5223}
5224
264a0ae1 5225static void mem_cgroup_move_charge(void)
4ffef5fe 5226{
26bcd64a
NH
5227 struct mm_walk mem_cgroup_move_charge_walk = {
5228 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5229 .mm = mc.mm,
26bcd64a 5230 };
4ffef5fe
DN
5231
5232 lru_add_drain_all();
312722cb 5233 /*
81f8c3a4
JW
5234 * Signal lock_page_memcg() to take the memcg's move_lock
5235 * while we're moving its pages to another memcg. Then wait
5236 * for already started RCU-only updates to finish.
312722cb
JW
5237 */
5238 atomic_inc(&mc.from->moving_account);
5239 synchronize_rcu();
dfe076b0 5240retry:
264a0ae1 5241 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5242 /*
5243 * Someone who are holding the mmap_sem might be waiting in
5244 * waitq. So we cancel all extra charges, wake up all waiters,
5245 * and retry. Because we cancel precharges, we might not be able
5246 * to move enough charges, but moving charge is a best-effort
5247 * feature anyway, so it wouldn't be a big problem.
5248 */
5249 __mem_cgroup_clear_mc();
5250 cond_resched();
5251 goto retry;
5252 }
26bcd64a
NH
5253 /*
5254 * When we have consumed all precharges and failed in doing
5255 * additional charge, the page walk just aborts.
5256 */
0247f3f4
JM
5257 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5258
264a0ae1 5259 up_read(&mc.mm->mmap_sem);
312722cb 5260 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5261}
5262
264a0ae1 5263static void mem_cgroup_move_task(void)
67e465a7 5264{
264a0ae1
TH
5265 if (mc.to) {
5266 mem_cgroup_move_charge();
a433658c 5267 mem_cgroup_clear_mc();
264a0ae1 5268 }
67e465a7 5269}
5cfb80a7 5270#else /* !CONFIG_MMU */
1f7dd3e5 5271static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5272{
5273 return 0;
5274}
1f7dd3e5 5275static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5276{
5277}
264a0ae1 5278static void mem_cgroup_move_task(void)
5cfb80a7
DN
5279{
5280}
5281#endif
67e465a7 5282
f00baae7
TH
5283/*
5284 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5285 * to verify whether we're attached to the default hierarchy on each mount
5286 * attempt.
f00baae7 5287 */
eb95419b 5288static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5289{
5290 /*
aa6ec29b 5291 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5292 * guarantees that @root doesn't have any children, so turning it
5293 * on for the root memcg is enough.
5294 */
9e10a130 5295 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5296 root_mem_cgroup->use_hierarchy = true;
5297 else
5298 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5299}
5300
241994ed
JW
5301static u64 memory_current_read(struct cgroup_subsys_state *css,
5302 struct cftype *cft)
5303{
f5fc3c5d
JW
5304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5305
5306 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5307}
5308
bf8d5d52
RG
5309static int memory_min_show(struct seq_file *m, void *v)
5310{
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5312 unsigned long min = READ_ONCE(memcg->memory.min);
5313
5314 if (min == PAGE_COUNTER_MAX)
5315 seq_puts(m, "max\n");
5316 else
5317 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5318
5319 return 0;
5320}
5321
5322static ssize_t memory_min_write(struct kernfs_open_file *of,
5323 char *buf, size_t nbytes, loff_t off)
5324{
5325 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5326 unsigned long min;
5327 int err;
5328
5329 buf = strstrip(buf);
5330 err = page_counter_memparse(buf, "max", &min);
5331 if (err)
5332 return err;
5333
5334 page_counter_set_min(&memcg->memory, min);
5335
5336 return nbytes;
5337}
5338
241994ed
JW
5339static int memory_low_show(struct seq_file *m, void *v)
5340{
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5342 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5343
5344 if (low == PAGE_COUNTER_MAX)
d2973697 5345 seq_puts(m, "max\n");
241994ed
JW
5346 else
5347 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5348
5349 return 0;
5350}
5351
5352static ssize_t memory_low_write(struct kernfs_open_file *of,
5353 char *buf, size_t nbytes, loff_t off)
5354{
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5356 unsigned long low;
5357 int err;
5358
5359 buf = strstrip(buf);
d2973697 5360 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5361 if (err)
5362 return err;
5363
23067153 5364 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5365
5366 return nbytes;
5367}
5368
5369static int memory_high_show(struct seq_file *m, void *v)
5370{
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5372 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5373
5374 if (high == PAGE_COUNTER_MAX)
d2973697 5375 seq_puts(m, "max\n");
241994ed
JW
5376 else
5377 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5378
5379 return 0;
5380}
5381
5382static ssize_t memory_high_write(struct kernfs_open_file *of,
5383 char *buf, size_t nbytes, loff_t off)
5384{
5385 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5386 unsigned long nr_pages;
241994ed
JW
5387 unsigned long high;
5388 int err;
5389
5390 buf = strstrip(buf);
d2973697 5391 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5392 if (err)
5393 return err;
5394
5395 memcg->high = high;
5396
588083bb
JW
5397 nr_pages = page_counter_read(&memcg->memory);
5398 if (nr_pages > high)
5399 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5400 GFP_KERNEL, true);
5401
2529bb3a 5402 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5403 return nbytes;
5404}
5405
5406static int memory_max_show(struct seq_file *m, void *v)
5407{
5408 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5409 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5410
5411 if (max == PAGE_COUNTER_MAX)
d2973697 5412 seq_puts(m, "max\n");
241994ed
JW
5413 else
5414 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5415
5416 return 0;
5417}
5418
5419static ssize_t memory_max_write(struct kernfs_open_file *of,
5420 char *buf, size_t nbytes, loff_t off)
5421{
5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5423 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5424 bool drained = false;
241994ed
JW
5425 unsigned long max;
5426 int err;
5427
5428 buf = strstrip(buf);
d2973697 5429 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5430 if (err)
5431 return err;
5432
bbec2e15 5433 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5434
5435 for (;;) {
5436 unsigned long nr_pages = page_counter_read(&memcg->memory);
5437
5438 if (nr_pages <= max)
5439 break;
5440
5441 if (signal_pending(current)) {
5442 err = -EINTR;
5443 break;
5444 }
5445
5446 if (!drained) {
5447 drain_all_stock(memcg);
5448 drained = true;
5449 continue;
5450 }
5451
5452 if (nr_reclaims) {
5453 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5454 GFP_KERNEL, true))
5455 nr_reclaims--;
5456 continue;
5457 }
5458
e27be240 5459 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5460 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5461 break;
5462 }
241994ed 5463
2529bb3a 5464 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5465 return nbytes;
5466}
5467
5468static int memory_events_show(struct seq_file *m, void *v)
5469{
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5471
e27be240
JW
5472 seq_printf(m, "low %lu\n",
5473 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5474 seq_printf(m, "high %lu\n",
5475 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5476 seq_printf(m, "max %lu\n",
5477 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5478 seq_printf(m, "oom %lu\n",
5479 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5480 seq_printf(m, "oom_kill %lu\n",
5481 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5482
5483 return 0;
5484}
5485
587d9f72
JW
5486static int memory_stat_show(struct seq_file *m, void *v)
5487{
5488 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73 5489 unsigned long stat[MEMCG_NR_STAT];
e27be240 5490 unsigned long events[NR_VM_EVENT_ITEMS];
587d9f72
JW
5491 int i;
5492
5493 /*
5494 * Provide statistics on the state of the memory subsystem as
5495 * well as cumulative event counters that show past behavior.
5496 *
5497 * This list is ordered following a combination of these gradients:
5498 * 1) generic big picture -> specifics and details
5499 * 2) reflecting userspace activity -> reflecting kernel heuristics
5500 *
5501 * Current memory state:
5502 */
5503
72b54e73
VD
5504 tree_stat(memcg, stat);
5505 tree_events(memcg, events);
5506
587d9f72 5507 seq_printf(m, "anon %llu\n",
71cd3113 5508 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5509 seq_printf(m, "file %llu\n",
71cd3113 5510 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5511 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5512 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5513 seq_printf(m, "slab %llu\n",
32049296
JW
5514 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5515 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5516 seq_printf(m, "sock %llu\n",
72b54e73 5517 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5518
9a4caf1e 5519 seq_printf(m, "shmem %llu\n",
71cd3113 5520 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5521 seq_printf(m, "file_mapped %llu\n",
71cd3113 5522 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5523 seq_printf(m, "file_dirty %llu\n",
71cd3113 5524 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5525 seq_printf(m, "file_writeback %llu\n",
71cd3113 5526 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5527
5528 for (i = 0; i < NR_LRU_LISTS; i++) {
5529 struct mem_cgroup *mi;
5530 unsigned long val = 0;
5531
5532 for_each_mem_cgroup_tree(mi, memcg)
5533 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5534 seq_printf(m, "%s %llu\n",
5535 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5536 }
5537
27ee57c9 5538 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5539 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5540 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5541 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5542
587d9f72
JW
5543 /* Accumulated memory events */
5544
df0e53d0
JW
5545 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5546 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5547
2262185c
RG
5548 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5549 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5550 events[PGSCAN_DIRECT]);
5551 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5552 events[PGSTEAL_DIRECT]);
5553 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5554 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5555 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5556 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5557
2a2e4885 5558 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5559 stat[WORKINGSET_REFAULT]);
2a2e4885 5560 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5561 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5562 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5563 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5564
587d9f72
JW
5565 return 0;
5566}
5567
241994ed
JW
5568static struct cftype memory_files[] = {
5569 {
5570 .name = "current",
f5fc3c5d 5571 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5572 .read_u64 = memory_current_read,
5573 },
bf8d5d52
RG
5574 {
5575 .name = "min",
5576 .flags = CFTYPE_NOT_ON_ROOT,
5577 .seq_show = memory_min_show,
5578 .write = memory_min_write,
5579 },
241994ed
JW
5580 {
5581 .name = "low",
5582 .flags = CFTYPE_NOT_ON_ROOT,
5583 .seq_show = memory_low_show,
5584 .write = memory_low_write,
5585 },
5586 {
5587 .name = "high",
5588 .flags = CFTYPE_NOT_ON_ROOT,
5589 .seq_show = memory_high_show,
5590 .write = memory_high_write,
5591 },
5592 {
5593 .name = "max",
5594 .flags = CFTYPE_NOT_ON_ROOT,
5595 .seq_show = memory_max_show,
5596 .write = memory_max_write,
5597 },
5598 {
5599 .name = "events",
5600 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5601 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5602 .seq_show = memory_events_show,
5603 },
587d9f72
JW
5604 {
5605 .name = "stat",
5606 .flags = CFTYPE_NOT_ON_ROOT,
5607 .seq_show = memory_stat_show,
5608 },
241994ed
JW
5609 { } /* terminate */
5610};
5611
073219e9 5612struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5613 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5614 .css_online = mem_cgroup_css_online,
92fb9748 5615 .css_offline = mem_cgroup_css_offline,
6df38689 5616 .css_released = mem_cgroup_css_released,
92fb9748 5617 .css_free = mem_cgroup_css_free,
1ced953b 5618 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5619 .can_attach = mem_cgroup_can_attach,
5620 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5621 .post_attach = mem_cgroup_move_task,
f00baae7 5622 .bind = mem_cgroup_bind,
241994ed
JW
5623 .dfl_cftypes = memory_files,
5624 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5625 .early_init = 0,
8cdea7c0 5626};
c077719b 5627
241994ed 5628/**
bf8d5d52 5629 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5630 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5631 * @memcg: the memory cgroup to check
5632 *
23067153
RG
5633 * WARNING: This function is not stateless! It can only be used as part
5634 * of a top-down tree iteration, not for isolated queries.
34c81057 5635 *
bf8d5d52
RG
5636 * Returns one of the following:
5637 * MEMCG_PROT_NONE: cgroup memory is not protected
5638 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5639 * an unprotected supply of reclaimable memory from other cgroups.
5640 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5641 *
bf8d5d52 5642 * @root is exclusive; it is never protected when looked at directly
34c81057 5643 *
bf8d5d52
RG
5644 * To provide a proper hierarchical behavior, effective memory.min/low values
5645 * are used. Below is the description of how effective memory.low is calculated.
5646 * Effective memory.min values is calculated in the same way.
34c81057 5647 *
23067153
RG
5648 * Effective memory.low is always equal or less than the original memory.low.
5649 * If there is no memory.low overcommittment (which is always true for
5650 * top-level memory cgroups), these two values are equal.
5651 * Otherwise, it's a part of parent's effective memory.low,
5652 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5653 * memory.low usages, where memory.low usage is the size of actually
5654 * protected memory.
34c81057 5655 *
23067153
RG
5656 * low_usage
5657 * elow = min( memory.low, parent->elow * ------------------ ),
5658 * siblings_low_usage
34c81057 5659 *
23067153
RG
5660 * | memory.current, if memory.current < memory.low
5661 * low_usage = |
5662 | 0, otherwise.
34c81057 5663 *
23067153
RG
5664 *
5665 * Such definition of the effective memory.low provides the expected
5666 * hierarchical behavior: parent's memory.low value is limiting
5667 * children, unprotected memory is reclaimed first and cgroups,
5668 * which are not using their guarantee do not affect actual memory
5669 * distribution.
5670 *
5671 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5672 *
5673 * A A/memory.low = 2G, A/memory.current = 6G
5674 * //\\
5675 * BC DE B/memory.low = 3G B/memory.current = 2G
5676 * C/memory.low = 1G C/memory.current = 2G
5677 * D/memory.low = 0 D/memory.current = 2G
5678 * E/memory.low = 10G E/memory.current = 0
5679 *
5680 * and the memory pressure is applied, the following memory distribution
5681 * is expected (approximately):
5682 *
5683 * A/memory.current = 2G
5684 *
5685 * B/memory.current = 1.3G
5686 * C/memory.current = 0.6G
5687 * D/memory.current = 0
5688 * E/memory.current = 0
5689 *
5690 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5691 * (see propagate_protected_usage()), as well as recursive calculation of
5692 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5693 * path for each memory cgroup top-down from the reclaim,
5694 * it's possible to optimize this part, and save calculated elow
5695 * for next usage. This part is intentionally racy, but it's ok,
5696 * as memory.low is a best-effort mechanism.
241994ed 5697 */
bf8d5d52
RG
5698enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5699 struct mem_cgroup *memcg)
241994ed 5700{
23067153 5701 struct mem_cgroup *parent;
bf8d5d52
RG
5702 unsigned long emin, parent_emin;
5703 unsigned long elow, parent_elow;
5704 unsigned long usage;
23067153 5705
241994ed 5706 if (mem_cgroup_disabled())
bf8d5d52 5707 return MEMCG_PROT_NONE;
241994ed 5708
34c81057
SC
5709 if (!root)
5710 root = root_mem_cgroup;
5711 if (memcg == root)
bf8d5d52 5712 return MEMCG_PROT_NONE;
241994ed 5713
23067153 5714 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5715 if (!usage)
5716 return MEMCG_PROT_NONE;
5717
5718 emin = memcg->memory.min;
5719 elow = memcg->memory.low;
34c81057 5720
bf8d5d52 5721 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5722 /* No parent means a non-hierarchical mode on v1 memcg */
5723 if (!parent)
5724 return MEMCG_PROT_NONE;
5725
23067153
RG
5726 if (parent == root)
5727 goto exit;
5728
bf8d5d52
RG
5729 parent_emin = READ_ONCE(parent->memory.emin);
5730 emin = min(emin, parent_emin);
5731 if (emin && parent_emin) {
5732 unsigned long min_usage, siblings_min_usage;
5733
5734 min_usage = min(usage, memcg->memory.min);
5735 siblings_min_usage = atomic_long_read(
5736 &parent->memory.children_min_usage);
5737
5738 if (min_usage && siblings_min_usage)
5739 emin = min(emin, parent_emin * min_usage /
5740 siblings_min_usage);
5741 }
5742
23067153
RG
5743 parent_elow = READ_ONCE(parent->memory.elow);
5744 elow = min(elow, parent_elow);
bf8d5d52
RG
5745 if (elow && parent_elow) {
5746 unsigned long low_usage, siblings_low_usage;
23067153 5747
bf8d5d52
RG
5748 low_usage = min(usage, memcg->memory.low);
5749 siblings_low_usage = atomic_long_read(
5750 &parent->memory.children_low_usage);
23067153 5751
bf8d5d52
RG
5752 if (low_usage && siblings_low_usage)
5753 elow = min(elow, parent_elow * low_usage /
5754 siblings_low_usage);
5755 }
23067153 5756
23067153 5757exit:
bf8d5d52 5758 memcg->memory.emin = emin;
23067153 5759 memcg->memory.elow = elow;
bf8d5d52
RG
5760
5761 if (usage <= emin)
5762 return MEMCG_PROT_MIN;
5763 else if (usage <= elow)
5764 return MEMCG_PROT_LOW;
5765 else
5766 return MEMCG_PROT_NONE;
241994ed
JW
5767}
5768
00501b53
JW
5769/**
5770 * mem_cgroup_try_charge - try charging a page
5771 * @page: page to charge
5772 * @mm: mm context of the victim
5773 * @gfp_mask: reclaim mode
5774 * @memcgp: charged memcg return
25843c2b 5775 * @compound: charge the page as compound or small page
00501b53
JW
5776 *
5777 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5778 * pages according to @gfp_mask if necessary.
5779 *
5780 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5781 * Otherwise, an error code is returned.
5782 *
5783 * After page->mapping has been set up, the caller must finalize the
5784 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5785 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5786 */
5787int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5788 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5789 bool compound)
00501b53
JW
5790{
5791 struct mem_cgroup *memcg = NULL;
f627c2f5 5792 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5793 int ret = 0;
5794
5795 if (mem_cgroup_disabled())
5796 goto out;
5797
5798 if (PageSwapCache(page)) {
00501b53
JW
5799 /*
5800 * Every swap fault against a single page tries to charge the
5801 * page, bail as early as possible. shmem_unuse() encounters
5802 * already charged pages, too. The USED bit is protected by
5803 * the page lock, which serializes swap cache removal, which
5804 * in turn serializes uncharging.
5805 */
e993d905 5806 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5807 if (compound_head(page)->mem_cgroup)
00501b53 5808 goto out;
e993d905 5809
37e84351 5810 if (do_swap_account) {
e993d905
VD
5811 swp_entry_t ent = { .val = page_private(page), };
5812 unsigned short id = lookup_swap_cgroup_id(ent);
5813
5814 rcu_read_lock();
5815 memcg = mem_cgroup_from_id(id);
5816 if (memcg && !css_tryget_online(&memcg->css))
5817 memcg = NULL;
5818 rcu_read_unlock();
5819 }
00501b53
JW
5820 }
5821
00501b53
JW
5822 if (!memcg)
5823 memcg = get_mem_cgroup_from_mm(mm);
5824
5825 ret = try_charge(memcg, gfp_mask, nr_pages);
5826
5827 css_put(&memcg->css);
00501b53
JW
5828out:
5829 *memcgp = memcg;
5830 return ret;
5831}
5832
2cf85583
TH
5833int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5834 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5835 bool compound)
5836{
5837 struct mem_cgroup *memcg;
5838 int ret;
5839
5840 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5841 memcg = *memcgp;
5842 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5843 return ret;
5844}
5845
00501b53
JW
5846/**
5847 * mem_cgroup_commit_charge - commit a page charge
5848 * @page: page to charge
5849 * @memcg: memcg to charge the page to
5850 * @lrucare: page might be on LRU already
25843c2b 5851 * @compound: charge the page as compound or small page
00501b53
JW
5852 *
5853 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5854 * after page->mapping has been set up. This must happen atomically
5855 * as part of the page instantiation, i.e. under the page table lock
5856 * for anonymous pages, under the page lock for page and swap cache.
5857 *
5858 * In addition, the page must not be on the LRU during the commit, to
5859 * prevent racing with task migration. If it might be, use @lrucare.
5860 *
5861 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5862 */
5863void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5864 bool lrucare, bool compound)
00501b53 5865{
f627c2f5 5866 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5867
5868 VM_BUG_ON_PAGE(!page->mapping, page);
5869 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5870
5871 if (mem_cgroup_disabled())
5872 return;
5873 /*
5874 * Swap faults will attempt to charge the same page multiple
5875 * times. But reuse_swap_page() might have removed the page
5876 * from swapcache already, so we can't check PageSwapCache().
5877 */
5878 if (!memcg)
5879 return;
5880
6abb5a86
JW
5881 commit_charge(page, memcg, lrucare);
5882
6abb5a86 5883 local_irq_disable();
f627c2f5 5884 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5885 memcg_check_events(memcg, page);
5886 local_irq_enable();
00501b53 5887
7941d214 5888 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5889 swp_entry_t entry = { .val = page_private(page) };
5890 /*
5891 * The swap entry might not get freed for a long time,
5892 * let's not wait for it. The page already received a
5893 * memory+swap charge, drop the swap entry duplicate.
5894 */
38d8b4e6 5895 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5896 }
5897}
5898
5899/**
5900 * mem_cgroup_cancel_charge - cancel a page charge
5901 * @page: page to charge
5902 * @memcg: memcg to charge the page to
25843c2b 5903 * @compound: charge the page as compound or small page
00501b53
JW
5904 *
5905 * Cancel a charge transaction started by mem_cgroup_try_charge().
5906 */
f627c2f5
KS
5907void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5908 bool compound)
00501b53 5909{
f627c2f5 5910 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5911
5912 if (mem_cgroup_disabled())
5913 return;
5914 /*
5915 * Swap faults will attempt to charge the same page multiple
5916 * times. But reuse_swap_page() might have removed the page
5917 * from swapcache already, so we can't check PageSwapCache().
5918 */
5919 if (!memcg)
5920 return;
5921
00501b53
JW
5922 cancel_charge(memcg, nr_pages);
5923}
5924
a9d5adee
JG
5925struct uncharge_gather {
5926 struct mem_cgroup *memcg;
5927 unsigned long pgpgout;
5928 unsigned long nr_anon;
5929 unsigned long nr_file;
5930 unsigned long nr_kmem;
5931 unsigned long nr_huge;
5932 unsigned long nr_shmem;
5933 struct page *dummy_page;
5934};
5935
5936static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5937{
a9d5adee
JG
5938 memset(ug, 0, sizeof(*ug));
5939}
5940
5941static void uncharge_batch(const struct uncharge_gather *ug)
5942{
5943 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5944 unsigned long flags;
5945
a9d5adee
JG
5946 if (!mem_cgroup_is_root(ug->memcg)) {
5947 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5948 if (do_memsw_account())
a9d5adee
JG
5949 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5951 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5952 memcg_oom_recover(ug->memcg);
ce00a967 5953 }
747db954
JW
5954
5955 local_irq_save(flags);
c9019e9b
JW
5956 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5957 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5958 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5959 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5960 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5961 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5962 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5963 local_irq_restore(flags);
e8ea14cc 5964
a9d5adee
JG
5965 if (!mem_cgroup_is_root(ug->memcg))
5966 css_put_many(&ug->memcg->css, nr_pages);
5967}
5968
5969static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5970{
5971 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5972 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5973 !PageHWPoison(page) , page);
a9d5adee
JG
5974
5975 if (!page->mem_cgroup)
5976 return;
5977
5978 /*
5979 * Nobody should be changing or seriously looking at
5980 * page->mem_cgroup at this point, we have fully
5981 * exclusive access to the page.
5982 */
5983
5984 if (ug->memcg != page->mem_cgroup) {
5985 if (ug->memcg) {
5986 uncharge_batch(ug);
5987 uncharge_gather_clear(ug);
5988 }
5989 ug->memcg = page->mem_cgroup;
5990 }
5991
5992 if (!PageKmemcg(page)) {
5993 unsigned int nr_pages = 1;
5994
5995 if (PageTransHuge(page)) {
5996 nr_pages <<= compound_order(page);
5997 ug->nr_huge += nr_pages;
5998 }
5999 if (PageAnon(page))
6000 ug->nr_anon += nr_pages;
6001 else {
6002 ug->nr_file += nr_pages;
6003 if (PageSwapBacked(page))
6004 ug->nr_shmem += nr_pages;
6005 }
6006 ug->pgpgout++;
6007 } else {
6008 ug->nr_kmem += 1 << compound_order(page);
6009 __ClearPageKmemcg(page);
6010 }
6011
6012 ug->dummy_page = page;
6013 page->mem_cgroup = NULL;
747db954
JW
6014}
6015
6016static void uncharge_list(struct list_head *page_list)
6017{
a9d5adee 6018 struct uncharge_gather ug;
747db954 6019 struct list_head *next;
a9d5adee
JG
6020
6021 uncharge_gather_clear(&ug);
747db954 6022
8b592656
JW
6023 /*
6024 * Note that the list can be a single page->lru; hence the
6025 * do-while loop instead of a simple list_for_each_entry().
6026 */
747db954
JW
6027 next = page_list->next;
6028 do {
a9d5adee
JG
6029 struct page *page;
6030
747db954
JW
6031 page = list_entry(next, struct page, lru);
6032 next = page->lru.next;
6033
a9d5adee 6034 uncharge_page(page, &ug);
747db954
JW
6035 } while (next != page_list);
6036
a9d5adee
JG
6037 if (ug.memcg)
6038 uncharge_batch(&ug);
747db954
JW
6039}
6040
0a31bc97
JW
6041/**
6042 * mem_cgroup_uncharge - uncharge a page
6043 * @page: page to uncharge
6044 *
6045 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6046 * mem_cgroup_commit_charge().
6047 */
6048void mem_cgroup_uncharge(struct page *page)
6049{
a9d5adee
JG
6050 struct uncharge_gather ug;
6051
0a31bc97
JW
6052 if (mem_cgroup_disabled())
6053 return;
6054
747db954 6055 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6056 if (!page->mem_cgroup)
0a31bc97
JW
6057 return;
6058
a9d5adee
JG
6059 uncharge_gather_clear(&ug);
6060 uncharge_page(page, &ug);
6061 uncharge_batch(&ug);
747db954 6062}
0a31bc97 6063
747db954
JW
6064/**
6065 * mem_cgroup_uncharge_list - uncharge a list of page
6066 * @page_list: list of pages to uncharge
6067 *
6068 * Uncharge a list of pages previously charged with
6069 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6070 */
6071void mem_cgroup_uncharge_list(struct list_head *page_list)
6072{
6073 if (mem_cgroup_disabled())
6074 return;
0a31bc97 6075
747db954
JW
6076 if (!list_empty(page_list))
6077 uncharge_list(page_list);
0a31bc97
JW
6078}
6079
6080/**
6a93ca8f
JW
6081 * mem_cgroup_migrate - charge a page's replacement
6082 * @oldpage: currently circulating page
6083 * @newpage: replacement page
0a31bc97 6084 *
6a93ca8f
JW
6085 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6086 * be uncharged upon free.
0a31bc97
JW
6087 *
6088 * Both pages must be locked, @newpage->mapping must be set up.
6089 */
6a93ca8f 6090void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6091{
29833315 6092 struct mem_cgroup *memcg;
44b7a8d3
JW
6093 unsigned int nr_pages;
6094 bool compound;
d93c4130 6095 unsigned long flags;
0a31bc97
JW
6096
6097 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6098 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6099 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6100 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6101 newpage);
0a31bc97
JW
6102
6103 if (mem_cgroup_disabled())
6104 return;
6105
6106 /* Page cache replacement: new page already charged? */
1306a85a 6107 if (newpage->mem_cgroup)
0a31bc97
JW
6108 return;
6109
45637bab 6110 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6111 memcg = oldpage->mem_cgroup;
29833315 6112 if (!memcg)
0a31bc97
JW
6113 return;
6114
44b7a8d3
JW
6115 /* Force-charge the new page. The old one will be freed soon */
6116 compound = PageTransHuge(newpage);
6117 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6118
6119 page_counter_charge(&memcg->memory, nr_pages);
6120 if (do_memsw_account())
6121 page_counter_charge(&memcg->memsw, nr_pages);
6122 css_get_many(&memcg->css, nr_pages);
0a31bc97 6123
9cf7666a 6124 commit_charge(newpage, memcg, false);
44b7a8d3 6125
d93c4130 6126 local_irq_save(flags);
44b7a8d3
JW
6127 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6128 memcg_check_events(memcg, newpage);
d93c4130 6129 local_irq_restore(flags);
0a31bc97
JW
6130}
6131
ef12947c 6132DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6133EXPORT_SYMBOL(memcg_sockets_enabled_key);
6134
2d758073 6135void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6136{
6137 struct mem_cgroup *memcg;
6138
2d758073
JW
6139 if (!mem_cgroup_sockets_enabled)
6140 return;
6141
edbe69ef
RG
6142 /*
6143 * Socket cloning can throw us here with sk_memcg already
6144 * filled. It won't however, necessarily happen from
6145 * process context. So the test for root memcg given
6146 * the current task's memcg won't help us in this case.
6147 *
6148 * Respecting the original socket's memcg is a better
6149 * decision in this case.
6150 */
6151 if (sk->sk_memcg) {
6152 css_get(&sk->sk_memcg->css);
6153 return;
6154 }
6155
11092087
JW
6156 rcu_read_lock();
6157 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6158 if (memcg == root_mem_cgroup)
6159 goto out;
0db15298 6160 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6161 goto out;
f7e1cb6e 6162 if (css_tryget_online(&memcg->css))
11092087 6163 sk->sk_memcg = memcg;
f7e1cb6e 6164out:
11092087
JW
6165 rcu_read_unlock();
6166}
11092087 6167
2d758073 6168void mem_cgroup_sk_free(struct sock *sk)
11092087 6169{
2d758073
JW
6170 if (sk->sk_memcg)
6171 css_put(&sk->sk_memcg->css);
11092087
JW
6172}
6173
6174/**
6175 * mem_cgroup_charge_skmem - charge socket memory
6176 * @memcg: memcg to charge
6177 * @nr_pages: number of pages to charge
6178 *
6179 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6180 * @memcg's configured limit, %false if the charge had to be forced.
6181 */
6182bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6183{
f7e1cb6e 6184 gfp_t gfp_mask = GFP_KERNEL;
11092087 6185
f7e1cb6e 6186 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6187 struct page_counter *fail;
f7e1cb6e 6188
0db15298
JW
6189 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6190 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6191 return true;
6192 }
0db15298
JW
6193 page_counter_charge(&memcg->tcpmem, nr_pages);
6194 memcg->tcpmem_pressure = 1;
f7e1cb6e 6195 return false;
11092087 6196 }
d886f4e4 6197
f7e1cb6e
JW
6198 /* Don't block in the packet receive path */
6199 if (in_softirq())
6200 gfp_mask = GFP_NOWAIT;
6201
c9019e9b 6202 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6203
f7e1cb6e
JW
6204 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6205 return true;
6206
6207 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6208 return false;
6209}
6210
6211/**
6212 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6213 * @memcg: memcg to uncharge
6214 * @nr_pages: number of pages to uncharge
11092087
JW
6215 */
6216void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6217{
f7e1cb6e 6218 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6219 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6220 return;
6221 }
d886f4e4 6222
c9019e9b 6223 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6224
475d0487 6225 refill_stock(memcg, nr_pages);
11092087
JW
6226}
6227
f7e1cb6e
JW
6228static int __init cgroup_memory(char *s)
6229{
6230 char *token;
6231
6232 while ((token = strsep(&s, ",")) != NULL) {
6233 if (!*token)
6234 continue;
6235 if (!strcmp(token, "nosocket"))
6236 cgroup_memory_nosocket = true;
04823c83
VD
6237 if (!strcmp(token, "nokmem"))
6238 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6239 }
6240 return 0;
6241}
6242__setup("cgroup.memory=", cgroup_memory);
11092087 6243
2d11085e 6244/*
1081312f
MH
6245 * subsys_initcall() for memory controller.
6246 *
308167fc
SAS
6247 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6248 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6249 * basically everything that doesn't depend on a specific mem_cgroup structure
6250 * should be initialized from here.
2d11085e
MH
6251 */
6252static int __init mem_cgroup_init(void)
6253{
95a045f6
JW
6254 int cpu, node;
6255
84c07d11 6256#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6257 /*
6258 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6259 * so use a workqueue with limited concurrency to avoid stalling
6260 * all worker threads in case lots of cgroups are created and
6261 * destroyed simultaneously.
13583c3d 6262 */
17cc4dfe
TH
6263 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6264 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6265#endif
6266
308167fc
SAS
6267 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6268 memcg_hotplug_cpu_dead);
95a045f6
JW
6269
6270 for_each_possible_cpu(cpu)
6271 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6272 drain_local_stock);
6273
6274 for_each_node(node) {
6275 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6276
6277 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6278 node_online(node) ? node : NUMA_NO_NODE);
6279
ef8f2327 6280 rtpn->rb_root = RB_ROOT;
fa90b2fd 6281 rtpn->rb_rightmost = NULL;
ef8f2327 6282 spin_lock_init(&rtpn->lock);
95a045f6
JW
6283 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6284 }
6285
2d11085e
MH
6286 return 0;
6287}
6288subsys_initcall(mem_cgroup_init);
21afa38e
JW
6289
6290#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6291static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6292{
6293 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6294 /*
6295 * The root cgroup cannot be destroyed, so it's refcount must
6296 * always be >= 1.
6297 */
6298 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6299 VM_BUG_ON(1);
6300 break;
6301 }
6302 memcg = parent_mem_cgroup(memcg);
6303 if (!memcg)
6304 memcg = root_mem_cgroup;
6305 }
6306 return memcg;
6307}
6308
21afa38e
JW
6309/**
6310 * mem_cgroup_swapout - transfer a memsw charge to swap
6311 * @page: page whose memsw charge to transfer
6312 * @entry: swap entry to move the charge to
6313 *
6314 * Transfer the memsw charge of @page to @entry.
6315 */
6316void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6317{
1f47b61f 6318 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6319 unsigned int nr_entries;
21afa38e
JW
6320 unsigned short oldid;
6321
6322 VM_BUG_ON_PAGE(PageLRU(page), page);
6323 VM_BUG_ON_PAGE(page_count(page), page);
6324
7941d214 6325 if (!do_memsw_account())
21afa38e
JW
6326 return;
6327
6328 memcg = page->mem_cgroup;
6329
6330 /* Readahead page, never charged */
6331 if (!memcg)
6332 return;
6333
1f47b61f
VD
6334 /*
6335 * In case the memcg owning these pages has been offlined and doesn't
6336 * have an ID allocated to it anymore, charge the closest online
6337 * ancestor for the swap instead and transfer the memory+swap charge.
6338 */
6339 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
YH
6340 nr_entries = hpage_nr_pages(page);
6341 /* Get references for the tail pages, too */
6342 if (nr_entries > 1)
6343 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6344 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6345 nr_entries);
21afa38e 6346 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6347 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6348
6349 page->mem_cgroup = NULL;
6350
6351 if (!mem_cgroup_is_root(memcg))
d6810d73 6352 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6353
1f47b61f
VD
6354 if (memcg != swap_memcg) {
6355 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
YH
6356 page_counter_charge(&swap_memcg->memsw, nr_entries);
6357 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6358 }
6359
ce9ce665
SAS
6360 /*
6361 * Interrupts should be disabled here because the caller holds the
b93b0163 6362 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6363 * important here to have the interrupts disabled because it is the
b93b0163 6364 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6365 */
6366 VM_BUG_ON(!irqs_disabled());
d6810d73
YH
6367 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6368 -nr_entries);
21afa38e 6369 memcg_check_events(memcg, page);
73f576c0
JW
6370
6371 if (!mem_cgroup_is_root(memcg))
d08afa14 6372 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6373}
6374
38d8b4e6
YH
6375/**
6376 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6377 * @page: page being added to swap
6378 * @entry: swap entry to charge
6379 *
38d8b4e6 6380 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6381 *
6382 * Returns 0 on success, -ENOMEM on failure.
6383 */
6384int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6385{
38d8b4e6 6386 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6387 struct page_counter *counter;
38d8b4e6 6388 struct mem_cgroup *memcg;
37e84351
VD
6389 unsigned short oldid;
6390
6391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6392 return 0;
6393
6394 memcg = page->mem_cgroup;
6395
6396 /* Readahead page, never charged */
6397 if (!memcg)
6398 return 0;
6399
f3a53a3a
TH
6400 if (!entry.val) {
6401 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6402 return 0;
f3a53a3a 6403 }
bb98f2c5 6404
1f47b61f
VD
6405 memcg = mem_cgroup_id_get_online(memcg);
6406
37e84351 6407 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6408 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6409 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6410 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6411 mem_cgroup_id_put(memcg);
37e84351 6412 return -ENOMEM;
1f47b61f 6413 }
37e84351 6414
38d8b4e6
YH
6415 /* Get references for the tail pages, too */
6416 if (nr_pages > 1)
6417 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6418 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6419 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6420 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6421
37e84351
VD
6422 return 0;
6423}
6424
21afa38e 6425/**
38d8b4e6 6426 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6427 * @entry: swap entry to uncharge
38d8b4e6 6428 * @nr_pages: the amount of swap space to uncharge
21afa38e 6429 */
38d8b4e6 6430void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6431{
6432 struct mem_cgroup *memcg;
6433 unsigned short id;
6434
37e84351 6435 if (!do_swap_account)
21afa38e
JW
6436 return;
6437
38d8b4e6 6438 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6439 rcu_read_lock();
adbe427b 6440 memcg = mem_cgroup_from_id(id);
21afa38e 6441 if (memcg) {
37e84351
VD
6442 if (!mem_cgroup_is_root(memcg)) {
6443 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6444 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6445 else
38d8b4e6 6446 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6447 }
c9019e9b 6448 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6449 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6450 }
6451 rcu_read_unlock();
6452}
6453
d8b38438
VD
6454long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6455{
6456 long nr_swap_pages = get_nr_swap_pages();
6457
6458 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6459 return nr_swap_pages;
6460 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6461 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6462 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6463 page_counter_read(&memcg->swap));
6464 return nr_swap_pages;
6465}
6466
5ccc5aba
VD
6467bool mem_cgroup_swap_full(struct page *page)
6468{
6469 struct mem_cgroup *memcg;
6470
6471 VM_BUG_ON_PAGE(!PageLocked(page), page);
6472
6473 if (vm_swap_full())
6474 return true;
6475 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6476 return false;
6477
6478 memcg = page->mem_cgroup;
6479 if (!memcg)
6480 return false;
6481
6482 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6483 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6484 return true;
6485
6486 return false;
6487}
6488
21afa38e
JW
6489/* for remember boot option*/
6490#ifdef CONFIG_MEMCG_SWAP_ENABLED
6491static int really_do_swap_account __initdata = 1;
6492#else
6493static int really_do_swap_account __initdata;
6494#endif
6495
6496static int __init enable_swap_account(char *s)
6497{
6498 if (!strcmp(s, "1"))
6499 really_do_swap_account = 1;
6500 else if (!strcmp(s, "0"))
6501 really_do_swap_account = 0;
6502 return 1;
6503}
6504__setup("swapaccount=", enable_swap_account);
6505
37e84351
VD
6506static u64 swap_current_read(struct cgroup_subsys_state *css,
6507 struct cftype *cft)
6508{
6509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6510
6511 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6512}
6513
6514static int swap_max_show(struct seq_file *m, void *v)
6515{
6516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6517 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6518
6519 if (max == PAGE_COUNTER_MAX)
6520 seq_puts(m, "max\n");
6521 else
6522 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6523
6524 return 0;
6525}
6526
6527static ssize_t swap_max_write(struct kernfs_open_file *of,
6528 char *buf, size_t nbytes, loff_t off)
6529{
6530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6531 unsigned long max;
6532 int err;
6533
6534 buf = strstrip(buf);
6535 err = page_counter_memparse(buf, "max", &max);
6536 if (err)
6537 return err;
6538
be09102b 6539 xchg(&memcg->swap.max, max);
37e84351
VD
6540
6541 return nbytes;
6542}
6543
f3a53a3a
TH
6544static int swap_events_show(struct seq_file *m, void *v)
6545{
6546 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6547
6548 seq_printf(m, "max %lu\n",
6549 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6550 seq_printf(m, "fail %lu\n",
6551 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6552
6553 return 0;
6554}
6555
37e84351
VD
6556static struct cftype swap_files[] = {
6557 {
6558 .name = "swap.current",
6559 .flags = CFTYPE_NOT_ON_ROOT,
6560 .read_u64 = swap_current_read,
6561 },
6562 {
6563 .name = "swap.max",
6564 .flags = CFTYPE_NOT_ON_ROOT,
6565 .seq_show = swap_max_show,
6566 .write = swap_max_write,
6567 },
f3a53a3a
TH
6568 {
6569 .name = "swap.events",
6570 .flags = CFTYPE_NOT_ON_ROOT,
6571 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6572 .seq_show = swap_events_show,
6573 },
37e84351
VD
6574 { } /* terminate */
6575};
6576
21afa38e
JW
6577static struct cftype memsw_cgroup_files[] = {
6578 {
6579 .name = "memsw.usage_in_bytes",
6580 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6581 .read_u64 = mem_cgroup_read_u64,
6582 },
6583 {
6584 .name = "memsw.max_usage_in_bytes",
6585 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6586 .write = mem_cgroup_reset,
6587 .read_u64 = mem_cgroup_read_u64,
6588 },
6589 {
6590 .name = "memsw.limit_in_bytes",
6591 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6592 .write = mem_cgroup_write,
6593 .read_u64 = mem_cgroup_read_u64,
6594 },
6595 {
6596 .name = "memsw.failcnt",
6597 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6598 .write = mem_cgroup_reset,
6599 .read_u64 = mem_cgroup_read_u64,
6600 },
6601 { }, /* terminate */
6602};
6603
6604static int __init mem_cgroup_swap_init(void)
6605{
6606 if (!mem_cgroup_disabled() && really_do_swap_account) {
6607 do_swap_account = 1;
37e84351
VD
6608 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6609 swap_files));
21afa38e
JW
6610 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6611 memsw_cgroup_files));
6612 }
6613 return 0;
6614}
6615subsys_initcall(mem_cgroup_swap_init);
6616
6617#endif /* CONFIG_MEMCG_SWAP */
This page took 2.869133 seconds and 4 git commands to generate.