]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
e905a9ed | 10 | * Jens Laas <[email protected]> Swedish University of |
19baf839 | 11 | * Agricultural Sciences. |
e905a9ed | 12 | * |
19baf839 RO |
13 | * Hans Liss <[email protected]> Uppsala Universitet |
14 | * | |
25985edc | 15 | * This work is based on the LPC-trie which is originally described in: |
e905a9ed | 16 | * |
19baf839 RO |
17 | * An experimental study of compression methods for dynamic tries |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
631dd1a8 | 19 | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ |
19baf839 RO |
20 | * |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
19baf839 RO |
25 | * |
26 | * Code from fib_hash has been reused which includes the following header: | |
27 | * | |
28 | * | |
29 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
30 | * operating system. INET is implemented using the BSD Socket | |
31 | * interface as the means of communication with the user level. | |
32 | * | |
33 | * IPv4 FIB: lookup engine and maintenance routines. | |
34 | * | |
35 | * | |
36 | * Authors: Alexey Kuznetsov, <[email protected]> | |
37 | * | |
38 | * This program is free software; you can redistribute it and/or | |
39 | * modify it under the terms of the GNU General Public License | |
40 | * as published by the Free Software Foundation; either version | |
41 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
42 | * |
43 | * Substantial contributions to this work comes from: | |
44 | * | |
45 | * David S. Miller, <[email protected]> | |
46 | * Stephen Hemminger <[email protected]> | |
47 | * Paul E. McKenney <[email protected]> | |
48 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
49 | */ |
50 | ||
80b71b80 | 51 | #define VERSION "0.409" |
19baf839 | 52 | |
19baf839 | 53 | #include <asm/uaccess.h> |
1977f032 | 54 | #include <linux/bitops.h> |
19baf839 RO |
55 | #include <linux/types.h> |
56 | #include <linux/kernel.h> | |
19baf839 RO |
57 | #include <linux/mm.h> |
58 | #include <linux/string.h> | |
59 | #include <linux/socket.h> | |
60 | #include <linux/sockios.h> | |
61 | #include <linux/errno.h> | |
62 | #include <linux/in.h> | |
63 | #include <linux/inet.h> | |
cd8787ab | 64 | #include <linux/inetdevice.h> |
19baf839 RO |
65 | #include <linux/netdevice.h> |
66 | #include <linux/if_arp.h> | |
67 | #include <linux/proc_fs.h> | |
2373ce1c | 68 | #include <linux/rcupdate.h> |
19baf839 RO |
69 | #include <linux/skbuff.h> |
70 | #include <linux/netlink.h> | |
71 | #include <linux/init.h> | |
72 | #include <linux/list.h> | |
5a0e3ad6 | 73 | #include <linux/slab.h> |
bc3b2d7f | 74 | #include <linux/export.h> |
457c4cbc | 75 | #include <net/net_namespace.h> |
19baf839 RO |
76 | #include <net/ip.h> |
77 | #include <net/protocol.h> | |
78 | #include <net/route.h> | |
79 | #include <net/tcp.h> | |
80 | #include <net/sock.h> | |
81 | #include <net/ip_fib.h> | |
82 | #include "fib_lookup.h" | |
83 | ||
06ef921d | 84 | #define MAX_STAT_DEPTH 32 |
19baf839 | 85 | |
19baf839 | 86 | #define KEYLENGTH (8*sizeof(t_key)) |
19baf839 | 87 | |
19baf839 RO |
88 | typedef unsigned int t_key; |
89 | ||
90 | #define T_TNODE 0 | |
91 | #define T_LEAF 1 | |
92 | #define NODE_TYPE_MASK 0x1UL | |
2373ce1c RO |
93 | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) |
94 | ||
91b9a277 OJ |
95 | #define IS_TNODE(n) (!(n->parent & T_LEAF)) |
96 | #define IS_LEAF(n) (n->parent & T_LEAF) | |
19baf839 | 97 | |
b299e4f0 | 98 | struct rt_trie_node { |
91b9a277 | 99 | unsigned long parent; |
8d965444 | 100 | t_key key; |
19baf839 RO |
101 | }; |
102 | ||
103 | struct leaf { | |
91b9a277 | 104 | unsigned long parent; |
8d965444 | 105 | t_key key; |
19baf839 | 106 | struct hlist_head list; |
2373ce1c | 107 | struct rcu_head rcu; |
19baf839 RO |
108 | }; |
109 | ||
110 | struct leaf_info { | |
111 | struct hlist_node hlist; | |
112 | int plen; | |
5c74501f | 113 | u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ |
19baf839 | 114 | struct list_head falh; |
5c74501f | 115 | struct rcu_head rcu; |
19baf839 RO |
116 | }; |
117 | ||
118 | struct tnode { | |
91b9a277 | 119 | unsigned long parent; |
8d965444 | 120 | t_key key; |
112d8cfc ED |
121 | unsigned char pos; /* 2log(KEYLENGTH) bits needed */ |
122 | unsigned char bits; /* 2log(KEYLENGTH) bits needed */ | |
8d965444 ED |
123 | unsigned int full_children; /* KEYLENGTH bits needed */ |
124 | unsigned int empty_children; /* KEYLENGTH bits needed */ | |
15be75cd SH |
125 | union { |
126 | struct rcu_head rcu; | |
e0f7cb8c | 127 | struct tnode *tnode_free; |
15be75cd | 128 | }; |
0a5c0475 | 129 | struct rt_trie_node __rcu *child[0]; |
19baf839 RO |
130 | }; |
131 | ||
132 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
133 | struct trie_use_stats { | |
134 | unsigned int gets; | |
135 | unsigned int backtrack; | |
136 | unsigned int semantic_match_passed; | |
137 | unsigned int semantic_match_miss; | |
138 | unsigned int null_node_hit; | |
2f36895a | 139 | unsigned int resize_node_skipped; |
19baf839 RO |
140 | }; |
141 | #endif | |
142 | ||
143 | struct trie_stat { | |
144 | unsigned int totdepth; | |
145 | unsigned int maxdepth; | |
146 | unsigned int tnodes; | |
147 | unsigned int leaves; | |
148 | unsigned int nullpointers; | |
93672292 | 149 | unsigned int prefixes; |
06ef921d | 150 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 151 | }; |
19baf839 RO |
152 | |
153 | struct trie { | |
0a5c0475 | 154 | struct rt_trie_node __rcu *trie; |
19baf839 RO |
155 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
156 | struct trie_use_stats stats; | |
157 | #endif | |
19baf839 RO |
158 | }; |
159 | ||
b299e4f0 | 160 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, |
a07f5f50 | 161 | int wasfull); |
b299e4f0 | 162 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); |
2f80b3c8 RO |
163 | static struct tnode *inflate(struct trie *t, struct tnode *tn); |
164 | static struct tnode *halve(struct trie *t, struct tnode *tn); | |
e0f7cb8c JP |
165 | /* tnodes to free after resize(); protected by RTNL */ |
166 | static struct tnode *tnode_free_head; | |
c3059477 JP |
167 | static size_t tnode_free_size; |
168 | ||
169 | /* | |
170 | * synchronize_rcu after call_rcu for that many pages; it should be especially | |
171 | * useful before resizing the root node with PREEMPT_NONE configs; the value was | |
172 | * obtained experimentally, aiming to avoid visible slowdown. | |
173 | */ | |
174 | static const int sync_pages = 128; | |
19baf839 | 175 | |
e18b890b | 176 | static struct kmem_cache *fn_alias_kmem __read_mostly; |
bc3c8c1e | 177 | static struct kmem_cache *trie_leaf_kmem __read_mostly; |
19baf839 | 178 | |
0a5c0475 ED |
179 | /* |
180 | * caller must hold RTNL | |
181 | */ | |
182 | static inline struct tnode *node_parent(const struct rt_trie_node *node) | |
06801916 | 183 | { |
0a5c0475 ED |
184 | unsigned long parent; |
185 | ||
186 | parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); | |
187 | ||
188 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); | |
b59cfbf7 ED |
189 | } |
190 | ||
0a5c0475 ED |
191 | /* |
192 | * caller must hold RCU read lock or RTNL | |
193 | */ | |
194 | static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) | |
b59cfbf7 | 195 | { |
0a5c0475 ED |
196 | unsigned long parent; |
197 | ||
198 | parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || | |
199 | lockdep_rtnl_is_held()); | |
06801916 | 200 | |
0a5c0475 | 201 | return (struct tnode *)(parent & ~NODE_TYPE_MASK); |
06801916 SH |
202 | } |
203 | ||
cf778b00 | 204 | /* Same as rcu_assign_pointer |
6440cc9e SH |
205 | * but that macro() assumes that value is a pointer. |
206 | */ | |
b299e4f0 | 207 | static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) |
06801916 | 208 | { |
6440cc9e SH |
209 | smp_wmb(); |
210 | node->parent = (unsigned long)ptr | NODE_TYPE(node); | |
06801916 | 211 | } |
2373ce1c | 212 | |
0a5c0475 ED |
213 | /* |
214 | * caller must hold RTNL | |
215 | */ | |
216 | static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) | |
b59cfbf7 ED |
217 | { |
218 | BUG_ON(i >= 1U << tn->bits); | |
2373ce1c | 219 | |
0a5c0475 | 220 | return rtnl_dereference(tn->child[i]); |
b59cfbf7 ED |
221 | } |
222 | ||
0a5c0475 ED |
223 | /* |
224 | * caller must hold RCU read lock or RTNL | |
225 | */ | |
226 | static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) | |
19baf839 | 227 | { |
0a5c0475 | 228 | BUG_ON(i >= 1U << tn->bits); |
19baf839 | 229 | |
0a5c0475 | 230 | return rcu_dereference_rtnl(tn->child[i]); |
19baf839 RO |
231 | } |
232 | ||
bb435b8d | 233 | static inline int tnode_child_length(const struct tnode *tn) |
19baf839 | 234 | { |
91b9a277 | 235 | return 1 << tn->bits; |
19baf839 RO |
236 | } |
237 | ||
3b004569 | 238 | static inline t_key mask_pfx(t_key k, unsigned int l) |
ab66b4a7 SH |
239 | { |
240 | return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); | |
241 | } | |
242 | ||
3b004569 | 243 | static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) |
19baf839 | 244 | { |
91b9a277 | 245 | if (offset < KEYLENGTH) |
19baf839 | 246 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
91b9a277 | 247 | else |
19baf839 RO |
248 | return 0; |
249 | } | |
250 | ||
251 | static inline int tkey_equals(t_key a, t_key b) | |
252 | { | |
c877efb2 | 253 | return a == b; |
19baf839 RO |
254 | } |
255 | ||
256 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | |
257 | { | |
c877efb2 SH |
258 | if (bits == 0 || offset >= KEYLENGTH) |
259 | return 1; | |
91b9a277 OJ |
260 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
261 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | |
c877efb2 | 262 | } |
19baf839 RO |
263 | |
264 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | |
265 | { | |
266 | t_key diff = a ^ b; | |
267 | int i = offset; | |
268 | ||
c877efb2 SH |
269 | if (!diff) |
270 | return 0; | |
271 | while ((diff << i) >> (KEYLENGTH-1) == 0) | |
19baf839 RO |
272 | i++; |
273 | return i; | |
274 | } | |
275 | ||
19baf839 | 276 | /* |
e905a9ed YH |
277 | To understand this stuff, an understanding of keys and all their bits is |
278 | necessary. Every node in the trie has a key associated with it, but not | |
19baf839 RO |
279 | all of the bits in that key are significant. |
280 | ||
281 | Consider a node 'n' and its parent 'tp'. | |
282 | ||
e905a9ed YH |
283 | If n is a leaf, every bit in its key is significant. Its presence is |
284 | necessitated by path compression, since during a tree traversal (when | |
285 | searching for a leaf - unless we are doing an insertion) we will completely | |
286 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
287 | a potentially successful search, that we have indeed been walking the | |
19baf839 RO |
288 | correct key path. |
289 | ||
e905a9ed YH |
290 | Note that we can never "miss" the correct key in the tree if present by |
291 | following the wrong path. Path compression ensures that segments of the key | |
292 | that are the same for all keys with a given prefix are skipped, but the | |
293 | skipped part *is* identical for each node in the subtrie below the skipped | |
294 | bit! trie_insert() in this implementation takes care of that - note the | |
19baf839 RO |
295 | call to tkey_sub_equals() in trie_insert(). |
296 | ||
e905a9ed | 297 | if n is an internal node - a 'tnode' here, the various parts of its key |
19baf839 RO |
298 | have many different meanings. |
299 | ||
e905a9ed | 300 | Example: |
19baf839 RO |
301 | _________________________________________________________________ |
302 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
303 | ----------------------------------------------------------------- | |
e905a9ed | 304 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
19baf839 RO |
305 | |
306 | _________________________________________________________________ | |
307 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
308 | ----------------------------------------------------------------- | |
309 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
310 | ||
311 | tp->pos = 7 | |
312 | tp->bits = 3 | |
313 | n->pos = 15 | |
91b9a277 | 314 | n->bits = 4 |
19baf839 | 315 | |
e905a9ed YH |
316 | First, let's just ignore the bits that come before the parent tp, that is |
317 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | |
19baf839 RO |
318 | not use them for anything. |
319 | ||
320 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
e905a9ed | 321 | index into the parent's child array. That is, they will be used to find |
19baf839 RO |
322 | 'n' among tp's children. |
323 | ||
324 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | |
325 | for the node n. | |
326 | ||
e905a9ed | 327 | All the bits we have seen so far are significant to the node n. The rest |
19baf839 RO |
328 | of the bits are really not needed or indeed known in n->key. |
329 | ||
e905a9ed | 330 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into |
19baf839 | 331 | n's child array, and will of course be different for each child. |
e905a9ed | 332 | |
c877efb2 | 333 | |
19baf839 RO |
334 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
335 | at this point. | |
336 | ||
337 | */ | |
338 | ||
0c7770c7 | 339 | static inline void check_tnode(const struct tnode *tn) |
19baf839 | 340 | { |
0c7770c7 | 341 | WARN_ON(tn && tn->pos+tn->bits > 32); |
19baf839 RO |
342 | } |
343 | ||
f5026fab DL |
344 | static const int halve_threshold = 25; |
345 | static const int inflate_threshold = 50; | |
345aa031 | 346 | static const int halve_threshold_root = 15; |
80b71b80 | 347 | static const int inflate_threshold_root = 30; |
2373ce1c RO |
348 | |
349 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 350 | { |
2373ce1c RO |
351 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
352 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
353 | } |
354 | ||
2373ce1c | 355 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 356 | { |
2373ce1c RO |
357 | call_rcu(&fa->rcu, __alias_free_mem); |
358 | } | |
91b9a277 | 359 | |
2373ce1c RO |
360 | static void __leaf_free_rcu(struct rcu_head *head) |
361 | { | |
bc3c8c1e SH |
362 | struct leaf *l = container_of(head, struct leaf, rcu); |
363 | kmem_cache_free(trie_leaf_kmem, l); | |
2373ce1c | 364 | } |
91b9a277 | 365 | |
387a5487 SH |
366 | static inline void free_leaf(struct leaf *l) |
367 | { | |
0c03eca3 | 368 | call_rcu(&l->rcu, __leaf_free_rcu); |
387a5487 SH |
369 | } |
370 | ||
2373ce1c | 371 | static inline void free_leaf_info(struct leaf_info *leaf) |
19baf839 | 372 | { |
bceb0f45 | 373 | kfree_rcu(leaf, rcu); |
19baf839 RO |
374 | } |
375 | ||
8d965444 | 376 | static struct tnode *tnode_alloc(size_t size) |
f0e36f8c | 377 | { |
2373ce1c | 378 | if (size <= PAGE_SIZE) |
8d965444 | 379 | return kzalloc(size, GFP_KERNEL); |
15be75cd | 380 | else |
7a1c8e5a | 381 | return vzalloc(size); |
15be75cd | 382 | } |
2373ce1c | 383 | |
2373ce1c | 384 | static void __tnode_free_rcu(struct rcu_head *head) |
f0e36f8c | 385 | { |
2373ce1c | 386 | struct tnode *tn = container_of(head, struct tnode, rcu); |
8d965444 | 387 | size_t size = sizeof(struct tnode) + |
b299e4f0 | 388 | (sizeof(struct rt_trie_node *) << tn->bits); |
f0e36f8c PM |
389 | |
390 | if (size <= PAGE_SIZE) | |
391 | kfree(tn); | |
00203563 AV |
392 | else |
393 | vfree(tn); | |
f0e36f8c PM |
394 | } |
395 | ||
2373ce1c RO |
396 | static inline void tnode_free(struct tnode *tn) |
397 | { | |
387a5487 SH |
398 | if (IS_LEAF(tn)) |
399 | free_leaf((struct leaf *) tn); | |
400 | else | |
550e29bc | 401 | call_rcu(&tn->rcu, __tnode_free_rcu); |
2373ce1c RO |
402 | } |
403 | ||
e0f7cb8c JP |
404 | static void tnode_free_safe(struct tnode *tn) |
405 | { | |
406 | BUG_ON(IS_LEAF(tn)); | |
7b85576d JP |
407 | tn->tnode_free = tnode_free_head; |
408 | tnode_free_head = tn; | |
c3059477 | 409 | tnode_free_size += sizeof(struct tnode) + |
b299e4f0 | 410 | (sizeof(struct rt_trie_node *) << tn->bits); |
e0f7cb8c JP |
411 | } |
412 | ||
413 | static void tnode_free_flush(void) | |
414 | { | |
415 | struct tnode *tn; | |
416 | ||
417 | while ((tn = tnode_free_head)) { | |
418 | tnode_free_head = tn->tnode_free; | |
419 | tn->tnode_free = NULL; | |
420 | tnode_free(tn); | |
421 | } | |
c3059477 JP |
422 | |
423 | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | |
424 | tnode_free_size = 0; | |
425 | synchronize_rcu(); | |
426 | } | |
e0f7cb8c JP |
427 | } |
428 | ||
2373ce1c RO |
429 | static struct leaf *leaf_new(void) |
430 | { | |
bc3c8c1e | 431 | struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); |
2373ce1c RO |
432 | if (l) { |
433 | l->parent = T_LEAF; | |
434 | INIT_HLIST_HEAD(&l->list); | |
435 | } | |
436 | return l; | |
437 | } | |
438 | ||
439 | static struct leaf_info *leaf_info_new(int plen) | |
440 | { | |
441 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | |
442 | if (li) { | |
443 | li->plen = plen; | |
5c74501f | 444 | li->mask_plen = ntohl(inet_make_mask(plen)); |
2373ce1c RO |
445 | INIT_LIST_HEAD(&li->falh); |
446 | } | |
447 | return li; | |
448 | } | |
449 | ||
a07f5f50 | 450 | static struct tnode *tnode_new(t_key key, int pos, int bits) |
19baf839 | 451 | { |
b299e4f0 | 452 | size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); |
f0e36f8c | 453 | struct tnode *tn = tnode_alloc(sz); |
19baf839 | 454 | |
91b9a277 | 455 | if (tn) { |
2373ce1c | 456 | tn->parent = T_TNODE; |
19baf839 RO |
457 | tn->pos = pos; |
458 | tn->bits = bits; | |
459 | tn->key = key; | |
460 | tn->full_children = 0; | |
461 | tn->empty_children = 1<<bits; | |
462 | } | |
c877efb2 | 463 | |
a034ee3c | 464 | pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), |
4ea4bf7e | 465 | sizeof(struct rt_trie_node *) << bits); |
19baf839 RO |
466 | return tn; |
467 | } | |
468 | ||
19baf839 RO |
469 | /* |
470 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | |
471 | * and no bits are skipped. See discussion in dyntree paper p. 6 | |
472 | */ | |
473 | ||
b299e4f0 | 474 | static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) |
19baf839 | 475 | { |
c877efb2 | 476 | if (n == NULL || IS_LEAF(n)) |
19baf839 RO |
477 | return 0; |
478 | ||
479 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | |
480 | } | |
481 | ||
61648d91 | 482 | static inline void put_child(struct tnode *tn, int i, |
b299e4f0 | 483 | struct rt_trie_node *n) |
19baf839 RO |
484 | { |
485 | tnode_put_child_reorg(tn, i, n, -1); | |
486 | } | |
487 | ||
c877efb2 | 488 | /* |
19baf839 RO |
489 | * Add a child at position i overwriting the old value. |
490 | * Update the value of full_children and empty_children. | |
491 | */ | |
492 | ||
b299e4f0 | 493 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, |
a07f5f50 | 494 | int wasfull) |
19baf839 | 495 | { |
0a5c0475 | 496 | struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); |
19baf839 RO |
497 | int isfull; |
498 | ||
0c7770c7 SH |
499 | BUG_ON(i >= 1<<tn->bits); |
500 | ||
19baf839 RO |
501 | /* update emptyChildren */ |
502 | if (n == NULL && chi != NULL) | |
503 | tn->empty_children++; | |
504 | else if (n != NULL && chi == NULL) | |
505 | tn->empty_children--; | |
c877efb2 | 506 | |
19baf839 | 507 | /* update fullChildren */ |
91b9a277 | 508 | if (wasfull == -1) |
19baf839 RO |
509 | wasfull = tnode_full(tn, chi); |
510 | ||
511 | isfull = tnode_full(tn, n); | |
c877efb2 | 512 | if (wasfull && !isfull) |
19baf839 | 513 | tn->full_children--; |
c877efb2 | 514 | else if (!wasfull && isfull) |
19baf839 | 515 | tn->full_children++; |
91b9a277 | 516 | |
c877efb2 | 517 | if (n) |
06801916 | 518 | node_set_parent(n, tn); |
19baf839 | 519 | |
cf778b00 | 520 | rcu_assign_pointer(tn->child[i], n); |
19baf839 RO |
521 | } |
522 | ||
80b71b80 | 523 | #define MAX_WORK 10 |
b299e4f0 | 524 | static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) |
19baf839 RO |
525 | { |
526 | int i; | |
2f80b3c8 | 527 | struct tnode *old_tn; |
e6308be8 RO |
528 | int inflate_threshold_use; |
529 | int halve_threshold_use; | |
80b71b80 | 530 | int max_work; |
19baf839 | 531 | |
e905a9ed | 532 | if (!tn) |
19baf839 RO |
533 | return NULL; |
534 | ||
0c7770c7 SH |
535 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
536 | tn, inflate_threshold, halve_threshold); | |
19baf839 RO |
537 | |
538 | /* No children */ | |
539 | if (tn->empty_children == tnode_child_length(tn)) { | |
e0f7cb8c | 540 | tnode_free_safe(tn); |
19baf839 RO |
541 | return NULL; |
542 | } | |
543 | /* One child */ | |
544 | if (tn->empty_children == tnode_child_length(tn) - 1) | |
80b71b80 | 545 | goto one_child; |
c877efb2 | 546 | /* |
19baf839 RO |
547 | * Double as long as the resulting node has a number of |
548 | * nonempty nodes that are above the threshold. | |
549 | */ | |
550 | ||
551 | /* | |
c877efb2 SH |
552 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
553 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
19baf839 | 554 | * Telecommunications, page 6: |
c877efb2 | 555 | * "A node is doubled if the ratio of non-empty children to all |
19baf839 RO |
556 | * children in the *doubled* node is at least 'high'." |
557 | * | |
c877efb2 SH |
558 | * 'high' in this instance is the variable 'inflate_threshold'. It |
559 | * is expressed as a percentage, so we multiply it with | |
560 | * tnode_child_length() and instead of multiplying by 2 (since the | |
561 | * child array will be doubled by inflate()) and multiplying | |
562 | * the left-hand side by 100 (to handle the percentage thing) we | |
19baf839 | 563 | * multiply the left-hand side by 50. |
c877efb2 SH |
564 | * |
565 | * The left-hand side may look a bit weird: tnode_child_length(tn) | |
566 | * - tn->empty_children is of course the number of non-null children | |
567 | * in the current node. tn->full_children is the number of "full" | |
19baf839 | 568 | * children, that is non-null tnodes with a skip value of 0. |
c877efb2 | 569 | * All of those will be doubled in the resulting inflated tnode, so |
19baf839 | 570 | * we just count them one extra time here. |
c877efb2 | 571 | * |
19baf839 | 572 | * A clearer way to write this would be: |
c877efb2 | 573 | * |
19baf839 | 574 | * to_be_doubled = tn->full_children; |
c877efb2 | 575 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
19baf839 RO |
576 | * tn->full_children; |
577 | * | |
578 | * new_child_length = tnode_child_length(tn) * 2; | |
579 | * | |
c877efb2 | 580 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
19baf839 RO |
581 | * new_child_length; |
582 | * if (new_fill_factor >= inflate_threshold) | |
c877efb2 SH |
583 | * |
584 | * ...and so on, tho it would mess up the while () loop. | |
585 | * | |
19baf839 RO |
586 | * anyway, |
587 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
588 | * inflate_threshold | |
c877efb2 | 589 | * |
19baf839 RO |
590 | * avoid a division: |
591 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
592 | * inflate_threshold * new_child_length | |
c877efb2 | 593 | * |
19baf839 | 594 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
c877efb2 | 595 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 596 | * tn->full_children) >= inflate_threshold * new_child_length |
c877efb2 | 597 | * |
19baf839 | 598 | * expand new_child_length: |
c877efb2 | 599 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 600 | * tn->full_children) >= |
19baf839 | 601 | * inflate_threshold * tnode_child_length(tn) * 2 |
c877efb2 | 602 | * |
19baf839 | 603 | * shorten again: |
c877efb2 | 604 | * 50 * (tn->full_children + tnode_child_length(tn) - |
91b9a277 | 605 | * tn->empty_children) >= inflate_threshold * |
19baf839 | 606 | * tnode_child_length(tn) |
c877efb2 | 607 | * |
19baf839 RO |
608 | */ |
609 | ||
610 | check_tnode(tn); | |
c877efb2 | 611 | |
e6308be8 RO |
612 | /* Keep root node larger */ |
613 | ||
b299e4f0 | 614 | if (!node_parent((struct rt_trie_node *)tn)) { |
80b71b80 JL |
615 | inflate_threshold_use = inflate_threshold_root; |
616 | halve_threshold_use = halve_threshold_root; | |
a034ee3c | 617 | } else { |
e6308be8 | 618 | inflate_threshold_use = inflate_threshold; |
80b71b80 JL |
619 | halve_threshold_use = halve_threshold; |
620 | } | |
e6308be8 | 621 | |
80b71b80 JL |
622 | max_work = MAX_WORK; |
623 | while ((tn->full_children > 0 && max_work-- && | |
a07f5f50 SH |
624 | 50 * (tn->full_children + tnode_child_length(tn) |
625 | - tn->empty_children) | |
626 | >= inflate_threshold_use * tnode_child_length(tn))) { | |
19baf839 | 627 | |
2f80b3c8 RO |
628 | old_tn = tn; |
629 | tn = inflate(t, tn); | |
a07f5f50 | 630 | |
2f80b3c8 RO |
631 | if (IS_ERR(tn)) { |
632 | tn = old_tn; | |
2f36895a RO |
633 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
634 | t->stats.resize_node_skipped++; | |
635 | #endif | |
636 | break; | |
637 | } | |
19baf839 RO |
638 | } |
639 | ||
640 | check_tnode(tn); | |
641 | ||
80b71b80 | 642 | /* Return if at least one inflate is run */ |
a034ee3c | 643 | if (max_work != MAX_WORK) |
b299e4f0 | 644 | return (struct rt_trie_node *) tn; |
80b71b80 | 645 | |
19baf839 RO |
646 | /* |
647 | * Halve as long as the number of empty children in this | |
648 | * node is above threshold. | |
649 | */ | |
2f36895a | 650 | |
80b71b80 JL |
651 | max_work = MAX_WORK; |
652 | while (tn->bits > 1 && max_work-- && | |
19baf839 | 653 | 100 * (tnode_child_length(tn) - tn->empty_children) < |
e6308be8 | 654 | halve_threshold_use * tnode_child_length(tn)) { |
2f36895a | 655 | |
2f80b3c8 RO |
656 | old_tn = tn; |
657 | tn = halve(t, tn); | |
658 | if (IS_ERR(tn)) { | |
659 | tn = old_tn; | |
2f36895a RO |
660 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
661 | t->stats.resize_node_skipped++; | |
662 | #endif | |
663 | break; | |
664 | } | |
665 | } | |
19baf839 | 666 | |
c877efb2 | 667 | |
19baf839 | 668 | /* Only one child remains */ |
80b71b80 JL |
669 | if (tn->empty_children == tnode_child_length(tn) - 1) { |
670 | one_child: | |
19baf839 | 671 | for (i = 0; i < tnode_child_length(tn); i++) { |
b299e4f0 | 672 | struct rt_trie_node *n; |
19baf839 | 673 | |
0a5c0475 | 674 | n = rtnl_dereference(tn->child[i]); |
2373ce1c | 675 | if (!n) |
91b9a277 | 676 | continue; |
91b9a277 OJ |
677 | |
678 | /* compress one level */ | |
679 | ||
06801916 | 680 | node_set_parent(n, NULL); |
e0f7cb8c | 681 | tnode_free_safe(tn); |
91b9a277 | 682 | return n; |
19baf839 | 683 | } |
80b71b80 | 684 | } |
b299e4f0 | 685 | return (struct rt_trie_node *) tn; |
19baf839 RO |
686 | } |
687 | ||
0a5c0475 ED |
688 | |
689 | static void tnode_clean_free(struct tnode *tn) | |
690 | { | |
691 | int i; | |
692 | struct tnode *tofree; | |
693 | ||
694 | for (i = 0; i < tnode_child_length(tn); i++) { | |
695 | tofree = (struct tnode *)rtnl_dereference(tn->child[i]); | |
696 | if (tofree) | |
697 | tnode_free(tofree); | |
698 | } | |
699 | tnode_free(tn); | |
700 | } | |
701 | ||
2f80b3c8 | 702 | static struct tnode *inflate(struct trie *t, struct tnode *tn) |
19baf839 | 703 | { |
19baf839 RO |
704 | struct tnode *oldtnode = tn; |
705 | int olen = tnode_child_length(tn); | |
706 | int i; | |
707 | ||
0c7770c7 | 708 | pr_debug("In inflate\n"); |
19baf839 RO |
709 | |
710 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | |
711 | ||
0c7770c7 | 712 | if (!tn) |
2f80b3c8 | 713 | return ERR_PTR(-ENOMEM); |
2f36895a RO |
714 | |
715 | /* | |
c877efb2 SH |
716 | * Preallocate and store tnodes before the actual work so we |
717 | * don't get into an inconsistent state if memory allocation | |
718 | * fails. In case of failure we return the oldnode and inflate | |
2f36895a RO |
719 | * of tnode is ignored. |
720 | */ | |
91b9a277 OJ |
721 | |
722 | for (i = 0; i < olen; i++) { | |
a07f5f50 | 723 | struct tnode *inode; |
2f36895a | 724 | |
a07f5f50 | 725 | inode = (struct tnode *) tnode_get_child(oldtnode, i); |
2f36895a RO |
726 | if (inode && |
727 | IS_TNODE(inode) && | |
728 | inode->pos == oldtnode->pos + oldtnode->bits && | |
729 | inode->bits > 1) { | |
730 | struct tnode *left, *right; | |
ab66b4a7 | 731 | t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; |
c877efb2 | 732 | |
2f36895a RO |
733 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
734 | inode->bits - 1); | |
2f80b3c8 RO |
735 | if (!left) |
736 | goto nomem; | |
91b9a277 | 737 | |
2f36895a RO |
738 | right = tnode_new(inode->key|m, inode->pos + 1, |
739 | inode->bits - 1); | |
740 | ||
e905a9ed | 741 | if (!right) { |
2f80b3c8 RO |
742 | tnode_free(left); |
743 | goto nomem; | |
e905a9ed | 744 | } |
2f36895a | 745 | |
61648d91 LM |
746 | put_child(tn, 2*i, (struct rt_trie_node *) left); |
747 | put_child(tn, 2*i+1, (struct rt_trie_node *) right); | |
2f36895a RO |
748 | } |
749 | } | |
750 | ||
91b9a277 | 751 | for (i = 0; i < olen; i++) { |
c95aaf9a | 752 | struct tnode *inode; |
b299e4f0 | 753 | struct rt_trie_node *node = tnode_get_child(oldtnode, i); |
91b9a277 OJ |
754 | struct tnode *left, *right; |
755 | int size, j; | |
c877efb2 | 756 | |
19baf839 RO |
757 | /* An empty child */ |
758 | if (node == NULL) | |
759 | continue; | |
760 | ||
761 | /* A leaf or an internal node with skipped bits */ | |
762 | ||
c877efb2 | 763 | if (IS_LEAF(node) || ((struct tnode *) node)->pos > |
19baf839 | 764 | tn->pos + tn->bits - 1) { |
bbe34cf8 | 765 | put_child(tn, |
766 | tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1), | |
767 | node); | |
19baf839 RO |
768 | continue; |
769 | } | |
770 | ||
771 | /* An internal node with two children */ | |
772 | inode = (struct tnode *) node; | |
773 | ||
774 | if (inode->bits == 1) { | |
61648d91 LM |
775 | put_child(tn, 2*i, rtnl_dereference(inode->child[0])); |
776 | put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); | |
19baf839 | 777 | |
e0f7cb8c | 778 | tnode_free_safe(inode); |
91b9a277 | 779 | continue; |
19baf839 RO |
780 | } |
781 | ||
91b9a277 OJ |
782 | /* An internal node with more than two children */ |
783 | ||
784 | /* We will replace this node 'inode' with two new | |
785 | * ones, 'left' and 'right', each with half of the | |
786 | * original children. The two new nodes will have | |
787 | * a position one bit further down the key and this | |
788 | * means that the "significant" part of their keys | |
789 | * (see the discussion near the top of this file) | |
790 | * will differ by one bit, which will be "0" in | |
791 | * left's key and "1" in right's key. Since we are | |
792 | * moving the key position by one step, the bit that | |
793 | * we are moving away from - the bit at position | |
794 | * (inode->pos) - is the one that will differ between | |
795 | * left and right. So... we synthesize that bit in the | |
796 | * two new keys. | |
797 | * The mask 'm' below will be a single "one" bit at | |
798 | * the position (inode->pos) | |
799 | */ | |
19baf839 | 800 | |
91b9a277 OJ |
801 | /* Use the old key, but set the new significant |
802 | * bit to zero. | |
803 | */ | |
2f36895a | 804 | |
91b9a277 | 805 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
61648d91 | 806 | put_child(tn, 2*i, NULL); |
2f36895a | 807 | |
91b9a277 | 808 | BUG_ON(!left); |
2f36895a | 809 | |
91b9a277 | 810 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
61648d91 | 811 | put_child(tn, 2*i+1, NULL); |
19baf839 | 812 | |
91b9a277 | 813 | BUG_ON(!right); |
19baf839 | 814 | |
91b9a277 OJ |
815 | size = tnode_child_length(left); |
816 | for (j = 0; j < size; j++) { | |
61648d91 LM |
817 | put_child(left, j, rtnl_dereference(inode->child[j])); |
818 | put_child(right, j, rtnl_dereference(inode->child[j + size])); | |
19baf839 | 819 | } |
61648d91 LM |
820 | put_child(tn, 2*i, resize(t, left)); |
821 | put_child(tn, 2*i+1, resize(t, right)); | |
91b9a277 | 822 | |
e0f7cb8c | 823 | tnode_free_safe(inode); |
19baf839 | 824 | } |
e0f7cb8c | 825 | tnode_free_safe(oldtnode); |
19baf839 | 826 | return tn; |
2f80b3c8 | 827 | nomem: |
0a5c0475 ED |
828 | tnode_clean_free(tn); |
829 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
830 | } |
831 | ||
2f80b3c8 | 832 | static struct tnode *halve(struct trie *t, struct tnode *tn) |
19baf839 RO |
833 | { |
834 | struct tnode *oldtnode = tn; | |
b299e4f0 | 835 | struct rt_trie_node *left, *right; |
19baf839 RO |
836 | int i; |
837 | int olen = tnode_child_length(tn); | |
838 | ||
0c7770c7 | 839 | pr_debug("In halve\n"); |
c877efb2 SH |
840 | |
841 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | |
19baf839 | 842 | |
2f80b3c8 RO |
843 | if (!tn) |
844 | return ERR_PTR(-ENOMEM); | |
2f36895a RO |
845 | |
846 | /* | |
c877efb2 SH |
847 | * Preallocate and store tnodes before the actual work so we |
848 | * don't get into an inconsistent state if memory allocation | |
849 | * fails. In case of failure we return the oldnode and halve | |
2f36895a RO |
850 | * of tnode is ignored. |
851 | */ | |
852 | ||
91b9a277 | 853 | for (i = 0; i < olen; i += 2) { |
2f36895a RO |
854 | left = tnode_get_child(oldtnode, i); |
855 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 856 | |
2f36895a | 857 | /* Two nonempty children */ |
0c7770c7 | 858 | if (left && right) { |
2f80b3c8 | 859 | struct tnode *newn; |
0c7770c7 | 860 | |
2f80b3c8 | 861 | newn = tnode_new(left->key, tn->pos + tn->bits, 1); |
0c7770c7 SH |
862 | |
863 | if (!newn) | |
2f80b3c8 | 864 | goto nomem; |
0c7770c7 | 865 | |
61648d91 | 866 | put_child(tn, i/2, (struct rt_trie_node *)newn); |
2f36895a | 867 | } |
2f36895a | 868 | |
2f36895a | 869 | } |
19baf839 | 870 | |
91b9a277 OJ |
871 | for (i = 0; i < olen; i += 2) { |
872 | struct tnode *newBinNode; | |
873 | ||
19baf839 RO |
874 | left = tnode_get_child(oldtnode, i); |
875 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 876 | |
19baf839 RO |
877 | /* At least one of the children is empty */ |
878 | if (left == NULL) { | |
879 | if (right == NULL) /* Both are empty */ | |
880 | continue; | |
61648d91 | 881 | put_child(tn, i/2, right); |
91b9a277 | 882 | continue; |
0c7770c7 | 883 | } |
91b9a277 OJ |
884 | |
885 | if (right == NULL) { | |
61648d91 | 886 | put_child(tn, i/2, left); |
91b9a277 OJ |
887 | continue; |
888 | } | |
c877efb2 | 889 | |
19baf839 | 890 | /* Two nonempty children */ |
91b9a277 | 891 | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); |
61648d91 LM |
892 | put_child(tn, i/2, NULL); |
893 | put_child(newBinNode, 0, left); | |
894 | put_child(newBinNode, 1, right); | |
895 | put_child(tn, i/2, resize(t, newBinNode)); | |
19baf839 | 896 | } |
e0f7cb8c | 897 | tnode_free_safe(oldtnode); |
19baf839 | 898 | return tn; |
2f80b3c8 | 899 | nomem: |
0a5c0475 ED |
900 | tnode_clean_free(tn); |
901 | return ERR_PTR(-ENOMEM); | |
19baf839 RO |
902 | } |
903 | ||
772cb712 | 904 | /* readside must use rcu_read_lock currently dump routines |
2373ce1c RO |
905 | via get_fa_head and dump */ |
906 | ||
772cb712 | 907 | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) |
19baf839 | 908 | { |
772cb712 | 909 | struct hlist_head *head = &l->list; |
19baf839 RO |
910 | struct leaf_info *li; |
911 | ||
b67bfe0d | 912 | hlist_for_each_entry_rcu(li, head, hlist) |
c877efb2 | 913 | if (li->plen == plen) |
19baf839 | 914 | return li; |
91b9a277 | 915 | |
19baf839 RO |
916 | return NULL; |
917 | } | |
918 | ||
a07f5f50 | 919 | static inline struct list_head *get_fa_head(struct leaf *l, int plen) |
19baf839 | 920 | { |
772cb712 | 921 | struct leaf_info *li = find_leaf_info(l, plen); |
c877efb2 | 922 | |
91b9a277 OJ |
923 | if (!li) |
924 | return NULL; | |
c877efb2 | 925 | |
91b9a277 | 926 | return &li->falh; |
19baf839 RO |
927 | } |
928 | ||
929 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | |
930 | { | |
e905a9ed | 931 | struct leaf_info *li = NULL, *last = NULL; |
e905a9ed YH |
932 | |
933 | if (hlist_empty(head)) { | |
934 | hlist_add_head_rcu(&new->hlist, head); | |
935 | } else { | |
b67bfe0d | 936 | hlist_for_each_entry(li, head, hlist) { |
e905a9ed YH |
937 | if (new->plen > li->plen) |
938 | break; | |
939 | ||
940 | last = li; | |
941 | } | |
942 | if (last) | |
943 | hlist_add_after_rcu(&last->hlist, &new->hlist); | |
944 | else | |
945 | hlist_add_before_rcu(&new->hlist, &li->hlist); | |
946 | } | |
19baf839 RO |
947 | } |
948 | ||
2373ce1c RO |
949 | /* rcu_read_lock needs to be hold by caller from readside */ |
950 | ||
19baf839 RO |
951 | static struct leaf * |
952 | fib_find_node(struct trie *t, u32 key) | |
953 | { | |
954 | int pos; | |
955 | struct tnode *tn; | |
b299e4f0 | 956 | struct rt_trie_node *n; |
19baf839 RO |
957 | |
958 | pos = 0; | |
a034ee3c | 959 | n = rcu_dereference_rtnl(t->trie); |
19baf839 RO |
960 | |
961 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
962 | tn = (struct tnode *) n; | |
91b9a277 | 963 | |
19baf839 | 964 | check_tnode(tn); |
91b9a277 | 965 | |
c877efb2 | 966 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
91b9a277 | 967 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
968 | n = tnode_get_child_rcu(tn, |
969 | tkey_extract_bits(key, | |
970 | tn->pos, | |
971 | tn->bits)); | |
91b9a277 | 972 | } else |
19baf839 RO |
973 | break; |
974 | } | |
975 | /* Case we have found a leaf. Compare prefixes */ | |
976 | ||
91b9a277 OJ |
977 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) |
978 | return (struct leaf *)n; | |
979 | ||
19baf839 RO |
980 | return NULL; |
981 | } | |
982 | ||
7b85576d | 983 | static void trie_rebalance(struct trie *t, struct tnode *tn) |
19baf839 | 984 | { |
19baf839 | 985 | int wasfull; |
3ed18d76 | 986 | t_key cindex, key; |
06801916 | 987 | struct tnode *tp; |
19baf839 | 988 | |
3ed18d76 RO |
989 | key = tn->key; |
990 | ||
b299e4f0 | 991 | while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { |
19baf839 RO |
992 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
993 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | |
e3192690 | 994 | tn = (struct tnode *)resize(t, tn); |
a07f5f50 | 995 | |
e3192690 | 996 | tnode_put_child_reorg(tp, cindex, |
b299e4f0 | 997 | (struct rt_trie_node *)tn, wasfull); |
91b9a277 | 998 | |
b299e4f0 | 999 | tp = node_parent((struct rt_trie_node *) tn); |
008440e3 | 1000 | if (!tp) |
cf778b00 | 1001 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
008440e3 | 1002 | |
e0f7cb8c | 1003 | tnode_free_flush(); |
06801916 | 1004 | if (!tp) |
19baf839 | 1005 | break; |
06801916 | 1006 | tn = tp; |
19baf839 | 1007 | } |
06801916 | 1008 | |
19baf839 | 1009 | /* Handle last (top) tnode */ |
7b85576d | 1010 | if (IS_TNODE(tn)) |
e3192690 | 1011 | tn = (struct tnode *)resize(t, tn); |
19baf839 | 1012 | |
cf778b00 | 1013 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
7b85576d | 1014 | tnode_free_flush(); |
19baf839 RO |
1015 | } |
1016 | ||
2373ce1c RO |
1017 | /* only used from updater-side */ |
1018 | ||
fea86ad8 | 1019 | static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) |
19baf839 RO |
1020 | { |
1021 | int pos, newpos; | |
1022 | struct tnode *tp = NULL, *tn = NULL; | |
b299e4f0 | 1023 | struct rt_trie_node *n; |
19baf839 RO |
1024 | struct leaf *l; |
1025 | int missbit; | |
c877efb2 | 1026 | struct list_head *fa_head = NULL; |
19baf839 RO |
1027 | struct leaf_info *li; |
1028 | t_key cindex; | |
1029 | ||
1030 | pos = 0; | |
0a5c0475 | 1031 | n = rtnl_dereference(t->trie); |
19baf839 | 1032 | |
c877efb2 SH |
1033 | /* If we point to NULL, stop. Either the tree is empty and we should |
1034 | * just put a new leaf in if, or we have reached an empty child slot, | |
19baf839 | 1035 | * and we should just put our new leaf in that. |
c877efb2 SH |
1036 | * If we point to a T_TNODE, check if it matches our key. Note that |
1037 | * a T_TNODE might be skipping any number of bits - its 'pos' need | |
19baf839 RO |
1038 | * not be the parent's 'pos'+'bits'! |
1039 | * | |
c877efb2 | 1040 | * If it does match the current key, get pos/bits from it, extract |
19baf839 RO |
1041 | * the index from our key, push the T_TNODE and walk the tree. |
1042 | * | |
1043 | * If it doesn't, we have to replace it with a new T_TNODE. | |
1044 | * | |
c877efb2 SH |
1045 | * If we point to a T_LEAF, it might or might not have the same key |
1046 | * as we do. If it does, just change the value, update the T_LEAF's | |
1047 | * value, and return it. | |
19baf839 RO |
1048 | * If it doesn't, we need to replace it with a T_TNODE. |
1049 | */ | |
1050 | ||
1051 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
1052 | tn = (struct tnode *) n; | |
91b9a277 | 1053 | |
c877efb2 | 1054 | check_tnode(tn); |
91b9a277 | 1055 | |
c877efb2 | 1056 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
19baf839 | 1057 | tp = tn; |
91b9a277 | 1058 | pos = tn->pos + tn->bits; |
a07f5f50 SH |
1059 | n = tnode_get_child(tn, |
1060 | tkey_extract_bits(key, | |
1061 | tn->pos, | |
1062 | tn->bits)); | |
19baf839 | 1063 | |
06801916 | 1064 | BUG_ON(n && node_parent(n) != tn); |
91b9a277 | 1065 | } else |
19baf839 RO |
1066 | break; |
1067 | } | |
1068 | ||
1069 | /* | |
1070 | * n ----> NULL, LEAF or TNODE | |
1071 | * | |
c877efb2 | 1072 | * tp is n's (parent) ----> NULL or TNODE |
19baf839 RO |
1073 | */ |
1074 | ||
91b9a277 | 1075 | BUG_ON(tp && IS_LEAF(tp)); |
19baf839 RO |
1076 | |
1077 | /* Case 1: n is a leaf. Compare prefixes */ | |
1078 | ||
c877efb2 | 1079 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
c95aaf9a | 1080 | l = (struct leaf *) n; |
19baf839 | 1081 | li = leaf_info_new(plen); |
91b9a277 | 1082 | |
fea86ad8 SH |
1083 | if (!li) |
1084 | return NULL; | |
19baf839 RO |
1085 | |
1086 | fa_head = &li->falh; | |
1087 | insert_leaf_info(&l->list, li); | |
1088 | goto done; | |
1089 | } | |
19baf839 RO |
1090 | l = leaf_new(); |
1091 | ||
fea86ad8 SH |
1092 | if (!l) |
1093 | return NULL; | |
19baf839 RO |
1094 | |
1095 | l->key = key; | |
1096 | li = leaf_info_new(plen); | |
1097 | ||
c877efb2 | 1098 | if (!li) { |
387a5487 | 1099 | free_leaf(l); |
fea86ad8 | 1100 | return NULL; |
f835e471 | 1101 | } |
19baf839 RO |
1102 | |
1103 | fa_head = &li->falh; | |
1104 | insert_leaf_info(&l->list, li); | |
1105 | ||
19baf839 | 1106 | if (t->trie && n == NULL) { |
91b9a277 | 1107 | /* Case 2: n is NULL, and will just insert a new leaf */ |
19baf839 | 1108 | |
b299e4f0 | 1109 | node_set_parent((struct rt_trie_node *)l, tp); |
19baf839 | 1110 | |
91b9a277 | 1111 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
61648d91 | 1112 | put_child(tp, cindex, (struct rt_trie_node *)l); |
91b9a277 OJ |
1113 | } else { |
1114 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | |
c877efb2 SH |
1115 | /* |
1116 | * Add a new tnode here | |
19baf839 RO |
1117 | * first tnode need some special handling |
1118 | */ | |
1119 | ||
c877efb2 | 1120 | if (n) { |
4c60f1d6 | 1121 | pos = tp ? tp->pos+tp->bits : 0; |
19baf839 RO |
1122 | newpos = tkey_mismatch(key, pos, n->key); |
1123 | tn = tnode_new(n->key, newpos, 1); | |
91b9a277 | 1124 | } else { |
19baf839 | 1125 | newpos = 0; |
c877efb2 | 1126 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
19baf839 | 1127 | } |
19baf839 | 1128 | |
c877efb2 | 1129 | if (!tn) { |
f835e471 | 1130 | free_leaf_info(li); |
387a5487 | 1131 | free_leaf(l); |
fea86ad8 | 1132 | return NULL; |
91b9a277 OJ |
1133 | } |
1134 | ||
b299e4f0 | 1135 | node_set_parent((struct rt_trie_node *)tn, tp); |
19baf839 | 1136 | |
91b9a277 | 1137 | missbit = tkey_extract_bits(key, newpos, 1); |
61648d91 LM |
1138 | put_child(tn, missbit, (struct rt_trie_node *)l); |
1139 | put_child(tn, 1-missbit, n); | |
19baf839 | 1140 | |
c877efb2 | 1141 | if (tp) { |
19baf839 | 1142 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
61648d91 | 1143 | put_child(tp, cindex, (struct rt_trie_node *)tn); |
91b9a277 | 1144 | } else { |
cf778b00 | 1145 | rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); |
19baf839 RO |
1146 | tp = tn; |
1147 | } | |
1148 | } | |
91b9a277 OJ |
1149 | |
1150 | if (tp && tp->pos + tp->bits > 32) | |
058bd4d2 JP |
1151 | pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
1152 | tp, tp->pos, tp->bits, key, plen); | |
91b9a277 | 1153 | |
19baf839 | 1154 | /* Rebalance the trie */ |
2373ce1c | 1155 | |
7b85576d | 1156 | trie_rebalance(t, tp); |
f835e471 | 1157 | done: |
19baf839 RO |
1158 | return fa_head; |
1159 | } | |
1160 | ||
d562f1f8 RO |
1161 | /* |
1162 | * Caller must hold RTNL. | |
1163 | */ | |
16c6cf8b | 1164 | int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1165 | { |
1166 | struct trie *t = (struct trie *) tb->tb_data; | |
1167 | struct fib_alias *fa, *new_fa; | |
c877efb2 | 1168 | struct list_head *fa_head = NULL; |
19baf839 | 1169 | struct fib_info *fi; |
4e902c57 TG |
1170 | int plen = cfg->fc_dst_len; |
1171 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1172 | u32 key, mask; |
1173 | int err; | |
1174 | struct leaf *l; | |
1175 | ||
1176 | if (plen > 32) | |
1177 | return -EINVAL; | |
1178 | ||
4e902c57 | 1179 | key = ntohl(cfg->fc_dst); |
19baf839 | 1180 | |
2dfe55b4 | 1181 | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); |
19baf839 | 1182 | |
91b9a277 | 1183 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1184 | |
c877efb2 | 1185 | if (key & ~mask) |
19baf839 RO |
1186 | return -EINVAL; |
1187 | ||
1188 | key = key & mask; | |
1189 | ||
4e902c57 TG |
1190 | fi = fib_create_info(cfg); |
1191 | if (IS_ERR(fi)) { | |
1192 | err = PTR_ERR(fi); | |
19baf839 | 1193 | goto err; |
4e902c57 | 1194 | } |
19baf839 RO |
1195 | |
1196 | l = fib_find_node(t, key); | |
c877efb2 | 1197 | fa = NULL; |
19baf839 | 1198 | |
c877efb2 | 1199 | if (l) { |
19baf839 RO |
1200 | fa_head = get_fa_head(l, plen); |
1201 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | |
1202 | } | |
1203 | ||
1204 | /* Now fa, if non-NULL, points to the first fib alias | |
1205 | * with the same keys [prefix,tos,priority], if such key already | |
1206 | * exists or to the node before which we will insert new one. | |
1207 | * | |
1208 | * If fa is NULL, we will need to allocate a new one and | |
1209 | * insert to the head of f. | |
1210 | * | |
1211 | * If f is NULL, no fib node matched the destination key | |
1212 | * and we need to allocate a new one of those as well. | |
1213 | */ | |
1214 | ||
936f6f8e JA |
1215 | if (fa && fa->fa_tos == tos && |
1216 | fa->fa_info->fib_priority == fi->fib_priority) { | |
1217 | struct fib_alias *fa_first, *fa_match; | |
19baf839 RO |
1218 | |
1219 | err = -EEXIST; | |
4e902c57 | 1220 | if (cfg->fc_nlflags & NLM_F_EXCL) |
19baf839 RO |
1221 | goto out; |
1222 | ||
936f6f8e JA |
1223 | /* We have 2 goals: |
1224 | * 1. Find exact match for type, scope, fib_info to avoid | |
1225 | * duplicate routes | |
1226 | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | |
1227 | */ | |
1228 | fa_match = NULL; | |
1229 | fa_first = fa; | |
1230 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); | |
1231 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
1232 | if (fa->fa_tos != tos) | |
1233 | break; | |
1234 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1235 | break; | |
1236 | if (fa->fa_type == cfg->fc_type && | |
936f6f8e JA |
1237 | fa->fa_info == fi) { |
1238 | fa_match = fa; | |
1239 | break; | |
1240 | } | |
1241 | } | |
1242 | ||
4e902c57 | 1243 | if (cfg->fc_nlflags & NLM_F_REPLACE) { |
19baf839 RO |
1244 | struct fib_info *fi_drop; |
1245 | u8 state; | |
1246 | ||
936f6f8e JA |
1247 | fa = fa_first; |
1248 | if (fa_match) { | |
1249 | if (fa == fa_match) | |
1250 | err = 0; | |
6725033f | 1251 | goto out; |
936f6f8e | 1252 | } |
2373ce1c | 1253 | err = -ENOBUFS; |
e94b1766 | 1254 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
2373ce1c RO |
1255 | if (new_fa == NULL) |
1256 | goto out; | |
19baf839 RO |
1257 | |
1258 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1259 | new_fa->fa_tos = fa->fa_tos; |
1260 | new_fa->fa_info = fi; | |
4e902c57 | 1261 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1262 | state = fa->fa_state; |
936f6f8e | 1263 | new_fa->fa_state = state & ~FA_S_ACCESSED; |
19baf839 | 1264 | |
2373ce1c RO |
1265 | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
1266 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1267 | |
1268 | fib_release_info(fi_drop); | |
1269 | if (state & FA_S_ACCESSED) | |
4ccfe6d4 | 1270 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
b8f55831 MK |
1271 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, |
1272 | tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); | |
19baf839 | 1273 | |
91b9a277 | 1274 | goto succeeded; |
19baf839 RO |
1275 | } |
1276 | /* Error if we find a perfect match which | |
1277 | * uses the same scope, type, and nexthop | |
1278 | * information. | |
1279 | */ | |
936f6f8e JA |
1280 | if (fa_match) |
1281 | goto out; | |
a07f5f50 | 1282 | |
4e902c57 | 1283 | if (!(cfg->fc_nlflags & NLM_F_APPEND)) |
936f6f8e | 1284 | fa = fa_first; |
19baf839 RO |
1285 | } |
1286 | err = -ENOENT; | |
4e902c57 | 1287 | if (!(cfg->fc_nlflags & NLM_F_CREATE)) |
19baf839 RO |
1288 | goto out; |
1289 | ||
1290 | err = -ENOBUFS; | |
e94b1766 | 1291 | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); |
19baf839 RO |
1292 | if (new_fa == NULL) |
1293 | goto out; | |
1294 | ||
1295 | new_fa->fa_info = fi; | |
1296 | new_fa->fa_tos = tos; | |
4e902c57 | 1297 | new_fa->fa_type = cfg->fc_type; |
19baf839 | 1298 | new_fa->fa_state = 0; |
19baf839 RO |
1299 | /* |
1300 | * Insert new entry to the list. | |
1301 | */ | |
1302 | ||
c877efb2 | 1303 | if (!fa_head) { |
fea86ad8 SH |
1304 | fa_head = fib_insert_node(t, key, plen); |
1305 | if (unlikely(!fa_head)) { | |
1306 | err = -ENOMEM; | |
f835e471 | 1307 | goto out_free_new_fa; |
fea86ad8 | 1308 | } |
f835e471 | 1309 | } |
19baf839 | 1310 | |
21d8c49e DM |
1311 | if (!plen) |
1312 | tb->tb_num_default++; | |
1313 | ||
2373ce1c RO |
1314 | list_add_tail_rcu(&new_fa->fa_list, |
1315 | (fa ? &fa->fa_list : fa_head)); | |
19baf839 | 1316 | |
4ccfe6d4 | 1317 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
4e902c57 | 1318 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, |
b8f55831 | 1319 | &cfg->fc_nlinfo, 0); |
19baf839 RO |
1320 | succeeded: |
1321 | return 0; | |
f835e471 RO |
1322 | |
1323 | out_free_new_fa: | |
1324 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1325 | out: |
1326 | fib_release_info(fi); | |
91b9a277 | 1327 | err: |
19baf839 RO |
1328 | return err; |
1329 | } | |
1330 | ||
772cb712 | 1331 | /* should be called with rcu_read_lock */ |
5b470441 | 1332 | static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, |
22bd5b9b | 1333 | t_key key, const struct flowi4 *flp, |
ebc0ffae | 1334 | struct fib_result *res, int fib_flags) |
19baf839 | 1335 | { |
19baf839 RO |
1336 | struct leaf_info *li; |
1337 | struct hlist_head *hhead = &l->list; | |
c877efb2 | 1338 | |
b67bfe0d | 1339 | hlist_for_each_entry_rcu(li, hhead, hlist) { |
3be0686b | 1340 | struct fib_alias *fa; |
a07f5f50 | 1341 | |
5c74501f | 1342 | if (l->key != (key & li->mask_plen)) |
19baf839 RO |
1343 | continue; |
1344 | ||
3be0686b DM |
1345 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1346 | struct fib_info *fi = fa->fa_info; | |
1347 | int nhsel, err; | |
a07f5f50 | 1348 | |
22bd5b9b | 1349 | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) |
3be0686b | 1350 | continue; |
dccd9ecc DM |
1351 | if (fi->fib_dead) |
1352 | continue; | |
37e826c5 | 1353 | if (fa->fa_info->fib_scope < flp->flowi4_scope) |
3be0686b DM |
1354 | continue; |
1355 | fib_alias_accessed(fa); | |
1356 | err = fib_props[fa->fa_type].error; | |
1357 | if (err) { | |
19baf839 | 1358 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
1fbc7843 | 1359 | t->stats.semantic_match_passed++; |
3be0686b | 1360 | #endif |
1fbc7843 | 1361 | return err; |
3be0686b DM |
1362 | } |
1363 | if (fi->fib_flags & RTNH_F_DEAD) | |
1364 | continue; | |
1365 | for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { | |
1366 | const struct fib_nh *nh = &fi->fib_nh[nhsel]; | |
1367 | ||
1368 | if (nh->nh_flags & RTNH_F_DEAD) | |
1369 | continue; | |
22bd5b9b | 1370 | if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) |
3be0686b DM |
1371 | continue; |
1372 | ||
1373 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1374 | t->stats.semantic_match_passed++; | |
1375 | #endif | |
5c74501f | 1376 | res->prefixlen = li->plen; |
3be0686b DM |
1377 | res->nh_sel = nhsel; |
1378 | res->type = fa->fa_type; | |
37e826c5 | 1379 | res->scope = fa->fa_info->fib_scope; |
3be0686b DM |
1380 | res->fi = fi; |
1381 | res->table = tb; | |
1382 | res->fa_head = &li->falh; | |
1383 | if (!(fib_flags & FIB_LOOKUP_NOREF)) | |
5c74501f | 1384 | atomic_inc(&fi->fib_clntref); |
3be0686b DM |
1385 | return 0; |
1386 | } | |
1387 | } | |
1388 | ||
1389 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1390 | t->stats.semantic_match_miss++; | |
19baf839 | 1391 | #endif |
19baf839 | 1392 | } |
a07f5f50 | 1393 | |
2e655571 | 1394 | return 1; |
19baf839 RO |
1395 | } |
1396 | ||
22bd5b9b | 1397 | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, |
ebc0ffae | 1398 | struct fib_result *res, int fib_flags) |
19baf839 RO |
1399 | { |
1400 | struct trie *t = (struct trie *) tb->tb_data; | |
2e655571 | 1401 | int ret; |
b299e4f0 | 1402 | struct rt_trie_node *n; |
19baf839 | 1403 | struct tnode *pn; |
3b004569 | 1404 | unsigned int pos, bits; |
22bd5b9b | 1405 | t_key key = ntohl(flp->daddr); |
3b004569 | 1406 | unsigned int chopped_off; |
19baf839 | 1407 | t_key cindex = 0; |
3b004569 | 1408 | unsigned int current_prefix_length = KEYLENGTH; |
91b9a277 | 1409 | struct tnode *cn; |
874ffa8f | 1410 | t_key pref_mismatch; |
91b9a277 | 1411 | |
2373ce1c | 1412 | rcu_read_lock(); |
91b9a277 | 1413 | |
2373ce1c | 1414 | n = rcu_dereference(t->trie); |
c877efb2 | 1415 | if (!n) |
19baf839 RO |
1416 | goto failed; |
1417 | ||
1418 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1419 | t->stats.gets++; | |
1420 | #endif | |
1421 | ||
1422 | /* Just a leaf? */ | |
1423 | if (IS_LEAF(n)) { | |
5b470441 | 1424 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
a07f5f50 | 1425 | goto found; |
19baf839 | 1426 | } |
a07f5f50 | 1427 | |
19baf839 RO |
1428 | pn = (struct tnode *) n; |
1429 | chopped_off = 0; | |
c877efb2 | 1430 | |
91b9a277 | 1431 | while (pn) { |
19baf839 RO |
1432 | pos = pn->pos; |
1433 | bits = pn->bits; | |
1434 | ||
c877efb2 | 1435 | if (!chopped_off) |
ab66b4a7 SH |
1436 | cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), |
1437 | pos, bits); | |
19baf839 | 1438 | |
b902e573 | 1439 | n = tnode_get_child_rcu(pn, cindex); |
19baf839 RO |
1440 | |
1441 | if (n == NULL) { | |
1442 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1443 | t->stats.null_node_hit++; | |
1444 | #endif | |
1445 | goto backtrace; | |
1446 | } | |
1447 | ||
91b9a277 | 1448 | if (IS_LEAF(n)) { |
5b470441 | 1449 | ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); |
2e655571 | 1450 | if (ret > 0) |
91b9a277 | 1451 | goto backtrace; |
a07f5f50 | 1452 | goto found; |
91b9a277 OJ |
1453 | } |
1454 | ||
91b9a277 | 1455 | cn = (struct tnode *)n; |
19baf839 | 1456 | |
91b9a277 OJ |
1457 | /* |
1458 | * It's a tnode, and we can do some extra checks here if we | |
1459 | * like, to avoid descending into a dead-end branch. | |
1460 | * This tnode is in the parent's child array at index | |
1461 | * key[p_pos..p_pos+p_bits] but potentially with some bits | |
1462 | * chopped off, so in reality the index may be just a | |
1463 | * subprefix, padded with zero at the end. | |
1464 | * We can also take a look at any skipped bits in this | |
1465 | * tnode - everything up to p_pos is supposed to be ok, | |
1466 | * and the non-chopped bits of the index (se previous | |
1467 | * paragraph) are also guaranteed ok, but the rest is | |
1468 | * considered unknown. | |
1469 | * | |
1470 | * The skipped bits are key[pos+bits..cn->pos]. | |
1471 | */ | |
19baf839 | 1472 | |
91b9a277 OJ |
1473 | /* If current_prefix_length < pos+bits, we are already doing |
1474 | * actual prefix matching, which means everything from | |
1475 | * pos+(bits-chopped_off) onward must be zero along some | |
1476 | * branch of this subtree - otherwise there is *no* valid | |
1477 | * prefix present. Here we can only check the skipped | |
1478 | * bits. Remember, since we have already indexed into the | |
1479 | * parent's child array, we know that the bits we chopped of | |
1480 | * *are* zero. | |
1481 | */ | |
19baf839 | 1482 | |
a07f5f50 SH |
1483 | /* NOTA BENE: Checking only skipped bits |
1484 | for the new node here */ | |
19baf839 | 1485 | |
91b9a277 OJ |
1486 | if (current_prefix_length < pos+bits) { |
1487 | if (tkey_extract_bits(cn->key, current_prefix_length, | |
a07f5f50 SH |
1488 | cn->pos - current_prefix_length) |
1489 | || !(cn->child[0])) | |
91b9a277 OJ |
1490 | goto backtrace; |
1491 | } | |
19baf839 | 1492 | |
91b9a277 OJ |
1493 | /* |
1494 | * If chopped_off=0, the index is fully validated and we | |
1495 | * only need to look at the skipped bits for this, the new, | |
1496 | * tnode. What we actually want to do is to find out if | |
1497 | * these skipped bits match our key perfectly, or if we will | |
1498 | * have to count on finding a matching prefix further down, | |
1499 | * because if we do, we would like to have some way of | |
1500 | * verifying the existence of such a prefix at this point. | |
1501 | */ | |
19baf839 | 1502 | |
91b9a277 OJ |
1503 | /* The only thing we can do at this point is to verify that |
1504 | * any such matching prefix can indeed be a prefix to our | |
1505 | * key, and if the bits in the node we are inspecting that | |
1506 | * do not match our key are not ZERO, this cannot be true. | |
1507 | * Thus, find out where there is a mismatch (before cn->pos) | |
1508 | * and verify that all the mismatching bits are zero in the | |
1509 | * new tnode's key. | |
1510 | */ | |
19baf839 | 1511 | |
a07f5f50 SH |
1512 | /* |
1513 | * Note: We aren't very concerned about the piece of | |
1514 | * the key that precede pn->pos+pn->bits, since these | |
1515 | * have already been checked. The bits after cn->pos | |
1516 | * aren't checked since these are by definition | |
1517 | * "unknown" at this point. Thus, what we want to see | |
1518 | * is if we are about to enter the "prefix matching" | |
1519 | * state, and in that case verify that the skipped | |
1520 | * bits that will prevail throughout this subtree are | |
1521 | * zero, as they have to be if we are to find a | |
1522 | * matching prefix. | |
91b9a277 OJ |
1523 | */ |
1524 | ||
874ffa8f | 1525 | pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); |
91b9a277 | 1526 | |
a07f5f50 SH |
1527 | /* |
1528 | * In short: If skipped bits in this node do not match | |
1529 | * the search key, enter the "prefix matching" | |
1530 | * state.directly. | |
91b9a277 OJ |
1531 | */ |
1532 | if (pref_mismatch) { | |
79cda75a ED |
1533 | /* fls(x) = __fls(x) + 1 */ |
1534 | int mp = KEYLENGTH - __fls(pref_mismatch) - 1; | |
91b9a277 | 1535 | |
874ffa8f | 1536 | if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) |
91b9a277 OJ |
1537 | goto backtrace; |
1538 | ||
1539 | if (current_prefix_length >= cn->pos) | |
1540 | current_prefix_length = mp; | |
c877efb2 | 1541 | } |
a07f5f50 | 1542 | |
91b9a277 OJ |
1543 | pn = (struct tnode *)n; /* Descend */ |
1544 | chopped_off = 0; | |
1545 | continue; | |
1546 | ||
19baf839 RO |
1547 | backtrace: |
1548 | chopped_off++; | |
1549 | ||
1550 | /* As zero don't change the child key (cindex) */ | |
a07f5f50 SH |
1551 | while ((chopped_off <= pn->bits) |
1552 | && !(cindex & (1<<(chopped_off-1)))) | |
19baf839 | 1553 | chopped_off++; |
19baf839 RO |
1554 | |
1555 | /* Decrease current_... with bits chopped off */ | |
1556 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | |
a07f5f50 SH |
1557 | current_prefix_length = pn->pos + pn->bits |
1558 | - chopped_off; | |
91b9a277 | 1559 | |
19baf839 | 1560 | /* |
c877efb2 | 1561 | * Either we do the actual chop off according or if we have |
19baf839 RO |
1562 | * chopped off all bits in this tnode walk up to our parent. |
1563 | */ | |
1564 | ||
91b9a277 | 1565 | if (chopped_off <= pn->bits) { |
19baf839 | 1566 | cindex &= ~(1 << (chopped_off-1)); |
91b9a277 | 1567 | } else { |
b299e4f0 | 1568 | struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); |
06801916 | 1569 | if (!parent) |
19baf839 | 1570 | goto failed; |
91b9a277 | 1571 | |
19baf839 | 1572 | /* Get Child's index */ |
06801916 SH |
1573 | cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); |
1574 | pn = parent; | |
19baf839 RO |
1575 | chopped_off = 0; |
1576 | ||
1577 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1578 | t->stats.backtrack++; | |
1579 | #endif | |
1580 | goto backtrace; | |
c877efb2 | 1581 | } |
19baf839 RO |
1582 | } |
1583 | failed: | |
c877efb2 | 1584 | ret = 1; |
19baf839 | 1585 | found: |
2373ce1c | 1586 | rcu_read_unlock(); |
19baf839 RO |
1587 | return ret; |
1588 | } | |
6fc01438 | 1589 | EXPORT_SYMBOL_GPL(fib_table_lookup); |
19baf839 | 1590 | |
9195bef7 SH |
1591 | /* |
1592 | * Remove the leaf and return parent. | |
1593 | */ | |
1594 | static void trie_leaf_remove(struct trie *t, struct leaf *l) | |
19baf839 | 1595 | { |
b299e4f0 | 1596 | struct tnode *tp = node_parent((struct rt_trie_node *) l); |
c877efb2 | 1597 | |
9195bef7 | 1598 | pr_debug("entering trie_leaf_remove(%p)\n", l); |
19baf839 | 1599 | |
c877efb2 | 1600 | if (tp) { |
9195bef7 | 1601 | t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); |
61648d91 | 1602 | put_child(tp, cindex, NULL); |
7b85576d | 1603 | trie_rebalance(t, tp); |
91b9a277 | 1604 | } else |
a9b3cd7f | 1605 | RCU_INIT_POINTER(t->trie, NULL); |
19baf839 | 1606 | |
387a5487 | 1607 | free_leaf(l); |
19baf839 RO |
1608 | } |
1609 | ||
d562f1f8 RO |
1610 | /* |
1611 | * Caller must hold RTNL. | |
1612 | */ | |
16c6cf8b | 1613 | int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) |
19baf839 RO |
1614 | { |
1615 | struct trie *t = (struct trie *) tb->tb_data; | |
1616 | u32 key, mask; | |
4e902c57 TG |
1617 | int plen = cfg->fc_dst_len; |
1618 | u8 tos = cfg->fc_tos; | |
19baf839 RO |
1619 | struct fib_alias *fa, *fa_to_delete; |
1620 | struct list_head *fa_head; | |
1621 | struct leaf *l; | |
91b9a277 OJ |
1622 | struct leaf_info *li; |
1623 | ||
c877efb2 | 1624 | if (plen > 32) |
19baf839 RO |
1625 | return -EINVAL; |
1626 | ||
4e902c57 | 1627 | key = ntohl(cfg->fc_dst); |
91b9a277 | 1628 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1629 | |
c877efb2 | 1630 | if (key & ~mask) |
19baf839 RO |
1631 | return -EINVAL; |
1632 | ||
1633 | key = key & mask; | |
1634 | l = fib_find_node(t, key); | |
1635 | ||
c877efb2 | 1636 | if (!l) |
19baf839 RO |
1637 | return -ESRCH; |
1638 | ||
ad5b3102 IM |
1639 | li = find_leaf_info(l, plen); |
1640 | ||
1641 | if (!li) | |
1642 | return -ESRCH; | |
1643 | ||
1644 | fa_head = &li->falh; | |
19baf839 RO |
1645 | fa = fib_find_alias(fa_head, tos, 0); |
1646 | ||
1647 | if (!fa) | |
1648 | return -ESRCH; | |
1649 | ||
0c7770c7 | 1650 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1651 | |
1652 | fa_to_delete = NULL; | |
936f6f8e JA |
1653 | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); |
1654 | list_for_each_entry_continue(fa, fa_head, fa_list) { | |
19baf839 RO |
1655 | struct fib_info *fi = fa->fa_info; |
1656 | ||
1657 | if (fa->fa_tos != tos) | |
1658 | break; | |
1659 | ||
4e902c57 TG |
1660 | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && |
1661 | (cfg->fc_scope == RT_SCOPE_NOWHERE || | |
37e826c5 | 1662 | fa->fa_info->fib_scope == cfg->fc_scope) && |
74cb3c10 JA |
1663 | (!cfg->fc_prefsrc || |
1664 | fi->fib_prefsrc == cfg->fc_prefsrc) && | |
4e902c57 TG |
1665 | (!cfg->fc_protocol || |
1666 | fi->fib_protocol == cfg->fc_protocol) && | |
1667 | fib_nh_match(cfg, fi) == 0) { | |
19baf839 RO |
1668 | fa_to_delete = fa; |
1669 | break; | |
1670 | } | |
1671 | } | |
1672 | ||
91b9a277 OJ |
1673 | if (!fa_to_delete) |
1674 | return -ESRCH; | |
19baf839 | 1675 | |
91b9a277 | 1676 | fa = fa_to_delete; |
4e902c57 | 1677 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, |
b8f55831 | 1678 | &cfg->fc_nlinfo, 0); |
91b9a277 | 1679 | |
2373ce1c | 1680 | list_del_rcu(&fa->fa_list); |
19baf839 | 1681 | |
21d8c49e DM |
1682 | if (!plen) |
1683 | tb->tb_num_default--; | |
1684 | ||
91b9a277 | 1685 | if (list_empty(fa_head)) { |
2373ce1c | 1686 | hlist_del_rcu(&li->hlist); |
91b9a277 | 1687 | free_leaf_info(li); |
2373ce1c | 1688 | } |
19baf839 | 1689 | |
91b9a277 | 1690 | if (hlist_empty(&l->list)) |
9195bef7 | 1691 | trie_leaf_remove(t, l); |
19baf839 | 1692 | |
91b9a277 | 1693 | if (fa->fa_state & FA_S_ACCESSED) |
4ccfe6d4 | 1694 | rt_cache_flush(cfg->fc_nlinfo.nl_net); |
19baf839 | 1695 | |
2373ce1c RO |
1696 | fib_release_info(fa->fa_info); |
1697 | alias_free_mem_rcu(fa); | |
91b9a277 | 1698 | return 0; |
19baf839 RO |
1699 | } |
1700 | ||
ef3660ce | 1701 | static int trie_flush_list(struct list_head *head) |
19baf839 RO |
1702 | { |
1703 | struct fib_alias *fa, *fa_node; | |
1704 | int found = 0; | |
1705 | ||
1706 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | |
1707 | struct fib_info *fi = fa->fa_info; | |
19baf839 | 1708 | |
2373ce1c RO |
1709 | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { |
1710 | list_del_rcu(&fa->fa_list); | |
1711 | fib_release_info(fa->fa_info); | |
1712 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1713 | found++; |
1714 | } | |
1715 | } | |
1716 | return found; | |
1717 | } | |
1718 | ||
ef3660ce | 1719 | static int trie_flush_leaf(struct leaf *l) |
19baf839 RO |
1720 | { |
1721 | int found = 0; | |
1722 | struct hlist_head *lih = &l->list; | |
b67bfe0d | 1723 | struct hlist_node *tmp; |
19baf839 RO |
1724 | struct leaf_info *li = NULL; |
1725 | ||
b67bfe0d | 1726 | hlist_for_each_entry_safe(li, tmp, lih, hlist) { |
ef3660ce | 1727 | found += trie_flush_list(&li->falh); |
19baf839 RO |
1728 | |
1729 | if (list_empty(&li->falh)) { | |
2373ce1c | 1730 | hlist_del_rcu(&li->hlist); |
19baf839 RO |
1731 | free_leaf_info(li); |
1732 | } | |
1733 | } | |
1734 | return found; | |
1735 | } | |
1736 | ||
82cfbb00 SH |
1737 | /* |
1738 | * Scan for the next right leaf starting at node p->child[idx] | |
1739 | * Since we have back pointer, no recursion necessary. | |
1740 | */ | |
b299e4f0 | 1741 | static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) |
19baf839 | 1742 | { |
82cfbb00 SH |
1743 | do { |
1744 | t_key idx; | |
c877efb2 | 1745 | |
c877efb2 | 1746 | if (c) |
82cfbb00 | 1747 | idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; |
c877efb2 | 1748 | else |
82cfbb00 | 1749 | idx = 0; |
2373ce1c | 1750 | |
82cfbb00 SH |
1751 | while (idx < 1u << p->bits) { |
1752 | c = tnode_get_child_rcu(p, idx++); | |
2373ce1c | 1753 | if (!c) |
91b9a277 OJ |
1754 | continue; |
1755 | ||
aab515d7 | 1756 | if (IS_LEAF(c)) |
82cfbb00 | 1757 | return (struct leaf *) c; |
82cfbb00 SH |
1758 | |
1759 | /* Rescan start scanning in new node */ | |
1760 | p = (struct tnode *) c; | |
1761 | idx = 0; | |
19baf839 | 1762 | } |
82cfbb00 SH |
1763 | |
1764 | /* Node empty, walk back up to parent */ | |
b299e4f0 | 1765 | c = (struct rt_trie_node *) p; |
a034ee3c | 1766 | } while ((p = node_parent_rcu(c)) != NULL); |
82cfbb00 SH |
1767 | |
1768 | return NULL; /* Root of trie */ | |
1769 | } | |
1770 | ||
82cfbb00 SH |
1771 | static struct leaf *trie_firstleaf(struct trie *t) |
1772 | { | |
a034ee3c | 1773 | struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); |
82cfbb00 SH |
1774 | |
1775 | if (!n) | |
1776 | return NULL; | |
1777 | ||
1778 | if (IS_LEAF(n)) /* trie is just a leaf */ | |
1779 | return (struct leaf *) n; | |
1780 | ||
1781 | return leaf_walk_rcu(n, NULL); | |
1782 | } | |
1783 | ||
1784 | static struct leaf *trie_nextleaf(struct leaf *l) | |
1785 | { | |
b299e4f0 | 1786 | struct rt_trie_node *c = (struct rt_trie_node *) l; |
b902e573 | 1787 | struct tnode *p = node_parent_rcu(c); |
82cfbb00 SH |
1788 | |
1789 | if (!p) | |
1790 | return NULL; /* trie with just one leaf */ | |
1791 | ||
1792 | return leaf_walk_rcu(p, c); | |
19baf839 RO |
1793 | } |
1794 | ||
71d67e66 SH |
1795 | static struct leaf *trie_leafindex(struct trie *t, int index) |
1796 | { | |
1797 | struct leaf *l = trie_firstleaf(t); | |
1798 | ||
ec28cf73 | 1799 | while (l && index-- > 0) |
71d67e66 | 1800 | l = trie_nextleaf(l); |
ec28cf73 | 1801 | |
71d67e66 SH |
1802 | return l; |
1803 | } | |
1804 | ||
1805 | ||
d562f1f8 RO |
1806 | /* |
1807 | * Caller must hold RTNL. | |
1808 | */ | |
16c6cf8b | 1809 | int fib_table_flush(struct fib_table *tb) |
19baf839 RO |
1810 | { |
1811 | struct trie *t = (struct trie *) tb->tb_data; | |
9195bef7 | 1812 | struct leaf *l, *ll = NULL; |
82cfbb00 | 1813 | int found = 0; |
19baf839 | 1814 | |
82cfbb00 | 1815 | for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { |
ef3660ce | 1816 | found += trie_flush_leaf(l); |
19baf839 RO |
1817 | |
1818 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1819 | trie_leaf_remove(t, ll); |
19baf839 RO |
1820 | ll = l; |
1821 | } | |
1822 | ||
1823 | if (ll && hlist_empty(&ll->list)) | |
9195bef7 | 1824 | trie_leaf_remove(t, ll); |
19baf839 | 1825 | |
0c7770c7 | 1826 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1827 | return found; |
1828 | } | |
1829 | ||
4aa2c466 PE |
1830 | void fib_free_table(struct fib_table *tb) |
1831 | { | |
1832 | kfree(tb); | |
1833 | } | |
1834 | ||
a07f5f50 SH |
1835 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, |
1836 | struct fib_table *tb, | |
19baf839 RO |
1837 | struct sk_buff *skb, struct netlink_callback *cb) |
1838 | { | |
1839 | int i, s_i; | |
1840 | struct fib_alias *fa; | |
32ab5f80 | 1841 | __be32 xkey = htonl(key); |
19baf839 | 1842 | |
71d67e66 | 1843 | s_i = cb->args[5]; |
19baf839 RO |
1844 | i = 0; |
1845 | ||
2373ce1c RO |
1846 | /* rcu_read_lock is hold by caller */ |
1847 | ||
1848 | list_for_each_entry_rcu(fa, fah, fa_list) { | |
19baf839 RO |
1849 | if (i < s_i) { |
1850 | i++; | |
1851 | continue; | |
1852 | } | |
19baf839 | 1853 | |
15e47304 | 1854 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, |
19baf839 RO |
1855 | cb->nlh->nlmsg_seq, |
1856 | RTM_NEWROUTE, | |
1857 | tb->tb_id, | |
1858 | fa->fa_type, | |
be403ea1 | 1859 | xkey, |
19baf839 RO |
1860 | plen, |
1861 | fa->fa_tos, | |
64347f78 | 1862 | fa->fa_info, NLM_F_MULTI) < 0) { |
71d67e66 | 1863 | cb->args[5] = i; |
19baf839 | 1864 | return -1; |
91b9a277 | 1865 | } |
19baf839 RO |
1866 | i++; |
1867 | } | |
71d67e66 | 1868 | cb->args[5] = i; |
19baf839 RO |
1869 | return skb->len; |
1870 | } | |
1871 | ||
a88ee229 SH |
1872 | static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, |
1873 | struct sk_buff *skb, struct netlink_callback *cb) | |
19baf839 | 1874 | { |
a88ee229 | 1875 | struct leaf_info *li; |
a88ee229 | 1876 | int i, s_i; |
19baf839 | 1877 | |
71d67e66 | 1878 | s_i = cb->args[4]; |
a88ee229 | 1879 | i = 0; |
19baf839 | 1880 | |
a88ee229 | 1881 | /* rcu_read_lock is hold by caller */ |
b67bfe0d | 1882 | hlist_for_each_entry_rcu(li, &l->list, hlist) { |
a88ee229 SH |
1883 | if (i < s_i) { |
1884 | i++; | |
19baf839 | 1885 | continue; |
a88ee229 | 1886 | } |
91b9a277 | 1887 | |
a88ee229 | 1888 | if (i > s_i) |
71d67e66 | 1889 | cb->args[5] = 0; |
19baf839 | 1890 | |
a88ee229 | 1891 | if (list_empty(&li->falh)) |
19baf839 RO |
1892 | continue; |
1893 | ||
a88ee229 | 1894 | if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { |
71d67e66 | 1895 | cb->args[4] = i; |
19baf839 RO |
1896 | return -1; |
1897 | } | |
a88ee229 | 1898 | i++; |
19baf839 | 1899 | } |
a88ee229 | 1900 | |
71d67e66 | 1901 | cb->args[4] = i; |
19baf839 RO |
1902 | return skb->len; |
1903 | } | |
1904 | ||
16c6cf8b SH |
1905 | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, |
1906 | struct netlink_callback *cb) | |
19baf839 | 1907 | { |
a88ee229 | 1908 | struct leaf *l; |
19baf839 | 1909 | struct trie *t = (struct trie *) tb->tb_data; |
d5ce8a0e | 1910 | t_key key = cb->args[2]; |
71d67e66 | 1911 | int count = cb->args[3]; |
19baf839 | 1912 | |
2373ce1c | 1913 | rcu_read_lock(); |
d5ce8a0e SH |
1914 | /* Dump starting at last key. |
1915 | * Note: 0.0.0.0/0 (ie default) is first key. | |
1916 | */ | |
71d67e66 | 1917 | if (count == 0) |
d5ce8a0e SH |
1918 | l = trie_firstleaf(t); |
1919 | else { | |
71d67e66 SH |
1920 | /* Normally, continue from last key, but if that is missing |
1921 | * fallback to using slow rescan | |
1922 | */ | |
d5ce8a0e | 1923 | l = fib_find_node(t, key); |
71d67e66 SH |
1924 | if (!l) |
1925 | l = trie_leafindex(t, count); | |
d5ce8a0e | 1926 | } |
a88ee229 | 1927 | |
d5ce8a0e SH |
1928 | while (l) { |
1929 | cb->args[2] = l->key; | |
a88ee229 | 1930 | if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { |
71d67e66 | 1931 | cb->args[3] = count; |
a88ee229 | 1932 | rcu_read_unlock(); |
a88ee229 | 1933 | return -1; |
19baf839 | 1934 | } |
d5ce8a0e | 1935 | |
71d67e66 | 1936 | ++count; |
d5ce8a0e | 1937 | l = trie_nextleaf(l); |
71d67e66 SH |
1938 | memset(&cb->args[4], 0, |
1939 | sizeof(cb->args) - 4*sizeof(cb->args[0])); | |
19baf839 | 1940 | } |
71d67e66 | 1941 | cb->args[3] = count; |
2373ce1c | 1942 | rcu_read_unlock(); |
a88ee229 | 1943 | |
19baf839 | 1944 | return skb->len; |
19baf839 RO |
1945 | } |
1946 | ||
5348ba85 | 1947 | void __init fib_trie_init(void) |
7f9b8052 | 1948 | { |
a07f5f50 SH |
1949 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", |
1950 | sizeof(struct fib_alias), | |
bc3c8c1e SH |
1951 | 0, SLAB_PANIC, NULL); |
1952 | ||
1953 | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | |
1954 | max(sizeof(struct leaf), | |
1955 | sizeof(struct leaf_info)), | |
1956 | 0, SLAB_PANIC, NULL); | |
7f9b8052 | 1957 | } |
19baf839 | 1958 | |
7f9b8052 | 1959 | |
5348ba85 | 1960 | struct fib_table *fib_trie_table(u32 id) |
19baf839 RO |
1961 | { |
1962 | struct fib_table *tb; | |
1963 | struct trie *t; | |
1964 | ||
19baf839 RO |
1965 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), |
1966 | GFP_KERNEL); | |
1967 | if (tb == NULL) | |
1968 | return NULL; | |
1969 | ||
1970 | tb->tb_id = id; | |
971b893e | 1971 | tb->tb_default = -1; |
21d8c49e | 1972 | tb->tb_num_default = 0; |
19baf839 RO |
1973 | |
1974 | t = (struct trie *) tb->tb_data; | |
c28a1cf4 | 1975 | memset(t, 0, sizeof(*t)); |
19baf839 | 1976 | |
19baf839 RO |
1977 | return tb; |
1978 | } | |
1979 | ||
cb7b593c SH |
1980 | #ifdef CONFIG_PROC_FS |
1981 | /* Depth first Trie walk iterator */ | |
1982 | struct fib_trie_iter { | |
1c340b2f | 1983 | struct seq_net_private p; |
3d3b2d25 | 1984 | struct fib_table *tb; |
cb7b593c | 1985 | struct tnode *tnode; |
a034ee3c ED |
1986 | unsigned int index; |
1987 | unsigned int depth; | |
cb7b593c | 1988 | }; |
19baf839 | 1989 | |
b299e4f0 | 1990 | static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 1991 | { |
cb7b593c | 1992 | struct tnode *tn = iter->tnode; |
a034ee3c | 1993 | unsigned int cindex = iter->index; |
cb7b593c | 1994 | struct tnode *p; |
19baf839 | 1995 | |
6640e697 EB |
1996 | /* A single entry routing table */ |
1997 | if (!tn) | |
1998 | return NULL; | |
1999 | ||
cb7b593c SH |
2000 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2001 | iter->tnode, iter->index, iter->depth); | |
2002 | rescan: | |
2003 | while (cindex < (1<<tn->bits)) { | |
b299e4f0 | 2004 | struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); |
19baf839 | 2005 | |
cb7b593c SH |
2006 | if (n) { |
2007 | if (IS_LEAF(n)) { | |
2008 | iter->tnode = tn; | |
2009 | iter->index = cindex + 1; | |
2010 | } else { | |
2011 | /* push down one level */ | |
2012 | iter->tnode = (struct tnode *) n; | |
2013 | iter->index = 0; | |
2014 | ++iter->depth; | |
2015 | } | |
2016 | return n; | |
2017 | } | |
19baf839 | 2018 | |
cb7b593c SH |
2019 | ++cindex; |
2020 | } | |
91b9a277 | 2021 | |
cb7b593c | 2022 | /* Current node exhausted, pop back up */ |
b299e4f0 | 2023 | p = node_parent_rcu((struct rt_trie_node *)tn); |
cb7b593c SH |
2024 | if (p) { |
2025 | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | |
2026 | tn = p; | |
2027 | --iter->depth; | |
2028 | goto rescan; | |
19baf839 | 2029 | } |
cb7b593c SH |
2030 | |
2031 | /* got root? */ | |
2032 | return NULL; | |
19baf839 RO |
2033 | } |
2034 | ||
b299e4f0 | 2035 | static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, |
cb7b593c | 2036 | struct trie *t) |
19baf839 | 2037 | { |
b299e4f0 | 2038 | struct rt_trie_node *n; |
5ddf0eb2 | 2039 | |
132adf54 | 2040 | if (!t) |
5ddf0eb2 RO |
2041 | return NULL; |
2042 | ||
2043 | n = rcu_dereference(t->trie); | |
3d3b2d25 | 2044 | if (!n) |
5ddf0eb2 | 2045 | return NULL; |
19baf839 | 2046 | |
3d3b2d25 SH |
2047 | if (IS_TNODE(n)) { |
2048 | iter->tnode = (struct tnode *) n; | |
2049 | iter->index = 0; | |
2050 | iter->depth = 1; | |
2051 | } else { | |
2052 | iter->tnode = NULL; | |
2053 | iter->index = 0; | |
2054 | iter->depth = 0; | |
91b9a277 | 2055 | } |
3d3b2d25 SH |
2056 | |
2057 | return n; | |
cb7b593c | 2058 | } |
91b9a277 | 2059 | |
cb7b593c SH |
2060 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2061 | { | |
b299e4f0 | 2062 | struct rt_trie_node *n; |
cb7b593c | 2063 | struct fib_trie_iter iter; |
91b9a277 | 2064 | |
cb7b593c | 2065 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2066 | |
cb7b593c | 2067 | rcu_read_lock(); |
3d3b2d25 | 2068 | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { |
cb7b593c | 2069 | if (IS_LEAF(n)) { |
93672292 SH |
2070 | struct leaf *l = (struct leaf *)n; |
2071 | struct leaf_info *li; | |
93672292 | 2072 | |
cb7b593c SH |
2073 | s->leaves++; |
2074 | s->totdepth += iter.depth; | |
2075 | if (iter.depth > s->maxdepth) | |
2076 | s->maxdepth = iter.depth; | |
93672292 | 2077 | |
b67bfe0d | 2078 | hlist_for_each_entry_rcu(li, &l->list, hlist) |
93672292 | 2079 | ++s->prefixes; |
cb7b593c SH |
2080 | } else { |
2081 | const struct tnode *tn = (const struct tnode *) n; | |
2082 | int i; | |
2083 | ||
2084 | s->tnodes++; | |
132adf54 | 2085 | if (tn->bits < MAX_STAT_DEPTH) |
06ef921d RO |
2086 | s->nodesizes[tn->bits]++; |
2087 | ||
cb7b593c SH |
2088 | for (i = 0; i < (1<<tn->bits); i++) |
2089 | if (!tn->child[i]) | |
2090 | s->nullpointers++; | |
19baf839 | 2091 | } |
19baf839 | 2092 | } |
2373ce1c | 2093 | rcu_read_unlock(); |
19baf839 RO |
2094 | } |
2095 | ||
cb7b593c SH |
2096 | /* |
2097 | * This outputs /proc/net/fib_triestats | |
2098 | */ | |
2099 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2100 | { |
a034ee3c | 2101 | unsigned int i, max, pointers, bytes, avdepth; |
c877efb2 | 2102 | |
cb7b593c SH |
2103 | if (stat->leaves) |
2104 | avdepth = stat->totdepth*100 / stat->leaves; | |
2105 | else | |
2106 | avdepth = 0; | |
91b9a277 | 2107 | |
a07f5f50 SH |
2108 | seq_printf(seq, "\tAver depth: %u.%02d\n", |
2109 | avdepth / 100, avdepth % 100); | |
cb7b593c | 2110 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); |
91b9a277 | 2111 | |
cb7b593c | 2112 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
cb7b593c | 2113 | bytes = sizeof(struct leaf) * stat->leaves; |
93672292 SH |
2114 | |
2115 | seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); | |
2116 | bytes += sizeof(struct leaf_info) * stat->prefixes; | |
2117 | ||
187b5188 | 2118 | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); |
cb7b593c | 2119 | bytes += sizeof(struct tnode) * stat->tnodes; |
19baf839 | 2120 | |
06ef921d RO |
2121 | max = MAX_STAT_DEPTH; |
2122 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2123 | max--; |
19baf839 | 2124 | |
cb7b593c | 2125 | pointers = 0; |
f585a991 | 2126 | for (i = 1; i < max; i++) |
cb7b593c | 2127 | if (stat->nodesizes[i] != 0) { |
187b5188 | 2128 | seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); |
cb7b593c SH |
2129 | pointers += (1<<i) * stat->nodesizes[i]; |
2130 | } | |
2131 | seq_putc(seq, '\n'); | |
187b5188 | 2132 | seq_printf(seq, "\tPointers: %u\n", pointers); |
2373ce1c | 2133 | |
b299e4f0 | 2134 | bytes += sizeof(struct rt_trie_node *) * pointers; |
187b5188 SH |
2135 | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); |
2136 | seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); | |
66a2f7fd | 2137 | } |
2373ce1c | 2138 | |
cb7b593c | 2139 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
66a2f7fd SH |
2140 | static void trie_show_usage(struct seq_file *seq, |
2141 | const struct trie_use_stats *stats) | |
2142 | { | |
2143 | seq_printf(seq, "\nCounters:\n---------\n"); | |
a07f5f50 SH |
2144 | seq_printf(seq, "gets = %u\n", stats->gets); |
2145 | seq_printf(seq, "backtracks = %u\n", stats->backtrack); | |
2146 | seq_printf(seq, "semantic match passed = %u\n", | |
2147 | stats->semantic_match_passed); | |
2148 | seq_printf(seq, "semantic match miss = %u\n", | |
2149 | stats->semantic_match_miss); | |
2150 | seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); | |
2151 | seq_printf(seq, "skipped node resize = %u\n\n", | |
2152 | stats->resize_node_skipped); | |
cb7b593c | 2153 | } |
66a2f7fd SH |
2154 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ |
2155 | ||
3d3b2d25 | 2156 | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) |
d717a9a6 | 2157 | { |
3d3b2d25 SH |
2158 | if (tb->tb_id == RT_TABLE_LOCAL) |
2159 | seq_puts(seq, "Local:\n"); | |
2160 | else if (tb->tb_id == RT_TABLE_MAIN) | |
2161 | seq_puts(seq, "Main:\n"); | |
2162 | else | |
2163 | seq_printf(seq, "Id %d:\n", tb->tb_id); | |
d717a9a6 | 2164 | } |
19baf839 | 2165 | |
3d3b2d25 | 2166 | |
cb7b593c SH |
2167 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2168 | { | |
1c340b2f | 2169 | struct net *net = (struct net *)seq->private; |
3d3b2d25 | 2170 | unsigned int h; |
877a9bff | 2171 | |
d717a9a6 | 2172 | seq_printf(seq, |
a07f5f50 SH |
2173 | "Basic info: size of leaf:" |
2174 | " %Zd bytes, size of tnode: %Zd bytes.\n", | |
d717a9a6 SH |
2175 | sizeof(struct leaf), sizeof(struct tnode)); |
2176 | ||
3d3b2d25 SH |
2177 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2178 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 SH |
2179 | struct fib_table *tb; |
2180 | ||
b67bfe0d | 2181 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2182 | struct trie *t = (struct trie *) tb->tb_data; |
2183 | struct trie_stat stat; | |
877a9bff | 2184 | |
3d3b2d25 SH |
2185 | if (!t) |
2186 | continue; | |
2187 | ||
2188 | fib_table_print(seq, tb); | |
2189 | ||
2190 | trie_collect_stats(t, &stat); | |
2191 | trie_show_stats(seq, &stat); | |
2192 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
2193 | trie_show_usage(seq, &t->stats); | |
2194 | #endif | |
2195 | } | |
2196 | } | |
19baf839 | 2197 | |
cb7b593c | 2198 | return 0; |
19baf839 RO |
2199 | } |
2200 | ||
cb7b593c | 2201 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2202 | { |
de05c557 | 2203 | return single_open_net(inode, file, fib_triestat_seq_show); |
1c340b2f DL |
2204 | } |
2205 | ||
9a32144e | 2206 | static const struct file_operations fib_triestat_fops = { |
cb7b593c SH |
2207 | .owner = THIS_MODULE, |
2208 | .open = fib_triestat_seq_open, | |
2209 | .read = seq_read, | |
2210 | .llseek = seq_lseek, | |
b6fcbdb4 | 2211 | .release = single_release_net, |
cb7b593c SH |
2212 | }; |
2213 | ||
b299e4f0 | 2214 | static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) |
19baf839 | 2215 | { |
1218854a YH |
2216 | struct fib_trie_iter *iter = seq->private; |
2217 | struct net *net = seq_file_net(seq); | |
cb7b593c | 2218 | loff_t idx = 0; |
3d3b2d25 | 2219 | unsigned int h; |
cb7b593c | 2220 | |
3d3b2d25 SH |
2221 | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { |
2222 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
3d3b2d25 | 2223 | struct fib_table *tb; |
cb7b593c | 2224 | |
b67bfe0d | 2225 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
b299e4f0 | 2226 | struct rt_trie_node *n; |
3d3b2d25 SH |
2227 | |
2228 | for (n = fib_trie_get_first(iter, | |
2229 | (struct trie *) tb->tb_data); | |
2230 | n; n = fib_trie_get_next(iter)) | |
2231 | if (pos == idx++) { | |
2232 | iter->tb = tb; | |
2233 | return n; | |
2234 | } | |
2235 | } | |
cb7b593c | 2236 | } |
3d3b2d25 | 2237 | |
19baf839 RO |
2238 | return NULL; |
2239 | } | |
2240 | ||
cb7b593c | 2241 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
c95aaf9a | 2242 | __acquires(RCU) |
19baf839 | 2243 | { |
cb7b593c | 2244 | rcu_read_lock(); |
1218854a | 2245 | return fib_trie_get_idx(seq, *pos); |
19baf839 RO |
2246 | } |
2247 | ||
cb7b593c | 2248 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2249 | { |
cb7b593c | 2250 | struct fib_trie_iter *iter = seq->private; |
1218854a | 2251 | struct net *net = seq_file_net(seq); |
3d3b2d25 SH |
2252 | struct fib_table *tb = iter->tb; |
2253 | struct hlist_node *tb_node; | |
2254 | unsigned int h; | |
b299e4f0 | 2255 | struct rt_trie_node *n; |
cb7b593c | 2256 | |
19baf839 | 2257 | ++*pos; |
3d3b2d25 SH |
2258 | /* next node in same table */ |
2259 | n = fib_trie_get_next(iter); | |
2260 | if (n) | |
2261 | return n; | |
19baf839 | 2262 | |
3d3b2d25 SH |
2263 | /* walk rest of this hash chain */ |
2264 | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | |
0a5c0475 | 2265 | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { |
3d3b2d25 SH |
2266 | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); |
2267 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | |
2268 | if (n) | |
2269 | goto found; | |
2270 | } | |
19baf839 | 2271 | |
3d3b2d25 SH |
2272 | /* new hash chain */ |
2273 | while (++h < FIB_TABLE_HASHSZ) { | |
2274 | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | |
b67bfe0d | 2275 | hlist_for_each_entry_rcu(tb, head, tb_hlist) { |
3d3b2d25 SH |
2276 | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); |
2277 | if (n) | |
2278 | goto found; | |
2279 | } | |
2280 | } | |
cb7b593c | 2281 | return NULL; |
3d3b2d25 SH |
2282 | |
2283 | found: | |
2284 | iter->tb = tb; | |
2285 | return n; | |
cb7b593c | 2286 | } |
19baf839 | 2287 | |
cb7b593c | 2288 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
c95aaf9a | 2289 | __releases(RCU) |
19baf839 | 2290 | { |
cb7b593c SH |
2291 | rcu_read_unlock(); |
2292 | } | |
91b9a277 | 2293 | |
cb7b593c SH |
2294 | static void seq_indent(struct seq_file *seq, int n) |
2295 | { | |
a034ee3c ED |
2296 | while (n-- > 0) |
2297 | seq_puts(seq, " "); | |
cb7b593c | 2298 | } |
19baf839 | 2299 | |
28d36e37 | 2300 | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) |
cb7b593c | 2301 | { |
132adf54 | 2302 | switch (s) { |
cb7b593c SH |
2303 | case RT_SCOPE_UNIVERSE: return "universe"; |
2304 | case RT_SCOPE_SITE: return "site"; | |
2305 | case RT_SCOPE_LINK: return "link"; | |
2306 | case RT_SCOPE_HOST: return "host"; | |
2307 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2308 | default: | |
28d36e37 | 2309 | snprintf(buf, len, "scope=%d", s); |
cb7b593c SH |
2310 | return buf; |
2311 | } | |
2312 | } | |
19baf839 | 2313 | |
36cbd3dc | 2314 | static const char *const rtn_type_names[__RTN_MAX] = { |
cb7b593c SH |
2315 | [RTN_UNSPEC] = "UNSPEC", |
2316 | [RTN_UNICAST] = "UNICAST", | |
2317 | [RTN_LOCAL] = "LOCAL", | |
2318 | [RTN_BROADCAST] = "BROADCAST", | |
2319 | [RTN_ANYCAST] = "ANYCAST", | |
2320 | [RTN_MULTICAST] = "MULTICAST", | |
2321 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2322 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2323 | [RTN_PROHIBIT] = "PROHIBIT", | |
2324 | [RTN_THROW] = "THROW", | |
2325 | [RTN_NAT] = "NAT", | |
2326 | [RTN_XRESOLVE] = "XRESOLVE", | |
2327 | }; | |
19baf839 | 2328 | |
a034ee3c | 2329 | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) |
cb7b593c | 2330 | { |
cb7b593c SH |
2331 | if (t < __RTN_MAX && rtn_type_names[t]) |
2332 | return rtn_type_names[t]; | |
28d36e37 | 2333 | snprintf(buf, len, "type %u", t); |
cb7b593c | 2334 | return buf; |
19baf839 RO |
2335 | } |
2336 | ||
cb7b593c SH |
2337 | /* Pretty print the trie */ |
2338 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2339 | { |
cb7b593c | 2340 | const struct fib_trie_iter *iter = seq->private; |
b299e4f0 | 2341 | struct rt_trie_node *n = v; |
c877efb2 | 2342 | |
3d3b2d25 SH |
2343 | if (!node_parent_rcu(n)) |
2344 | fib_table_print(seq, iter->tb); | |
095b8501 | 2345 | |
cb7b593c SH |
2346 | if (IS_TNODE(n)) { |
2347 | struct tnode *tn = (struct tnode *) n; | |
ab66b4a7 | 2348 | __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); |
91b9a277 | 2349 | |
1d25cd6c | 2350 | seq_indent(seq, iter->depth-1); |
673d57e7 HH |
2351 | seq_printf(seq, " +-- %pI4/%d %d %d %d\n", |
2352 | &prf, tn->pos, tn->bits, tn->full_children, | |
1d25cd6c | 2353 | tn->empty_children); |
e905a9ed | 2354 | |
cb7b593c SH |
2355 | } else { |
2356 | struct leaf *l = (struct leaf *) n; | |
1328042e | 2357 | struct leaf_info *li; |
32ab5f80 | 2358 | __be32 val = htonl(l->key); |
cb7b593c SH |
2359 | |
2360 | seq_indent(seq, iter->depth); | |
673d57e7 | 2361 | seq_printf(seq, " |-- %pI4\n", &val); |
1328042e | 2362 | |
b67bfe0d | 2363 | hlist_for_each_entry_rcu(li, &l->list, hlist) { |
1328042e SH |
2364 | struct fib_alias *fa; |
2365 | ||
2366 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | |
2367 | char buf1[32], buf2[32]; | |
2368 | ||
2369 | seq_indent(seq, iter->depth+1); | |
2370 | seq_printf(seq, " /%d %s %s", li->plen, | |
2371 | rtn_scope(buf1, sizeof(buf1), | |
37e826c5 | 2372 | fa->fa_info->fib_scope), |
1328042e SH |
2373 | rtn_type(buf2, sizeof(buf2), |
2374 | fa->fa_type)); | |
2375 | if (fa->fa_tos) | |
b9c4d82a | 2376 | seq_printf(seq, " tos=%d", fa->fa_tos); |
1328042e | 2377 | seq_putc(seq, '\n'); |
cb7b593c SH |
2378 | } |
2379 | } | |
19baf839 | 2380 | } |
cb7b593c | 2381 | |
19baf839 RO |
2382 | return 0; |
2383 | } | |
2384 | ||
f690808e | 2385 | static const struct seq_operations fib_trie_seq_ops = { |
cb7b593c SH |
2386 | .start = fib_trie_seq_start, |
2387 | .next = fib_trie_seq_next, | |
2388 | .stop = fib_trie_seq_stop, | |
2389 | .show = fib_trie_seq_show, | |
19baf839 RO |
2390 | }; |
2391 | ||
cb7b593c | 2392 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2393 | { |
1c340b2f DL |
2394 | return seq_open_net(inode, file, &fib_trie_seq_ops, |
2395 | sizeof(struct fib_trie_iter)); | |
19baf839 RO |
2396 | } |
2397 | ||
9a32144e | 2398 | static const struct file_operations fib_trie_fops = { |
cb7b593c SH |
2399 | .owner = THIS_MODULE, |
2400 | .open = fib_trie_seq_open, | |
2401 | .read = seq_read, | |
2402 | .llseek = seq_lseek, | |
1c340b2f | 2403 | .release = seq_release_net, |
19baf839 RO |
2404 | }; |
2405 | ||
8315f5d8 SH |
2406 | struct fib_route_iter { |
2407 | struct seq_net_private p; | |
2408 | struct trie *main_trie; | |
2409 | loff_t pos; | |
2410 | t_key key; | |
2411 | }; | |
2412 | ||
2413 | static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) | |
2414 | { | |
2415 | struct leaf *l = NULL; | |
2416 | struct trie *t = iter->main_trie; | |
2417 | ||
2418 | /* use cache location of last found key */ | |
2419 | if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) | |
2420 | pos -= iter->pos; | |
2421 | else { | |
2422 | iter->pos = 0; | |
2423 | l = trie_firstleaf(t); | |
2424 | } | |
2425 | ||
2426 | while (l && pos-- > 0) { | |
2427 | iter->pos++; | |
2428 | l = trie_nextleaf(l); | |
2429 | } | |
2430 | ||
2431 | if (l) | |
2432 | iter->key = pos; /* remember it */ | |
2433 | else | |
2434 | iter->pos = 0; /* forget it */ | |
2435 | ||
2436 | return l; | |
2437 | } | |
2438 | ||
2439 | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | |
2440 | __acquires(RCU) | |
2441 | { | |
2442 | struct fib_route_iter *iter = seq->private; | |
2443 | struct fib_table *tb; | |
2444 | ||
2445 | rcu_read_lock(); | |
1218854a | 2446 | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); |
8315f5d8 SH |
2447 | if (!tb) |
2448 | return NULL; | |
2449 | ||
2450 | iter->main_trie = (struct trie *) tb->tb_data; | |
2451 | if (*pos == 0) | |
2452 | return SEQ_START_TOKEN; | |
2453 | else | |
2454 | return fib_route_get_idx(iter, *pos - 1); | |
2455 | } | |
2456 | ||
2457 | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
2458 | { | |
2459 | struct fib_route_iter *iter = seq->private; | |
2460 | struct leaf *l = v; | |
2461 | ||
2462 | ++*pos; | |
2463 | if (v == SEQ_START_TOKEN) { | |
2464 | iter->pos = 0; | |
2465 | l = trie_firstleaf(iter->main_trie); | |
2466 | } else { | |
2467 | iter->pos++; | |
2468 | l = trie_nextleaf(l); | |
2469 | } | |
2470 | ||
2471 | if (l) | |
2472 | iter->key = l->key; | |
2473 | else | |
2474 | iter->pos = 0; | |
2475 | return l; | |
2476 | } | |
2477 | ||
2478 | static void fib_route_seq_stop(struct seq_file *seq, void *v) | |
2479 | __releases(RCU) | |
2480 | { | |
2481 | rcu_read_unlock(); | |
2482 | } | |
2483 | ||
a034ee3c | 2484 | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) |
19baf839 | 2485 | { |
a034ee3c | 2486 | unsigned int flags = 0; |
19baf839 | 2487 | |
a034ee3c ED |
2488 | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) |
2489 | flags = RTF_REJECT; | |
cb7b593c SH |
2490 | if (fi && fi->fib_nh->nh_gw) |
2491 | flags |= RTF_GATEWAY; | |
32ab5f80 | 2492 | if (mask == htonl(0xFFFFFFFF)) |
cb7b593c SH |
2493 | flags |= RTF_HOST; |
2494 | flags |= RTF_UP; | |
2495 | return flags; | |
19baf839 RO |
2496 | } |
2497 | ||
cb7b593c SH |
2498 | /* |
2499 | * This outputs /proc/net/route. | |
2500 | * The format of the file is not supposed to be changed | |
a034ee3c | 2501 | * and needs to be same as fib_hash output to avoid breaking |
cb7b593c SH |
2502 | * legacy utilities |
2503 | */ | |
2504 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2505 | { |
cb7b593c | 2506 | struct leaf *l = v; |
1328042e | 2507 | struct leaf_info *li; |
19baf839 | 2508 | |
cb7b593c SH |
2509 | if (v == SEQ_START_TOKEN) { |
2510 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2511 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2512 | "\tWindow\tIRTT"); | |
2513 | return 0; | |
2514 | } | |
19baf839 | 2515 | |
b67bfe0d | 2516 | hlist_for_each_entry_rcu(li, &l->list, hlist) { |
cb7b593c | 2517 | struct fib_alias *fa; |
32ab5f80 | 2518 | __be32 mask, prefix; |
91b9a277 | 2519 | |
cb7b593c SH |
2520 | mask = inet_make_mask(li->plen); |
2521 | prefix = htonl(l->key); | |
19baf839 | 2522 | |
cb7b593c | 2523 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1371e37d | 2524 | const struct fib_info *fi = fa->fa_info; |
a034ee3c | 2525 | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); |
19baf839 | 2526 | |
cb7b593c SH |
2527 | if (fa->fa_type == RTN_BROADCAST |
2528 | || fa->fa_type == RTN_MULTICAST) | |
2529 | continue; | |
19baf839 | 2530 | |
652586df TH |
2531 | seq_setwidth(seq, 127); |
2532 | ||
cb7b593c | 2533 | if (fi) |
5e659e4c PE |
2534 | seq_printf(seq, |
2535 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | |
652586df | 2536 | "%d\t%08X\t%d\t%u\t%u", |
cb7b593c SH |
2537 | fi->fib_dev ? fi->fib_dev->name : "*", |
2538 | prefix, | |
2539 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2540 | fi->fib_priority, | |
2541 | mask, | |
a07f5f50 SH |
2542 | (fi->fib_advmss ? |
2543 | fi->fib_advmss + 40 : 0), | |
cb7b593c | 2544 | fi->fib_window, |
652586df | 2545 | fi->fib_rtt >> 3); |
cb7b593c | 2546 | else |
5e659e4c PE |
2547 | seq_printf(seq, |
2548 | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | |
652586df | 2549 | "%d\t%08X\t%d\t%u\t%u", |
cb7b593c | 2550 | prefix, 0, flags, 0, 0, 0, |
652586df | 2551 | mask, 0, 0, 0); |
19baf839 | 2552 | |
652586df | 2553 | seq_pad(seq, '\n'); |
cb7b593c | 2554 | } |
19baf839 RO |
2555 | } |
2556 | ||
2557 | return 0; | |
2558 | } | |
2559 | ||
f690808e | 2560 | static const struct seq_operations fib_route_seq_ops = { |
8315f5d8 SH |
2561 | .start = fib_route_seq_start, |
2562 | .next = fib_route_seq_next, | |
2563 | .stop = fib_route_seq_stop, | |
cb7b593c | 2564 | .show = fib_route_seq_show, |
19baf839 RO |
2565 | }; |
2566 | ||
cb7b593c | 2567 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2568 | { |
1c340b2f | 2569 | return seq_open_net(inode, file, &fib_route_seq_ops, |
8315f5d8 | 2570 | sizeof(struct fib_route_iter)); |
19baf839 RO |
2571 | } |
2572 | ||
9a32144e | 2573 | static const struct file_operations fib_route_fops = { |
cb7b593c SH |
2574 | .owner = THIS_MODULE, |
2575 | .open = fib_route_seq_open, | |
2576 | .read = seq_read, | |
2577 | .llseek = seq_lseek, | |
1c340b2f | 2578 | .release = seq_release_net, |
19baf839 RO |
2579 | }; |
2580 | ||
61a02653 | 2581 | int __net_init fib_proc_init(struct net *net) |
19baf839 | 2582 | { |
d4beaa66 | 2583 | if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) |
cb7b593c SH |
2584 | goto out1; |
2585 | ||
d4beaa66 G |
2586 | if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, |
2587 | &fib_triestat_fops)) | |
cb7b593c SH |
2588 | goto out2; |
2589 | ||
d4beaa66 | 2590 | if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) |
cb7b593c SH |
2591 | goto out3; |
2592 | ||
19baf839 | 2593 | return 0; |
cb7b593c SH |
2594 | |
2595 | out3: | |
ece31ffd | 2596 | remove_proc_entry("fib_triestat", net->proc_net); |
cb7b593c | 2597 | out2: |
ece31ffd | 2598 | remove_proc_entry("fib_trie", net->proc_net); |
cb7b593c SH |
2599 | out1: |
2600 | return -ENOMEM; | |
19baf839 RO |
2601 | } |
2602 | ||
61a02653 | 2603 | void __net_exit fib_proc_exit(struct net *net) |
19baf839 | 2604 | { |
ece31ffd G |
2605 | remove_proc_entry("fib_trie", net->proc_net); |
2606 | remove_proc_entry("fib_triestat", net->proc_net); | |
2607 | remove_proc_entry("route", net->proc_net); | |
19baf839 RO |
2608 | } |
2609 | ||
2610 | #endif /* CONFIG_PROC_FS */ |