]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
e905a9ed | 10 | * Jens Laas <[email protected]> Swedish University of |
19baf839 | 11 | * Agricultural Sciences. |
e905a9ed | 12 | * |
19baf839 RO |
13 | * Hans Liss <[email protected]> Uppsala Universitet |
14 | * | |
25985edc | 15 | * This work is based on the LPC-trie which is originally described in: |
e905a9ed | 16 | * |
19baf839 RO |
17 | * An experimental study of compression methods for dynamic tries |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
631dd1a8 | 19 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
19baf839 RO |
20 | * |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
19baf839 RO |
25 | * |
26 | * Code from fib_hash has been reused which includes the following header: | |
27 | * | |
28 | * | |
29 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
30 | * operating system. INET is implemented using the BSD Socket | |
31 | * interface as the means of communication with the user level. | |
32 | * | |
33 | * IPv4 FIB: lookup engine and maintenance routines. | |
34 | * | |
35 | * | |
36 | * Authors: Alexey Kuznetsov, <[email protected]> | |
37 | * | |
38 | * This program is free software; you can redistribute it and/or | |
39 | * modify it under the terms of the GNU General Public License | |
40 | * as published by the Free Software Foundation; either version | |
41 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
42 | * |
43 | * Substantial contributions to this work comes from: | |
44 | * | |
45 | * David S. Miller, <[email protected]> | |
46 | * Stephen Hemminger <[email protected]> | |
47 | * Paul E. McKenney <[email protected]> | |
48 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
49 | */ |
50 | ||
80b71b80 | 51 | #define VERSION "0.409" |
19baf839 | 52 | |
08009a76 | 53 | #include <linux/cache.h> |
7c0f6ba6 | 54 | #include <linux/uaccess.h> |
1977f032 | 55 | #include <linux/bitops.h> |
19baf839 RO |
56 | #include <linux/types.h> |
57 | #include <linux/kernel.h> | |
19baf839 RO |
58 | #include <linux/mm.h> |
59 | #include <linux/string.h> | |
60 | #include <linux/socket.h> | |
61 | #include <linux/sockios.h> | |
62 | #include <linux/errno.h> | |
63 | #include <linux/in.h> | |
64 | #include <linux/inet.h> | |
cd8787ab | 65 | #include <linux/inetdevice.h> |
19baf839 RO |
66 | #include <linux/netdevice.h> |
67 | #include <linux/if_arp.h> | |
68 | #include <linux/proc_fs.h> | |
2373ce1c | 69 | #include <linux/rcupdate.h> |
19baf839 RO |
70 | #include <linux/skbuff.h> |
71 | #include <linux/netlink.h> | |
72 | #include <linux/init.h> | |
73 | #include <linux/list.h> | |
5a0e3ad6 | 74 | #include <linux/slab.h> |
bc3b2d7f | 75 | #include <linux/export.h> |
ffa915d0 | 76 | #include <linux/vmalloc.h> |
b90eb754 | 77 | #include <linux/notifier.h> |
457c4cbc | 78 | #include <net/net_namespace.h> |
19baf839 RO |
79 | #include <net/ip.h> |
80 | #include <net/protocol.h> | |
81 | #include <net/route.h> | |
82 | #include <net/tcp.h> | |
83 | #include <net/sock.h> | |
84 | #include <net/ip_fib.h> | |
04b1d4e5 | 85 | #include <net/fib_notifier.h> |
f6d3c192 | 86 | #include <trace/events/fib.h> |
19baf839 RO |
87 | #include "fib_lookup.h" |
88 | ||
c3852ef7 IS |
89 | static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, |
90 | enum fib_event_type event_type, u32 dst, | |
6eba87c7 | 91 | int dst_len, struct fib_alias *fa) |
c3852ef7 IS |
92 | { |
93 | struct fib_entry_notifier_info info = { | |
94 | .dst = dst, | |
95 | .dst_len = dst_len, | |
6eba87c7 DA |
96 | .fi = fa->fa_info, |
97 | .tos = fa->fa_tos, | |
98 | .type = fa->fa_type, | |
99 | .tb_id = fa->tb_id, | |
c3852ef7 | 100 | }; |
04b1d4e5 | 101 | return call_fib4_notifier(nb, net, event_type, &info.info); |
c3852ef7 IS |
102 | } |
103 | ||
b90eb754 JP |
104 | static int call_fib_entry_notifiers(struct net *net, |
105 | enum fib_event_type event_type, u32 dst, | |
6c31e5a9 DA |
106 | int dst_len, struct fib_alias *fa, |
107 | struct netlink_ext_ack *extack) | |
b90eb754 JP |
108 | { |
109 | struct fib_entry_notifier_info info = { | |
6c31e5a9 | 110 | .info.extack = extack, |
b90eb754 JP |
111 | .dst = dst, |
112 | .dst_len = dst_len, | |
6eba87c7 DA |
113 | .fi = fa->fa_info, |
114 | .tos = fa->fa_tos, | |
115 | .type = fa->fa_type, | |
116 | .tb_id = fa->tb_id, | |
b90eb754 | 117 | }; |
04b1d4e5 | 118 | return call_fib4_notifiers(net, event_type, &info.info); |
b90eb754 JP |
119 | } |
120 | ||
06ef921d | 121 | #define MAX_STAT_DEPTH 32 |
19baf839 | 122 | |
95f60ea3 AD |
123 | #define KEYLENGTH (8*sizeof(t_key)) |
124 | #define KEY_MAX ((t_key)~0) | |
19baf839 | 125 | |
19baf839 RO |
126 | typedef unsigned int t_key; |
127 | ||
88bae714 AD |
128 | #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) |
129 | #define IS_TNODE(n) ((n)->bits) | |
130 | #define IS_LEAF(n) (!(n)->bits) | |
2373ce1c | 131 | |
35c6edac | 132 | struct key_vector { |
64c9b6fb | 133 | t_key key; |
64c9b6fb | 134 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
41b489fd | 135 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ |
5405afd1 | 136 | unsigned char slen; |
adaf9816 | 137 | union { |
41b489fd | 138 | /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ |
79e5ad2c | 139 | struct hlist_head leaf; |
41b489fd | 140 | /* This array is valid if (pos | bits) > 0 (TNODE) */ |
35c6edac | 141 | struct key_vector __rcu *tnode[0]; |
adaf9816 | 142 | }; |
19baf839 RO |
143 | }; |
144 | ||
dc35dbed | 145 | struct tnode { |
56ca2adf | 146 | struct rcu_head rcu; |
6e22d174 AD |
147 | t_key empty_children; /* KEYLENGTH bits needed */ |
148 | t_key full_children; /* KEYLENGTH bits needed */ | |
f23e59fb | 149 | struct key_vector __rcu *parent; |
dc35dbed | 150 | struct key_vector kv[1]; |
56ca2adf | 151 | #define tn_bits kv[0].bits |
dc35dbed AD |
152 | }; |
153 | ||
154 | #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) | |
41b489fd AD |
155 | #define LEAF_SIZE TNODE_SIZE(1) |
156 | ||
19baf839 RO |
157 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
158 | struct trie_use_stats { | |
159 | unsigned int gets; | |
160 | unsigned int backtrack; | |
161 | unsigned int semantic_match_passed; | |
162 | unsigned int semantic_match_miss; | |
163 | unsigned int null_node_hit; | |
2f36895a | 164 | unsigned int resize_node_skipped; |
19baf839 RO |
165 | }; |
166 | #endif | |
167 | ||
168 | struct trie_stat { | |
169 | unsigned int totdepth; | |
170 | unsigned int maxdepth; | |
171 | unsigned int tnodes; | |
172 | unsigned int leaves; | |
173 | unsigned int nullpointers; | |
93672292 | 174 | unsigned int prefixes; |
06ef921d | 175 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 176 | }; |
19baf839 RO |
177 | |
178 | struct trie { | |
88bae714 | 179 | struct key_vector kv[1]; |
19baf839 | 180 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8274a97a | 181 | struct trie_use_stats __percpu *stats; |
19baf839 | 182 | #endif |
19baf839 RO |
183 | }; |
184 | ||
88bae714 | 185 | static struct key_vector *resize(struct trie *t, struct key_vector *tn); |
c3059477 JP |
186 | static size_t tnode_free_size; |
187 | ||
188 | /* | |
189 | * synchronize_rcu after call_rcu for that many pages; it should be especially | |
190 | * useful before resizing the root node with PREEMPT_NONE configs; the value was | |
191 | * obtained experimentally, aiming to avoid visible slowdown. | |
192 | */ | |
193 | static const int sync_pages = 128; | |
19baf839 | 194 | |
08009a76 AD |
195 | static struct kmem_cache *fn_alias_kmem __ro_after_init; |
196 | static struct kmem_cache *trie_leaf_kmem __ro_after_init; | |
19baf839 | 197 | |
56ca2adf AD |
198 | static inline struct tnode *tn_info(struct key_vector *kv) |
199 | { | |
200 | return container_of(kv, struct tnode, kv[0]); | |
201 | } | |
202 | ||
64c9b6fb | 203 | /* caller must hold RTNL */ |
f23e59fb | 204 | #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) |
754baf8d | 205 | #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) |
0a5c0475 | 206 | |
64c9b6fb | 207 | /* caller must hold RCU read lock or RTNL */ |
f23e59fb | 208 | #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) |
754baf8d | 209 | #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) |
0a5c0475 | 210 | |
64c9b6fb | 211 | /* wrapper for rcu_assign_pointer */ |
35c6edac | 212 | static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) |
b59cfbf7 | 213 | { |
adaf9816 | 214 | if (n) |
f23e59fb | 215 | rcu_assign_pointer(tn_info(n)->parent, tp); |
06801916 SH |
216 | } |
217 | ||
f23e59fb | 218 | #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) |
64c9b6fb AD |
219 | |
220 | /* This provides us with the number of children in this node, in the case of a | |
221 | * leaf this will return 0 meaning none of the children are accessible. | |
6440cc9e | 222 | */ |
2e1ac88a | 223 | static inline unsigned long child_length(const struct key_vector *tn) |
06801916 | 224 | { |
64c9b6fb | 225 | return (1ul << tn->bits) & ~(1ul); |
06801916 | 226 | } |
2373ce1c | 227 | |
88bae714 AD |
228 | #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) |
229 | ||
2e1ac88a AD |
230 | static inline unsigned long get_index(t_key key, struct key_vector *kv) |
231 | { | |
232 | unsigned long index = key ^ kv->key; | |
233 | ||
88bae714 AD |
234 | if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) |
235 | return 0; | |
236 | ||
2e1ac88a AD |
237 | return index >> kv->pos; |
238 | } | |
239 | ||
e9b44019 AD |
240 | /* To understand this stuff, an understanding of keys and all their bits is |
241 | * necessary. Every node in the trie has a key associated with it, but not | |
242 | * all of the bits in that key are significant. | |
243 | * | |
244 | * Consider a node 'n' and its parent 'tp'. | |
245 | * | |
246 | * If n is a leaf, every bit in its key is significant. Its presence is | |
247 | * necessitated by path compression, since during a tree traversal (when | |
248 | * searching for a leaf - unless we are doing an insertion) we will completely | |
249 | * ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
250 | * a potentially successful search, that we have indeed been walking the | |
251 | * correct key path. | |
252 | * | |
253 | * Note that we can never "miss" the correct key in the tree if present by | |
254 | * following the wrong path. Path compression ensures that segments of the key | |
255 | * that are the same for all keys with a given prefix are skipped, but the | |
256 | * skipped part *is* identical for each node in the subtrie below the skipped | |
257 | * bit! trie_insert() in this implementation takes care of that. | |
258 | * | |
259 | * if n is an internal node - a 'tnode' here, the various parts of its key | |
260 | * have many different meanings. | |
261 | * | |
262 | * Example: | |
263 | * _________________________________________________________________ | |
264 | * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
265 | * ----------------------------------------------------------------- | |
266 | * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 | |
267 | * | |
268 | * _________________________________________________________________ | |
269 | * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
270 | * ----------------------------------------------------------------- | |
271 | * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
272 | * | |
273 | * tp->pos = 22 | |
274 | * tp->bits = 3 | |
275 | * n->pos = 13 | |
276 | * n->bits = 4 | |
277 | * | |
278 | * First, let's just ignore the bits that come before the parent tp, that is | |
279 | * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this | |
280 | * point we do not use them for anything. | |
281 | * | |
282 | * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
283 | * index into the parent's child array. That is, they will be used to find | |
284 | * 'n' among tp's children. | |
285 | * | |
98a384ec | 286 | * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits |
e9b44019 AD |
287 | * for the node n. |
288 | * | |
289 | * All the bits we have seen so far are significant to the node n. The rest | |
290 | * of the bits are really not needed or indeed known in n->key. | |
291 | * | |
292 | * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | |
293 | * n's child array, and will of course be different for each child. | |
294 | * | |
98a384ec | 295 | * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown |
e9b44019 AD |
296 | * at this point. |
297 | */ | |
19baf839 | 298 | |
f5026fab DL |
299 | static const int halve_threshold = 25; |
300 | static const int inflate_threshold = 50; | |
345aa031 | 301 | static const int halve_threshold_root = 15; |
80b71b80 | 302 | static const int inflate_threshold_root = 30; |
2373ce1c RO |
303 | |
304 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 305 | { |
2373ce1c RO |
306 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
307 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
308 | } |
309 | ||
2373ce1c | 310 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 311 | { |
2373ce1c RO |
312 | call_rcu(&fa->rcu, __alias_free_mem); |
313 | } | |
91b9a277 | 314 | |
37fd30f2 | 315 | #define TNODE_KMALLOC_MAX \ |
35c6edac | 316 | ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
1de3d87b | 317 | #define TNODE_VMALLOC_MAX \ |
35c6edac | 318 | ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) |
91b9a277 | 319 | |
37fd30f2 | 320 | static void __node_free_rcu(struct rcu_head *head) |
387a5487 | 321 | { |
56ca2adf | 322 | struct tnode *n = container_of(head, struct tnode, rcu); |
37fd30f2 | 323 | |
56ca2adf | 324 | if (!n->tn_bits) |
37fd30f2 | 325 | kmem_cache_free(trie_leaf_kmem, n); |
37fd30f2 | 326 | else |
1d5cfdb0 | 327 | kvfree(n); |
387a5487 SH |
328 | } |
329 | ||
56ca2adf | 330 | #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) |
37fd30f2 | 331 | |
dc35dbed | 332 | static struct tnode *tnode_alloc(int bits) |
f0e36f8c | 333 | { |
1de3d87b AD |
334 | size_t size; |
335 | ||
336 | /* verify bits is within bounds */ | |
337 | if (bits > TNODE_VMALLOC_MAX) | |
338 | return NULL; | |
339 | ||
340 | /* determine size and verify it is non-zero and didn't overflow */ | |
341 | size = TNODE_SIZE(1ul << bits); | |
342 | ||
2373ce1c | 343 | if (size <= PAGE_SIZE) |
8d965444 | 344 | return kzalloc(size, GFP_KERNEL); |
15be75cd | 345 | else |
7a1c8e5a | 346 | return vzalloc(size); |
15be75cd | 347 | } |
2373ce1c | 348 | |
35c6edac | 349 | static inline void empty_child_inc(struct key_vector *n) |
95f60ea3 | 350 | { |
6e22d174 | 351 | ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; |
95f60ea3 AD |
352 | } |
353 | ||
35c6edac | 354 | static inline void empty_child_dec(struct key_vector *n) |
95f60ea3 | 355 | { |
6e22d174 | 356 | tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; |
95f60ea3 AD |
357 | } |
358 | ||
35c6edac | 359 | static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) |
2373ce1c | 360 | { |
f38b24c9 FY |
361 | struct key_vector *l; |
362 | struct tnode *kv; | |
dc35dbed | 363 | |
f38b24c9 | 364 | kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
dc35dbed AD |
365 | if (!kv) |
366 | return NULL; | |
367 | ||
368 | /* initialize key vector */ | |
f38b24c9 | 369 | l = kv->kv; |
dc35dbed AD |
370 | l->key = key; |
371 | l->pos = 0; | |
372 | l->bits = 0; | |
373 | l->slen = fa->fa_slen; | |
374 | ||
375 | /* link leaf to fib alias */ | |
376 | INIT_HLIST_HEAD(&l->leaf); | |
377 | hlist_add_head(&fa->fa_list, &l->leaf); | |
378 | ||
2373ce1c RO |
379 | return l; |
380 | } | |
381 | ||
35c6edac | 382 | static struct key_vector *tnode_new(t_key key, int pos, int bits) |
19baf839 | 383 | { |
64c9b6fb | 384 | unsigned int shift = pos + bits; |
f38b24c9 FY |
385 | struct key_vector *tn; |
386 | struct tnode *tnode; | |
64c9b6fb AD |
387 | |
388 | /* verify bits and pos their msb bits clear and values are valid */ | |
389 | BUG_ON(!bits || (shift > KEYLENGTH)); | |
19baf839 | 390 | |
f38b24c9 | 391 | tnode = tnode_alloc(bits); |
dc35dbed AD |
392 | if (!tnode) |
393 | return NULL; | |
394 | ||
f38b24c9 FY |
395 | pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), |
396 | sizeof(struct key_vector *) << bits); | |
397 | ||
dc35dbed | 398 | if (bits == KEYLENGTH) |
6e22d174 | 399 | tnode->full_children = 1; |
dc35dbed | 400 | else |
6e22d174 | 401 | tnode->empty_children = 1ul << bits; |
dc35dbed | 402 | |
f38b24c9 | 403 | tn = tnode->kv; |
dc35dbed AD |
404 | tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; |
405 | tn->pos = pos; | |
406 | tn->bits = bits; | |
407 | tn->slen = pos; | |
408 | ||
19baf839 RO |
409 | return tn; |
410 | } | |
411 | ||
e9b44019 | 412 | /* Check whether a tnode 'n' is "full", i.e. it is an internal node |
19baf839 RO |
413 | * and no bits are skipped. See discussion in dyntree paper p. 6 |
414 | */ | |
35c6edac | 415 | static inline int tnode_full(struct key_vector *tn, struct key_vector *n) |
19baf839 | 416 | { |
e9b44019 | 417 | return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); |
19baf839 RO |
418 | } |
419 | ||
ff181ed8 AD |
420 | /* Add a child at position i overwriting the old value. |
421 | * Update the value of full_children and empty_children. | |
422 | */ | |
35c6edac AD |
423 | static void put_child(struct key_vector *tn, unsigned long i, |
424 | struct key_vector *n) | |
19baf839 | 425 | { |
754baf8d | 426 | struct key_vector *chi = get_child(tn, i); |
ff181ed8 | 427 | int isfull, wasfull; |
19baf839 | 428 | |
2e1ac88a | 429 | BUG_ON(i >= child_length(tn)); |
0c7770c7 | 430 | |
95f60ea3 | 431 | /* update emptyChildren, overflow into fullChildren */ |
00db4124 | 432 | if (!n && chi) |
95f60ea3 | 433 | empty_child_inc(tn); |
00db4124 | 434 | if (n && !chi) |
95f60ea3 | 435 | empty_child_dec(tn); |
c877efb2 | 436 | |
19baf839 | 437 | /* update fullChildren */ |
ff181ed8 | 438 | wasfull = tnode_full(tn, chi); |
19baf839 | 439 | isfull = tnode_full(tn, n); |
ff181ed8 | 440 | |
c877efb2 | 441 | if (wasfull && !isfull) |
6e22d174 | 442 | tn_info(tn)->full_children--; |
c877efb2 | 443 | else if (!wasfull && isfull) |
6e22d174 | 444 | tn_info(tn)->full_children++; |
91b9a277 | 445 | |
5405afd1 AD |
446 | if (n && (tn->slen < n->slen)) |
447 | tn->slen = n->slen; | |
448 | ||
41b489fd | 449 | rcu_assign_pointer(tn->tnode[i], n); |
19baf839 RO |
450 | } |
451 | ||
35c6edac | 452 | static void update_children(struct key_vector *tn) |
69fa57b1 AD |
453 | { |
454 | unsigned long i; | |
455 | ||
456 | /* update all of the child parent pointers */ | |
2e1ac88a | 457 | for (i = child_length(tn); i;) { |
754baf8d | 458 | struct key_vector *inode = get_child(tn, --i); |
69fa57b1 AD |
459 | |
460 | if (!inode) | |
461 | continue; | |
462 | ||
463 | /* Either update the children of a tnode that | |
464 | * already belongs to us or update the child | |
465 | * to point to ourselves. | |
466 | */ | |
467 | if (node_parent(inode) == tn) | |
468 | update_children(inode); | |
469 | else | |
470 | node_set_parent(inode, tn); | |
471 | } | |
472 | } | |
473 | ||
88bae714 AD |
474 | static inline void put_child_root(struct key_vector *tp, t_key key, |
475 | struct key_vector *n) | |
836a0123 | 476 | { |
88bae714 AD |
477 | if (IS_TRIE(tp)) |
478 | rcu_assign_pointer(tp->tnode[0], n); | |
836a0123 | 479 | else |
88bae714 | 480 | put_child(tp, get_index(key, tp), n); |
836a0123 AD |
481 | } |
482 | ||
35c6edac | 483 | static inline void tnode_free_init(struct key_vector *tn) |
0a5c0475 | 484 | { |
56ca2adf | 485 | tn_info(tn)->rcu.next = NULL; |
fc86a93b AD |
486 | } |
487 | ||
35c6edac AD |
488 | static inline void tnode_free_append(struct key_vector *tn, |
489 | struct key_vector *n) | |
fc86a93b | 490 | { |
56ca2adf AD |
491 | tn_info(n)->rcu.next = tn_info(tn)->rcu.next; |
492 | tn_info(tn)->rcu.next = &tn_info(n)->rcu; | |
fc86a93b | 493 | } |
0a5c0475 | 494 | |
35c6edac | 495 | static void tnode_free(struct key_vector *tn) |
fc86a93b | 496 | { |
56ca2adf | 497 | struct callback_head *head = &tn_info(tn)->rcu; |
fc86a93b AD |
498 | |
499 | while (head) { | |
500 | head = head->next; | |
41b489fd | 501 | tnode_free_size += TNODE_SIZE(1ul << tn->bits); |
fc86a93b AD |
502 | node_free(tn); |
503 | ||
56ca2adf | 504 | tn = container_of(head, struct tnode, rcu)->kv; |
fc86a93b AD |
505 | } |
506 | ||
507 | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | |
508 | tnode_free_size = 0; | |
509 | synchronize_rcu(); | |
0a5c0475 | 510 | } |
0a5c0475 ED |
511 | } |
512 | ||
88bae714 AD |
513 | static struct key_vector *replace(struct trie *t, |
514 | struct key_vector *oldtnode, | |
515 | struct key_vector *tn) | |
69fa57b1 | 516 | { |
35c6edac | 517 | struct key_vector *tp = node_parent(oldtnode); |
69fa57b1 AD |
518 | unsigned long i; |
519 | ||
520 | /* setup the parent pointer out of and back into this node */ | |
521 | NODE_INIT_PARENT(tn, tp); | |
88bae714 | 522 | put_child_root(tp, tn->key, tn); |
69fa57b1 AD |
523 | |
524 | /* update all of the child parent pointers */ | |
525 | update_children(tn); | |
526 | ||
527 | /* all pointers should be clean so we are done */ | |
528 | tnode_free(oldtnode); | |
529 | ||
530 | /* resize children now that oldtnode is freed */ | |
2e1ac88a | 531 | for (i = child_length(tn); i;) { |
754baf8d | 532 | struct key_vector *inode = get_child(tn, --i); |
69fa57b1 AD |
533 | |
534 | /* resize child node */ | |
535 | if (tnode_full(tn, inode)) | |
88bae714 | 536 | tn = resize(t, inode); |
69fa57b1 | 537 | } |
8d8e810c | 538 | |
88bae714 | 539 | return tp; |
69fa57b1 AD |
540 | } |
541 | ||
88bae714 AD |
542 | static struct key_vector *inflate(struct trie *t, |
543 | struct key_vector *oldtnode) | |
19baf839 | 544 | { |
35c6edac | 545 | struct key_vector *tn; |
69fa57b1 | 546 | unsigned long i; |
e9b44019 | 547 | t_key m; |
19baf839 | 548 | |
0c7770c7 | 549 | pr_debug("In inflate\n"); |
19baf839 | 550 | |
e9b44019 | 551 | tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); |
0c7770c7 | 552 | if (!tn) |
8d8e810c | 553 | goto notnode; |
2f36895a | 554 | |
69fa57b1 AD |
555 | /* prepare oldtnode to be freed */ |
556 | tnode_free_init(oldtnode); | |
557 | ||
12c081a5 AD |
558 | /* Assemble all of the pointers in our cluster, in this case that |
559 | * represents all of the pointers out of our allocated nodes that | |
560 | * point to existing tnodes and the links between our allocated | |
561 | * nodes. | |
2f36895a | 562 | */ |
2e1ac88a | 563 | for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { |
754baf8d | 564 | struct key_vector *inode = get_child(oldtnode, --i); |
35c6edac | 565 | struct key_vector *node0, *node1; |
69fa57b1 | 566 | unsigned long j, k; |
c877efb2 | 567 | |
19baf839 | 568 | /* An empty child */ |
51456b29 | 569 | if (!inode) |
19baf839 RO |
570 | continue; |
571 | ||
572 | /* A leaf or an internal node with skipped bits */ | |
adaf9816 | 573 | if (!tnode_full(oldtnode, inode)) { |
e9b44019 | 574 | put_child(tn, get_index(inode->key, tn), inode); |
19baf839 RO |
575 | continue; |
576 | } | |
577 | ||
69fa57b1 AD |
578 | /* drop the node in the old tnode free list */ |
579 | tnode_free_append(oldtnode, inode); | |
580 | ||
19baf839 | 581 | /* An internal node with two children */ |
19baf839 | 582 | if (inode->bits == 1) { |
754baf8d AD |
583 | put_child(tn, 2 * i + 1, get_child(inode, 1)); |
584 | put_child(tn, 2 * i, get_child(inode, 0)); | |
91b9a277 | 585 | continue; |
19baf839 RO |
586 | } |
587 | ||
91b9a277 | 588 | /* We will replace this node 'inode' with two new |
12c081a5 | 589 | * ones, 'node0' and 'node1', each with half of the |
91b9a277 OJ |
590 | * original children. The two new nodes will have |
591 | * a position one bit further down the key and this | |
592 | * means that the "significant" part of their keys | |
593 | * (see the discussion near the top of this file) | |
594 | * will differ by one bit, which will be "0" in | |
12c081a5 | 595 | * node0's key and "1" in node1's key. Since we are |
91b9a277 OJ |
596 | * moving the key position by one step, the bit that |
597 | * we are moving away from - the bit at position | |
12c081a5 AD |
598 | * (tn->pos) - is the one that will differ between |
599 | * node0 and node1. So... we synthesize that bit in the | |
600 | * two new keys. | |
91b9a277 | 601 | */ |
12c081a5 AD |
602 | node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); |
603 | if (!node1) | |
604 | goto nomem; | |
69fa57b1 | 605 | node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); |
12c081a5 | 606 | |
69fa57b1 | 607 | tnode_free_append(tn, node1); |
12c081a5 AD |
608 | if (!node0) |
609 | goto nomem; | |
610 | tnode_free_append(tn, node0); | |
611 | ||
612 | /* populate child pointers in new nodes */ | |
2e1ac88a | 613 | for (k = child_length(inode), j = k / 2; j;) { |
754baf8d AD |
614 | put_child(node1, --j, get_child(inode, --k)); |
615 | put_child(node0, j, get_child(inode, j)); | |
616 | put_child(node1, --j, get_child(inode, --k)); | |
617 | put_child(node0, j, get_child(inode, j)); | |
12c081a5 | 618 | } |
19baf839 | 619 | |
12c081a5 AD |
620 | /* link new nodes to parent */ |
621 | NODE_INIT_PARENT(node1, tn); | |
622 | NODE_INIT_PARENT(node0, tn); | |
2f36895a | 623 | |
12c081a5 AD |
624 | /* link parent to nodes */ |
625 | put_child(tn, 2 * i + 1, node1); | |
626 | put_child(tn, 2 * i, node0); | |
627 | } | |
2f36895a | 628 | |
69fa57b1 | 629 | /* setup the parent pointers into and out of this node */ |
8d8e810c | 630 | return replace(t, oldtnode, tn); |
2f80b3c8 | 631 | nomem: |
fc86a93b AD |
632 | /* all pointers should be clean so we are done */ |
633 | tnode_free(tn); | |
8d8e810c AD |
634 | notnode: |
635 | return NULL; | |
19baf839 RO |
636 | } |
637 | ||
88bae714 AD |
638 | static struct key_vector *halve(struct trie *t, |
639 | struct key_vector *oldtnode) | |
19baf839 | 640 | { |
35c6edac | 641 | struct key_vector *tn; |
12c081a5 | 642 | unsigned long i; |
19baf839 | 643 | |
0c7770c7 | 644 | pr_debug("In halve\n"); |
c877efb2 | 645 | |
e9b44019 | 646 | tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); |
2f80b3c8 | 647 | if (!tn) |
8d8e810c | 648 | goto notnode; |
2f36895a | 649 | |
69fa57b1 AD |
650 | /* prepare oldtnode to be freed */ |
651 | tnode_free_init(oldtnode); | |
652 | ||
12c081a5 AD |
653 | /* Assemble all of the pointers in our cluster, in this case that |
654 | * represents all of the pointers out of our allocated nodes that | |
655 | * point to existing tnodes and the links between our allocated | |
656 | * nodes. | |
2f36895a | 657 | */ |
2e1ac88a | 658 | for (i = child_length(oldtnode); i;) { |
754baf8d AD |
659 | struct key_vector *node1 = get_child(oldtnode, --i); |
660 | struct key_vector *node0 = get_child(oldtnode, --i); | |
35c6edac | 661 | struct key_vector *inode; |
2f36895a | 662 | |
12c081a5 AD |
663 | /* At least one of the children is empty */ |
664 | if (!node1 || !node0) { | |
665 | put_child(tn, i / 2, node1 ? : node0); | |
666 | continue; | |
667 | } | |
c877efb2 | 668 | |
2f36895a | 669 | /* Two nonempty children */ |
12c081a5 | 670 | inode = tnode_new(node0->key, oldtnode->pos, 1); |
8d8e810c AD |
671 | if (!inode) |
672 | goto nomem; | |
12c081a5 | 673 | tnode_free_append(tn, inode); |
2f36895a | 674 | |
12c081a5 AD |
675 | /* initialize pointers out of node */ |
676 | put_child(inode, 1, node1); | |
677 | put_child(inode, 0, node0); | |
678 | NODE_INIT_PARENT(inode, tn); | |
679 | ||
680 | /* link parent to node */ | |
681 | put_child(tn, i / 2, inode); | |
2f36895a | 682 | } |
19baf839 | 683 | |
69fa57b1 | 684 | /* setup the parent pointers into and out of this node */ |
8d8e810c AD |
685 | return replace(t, oldtnode, tn); |
686 | nomem: | |
687 | /* all pointers should be clean so we are done */ | |
688 | tnode_free(tn); | |
689 | notnode: | |
690 | return NULL; | |
19baf839 RO |
691 | } |
692 | ||
88bae714 AD |
693 | static struct key_vector *collapse(struct trie *t, |
694 | struct key_vector *oldtnode) | |
95f60ea3 | 695 | { |
35c6edac | 696 | struct key_vector *n, *tp; |
95f60ea3 AD |
697 | unsigned long i; |
698 | ||
699 | /* scan the tnode looking for that one child that might still exist */ | |
2e1ac88a | 700 | for (n = NULL, i = child_length(oldtnode); !n && i;) |
754baf8d | 701 | n = get_child(oldtnode, --i); |
95f60ea3 AD |
702 | |
703 | /* compress one level */ | |
704 | tp = node_parent(oldtnode); | |
88bae714 | 705 | put_child_root(tp, oldtnode->key, n); |
95f60ea3 AD |
706 | node_set_parent(n, tp); |
707 | ||
708 | /* drop dead node */ | |
709 | node_free(oldtnode); | |
88bae714 AD |
710 | |
711 | return tp; | |
95f60ea3 AD |
712 | } |
713 | ||
35c6edac | 714 | static unsigned char update_suffix(struct key_vector *tn) |
5405afd1 AD |
715 | { |
716 | unsigned char slen = tn->pos; | |
717 | unsigned long stride, i; | |
a52ca62c AD |
718 | unsigned char slen_max; |
719 | ||
720 | /* only vector 0 can have a suffix length greater than or equal to | |
721 | * tn->pos + tn->bits, the second highest node will have a suffix | |
722 | * length at most of tn->pos + tn->bits - 1 | |
723 | */ | |
724 | slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); | |
5405afd1 AD |
725 | |
726 | /* search though the list of children looking for nodes that might | |
727 | * have a suffix greater than the one we currently have. This is | |
728 | * why we start with a stride of 2 since a stride of 1 would | |
729 | * represent the nodes with suffix length equal to tn->pos | |
730 | */ | |
2e1ac88a | 731 | for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { |
754baf8d | 732 | struct key_vector *n = get_child(tn, i); |
5405afd1 AD |
733 | |
734 | if (!n || (n->slen <= slen)) | |
735 | continue; | |
736 | ||
737 | /* update stride and slen based on new value */ | |
738 | stride <<= (n->slen - slen); | |
739 | slen = n->slen; | |
740 | i &= ~(stride - 1); | |
741 | ||
a52ca62c AD |
742 | /* stop searching if we have hit the maximum possible value */ |
743 | if (slen >= slen_max) | |
5405afd1 AD |
744 | break; |
745 | } | |
746 | ||
747 | tn->slen = slen; | |
748 | ||
749 | return slen; | |
750 | } | |
751 | ||
f05a4819 AD |
752 | /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
753 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
754 | * Telecommunications, page 6: | |
755 | * "A node is doubled if the ratio of non-empty children to all | |
756 | * children in the *doubled* node is at least 'high'." | |
757 | * | |
758 | * 'high' in this instance is the variable 'inflate_threshold'. It | |
759 | * is expressed as a percentage, so we multiply it with | |
2e1ac88a | 760 | * child_length() and instead of multiplying by 2 (since the |
f05a4819 AD |
761 | * child array will be doubled by inflate()) and multiplying |
762 | * the left-hand side by 100 (to handle the percentage thing) we | |
763 | * multiply the left-hand side by 50. | |
764 | * | |
2e1ac88a | 765 | * The left-hand side may look a bit weird: child_length(tn) |
f05a4819 AD |
766 | * - tn->empty_children is of course the number of non-null children |
767 | * in the current node. tn->full_children is the number of "full" | |
768 | * children, that is non-null tnodes with a skip value of 0. | |
769 | * All of those will be doubled in the resulting inflated tnode, so | |
770 | * we just count them one extra time here. | |
771 | * | |
772 | * A clearer way to write this would be: | |
773 | * | |
774 | * to_be_doubled = tn->full_children; | |
2e1ac88a | 775 | * not_to_be_doubled = child_length(tn) - tn->empty_children - |
f05a4819 AD |
776 | * tn->full_children; |
777 | * | |
2e1ac88a | 778 | * new_child_length = child_length(tn) * 2; |
f05a4819 AD |
779 | * |
780 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | |
781 | * new_child_length; | |
782 | * if (new_fill_factor >= inflate_threshold) | |
783 | * | |
784 | * ...and so on, tho it would mess up the while () loop. | |
785 | * | |
786 | * anyway, | |
787 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
788 | * inflate_threshold | |
789 | * | |
790 | * avoid a division: | |
791 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
792 | * inflate_threshold * new_child_length | |
793 | * | |
794 | * expand not_to_be_doubled and to_be_doubled, and shorten: | |
2e1ac88a | 795 | * 100 * (child_length(tn) - tn->empty_children + |
f05a4819 AD |
796 | * tn->full_children) >= inflate_threshold * new_child_length |
797 | * | |
798 | * expand new_child_length: | |
2e1ac88a | 799 | * 100 * (child_length(tn) - tn->empty_children + |
f05a4819 | 800 | * tn->full_children) >= |
2e1ac88a | 801 | * inflate_threshold * child_length(tn) * 2 |
f05a4819 AD |
802 | * |
803 | * shorten again: | |
2e1ac88a | 804 | * 50 * (tn->full_children + child_length(tn) - |
f05a4819 | 805 | * tn->empty_children) >= inflate_threshold * |
2e1ac88a | 806 | * child_length(tn) |
f05a4819 AD |
807 | * |
808 | */ | |
35c6edac | 809 | static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) |
f05a4819 | 810 | { |
2e1ac88a | 811 | unsigned long used = child_length(tn); |
f05a4819 AD |
812 | unsigned long threshold = used; |
813 | ||
814 | /* Keep root node larger */ | |
88bae714 | 815 | threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; |
6e22d174 AD |
816 | used -= tn_info(tn)->empty_children; |
817 | used += tn_info(tn)->full_children; | |
f05a4819 | 818 | |
95f60ea3 AD |
819 | /* if bits == KEYLENGTH then pos = 0, and will fail below */ |
820 | ||
821 | return (used > 1) && tn->pos && ((50 * used) >= threshold); | |
f05a4819 AD |
822 | } |
823 | ||
35c6edac | 824 | static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) |
f05a4819 | 825 | { |
2e1ac88a | 826 | unsigned long used = child_length(tn); |
f05a4819 AD |
827 | unsigned long threshold = used; |
828 | ||
829 | /* Keep root node larger */ | |
88bae714 | 830 | threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; |
6e22d174 | 831 | used -= tn_info(tn)->empty_children; |
f05a4819 | 832 | |
95f60ea3 AD |
833 | /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ |
834 | ||
835 | return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); | |
836 | } | |
837 | ||
35c6edac | 838 | static inline bool should_collapse(struct key_vector *tn) |
95f60ea3 | 839 | { |
2e1ac88a | 840 | unsigned long used = child_length(tn); |
95f60ea3 | 841 | |
6e22d174 | 842 | used -= tn_info(tn)->empty_children; |
95f60ea3 AD |
843 | |
844 | /* account for bits == KEYLENGTH case */ | |
6e22d174 | 845 | if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) |
95f60ea3 AD |
846 | used -= KEY_MAX; |
847 | ||
848 | /* One child or none, time to drop us from the trie */ | |
849 | return used < 2; | |
f05a4819 AD |
850 | } |
851 | ||
cf3637bb | 852 | #define MAX_WORK 10 |
88bae714 | 853 | static struct key_vector *resize(struct trie *t, struct key_vector *tn) |
cf3637bb | 854 | { |
8d8e810c AD |
855 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
856 | struct trie_use_stats __percpu *stats = t->stats; | |
857 | #endif | |
35c6edac | 858 | struct key_vector *tp = node_parent(tn); |
88bae714 | 859 | unsigned long cindex = get_index(tn->key, tp); |
a80e89d4 | 860 | int max_work = MAX_WORK; |
cf3637bb | 861 | |
cf3637bb AD |
862 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
863 | tn, inflate_threshold, halve_threshold); | |
864 | ||
ff181ed8 AD |
865 | /* track the tnode via the pointer from the parent instead of |
866 | * doing it ourselves. This way we can let RCU fully do its | |
867 | * thing without us interfering | |
868 | */ | |
88bae714 | 869 | BUG_ON(tn != get_child(tp, cindex)); |
ff181ed8 | 870 | |
f05a4819 AD |
871 | /* Double as long as the resulting node has a number of |
872 | * nonempty nodes that are above the threshold. | |
cf3637bb | 873 | */ |
b6f15f82 | 874 | while (should_inflate(tp, tn) && max_work) { |
88bae714 AD |
875 | tp = inflate(t, tn); |
876 | if (!tp) { | |
cf3637bb | 877 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8d8e810c | 878 | this_cpu_inc(stats->resize_node_skipped); |
cf3637bb AD |
879 | #endif |
880 | break; | |
881 | } | |
ff181ed8 | 882 | |
b6f15f82 | 883 | max_work--; |
88bae714 | 884 | tn = get_child(tp, cindex); |
cf3637bb AD |
885 | } |
886 | ||
b6f15f82 AD |
887 | /* update parent in case inflate failed */ |
888 | tp = node_parent(tn); | |
889 | ||
cf3637bb AD |
890 | /* Return if at least one inflate is run */ |
891 | if (max_work != MAX_WORK) | |
b6f15f82 | 892 | return tp; |
cf3637bb | 893 | |
f05a4819 | 894 | /* Halve as long as the number of empty children in this |
cf3637bb AD |
895 | * node is above threshold. |
896 | */ | |
b6f15f82 | 897 | while (should_halve(tp, tn) && max_work) { |
88bae714 AD |
898 | tp = halve(t, tn); |
899 | if (!tp) { | |
cf3637bb | 900 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
8d8e810c | 901 | this_cpu_inc(stats->resize_node_skipped); |
cf3637bb AD |
902 | #endif |
903 | break; | |
904 | } | |
cf3637bb | 905 | |
b6f15f82 | 906 | max_work--; |
88bae714 | 907 | tn = get_child(tp, cindex); |
ff181ed8 | 908 | } |
cf3637bb AD |
909 | |
910 | /* Only one child remains */ | |
88bae714 AD |
911 | if (should_collapse(tn)) |
912 | return collapse(t, tn); | |
913 | ||
b6f15f82 | 914 | /* update parent in case halve failed */ |
a52ca62c | 915 | return node_parent(tn); |
cf3637bb AD |
916 | } |
917 | ||
1a239173 | 918 | static void node_pull_suffix(struct key_vector *tn, unsigned char slen) |
5405afd1 | 919 | { |
1a239173 AD |
920 | unsigned char node_slen = tn->slen; |
921 | ||
922 | while ((node_slen > tn->pos) && (node_slen > slen)) { | |
923 | slen = update_suffix(tn); | |
924 | if (node_slen == slen) | |
5405afd1 | 925 | break; |
1a239173 AD |
926 | |
927 | tn = node_parent(tn); | |
928 | node_slen = tn->slen; | |
5405afd1 AD |
929 | } |
930 | } | |
931 | ||
1a239173 | 932 | static void node_push_suffix(struct key_vector *tn, unsigned char slen) |
19baf839 | 933 | { |
1a239173 AD |
934 | while (tn->slen < slen) { |
935 | tn->slen = slen; | |
5405afd1 AD |
936 | tn = node_parent(tn); |
937 | } | |
938 | } | |
939 | ||
2373ce1c | 940 | /* rcu_read_lock needs to be hold by caller from readside */ |
35c6edac AD |
941 | static struct key_vector *fib_find_node(struct trie *t, |
942 | struct key_vector **tp, u32 key) | |
19baf839 | 943 | { |
88bae714 AD |
944 | struct key_vector *pn, *n = t->kv; |
945 | unsigned long index = 0; | |
946 | ||
947 | do { | |
948 | pn = n; | |
949 | n = get_child_rcu(n, index); | |
950 | ||
951 | if (!n) | |
952 | break; | |
939afb06 | 953 | |
88bae714 | 954 | index = get_cindex(key, n); |
939afb06 AD |
955 | |
956 | /* This bit of code is a bit tricky but it combines multiple | |
957 | * checks into a single check. The prefix consists of the | |
958 | * prefix plus zeros for the bits in the cindex. The index | |
959 | * is the difference between the key and this value. From | |
960 | * this we can actually derive several pieces of data. | |
d4a975e8 | 961 | * if (index >= (1ul << bits)) |
939afb06 | 962 | * we have a mismatch in skip bits and failed |
b3832117 AD |
963 | * else |
964 | * we know the value is cindex | |
d4a975e8 AD |
965 | * |
966 | * This check is safe even if bits == KEYLENGTH due to the | |
967 | * fact that we can only allocate a node with 32 bits if a | |
968 | * long is greater than 32 bits. | |
939afb06 | 969 | */ |
d4a975e8 AD |
970 | if (index >= (1ul << n->bits)) { |
971 | n = NULL; | |
972 | break; | |
973 | } | |
939afb06 | 974 | |
88bae714 AD |
975 | /* keep searching until we find a perfect match leaf or NULL */ |
976 | } while (IS_TNODE(n)); | |
91b9a277 | 977 | |
35c6edac | 978 | *tp = pn; |
d4a975e8 | 979 | |
939afb06 | 980 | return n; |
19baf839 RO |
981 | } |
982 | ||
02525368 AD |
983 | /* Return the first fib alias matching TOS with |
984 | * priority less than or equal to PRIO. | |
985 | */ | |
79e5ad2c | 986 | static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, |
0b65bd97 | 987 | u8 tos, u32 prio, u32 tb_id) |
02525368 AD |
988 | { |
989 | struct fib_alias *fa; | |
990 | ||
991 | if (!fah) | |
992 | return NULL; | |
993 | ||
56315f9e | 994 | hlist_for_each_entry(fa, fah, fa_list) { |
79e5ad2c AD |
995 | if (fa->fa_slen < slen) |
996 | continue; | |
997 | if (fa->fa_slen != slen) | |
998 | break; | |
0b65bd97 AD |
999 | if (fa->tb_id > tb_id) |
1000 | continue; | |
1001 | if (fa->tb_id != tb_id) | |
1002 | break; | |
02525368 AD |
1003 | if (fa->fa_tos > tos) |
1004 | continue; | |
1005 | if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) | |
1006 | return fa; | |
1007 | } | |
1008 | ||
1009 | return NULL; | |
1010 | } | |
1011 | ||
35c6edac | 1012 | static void trie_rebalance(struct trie *t, struct key_vector *tn) |
19baf839 | 1013 | { |
88bae714 AD |
1014 | while (!IS_TRIE(tn)) |
1015 | tn = resize(t, tn); | |
19baf839 RO |
1016 | } |
1017 | ||
35c6edac | 1018 | static int fib_insert_node(struct trie *t, struct key_vector *tp, |
d5d6487c | 1019 | struct fib_alias *new, t_key key) |
19baf839 | 1020 | { |
35c6edac | 1021 | struct key_vector *n, *l; |
19baf839 | 1022 | |
d5d6487c | 1023 | l = leaf_new(key, new); |
79e5ad2c | 1024 | if (!l) |
8d8e810c | 1025 | goto noleaf; |
d5d6487c AD |
1026 | |
1027 | /* retrieve child from parent node */ | |
88bae714 | 1028 | n = get_child(tp, get_index(key, tp)); |
19baf839 | 1029 | |
836a0123 AD |
1030 | /* Case 2: n is a LEAF or a TNODE and the key doesn't match. |
1031 | * | |
1032 | * Add a new tnode here | |
1033 | * first tnode need some special handling | |
1034 | * leaves us in position for handling as case 3 | |
1035 | */ | |
1036 | if (n) { | |
35c6edac | 1037 | struct key_vector *tn; |
19baf839 | 1038 | |
e9b44019 | 1039 | tn = tnode_new(key, __fls(key ^ n->key), 1); |
8d8e810c AD |
1040 | if (!tn) |
1041 | goto notnode; | |
91b9a277 | 1042 | |
836a0123 AD |
1043 | /* initialize routes out of node */ |
1044 | NODE_INIT_PARENT(tn, tp); | |
1045 | put_child(tn, get_index(key, tn) ^ 1, n); | |
19baf839 | 1046 | |
836a0123 | 1047 | /* start adding routes into the node */ |
88bae714 | 1048 | put_child_root(tp, key, tn); |
836a0123 | 1049 | node_set_parent(n, tn); |
e962f302 | 1050 | |
836a0123 | 1051 | /* parent now has a NULL spot where the leaf can go */ |
e962f302 | 1052 | tp = tn; |
19baf839 | 1053 | } |
91b9a277 | 1054 | |
836a0123 | 1055 | /* Case 3: n is NULL, and will just insert a new leaf */ |
a52ca62c | 1056 | node_push_suffix(tp, new->fa_slen); |
d5d6487c | 1057 | NODE_INIT_PARENT(l, tp); |
88bae714 | 1058 | put_child_root(tp, key, l); |
d5d6487c AD |
1059 | trie_rebalance(t, tp); |
1060 | ||
1061 | return 0; | |
8d8e810c AD |
1062 | notnode: |
1063 | node_free(l); | |
1064 | noleaf: | |
1065 | return -ENOMEM; | |
d5d6487c AD |
1066 | } |
1067 | ||
6635f311 DA |
1068 | /* fib notifier for ADD is sent before calling fib_insert_alias with |
1069 | * the expectation that the only possible failure ENOMEM | |
1070 | */ | |
35c6edac AD |
1071 | static int fib_insert_alias(struct trie *t, struct key_vector *tp, |
1072 | struct key_vector *l, struct fib_alias *new, | |
d5d6487c AD |
1073 | struct fib_alias *fa, t_key key) |
1074 | { | |
1075 | if (!l) | |
1076 | return fib_insert_node(t, tp, new, key); | |
1077 | ||
1078 | if (fa) { | |
1079 | hlist_add_before_rcu(&new->fa_list, &fa->fa_list); | |
836a0123 | 1080 | } else { |
d5d6487c AD |
1081 | struct fib_alias *last; |
1082 | ||
1083 | hlist_for_each_entry(last, &l->leaf, fa_list) { | |
1084 | if (new->fa_slen < last->fa_slen) | |
1085 | break; | |
0b65bd97 AD |
1086 | if ((new->fa_slen == last->fa_slen) && |
1087 | (new->tb_id > last->tb_id)) | |
1088 | break; | |
d5d6487c AD |
1089 | fa = last; |
1090 | } | |
1091 | ||
1092 | if (fa) | |
1093 | hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); | |
1094 | else | |
1095 | hlist_add_head_rcu(&new->fa_list, &l->leaf); | |
836a0123 | 1096 | } |
2373ce1c | 1097 | |
d5d6487c AD |
1098 | /* if we added to the tail node then we need to update slen */ |
1099 | if (l->slen < new->fa_slen) { | |
1100 | l->slen = new->fa_slen; | |
1a239173 | 1101 | node_push_suffix(tp, new->fa_slen); |
d5d6487c AD |
1102 | } |
1103 | ||
1104 | return 0; | |
19baf839 RO |
1105 | } |
1106 | ||
78055998 | 1107 | static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) |
ba277e8e | 1108 | { |
78055998 DA |
1109 | if (plen > KEYLENGTH) { |
1110 | NL_SET_ERR_MSG(extack, "Invalid prefix length"); | |
ba277e8e | 1111 | return false; |
78055998 | 1112 | } |
ba277e8e | 1113 | |
78055998 DA |
1114 | if ((plen < KEYLENGTH) && (key << plen)) { |
1115 | NL_SET_ERR_MSG(extack, | |
1116 | "Invalid prefix for given prefix length"); | |
ba277e8e | 1117 | return false; |
78055998 | 1118 | } |
ba277e8e DA |
1119 | |
1120 | return true; | |
1121 | } | |
1122 | ||
d5d6487c | 1123 | /* Caller must hold RTNL. */ |
b90eb754 | 1124 | int fib_table_insert(struct net *net, struct fib_table *tb, |
6d8422a1 | 1125 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
19baf839 | 1126 | { |
2f3a5272 | 1127 | enum fib_event_type event = FIB_EVENT_ENTRY_ADD; |
d4a975e8 | 1128 | struct trie *t = (struct trie *)tb->tb_data; |
19baf839 | 1129 | struct fib_alias *fa, *new_fa; |
35c6edac | 1130 | struct key_vector *l, *tp; |
b93e1fa7 | 1131 | u16 nlflags = NLM_F_EXCL; |
19baf839 | 1132 | struct fib_info *fi; |
79e5ad2c AD |
1133 | u8 plen = cfg->fc_dst_len; |
1134 | u8 slen = KEYLENGTH - plen; | |
4e902c57 | 1135 | u8 tos = cfg->fc_tos; |
d4a975e8 | 1136 | u32 key; |
19baf839 | 1137 | int err; |
19baf839 | 1138 | |
4e902c57 | 1139 | key = ntohl(cfg->fc_dst); |
19baf839 | 1140 | |
78055998 | 1141 | if (!fib_valid_key_len(key, plen, extack)) |
19baf839 RO |
1142 | return -EINVAL; |
1143 | ||
ba277e8e DA |
1144 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
1145 | ||
6d8422a1 | 1146 | fi = fib_create_info(cfg, extack); |
4e902c57 TG |
1147 | if (IS_ERR(fi)) { |
1148 | err = PTR_ERR(fi); | |
19baf839 | 1149 | goto err; |
4e902c57 | 1150 | } |
19baf839 | 1151 | |
d4a975e8 | 1152 | l = fib_find_node(t, &tp, key); |
0b65bd97 AD |
1153 | fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, |
1154 | tb->tb_id) : NULL; | |
19baf839 RO |
1155 | |
1156 | /* Now fa, if non-NULL, points to the first fib alias | |
1157 | * with the same keys [prefix,tos,priority], if such key already | |
1158 | * exists or to the node before which we will insert new one. | |
1159 | * | |
1160 | * If fa is NULL, we will need to allocate a new one and | |
56315f9e AD |
1161 | * insert to the tail of the section matching the suffix length |
1162 | * of the new alias. | |
19baf839 RO |
1163 | */ |
1164 | ||
936f6f8e JA |
1165 | if (fa && fa->fa_tos == tos && |
1166 | fa->fa_info->fib_priority == fi->fib_priority) { | |
1167 | struct fib_alias *fa_first, *fa_match; | |
19baf839 RO |
1168 | |
1169 | err = -EEXIST; | |
4e902c57 | 1170 | if (cfg->fc_nlflags & NLM_F_EXCL) |
19baf839 RO |
1171 | goto out; |
1172 | ||
b93e1fa7 GN |
1173 | nlflags &= ~NLM_F_EXCL; |
1174 | ||
936f6f8e JA |
1175 | /* We have 2 goals: |
1176 | * 1. Find exact match for type, scope, fib_info to avoid | |
1177 | * duplicate routes | |
1178 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | |
1179 | */ | |
1180 | fa_match = NULL; | |
1181 | fa_first = fa; | |
56315f9e | 1182 | hlist_for_each_entry_from(fa, fa_list) { |
0b65bd97 AD |
1183 | if ((fa->fa_slen != slen) || |
1184 | (fa->tb_id != tb->tb_id) || | |
1185 | (fa->fa_tos != tos)) | |
936f6f8e JA |
1186 | break; |
1187 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1188 | break; | |
1189 | if (fa->fa_type == cfg->fc_type && | |
936f6f8e JA |
1190 | fa->fa_info == fi) { |
1191 | fa_match = fa; | |
1192 | break; | |
1193 | } | |
1194 | } | |
1195 | ||
4e902c57 | 1196 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
19baf839 RO |
1197 | struct fib_info *fi_drop; |
1198 | u8 state; | |
1199 | ||
b93e1fa7 | 1200 | nlflags |= NLM_F_REPLACE; |
936f6f8e JA |
1201 | fa = fa_first; |
1202 | if (fa_match) { | |
1203 | if (fa == fa_match) | |
1204 | err = 0; | |
6725033f | 1205 | goto out; |
936f6f8e | 1206 | } |
2373ce1c | 1207 | err = -ENOBUFS; |
e94b1766 | 1208 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
51456b29 | 1209 | if (!new_fa) |
2373ce1c | 1210 | goto out; |
19baf839 RO |
1211 | |
1212 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1213 | new_fa->fa_tos = fa->fa_tos; |
1214 | new_fa->fa_info = fi; | |
4e902c57 | 1215 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1216 | state = fa->fa_state; |
936f6f8e | 1217 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
9b6ebad5 | 1218 | new_fa->fa_slen = fa->fa_slen; |
d4e64c29 | 1219 | new_fa->tb_id = tb->tb_id; |
2392debc | 1220 | new_fa->fa_default = -1; |
19baf839 | 1221 | |
c1d7ee67 DA |
1222 | err = call_fib_entry_notifiers(net, |
1223 | FIB_EVENT_ENTRY_REPLACE, | |
1224 | key, plen, new_fa, | |
1225 | extack); | |
1226 | if (err) | |
1227 | goto out_free_new_fa; | |
1228 | ||
5b7d616d IS |
1229 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
1230 | tb->tb_id, &cfg->fc_nlinfo, nlflags); | |
1231 | ||
56315f9e | 1232 | hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
8e05fd71 | 1233 | |
2373ce1c | 1234 | alias_free_mem_rcu(fa); |
19baf839 RO |
1235 | |
1236 | fib_release_info(fi_drop); | |
1237 | if (state & FA_S_ACCESSED) | |
4ccfe6d4 | 1238 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
b90eb754 | 1239 | |
91b9a277 | 1240 | goto succeeded; |
19baf839 RO |
1241 | } |
1242 | /* Error if we find a perfect match which | |
1243 | * uses the same scope, type, and nexthop | |
1244 | * information. | |
1245 | */ | |
936f6f8e JA |
1246 | if (fa_match) |
1247 | goto out; | |
a07f5f50 | 1248 | |
2f3a5272 IS |
1249 | if (cfg->fc_nlflags & NLM_F_APPEND) { |
1250 | event = FIB_EVENT_ENTRY_APPEND; | |
b93e1fa7 | 1251 | nlflags |= NLM_F_APPEND; |
2f3a5272 | 1252 | } else { |
936f6f8e | 1253 | fa = fa_first; |
2f3a5272 | 1254 | } |
19baf839 RO |
1255 | } |
1256 | err = -ENOENT; | |
4e902c57 | 1257 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
19baf839 RO |
1258 | goto out; |
1259 | ||
b93e1fa7 | 1260 | nlflags |= NLM_F_CREATE; |
19baf839 | 1261 | err = -ENOBUFS; |
e94b1766 | 1262 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
51456b29 | 1263 | if (!new_fa) |
19baf839 RO |
1264 | goto out; |
1265 | ||
1266 | new_fa->fa_info = fi; | |
1267 | new_fa->fa_tos = tos; | |
4e902c57 | 1268 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1269 | new_fa->fa_state = 0; |
79e5ad2c | 1270 | new_fa->fa_slen = slen; |
0ddcf43d | 1271 | new_fa->tb_id = tb->tb_id; |
2392debc | 1272 | new_fa->fa_default = -1; |
19baf839 | 1273 | |
6635f311 DA |
1274 | err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); |
1275 | if (err) | |
1276 | goto out_free_new_fa; | |
1277 | ||
9b6ebad5 | 1278 | /* Insert new entry to the list. */ |
d5d6487c AD |
1279 | err = fib_insert_alias(t, tp, l, new_fa, fa, key); |
1280 | if (err) | |
6635f311 | 1281 | goto out_fib_notif; |
19baf839 | 1282 | |
21d8c49e DM |
1283 | if (!plen) |
1284 | tb->tb_num_default++; | |
1285 | ||
4ccfe6d4 | 1286 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
0ddcf43d | 1287 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, |
a2bb6d7d | 1288 | &cfg->fc_nlinfo, nlflags); |
19baf839 RO |
1289 | succeeded: |
1290 | return 0; | |
f835e471 | 1291 | |
6635f311 DA |
1292 | out_fib_notif: |
1293 | /* notifier was sent that entry would be added to trie, but | |
1294 | * the add failed and need to recover. Only failure for | |
1295 | * fib_insert_alias is ENOMEM. | |
1296 | */ | |
1297 | NL_SET_ERR_MSG(extack, "Failed to insert route into trie"); | |
1298 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, | |
1299 | plen, new_fa, NULL); | |
f835e471 RO |
1300 | out_free_new_fa: |
1301 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1302 | out: |
1303 | fib_release_info(fi); | |
91b9a277 | 1304 | err: |
19baf839 RO |
1305 | return err; |
1306 | } | |
1307 | ||
35c6edac | 1308 | static inline t_key prefix_mismatch(t_key key, struct key_vector *n) |
9f9e636d AD |
1309 | { |
1310 | t_key prefix = n->key; | |
1311 | ||
1312 | return (key ^ prefix) & (prefix | -prefix); | |
1313 | } | |
1314 | ||
345e9b54 | 1315 | /* should be called with rcu_read_lock */ |
22bd5b9b | 1316 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
ebc0ffae | 1317 | struct fib_result *res, int fib_flags) |
19baf839 | 1318 | { |
0ddcf43d | 1319 | struct trie *t = (struct trie *) tb->tb_data; |
8274a97a AD |
1320 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1321 | struct trie_use_stats __percpu *stats = t->stats; | |
1322 | #endif | |
9f9e636d | 1323 | const t_key key = ntohl(flp->daddr); |
35c6edac | 1324 | struct key_vector *n, *pn; |
79e5ad2c | 1325 | struct fib_alias *fa; |
71e8b67d | 1326 | unsigned long index; |
9f9e636d | 1327 | t_key cindex; |
91b9a277 | 1328 | |
88bae714 AD |
1329 | pn = t->kv; |
1330 | cindex = 0; | |
1331 | ||
1332 | n = get_child_rcu(pn, cindex); | |
9f323973 DA |
1333 | if (!n) { |
1334 | trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); | |
345e9b54 | 1335 | return -EAGAIN; |
9f323973 | 1336 | } |
19baf839 RO |
1337 | |
1338 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
8274a97a | 1339 | this_cpu_inc(stats->gets); |
19baf839 RO |
1340 | #endif |
1341 | ||
9f9e636d AD |
1342 | /* Step 1: Travel to the longest prefix match in the trie */ |
1343 | for (;;) { | |
88bae714 | 1344 | index = get_cindex(key, n); |
9f9e636d AD |
1345 | |
1346 | /* This bit of code is a bit tricky but it combines multiple | |
1347 | * checks into a single check. The prefix consists of the | |
1348 | * prefix plus zeros for the "bits" in the prefix. The index | |
1349 | * is the difference between the key and this value. From | |
1350 | * this we can actually derive several pieces of data. | |
71e8b67d | 1351 | * if (index >= (1ul << bits)) |
9f9e636d | 1352 | * we have a mismatch in skip bits and failed |
b3832117 AD |
1353 | * else |
1354 | * we know the value is cindex | |
71e8b67d AD |
1355 | * |
1356 | * This check is safe even if bits == KEYLENGTH due to the | |
1357 | * fact that we can only allocate a node with 32 bits if a | |
1358 | * long is greater than 32 bits. | |
9f9e636d | 1359 | */ |
71e8b67d | 1360 | if (index >= (1ul << n->bits)) |
9f9e636d | 1361 | break; |
19baf839 | 1362 | |
9f9e636d AD |
1363 | /* we have found a leaf. Prefixes have already been compared */ |
1364 | if (IS_LEAF(n)) | |
a07f5f50 | 1365 | goto found; |
19baf839 | 1366 | |
9f9e636d AD |
1367 | /* only record pn and cindex if we are going to be chopping |
1368 | * bits later. Otherwise we are just wasting cycles. | |
91b9a277 | 1369 | */ |
5405afd1 | 1370 | if (n->slen > n->pos) { |
9f9e636d AD |
1371 | pn = n; |
1372 | cindex = index; | |
91b9a277 | 1373 | } |
19baf839 | 1374 | |
754baf8d | 1375 | n = get_child_rcu(n, index); |
9f9e636d AD |
1376 | if (unlikely(!n)) |
1377 | goto backtrace; | |
1378 | } | |
19baf839 | 1379 | |
9f9e636d AD |
1380 | /* Step 2: Sort out leaves and begin backtracing for longest prefix */ |
1381 | for (;;) { | |
1382 | /* record the pointer where our next node pointer is stored */ | |
35c6edac | 1383 | struct key_vector __rcu **cptr = n->tnode; |
19baf839 | 1384 | |
9f9e636d AD |
1385 | /* This test verifies that none of the bits that differ |
1386 | * between the key and the prefix exist in the region of | |
1387 | * the lsb and higher in the prefix. | |
91b9a277 | 1388 | */ |
5405afd1 | 1389 | if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) |
9f9e636d | 1390 | goto backtrace; |
91b9a277 | 1391 | |
9f9e636d AD |
1392 | /* exit out and process leaf */ |
1393 | if (unlikely(IS_LEAF(n))) | |
1394 | break; | |
91b9a277 | 1395 | |
9f9e636d AD |
1396 | /* Don't bother recording parent info. Since we are in |
1397 | * prefix match mode we will have to come back to wherever | |
1398 | * we started this traversal anyway | |
91b9a277 | 1399 | */ |
91b9a277 | 1400 | |
9f9e636d | 1401 | while ((n = rcu_dereference(*cptr)) == NULL) { |
19baf839 | 1402 | backtrace: |
19baf839 | 1403 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
9f9e636d AD |
1404 | if (!n) |
1405 | this_cpu_inc(stats->null_node_hit); | |
19baf839 | 1406 | #endif |
9f9e636d AD |
1407 | /* If we are at cindex 0 there are no more bits for |
1408 | * us to strip at this level so we must ascend back | |
1409 | * up one level to see if there are any more bits to | |
1410 | * be stripped there. | |
1411 | */ | |
1412 | while (!cindex) { | |
1413 | t_key pkey = pn->key; | |
1414 | ||
88bae714 AD |
1415 | /* If we don't have a parent then there is |
1416 | * nothing for us to do as we do not have any | |
1417 | * further nodes to parse. | |
1418 | */ | |
9f323973 DA |
1419 | if (IS_TRIE(pn)) { |
1420 | trace_fib_table_lookup(tb->tb_id, flp, | |
1421 | NULL, -EAGAIN); | |
345e9b54 | 1422 | return -EAGAIN; |
9f323973 | 1423 | } |
9f9e636d AD |
1424 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1425 | this_cpu_inc(stats->backtrack); | |
1426 | #endif | |
1427 | /* Get Child's index */ | |
88bae714 | 1428 | pn = node_parent_rcu(pn); |
9f9e636d AD |
1429 | cindex = get_index(pkey, pn); |
1430 | } | |
1431 | ||
1432 | /* strip the least significant bit from the cindex */ | |
1433 | cindex &= cindex - 1; | |
1434 | ||
1435 | /* grab pointer for next child node */ | |
41b489fd | 1436 | cptr = &pn->tnode[cindex]; |
c877efb2 | 1437 | } |
19baf839 | 1438 | } |
9f9e636d | 1439 | |
19baf839 | 1440 | found: |
71e8b67d AD |
1441 | /* this line carries forward the xor from earlier in the function */ |
1442 | index = key ^ n->key; | |
1443 | ||
9f9e636d | 1444 | /* Step 3: Process the leaf, if that fails fall back to backtracing */ |
79e5ad2c AD |
1445 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
1446 | struct fib_info *fi = fa->fa_info; | |
1447 | int nhsel, err; | |
345e9b54 | 1448 | |
a5829f53 AD |
1449 | if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { |
1450 | if (index >= (1ul << fa->fa_slen)) | |
1451 | continue; | |
1452 | } | |
79e5ad2c AD |
1453 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
1454 | continue; | |
1455 | if (fi->fib_dead) | |
1456 | continue; | |
1457 | if (fa->fa_info->fib_scope < flp->flowi4_scope) | |
1458 | continue; | |
1459 | fib_alias_accessed(fa); | |
1460 | err = fib_props[fa->fa_type].error; | |
1461 | if (unlikely(err < 0)) { | |
345e9b54 | 1462 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
79e5ad2c | 1463 | this_cpu_inc(stats->semantic_match_passed); |
345e9b54 | 1464 | #endif |
9f323973 | 1465 | trace_fib_table_lookup(tb->tb_id, flp, NULL, err); |
79e5ad2c AD |
1466 | return err; |
1467 | } | |
1468 | if (fi->fib_flags & RTNH_F_DEAD) | |
1469 | continue; | |
1470 | for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { | |
1471 | const struct fib_nh *nh = &fi->fib_nh[nhsel]; | |
0eeb075f | 1472 | struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); |
79e5ad2c AD |
1473 | |
1474 | if (nh->nh_flags & RTNH_F_DEAD) | |
1475 | continue; | |
0eeb075f AG |
1476 | if (in_dev && |
1477 | IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && | |
1478 | nh->nh_flags & RTNH_F_LINKDOWN && | |
1479 | !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) | |
1480 | continue; | |
58189ca7 | 1481 | if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { |
613d09b3 DA |
1482 | if (flp->flowi4_oif && |
1483 | flp->flowi4_oif != nh->nh_oif) | |
1484 | continue; | |
1485 | } | |
79e5ad2c AD |
1486 | |
1487 | if (!(fib_flags & FIB_LOOKUP_NOREF)) | |
0029c0de | 1488 | refcount_inc(&fi->fib_clntref); |
79e5ad2c | 1489 | |
6ffd9034 | 1490 | res->prefix = htonl(n->key); |
79e5ad2c AD |
1491 | res->prefixlen = KEYLENGTH - fa->fa_slen; |
1492 | res->nh_sel = nhsel; | |
1493 | res->type = fa->fa_type; | |
1494 | res->scope = fi->fib_scope; | |
1495 | res->fi = fi; | |
1496 | res->table = tb; | |
1497 | res->fa_head = &n->leaf; | |
345e9b54 | 1498 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
79e5ad2c | 1499 | this_cpu_inc(stats->semantic_match_passed); |
345e9b54 | 1500 | #endif |
9f323973 | 1501 | trace_fib_table_lookup(tb->tb_id, flp, nh, err); |
f6d3c192 | 1502 | |
79e5ad2c | 1503 | return err; |
345e9b54 | 1504 | } |
9b6ebad5 | 1505 | } |
345e9b54 | 1506 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
9b6ebad5 | 1507 | this_cpu_inc(stats->semantic_match_miss); |
345e9b54 | 1508 | #endif |
345e9b54 | 1509 | goto backtrace; |
19baf839 | 1510 | } |
6fc01438 | 1511 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
19baf839 | 1512 | |
35c6edac AD |
1513 | static void fib_remove_alias(struct trie *t, struct key_vector *tp, |
1514 | struct key_vector *l, struct fib_alias *old) | |
d5d6487c AD |
1515 | { |
1516 | /* record the location of the previous list_info entry */ | |
1517 | struct hlist_node **pprev = old->fa_list.pprev; | |
1518 | struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); | |
1519 | ||
1520 | /* remove the fib_alias from the list */ | |
1521 | hlist_del_rcu(&old->fa_list); | |
1522 | ||
1523 | /* if we emptied the list this leaf will be freed and we can sort | |
1524 | * out parent suffix lengths as a part of trie_rebalance | |
1525 | */ | |
1526 | if (hlist_empty(&l->leaf)) { | |
a52ca62c AD |
1527 | if (tp->slen == l->slen) |
1528 | node_pull_suffix(tp, tp->pos); | |
88bae714 | 1529 | put_child_root(tp, l->key, NULL); |
d5d6487c AD |
1530 | node_free(l); |
1531 | trie_rebalance(t, tp); | |
1532 | return; | |
1533 | } | |
1534 | ||
1535 | /* only access fa if it is pointing at the last valid hlist_node */ | |
1536 | if (*pprev) | |
1537 | return; | |
1538 | ||
1539 | /* update the trie with the latest suffix length */ | |
1540 | l->slen = fa->fa_slen; | |
1a239173 | 1541 | node_pull_suffix(tp, fa->fa_slen); |
d5d6487c AD |
1542 | } |
1543 | ||
1544 | /* Caller must hold RTNL. */ | |
b90eb754 | 1545 | int fib_table_delete(struct net *net, struct fib_table *tb, |
78055998 | 1546 | struct fib_config *cfg, struct netlink_ext_ack *extack) |
19baf839 RO |
1547 | { |
1548 | struct trie *t = (struct trie *) tb->tb_data; | |
19baf839 | 1549 | struct fib_alias *fa, *fa_to_delete; |
35c6edac | 1550 | struct key_vector *l, *tp; |
79e5ad2c | 1551 | u8 plen = cfg->fc_dst_len; |
79e5ad2c | 1552 | u8 slen = KEYLENGTH - plen; |
d4a975e8 AD |
1553 | u8 tos = cfg->fc_tos; |
1554 | u32 key; | |
91b9a277 | 1555 | |
4e902c57 | 1556 | key = ntohl(cfg->fc_dst); |
19baf839 | 1557 | |
78055998 | 1558 | if (!fib_valid_key_len(key, plen, extack)) |
19baf839 RO |
1559 | return -EINVAL; |
1560 | ||
d4a975e8 | 1561 | l = fib_find_node(t, &tp, key); |
c877efb2 | 1562 | if (!l) |
19baf839 RO |
1563 | return -ESRCH; |
1564 | ||
0b65bd97 | 1565 | fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); |
19baf839 RO |
1566 | if (!fa) |
1567 | return -ESRCH; | |
1568 | ||
0c7770c7 | 1569 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1570 | |
1571 | fa_to_delete = NULL; | |
56315f9e | 1572 | hlist_for_each_entry_from(fa, fa_list) { |
19baf839 RO |
1573 | struct fib_info *fi = fa->fa_info; |
1574 | ||
0b65bd97 AD |
1575 | if ((fa->fa_slen != slen) || |
1576 | (fa->tb_id != tb->tb_id) || | |
1577 | (fa->fa_tos != tos)) | |
19baf839 RO |
1578 | break; |
1579 | ||
4e902c57 TG |
1580 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
1581 | (cfg->fc_scope == RT_SCOPE_NOWHERE || | |
37e826c5 | 1582 | fa->fa_info->fib_scope == cfg->fc_scope) && |
74cb3c10 JA |
1583 | (!cfg->fc_prefsrc || |
1584 | fi->fib_prefsrc == cfg->fc_prefsrc) && | |
4e902c57 TG |
1585 | (!cfg->fc_protocol || |
1586 | fi->fib_protocol == cfg->fc_protocol) && | |
5f9ae3d9 XL |
1587 | fib_nh_match(cfg, fi, extack) == 0 && |
1588 | fib_metrics_match(cfg, fi)) { | |
19baf839 RO |
1589 | fa_to_delete = fa; |
1590 | break; | |
1591 | } | |
1592 | } | |
1593 | ||
91b9a277 OJ |
1594 | if (!fa_to_delete) |
1595 | return -ESRCH; | |
19baf839 | 1596 | |
b90eb754 | 1597 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, |
6c31e5a9 | 1598 | fa_to_delete, extack); |
d5d6487c | 1599 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, |
b8f55831 | 1600 | &cfg->fc_nlinfo, 0); |
91b9a277 | 1601 | |
21d8c49e DM |
1602 | if (!plen) |
1603 | tb->tb_num_default--; | |
1604 | ||
d5d6487c | 1605 | fib_remove_alias(t, tp, l, fa_to_delete); |
19baf839 | 1606 | |
d5d6487c | 1607 | if (fa_to_delete->fa_state & FA_S_ACCESSED) |
4ccfe6d4 | 1608 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
19baf839 | 1609 | |
d5d6487c AD |
1610 | fib_release_info(fa_to_delete->fa_info); |
1611 | alias_free_mem_rcu(fa_to_delete); | |
91b9a277 | 1612 | return 0; |
19baf839 RO |
1613 | } |
1614 | ||
8be33e95 | 1615 | /* Scan for the next leaf starting at the provided key value */ |
35c6edac | 1616 | static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) |
19baf839 | 1617 | { |
35c6edac | 1618 | struct key_vector *pn, *n = *tn; |
8be33e95 | 1619 | unsigned long cindex; |
82cfbb00 | 1620 | |
8be33e95 | 1621 | /* this loop is meant to try and find the key in the trie */ |
88bae714 | 1622 | do { |
8be33e95 AD |
1623 | /* record parent and next child index */ |
1624 | pn = n; | |
c2229fe1 | 1625 | cindex = (key > pn->key) ? get_index(key, pn) : 0; |
88bae714 AD |
1626 | |
1627 | if (cindex >> pn->bits) | |
1628 | break; | |
82cfbb00 | 1629 | |
8be33e95 | 1630 | /* descend into the next child */ |
754baf8d | 1631 | n = get_child_rcu(pn, cindex++); |
88bae714 AD |
1632 | if (!n) |
1633 | break; | |
1634 | ||
1635 | /* guarantee forward progress on the keys */ | |
1636 | if (IS_LEAF(n) && (n->key >= key)) | |
1637 | goto found; | |
1638 | } while (IS_TNODE(n)); | |
82cfbb00 | 1639 | |
8be33e95 | 1640 | /* this loop will search for the next leaf with a greater key */ |
88bae714 | 1641 | while (!IS_TRIE(pn)) { |
8be33e95 AD |
1642 | /* if we exhausted the parent node we will need to climb */ |
1643 | if (cindex >= (1ul << pn->bits)) { | |
1644 | t_key pkey = pn->key; | |
82cfbb00 | 1645 | |
8be33e95 | 1646 | pn = node_parent_rcu(pn); |
8be33e95 AD |
1647 | cindex = get_index(pkey, pn) + 1; |
1648 | continue; | |
1649 | } | |
82cfbb00 | 1650 | |
8be33e95 | 1651 | /* grab the next available node */ |
754baf8d | 1652 | n = get_child_rcu(pn, cindex++); |
8be33e95 AD |
1653 | if (!n) |
1654 | continue; | |
19baf839 | 1655 | |
8be33e95 AD |
1656 | /* no need to compare keys since we bumped the index */ |
1657 | if (IS_LEAF(n)) | |
1658 | goto found; | |
71d67e66 | 1659 | |
8be33e95 AD |
1660 | /* Rescan start scanning in new node */ |
1661 | pn = n; | |
1662 | cindex = 0; | |
1663 | } | |
ec28cf73 | 1664 | |
8be33e95 AD |
1665 | *tn = pn; |
1666 | return NULL; /* Root of trie */ | |
1667 | found: | |
1668 | /* if we are at the limit for keys just return NULL for the tnode */ | |
88bae714 | 1669 | *tn = pn; |
8be33e95 | 1670 | return n; |
71d67e66 SH |
1671 | } |
1672 | ||
0ddcf43d AD |
1673 | static void fib_trie_free(struct fib_table *tb) |
1674 | { | |
1675 | struct trie *t = (struct trie *)tb->tb_data; | |
1676 | struct key_vector *pn = t->kv; | |
1677 | unsigned long cindex = 1; | |
1678 | struct hlist_node *tmp; | |
1679 | struct fib_alias *fa; | |
1680 | ||
1681 | /* walk trie in reverse order and free everything */ | |
1682 | for (;;) { | |
1683 | struct key_vector *n; | |
1684 | ||
1685 | if (!(cindex--)) { | |
1686 | t_key pkey = pn->key; | |
1687 | ||
1688 | if (IS_TRIE(pn)) | |
1689 | break; | |
1690 | ||
1691 | n = pn; | |
1692 | pn = node_parent(pn); | |
1693 | ||
1694 | /* drop emptied tnode */ | |
1695 | put_child_root(pn, n->key, NULL); | |
1696 | node_free(n); | |
1697 | ||
1698 | cindex = get_index(pkey, pn); | |
1699 | ||
1700 | continue; | |
1701 | } | |
1702 | ||
1703 | /* grab the next available node */ | |
1704 | n = get_child(pn, cindex); | |
1705 | if (!n) | |
1706 | continue; | |
1707 | ||
1708 | if (IS_TNODE(n)) { | |
1709 | /* record pn and cindex for leaf walking */ | |
1710 | pn = n; | |
1711 | cindex = 1ul << n->bits; | |
1712 | ||
1713 | continue; | |
1714 | } | |
1715 | ||
1716 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | |
1717 | hlist_del_rcu(&fa->fa_list); | |
1718 | alias_free_mem_rcu(fa); | |
1719 | } | |
1720 | ||
1721 | put_child_root(pn, n->key, NULL); | |
1722 | node_free(n); | |
1723 | } | |
1724 | ||
1725 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1726 | free_percpu(t->stats); | |
1727 | #endif | |
1728 | kfree(tb); | |
1729 | } | |
1730 | ||
1731 | struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) | |
1732 | { | |
1733 | struct trie *ot = (struct trie *)oldtb->tb_data; | |
1734 | struct key_vector *l, *tp = ot->kv; | |
1735 | struct fib_table *local_tb; | |
1736 | struct fib_alias *fa; | |
1737 | struct trie *lt; | |
1738 | t_key key = 0; | |
1739 | ||
1740 | if (oldtb->tb_data == oldtb->__data) | |
1741 | return oldtb; | |
1742 | ||
1743 | local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); | |
1744 | if (!local_tb) | |
1745 | return NULL; | |
1746 | ||
1747 | lt = (struct trie *)local_tb->tb_data; | |
1748 | ||
1749 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | |
1750 | struct key_vector *local_l = NULL, *local_tp; | |
1751 | ||
1752 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | |
1753 | struct fib_alias *new_fa; | |
1754 | ||
1755 | if (local_tb->tb_id != fa->tb_id) | |
1756 | continue; | |
1757 | ||
1758 | /* clone fa for new local table */ | |
1759 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | |
1760 | if (!new_fa) | |
1761 | goto out; | |
1762 | ||
1763 | memcpy(new_fa, fa, sizeof(*fa)); | |
1764 | ||
1765 | /* insert clone into table */ | |
1766 | if (!local_l) | |
1767 | local_l = fib_find_node(lt, &local_tp, l->key); | |
1768 | ||
1769 | if (fib_insert_alias(lt, local_tp, local_l, new_fa, | |
3114cdfe AD |
1770 | NULL, l->key)) { |
1771 | kmem_cache_free(fn_alias_kmem, new_fa); | |
0ddcf43d | 1772 | goto out; |
3114cdfe | 1773 | } |
0ddcf43d AD |
1774 | } |
1775 | ||
1776 | /* stop loop if key wrapped back to 0 */ | |
1777 | key = l->key + 1; | |
1778 | if (key < l->key) | |
1779 | break; | |
1780 | } | |
1781 | ||
1782 | return local_tb; | |
1783 | out: | |
1784 | fib_trie_free(local_tb); | |
1785 | ||
1786 | return NULL; | |
1787 | } | |
1788 | ||
3b709334 AD |
1789 | /* Caller must hold RTNL */ |
1790 | void fib_table_flush_external(struct fib_table *tb) | |
1791 | { | |
1792 | struct trie *t = (struct trie *)tb->tb_data; | |
1793 | struct key_vector *pn = t->kv; | |
1794 | unsigned long cindex = 1; | |
1795 | struct hlist_node *tmp; | |
1796 | struct fib_alias *fa; | |
1797 | ||
1798 | /* walk trie in reverse order */ | |
1799 | for (;;) { | |
1800 | unsigned char slen = 0; | |
1801 | struct key_vector *n; | |
1802 | ||
1803 | if (!(cindex--)) { | |
1804 | t_key pkey = pn->key; | |
1805 | ||
1806 | /* cannot resize the trie vector */ | |
1807 | if (IS_TRIE(pn)) | |
1808 | break; | |
1809 | ||
a52ca62c AD |
1810 | /* update the suffix to address pulled leaves */ |
1811 | if (pn->slen > pn->pos) | |
1812 | update_suffix(pn); | |
1813 | ||
3b709334 AD |
1814 | /* resize completed node */ |
1815 | pn = resize(t, pn); | |
1816 | cindex = get_index(pkey, pn); | |
1817 | ||
1818 | continue; | |
1819 | } | |
1820 | ||
1821 | /* grab the next available node */ | |
1822 | n = get_child(pn, cindex); | |
1823 | if (!n) | |
1824 | continue; | |
1825 | ||
1826 | if (IS_TNODE(n)) { | |
1827 | /* record pn and cindex for leaf walking */ | |
1828 | pn = n; | |
1829 | cindex = 1ul << n->bits; | |
1830 | ||
1831 | continue; | |
1832 | } | |
1833 | ||
1834 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | |
1835 | /* if alias was cloned to local then we just | |
1836 | * need to remove the local copy from main | |
1837 | */ | |
1838 | if (tb->tb_id != fa->tb_id) { | |
1839 | hlist_del_rcu(&fa->fa_list); | |
1840 | alias_free_mem_rcu(fa); | |
1841 | continue; | |
1842 | } | |
1843 | ||
1844 | /* record local slen */ | |
1845 | slen = fa->fa_slen; | |
1846 | } | |
1847 | ||
1848 | /* update leaf slen */ | |
1849 | n->slen = slen; | |
1850 | ||
1851 | if (hlist_empty(&n->leaf)) { | |
1852 | put_child_root(pn, n->key, NULL); | |
1853 | node_free(n); | |
1854 | } | |
1855 | } | |
1856 | } | |
1857 | ||
8be33e95 | 1858 | /* Caller must hold RTNL. */ |
b90eb754 | 1859 | int fib_table_flush(struct net *net, struct fib_table *tb) |
19baf839 | 1860 | { |
7289e6dd | 1861 | struct trie *t = (struct trie *)tb->tb_data; |
88bae714 AD |
1862 | struct key_vector *pn = t->kv; |
1863 | unsigned long cindex = 1; | |
7289e6dd AD |
1864 | struct hlist_node *tmp; |
1865 | struct fib_alias *fa; | |
82cfbb00 | 1866 | int found = 0; |
19baf839 | 1867 | |
88bae714 AD |
1868 | /* walk trie in reverse order */ |
1869 | for (;;) { | |
1870 | unsigned char slen = 0; | |
1871 | struct key_vector *n; | |
19baf839 | 1872 | |
88bae714 AD |
1873 | if (!(cindex--)) { |
1874 | t_key pkey = pn->key; | |
7289e6dd | 1875 | |
88bae714 AD |
1876 | /* cannot resize the trie vector */ |
1877 | if (IS_TRIE(pn)) | |
1878 | break; | |
7289e6dd | 1879 | |
a52ca62c AD |
1880 | /* update the suffix to address pulled leaves */ |
1881 | if (pn->slen > pn->pos) | |
1882 | update_suffix(pn); | |
1883 | ||
88bae714 AD |
1884 | /* resize completed node */ |
1885 | pn = resize(t, pn); | |
1886 | cindex = get_index(pkey, pn); | |
7289e6dd | 1887 | |
88bae714 AD |
1888 | continue; |
1889 | } | |
7289e6dd | 1890 | |
88bae714 AD |
1891 | /* grab the next available node */ |
1892 | n = get_child(pn, cindex); | |
1893 | if (!n) | |
1894 | continue; | |
7289e6dd | 1895 | |
88bae714 AD |
1896 | if (IS_TNODE(n)) { |
1897 | /* record pn and cindex for leaf walking */ | |
1898 | pn = n; | |
1899 | cindex = 1ul << n->bits; | |
7289e6dd | 1900 | |
88bae714 AD |
1901 | continue; |
1902 | } | |
7289e6dd | 1903 | |
88bae714 AD |
1904 | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { |
1905 | struct fib_info *fi = fa->fa_info; | |
7289e6dd | 1906 | |
58e3bdd5 IS |
1907 | if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || |
1908 | tb->tb_id != fa->tb_id) { | |
88bae714 AD |
1909 | slen = fa->fa_slen; |
1910 | continue; | |
1911 | } | |
7289e6dd | 1912 | |
b90eb754 JP |
1913 | call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, |
1914 | n->key, | |
6c31e5a9 DA |
1915 | KEYLENGTH - fa->fa_slen, fa, |
1916 | NULL); | |
7289e6dd AD |
1917 | hlist_del_rcu(&fa->fa_list); |
1918 | fib_release_info(fa->fa_info); | |
1919 | alias_free_mem_rcu(fa); | |
1920 | found++; | |
64c62723 AD |
1921 | } |
1922 | ||
88bae714 AD |
1923 | /* update leaf slen */ |
1924 | n->slen = slen; | |
7289e6dd | 1925 | |
88bae714 AD |
1926 | if (hlist_empty(&n->leaf)) { |
1927 | put_child_root(pn, n->key, NULL); | |
1928 | node_free(n); | |
88bae714 | 1929 | } |
64c62723 | 1930 | } |
19baf839 | 1931 | |
0c7770c7 | 1932 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1933 | return found; |
1934 | } | |
1935 | ||
c3852ef7 | 1936 | static void fib_leaf_notify(struct net *net, struct key_vector *l, |
d05f7a7d | 1937 | struct fib_table *tb, struct notifier_block *nb) |
c3852ef7 IS |
1938 | { |
1939 | struct fib_alias *fa; | |
1940 | ||
1941 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | |
1942 | struct fib_info *fi = fa->fa_info; | |
1943 | ||
1944 | if (!fi) | |
1945 | continue; | |
1946 | ||
1947 | /* local and main table can share the same trie, | |
1948 | * so don't notify twice for the same entry. | |
1949 | */ | |
1950 | if (tb->tb_id != fa->tb_id) | |
1951 | continue; | |
1952 | ||
d05f7a7d | 1953 | call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, |
6eba87c7 | 1954 | KEYLENGTH - fa->fa_slen, fa); |
c3852ef7 IS |
1955 | } |
1956 | } | |
1957 | ||
1958 | static void fib_table_notify(struct net *net, struct fib_table *tb, | |
d05f7a7d | 1959 | struct notifier_block *nb) |
c3852ef7 IS |
1960 | { |
1961 | struct trie *t = (struct trie *)tb->tb_data; | |
1962 | struct key_vector *l, *tp = t->kv; | |
1963 | t_key key = 0; | |
1964 | ||
1965 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | |
d05f7a7d | 1966 | fib_leaf_notify(net, l, tb, nb); |
c3852ef7 IS |
1967 | |
1968 | key = l->key + 1; | |
1969 | /* stop in case of wrap around */ | |
1970 | if (key < l->key) | |
1971 | break; | |
1972 | } | |
1973 | } | |
1974 | ||
d05f7a7d | 1975 | void fib_notify(struct net *net, struct notifier_block *nb) |
c3852ef7 IS |
1976 | { |
1977 | unsigned int h; | |
1978 | ||
1979 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | |
1980 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
1981 | struct fib_table *tb; | |
1982 | ||
1983 | hlist_for_each_entry_rcu(tb, head, tb_hlist) | |
d05f7a7d | 1984 | fib_table_notify(net, tb, nb); |
c3852ef7 IS |
1985 | } |
1986 | } | |
1987 | ||
a7e53531 | 1988 | static void __trie_free_rcu(struct rcu_head *head) |
4aa2c466 | 1989 | { |
a7e53531 | 1990 | struct fib_table *tb = container_of(head, struct fib_table, rcu); |
8274a97a AD |
1991 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1992 | struct trie *t = (struct trie *)tb->tb_data; | |
1993 | ||
0ddcf43d AD |
1994 | if (tb->tb_data == tb->__data) |
1995 | free_percpu(t->stats); | |
8274a97a | 1996 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
4aa2c466 PE |
1997 | kfree(tb); |
1998 | } | |
1999 | ||
a7e53531 AD |
2000 | void fib_free_table(struct fib_table *tb) |
2001 | { | |
2002 | call_rcu(&tb->rcu, __trie_free_rcu); | |
2003 | } | |
2004 | ||
35c6edac | 2005 | static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, |
18a8021a DA |
2006 | struct sk_buff *skb, struct netlink_callback *cb, |
2007 | struct fib_dump_filter *filter) | |
19baf839 | 2008 | { |
18a8021a | 2009 | unsigned int flags = NLM_F_MULTI; |
79e5ad2c | 2010 | __be32 xkey = htonl(l->key); |
19baf839 | 2011 | struct fib_alias *fa; |
79e5ad2c | 2012 | int i, s_i; |
19baf839 | 2013 | |
18a8021a DA |
2014 | if (filter->filter_set) |
2015 | flags |= NLM_F_DUMP_FILTERED; | |
2016 | ||
79e5ad2c | 2017 | s_i = cb->args[4]; |
19baf839 RO |
2018 | i = 0; |
2019 | ||
2373ce1c | 2020 | /* rcu_read_lock is hold by caller */ |
79e5ad2c | 2021 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
f6c5775f DA |
2022 | int err; |
2023 | ||
18a8021a DA |
2024 | if (i < s_i) |
2025 | goto next; | |
19baf839 | 2026 | |
18a8021a DA |
2027 | if (tb->tb_id != fa->tb_id) |
2028 | goto next; | |
2029 | ||
2030 | if (filter->filter_set) { | |
2031 | if (filter->rt_type && fa->fa_type != filter->rt_type) | |
2032 | goto next; | |
2033 | ||
2034 | if ((filter->protocol && | |
2035 | fa->fa_info->fib_protocol != filter->protocol)) | |
2036 | goto next; | |
2037 | ||
2038 | if (filter->dev && | |
2039 | !fib_info_nh_uses_dev(fa->fa_info, filter->dev)) | |
2040 | goto next; | |
0ddcf43d AD |
2041 | } |
2042 | ||
f6c5775f DA |
2043 | err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, |
2044 | cb->nlh->nlmsg_seq, RTM_NEWROUTE, | |
2045 | tb->tb_id, fa->fa_type, | |
2046 | xkey, KEYLENGTH - fa->fa_slen, | |
18a8021a | 2047 | fa->fa_tos, fa->fa_info, flags); |
f6c5775f | 2048 | if (err < 0) { |
71d67e66 | 2049 | cb->args[4] = i; |
f6c5775f | 2050 | return err; |
19baf839 | 2051 | } |
18a8021a | 2052 | next: |
a88ee229 | 2053 | i++; |
19baf839 | 2054 | } |
a88ee229 | 2055 | |
71d67e66 | 2056 | cb->args[4] = i; |
19baf839 RO |
2057 | return skb->len; |
2058 | } | |
2059 | ||
a7e53531 | 2060 | /* rcu_read_lock needs to be hold by caller from readside */ |
16c6cf8b | 2061 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
18a8021a | 2062 | struct netlink_callback *cb, struct fib_dump_filter *filter) |
19baf839 | 2063 | { |
8be33e95 | 2064 | struct trie *t = (struct trie *)tb->tb_data; |
88bae714 | 2065 | struct key_vector *l, *tp = t->kv; |
d5ce8a0e SH |
2066 | /* Dump starting at last key. |
2067 | * Note: 0.0.0.0/0 (ie default) is first key. | |
2068 | */ | |
8be33e95 AD |
2069 | int count = cb->args[2]; |
2070 | t_key key = cb->args[3]; | |
a88ee229 | 2071 | |
8be33e95 | 2072 | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { |
f6c5775f DA |
2073 | int err; |
2074 | ||
18a8021a | 2075 | err = fn_trie_dump_leaf(l, tb, skb, cb, filter); |
f6c5775f | 2076 | if (err < 0) { |
8be33e95 AD |
2077 | cb->args[3] = key; |
2078 | cb->args[2] = count; | |
f6c5775f | 2079 | return err; |
19baf839 | 2080 | } |
d5ce8a0e | 2081 | |
71d67e66 | 2082 | ++count; |
8be33e95 AD |
2083 | key = l->key + 1; |
2084 | ||
71d67e66 SH |
2085 | memset(&cb->args[4], 0, |
2086 | sizeof(cb->args) - 4*sizeof(cb->args[0])); | |
8be33e95 AD |
2087 | |
2088 | /* stop loop if key wrapped back to 0 */ | |
2089 | if (key < l->key) | |
2090 | break; | |
19baf839 | 2091 | } |
8be33e95 | 2092 | |
8be33e95 AD |
2093 | cb->args[3] = key; |
2094 | cb->args[2] = count; | |
2095 | ||
19baf839 | 2096 | return skb->len; |
19baf839 RO |
2097 | } |
2098 | ||
5348ba85 | 2099 | void __init fib_trie_init(void) |
7f9b8052 | 2100 | { |
a07f5f50 SH |
2101 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
2102 | sizeof(struct fib_alias), | |
bc3c8c1e SH |
2103 | 0, SLAB_PANIC, NULL); |
2104 | ||
2105 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | |
41b489fd | 2106 | LEAF_SIZE, |
bc3c8c1e | 2107 | 0, SLAB_PANIC, NULL); |
7f9b8052 | 2108 | } |
19baf839 | 2109 | |
0ddcf43d | 2110 | struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) |
19baf839 RO |
2111 | { |
2112 | struct fib_table *tb; | |
2113 | struct trie *t; | |
0ddcf43d AD |
2114 | size_t sz = sizeof(*tb); |
2115 | ||
2116 | if (!alias) | |
2117 | sz += sizeof(struct trie); | |
19baf839 | 2118 | |
0ddcf43d | 2119 | tb = kzalloc(sz, GFP_KERNEL); |
51456b29 | 2120 | if (!tb) |
19baf839 RO |
2121 | return NULL; |
2122 | ||
2123 | tb->tb_id = id; | |
21d8c49e | 2124 | tb->tb_num_default = 0; |
0ddcf43d AD |
2125 | tb->tb_data = (alias ? alias->__data : tb->__data); |
2126 | ||
2127 | if (alias) | |
2128 | return tb; | |
19baf839 RO |
2129 | |
2130 | t = (struct trie *) tb->tb_data; | |
88bae714 AD |
2131 | t->kv[0].pos = KEYLENGTH; |
2132 | t->kv[0].slen = KEYLENGTH; | |
8274a97a AD |
2133 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
2134 | t->stats = alloc_percpu(struct trie_use_stats); | |
2135 | if (!t->stats) { | |
2136 | kfree(tb); | |
2137 | tb = NULL; | |
2138 | } | |
2139 | #endif | |
19baf839 | 2140 | |
19baf839 RO |
2141 | return tb; |
2142 | } | |
2143 | ||
cb7b593c SH |
2144 | #ifdef CONFIG_PROC_FS |
2145 | /* Depth first Trie walk iterator */ | |
2146 | struct fib_trie_iter { | |
1c340b2f | 2147 | struct seq_net_private p; |
3d3b2d25 | 2148 | struct fib_table *tb; |
35c6edac | 2149 | struct key_vector *tnode; |
a034ee3c ED |
2150 | unsigned int index; |
2151 | unsigned int depth; | |
cb7b593c | 2152 | }; |
19baf839 | 2153 | |
35c6edac | 2154 | static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 2155 | { |
98293e8d | 2156 | unsigned long cindex = iter->index; |
88bae714 AD |
2157 | struct key_vector *pn = iter->tnode; |
2158 | t_key pkey; | |
6640e697 | 2159 | |
cb7b593c SH |
2160 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2161 | iter->tnode, iter->index, iter->depth); | |
19baf839 | 2162 | |
88bae714 AD |
2163 | while (!IS_TRIE(pn)) { |
2164 | while (cindex < child_length(pn)) { | |
2165 | struct key_vector *n = get_child_rcu(pn, cindex++); | |
2166 | ||
2167 | if (!n) | |
2168 | continue; | |
2169 | ||
cb7b593c | 2170 | if (IS_LEAF(n)) { |
88bae714 AD |
2171 | iter->tnode = pn; |
2172 | iter->index = cindex; | |
cb7b593c SH |
2173 | } else { |
2174 | /* push down one level */ | |
adaf9816 | 2175 | iter->tnode = n; |
cb7b593c SH |
2176 | iter->index = 0; |
2177 | ++iter->depth; | |
2178 | } | |
88bae714 | 2179 | |
cb7b593c SH |
2180 | return n; |
2181 | } | |
19baf839 | 2182 | |
88bae714 AD |
2183 | /* Current node exhausted, pop back up */ |
2184 | pkey = pn->key; | |
2185 | pn = node_parent_rcu(pn); | |
2186 | cindex = get_index(pkey, pn) + 1; | |
cb7b593c | 2187 | --iter->depth; |
19baf839 | 2188 | } |
cb7b593c | 2189 | |
88bae714 AD |
2190 | /* record root node so further searches know we are done */ |
2191 | iter->tnode = pn; | |
2192 | iter->index = 0; | |
2193 | ||
cb7b593c | 2194 | return NULL; |
19baf839 RO |
2195 | } |
2196 | ||
35c6edac AD |
2197 | static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, |
2198 | struct trie *t) | |
19baf839 | 2199 | { |
f38b24c9 | 2200 | struct key_vector *n, *pn; |
5ddf0eb2 | 2201 | |
132adf54 | 2202 | if (!t) |
5ddf0eb2 RO |
2203 | return NULL; |
2204 | ||
f38b24c9 | 2205 | pn = t->kv; |
88bae714 | 2206 | n = rcu_dereference(pn->tnode[0]); |
3d3b2d25 | 2207 | if (!n) |
5ddf0eb2 | 2208 | return NULL; |
19baf839 | 2209 | |
3d3b2d25 | 2210 | if (IS_TNODE(n)) { |
adaf9816 | 2211 | iter->tnode = n; |
3d3b2d25 SH |
2212 | iter->index = 0; |
2213 | iter->depth = 1; | |
2214 | } else { | |
88bae714 | 2215 | iter->tnode = pn; |
3d3b2d25 SH |
2216 | iter->index = 0; |
2217 | iter->depth = 0; | |
91b9a277 | 2218 | } |
3d3b2d25 SH |
2219 | |
2220 | return n; | |
cb7b593c | 2221 | } |
91b9a277 | 2222 | |
cb7b593c SH |
2223 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2224 | { | |
35c6edac | 2225 | struct key_vector *n; |
cb7b593c | 2226 | struct fib_trie_iter iter; |
91b9a277 | 2227 | |
cb7b593c | 2228 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2229 | |
cb7b593c | 2230 | rcu_read_lock(); |
3d3b2d25 | 2231 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
cb7b593c | 2232 | if (IS_LEAF(n)) { |
79e5ad2c | 2233 | struct fib_alias *fa; |
93672292 | 2234 | |
cb7b593c SH |
2235 | s->leaves++; |
2236 | s->totdepth += iter.depth; | |
2237 | if (iter.depth > s->maxdepth) | |
2238 | s->maxdepth = iter.depth; | |
93672292 | 2239 | |
79e5ad2c | 2240 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) |
93672292 | 2241 | ++s->prefixes; |
cb7b593c | 2242 | } else { |
cb7b593c | 2243 | s->tnodes++; |
adaf9816 AD |
2244 | if (n->bits < MAX_STAT_DEPTH) |
2245 | s->nodesizes[n->bits]++; | |
6e22d174 | 2246 | s->nullpointers += tn_info(n)->empty_children; |
19baf839 | 2247 | } |
19baf839 | 2248 | } |
2373ce1c | 2249 | rcu_read_unlock(); |
19baf839 RO |
2250 | } |
2251 | ||
cb7b593c SH |
2252 | /* |
2253 | * This outputs /proc/net/fib_triestats | |
2254 | */ | |
2255 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2256 | { |
a034ee3c | 2257 | unsigned int i, max, pointers, bytes, avdepth; |
c877efb2 | 2258 | |
cb7b593c SH |
2259 | if (stat->leaves) |
2260 | avdepth = stat->totdepth*100 / stat->leaves; | |
2261 | else | |
2262 | avdepth = 0; | |
91b9a277 | 2263 | |
a07f5f50 SH |
2264 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
2265 | avdepth / 100, avdepth % 100); | |
cb7b593c | 2266 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
91b9a277 | 2267 | |
cb7b593c | 2268 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
41b489fd | 2269 | bytes = LEAF_SIZE * stat->leaves; |
93672292 SH |
2270 | |
2271 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); | |
79e5ad2c | 2272 | bytes += sizeof(struct fib_alias) * stat->prefixes; |
93672292 | 2273 | |
187b5188 | 2274 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
41b489fd | 2275 | bytes += TNODE_SIZE(0) * stat->tnodes; |
19baf839 | 2276 | |
06ef921d RO |
2277 | max = MAX_STAT_DEPTH; |
2278 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2279 | max--; |
19baf839 | 2280 | |
cb7b593c | 2281 | pointers = 0; |
f585a991 | 2282 | for (i = 1; i < max; i++) |
cb7b593c | 2283 | if (stat->nodesizes[i] != 0) { |
187b5188 | 2284 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
cb7b593c SH |
2285 | pointers += (1<<i) * stat->nodesizes[i]; |
2286 | } | |
2287 | seq_putc(seq, '\n'); | |
187b5188 | 2288 | seq_printf(seq, "\tPointers: %u\n", pointers); |
2373ce1c | 2289 | |
35c6edac | 2290 | bytes += sizeof(struct key_vector *) * pointers; |
187b5188 SH |
2291 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
2292 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); | |
66a2f7fd | 2293 | } |
2373ce1c | 2294 | |
cb7b593c | 2295 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
66a2f7fd | 2296 | static void trie_show_usage(struct seq_file *seq, |
8274a97a | 2297 | const struct trie_use_stats __percpu *stats) |
66a2f7fd | 2298 | { |
8274a97a AD |
2299 | struct trie_use_stats s = { 0 }; |
2300 | int cpu; | |
2301 | ||
2302 | /* loop through all of the CPUs and gather up the stats */ | |
2303 | for_each_possible_cpu(cpu) { | |
2304 | const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); | |
2305 | ||
2306 | s.gets += pcpu->gets; | |
2307 | s.backtrack += pcpu->backtrack; | |
2308 | s.semantic_match_passed += pcpu->semantic_match_passed; | |
2309 | s.semantic_match_miss += pcpu->semantic_match_miss; | |
2310 | s.null_node_hit += pcpu->null_node_hit; | |
2311 | s.resize_node_skipped += pcpu->resize_node_skipped; | |
2312 | } | |
2313 | ||
66a2f7fd | 2314 | seq_printf(seq, "\nCounters:\n---------\n"); |
8274a97a AD |
2315 | seq_printf(seq, "gets = %u\n", s.gets); |
2316 | seq_printf(seq, "backtracks = %u\n", s.backtrack); | |
a07f5f50 | 2317 | seq_printf(seq, "semantic match passed = %u\n", |
8274a97a AD |
2318 | s.semantic_match_passed); |
2319 | seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); | |
2320 | seq_printf(seq, "null node hit= %u\n", s.null_node_hit); | |
2321 | seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); | |
cb7b593c | 2322 | } |
66a2f7fd SH |
2323 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
2324 | ||
3d3b2d25 | 2325 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
d717a9a6 | 2326 | { |
3d3b2d25 SH |
2327 | if (tb->tb_id == RT_TABLE_LOCAL) |
2328 | seq_puts(seq, "Local:\n"); | |
2329 | else if (tb->tb_id == RT_TABLE_MAIN) | |
2330 | seq_puts(seq, "Main:\n"); | |
2331 | else | |
2332 | seq_printf(seq, "Id %d:\n", tb->tb_id); | |
d717a9a6 | 2333 | } |
19baf839 | 2334 | |
3d3b2d25 | 2335 | |
cb7b593c SH |
2336 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2337 | { | |
1c340b2f | 2338 | struct net *net = (struct net *)seq->private; |
3d3b2d25 | 2339 | unsigned int h; |
877a9bff | 2340 | |
d717a9a6 | 2341 | seq_printf(seq, |
a07f5f50 | 2342 | "Basic info: size of leaf:" |
5b5e0928 | 2343 | " %zd bytes, size of tnode: %zd bytes.\n", |
41b489fd | 2344 | LEAF_SIZE, TNODE_SIZE(0)); |
d717a9a6 | 2345 | |
3d3b2d25 SH |
2346 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2347 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 SH |
2348 | struct fib_table *tb; |
2349 | ||
b67bfe0d | 2350 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2351 | struct trie *t = (struct trie *) tb->tb_data; |
2352 | struct trie_stat stat; | |
877a9bff | 2353 | |
3d3b2d25 SH |
2354 | if (!t) |
2355 | continue; | |
2356 | ||
2357 | fib_table_print(seq, tb); | |
2358 | ||
2359 | trie_collect_stats(t, &stat); | |
2360 | trie_show_stats(seq, &stat); | |
2361 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
8274a97a | 2362 | trie_show_usage(seq, t->stats); |
3d3b2d25 SH |
2363 | #endif |
2364 | } | |
2365 | } | |
19baf839 | 2366 | |
cb7b593c | 2367 | return 0; |
19baf839 RO |
2368 | } |
2369 | ||
35c6edac | 2370 | static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
19baf839 | 2371 | { |
1218854a YH |
2372 | struct fib_trie_iter *iter = seq->private; |
2373 | struct net *net = seq_file_net(seq); | |
cb7b593c | 2374 | loff_t idx = 0; |
3d3b2d25 | 2375 | unsigned int h; |
cb7b593c | 2376 | |
3d3b2d25 SH |
2377 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2378 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 | 2379 | struct fib_table *tb; |
cb7b593c | 2380 | |
b67bfe0d | 2381 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
35c6edac | 2382 | struct key_vector *n; |
3d3b2d25 SH |
2383 | |
2384 | for (n = fib_trie_get_first(iter, | |
2385 | (struct trie *) tb->tb_data); | |
2386 | n; n = fib_trie_get_next(iter)) | |
2387 | if (pos == idx++) { | |
2388 | iter->tb = tb; | |
2389 | return n; | |
2390 | } | |
2391 | } | |
cb7b593c | 2392 | } |
3d3b2d25 | 2393 | |
19baf839 RO |
2394 | return NULL; |
2395 | } | |
2396 | ||
cb7b593c | 2397 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
c95aaf9a | 2398 | __acquires(RCU) |
19baf839 | 2399 | { |
cb7b593c | 2400 | rcu_read_lock(); |
1218854a | 2401 | return fib_trie_get_idx(seq, *pos); |
19baf839 RO |
2402 | } |
2403 | ||
cb7b593c | 2404 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2405 | { |
cb7b593c | 2406 | struct fib_trie_iter *iter = seq->private; |
1218854a | 2407 | struct net *net = seq_file_net(seq); |
3d3b2d25 SH |
2408 | struct fib_table *tb = iter->tb; |
2409 | struct hlist_node *tb_node; | |
2410 | unsigned int h; | |
35c6edac | 2411 | struct key_vector *n; |
cb7b593c | 2412 | |
19baf839 | 2413 | ++*pos; |
3d3b2d25 SH |
2414 | /* next node in same table */ |
2415 | n = fib_trie_get_next(iter); | |
2416 | if (n) | |
2417 | return n; | |
19baf839 | 2418 | |
3d3b2d25 SH |
2419 | /* walk rest of this hash chain */ |
2420 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | |
0a5c0475 | 2421 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
3d3b2d25 SH |
2422 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
2423 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2424 | if (n) | |
2425 | goto found; | |
2426 | } | |
19baf839 | 2427 | |
3d3b2d25 SH |
2428 | /* new hash chain */ |
2429 | while (++h < FIB_TABLE_HASHSZ) { | |
2430 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
b67bfe0d | 2431 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2432 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
2433 | if (n) | |
2434 | goto found; | |
2435 | } | |
2436 | } | |
cb7b593c | 2437 | return NULL; |
3d3b2d25 SH |
2438 | |
2439 | found: | |
2440 | iter->tb = tb; | |
2441 | return n; | |
cb7b593c | 2442 | } |
19baf839 | 2443 | |
cb7b593c | 2444 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
c95aaf9a | 2445 | __releases(RCU) |
19baf839 | 2446 | { |
cb7b593c SH |
2447 | rcu_read_unlock(); |
2448 | } | |
91b9a277 | 2449 | |
cb7b593c SH |
2450 | static void seq_indent(struct seq_file *seq, int n) |
2451 | { | |
a034ee3c ED |
2452 | while (n-- > 0) |
2453 | seq_puts(seq, " "); | |
cb7b593c | 2454 | } |
19baf839 | 2455 | |
28d36e37 | 2456 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
cb7b593c | 2457 | { |
132adf54 | 2458 | switch (s) { |
cb7b593c SH |
2459 | case RT_SCOPE_UNIVERSE: return "universe"; |
2460 | case RT_SCOPE_SITE: return "site"; | |
2461 | case RT_SCOPE_LINK: return "link"; | |
2462 | case RT_SCOPE_HOST: return "host"; | |
2463 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2464 | default: | |
28d36e37 | 2465 | snprintf(buf, len, "scope=%d", s); |
cb7b593c SH |
2466 | return buf; |
2467 | } | |
2468 | } | |
19baf839 | 2469 | |
36cbd3dc | 2470 | static const char *const rtn_type_names[__RTN_MAX] = { |
cb7b593c SH |
2471 | [RTN_UNSPEC] = "UNSPEC", |
2472 | [RTN_UNICAST] = "UNICAST", | |
2473 | [RTN_LOCAL] = "LOCAL", | |
2474 | [RTN_BROADCAST] = "BROADCAST", | |
2475 | [RTN_ANYCAST] = "ANYCAST", | |
2476 | [RTN_MULTICAST] = "MULTICAST", | |
2477 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2478 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2479 | [RTN_PROHIBIT] = "PROHIBIT", | |
2480 | [RTN_THROW] = "THROW", | |
2481 | [RTN_NAT] = "NAT", | |
2482 | [RTN_XRESOLVE] = "XRESOLVE", | |
2483 | }; | |
19baf839 | 2484 | |
a034ee3c | 2485 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
cb7b593c | 2486 | { |
cb7b593c SH |
2487 | if (t < __RTN_MAX && rtn_type_names[t]) |
2488 | return rtn_type_names[t]; | |
28d36e37 | 2489 | snprintf(buf, len, "type %u", t); |
cb7b593c | 2490 | return buf; |
19baf839 RO |
2491 | } |
2492 | ||
cb7b593c SH |
2493 | /* Pretty print the trie */ |
2494 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2495 | { |
cb7b593c | 2496 | const struct fib_trie_iter *iter = seq->private; |
35c6edac | 2497 | struct key_vector *n = v; |
c877efb2 | 2498 | |
88bae714 | 2499 | if (IS_TRIE(node_parent_rcu(n))) |
3d3b2d25 | 2500 | fib_table_print(seq, iter->tb); |
095b8501 | 2501 | |
cb7b593c | 2502 | if (IS_TNODE(n)) { |
adaf9816 | 2503 | __be32 prf = htonl(n->key); |
91b9a277 | 2504 | |
e9b44019 AD |
2505 | seq_indent(seq, iter->depth-1); |
2506 | seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", | |
2507 | &prf, KEYLENGTH - n->pos - n->bits, n->bits, | |
6e22d174 AD |
2508 | tn_info(n)->full_children, |
2509 | tn_info(n)->empty_children); | |
cb7b593c | 2510 | } else { |
adaf9816 | 2511 | __be32 val = htonl(n->key); |
79e5ad2c | 2512 | struct fib_alias *fa; |
cb7b593c SH |
2513 | |
2514 | seq_indent(seq, iter->depth); | |
673d57e7 | 2515 | seq_printf(seq, " |-- %pI4\n", &val); |
1328042e | 2516 | |
79e5ad2c AD |
2517 | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { |
2518 | char buf1[32], buf2[32]; | |
2519 | ||
2520 | seq_indent(seq, iter->depth + 1); | |
2521 | seq_printf(seq, " /%zu %s %s", | |
2522 | KEYLENGTH - fa->fa_slen, | |
2523 | rtn_scope(buf1, sizeof(buf1), | |
2524 | fa->fa_info->fib_scope), | |
2525 | rtn_type(buf2, sizeof(buf2), | |
2526 | fa->fa_type)); | |
2527 | if (fa->fa_tos) | |
2528 | seq_printf(seq, " tos=%d", fa->fa_tos); | |
2529 | seq_putc(seq, '\n'); | |
cb7b593c | 2530 | } |
19baf839 | 2531 | } |
cb7b593c | 2532 | |
19baf839 RO |
2533 | return 0; |
2534 | } | |
2535 | ||
f690808e | 2536 | static const struct seq_operations fib_trie_seq_ops = { |
cb7b593c SH |
2537 | .start = fib_trie_seq_start, |
2538 | .next = fib_trie_seq_next, | |
2539 | .stop = fib_trie_seq_stop, | |
2540 | .show = fib_trie_seq_show, | |
19baf839 RO |
2541 | }; |
2542 | ||
8315f5d8 SH |
2543 | struct fib_route_iter { |
2544 | struct seq_net_private p; | |
8be33e95 | 2545 | struct fib_table *main_tb; |
35c6edac | 2546 | struct key_vector *tnode; |
8315f5d8 SH |
2547 | loff_t pos; |
2548 | t_key key; | |
2549 | }; | |
2550 | ||
35c6edac AD |
2551 | static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, |
2552 | loff_t pos) | |
8315f5d8 | 2553 | { |
35c6edac | 2554 | struct key_vector *l, **tp = &iter->tnode; |
8be33e95 | 2555 | t_key key; |
8315f5d8 | 2556 | |
fd0285a3 | 2557 | /* use cached location of previously found key */ |
8be33e95 | 2558 | if (iter->pos > 0 && pos >= iter->pos) { |
8be33e95 AD |
2559 | key = iter->key; |
2560 | } else { | |
fd0285a3 | 2561 | iter->pos = 1; |
8be33e95 | 2562 | key = 0; |
8315f5d8 SH |
2563 | } |
2564 | ||
fd0285a3 AD |
2565 | pos -= iter->pos; |
2566 | ||
2567 | while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { | |
8be33e95 | 2568 | key = l->key + 1; |
8315f5d8 | 2569 | iter->pos++; |
8be33e95 AD |
2570 | l = NULL; |
2571 | ||
2572 | /* handle unlikely case of a key wrap */ | |
2573 | if (!key) | |
2574 | break; | |
8315f5d8 SH |
2575 | } |
2576 | ||
2577 | if (l) | |
fd0285a3 | 2578 | iter->key = l->key; /* remember it */ |
8315f5d8 SH |
2579 | else |
2580 | iter->pos = 0; /* forget it */ | |
2581 | ||
2582 | return l; | |
2583 | } | |
2584 | ||
2585 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | |
2586 | __acquires(RCU) | |
2587 | { | |
2588 | struct fib_route_iter *iter = seq->private; | |
2589 | struct fib_table *tb; | |
8be33e95 | 2590 | struct trie *t; |
8315f5d8 SH |
2591 | |
2592 | rcu_read_lock(); | |
8be33e95 | 2593 | |
1218854a | 2594 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
8315f5d8 SH |
2595 | if (!tb) |
2596 | return NULL; | |
2597 | ||
8be33e95 | 2598 | iter->main_tb = tb; |
94d9f1c5 DF |
2599 | t = (struct trie *)tb->tb_data; |
2600 | iter->tnode = t->kv; | |
8be33e95 AD |
2601 | |
2602 | if (*pos != 0) | |
2603 | return fib_route_get_idx(iter, *pos); | |
2604 | ||
8be33e95 | 2605 | iter->pos = 0; |
fd0285a3 | 2606 | iter->key = KEY_MAX; |
8be33e95 AD |
2607 | |
2608 | return SEQ_START_TOKEN; | |
8315f5d8 SH |
2609 | } |
2610 | ||
2611 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
2612 | { | |
2613 | struct fib_route_iter *iter = seq->private; | |
35c6edac | 2614 | struct key_vector *l = NULL; |
fd0285a3 | 2615 | t_key key = iter->key + 1; |
8315f5d8 SH |
2616 | |
2617 | ++*pos; | |
8be33e95 AD |
2618 | |
2619 | /* only allow key of 0 for start of sequence */ | |
2620 | if ((v == SEQ_START_TOKEN) || key) | |
2621 | l = leaf_walk_rcu(&iter->tnode, key); | |
2622 | ||
2623 | if (l) { | |
fd0285a3 | 2624 | iter->key = l->key; |
8315f5d8 | 2625 | iter->pos++; |
8be33e95 AD |
2626 | } else { |
2627 | iter->pos = 0; | |
8315f5d8 SH |
2628 | } |
2629 | ||
8315f5d8 SH |
2630 | return l; |
2631 | } | |
2632 | ||
2633 | static void fib_route_seq_stop(struct seq_file *seq, void *v) | |
2634 | __releases(RCU) | |
2635 | { | |
2636 | rcu_read_unlock(); | |
2637 | } | |
2638 | ||
a034ee3c | 2639 | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
19baf839 | 2640 | { |
a034ee3c | 2641 | unsigned int flags = 0; |
19baf839 | 2642 | |
a034ee3c ED |
2643 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
2644 | flags = RTF_REJECT; | |
cb7b593c SH |
2645 | if (fi && fi->fib_nh->nh_gw) |
2646 | flags |= RTF_GATEWAY; | |
32ab5f80 | 2647 | if (mask == htonl(0xFFFFFFFF)) |
cb7b593c SH |
2648 | flags |= RTF_HOST; |
2649 | flags |= RTF_UP; | |
2650 | return flags; | |
19baf839 RO |
2651 | } |
2652 | ||
cb7b593c SH |
2653 | /* |
2654 | * This outputs /proc/net/route. | |
2655 | * The format of the file is not supposed to be changed | |
a034ee3c | 2656 | * and needs to be same as fib_hash output to avoid breaking |
cb7b593c SH |
2657 | * legacy utilities |
2658 | */ | |
2659 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2660 | { |
654eff45 AD |
2661 | struct fib_route_iter *iter = seq->private; |
2662 | struct fib_table *tb = iter->main_tb; | |
79e5ad2c | 2663 | struct fib_alias *fa; |
35c6edac | 2664 | struct key_vector *l = v; |
9b6ebad5 | 2665 | __be32 prefix; |
19baf839 | 2666 | |
cb7b593c SH |
2667 | if (v == SEQ_START_TOKEN) { |
2668 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2669 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2670 | "\tWindow\tIRTT"); | |
2671 | return 0; | |
2672 | } | |
19baf839 | 2673 | |
9b6ebad5 AD |
2674 | prefix = htonl(l->key); |
2675 | ||
79e5ad2c AD |
2676 | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { |
2677 | const struct fib_info *fi = fa->fa_info; | |
2678 | __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); | |
2679 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); | |
19baf839 | 2680 | |
79e5ad2c AD |
2681 | if ((fa->fa_type == RTN_BROADCAST) || |
2682 | (fa->fa_type == RTN_MULTICAST)) | |
2683 | continue; | |
19baf839 | 2684 | |
654eff45 AD |
2685 | if (fa->tb_id != tb->tb_id) |
2686 | continue; | |
2687 | ||
79e5ad2c AD |
2688 | seq_setwidth(seq, 127); |
2689 | ||
2690 | if (fi) | |
2691 | seq_printf(seq, | |
2692 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2693 | "%d\t%08X\t%d\t%u\t%u", | |
2694 | fi->fib_dev ? fi->fib_dev->name : "*", | |
2695 | prefix, | |
2696 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2697 | fi->fib_priority, | |
2698 | mask, | |
2699 | (fi->fib_advmss ? | |
2700 | fi->fib_advmss + 40 : 0), | |
2701 | fi->fib_window, | |
2702 | fi->fib_rtt >> 3); | |
2703 | else | |
2704 | seq_printf(seq, | |
2705 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | |
2706 | "%d\t%08X\t%d\t%u\t%u", | |
2707 | prefix, 0, flags, 0, 0, 0, | |
2708 | mask, 0, 0, 0); | |
19baf839 | 2709 | |
79e5ad2c | 2710 | seq_pad(seq, '\n'); |
19baf839 RO |
2711 | } |
2712 | ||
2713 | return 0; | |
2714 | } | |
2715 | ||
f690808e | 2716 | static const struct seq_operations fib_route_seq_ops = { |
8315f5d8 SH |
2717 | .start = fib_route_seq_start, |
2718 | .next = fib_route_seq_next, | |
2719 | .stop = fib_route_seq_stop, | |
cb7b593c | 2720 | .show = fib_route_seq_show, |
19baf839 RO |
2721 | }; |
2722 | ||
61a02653 | 2723 | int __net_init fib_proc_init(struct net *net) |
19baf839 | 2724 | { |
c3506372 CH |
2725 | if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, |
2726 | sizeof(struct fib_trie_iter))) | |
cb7b593c SH |
2727 | goto out1; |
2728 | ||
3617d949 CH |
2729 | if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, |
2730 | fib_triestat_seq_show, NULL)) | |
cb7b593c SH |
2731 | goto out2; |
2732 | ||
c3506372 CH |
2733 | if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, |
2734 | sizeof(struct fib_route_iter))) | |
cb7b593c SH |
2735 | goto out3; |
2736 | ||
19baf839 | 2737 | return 0; |
cb7b593c SH |
2738 | |
2739 | out3: | |
ece31ffd | 2740 | remove_proc_entry("fib_triestat", net->proc_net); |
cb7b593c | 2741 | out2: |
ece31ffd | 2742 | remove_proc_entry("fib_trie", net->proc_net); |
cb7b593c SH |
2743 | out1: |
2744 | return -ENOMEM; | |
19baf839 RO |
2745 | } |
2746 | ||
61a02653 | 2747 | void __net_exit fib_proc_exit(struct net *net) |
19baf839 | 2748 | { |
ece31ffd G |
2749 | remove_proc_entry("fib_trie", net->proc_net); |
2750 | remove_proc_entry("fib_triestat", net->proc_net); | |
2751 | remove_proc_entry("route", net->proc_net); | |
19baf839 RO |
2752 | } |
2753 | ||
2754 | #endif /* CONFIG_PROC_FS */ |