]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
74bd59bb PE |
2 | /* |
3 | * Pid namespaces | |
4 | * | |
5 | * Authors: | |
6 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
7 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
8 | * Many thanks to Oleg Nesterov for comments and help | |
9 | * | |
10 | */ | |
11 | ||
12 | #include <linux/pid.h> | |
13 | #include <linux/pid_namespace.h> | |
49f4d8b9 | 14 | #include <linux/user_namespace.h> |
74bd59bb | 15 | #include <linux/syscalls.h> |
5b825c3a | 16 | #include <linux/cred.h> |
74bd59bb | 17 | #include <linux/err.h> |
0b6b030f | 18 | #include <linux/acct.h> |
5a0e3ad6 | 19 | #include <linux/slab.h> |
0bb80f24 | 20 | #include <linux/proc_ns.h> |
cf3f8921 | 21 | #include <linux/reboot.h> |
523a6a94 | 22 | #include <linux/export.h> |
29930025 | 23 | #include <linux/sched/task.h> |
f361bf4a | 24 | #include <linux/sched/signal.h> |
95846ecf | 25 | #include <linux/idr.h> |
74bd59bb | 26 | |
74bd59bb PE |
27 | static DEFINE_MUTEX(pid_caches_mutex); |
28 | static struct kmem_cache *pid_ns_cachep; | |
dd206bec AD |
29 | /* Write once array, filled from the beginning. */ |
30 | static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; | |
74bd59bb PE |
31 | |
32 | /* | |
33 | * creates the kmem cache to allocate pids from. | |
dd206bec | 34 | * @level: pid namespace level |
74bd59bb PE |
35 | */ |
36 | ||
dd206bec | 37 | static struct kmem_cache *create_pid_cachep(unsigned int level) |
74bd59bb | 38 | { |
dd206bec AD |
39 | /* Level 0 is init_pid_ns.pid_cachep */ |
40 | struct kmem_cache **pkc = &pid_cache[level - 1]; | |
41 | struct kmem_cache *kc; | |
42 | char name[4 + 10 + 1]; | |
43 | unsigned int len; | |
44 | ||
45 | kc = READ_ONCE(*pkc); | |
46 | if (kc) | |
47 | return kc; | |
48 | ||
49 | snprintf(name, sizeof(name), "pid_%u", level + 1); | |
50 | len = sizeof(struct pid) + level * sizeof(struct upid); | |
74bd59bb | 51 | mutex_lock(&pid_caches_mutex); |
dd206bec AD |
52 | /* Name collision forces to do allocation under mutex. */ |
53 | if (!*pkc) | |
54 | *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); | |
74bd59bb | 55 | mutex_unlock(&pid_caches_mutex); |
dd206bec AD |
56 | /* current can fail, but someone else can succeed. */ |
57 | return READ_ONCE(*pkc); | |
74bd59bb PE |
58 | } |
59 | ||
f333c700 EB |
60 | static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) |
61 | { | |
62 | return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); | |
63 | } | |
64 | ||
65 | static void dec_pid_namespaces(struct ucounts *ucounts) | |
66 | { | |
67 | dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); | |
68 | } | |
69 | ||
49f4d8b9 EB |
70 | static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, |
71 | struct pid_namespace *parent_pid_ns) | |
74bd59bb PE |
72 | { |
73 | struct pid_namespace *ns; | |
ed469a63 | 74 | unsigned int level = parent_pid_ns->level + 1; |
f333c700 | 75 | struct ucounts *ucounts; |
f2302505 AV |
76 | int err; |
77 | ||
a2b42626 EB |
78 | err = -EINVAL; |
79 | if (!in_userns(parent_pid_ns->user_ns, user_ns)) | |
80 | goto out; | |
81 | ||
df75e774 | 82 | err = -ENOSPC; |
f333c700 EB |
83 | if (level > MAX_PID_NS_LEVEL) |
84 | goto out; | |
85 | ucounts = inc_pid_namespaces(user_ns); | |
86 | if (!ucounts) | |
f2302505 | 87 | goto out; |
74bd59bb | 88 | |
f2302505 | 89 | err = -ENOMEM; |
84406c15 | 90 | ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); |
74bd59bb | 91 | if (ns == NULL) |
f333c700 | 92 | goto out_dec; |
74bd59bb | 93 | |
95846ecf | 94 | idr_init(&ns->idr); |
74bd59bb | 95 | |
dd206bec | 96 | ns->pid_cachep = create_pid_cachep(level); |
74bd59bb | 97 | if (ns->pid_cachep == NULL) |
95846ecf | 98 | goto out_free_idr; |
74bd59bb | 99 | |
6344c433 | 100 | err = ns_alloc_inum(&ns->ns); |
98f842e6 | 101 | if (err) |
95846ecf | 102 | goto out_free_idr; |
33c42940 | 103 | ns->ns.ops = &pidns_operations; |
98f842e6 | 104 | |
8eb71d95 | 105 | refcount_set(&ns->ns.count, 1); |
74bd59bb | 106 | ns->level = level; |
ed469a63 | 107 | ns->parent = get_pid_ns(parent_pid_ns); |
49f4d8b9 | 108 | ns->user_ns = get_user_ns(user_ns); |
f333c700 | 109 | ns->ucounts = ucounts; |
e8cfbc24 | 110 | ns->pid_allocated = PIDNS_ADDING; |
74bd59bb | 111 | |
74bd59bb PE |
112 | return ns; |
113 | ||
95846ecf GS |
114 | out_free_idr: |
115 | idr_destroy(&ns->idr); | |
74bd59bb | 116 | kmem_cache_free(pid_ns_cachep, ns); |
f333c700 EB |
117 | out_dec: |
118 | dec_pid_namespaces(ucounts); | |
74bd59bb | 119 | out: |
4308eebb | 120 | return ERR_PTR(err); |
74bd59bb PE |
121 | } |
122 | ||
1adfcb03 AV |
123 | static void delayed_free_pidns(struct rcu_head *p) |
124 | { | |
add7c65c AV |
125 | struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); |
126 | ||
127 | dec_pid_namespaces(ns->ucounts); | |
128 | put_user_ns(ns->user_ns); | |
129 | ||
130 | kmem_cache_free(pid_ns_cachep, ns); | |
1adfcb03 AV |
131 | } |
132 | ||
74bd59bb PE |
133 | static void destroy_pid_namespace(struct pid_namespace *ns) |
134 | { | |
6344c433 | 135 | ns_free_inum(&ns->ns); |
95846ecf GS |
136 | |
137 | idr_destroy(&ns->idr); | |
1adfcb03 | 138 | call_rcu(&ns->rcu, delayed_free_pidns); |
74bd59bb PE |
139 | } |
140 | ||
49f4d8b9 EB |
141 | struct pid_namespace *copy_pid_ns(unsigned long flags, |
142 | struct user_namespace *user_ns, struct pid_namespace *old_ns) | |
74bd59bb | 143 | { |
74bd59bb | 144 | if (!(flags & CLONE_NEWPID)) |
dca4a979 | 145 | return get_pid_ns(old_ns); |
225778d6 EB |
146 | if (task_active_pid_ns(current) != old_ns) |
147 | return ERR_PTR(-EINVAL); | |
49f4d8b9 | 148 | return create_pid_namespace(user_ns, old_ns); |
74bd59bb PE |
149 | } |
150 | ||
bbc2e3ef CG |
151 | void put_pid_ns(struct pid_namespace *ns) |
152 | { | |
153 | struct pid_namespace *parent; | |
154 | ||
155 | while (ns != &init_pid_ns) { | |
156 | parent = ns->parent; | |
8eb71d95 | 157 | if (!refcount_dec_and_test(&ns->ns.count)) |
bbc2e3ef | 158 | break; |
8eb71d95 | 159 | destroy_pid_namespace(ns); |
bbc2e3ef CG |
160 | ns = parent; |
161 | } | |
74bd59bb | 162 | } |
bbc2e3ef | 163 | EXPORT_SYMBOL_GPL(put_pid_ns); |
74bd59bb PE |
164 | |
165 | void zap_pid_ns_processes(struct pid_namespace *pid_ns) | |
166 | { | |
167 | int nr; | |
168 | int rc; | |
00c10bc1 | 169 | struct task_struct *task, *me = current; |
751c644b | 170 | int init_pids = thread_group_leader(me) ? 1 : 2; |
95846ecf | 171 | struct pid *pid; |
00c10bc1 | 172 | |
c876ad76 EB |
173 | /* Don't allow any more processes into the pid namespace */ |
174 | disable_pid_allocation(pid_ns); | |
175 | ||
a53b8315 ON |
176 | /* |
177 | * Ignore SIGCHLD causing any terminated children to autoreap. | |
178 | * This speeds up the namespace shutdown, plus see the comment | |
179 | * below. | |
180 | */ | |
00c10bc1 EB |
181 | spin_lock_irq(&me->sighand->siglock); |
182 | me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; | |
183 | spin_unlock_irq(&me->sighand->siglock); | |
74bd59bb PE |
184 | |
185 | /* | |
186 | * The last thread in the cgroup-init thread group is terminating. | |
187 | * Find remaining pid_ts in the namespace, signal and wait for them | |
188 | * to exit. | |
189 | * | |
190 | * Note: This signals each threads in the namespace - even those that | |
191 | * belong to the same thread group, To avoid this, we would have | |
192 | * to walk the entire tasklist looking a processes in this | |
193 | * namespace, but that could be unnecessarily expensive if the | |
194 | * pid namespace has just a few processes. Or we need to | |
195 | * maintain a tasklist for each pid namespace. | |
196 | * | |
197 | */ | |
95846ecf | 198 | rcu_read_lock(); |
74bd59bb | 199 | read_lock(&tasklist_lock); |
95846ecf GS |
200 | nr = 2; |
201 | idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { | |
202 | task = pid_task(pid, PIDTYPE_PID); | |
a02d6fd6 | 203 | if (task && !__fatal_signal_pending(task)) |
82058d66 | 204 | group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); |
74bd59bb PE |
205 | } |
206 | read_unlock(&tasklist_lock); | |
95846ecf | 207 | rcu_read_unlock(); |
74bd59bb | 208 | |
a53b8315 ON |
209 | /* |
210 | * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. | |
d300b610 | 211 | * kernel_wait4() will also block until our children traced from the |
a53b8315 ON |
212 | * parent namespace are detached and become EXIT_DEAD. |
213 | */ | |
74bd59bb PE |
214 | do { |
215 | clear_thread_flag(TIF_SIGPENDING); | |
d300b610 | 216 | rc = kernel_wait4(-1, NULL, __WALL, NULL); |
74bd59bb PE |
217 | } while (rc != -ECHILD); |
218 | ||
6347e900 | 219 | /* |
af9fe6d6 EB |
220 | * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE |
221 | * process whose parents processes are outside of the pid | |
222 | * namespace. Such processes are created with setns()+fork(). | |
a53b8315 | 223 | * |
af9fe6d6 EB |
224 | * If those EXIT_ZOMBIE processes are not reaped by their |
225 | * parents before their parents exit, they will be reparented | |
226 | * to pid_ns->child_reaper. Thus pidns->child_reaper needs to | |
227 | * stay valid until they all go away. | |
a53b8315 | 228 | * |
7b7b8a2c | 229 | * The code relies on the pid_ns->child_reaper ignoring |
af9fe6d6 EB |
230 | * SIGCHILD to cause those EXIT_ZOMBIE processes to be |
231 | * autoreaped if reparented. | |
232 | * | |
233 | * Semantically it is also desirable to wait for EXIT_ZOMBIE | |
234 | * processes before allowing the child_reaper to be reaped, as | |
235 | * that gives the invariant that when the init process of a | |
236 | * pid namespace is reaped all of the processes in the pid | |
237 | * namespace are gone. | |
238 | * | |
239 | * Once all of the other tasks are gone from the pid_namespace | |
240 | * free_pid() will awaken this task. | |
6347e900 EB |
241 | */ |
242 | for (;;) { | |
b9a985db | 243 | set_current_state(TASK_INTERRUPTIBLE); |
e8cfbc24 | 244 | if (pid_ns->pid_allocated == init_pids) |
6347e900 EB |
245 | break; |
246 | schedule(); | |
247 | } | |
af4b8a83 | 248 | __set_current_state(TASK_RUNNING); |
6347e900 | 249 | |
cf3f8921 DL |
250 | if (pid_ns->reboot) |
251 | current->signal->group_exit_code = pid_ns->reboot; | |
252 | ||
0b6b030f | 253 | acct_exit_ns(pid_ns); |
74bd59bb PE |
254 | return; |
255 | } | |
256 | ||
98ed57ee | 257 | #ifdef CONFIG_CHECKPOINT_RESTORE |
b8f566b0 | 258 | static int pid_ns_ctl_handler(struct ctl_table *table, int write, |
32927393 | 259 | void *buffer, size_t *lenp, loff_t *ppos) |
b8f566b0 | 260 | { |
49f4d8b9 | 261 | struct pid_namespace *pid_ns = task_active_pid_ns(current); |
b8f566b0 | 262 | struct ctl_table tmp = *table; |
95846ecf | 263 | int ret, next; |
b8f566b0 | 264 | |
b9a3db92 | 265 | if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) |
b8f566b0 PE |
266 | return -EPERM; |
267 | ||
268 | /* | |
269 | * Writing directly to ns' last_pid field is OK, since this field | |
270 | * is volatile in a living namespace anyway and a code writing to | |
271 | * it should synchronize its usage with external means. | |
272 | */ | |
273 | ||
95846ecf GS |
274 | next = idr_get_cursor(&pid_ns->idr) - 1; |
275 | ||
276 | tmp.data = &next; | |
277 | ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); | |
278 | if (!ret && write) | |
279 | idr_set_cursor(&pid_ns->idr, next + 1); | |
280 | ||
281 | return ret; | |
b8f566b0 PE |
282 | } |
283 | ||
579035dc | 284 | extern int pid_max; |
b8f566b0 PE |
285 | static struct ctl_table pid_ns_ctl_table[] = { |
286 | { | |
287 | .procname = "ns_last_pid", | |
288 | .maxlen = sizeof(int), | |
289 | .mode = 0666, /* permissions are checked in the handler */ | |
290 | .proc_handler = pid_ns_ctl_handler, | |
eec4844f | 291 | .extra1 = SYSCTL_ZERO, |
579035dc | 292 | .extra2 = &pid_max, |
b8f566b0 PE |
293 | }, |
294 | { } | |
295 | }; | |
b8f566b0 | 296 | static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; |
98ed57ee | 297 | #endif /* CONFIG_CHECKPOINT_RESTORE */ |
b8f566b0 | 298 | |
cf3f8921 DL |
299 | int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) |
300 | { | |
301 | if (pid_ns == &init_pid_ns) | |
302 | return 0; | |
303 | ||
304 | switch (cmd) { | |
305 | case LINUX_REBOOT_CMD_RESTART2: | |
306 | case LINUX_REBOOT_CMD_RESTART: | |
307 | pid_ns->reboot = SIGHUP; | |
308 | break; | |
309 | ||
310 | case LINUX_REBOOT_CMD_POWER_OFF: | |
311 | case LINUX_REBOOT_CMD_HALT: | |
312 | pid_ns->reboot = SIGINT; | |
313 | break; | |
314 | default: | |
315 | return -EINVAL; | |
316 | } | |
317 | ||
318 | read_lock(&tasklist_lock); | |
f9070dc9 | 319 | send_sig(SIGKILL, pid_ns->child_reaper, 1); |
cf3f8921 DL |
320 | read_unlock(&tasklist_lock); |
321 | ||
322 | do_exit(0); | |
323 | ||
324 | /* Not reached */ | |
325 | return 0; | |
326 | } | |
327 | ||
3c041184 AV |
328 | static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) |
329 | { | |
330 | return container_of(ns, struct pid_namespace, ns); | |
331 | } | |
332 | ||
64964528 | 333 | static struct ns_common *pidns_get(struct task_struct *task) |
57e8391d EB |
334 | { |
335 | struct pid_namespace *ns; | |
336 | ||
337 | rcu_read_lock(); | |
d2308225 ON |
338 | ns = task_active_pid_ns(task); |
339 | if (ns) | |
340 | get_pid_ns(ns); | |
57e8391d EB |
341 | rcu_read_unlock(); |
342 | ||
3c041184 | 343 | return ns ? &ns->ns : NULL; |
57e8391d EB |
344 | } |
345 | ||
eaa0d190 KT |
346 | static struct ns_common *pidns_for_children_get(struct task_struct *task) |
347 | { | |
348 | struct pid_namespace *ns = NULL; | |
349 | ||
350 | task_lock(task); | |
351 | if (task->nsproxy) { | |
352 | ns = task->nsproxy->pid_ns_for_children; | |
353 | get_pid_ns(ns); | |
354 | } | |
355 | task_unlock(task); | |
356 | ||
357 | if (ns) { | |
358 | read_lock(&tasklist_lock); | |
359 | if (!ns->child_reaper) { | |
360 | put_pid_ns(ns); | |
361 | ns = NULL; | |
362 | } | |
363 | read_unlock(&tasklist_lock); | |
364 | } | |
365 | ||
366 | return ns ? &ns->ns : NULL; | |
367 | } | |
368 | ||
64964528 | 369 | static void pidns_put(struct ns_common *ns) |
57e8391d | 370 | { |
3c041184 | 371 | put_pid_ns(to_pid_ns(ns)); |
57e8391d EB |
372 | } |
373 | ||
f2a8d52e | 374 | static int pidns_install(struct nsset *nsset, struct ns_common *ns) |
57e8391d | 375 | { |
f2a8d52e | 376 | struct nsproxy *nsproxy = nsset->nsproxy; |
57e8391d | 377 | struct pid_namespace *active = task_active_pid_ns(current); |
3c041184 | 378 | struct pid_namespace *ancestor, *new = to_pid_ns(ns); |
57e8391d | 379 | |
5e4a0847 | 380 | if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || |
f2a8d52e | 381 | !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) |
57e8391d EB |
382 | return -EPERM; |
383 | ||
384 | /* | |
385 | * Only allow entering the current active pid namespace | |
386 | * or a child of the current active pid namespace. | |
387 | * | |
388 | * This is required for fork to return a usable pid value and | |
389 | * this maintains the property that processes and their | |
390 | * children can not escape their current pid namespace. | |
391 | */ | |
392 | if (new->level < active->level) | |
393 | return -EINVAL; | |
394 | ||
395 | ancestor = new; | |
396 | while (ancestor->level > active->level) | |
397 | ancestor = ancestor->parent; | |
398 | if (ancestor != active) | |
399 | return -EINVAL; | |
400 | ||
c2b1df2e AL |
401 | put_pid_ns(nsproxy->pid_ns_for_children); |
402 | nsproxy->pid_ns_for_children = get_pid_ns(new); | |
57e8391d EB |
403 | return 0; |
404 | } | |
405 | ||
a7306ed8 AV |
406 | static struct ns_common *pidns_get_parent(struct ns_common *ns) |
407 | { | |
408 | struct pid_namespace *active = task_active_pid_ns(current); | |
409 | struct pid_namespace *pid_ns, *p; | |
410 | ||
411 | /* See if the parent is in the current namespace */ | |
412 | pid_ns = p = to_pid_ns(ns)->parent; | |
413 | for (;;) { | |
414 | if (!p) | |
415 | return ERR_PTR(-EPERM); | |
416 | if (p == active) | |
417 | break; | |
418 | p = p->parent; | |
419 | } | |
420 | ||
421 | return &get_pid_ns(pid_ns)->ns; | |
422 | } | |
423 | ||
bcac25a5 AV |
424 | static struct user_namespace *pidns_owner(struct ns_common *ns) |
425 | { | |
426 | return to_pid_ns(ns)->user_ns; | |
427 | } | |
428 | ||
57e8391d EB |
429 | const struct proc_ns_operations pidns_operations = { |
430 | .name = "pid", | |
431 | .type = CLONE_NEWPID, | |
432 | .get = pidns_get, | |
433 | .put = pidns_put, | |
434 | .install = pidns_install, | |
bcac25a5 | 435 | .owner = pidns_owner, |
a7306ed8 | 436 | .get_parent = pidns_get_parent, |
57e8391d EB |
437 | }; |
438 | ||
eaa0d190 KT |
439 | const struct proc_ns_operations pidns_for_children_operations = { |
440 | .name = "pid_for_children", | |
441 | .real_ns_name = "pid", | |
442 | .type = CLONE_NEWPID, | |
443 | .get = pidns_for_children_get, | |
444 | .put = pidns_put, | |
445 | .install = pidns_install, | |
446 | .owner = pidns_owner, | |
447 | .get_parent = pidns_get_parent, | |
448 | }; | |
449 | ||
74bd59bb PE |
450 | static __init int pid_namespaces_init(void) |
451 | { | |
452 | pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); | |
98ed57ee CG |
453 | |
454 | #ifdef CONFIG_CHECKPOINT_RESTORE | |
b8f566b0 | 455 | register_sysctl_paths(kern_path, pid_ns_ctl_table); |
98ed57ee | 456 | #endif |
74bd59bb PE |
457 | return 0; |
458 | } | |
459 | ||
460 | __initcall(pid_namespaces_init); |