]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
13 | ||
174cd4b1 | 14 | #include <linux/sched/signal.h> |
2667f50e | 15 | #include <linux/rwsem.h> |
f30c59e9 | 16 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
17 | #include <linux/migrate.h> |
18 | #include <linux/mm_inline.h> | |
19 | #include <linux/sched/mm.h> | |
1027e443 | 20 | |
33a709b2 | 21 | #include <asm/mmu_context.h> |
2667f50e | 22 | #include <asm/pgtable.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
a707cdd5 JH |
32 | /* |
33 | * Return the compound head page with ref appropriately incremented, | |
34 | * or NULL if that failed. | |
35 | */ | |
36 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
37 | { | |
38 | struct page *head = compound_head(page); | |
39 | ||
40 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
41 | return NULL; | |
42 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
43 | return NULL; | |
44 | return head; | |
45 | } | |
46 | ||
fc1d8e7c | 47 | /** |
f1f6a7dd | 48 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 49 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 50 | * @npages: number of pages in the @pages array. |
2d15eb31 | 51 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
52 | * |
53 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
54 | * variants called on that page. | |
55 | * | |
56 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 57 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
58 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
59 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 60 | * |
f1f6a7dd | 61 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 62 | * |
2d15eb31 AM |
63 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
64 | * required, then the caller should a) verify that this is really correct, | |
65 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 66 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
67 | * |
68 | */ | |
f1f6a7dd JH |
69 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
70 | bool make_dirty) | |
fc1d8e7c | 71 | { |
2d15eb31 | 72 | unsigned long index; |
fc1d8e7c | 73 | |
2d15eb31 AM |
74 | /* |
75 | * TODO: this can be optimized for huge pages: if a series of pages is | |
76 | * physically contiguous and part of the same compound page, then a | |
77 | * single operation to the head page should suffice. | |
78 | */ | |
79 | ||
80 | if (!make_dirty) { | |
f1f6a7dd | 81 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
82 | return; |
83 | } | |
84 | ||
85 | for (index = 0; index < npages; index++) { | |
86 | struct page *page = compound_head(pages[index]); | |
87 | /* | |
88 | * Checking PageDirty at this point may race with | |
89 | * clear_page_dirty_for_io(), but that's OK. Two key | |
90 | * cases: | |
91 | * | |
92 | * 1) This code sees the page as already dirty, so it | |
93 | * skips the call to set_page_dirty(). That could happen | |
94 | * because clear_page_dirty_for_io() called | |
95 | * page_mkclean(), followed by set_page_dirty(). | |
96 | * However, now the page is going to get written back, | |
97 | * which meets the original intention of setting it | |
98 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
99 | * on to call TestClearPageDirty(), and write the page | |
100 | * back. | |
101 | * | |
102 | * 2) This code sees the page as clean, so it calls | |
103 | * set_page_dirty(). The page stays dirty, despite being | |
104 | * written back, so it gets written back again in the | |
105 | * next writeback cycle. This is harmless. | |
106 | */ | |
107 | if (!PageDirty(page)) | |
108 | set_page_dirty_lock(page); | |
f1f6a7dd | 109 | unpin_user_page(page); |
2d15eb31 | 110 | } |
fc1d8e7c | 111 | } |
f1f6a7dd | 112 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c JH |
113 | |
114 | /** | |
f1f6a7dd | 115 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
116 | * @pages: array of pages to be marked dirty and released. |
117 | * @npages: number of pages in the @pages array. | |
118 | * | |
f1f6a7dd | 119 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 120 | * |
f1f6a7dd | 121 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 122 | */ |
f1f6a7dd | 123 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c JH |
124 | { |
125 | unsigned long index; | |
126 | ||
127 | /* | |
128 | * TODO: this can be optimized for huge pages: if a series of pages is | |
129 | * physically contiguous and part of the same compound page, then a | |
130 | * single operation to the head page should suffice. | |
131 | */ | |
132 | for (index = 0; index < npages; index++) | |
f1f6a7dd | 133 | unpin_user_page(pages[index]); |
fc1d8e7c | 134 | } |
f1f6a7dd | 135 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 136 | |
050a9adc | 137 | #ifdef CONFIG_MMU |
69e68b4f KS |
138 | static struct page *no_page_table(struct vm_area_struct *vma, |
139 | unsigned int flags) | |
4bbd4c77 | 140 | { |
69e68b4f KS |
141 | /* |
142 | * When core dumping an enormous anonymous area that nobody | |
143 | * has touched so far, we don't want to allocate unnecessary pages or | |
144 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
145 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
146 | * But we can only make this optimization where a hole would surely | |
147 | * be zero-filled if handle_mm_fault() actually did handle it. | |
148 | */ | |
149 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | |
150 | return ERR_PTR(-EFAULT); | |
151 | return NULL; | |
152 | } | |
4bbd4c77 | 153 | |
1027e443 KS |
154 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
155 | pte_t *pte, unsigned int flags) | |
156 | { | |
157 | /* No page to get reference */ | |
158 | if (flags & FOLL_GET) | |
159 | return -EFAULT; | |
160 | ||
161 | if (flags & FOLL_TOUCH) { | |
162 | pte_t entry = *pte; | |
163 | ||
164 | if (flags & FOLL_WRITE) | |
165 | entry = pte_mkdirty(entry); | |
166 | entry = pte_mkyoung(entry); | |
167 | ||
168 | if (!pte_same(*pte, entry)) { | |
169 | set_pte_at(vma->vm_mm, address, pte, entry); | |
170 | update_mmu_cache(vma, address, pte); | |
171 | } | |
172 | } | |
173 | ||
174 | /* Proper page table entry exists, but no corresponding struct page */ | |
175 | return -EEXIST; | |
176 | } | |
177 | ||
19be0eaf LT |
178 | /* |
179 | * FOLL_FORCE can write to even unwritable pte's, but only | |
180 | * after we've gone through a COW cycle and they are dirty. | |
181 | */ | |
182 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
183 | { | |
f6f37321 | 184 | return pte_write(pte) || |
19be0eaf LT |
185 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); |
186 | } | |
187 | ||
69e68b4f | 188 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
189 | unsigned long address, pmd_t *pmd, unsigned int flags, |
190 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
191 | { |
192 | struct mm_struct *mm = vma->vm_mm; | |
193 | struct page *page; | |
194 | spinlock_t *ptl; | |
195 | pte_t *ptep, pte; | |
4bbd4c77 | 196 | |
eddb1c22 JH |
197 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
198 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
199 | (FOLL_PIN | FOLL_GET))) | |
200 | return ERR_PTR(-EINVAL); | |
69e68b4f | 201 | retry: |
4bbd4c77 | 202 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 203 | return no_page_table(vma, flags); |
4bbd4c77 KS |
204 | |
205 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
206 | pte = *ptep; |
207 | if (!pte_present(pte)) { | |
208 | swp_entry_t entry; | |
209 | /* | |
210 | * KSM's break_ksm() relies upon recognizing a ksm page | |
211 | * even while it is being migrated, so for that case we | |
212 | * need migration_entry_wait(). | |
213 | */ | |
214 | if (likely(!(flags & FOLL_MIGRATION))) | |
215 | goto no_page; | |
0661a336 | 216 | if (pte_none(pte)) |
4bbd4c77 KS |
217 | goto no_page; |
218 | entry = pte_to_swp_entry(pte); | |
219 | if (!is_migration_entry(entry)) | |
220 | goto no_page; | |
221 | pte_unmap_unlock(ptep, ptl); | |
222 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 223 | goto retry; |
4bbd4c77 | 224 | } |
8a0516ed | 225 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 226 | goto no_page; |
19be0eaf | 227 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
228 | pte_unmap_unlock(ptep, ptl); |
229 | return NULL; | |
230 | } | |
4bbd4c77 KS |
231 | |
232 | page = vm_normal_page(vma, address, pte); | |
3565fce3 DW |
233 | if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { |
234 | /* | |
235 | * Only return device mapping pages in the FOLL_GET case since | |
236 | * they are only valid while holding the pgmap reference. | |
237 | */ | |
df06b37f KB |
238 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
239 | if (*pgmap) | |
3565fce3 DW |
240 | page = pte_page(pte); |
241 | else | |
242 | goto no_page; | |
243 | } else if (unlikely(!page)) { | |
1027e443 KS |
244 | if (flags & FOLL_DUMP) { |
245 | /* Avoid special (like zero) pages in core dumps */ | |
246 | page = ERR_PTR(-EFAULT); | |
247 | goto out; | |
248 | } | |
249 | ||
250 | if (is_zero_pfn(pte_pfn(pte))) { | |
251 | page = pte_page(pte); | |
252 | } else { | |
253 | int ret; | |
254 | ||
255 | ret = follow_pfn_pte(vma, address, ptep, flags); | |
256 | page = ERR_PTR(ret); | |
257 | goto out; | |
258 | } | |
4bbd4c77 KS |
259 | } |
260 | ||
6742d293 KS |
261 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
262 | int ret; | |
263 | get_page(page); | |
264 | pte_unmap_unlock(ptep, ptl); | |
265 | lock_page(page); | |
266 | ret = split_huge_page(page); | |
267 | unlock_page(page); | |
268 | put_page(page); | |
269 | if (ret) | |
270 | return ERR_PTR(ret); | |
271 | goto retry; | |
272 | } | |
273 | ||
8fde12ca LT |
274 | if (flags & FOLL_GET) { |
275 | if (unlikely(!try_get_page(page))) { | |
276 | page = ERR_PTR(-ENOMEM); | |
277 | goto out; | |
278 | } | |
279 | } | |
4bbd4c77 KS |
280 | if (flags & FOLL_TOUCH) { |
281 | if ((flags & FOLL_WRITE) && | |
282 | !pte_dirty(pte) && !PageDirty(page)) | |
283 | set_page_dirty(page); | |
284 | /* | |
285 | * pte_mkyoung() would be more correct here, but atomic care | |
286 | * is needed to avoid losing the dirty bit: it is easier to use | |
287 | * mark_page_accessed(). | |
288 | */ | |
289 | mark_page_accessed(page); | |
290 | } | |
de60f5f1 | 291 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
292 | /* Do not mlock pte-mapped THP */ |
293 | if (PageTransCompound(page)) | |
294 | goto out; | |
295 | ||
4bbd4c77 KS |
296 | /* |
297 | * The preliminary mapping check is mainly to avoid the | |
298 | * pointless overhead of lock_page on the ZERO_PAGE | |
299 | * which might bounce very badly if there is contention. | |
300 | * | |
301 | * If the page is already locked, we don't need to | |
302 | * handle it now - vmscan will handle it later if and | |
303 | * when it attempts to reclaim the page. | |
304 | */ | |
305 | if (page->mapping && trylock_page(page)) { | |
306 | lru_add_drain(); /* push cached pages to LRU */ | |
307 | /* | |
308 | * Because we lock page here, and migration is | |
309 | * blocked by the pte's page reference, and we | |
310 | * know the page is still mapped, we don't even | |
311 | * need to check for file-cache page truncation. | |
312 | */ | |
313 | mlock_vma_page(page); | |
314 | unlock_page(page); | |
315 | } | |
316 | } | |
1027e443 | 317 | out: |
4bbd4c77 | 318 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 319 | return page; |
4bbd4c77 KS |
320 | no_page: |
321 | pte_unmap_unlock(ptep, ptl); | |
322 | if (!pte_none(pte)) | |
69e68b4f KS |
323 | return NULL; |
324 | return no_page_table(vma, flags); | |
325 | } | |
326 | ||
080dbb61 AK |
327 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
328 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
329 | unsigned int flags, |
330 | struct follow_page_context *ctx) | |
69e68b4f | 331 | { |
68827280 | 332 | pmd_t *pmd, pmdval; |
69e68b4f KS |
333 | spinlock_t *ptl; |
334 | struct page *page; | |
335 | struct mm_struct *mm = vma->vm_mm; | |
336 | ||
080dbb61 | 337 | pmd = pmd_offset(pudp, address); |
68827280 YH |
338 | /* |
339 | * The READ_ONCE() will stabilize the pmdval in a register or | |
340 | * on the stack so that it will stop changing under the code. | |
341 | */ | |
342 | pmdval = READ_ONCE(*pmd); | |
343 | if (pmd_none(pmdval)) | |
69e68b4f | 344 | return no_page_table(vma, flags); |
be9d3045 | 345 | if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { |
e66f17ff NH |
346 | page = follow_huge_pmd(mm, address, pmd, flags); |
347 | if (page) | |
348 | return page; | |
349 | return no_page_table(vma, flags); | |
69e68b4f | 350 | } |
68827280 | 351 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 352 | page = follow_huge_pd(vma, address, |
68827280 | 353 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
354 | PMD_SHIFT); |
355 | if (page) | |
356 | return page; | |
357 | return no_page_table(vma, flags); | |
358 | } | |
84c3fc4e | 359 | retry: |
68827280 | 360 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
361 | if (likely(!(flags & FOLL_MIGRATION))) |
362 | return no_page_table(vma, flags); | |
363 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
364 | !is_pmd_migration_entry(pmdval)); |
365 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 366 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
367 | pmdval = READ_ONCE(*pmd); |
368 | /* | |
369 | * MADV_DONTNEED may convert the pmd to null because | |
370 | * mmap_sem is held in read mode | |
371 | */ | |
372 | if (pmd_none(pmdval)) | |
373 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
374 | goto retry; |
375 | } | |
68827280 | 376 | if (pmd_devmap(pmdval)) { |
3565fce3 | 377 | ptl = pmd_lock(mm, pmd); |
df06b37f | 378 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
379 | spin_unlock(ptl); |
380 | if (page) | |
381 | return page; | |
382 | } | |
68827280 | 383 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 384 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 385 | |
68827280 | 386 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
387 | return no_page_table(vma, flags); |
388 | ||
84c3fc4e | 389 | retry_locked: |
6742d293 | 390 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
391 | if (unlikely(pmd_none(*pmd))) { |
392 | spin_unlock(ptl); | |
393 | return no_page_table(vma, flags); | |
394 | } | |
84c3fc4e ZY |
395 | if (unlikely(!pmd_present(*pmd))) { |
396 | spin_unlock(ptl); | |
397 | if (likely(!(flags & FOLL_MIGRATION))) | |
398 | return no_page_table(vma, flags); | |
399 | pmd_migration_entry_wait(mm, pmd); | |
400 | goto retry_locked; | |
401 | } | |
6742d293 KS |
402 | if (unlikely(!pmd_trans_huge(*pmd))) { |
403 | spin_unlock(ptl); | |
df06b37f | 404 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 405 | } |
bfe7b00d | 406 | if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { |
6742d293 KS |
407 | int ret; |
408 | page = pmd_page(*pmd); | |
409 | if (is_huge_zero_page(page)) { | |
410 | spin_unlock(ptl); | |
411 | ret = 0; | |
78ddc534 | 412 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
413 | if (pmd_trans_unstable(pmd)) |
414 | ret = -EBUSY; | |
bfe7b00d | 415 | } else if (flags & FOLL_SPLIT) { |
8fde12ca LT |
416 | if (unlikely(!try_get_page(page))) { |
417 | spin_unlock(ptl); | |
418 | return ERR_PTR(-ENOMEM); | |
419 | } | |
69e68b4f | 420 | spin_unlock(ptl); |
6742d293 KS |
421 | lock_page(page); |
422 | ret = split_huge_page(page); | |
423 | unlock_page(page); | |
424 | put_page(page); | |
baa355fd KS |
425 | if (pmd_none(*pmd)) |
426 | return no_page_table(vma, flags); | |
bfe7b00d SL |
427 | } else { /* flags & FOLL_SPLIT_PMD */ |
428 | spin_unlock(ptl); | |
429 | split_huge_pmd(vma, pmd, address); | |
430 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
431 | } |
432 | ||
433 | return ret ? ERR_PTR(ret) : | |
df06b37f | 434 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 435 | } |
6742d293 KS |
436 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
437 | spin_unlock(ptl); | |
df06b37f | 438 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 439 | return page; |
4bbd4c77 KS |
440 | } |
441 | ||
080dbb61 AK |
442 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
443 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
444 | unsigned int flags, |
445 | struct follow_page_context *ctx) | |
080dbb61 AK |
446 | { |
447 | pud_t *pud; | |
448 | spinlock_t *ptl; | |
449 | struct page *page; | |
450 | struct mm_struct *mm = vma->vm_mm; | |
451 | ||
452 | pud = pud_offset(p4dp, address); | |
453 | if (pud_none(*pud)) | |
454 | return no_page_table(vma, flags); | |
be9d3045 | 455 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { |
080dbb61 AK |
456 | page = follow_huge_pud(mm, address, pud, flags); |
457 | if (page) | |
458 | return page; | |
459 | return no_page_table(vma, flags); | |
460 | } | |
4dc71451 AK |
461 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
462 | page = follow_huge_pd(vma, address, | |
463 | __hugepd(pud_val(*pud)), flags, | |
464 | PUD_SHIFT); | |
465 | if (page) | |
466 | return page; | |
467 | return no_page_table(vma, flags); | |
468 | } | |
080dbb61 AK |
469 | if (pud_devmap(*pud)) { |
470 | ptl = pud_lock(mm, pud); | |
df06b37f | 471 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
472 | spin_unlock(ptl); |
473 | if (page) | |
474 | return page; | |
475 | } | |
476 | if (unlikely(pud_bad(*pud))) | |
477 | return no_page_table(vma, flags); | |
478 | ||
df06b37f | 479 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
480 | } |
481 | ||
080dbb61 AK |
482 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
483 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
484 | unsigned int flags, |
485 | struct follow_page_context *ctx) | |
080dbb61 AK |
486 | { |
487 | p4d_t *p4d; | |
4dc71451 | 488 | struct page *page; |
080dbb61 AK |
489 | |
490 | p4d = p4d_offset(pgdp, address); | |
491 | if (p4d_none(*p4d)) | |
492 | return no_page_table(vma, flags); | |
493 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
494 | if (unlikely(p4d_bad(*p4d))) | |
495 | return no_page_table(vma, flags); | |
496 | ||
4dc71451 AK |
497 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
498 | page = follow_huge_pd(vma, address, | |
499 | __hugepd(p4d_val(*p4d)), flags, | |
500 | P4D_SHIFT); | |
501 | if (page) | |
502 | return page; | |
503 | return no_page_table(vma, flags); | |
504 | } | |
df06b37f | 505 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
506 | } |
507 | ||
508 | /** | |
509 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
510 | * @vma: vm_area_struct mapping @address | |
511 | * @address: virtual address to look up | |
512 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
513 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
514 | * pointer to output page_mask | |
080dbb61 AK |
515 | * |
516 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
517 | * | |
78179556 MR |
518 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
519 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
520 | * | |
521 | * On output, the @ctx->page_mask is set according to the size of the page. | |
522 | * | |
523 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
524 | * an error pointer if there is a mapping to something not represented |
525 | * by a page descriptor (see also vm_normal_page()). | |
526 | */ | |
a7030aea | 527 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 528 | unsigned long address, unsigned int flags, |
df06b37f | 529 | struct follow_page_context *ctx) |
080dbb61 AK |
530 | { |
531 | pgd_t *pgd; | |
532 | struct page *page; | |
533 | struct mm_struct *mm = vma->vm_mm; | |
534 | ||
df06b37f | 535 | ctx->page_mask = 0; |
080dbb61 AK |
536 | |
537 | /* make this handle hugepd */ | |
538 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
539 | if (!IS_ERR(page)) { | |
540 | BUG_ON(flags & FOLL_GET); | |
541 | return page; | |
542 | } | |
543 | ||
544 | pgd = pgd_offset(mm, address); | |
545 | ||
546 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
547 | return no_page_table(vma, flags); | |
548 | ||
faaa5b62 AK |
549 | if (pgd_huge(*pgd)) { |
550 | page = follow_huge_pgd(mm, address, pgd, flags); | |
551 | if (page) | |
552 | return page; | |
553 | return no_page_table(vma, flags); | |
554 | } | |
4dc71451 AK |
555 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
556 | page = follow_huge_pd(vma, address, | |
557 | __hugepd(pgd_val(*pgd)), flags, | |
558 | PGDIR_SHIFT); | |
559 | if (page) | |
560 | return page; | |
561 | return no_page_table(vma, flags); | |
562 | } | |
faaa5b62 | 563 | |
df06b37f KB |
564 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
565 | } | |
566 | ||
567 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
568 | unsigned int foll_flags) | |
569 | { | |
570 | struct follow_page_context ctx = { NULL }; | |
571 | struct page *page; | |
572 | ||
573 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
574 | if (ctx.pgmap) | |
575 | put_dev_pagemap(ctx.pgmap); | |
576 | return page; | |
080dbb61 AK |
577 | } |
578 | ||
f2b495ca KS |
579 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
580 | unsigned int gup_flags, struct vm_area_struct **vma, | |
581 | struct page **page) | |
582 | { | |
583 | pgd_t *pgd; | |
c2febafc | 584 | p4d_t *p4d; |
f2b495ca KS |
585 | pud_t *pud; |
586 | pmd_t *pmd; | |
587 | pte_t *pte; | |
588 | int ret = -EFAULT; | |
589 | ||
590 | /* user gate pages are read-only */ | |
591 | if (gup_flags & FOLL_WRITE) | |
592 | return -EFAULT; | |
593 | if (address > TASK_SIZE) | |
594 | pgd = pgd_offset_k(address); | |
595 | else | |
596 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
597 | if (pgd_none(*pgd)) |
598 | return -EFAULT; | |
c2febafc | 599 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
600 | if (p4d_none(*p4d)) |
601 | return -EFAULT; | |
c2febafc | 602 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
603 | if (pud_none(*pud)) |
604 | return -EFAULT; | |
f2b495ca | 605 | pmd = pmd_offset(pud, address); |
84c3fc4e | 606 | if (!pmd_present(*pmd)) |
f2b495ca KS |
607 | return -EFAULT; |
608 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
609 | pte = pte_offset_map(pmd, address); | |
610 | if (pte_none(*pte)) | |
611 | goto unmap; | |
612 | *vma = get_gate_vma(mm); | |
613 | if (!page) | |
614 | goto out; | |
615 | *page = vm_normal_page(*vma, address, *pte); | |
616 | if (!*page) { | |
617 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
618 | goto unmap; | |
619 | *page = pte_page(*pte); | |
620 | } | |
8fde12ca LT |
621 | if (unlikely(!try_get_page(*page))) { |
622 | ret = -ENOMEM; | |
623 | goto unmap; | |
624 | } | |
f2b495ca KS |
625 | out: |
626 | ret = 0; | |
627 | unmap: | |
628 | pte_unmap(pte); | |
629 | return ret; | |
630 | } | |
631 | ||
9a95f3cf PC |
632 | /* |
633 | * mmap_sem must be held on entry. If @nonblocking != NULL and | |
634 | * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | |
635 | * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | |
636 | */ | |
16744483 KS |
637 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
638 | unsigned long address, unsigned int *flags, int *nonblocking) | |
639 | { | |
16744483 | 640 | unsigned int fault_flags = 0; |
2b740303 | 641 | vm_fault_t ret; |
16744483 | 642 | |
de60f5f1 EM |
643 | /* mlock all present pages, but do not fault in new pages */ |
644 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
645 | return -ENOENT; | |
16744483 KS |
646 | if (*flags & FOLL_WRITE) |
647 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
648 | if (*flags & FOLL_REMOTE) |
649 | fault_flags |= FAULT_FLAG_REMOTE; | |
16744483 KS |
650 | if (nonblocking) |
651 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
652 | if (*flags & FOLL_NOWAIT) | |
653 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b ALC |
654 | if (*flags & FOLL_TRIED) { |
655 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | |
656 | fault_flags |= FAULT_FLAG_TRIED; | |
657 | } | |
16744483 | 658 | |
dcddffd4 | 659 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 660 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
661 | int err = vm_fault_to_errno(ret, *flags); |
662 | ||
663 | if (err) | |
664 | return err; | |
16744483 KS |
665 | BUG(); |
666 | } | |
667 | ||
668 | if (tsk) { | |
669 | if (ret & VM_FAULT_MAJOR) | |
670 | tsk->maj_flt++; | |
671 | else | |
672 | tsk->min_flt++; | |
673 | } | |
674 | ||
675 | if (ret & VM_FAULT_RETRY) { | |
96312e61 | 676 | if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
16744483 KS |
677 | *nonblocking = 0; |
678 | return -EBUSY; | |
679 | } | |
680 | ||
681 | /* | |
682 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
683 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
684 | * can thus safely do subsequent page lookups as if they were reads. | |
685 | * But only do so when looping for pte_write is futile: in some cases | |
686 | * userspace may also be wanting to write to the gotten user page, | |
687 | * which a read fault here might prevent (a readonly page might get | |
688 | * reCOWed by userspace write). | |
689 | */ | |
690 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 691 | *flags |= FOLL_COW; |
16744483 KS |
692 | return 0; |
693 | } | |
694 | ||
fa5bb209 KS |
695 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
696 | { | |
697 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
698 | int write = (gup_flags & FOLL_WRITE); |
699 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
700 | |
701 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
702 | return -EFAULT; | |
703 | ||
7f7ccc2c WT |
704 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
705 | return -EFAULT; | |
706 | ||
1b2ee126 | 707 | if (write) { |
fa5bb209 KS |
708 | if (!(vm_flags & VM_WRITE)) { |
709 | if (!(gup_flags & FOLL_FORCE)) | |
710 | return -EFAULT; | |
711 | /* | |
712 | * We used to let the write,force case do COW in a | |
713 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
714 | * set a breakpoint in a read-only mapping of an | |
715 | * executable, without corrupting the file (yet only | |
716 | * when that file had been opened for writing!). | |
717 | * Anon pages in shared mappings are surprising: now | |
718 | * just reject it. | |
719 | */ | |
46435364 | 720 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 721 | return -EFAULT; |
fa5bb209 KS |
722 | } |
723 | } else if (!(vm_flags & VM_READ)) { | |
724 | if (!(gup_flags & FOLL_FORCE)) | |
725 | return -EFAULT; | |
726 | /* | |
727 | * Is there actually any vma we can reach here which does not | |
728 | * have VM_MAYREAD set? | |
729 | */ | |
730 | if (!(vm_flags & VM_MAYREAD)) | |
731 | return -EFAULT; | |
732 | } | |
d61172b4 DH |
733 | /* |
734 | * gups are always data accesses, not instruction | |
735 | * fetches, so execute=false here | |
736 | */ | |
737 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 738 | return -EFAULT; |
fa5bb209 KS |
739 | return 0; |
740 | } | |
741 | ||
4bbd4c77 KS |
742 | /** |
743 | * __get_user_pages() - pin user pages in memory | |
744 | * @tsk: task_struct of target task | |
745 | * @mm: mm_struct of target mm | |
746 | * @start: starting user address | |
747 | * @nr_pages: number of pages from start to pin | |
748 | * @gup_flags: flags modifying pin behaviour | |
749 | * @pages: array that receives pointers to the pages pinned. | |
750 | * Should be at least nr_pages long. Or NULL, if caller | |
751 | * only intends to ensure the pages are faulted in. | |
752 | * @vmas: array of pointers to vmas corresponding to each page. | |
753 | * Or NULL if the caller does not require them. | |
754 | * @nonblocking: whether waiting for disk IO or mmap_sem contention | |
755 | * | |
d2dfbe47 LX |
756 | * Returns either number of pages pinned (which may be less than the |
757 | * number requested), or an error. Details about the return value: | |
758 | * | |
759 | * -- If nr_pages is 0, returns 0. | |
760 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
761 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
762 | * pages pinned. Again, this may be less than nr_pages. | |
763 | * | |
764 | * The caller is responsible for releasing returned @pages, via put_page(). | |
765 | * | |
766 | * @vmas are valid only as long as mmap_sem is held. | |
4bbd4c77 | 767 | * |
9a95f3cf | 768 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
769 | * |
770 | * __get_user_pages walks a process's page tables and takes a reference to | |
771 | * each struct page that each user address corresponds to at a given | |
772 | * instant. That is, it takes the page that would be accessed if a user | |
773 | * thread accesses the given user virtual address at that instant. | |
774 | * | |
775 | * This does not guarantee that the page exists in the user mappings when | |
776 | * __get_user_pages returns, and there may even be a completely different | |
777 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
778 | * and subsequently re faulted). However it does guarantee that the page | |
779 | * won't be freed completely. And mostly callers simply care that the page | |
780 | * contains data that was valid *at some point in time*. Typically, an IO | |
781 | * or similar operation cannot guarantee anything stronger anyway because | |
782 | * locks can't be held over the syscall boundary. | |
783 | * | |
784 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
785 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
786 | * appropriate) must be called after the page is finished with, and | |
787 | * before put_page is called. | |
788 | * | |
789 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | |
790 | * or mmap_sem contention, and if waiting is needed to pin all pages, | |
9a95f3cf PC |
791 | * *@nonblocking will be set to 0. Further, if @gup_flags does not |
792 | * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | |
793 | * this case. | |
794 | * | |
795 | * A caller using such a combination of @nonblocking and @gup_flags | |
796 | * must therefore hold the mmap_sem for reading only, and recognize | |
797 | * when it's been released. Otherwise, it must be held for either | |
798 | * reading or writing and will not be released. | |
4bbd4c77 KS |
799 | * |
800 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
801 | * instead of __get_user_pages. __get_user_pages should be used only if | |
802 | * you need some special @gup_flags. | |
803 | */ | |
0d731759 | 804 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
805 | unsigned long start, unsigned long nr_pages, |
806 | unsigned int gup_flags, struct page **pages, | |
807 | struct vm_area_struct **vmas, int *nonblocking) | |
808 | { | |
df06b37f | 809 | long ret = 0, i = 0; |
fa5bb209 | 810 | struct vm_area_struct *vma = NULL; |
df06b37f | 811 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
812 | |
813 | if (!nr_pages) | |
814 | return 0; | |
815 | ||
f9652594 AK |
816 | start = untagged_addr(start); |
817 | ||
eddb1c22 | 818 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 KS |
819 | |
820 | /* | |
821 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
822 | * fault information is unrelated to the reference behaviour of a task | |
823 | * using the address space | |
824 | */ | |
825 | if (!(gup_flags & FOLL_FORCE)) | |
826 | gup_flags |= FOLL_NUMA; | |
827 | ||
4bbd4c77 | 828 | do { |
fa5bb209 KS |
829 | struct page *page; |
830 | unsigned int foll_flags = gup_flags; | |
831 | unsigned int page_increm; | |
832 | ||
833 | /* first iteration or cross vma bound */ | |
834 | if (!vma || start >= vma->vm_end) { | |
835 | vma = find_extend_vma(mm, start); | |
836 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
837 | ret = get_gate_page(mm, start & PAGE_MASK, |
838 | gup_flags, &vma, | |
839 | pages ? &pages[i] : NULL); | |
840 | if (ret) | |
08be37b7 | 841 | goto out; |
df06b37f | 842 | ctx.page_mask = 0; |
fa5bb209 KS |
843 | goto next_page; |
844 | } | |
4bbd4c77 | 845 | |
df06b37f KB |
846 | if (!vma || check_vma_flags(vma, gup_flags)) { |
847 | ret = -EFAULT; | |
848 | goto out; | |
849 | } | |
fa5bb209 KS |
850 | if (is_vm_hugetlb_page(vma)) { |
851 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
852 | &start, &nr_pages, i, | |
87ffc118 | 853 | gup_flags, nonblocking); |
fa5bb209 | 854 | continue; |
4bbd4c77 | 855 | } |
fa5bb209 KS |
856 | } |
857 | retry: | |
858 | /* | |
859 | * If we have a pending SIGKILL, don't keep faulting pages and | |
860 | * potentially allocating memory. | |
861 | */ | |
fa45f116 | 862 | if (fatal_signal_pending(current)) { |
df06b37f KB |
863 | ret = -ERESTARTSYS; |
864 | goto out; | |
865 | } | |
fa5bb209 | 866 | cond_resched(); |
df06b37f KB |
867 | |
868 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 869 | if (!page) { |
fa5bb209 KS |
870 | ret = faultin_page(tsk, vma, start, &foll_flags, |
871 | nonblocking); | |
872 | switch (ret) { | |
873 | case 0: | |
874 | goto retry; | |
df06b37f KB |
875 | case -EBUSY: |
876 | ret = 0; | |
877 | /* FALLTHRU */ | |
fa5bb209 KS |
878 | case -EFAULT: |
879 | case -ENOMEM: | |
880 | case -EHWPOISON: | |
df06b37f | 881 | goto out; |
fa5bb209 KS |
882 | case -ENOENT: |
883 | goto next_page; | |
4bbd4c77 | 884 | } |
fa5bb209 | 885 | BUG(); |
1027e443 KS |
886 | } else if (PTR_ERR(page) == -EEXIST) { |
887 | /* | |
888 | * Proper page table entry exists, but no corresponding | |
889 | * struct page. | |
890 | */ | |
891 | goto next_page; | |
892 | } else if (IS_ERR(page)) { | |
df06b37f KB |
893 | ret = PTR_ERR(page); |
894 | goto out; | |
1027e443 | 895 | } |
fa5bb209 KS |
896 | if (pages) { |
897 | pages[i] = page; | |
898 | flush_anon_page(vma, page, start); | |
899 | flush_dcache_page(page); | |
df06b37f | 900 | ctx.page_mask = 0; |
4bbd4c77 | 901 | } |
4bbd4c77 | 902 | next_page: |
fa5bb209 KS |
903 | if (vmas) { |
904 | vmas[i] = vma; | |
df06b37f | 905 | ctx.page_mask = 0; |
fa5bb209 | 906 | } |
df06b37f | 907 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
908 | if (page_increm > nr_pages) |
909 | page_increm = nr_pages; | |
910 | i += page_increm; | |
911 | start += page_increm * PAGE_SIZE; | |
912 | nr_pages -= page_increm; | |
4bbd4c77 | 913 | } while (nr_pages); |
df06b37f KB |
914 | out: |
915 | if (ctx.pgmap) | |
916 | put_dev_pagemap(ctx.pgmap); | |
917 | return i ? i : ret; | |
4bbd4c77 | 918 | } |
4bbd4c77 | 919 | |
771ab430 TK |
920 | static bool vma_permits_fault(struct vm_area_struct *vma, |
921 | unsigned int fault_flags) | |
d4925e00 | 922 | { |
1b2ee126 DH |
923 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
924 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 925 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
926 | |
927 | if (!(vm_flags & vma->vm_flags)) | |
928 | return false; | |
929 | ||
33a709b2 DH |
930 | /* |
931 | * The architecture might have a hardware protection | |
1b2ee126 | 932 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
933 | * |
934 | * gup always represents data access, not instruction | |
935 | * fetches, so execute=false here: | |
33a709b2 | 936 | */ |
d61172b4 | 937 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
938 | return false; |
939 | ||
d4925e00 DH |
940 | return true; |
941 | } | |
942 | ||
4bbd4c77 KS |
943 | /* |
944 | * fixup_user_fault() - manually resolve a user page fault | |
945 | * @tsk: the task_struct to use for page fault accounting, or | |
946 | * NULL if faults are not to be recorded. | |
947 | * @mm: mm_struct of target mm | |
948 | * @address: user address | |
949 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda DD |
950 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
951 | * does not allow retry | |
4bbd4c77 KS |
952 | * |
953 | * This is meant to be called in the specific scenario where for locking reasons | |
954 | * we try to access user memory in atomic context (within a pagefault_disable() | |
955 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
956 | * trying again. | |
957 | * | |
958 | * Typically this is meant to be used by the futex code. | |
959 | * | |
960 | * The main difference with get_user_pages() is that this function will | |
961 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
962 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 963 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
964 | * |
965 | * This is important for some architectures where those bits also gate the | |
966 | * access permission to the page because they are maintained in software. On | |
967 | * such architectures, gup() will not be enough to make a subsequent access | |
968 | * succeed. | |
969 | * | |
4a9e1cda DD |
970 | * This function will not return with an unlocked mmap_sem. So it has not the |
971 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
972 | */ |
973 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
974 | unsigned long address, unsigned int fault_flags, |
975 | bool *unlocked) | |
4bbd4c77 KS |
976 | { |
977 | struct vm_area_struct *vma; | |
2b740303 | 978 | vm_fault_t ret, major = 0; |
4a9e1cda | 979 | |
f9652594 AK |
980 | address = untagged_addr(address); |
981 | ||
4a9e1cda DD |
982 | if (unlocked) |
983 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | |
4bbd4c77 | 984 | |
4a9e1cda | 985 | retry: |
4bbd4c77 KS |
986 | vma = find_extend_vma(mm, address); |
987 | if (!vma || address < vma->vm_start) | |
988 | return -EFAULT; | |
989 | ||
d4925e00 | 990 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
991 | return -EFAULT; |
992 | ||
dcddffd4 | 993 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 994 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 995 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
996 | int err = vm_fault_to_errno(ret, 0); |
997 | ||
998 | if (err) | |
999 | return err; | |
4bbd4c77 KS |
1000 | BUG(); |
1001 | } | |
4a9e1cda DD |
1002 | |
1003 | if (ret & VM_FAULT_RETRY) { | |
1004 | down_read(&mm->mmap_sem); | |
1005 | if (!(fault_flags & FAULT_FLAG_TRIED)) { | |
1006 | *unlocked = true; | |
1007 | fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | |
1008 | fault_flags |= FAULT_FLAG_TRIED; | |
1009 | goto retry; | |
1010 | } | |
1011 | } | |
1012 | ||
4bbd4c77 | 1013 | if (tsk) { |
4a9e1cda | 1014 | if (major) |
4bbd4c77 KS |
1015 | tsk->maj_flt++; |
1016 | else | |
1017 | tsk->min_flt++; | |
1018 | } | |
1019 | return 0; | |
1020 | } | |
add6a0cd | 1021 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1022 | |
f0818f47 AA |
1023 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
1024 | struct mm_struct *mm, | |
1025 | unsigned long start, | |
1026 | unsigned long nr_pages, | |
f0818f47 AA |
1027 | struct page **pages, |
1028 | struct vm_area_struct **vmas, | |
e716712f | 1029 | int *locked, |
0fd71a56 | 1030 | unsigned int flags) |
f0818f47 | 1031 | { |
f0818f47 AA |
1032 | long ret, pages_done; |
1033 | bool lock_dropped; | |
1034 | ||
1035 | if (locked) { | |
1036 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1037 | BUG_ON(vmas); | |
1038 | /* check caller initialized locked */ | |
1039 | BUG_ON(*locked != 1); | |
1040 | } | |
1041 | ||
eddb1c22 JH |
1042 | /* |
1043 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1044 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1045 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1046 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1047 | * | |
1048 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1049 | * that here, as any failures will be obvious enough. | |
1050 | */ | |
1051 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1052 | flags |= FOLL_GET; |
f0818f47 AA |
1053 | |
1054 | pages_done = 0; | |
1055 | lock_dropped = false; | |
1056 | for (;;) { | |
1057 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
1058 | vmas, locked); | |
1059 | if (!locked) | |
1060 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1061 | return ret; | |
1062 | ||
1063 | /* VM_FAULT_RETRY cannot return errors */ | |
1064 | if (!*locked) { | |
1065 | BUG_ON(ret < 0); | |
1066 | BUG_ON(ret >= nr_pages); | |
1067 | } | |
1068 | ||
f0818f47 AA |
1069 | if (ret > 0) { |
1070 | nr_pages -= ret; | |
1071 | pages_done += ret; | |
1072 | if (!nr_pages) | |
1073 | break; | |
1074 | } | |
1075 | if (*locked) { | |
96312e61 AA |
1076 | /* |
1077 | * VM_FAULT_RETRY didn't trigger or it was a | |
1078 | * FOLL_NOWAIT. | |
1079 | */ | |
f0818f47 AA |
1080 | if (!pages_done) |
1081 | pages_done = ret; | |
1082 | break; | |
1083 | } | |
df17277b MR |
1084 | /* |
1085 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1086 | * For the prefault case (!pages) we only update counts. | |
1087 | */ | |
1088 | if (likely(pages)) | |
1089 | pages += ret; | |
f0818f47 AA |
1090 | start += ret << PAGE_SHIFT; |
1091 | ||
1092 | /* | |
1093 | * Repeat on the address that fired VM_FAULT_RETRY | |
1094 | * without FAULT_FLAG_ALLOW_RETRY but with | |
1095 | * FAULT_FLAG_TRIED. | |
1096 | */ | |
1097 | *locked = 1; | |
1098 | lock_dropped = true; | |
1099 | down_read(&mm->mmap_sem); | |
1100 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | |
1101 | pages, NULL, NULL); | |
1102 | if (ret != 1) { | |
1103 | BUG_ON(ret > 1); | |
1104 | if (!pages_done) | |
1105 | pages_done = ret; | |
1106 | break; | |
1107 | } | |
1108 | nr_pages--; | |
1109 | pages_done++; | |
1110 | if (!nr_pages) | |
1111 | break; | |
df17277b MR |
1112 | if (likely(pages)) |
1113 | pages++; | |
f0818f47 AA |
1114 | start += PAGE_SIZE; |
1115 | } | |
e716712f | 1116 | if (lock_dropped && *locked) { |
f0818f47 AA |
1117 | /* |
1118 | * We must let the caller know we temporarily dropped the lock | |
1119 | * and so the critical section protected by it was lost. | |
1120 | */ | |
1121 | up_read(&mm->mmap_sem); | |
1122 | *locked = 0; | |
1123 | } | |
1124 | return pages_done; | |
1125 | } | |
1126 | ||
d3649f68 CH |
1127 | /** |
1128 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1129 | * @vma: target vma | |
1130 | * @start: start address | |
1131 | * @end: end address | |
1132 | * @nonblocking: | |
1133 | * | |
1134 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1135 | * | |
1136 | * return 0 on success, negative error code on error. | |
1137 | * | |
1138 | * vma->vm_mm->mmap_sem must be held. | |
1139 | * | |
1140 | * If @nonblocking is NULL, it may be held for read or write and will | |
1141 | * be unperturbed. | |
1142 | * | |
1143 | * If @nonblocking is non-NULL, it must held for read only and may be | |
1144 | * released. If it's released, *@nonblocking will be set to 0. | |
1145 | */ | |
1146 | long populate_vma_page_range(struct vm_area_struct *vma, | |
1147 | unsigned long start, unsigned long end, int *nonblocking) | |
1148 | { | |
1149 | struct mm_struct *mm = vma->vm_mm; | |
1150 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1151 | int gup_flags; | |
1152 | ||
1153 | VM_BUG_ON(start & ~PAGE_MASK); | |
1154 | VM_BUG_ON(end & ~PAGE_MASK); | |
1155 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1156 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1157 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1158 | ||
1159 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1160 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1161 | gup_flags &= ~FOLL_POPULATE; | |
1162 | /* | |
1163 | * We want to touch writable mappings with a write fault in order | |
1164 | * to break COW, except for shared mappings because these don't COW | |
1165 | * and we would not want to dirty them for nothing. | |
1166 | */ | |
1167 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1168 | gup_flags |= FOLL_WRITE; | |
1169 | ||
1170 | /* | |
1171 | * We want mlock to succeed for regions that have any permissions | |
1172 | * other than PROT_NONE. | |
1173 | */ | |
1174 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | |
1175 | gup_flags |= FOLL_FORCE; | |
1176 | ||
1177 | /* | |
1178 | * We made sure addr is within a VMA, so the following will | |
1179 | * not result in a stack expansion that recurses back here. | |
1180 | */ | |
1181 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
1182 | NULL, NULL, nonblocking); | |
1183 | } | |
1184 | ||
1185 | /* | |
1186 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1187 | * | |
1188 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1189 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1190 | * mmap_sem must not be held. | |
1191 | */ | |
1192 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1193 | { | |
1194 | struct mm_struct *mm = current->mm; | |
1195 | unsigned long end, nstart, nend; | |
1196 | struct vm_area_struct *vma = NULL; | |
1197 | int locked = 0; | |
1198 | long ret = 0; | |
1199 | ||
1200 | end = start + len; | |
1201 | ||
1202 | for (nstart = start; nstart < end; nstart = nend) { | |
1203 | /* | |
1204 | * We want to fault in pages for [nstart; end) address range. | |
1205 | * Find first corresponding VMA. | |
1206 | */ | |
1207 | if (!locked) { | |
1208 | locked = 1; | |
1209 | down_read(&mm->mmap_sem); | |
1210 | vma = find_vma(mm, nstart); | |
1211 | } else if (nstart >= vma->vm_end) | |
1212 | vma = vma->vm_next; | |
1213 | if (!vma || vma->vm_start >= end) | |
1214 | break; | |
1215 | /* | |
1216 | * Set [nstart; nend) to intersection of desired address | |
1217 | * range with the first VMA. Also, skip undesirable VMA types. | |
1218 | */ | |
1219 | nend = min(end, vma->vm_end); | |
1220 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1221 | continue; | |
1222 | if (nstart < vma->vm_start) | |
1223 | nstart = vma->vm_start; | |
1224 | /* | |
1225 | * Now fault in a range of pages. populate_vma_page_range() | |
1226 | * double checks the vma flags, so that it won't mlock pages | |
1227 | * if the vma was already munlocked. | |
1228 | */ | |
1229 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1230 | if (ret < 0) { | |
1231 | if (ignore_errors) { | |
1232 | ret = 0; | |
1233 | continue; /* continue at next VMA */ | |
1234 | } | |
1235 | break; | |
1236 | } | |
1237 | nend = nstart + ret * PAGE_SIZE; | |
1238 | ret = 0; | |
1239 | } | |
1240 | if (locked) | |
1241 | up_read(&mm->mmap_sem); | |
1242 | return ret; /* 0 or negative error code */ | |
1243 | } | |
1244 | ||
1245 | /** | |
1246 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1247 | * @addr: user address | |
1248 | * | |
1249 | * Returns struct page pointer of user page pinned for dump, | |
1250 | * to be freed afterwards by put_page(). | |
1251 | * | |
1252 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1253 | * the corefile, to preserve alignment with its headers; and also returns | |
1254 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1255 | * allowing a hole to be left in the corefile to save diskspace. | |
1256 | * | |
1257 | * Called without mmap_sem, but after all other threads have been killed. | |
1258 | */ | |
1259 | #ifdef CONFIG_ELF_CORE | |
1260 | struct page *get_dump_page(unsigned long addr) | |
1261 | { | |
1262 | struct vm_area_struct *vma; | |
1263 | struct page *page; | |
1264 | ||
1265 | if (__get_user_pages(current, current->mm, addr, 1, | |
1266 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1267 | NULL) < 1) | |
1268 | return NULL; | |
1269 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1270 | return page; | |
1271 | } | |
1272 | #endif /* CONFIG_ELF_CORE */ | |
050a9adc CH |
1273 | #else /* CONFIG_MMU */ |
1274 | static long __get_user_pages_locked(struct task_struct *tsk, | |
1275 | struct mm_struct *mm, unsigned long start, | |
1276 | unsigned long nr_pages, struct page **pages, | |
1277 | struct vm_area_struct **vmas, int *locked, | |
1278 | unsigned int foll_flags) | |
1279 | { | |
1280 | struct vm_area_struct *vma; | |
1281 | unsigned long vm_flags; | |
1282 | int i; | |
1283 | ||
1284 | /* calculate required read or write permissions. | |
1285 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1286 | */ | |
1287 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1288 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1289 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1290 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1291 | ||
1292 | for (i = 0; i < nr_pages; i++) { | |
1293 | vma = find_vma(mm, start); | |
1294 | if (!vma) | |
1295 | goto finish_or_fault; | |
1296 | ||
1297 | /* protect what we can, including chardevs */ | |
1298 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1299 | !(vm_flags & vma->vm_flags)) | |
1300 | goto finish_or_fault; | |
1301 | ||
1302 | if (pages) { | |
1303 | pages[i] = virt_to_page(start); | |
1304 | if (pages[i]) | |
1305 | get_page(pages[i]); | |
1306 | } | |
1307 | if (vmas) | |
1308 | vmas[i] = vma; | |
1309 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1310 | } | |
1311 | ||
1312 | return i; | |
1313 | ||
1314 | finish_or_fault: | |
1315 | return i ? : -EFAULT; | |
1316 | } | |
1317 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1318 | |
9a4e9f3b | 1319 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1320 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1321 | { | |
1322 | long i; | |
1323 | struct vm_area_struct *vma_prev = NULL; | |
1324 | ||
1325 | for (i = 0; i < nr_pages; i++) { | |
1326 | struct vm_area_struct *vma = vmas[i]; | |
1327 | ||
1328 | if (vma == vma_prev) | |
1329 | continue; | |
1330 | ||
1331 | vma_prev = vma; | |
1332 | ||
1333 | if (vma_is_fsdax(vma)) | |
1334 | return true; | |
1335 | } | |
1336 | return false; | |
1337 | } | |
9a4e9f3b AK |
1338 | |
1339 | #ifdef CONFIG_CMA | |
1340 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1341 | { | |
1342 | /* | |
1343 | * We want to make sure we allocate the new page from the same node | |
1344 | * as the source page. | |
1345 | */ | |
1346 | int nid = page_to_nid(page); | |
1347 | /* | |
1348 | * Trying to allocate a page for migration. Ignore allocation | |
1349 | * failure warnings. We don't force __GFP_THISNODE here because | |
1350 | * this node here is the node where we have CMA reservation and | |
1351 | * in some case these nodes will have really less non movable | |
1352 | * allocation memory. | |
1353 | */ | |
1354 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1355 | ||
1356 | if (PageHighMem(page)) | |
1357 | gfp_mask |= __GFP_HIGHMEM; | |
1358 | ||
1359 | #ifdef CONFIG_HUGETLB_PAGE | |
1360 | if (PageHuge(page)) { | |
1361 | struct hstate *h = page_hstate(page); | |
1362 | /* | |
1363 | * We don't want to dequeue from the pool because pool pages will | |
1364 | * mostly be from the CMA region. | |
1365 | */ | |
1366 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1367 | } | |
1368 | #endif | |
1369 | if (PageTransHuge(page)) { | |
1370 | struct page *thp; | |
1371 | /* | |
1372 | * ignore allocation failure warnings | |
1373 | */ | |
1374 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1375 | ||
1376 | /* | |
1377 | * Remove the movable mask so that we don't allocate from | |
1378 | * CMA area again. | |
1379 | */ | |
1380 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1381 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1382 | if (!thp) | |
1383 | return NULL; | |
1384 | prep_transhuge_page(thp); | |
1385 | return thp; | |
1386 | } | |
1387 | ||
1388 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1389 | } | |
1390 | ||
932f4a63 IW |
1391 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1392 | struct mm_struct *mm, | |
1393 | unsigned long start, | |
1394 | unsigned long nr_pages, | |
9a4e9f3b | 1395 | struct page **pages, |
932f4a63 IW |
1396 | struct vm_area_struct **vmas, |
1397 | unsigned int gup_flags) | |
9a4e9f3b | 1398 | { |
aa712399 PL |
1399 | unsigned long i; |
1400 | unsigned long step; | |
9a4e9f3b AK |
1401 | bool drain_allow = true; |
1402 | bool migrate_allow = true; | |
1403 | LIST_HEAD(cma_page_list); | |
b96cc655 | 1404 | long ret = nr_pages; |
9a4e9f3b AK |
1405 | |
1406 | check_again: | |
aa712399 PL |
1407 | for (i = 0; i < nr_pages;) { |
1408 | ||
1409 | struct page *head = compound_head(pages[i]); | |
1410 | ||
1411 | /* | |
1412 | * gup may start from a tail page. Advance step by the left | |
1413 | * part. | |
1414 | */ | |
d8c6546b | 1415 | step = compound_nr(head) - (pages[i] - head); |
9a4e9f3b AK |
1416 | /* |
1417 | * If we get a page from the CMA zone, since we are going to | |
1418 | * be pinning these entries, we might as well move them out | |
1419 | * of the CMA zone if possible. | |
1420 | */ | |
aa712399 PL |
1421 | if (is_migrate_cma_page(head)) { |
1422 | if (PageHuge(head)) | |
9a4e9f3b | 1423 | isolate_huge_page(head, &cma_page_list); |
aa712399 | 1424 | else { |
9a4e9f3b AK |
1425 | if (!PageLRU(head) && drain_allow) { |
1426 | lru_add_drain_all(); | |
1427 | drain_allow = false; | |
1428 | } | |
1429 | ||
1430 | if (!isolate_lru_page(head)) { | |
1431 | list_add_tail(&head->lru, &cma_page_list); | |
1432 | mod_node_page_state(page_pgdat(head), | |
1433 | NR_ISOLATED_ANON + | |
1434 | page_is_file_cache(head), | |
1435 | hpage_nr_pages(head)); | |
1436 | } | |
1437 | } | |
1438 | } | |
aa712399 PL |
1439 | |
1440 | i += step; | |
9a4e9f3b AK |
1441 | } |
1442 | ||
1443 | if (!list_empty(&cma_page_list)) { | |
1444 | /* | |
1445 | * drop the above get_user_pages reference. | |
1446 | */ | |
1447 | for (i = 0; i < nr_pages; i++) | |
1448 | put_page(pages[i]); | |
1449 | ||
1450 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1451 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1452 | /* | |
1453 | * some of the pages failed migration. Do get_user_pages | |
1454 | * without migration. | |
1455 | */ | |
1456 | migrate_allow = false; | |
1457 | ||
1458 | if (!list_empty(&cma_page_list)) | |
1459 | putback_movable_pages(&cma_page_list); | |
1460 | } | |
1461 | /* | |
932f4a63 IW |
1462 | * We did migrate all the pages, Try to get the page references |
1463 | * again migrating any new CMA pages which we failed to isolate | |
1464 | * earlier. | |
9a4e9f3b | 1465 | */ |
b96cc655 | 1466 | ret = __get_user_pages_locked(tsk, mm, start, nr_pages, |
932f4a63 IW |
1467 | pages, vmas, NULL, |
1468 | gup_flags); | |
1469 | ||
b96cc655 | 1470 | if ((ret > 0) && migrate_allow) { |
1471 | nr_pages = ret; | |
9a4e9f3b AK |
1472 | drain_allow = true; |
1473 | goto check_again; | |
1474 | } | |
1475 | } | |
1476 | ||
b96cc655 | 1477 | return ret; |
9a4e9f3b AK |
1478 | } |
1479 | #else | |
932f4a63 IW |
1480 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1481 | struct mm_struct *mm, | |
1482 | unsigned long start, | |
1483 | unsigned long nr_pages, | |
1484 | struct page **pages, | |
1485 | struct vm_area_struct **vmas, | |
1486 | unsigned int gup_flags) | |
9a4e9f3b AK |
1487 | { |
1488 | return nr_pages; | |
1489 | } | |
050a9adc | 1490 | #endif /* CONFIG_CMA */ |
9a4e9f3b | 1491 | |
2bb6d283 | 1492 | /* |
932f4a63 IW |
1493 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1494 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1495 | */ |
932f4a63 IW |
1496 | static long __gup_longterm_locked(struct task_struct *tsk, |
1497 | struct mm_struct *mm, | |
1498 | unsigned long start, | |
1499 | unsigned long nr_pages, | |
1500 | struct page **pages, | |
1501 | struct vm_area_struct **vmas, | |
1502 | unsigned int gup_flags) | |
2bb6d283 | 1503 | { |
932f4a63 IW |
1504 | struct vm_area_struct **vmas_tmp = vmas; |
1505 | unsigned long flags = 0; | |
2bb6d283 DW |
1506 | long rc, i; |
1507 | ||
932f4a63 IW |
1508 | if (gup_flags & FOLL_LONGTERM) { |
1509 | if (!pages) | |
1510 | return -EINVAL; | |
1511 | ||
1512 | if (!vmas_tmp) { | |
1513 | vmas_tmp = kcalloc(nr_pages, | |
1514 | sizeof(struct vm_area_struct *), | |
1515 | GFP_KERNEL); | |
1516 | if (!vmas_tmp) | |
1517 | return -ENOMEM; | |
1518 | } | |
1519 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1520 | } |
1521 | ||
932f4a63 IW |
1522 | rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, |
1523 | vmas_tmp, NULL, gup_flags); | |
2bb6d283 | 1524 | |
932f4a63 IW |
1525 | if (gup_flags & FOLL_LONGTERM) { |
1526 | memalloc_nocma_restore(flags); | |
1527 | if (rc < 0) | |
1528 | goto out; | |
1529 | ||
1530 | if (check_dax_vmas(vmas_tmp, rc)) { | |
1531 | for (i = 0; i < rc; i++) | |
1532 | put_page(pages[i]); | |
1533 | rc = -EOPNOTSUPP; | |
1534 | goto out; | |
1535 | } | |
1536 | ||
1537 | rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | |
1538 | vmas_tmp, gup_flags); | |
9a4e9f3b | 1539 | } |
2bb6d283 | 1540 | |
2bb6d283 | 1541 | out: |
932f4a63 IW |
1542 | if (vmas_tmp != vmas) |
1543 | kfree(vmas_tmp); | |
2bb6d283 DW |
1544 | return rc; |
1545 | } | |
932f4a63 IW |
1546 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
1547 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | |
1548 | struct mm_struct *mm, | |
1549 | unsigned long start, | |
1550 | unsigned long nr_pages, | |
1551 | struct page **pages, | |
1552 | struct vm_area_struct **vmas, | |
1553 | unsigned int flags) | |
1554 | { | |
1555 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1556 | NULL, flags); | |
1557 | } | |
1558 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1559 | ||
c4237f8b JH |
1560 | /* |
1561 | * get_user_pages_remote() - pin user pages in memory | |
1562 | * @tsk: the task_struct to use for page fault accounting, or | |
1563 | * NULL if faults are not to be recorded. | |
1564 | * @mm: mm_struct of target mm | |
1565 | * @start: starting user address | |
1566 | * @nr_pages: number of pages from start to pin | |
1567 | * @gup_flags: flags modifying lookup behaviour | |
1568 | * @pages: array that receives pointers to the pages pinned. | |
1569 | * Should be at least nr_pages long. Or NULL, if caller | |
1570 | * only intends to ensure the pages are faulted in. | |
1571 | * @vmas: array of pointers to vmas corresponding to each page. | |
1572 | * Or NULL if the caller does not require them. | |
1573 | * @locked: pointer to lock flag indicating whether lock is held and | |
1574 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1575 | * utilised. Lock must initially be held. | |
1576 | * | |
1577 | * Returns either number of pages pinned (which may be less than the | |
1578 | * number requested), or an error. Details about the return value: | |
1579 | * | |
1580 | * -- If nr_pages is 0, returns 0. | |
1581 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1582 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1583 | * pages pinned. Again, this may be less than nr_pages. | |
1584 | * | |
1585 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1586 | * | |
1587 | * @vmas are valid only as long as mmap_sem is held. | |
1588 | * | |
1589 | * Must be called with mmap_sem held for read or write. | |
1590 | * | |
1591 | * get_user_pages walks a process's page tables and takes a reference to | |
1592 | * each struct page that each user address corresponds to at a given | |
1593 | * instant. That is, it takes the page that would be accessed if a user | |
1594 | * thread accesses the given user virtual address at that instant. | |
1595 | * | |
1596 | * This does not guarantee that the page exists in the user mappings when | |
1597 | * get_user_pages returns, and there may even be a completely different | |
1598 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1599 | * and subsequently re faulted). However it does guarantee that the page | |
1600 | * won't be freed completely. And mostly callers simply care that the page | |
1601 | * contains data that was valid *at some point in time*. Typically, an IO | |
1602 | * or similar operation cannot guarantee anything stronger anyway because | |
1603 | * locks can't be held over the syscall boundary. | |
1604 | * | |
1605 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
1606 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1607 | * be called after the page is finished with, and before put_page is called. | |
1608 | * | |
1609 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1610 | * handle on the memory by some means other than accesses via the user virtual | |
1611 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1612 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1613 | * use the correct cache flushing APIs. | |
1614 | * | |
1615 | * See also get_user_pages_fast, for performance critical applications. | |
1616 | * | |
1617 | * get_user_pages should be phased out in favor of | |
1618 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | |
1619 | * should use get_user_pages because it cannot pass | |
1620 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | |
1621 | */ | |
eddb1c22 | 1622 | #ifdef CONFIG_MMU |
c4237f8b JH |
1623 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, |
1624 | unsigned long start, unsigned long nr_pages, | |
1625 | unsigned int gup_flags, struct page **pages, | |
1626 | struct vm_area_struct **vmas, int *locked) | |
1627 | { | |
eddb1c22 JH |
1628 | /* |
1629 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1630 | * never directly by the caller, so enforce that with an assertion: | |
1631 | */ | |
1632 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1633 | return -EINVAL; | |
1634 | ||
c4237f8b JH |
1635 | /* |
1636 | * Parts of FOLL_LONGTERM behavior are incompatible with | |
1637 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1638 | * vmas. However, this only comes up if locked is set, and there are | |
1639 | * callers that do request FOLL_LONGTERM, but do not set locked. So, | |
1640 | * allow what we can. | |
1641 | */ | |
1642 | if (gup_flags & FOLL_LONGTERM) { | |
1643 | if (WARN_ON_ONCE(locked)) | |
1644 | return -EINVAL; | |
1645 | /* | |
1646 | * This will check the vmas (even if our vmas arg is NULL) | |
1647 | * and return -ENOTSUPP if DAX isn't allowed in this case: | |
1648 | */ | |
1649 | return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, | |
1650 | vmas, gup_flags | FOLL_TOUCH | | |
1651 | FOLL_REMOTE); | |
1652 | } | |
1653 | ||
1654 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1655 | locked, | |
1656 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); | |
1657 | } | |
1658 | EXPORT_SYMBOL(get_user_pages_remote); | |
1659 | ||
eddb1c22 JH |
1660 | #else /* CONFIG_MMU */ |
1661 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | |
1662 | unsigned long start, unsigned long nr_pages, | |
1663 | unsigned int gup_flags, struct page **pages, | |
1664 | struct vm_area_struct **vmas, int *locked) | |
1665 | { | |
1666 | return 0; | |
1667 | } | |
1668 | #endif /* !CONFIG_MMU */ | |
1669 | ||
932f4a63 IW |
1670 | /* |
1671 | * This is the same as get_user_pages_remote(), just with a | |
1672 | * less-flexible calling convention where we assume that the task | |
1673 | * and mm being operated on are the current task's and don't allow | |
1674 | * passing of a locked parameter. We also obviously don't pass | |
1675 | * FOLL_REMOTE in here. | |
1676 | */ | |
1677 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1678 | unsigned int gup_flags, struct page **pages, | |
1679 | struct vm_area_struct **vmas) | |
1680 | { | |
eddb1c22 JH |
1681 | /* |
1682 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1683 | * never directly by the caller, so enforce that with an assertion: | |
1684 | */ | |
1685 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1686 | return -EINVAL; | |
1687 | ||
932f4a63 IW |
1688 | return __gup_longterm_locked(current, current->mm, start, nr_pages, |
1689 | pages, vmas, gup_flags | FOLL_TOUCH); | |
1690 | } | |
1691 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1692 | |
d3649f68 CH |
1693 | /* |
1694 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
1695 | * paths better by using either get_user_pages_locked() or | |
1696 | * get_user_pages_unlocked(). | |
acc3c8d1 | 1697 | * |
d3649f68 | 1698 | * get_user_pages_locked() is suitable to replace the form: |
acc3c8d1 | 1699 | * |
d3649f68 CH |
1700 | * down_read(&mm->mmap_sem); |
1701 | * do_something() | |
1702 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1703 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1704 | * |
d3649f68 | 1705 | * to: |
acc3c8d1 | 1706 | * |
d3649f68 CH |
1707 | * int locked = 1; |
1708 | * down_read(&mm->mmap_sem); | |
1709 | * do_something() | |
1710 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
1711 | * if (locked) | |
1712 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1713 | */ |
d3649f68 CH |
1714 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
1715 | unsigned int gup_flags, struct page **pages, | |
1716 | int *locked) | |
acc3c8d1 | 1717 | { |
acc3c8d1 | 1718 | /* |
d3649f68 CH |
1719 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
1720 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1721 | * vmas. As there are no users of this flag in this call we simply | |
1722 | * disallow this option for now. | |
acc3c8d1 | 1723 | */ |
d3649f68 CH |
1724 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
1725 | return -EINVAL; | |
acc3c8d1 | 1726 | |
d3649f68 CH |
1727 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
1728 | pages, NULL, locked, | |
1729 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 1730 | } |
d3649f68 | 1731 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
1732 | |
1733 | /* | |
d3649f68 | 1734 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 1735 | * |
d3649f68 CH |
1736 | * down_read(&mm->mmap_sem); |
1737 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1738 | * up_read(&mm->mmap_sem); | |
1739 | * | |
1740 | * with: | |
1741 | * | |
1742 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
1743 | * | |
1744 | * It is functionally equivalent to get_user_pages_fast so | |
1745 | * get_user_pages_fast should be used instead if specific gup_flags | |
1746 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 1747 | */ |
d3649f68 CH |
1748 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
1749 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
1750 | { |
1751 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
1752 | int locked = 1; |
1753 | long ret; | |
acc3c8d1 | 1754 | |
d3649f68 CH |
1755 | /* |
1756 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
1757 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1758 | * vmas. As there are no users of this flag in this call we simply | |
1759 | * disallow this option for now. | |
1760 | */ | |
1761 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1762 | return -EINVAL; | |
acc3c8d1 | 1763 | |
d3649f68 CH |
1764 | down_read(&mm->mmap_sem); |
1765 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
1766 | &locked, gup_flags | FOLL_TOUCH); | |
acc3c8d1 KS |
1767 | if (locked) |
1768 | up_read(&mm->mmap_sem); | |
d3649f68 | 1769 | return ret; |
4bbd4c77 | 1770 | } |
d3649f68 | 1771 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
1772 | |
1773 | /* | |
67a929e0 | 1774 | * Fast GUP |
2667f50e SC |
1775 | * |
1776 | * get_user_pages_fast attempts to pin user pages by walking the page | |
1777 | * tables directly and avoids taking locks. Thus the walker needs to be | |
1778 | * protected from page table pages being freed from under it, and should | |
1779 | * block any THP splits. | |
1780 | * | |
1781 | * One way to achieve this is to have the walker disable interrupts, and | |
1782 | * rely on IPIs from the TLB flushing code blocking before the page table | |
1783 | * pages are freed. This is unsuitable for architectures that do not need | |
1784 | * to broadcast an IPI when invalidating TLBs. | |
1785 | * | |
1786 | * Another way to achieve this is to batch up page table containing pages | |
1787 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
1788 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
1789 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
1790 | * (which is a relatively rare event). The code below adopts this strategy. | |
1791 | * | |
1792 | * Before activating this code, please be aware that the following assumptions | |
1793 | * are currently made: | |
1794 | * | |
ff2e6d72 | 1795 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 1796 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 1797 | * |
2667f50e SC |
1798 | * *) ptes can be read atomically by the architecture. |
1799 | * | |
1800 | * *) access_ok is sufficient to validate userspace address ranges. | |
1801 | * | |
1802 | * The last two assumptions can be relaxed by the addition of helper functions. | |
1803 | * | |
1804 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
1805 | */ | |
67a929e0 | 1806 | #ifdef CONFIG_HAVE_FAST_GUP |
39656e83 CH |
1807 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH |
1808 | /* | |
1809 | * WARNING: only to be used in the get_user_pages_fast() implementation. | |
1810 | * | |
1811 | * With get_user_pages_fast(), we walk down the pagetables without taking any | |
1812 | * locks. For this we would like to load the pointers atomically, but sometimes | |
1813 | * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What | |
1814 | * we do have is the guarantee that a PTE will only either go from not present | |
1815 | * to present, or present to not present or both -- it will not switch to a | |
1816 | * completely different present page without a TLB flush in between; something | |
1817 | * that we are blocking by holding interrupts off. | |
1818 | * | |
1819 | * Setting ptes from not present to present goes: | |
1820 | * | |
1821 | * ptep->pte_high = h; | |
1822 | * smp_wmb(); | |
1823 | * ptep->pte_low = l; | |
1824 | * | |
1825 | * And present to not present goes: | |
1826 | * | |
1827 | * ptep->pte_low = 0; | |
1828 | * smp_wmb(); | |
1829 | * ptep->pte_high = 0; | |
1830 | * | |
1831 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
1832 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
1833 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
1834 | * picked up a changed pte high. We might have gotten rubbish values from | |
1835 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
1836 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
1837 | * operates on present ptes we're safe. | |
1838 | */ | |
1839 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1840 | { | |
1841 | pte_t pte; | |
2667f50e | 1842 | |
39656e83 CH |
1843 | do { |
1844 | pte.pte_low = ptep->pte_low; | |
1845 | smp_rmb(); | |
1846 | pte.pte_high = ptep->pte_high; | |
1847 | smp_rmb(); | |
1848 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
1849 | ||
1850 | return pte; | |
1851 | } | |
1852 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | |
0005d20b | 1853 | /* |
39656e83 | 1854 | * We require that the PTE can be read atomically. |
0005d20b KS |
1855 | */ |
1856 | static inline pte_t gup_get_pte(pte_t *ptep) | |
1857 | { | |
1858 | return READ_ONCE(*ptep); | |
1859 | } | |
39656e83 | 1860 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ |
0005d20b | 1861 | |
790c7369 GR |
1862 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
1863 | struct page **pages) | |
b59f65fa KS |
1864 | { |
1865 | while ((*nr) - nr_start) { | |
1866 | struct page *page = pages[--(*nr)]; | |
1867 | ||
1868 | ClearPageReferenced(page); | |
1869 | put_page(page); | |
1870 | } | |
1871 | } | |
1872 | ||
3010a5ea | 1873 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 1874 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 1875 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 1876 | { |
b59f65fa KS |
1877 | struct dev_pagemap *pgmap = NULL; |
1878 | int nr_start = *nr, ret = 0; | |
2667f50e | 1879 | pte_t *ptep, *ptem; |
2667f50e SC |
1880 | |
1881 | ptem = ptep = pte_offset_map(&pmd, addr); | |
1882 | do { | |
0005d20b | 1883 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 1884 | struct page *head, *page; |
2667f50e SC |
1885 | |
1886 | /* | |
1887 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 1888 | * path using the pte_protnone check. |
2667f50e | 1889 | */ |
e7884f8e KS |
1890 | if (pte_protnone(pte)) |
1891 | goto pte_unmap; | |
1892 | ||
b798bec4 | 1893 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
1894 | goto pte_unmap; |
1895 | ||
b59f65fa | 1896 | if (pte_devmap(pte)) { |
7af75561 IW |
1897 | if (unlikely(flags & FOLL_LONGTERM)) |
1898 | goto pte_unmap; | |
1899 | ||
b59f65fa KS |
1900 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
1901 | if (unlikely(!pgmap)) { | |
1902 | undo_dev_pagemap(nr, nr_start, pages); | |
1903 | goto pte_unmap; | |
1904 | } | |
1905 | } else if (pte_special(pte)) | |
2667f50e SC |
1906 | goto pte_unmap; |
1907 | ||
1908 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
1909 | page = pte_page(pte); | |
1910 | ||
8fde12ca LT |
1911 | head = try_get_compound_head(page, 1); |
1912 | if (!head) | |
2667f50e SC |
1913 | goto pte_unmap; |
1914 | ||
1915 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
7aef4172 | 1916 | put_page(head); |
2667f50e SC |
1917 | goto pte_unmap; |
1918 | } | |
1919 | ||
7aef4172 | 1920 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 KS |
1921 | |
1922 | SetPageReferenced(page); | |
2667f50e SC |
1923 | pages[*nr] = page; |
1924 | (*nr)++; | |
1925 | ||
1926 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
1927 | ||
1928 | ret = 1; | |
1929 | ||
1930 | pte_unmap: | |
832d7aa0 CH |
1931 | if (pgmap) |
1932 | put_dev_pagemap(pgmap); | |
2667f50e SC |
1933 | pte_unmap(ptem); |
1934 | return ret; | |
1935 | } | |
1936 | #else | |
1937 | ||
1938 | /* | |
1939 | * If we can't determine whether or not a pte is special, then fail immediately | |
1940 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
1941 | * to be special. | |
1942 | * | |
1943 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
1944 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
1945 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
1946 | */ | |
1947 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 1948 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
1949 | { |
1950 | return 0; | |
1951 | } | |
3010a5ea | 1952 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 1953 | |
17596731 | 1954 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa KS |
1955 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
1956 | unsigned long end, struct page **pages, int *nr) | |
1957 | { | |
1958 | int nr_start = *nr; | |
1959 | struct dev_pagemap *pgmap = NULL; | |
1960 | ||
1961 | do { | |
1962 | struct page *page = pfn_to_page(pfn); | |
1963 | ||
1964 | pgmap = get_dev_pagemap(pfn, pgmap); | |
1965 | if (unlikely(!pgmap)) { | |
1966 | undo_dev_pagemap(nr, nr_start, pages); | |
1967 | return 0; | |
1968 | } | |
1969 | SetPageReferenced(page); | |
1970 | pages[*nr] = page; | |
1971 | get_page(page); | |
b59f65fa KS |
1972 | (*nr)++; |
1973 | pfn++; | |
1974 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
1975 | |
1976 | if (pgmap) | |
1977 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
1978 | return 1; |
1979 | } | |
1980 | ||
a9b6de77 | 1981 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
1982 | unsigned long end, struct page **pages, int *nr) |
1983 | { | |
1984 | unsigned long fault_pfn; | |
a9b6de77 DW |
1985 | int nr_start = *nr; |
1986 | ||
1987 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
1988 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
1989 | return 0; | |
b59f65fa | 1990 | |
a9b6de77 DW |
1991 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
1992 | undo_dev_pagemap(nr, nr_start, pages); | |
1993 | return 0; | |
1994 | } | |
1995 | return 1; | |
b59f65fa KS |
1996 | } |
1997 | ||
a9b6de77 | 1998 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
1999 | unsigned long end, struct page **pages, int *nr) |
2000 | { | |
2001 | unsigned long fault_pfn; | |
a9b6de77 DW |
2002 | int nr_start = *nr; |
2003 | ||
2004 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
2005 | if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | |
2006 | return 0; | |
b59f65fa | 2007 | |
a9b6de77 DW |
2008 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
2009 | undo_dev_pagemap(nr, nr_start, pages); | |
2010 | return 0; | |
2011 | } | |
2012 | return 1; | |
b59f65fa KS |
2013 | } |
2014 | #else | |
a9b6de77 | 2015 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
b59f65fa KS |
2016 | unsigned long end, struct page **pages, int *nr) |
2017 | { | |
2018 | BUILD_BUG(); | |
2019 | return 0; | |
2020 | } | |
2021 | ||
a9b6de77 | 2022 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
b59f65fa KS |
2023 | unsigned long end, struct page **pages, int *nr) |
2024 | { | |
2025 | BUILD_BUG(); | |
2026 | return 0; | |
2027 | } | |
2028 | #endif | |
2029 | ||
a43e9820 JH |
2030 | static int record_subpages(struct page *page, unsigned long addr, |
2031 | unsigned long end, struct page **pages) | |
2032 | { | |
2033 | int nr; | |
2034 | ||
2035 | for (nr = 0; addr != end; addr += PAGE_SIZE) | |
2036 | pages[nr++] = page++; | |
2037 | ||
2038 | return nr; | |
2039 | } | |
2040 | ||
2041 | static void put_compound_head(struct page *page, int refs) | |
2042 | { | |
2043 | VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); | |
2044 | /* | |
2045 | * Calling put_page() for each ref is unnecessarily slow. Only the last | |
2046 | * ref needs a put_page(). | |
2047 | */ | |
2048 | if (refs > 1) | |
2049 | page_ref_sub(page, refs - 1); | |
2050 | put_page(page); | |
2051 | } | |
2052 | ||
cbd34da7 CH |
2053 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2054 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
2055 | unsigned long sz) | |
2056 | { | |
2057 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
2058 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
2059 | } | |
2060 | ||
2061 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
0cd22afd JH |
2062 | unsigned long end, unsigned int flags, |
2063 | struct page **pages, int *nr) | |
cbd34da7 CH |
2064 | { |
2065 | unsigned long pte_end; | |
2066 | struct page *head, *page; | |
2067 | pte_t pte; | |
2068 | int refs; | |
2069 | ||
2070 | pte_end = (addr + sz) & ~(sz-1); | |
2071 | if (pte_end < end) | |
2072 | end = pte_end; | |
2073 | ||
2074 | pte = READ_ONCE(*ptep); | |
2075 | ||
0cd22afd | 2076 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
cbd34da7 CH |
2077 | return 0; |
2078 | ||
2079 | /* hugepages are never "special" */ | |
2080 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2081 | ||
cbd34da7 | 2082 | head = pte_page(pte); |
cbd34da7 | 2083 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); |
a43e9820 | 2084 | refs = record_subpages(page, addr, end, pages + *nr); |
cbd34da7 | 2085 | |
01a36916 | 2086 | head = try_get_compound_head(head, refs); |
a43e9820 | 2087 | if (!head) |
cbd34da7 | 2088 | return 0; |
cbd34da7 CH |
2089 | |
2090 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
a43e9820 | 2091 | put_compound_head(head, refs); |
cbd34da7 CH |
2092 | return 0; |
2093 | } | |
2094 | ||
a43e9820 | 2095 | *nr += refs; |
520b4a44 | 2096 | SetPageReferenced(head); |
cbd34da7 CH |
2097 | return 1; |
2098 | } | |
2099 | ||
2100 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2101 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2102 | struct page **pages, int *nr) |
2103 | { | |
2104 | pte_t *ptep; | |
2105 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2106 | unsigned long next; | |
2107 | ||
2108 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2109 | do { | |
2110 | next = hugepte_addr_end(addr, end, sz); | |
0cd22afd | 2111 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
cbd34da7 CH |
2112 | return 0; |
2113 | } while (ptep++, addr = next, addr != end); | |
2114 | ||
2115 | return 1; | |
2116 | } | |
2117 | #else | |
2118 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2119 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2120 | struct page **pages, int *nr) |
2121 | { | |
2122 | return 0; | |
2123 | } | |
2124 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2125 | ||
2667f50e | 2126 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
0cd22afd JH |
2127 | unsigned long end, unsigned int flags, |
2128 | struct page **pages, int *nr) | |
2667f50e | 2129 | { |
ddc58f27 | 2130 | struct page *head, *page; |
2667f50e SC |
2131 | int refs; |
2132 | ||
b798bec4 | 2133 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2134 | return 0; |
2135 | ||
7af75561 IW |
2136 | if (pmd_devmap(orig)) { |
2137 | if (unlikely(flags & FOLL_LONGTERM)) | |
2138 | return 0; | |
a9b6de77 | 2139 | return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); |
7af75561 | 2140 | } |
b59f65fa | 2141 | |
d63206ee | 2142 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2143 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2144 | |
8fde12ca | 2145 | head = try_get_compound_head(pmd_page(orig), refs); |
a43e9820 | 2146 | if (!head) |
2667f50e | 2147 | return 0; |
2667f50e SC |
2148 | |
2149 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
a43e9820 | 2150 | put_compound_head(head, refs); |
2667f50e SC |
2151 | return 0; |
2152 | } | |
2153 | ||
a43e9820 | 2154 | *nr += refs; |
e9348053 | 2155 | SetPageReferenced(head); |
2667f50e SC |
2156 | return 1; |
2157 | } | |
2158 | ||
2159 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
b798bec4 | 2160 | unsigned long end, unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2161 | { |
ddc58f27 | 2162 | struct page *head, *page; |
2667f50e SC |
2163 | int refs; |
2164 | ||
b798bec4 | 2165 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2166 | return 0; |
2167 | ||
7af75561 IW |
2168 | if (pud_devmap(orig)) { |
2169 | if (unlikely(flags & FOLL_LONGTERM)) | |
2170 | return 0; | |
a9b6de77 | 2171 | return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); |
7af75561 | 2172 | } |
b59f65fa | 2173 | |
d63206ee | 2174 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2175 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2176 | |
8fde12ca | 2177 | head = try_get_compound_head(pud_page(orig), refs); |
a43e9820 | 2178 | if (!head) |
2667f50e | 2179 | return 0; |
2667f50e SC |
2180 | |
2181 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
a43e9820 | 2182 | put_compound_head(head, refs); |
2667f50e SC |
2183 | return 0; |
2184 | } | |
2185 | ||
a43e9820 | 2186 | *nr += refs; |
e9348053 | 2187 | SetPageReferenced(head); |
2667f50e SC |
2188 | return 1; |
2189 | } | |
2190 | ||
f30c59e9 | 2191 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2192 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2193 | struct page **pages, int *nr) |
2194 | { | |
2195 | int refs; | |
ddc58f27 | 2196 | struct page *head, *page; |
f30c59e9 | 2197 | |
b798bec4 | 2198 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2199 | return 0; |
2200 | ||
b59f65fa | 2201 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 2202 | |
d63206ee | 2203 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
a43e9820 | 2204 | refs = record_subpages(page, addr, end, pages + *nr); |
f30c59e9 | 2205 | |
8fde12ca | 2206 | head = try_get_compound_head(pgd_page(orig), refs); |
a43e9820 | 2207 | if (!head) |
f30c59e9 | 2208 | return 0; |
f30c59e9 AK |
2209 | |
2210 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
a43e9820 | 2211 | put_compound_head(head, refs); |
f30c59e9 AK |
2212 | return 0; |
2213 | } | |
2214 | ||
a43e9820 | 2215 | *nr += refs; |
e9348053 | 2216 | SetPageReferenced(head); |
f30c59e9 AK |
2217 | return 1; |
2218 | } | |
2219 | ||
2667f50e | 2220 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2221 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2222 | { |
2223 | unsigned long next; | |
2224 | pmd_t *pmdp; | |
2225 | ||
2226 | pmdp = pmd_offset(&pud, addr); | |
2227 | do { | |
38c5ce93 | 2228 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2229 | |
2230 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2231 | if (!pmd_present(pmd)) |
2667f50e SC |
2232 | return 0; |
2233 | ||
414fd080 YZ |
2234 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2235 | pmd_devmap(pmd))) { | |
2667f50e SC |
2236 | /* |
2237 | * NUMA hinting faults need to be handled in the GUP | |
2238 | * slowpath for accounting purposes and so that they | |
2239 | * can be serialised against THP migration. | |
2240 | */ | |
8a0516ed | 2241 | if (pmd_protnone(pmd)) |
2667f50e SC |
2242 | return 0; |
2243 | ||
b798bec4 | 2244 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2245 | pages, nr)) |
2246 | return 0; | |
2247 | ||
f30c59e9 AK |
2248 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2249 | /* | |
2250 | * architecture have different format for hugetlbfs | |
2251 | * pmd format and THP pmd format | |
2252 | */ | |
2253 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2254 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2255 | return 0; |
b798bec4 | 2256 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2257 | return 0; |
2667f50e SC |
2258 | } while (pmdp++, addr = next, addr != end); |
2259 | ||
2260 | return 1; | |
2261 | } | |
2262 | ||
c2febafc | 2263 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2264 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2265 | { |
2266 | unsigned long next; | |
2267 | pud_t *pudp; | |
2268 | ||
c2febafc | 2269 | pudp = pud_offset(&p4d, addr); |
2667f50e | 2270 | do { |
e37c6982 | 2271 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2272 | |
2273 | next = pud_addr_end(addr, end); | |
15494520 | 2274 | if (unlikely(!pud_present(pud))) |
2667f50e | 2275 | return 0; |
f30c59e9 | 2276 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2277 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2278 | pages, nr)) |
2279 | return 0; | |
2280 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2281 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2282 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2283 | return 0; |
b798bec4 | 2284 | } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2285 | return 0; |
2286 | } while (pudp++, addr = next, addr != end); | |
2287 | ||
2288 | return 1; | |
2289 | } | |
2290 | ||
c2febafc | 2291 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2292 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2293 | { |
2294 | unsigned long next; | |
2295 | p4d_t *p4dp; | |
2296 | ||
2297 | p4dp = p4d_offset(&pgd, addr); | |
2298 | do { | |
2299 | p4d_t p4d = READ_ONCE(*p4dp); | |
2300 | ||
2301 | next = p4d_addr_end(addr, end); | |
2302 | if (p4d_none(p4d)) | |
2303 | return 0; | |
2304 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2305 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2306 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2307 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2308 | return 0; |
b798bec4 | 2309 | } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2310 | return 0; |
2311 | } while (p4dp++, addr = next, addr != end); | |
2312 | ||
2313 | return 1; | |
2314 | } | |
2315 | ||
5b65c467 | 2316 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2317 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2318 | { |
2319 | unsigned long next; | |
2320 | pgd_t *pgdp; | |
2321 | ||
2322 | pgdp = pgd_offset(current->mm, addr); | |
2323 | do { | |
2324 | pgd_t pgd = READ_ONCE(*pgdp); | |
2325 | ||
2326 | next = pgd_addr_end(addr, end); | |
2327 | if (pgd_none(pgd)) | |
2328 | return; | |
2329 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2330 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2331 | pages, nr)) |
2332 | return; | |
2333 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2334 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2335 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2336 | return; |
b798bec4 | 2337 | } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2338 | return; |
2339 | } while (pgdp++, addr = next, addr != end); | |
2340 | } | |
050a9adc CH |
2341 | #else |
2342 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2343 | unsigned int flags, struct page **pages, int *nr) | |
2344 | { | |
2345 | } | |
2346 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2347 | |
2348 | #ifndef gup_fast_permitted | |
2349 | /* | |
2350 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
2351 | * we need to fall back to the slow version: | |
2352 | */ | |
26f4c328 | 2353 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2354 | { |
26f4c328 | 2355 | return true; |
5b65c467 KS |
2356 | } |
2357 | #endif | |
2358 | ||
2667f50e SC |
2359 | /* |
2360 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
d0811078 MT |
2361 | * the regular GUP. |
2362 | * Note a difference with get_user_pages_fast: this always returns the | |
2363 | * number of pages pinned, 0 if no pages were pinned. | |
050a9adc CH |
2364 | * |
2365 | * If the architecture does not support this function, simply return with no | |
2366 | * pages pinned. | |
2667f50e SC |
2367 | */ |
2368 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2369 | struct page **pages) | |
2370 | { | |
d4faa402 | 2371 | unsigned long len, end; |
5b65c467 | 2372 | unsigned long flags; |
2667f50e SC |
2373 | int nr = 0; |
2374 | ||
f455c854 | 2375 | start = untagged_addr(start) & PAGE_MASK; |
2667f50e SC |
2376 | len = (unsigned long) nr_pages << PAGE_SHIFT; |
2377 | end = start + len; | |
2378 | ||
26f4c328 CH |
2379 | if (end <= start) |
2380 | return 0; | |
96d4f267 | 2381 | if (unlikely(!access_ok((void __user *)start, len))) |
2667f50e SC |
2382 | return 0; |
2383 | ||
2384 | /* | |
2385 | * Disable interrupts. We use the nested form as we can already have | |
2386 | * interrupts disabled by get_futex_key. | |
2387 | * | |
2388 | * With interrupts disabled, we block page table pages from being | |
2ebe8228 FW |
2389 | * freed from under us. See struct mmu_table_batch comments in |
2390 | * include/asm-generic/tlb.h for more details. | |
2667f50e SC |
2391 | * |
2392 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
2393 | * block IPIs that come from THPs splitting. | |
2394 | */ | |
2395 | ||
050a9adc CH |
2396 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2397 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2398 | local_irq_save(flags); |
b798bec4 | 2399 | gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); |
5b65c467 KS |
2400 | local_irq_restore(flags); |
2401 | } | |
2667f50e SC |
2402 | |
2403 | return nr; | |
2404 | } | |
050a9adc | 2405 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); |
2667f50e | 2406 | |
7af75561 IW |
2407 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2408 | unsigned int gup_flags, struct page **pages) | |
2409 | { | |
2410 | int ret; | |
2411 | ||
2412 | /* | |
2413 | * FIXME: FOLL_LONGTERM does not work with | |
2414 | * get_user_pages_unlocked() (see comments in that function) | |
2415 | */ | |
2416 | if (gup_flags & FOLL_LONGTERM) { | |
2417 | down_read(¤t->mm->mmap_sem); | |
2418 | ret = __gup_longterm_locked(current, current->mm, | |
2419 | start, nr_pages, | |
2420 | pages, NULL, gup_flags); | |
2421 | up_read(¤t->mm->mmap_sem); | |
2422 | } else { | |
2423 | ret = get_user_pages_unlocked(start, nr_pages, | |
2424 | pages, gup_flags); | |
2425 | } | |
2426 | ||
2427 | return ret; | |
2428 | } | |
2429 | ||
eddb1c22 JH |
2430 | static int internal_get_user_pages_fast(unsigned long start, int nr_pages, |
2431 | unsigned int gup_flags, | |
2432 | struct page **pages) | |
2667f50e | 2433 | { |
5b65c467 | 2434 | unsigned long addr, len, end; |
73e10a61 | 2435 | int nr = 0, ret = 0; |
2667f50e | 2436 | |
f4000fdf | 2437 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
eddb1c22 | 2438 | FOLL_FORCE | FOLL_PIN))) |
817be129 CH |
2439 | return -EINVAL; |
2440 | ||
f455c854 | 2441 | start = untagged_addr(start) & PAGE_MASK; |
5b65c467 KS |
2442 | addr = start; |
2443 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2444 | end = start + len; | |
2445 | ||
26f4c328 | 2446 | if (end <= start) |
c61611f7 | 2447 | return 0; |
96d4f267 | 2448 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2449 | return -EFAULT; |
73e10a61 | 2450 | |
050a9adc CH |
2451 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && |
2452 | gup_fast_permitted(start, end)) { | |
5b65c467 | 2453 | local_irq_disable(); |
73b0140b | 2454 | gup_pgd_range(addr, end, gup_flags, pages, &nr); |
5b65c467 | 2455 | local_irq_enable(); |
73e10a61 KS |
2456 | ret = nr; |
2457 | } | |
2667f50e SC |
2458 | |
2459 | if (nr < nr_pages) { | |
2460 | /* Try to get the remaining pages with get_user_pages */ | |
2461 | start += nr << PAGE_SHIFT; | |
2462 | pages += nr; | |
2463 | ||
7af75561 IW |
2464 | ret = __gup_longterm_unlocked(start, nr_pages - nr, |
2465 | gup_flags, pages); | |
2667f50e SC |
2466 | |
2467 | /* Have to be a bit careful with return values */ | |
2468 | if (nr > 0) { | |
2469 | if (ret < 0) | |
2470 | ret = nr; | |
2471 | else | |
2472 | ret += nr; | |
2473 | } | |
2474 | } | |
2475 | ||
2476 | return ret; | |
2477 | } | |
eddb1c22 JH |
2478 | |
2479 | /** | |
2480 | * get_user_pages_fast() - pin user pages in memory | |
2481 | * @start: starting user address | |
2482 | * @nr_pages: number of pages from start to pin | |
2483 | * @gup_flags: flags modifying pin behaviour | |
2484 | * @pages: array that receives pointers to the pages pinned. | |
2485 | * Should be at least nr_pages long. | |
2486 | * | |
2487 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2488 | * If not successful, it will fall back to taking the lock and | |
2489 | * calling get_user_pages(). | |
2490 | * | |
2491 | * Returns number of pages pinned. This may be fewer than the number requested. | |
2492 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
2493 | * -errno. | |
2494 | */ | |
2495 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
2496 | unsigned int gup_flags, struct page **pages) | |
2497 | { | |
2498 | /* | |
2499 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
2500 | * never directly by the caller, so enforce that: | |
2501 | */ | |
2502 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
2503 | return -EINVAL; | |
2504 | ||
2505 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
2506 | } | |
050a9adc | 2507 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
2508 | |
2509 | /** | |
2510 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
2511 | * | |
2512 | * For now, this is a placeholder function, until various call sites are | |
2513 | * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | |
2514 | * this is identical to get_user_pages_fast(). | |
2515 | * | |
2516 | * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | |
2517 | * is NOT intended for Case 2 (RDMA: long-term pins). | |
2518 | */ | |
2519 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
2520 | unsigned int gup_flags, struct page **pages) | |
2521 | { | |
2522 | /* | |
2523 | * This is a placeholder, until the pin functionality is activated. | |
2524 | * Until then, just behave like the corresponding get_user_pages*() | |
2525 | * routine. | |
2526 | */ | |
2527 | return get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
2528 | } | |
2529 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
2530 | ||
2531 | /** | |
2532 | * pin_user_pages_remote() - pin pages of a remote process (task != current) | |
2533 | * | |
2534 | * For now, this is a placeholder function, until various call sites are | |
2535 | * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | |
2536 | * this is identical to get_user_pages_remote(). | |
2537 | * | |
2538 | * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | |
2539 | * is NOT intended for Case 2 (RDMA: long-term pins). | |
2540 | */ | |
2541 | long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | |
2542 | unsigned long start, unsigned long nr_pages, | |
2543 | unsigned int gup_flags, struct page **pages, | |
2544 | struct vm_area_struct **vmas, int *locked) | |
2545 | { | |
2546 | /* | |
2547 | * This is a placeholder, until the pin functionality is activated. | |
2548 | * Until then, just behave like the corresponding get_user_pages*() | |
2549 | * routine. | |
2550 | */ | |
2551 | return get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, pages, | |
2552 | vmas, locked); | |
2553 | } | |
2554 | EXPORT_SYMBOL(pin_user_pages_remote); | |
2555 | ||
2556 | /** | |
2557 | * pin_user_pages() - pin user pages in memory for use by other devices | |
2558 | * | |
2559 | * For now, this is a placeholder function, until various call sites are | |
2560 | * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | |
2561 | * this is identical to get_user_pages(). | |
2562 | * | |
2563 | * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | |
2564 | * is NOT intended for Case 2 (RDMA: long-term pins). | |
2565 | */ | |
2566 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
2567 | unsigned int gup_flags, struct page **pages, | |
2568 | struct vm_area_struct **vmas) | |
2569 | { | |
2570 | /* | |
2571 | * This is a placeholder, until the pin functionality is activated. | |
2572 | * Until then, just behave like the corresponding get_user_pages*() | |
2573 | * routine. | |
2574 | */ | |
2575 | return get_user_pages(start, nr_pages, gup_flags, pages, vmas); | |
2576 | } | |
2577 | EXPORT_SYMBOL(pin_user_pages); |