]>
Commit | Line | Data |
---|---|---|
c0a31329 TG |
1 | /* |
2 | * linux/kernel/hrtimer.c | |
3 | * | |
3c8aa39d | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
7 | * |
8 | * High-resolution kernel timers | |
9 | * | |
10 | * In contrast to the low-resolution timeout API implemented in | |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | |
12 | * depending on system configuration and capabilities. | |
13 | * | |
14 | * These timers are currently used for: | |
15 | * - itimers | |
16 | * - POSIX timers | |
17 | * - nanosleep | |
18 | * - precise in-kernel timing | |
19 | * | |
20 | * Started by: Thomas Gleixner and Ingo Molnar | |
21 | * | |
22 | * Credits: | |
23 | * based on kernel/timer.c | |
24 | * | |
66188fae TG |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: | |
27 | * | |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
29 | * et. al. | |
30 | * | |
c0a31329 TG |
31 | * For licencing details see kernel-base/COPYING |
32 | */ | |
33 | ||
34 | #include <linux/cpu.h> | |
54cdfdb4 | 35 | #include <linux/irq.h> |
c0a31329 TG |
36 | #include <linux/module.h> |
37 | #include <linux/percpu.h> | |
38 | #include <linux/hrtimer.h> | |
39 | #include <linux/notifier.h> | |
40 | #include <linux/syscalls.h> | |
54cdfdb4 | 41 | #include <linux/kallsyms.h> |
c0a31329 | 42 | #include <linux/interrupt.h> |
79bf2bb3 | 43 | #include <linux/tick.h> |
54cdfdb4 TG |
44 | #include <linux/seq_file.h> |
45 | #include <linux/err.h> | |
c0a31329 TG |
46 | |
47 | #include <asm/uaccess.h> | |
48 | ||
49 | /** | |
50 | * ktime_get - get the monotonic time in ktime_t format | |
51 | * | |
52 | * returns the time in ktime_t format | |
53 | */ | |
d316c57f | 54 | ktime_t ktime_get(void) |
c0a31329 TG |
55 | { |
56 | struct timespec now; | |
57 | ||
58 | ktime_get_ts(&now); | |
59 | ||
60 | return timespec_to_ktime(now); | |
61 | } | |
641b9e0e | 62 | EXPORT_SYMBOL_GPL(ktime_get); |
c0a31329 TG |
63 | |
64 | /** | |
65 | * ktime_get_real - get the real (wall-) time in ktime_t format | |
66 | * | |
67 | * returns the time in ktime_t format | |
68 | */ | |
d316c57f | 69 | ktime_t ktime_get_real(void) |
c0a31329 TG |
70 | { |
71 | struct timespec now; | |
72 | ||
73 | getnstimeofday(&now); | |
74 | ||
75 | return timespec_to_ktime(now); | |
76 | } | |
77 | ||
78 | EXPORT_SYMBOL_GPL(ktime_get_real); | |
79 | ||
80 | /* | |
81 | * The timer bases: | |
7978672c GA |
82 | * |
83 | * Note: If we want to add new timer bases, we have to skip the two | |
84 | * clock ids captured by the cpu-timers. We do this by holding empty | |
85 | * entries rather than doing math adjustment of the clock ids. | |
86 | * This ensures that we capture erroneous accesses to these clock ids | |
87 | * rather than moving them into the range of valid clock id's. | |
c0a31329 | 88 | */ |
54cdfdb4 | 89 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 90 | { |
3c8aa39d TG |
91 | |
92 | .clock_base = | |
c0a31329 | 93 | { |
3c8aa39d TG |
94 | { |
95 | .index = CLOCK_REALTIME, | |
96 | .get_time = &ktime_get_real, | |
54cdfdb4 | 97 | .resolution = KTIME_LOW_RES, |
3c8aa39d TG |
98 | }, |
99 | { | |
100 | .index = CLOCK_MONOTONIC, | |
101 | .get_time = &ktime_get, | |
54cdfdb4 | 102 | .resolution = KTIME_LOW_RES, |
3c8aa39d TG |
103 | }, |
104 | } | |
c0a31329 TG |
105 | }; |
106 | ||
107 | /** | |
108 | * ktime_get_ts - get the monotonic clock in timespec format | |
c0a31329 TG |
109 | * @ts: pointer to timespec variable |
110 | * | |
111 | * The function calculates the monotonic clock from the realtime | |
112 | * clock and the wall_to_monotonic offset and stores the result | |
72fd4a35 | 113 | * in normalized timespec format in the variable pointed to by @ts. |
c0a31329 TG |
114 | */ |
115 | void ktime_get_ts(struct timespec *ts) | |
116 | { | |
117 | struct timespec tomono; | |
118 | unsigned long seq; | |
119 | ||
120 | do { | |
121 | seq = read_seqbegin(&xtime_lock); | |
122 | getnstimeofday(ts); | |
123 | tomono = wall_to_monotonic; | |
124 | ||
125 | } while (read_seqretry(&xtime_lock, seq)); | |
126 | ||
127 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | |
128 | ts->tv_nsec + tomono.tv_nsec); | |
129 | } | |
69778e32 | 130 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
c0a31329 | 131 | |
92127c7a TG |
132 | /* |
133 | * Get the coarse grained time at the softirq based on xtime and | |
134 | * wall_to_monotonic. | |
135 | */ | |
3c8aa39d | 136 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
92127c7a TG |
137 | { |
138 | ktime_t xtim, tomono; | |
ad28d94a | 139 | struct timespec xts, tom; |
92127c7a TG |
140 | unsigned long seq; |
141 | ||
142 | do { | |
143 | seq = read_seqbegin(&xtime_lock); | |
2c6b47de | 144 | xts = current_kernel_time(); |
ad28d94a | 145 | tom = wall_to_monotonic; |
92127c7a TG |
146 | } while (read_seqretry(&xtime_lock, seq)); |
147 | ||
f4304ab2 | 148 | xtim = timespec_to_ktime(xts); |
ad28d94a | 149 | tomono = timespec_to_ktime(tom); |
3c8aa39d TG |
150 | base->clock_base[CLOCK_REALTIME].softirq_time = xtim; |
151 | base->clock_base[CLOCK_MONOTONIC].softirq_time = | |
152 | ktime_add(xtim, tomono); | |
92127c7a TG |
153 | } |
154 | ||
303e967f TG |
155 | /* |
156 | * Helper function to check, whether the timer is running the callback | |
157 | * function | |
158 | */ | |
159 | static inline int hrtimer_callback_running(struct hrtimer *timer) | |
160 | { | |
161 | return timer->state & HRTIMER_STATE_CALLBACK; | |
162 | } | |
163 | ||
c0a31329 TG |
164 | /* |
165 | * Functions and macros which are different for UP/SMP systems are kept in a | |
166 | * single place | |
167 | */ | |
168 | #ifdef CONFIG_SMP | |
169 | ||
c0a31329 TG |
170 | /* |
171 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
172 | * means that all timers which are tied to this base via timer->base are | |
173 | * locked, and the base itself is locked too. | |
174 | * | |
175 | * So __run_timers/migrate_timers can safely modify all timers which could | |
176 | * be found on the lists/queues. | |
177 | * | |
178 | * When the timer's base is locked, and the timer removed from list, it is | |
179 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
180 | * locked. | |
181 | */ | |
3c8aa39d TG |
182 | static |
183 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
184 | unsigned long *flags) | |
c0a31329 | 185 | { |
3c8aa39d | 186 | struct hrtimer_clock_base *base; |
c0a31329 TG |
187 | |
188 | for (;;) { | |
189 | base = timer->base; | |
190 | if (likely(base != NULL)) { | |
3c8aa39d | 191 | spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
192 | if (likely(base == timer->base)) |
193 | return base; | |
194 | /* The timer has migrated to another CPU: */ | |
3c8aa39d | 195 | spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
196 | } |
197 | cpu_relax(); | |
198 | } | |
199 | } | |
200 | ||
201 | /* | |
202 | * Switch the timer base to the current CPU when possible. | |
203 | */ | |
3c8aa39d TG |
204 | static inline struct hrtimer_clock_base * |
205 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) | |
c0a31329 | 206 | { |
3c8aa39d TG |
207 | struct hrtimer_clock_base *new_base; |
208 | struct hrtimer_cpu_base *new_cpu_base; | |
c0a31329 | 209 | |
3c8aa39d TG |
210 | new_cpu_base = &__get_cpu_var(hrtimer_bases); |
211 | new_base = &new_cpu_base->clock_base[base->index]; | |
c0a31329 TG |
212 | |
213 | if (base != new_base) { | |
214 | /* | |
215 | * We are trying to schedule the timer on the local CPU. | |
216 | * However we can't change timer's base while it is running, | |
217 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
218 | * the event source in the high resolution case. The softirq | |
219 | * code will take care of this when the timer function has | |
220 | * completed. There is no conflict as we hold the lock until | |
221 | * the timer is enqueued. | |
222 | */ | |
54cdfdb4 | 223 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
224 | return base; |
225 | ||
226 | /* See the comment in lock_timer_base() */ | |
227 | timer->base = NULL; | |
3c8aa39d TG |
228 | spin_unlock(&base->cpu_base->lock); |
229 | spin_lock(&new_base->cpu_base->lock); | |
c0a31329 TG |
230 | timer->base = new_base; |
231 | } | |
232 | return new_base; | |
233 | } | |
234 | ||
235 | #else /* CONFIG_SMP */ | |
236 | ||
3c8aa39d | 237 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
238 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
239 | { | |
3c8aa39d | 240 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 241 | |
3c8aa39d | 242 | spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
243 | |
244 | return base; | |
245 | } | |
246 | ||
54cdfdb4 | 247 | # define switch_hrtimer_base(t, b) (b) |
c0a31329 TG |
248 | |
249 | #endif /* !CONFIG_SMP */ | |
250 | ||
251 | /* | |
252 | * Functions for the union type storage format of ktime_t which are | |
253 | * too large for inlining: | |
254 | */ | |
255 | #if BITS_PER_LONG < 64 | |
256 | # ifndef CONFIG_KTIME_SCALAR | |
257 | /** | |
258 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | |
c0a31329 TG |
259 | * @kt: addend |
260 | * @nsec: the scalar nsec value to add | |
261 | * | |
262 | * Returns the sum of kt and nsec in ktime_t format | |
263 | */ | |
264 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |
265 | { | |
266 | ktime_t tmp; | |
267 | ||
268 | if (likely(nsec < NSEC_PER_SEC)) { | |
269 | tmp.tv64 = nsec; | |
270 | } else { | |
271 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
272 | ||
273 | tmp = ktime_set((long)nsec, rem); | |
274 | } | |
275 | ||
276 | return ktime_add(kt, tmp); | |
277 | } | |
b8b8fd2d DH |
278 | |
279 | EXPORT_SYMBOL_GPL(ktime_add_ns); | |
a272378d ACM |
280 | |
281 | /** | |
282 | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | |
283 | * @kt: minuend | |
284 | * @nsec: the scalar nsec value to subtract | |
285 | * | |
286 | * Returns the subtraction of @nsec from @kt in ktime_t format | |
287 | */ | |
288 | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | |
289 | { | |
290 | ktime_t tmp; | |
291 | ||
292 | if (likely(nsec < NSEC_PER_SEC)) { | |
293 | tmp.tv64 = nsec; | |
294 | } else { | |
295 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
296 | ||
297 | tmp = ktime_set((long)nsec, rem); | |
298 | } | |
299 | ||
300 | return ktime_sub(kt, tmp); | |
301 | } | |
302 | ||
303 | EXPORT_SYMBOL_GPL(ktime_sub_ns); | |
c0a31329 TG |
304 | # endif /* !CONFIG_KTIME_SCALAR */ |
305 | ||
306 | /* | |
307 | * Divide a ktime value by a nanosecond value | |
308 | */ | |
4d672e7a | 309 | u64 ktime_divns(const ktime_t kt, s64 div) |
c0a31329 TG |
310 | { |
311 | u64 dclc, inc, dns; | |
312 | int sft = 0; | |
313 | ||
314 | dclc = dns = ktime_to_ns(kt); | |
315 | inc = div; | |
316 | /* Make sure the divisor is less than 2^32: */ | |
317 | while (div >> 32) { | |
318 | sft++; | |
319 | div >>= 1; | |
320 | } | |
321 | dclc >>= sft; | |
322 | do_div(dclc, (unsigned long) div); | |
323 | ||
4d672e7a | 324 | return dclc; |
c0a31329 | 325 | } |
c0a31329 TG |
326 | #endif /* BITS_PER_LONG >= 64 */ |
327 | ||
5a7780e7 TG |
328 | /* |
329 | * Add two ktime values and do a safety check for overflow: | |
330 | */ | |
331 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
332 | { | |
333 | ktime_t res = ktime_add(lhs, rhs); | |
334 | ||
335 | /* | |
336 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
337 | * return to user space in a timespec: | |
338 | */ | |
339 | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | |
340 | res = ktime_set(KTIME_SEC_MAX, 0); | |
341 | ||
342 | return res; | |
343 | } | |
344 | ||
d3d74453 PZ |
345 | /* |
346 | * Check, whether the timer is on the callback pending list | |
347 | */ | |
348 | static inline int hrtimer_cb_pending(const struct hrtimer *timer) | |
349 | { | |
350 | return timer->state & HRTIMER_STATE_PENDING; | |
351 | } | |
352 | ||
353 | /* | |
354 | * Remove a timer from the callback pending list | |
355 | */ | |
356 | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) | |
357 | { | |
358 | list_del_init(&timer->cb_entry); | |
359 | } | |
360 | ||
54cdfdb4 TG |
361 | /* High resolution timer related functions */ |
362 | #ifdef CONFIG_HIGH_RES_TIMERS | |
363 | ||
364 | /* | |
365 | * High resolution timer enabled ? | |
366 | */ | |
367 | static int hrtimer_hres_enabled __read_mostly = 1; | |
368 | ||
369 | /* | |
370 | * Enable / Disable high resolution mode | |
371 | */ | |
372 | static int __init setup_hrtimer_hres(char *str) | |
373 | { | |
374 | if (!strcmp(str, "off")) | |
375 | hrtimer_hres_enabled = 0; | |
376 | else if (!strcmp(str, "on")) | |
377 | hrtimer_hres_enabled = 1; | |
378 | else | |
379 | return 0; | |
380 | return 1; | |
381 | } | |
382 | ||
383 | __setup("highres=", setup_hrtimer_hres); | |
384 | ||
385 | /* | |
386 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
387 | */ | |
388 | static inline int hrtimer_is_hres_enabled(void) | |
389 | { | |
390 | return hrtimer_hres_enabled; | |
391 | } | |
392 | ||
393 | /* | |
394 | * Is the high resolution mode active ? | |
395 | */ | |
396 | static inline int hrtimer_hres_active(void) | |
397 | { | |
398 | return __get_cpu_var(hrtimer_bases).hres_active; | |
399 | } | |
400 | ||
401 | /* | |
402 | * Reprogram the event source with checking both queues for the | |
403 | * next event | |
404 | * Called with interrupts disabled and base->lock held | |
405 | */ | |
406 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |
407 | { | |
408 | int i; | |
409 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
410 | ktime_t expires; | |
411 | ||
412 | cpu_base->expires_next.tv64 = KTIME_MAX; | |
413 | ||
414 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
415 | struct hrtimer *timer; | |
416 | ||
417 | if (!base->first) | |
418 | continue; | |
419 | timer = rb_entry(base->first, struct hrtimer, node); | |
420 | expires = ktime_sub(timer->expires, base->offset); | |
421 | if (expires.tv64 < cpu_base->expires_next.tv64) | |
422 | cpu_base->expires_next = expires; | |
423 | } | |
424 | ||
425 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | |
426 | tick_program_event(cpu_base->expires_next, 1); | |
427 | } | |
428 | ||
429 | /* | |
430 | * Shared reprogramming for clock_realtime and clock_monotonic | |
431 | * | |
432 | * When a timer is enqueued and expires earlier than the already enqueued | |
433 | * timers, we have to check, whether it expires earlier than the timer for | |
434 | * which the clock event device was armed. | |
435 | * | |
436 | * Called with interrupts disabled and base->cpu_base.lock held | |
437 | */ | |
438 | static int hrtimer_reprogram(struct hrtimer *timer, | |
439 | struct hrtimer_clock_base *base) | |
440 | { | |
441 | ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; | |
442 | ktime_t expires = ktime_sub(timer->expires, base->offset); | |
443 | int res; | |
444 | ||
63070a79 TG |
445 | WARN_ON_ONCE(timer->expires.tv64 < 0); |
446 | ||
54cdfdb4 TG |
447 | /* |
448 | * When the callback is running, we do not reprogram the clock event | |
449 | * device. The timer callback is either running on a different CPU or | |
3a4fa0a2 | 450 | * the callback is executed in the hrtimer_interrupt context. The |
54cdfdb4 TG |
451 | * reprogramming is handled either by the softirq, which called the |
452 | * callback or at the end of the hrtimer_interrupt. | |
453 | */ | |
454 | if (hrtimer_callback_running(timer)) | |
455 | return 0; | |
456 | ||
63070a79 TG |
457 | /* |
458 | * CLOCK_REALTIME timer might be requested with an absolute | |
459 | * expiry time which is less than base->offset. Nothing wrong | |
460 | * about that, just avoid to call into the tick code, which | |
461 | * has now objections against negative expiry values. | |
462 | */ | |
463 | if (expires.tv64 < 0) | |
464 | return -ETIME; | |
465 | ||
54cdfdb4 TG |
466 | if (expires.tv64 >= expires_next->tv64) |
467 | return 0; | |
468 | ||
469 | /* | |
470 | * Clockevents returns -ETIME, when the event was in the past. | |
471 | */ | |
472 | res = tick_program_event(expires, 0); | |
473 | if (!IS_ERR_VALUE(res)) | |
474 | *expires_next = expires; | |
475 | return res; | |
476 | } | |
477 | ||
478 | ||
479 | /* | |
480 | * Retrigger next event is called after clock was set | |
481 | * | |
482 | * Called with interrupts disabled via on_each_cpu() | |
483 | */ | |
484 | static void retrigger_next_event(void *arg) | |
485 | { | |
486 | struct hrtimer_cpu_base *base; | |
487 | struct timespec realtime_offset; | |
488 | unsigned long seq; | |
489 | ||
490 | if (!hrtimer_hres_active()) | |
491 | return; | |
492 | ||
493 | do { | |
494 | seq = read_seqbegin(&xtime_lock); | |
495 | set_normalized_timespec(&realtime_offset, | |
496 | -wall_to_monotonic.tv_sec, | |
497 | -wall_to_monotonic.tv_nsec); | |
498 | } while (read_seqretry(&xtime_lock, seq)); | |
499 | ||
500 | base = &__get_cpu_var(hrtimer_bases); | |
501 | ||
502 | /* Adjust CLOCK_REALTIME offset */ | |
503 | spin_lock(&base->lock); | |
504 | base->clock_base[CLOCK_REALTIME].offset = | |
505 | timespec_to_ktime(realtime_offset); | |
506 | ||
507 | hrtimer_force_reprogram(base); | |
508 | spin_unlock(&base->lock); | |
509 | } | |
510 | ||
511 | /* | |
512 | * Clock realtime was set | |
513 | * | |
514 | * Change the offset of the realtime clock vs. the monotonic | |
515 | * clock. | |
516 | * | |
517 | * We might have to reprogram the high resolution timer interrupt. On | |
518 | * SMP we call the architecture specific code to retrigger _all_ high | |
519 | * resolution timer interrupts. On UP we just disable interrupts and | |
520 | * call the high resolution interrupt code. | |
521 | */ | |
522 | void clock_was_set(void) | |
523 | { | |
524 | /* Retrigger the CPU local events everywhere */ | |
525 | on_each_cpu(retrigger_next_event, NULL, 0, 1); | |
526 | } | |
527 | ||
995f054f IM |
528 | /* |
529 | * During resume we might have to reprogram the high resolution timer | |
530 | * interrupt (on the local CPU): | |
531 | */ | |
532 | void hres_timers_resume(void) | |
533 | { | |
534 | WARN_ON_ONCE(num_online_cpus() > 1); | |
535 | ||
536 | /* Retrigger the CPU local events: */ | |
537 | retrigger_next_event(NULL); | |
538 | } | |
539 | ||
54cdfdb4 TG |
540 | /* |
541 | * Initialize the high resolution related parts of cpu_base | |
542 | */ | |
543 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | |
544 | { | |
545 | base->expires_next.tv64 = KTIME_MAX; | |
546 | base->hres_active = 0; | |
54cdfdb4 TG |
547 | } |
548 | ||
549 | /* | |
550 | * Initialize the high resolution related parts of a hrtimer | |
551 | */ | |
552 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | |
553 | { | |
54cdfdb4 TG |
554 | } |
555 | ||
556 | /* | |
557 | * When High resolution timers are active, try to reprogram. Note, that in case | |
558 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | |
559 | * check happens. The timer gets enqueued into the rbtree. The reprogramming | |
560 | * and expiry check is done in the hrtimer_interrupt or in the softirq. | |
561 | */ | |
562 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
563 | struct hrtimer_clock_base *base) | |
564 | { | |
565 | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | |
566 | ||
567 | /* Timer is expired, act upon the callback mode */ | |
568 | switch(timer->cb_mode) { | |
569 | case HRTIMER_CB_IRQSAFE_NO_RESTART: | |
570 | /* | |
571 | * We can call the callback from here. No restart | |
572 | * happens, so no danger of recursion | |
573 | */ | |
574 | BUG_ON(timer->function(timer) != HRTIMER_NORESTART); | |
575 | return 1; | |
576 | case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: | |
577 | /* | |
578 | * This is solely for the sched tick emulation with | |
579 | * dynamic tick support to ensure that we do not | |
580 | * restart the tick right on the edge and end up with | |
581 | * the tick timer in the softirq ! The calling site | |
582 | * takes care of this. | |
583 | */ | |
584 | return 1; | |
585 | case HRTIMER_CB_IRQSAFE: | |
586 | case HRTIMER_CB_SOFTIRQ: | |
587 | /* | |
588 | * Move everything else into the softirq pending list ! | |
589 | */ | |
590 | list_add_tail(&timer->cb_entry, | |
591 | &base->cpu_base->cb_pending); | |
592 | timer->state = HRTIMER_STATE_PENDING; | |
593 | raise_softirq(HRTIMER_SOFTIRQ); | |
594 | return 1; | |
595 | default: | |
596 | BUG(); | |
597 | } | |
598 | } | |
599 | return 0; | |
600 | } | |
601 | ||
602 | /* | |
603 | * Switch to high resolution mode | |
604 | */ | |
f8953856 | 605 | static int hrtimer_switch_to_hres(void) |
54cdfdb4 | 606 | { |
820de5c3 IM |
607 | int cpu = smp_processor_id(); |
608 | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); | |
54cdfdb4 TG |
609 | unsigned long flags; |
610 | ||
611 | if (base->hres_active) | |
f8953856 | 612 | return 1; |
54cdfdb4 TG |
613 | |
614 | local_irq_save(flags); | |
615 | ||
616 | if (tick_init_highres()) { | |
617 | local_irq_restore(flags); | |
820de5c3 IM |
618 | printk(KERN_WARNING "Could not switch to high resolution " |
619 | "mode on CPU %d\n", cpu); | |
f8953856 | 620 | return 0; |
54cdfdb4 TG |
621 | } |
622 | base->hres_active = 1; | |
623 | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | |
624 | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | |
625 | ||
626 | tick_setup_sched_timer(); | |
627 | ||
628 | /* "Retrigger" the interrupt to get things going */ | |
629 | retrigger_next_event(NULL); | |
630 | local_irq_restore(flags); | |
edfed66e | 631 | printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", |
54cdfdb4 | 632 | smp_processor_id()); |
f8953856 | 633 | return 1; |
54cdfdb4 TG |
634 | } |
635 | ||
636 | #else | |
637 | ||
638 | static inline int hrtimer_hres_active(void) { return 0; } | |
639 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | |
f8953856 | 640 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
54cdfdb4 TG |
641 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } |
642 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
643 | struct hrtimer_clock_base *base) | |
644 | { | |
645 | return 0; | |
646 | } | |
54cdfdb4 TG |
647 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
648 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | |
d3d74453 PZ |
649 | static inline int hrtimer_reprogram(struct hrtimer *timer, |
650 | struct hrtimer_clock_base *base) | |
651 | { | |
652 | return 0; | |
653 | } | |
54cdfdb4 TG |
654 | |
655 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
656 | ||
82f67cd9 IM |
657 | #ifdef CONFIG_TIMER_STATS |
658 | void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) | |
659 | { | |
660 | if (timer->start_site) | |
661 | return; | |
662 | ||
663 | timer->start_site = addr; | |
664 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
665 | timer->start_pid = current->pid; | |
666 | } | |
667 | #endif | |
668 | ||
c0a31329 | 669 | /* |
6506f2aa | 670 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
671 | */ |
672 | static inline | |
673 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
674 | { | |
3c8aa39d | 675 | spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
676 | } |
677 | ||
678 | /** | |
679 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 680 | * @timer: hrtimer to forward |
44f21475 | 681 | * @now: forward past this time |
c0a31329 TG |
682 | * @interval: the interval to forward |
683 | * | |
684 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 685 | * Returns the number of overruns. |
c0a31329 | 686 | */ |
4d672e7a | 687 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 688 | { |
4d672e7a | 689 | u64 orun = 1; |
44f21475 | 690 | ktime_t delta; |
c0a31329 TG |
691 | |
692 | delta = ktime_sub(now, timer->expires); | |
693 | ||
694 | if (delta.tv64 < 0) | |
695 | return 0; | |
696 | ||
c9db4fa1 TG |
697 | if (interval.tv64 < timer->base->resolution.tv64) |
698 | interval.tv64 = timer->base->resolution.tv64; | |
699 | ||
c0a31329 | 700 | if (unlikely(delta.tv64 >= interval.tv64)) { |
df869b63 | 701 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
702 | |
703 | orun = ktime_divns(delta, incr); | |
704 | timer->expires = ktime_add_ns(timer->expires, incr * orun); | |
705 | if (timer->expires.tv64 > now.tv64) | |
706 | return orun; | |
707 | /* | |
708 | * This (and the ktime_add() below) is the | |
709 | * correction for exact: | |
710 | */ | |
711 | orun++; | |
712 | } | |
5a7780e7 | 713 | timer->expires = ktime_add_safe(timer->expires, interval); |
c0a31329 TG |
714 | |
715 | return orun; | |
716 | } | |
6bdb6b62 | 717 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
718 | |
719 | /* | |
720 | * enqueue_hrtimer - internal function to (re)start a timer | |
721 | * | |
722 | * The timer is inserted in expiry order. Insertion into the | |
723 | * red black tree is O(log(n)). Must hold the base lock. | |
724 | */ | |
3c8aa39d | 725 | static void enqueue_hrtimer(struct hrtimer *timer, |
54cdfdb4 | 726 | struct hrtimer_clock_base *base, int reprogram) |
c0a31329 TG |
727 | { |
728 | struct rb_node **link = &base->active.rb_node; | |
c0a31329 TG |
729 | struct rb_node *parent = NULL; |
730 | struct hrtimer *entry; | |
99bc2fcb | 731 | int leftmost = 1; |
c0a31329 TG |
732 | |
733 | /* | |
734 | * Find the right place in the rbtree: | |
735 | */ | |
736 | while (*link) { | |
737 | parent = *link; | |
738 | entry = rb_entry(parent, struct hrtimer, node); | |
739 | /* | |
740 | * We dont care about collisions. Nodes with | |
741 | * the same expiry time stay together. | |
742 | */ | |
99bc2fcb | 743 | if (timer->expires.tv64 < entry->expires.tv64) { |
c0a31329 | 744 | link = &(*link)->rb_left; |
99bc2fcb | 745 | } else { |
c0a31329 | 746 | link = &(*link)->rb_right; |
99bc2fcb IM |
747 | leftmost = 0; |
748 | } | |
c0a31329 TG |
749 | } |
750 | ||
751 | /* | |
288867ec TG |
752 | * Insert the timer to the rbtree and check whether it |
753 | * replaces the first pending timer | |
c0a31329 | 754 | */ |
99bc2fcb | 755 | if (leftmost) { |
54cdfdb4 TG |
756 | /* |
757 | * Reprogram the clock event device. When the timer is already | |
758 | * expired hrtimer_enqueue_reprogram has either called the | |
759 | * callback or added it to the pending list and raised the | |
760 | * softirq. | |
761 | * | |
762 | * This is a NOP for !HIGHRES | |
763 | */ | |
764 | if (reprogram && hrtimer_enqueue_reprogram(timer, base)) | |
765 | return; | |
766 | ||
767 | base->first = &timer->node; | |
768 | } | |
769 | ||
c0a31329 TG |
770 | rb_link_node(&timer->node, parent, link); |
771 | rb_insert_color(&timer->node, &base->active); | |
303e967f TG |
772 | /* |
773 | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | |
774 | * state of a possibly running callback. | |
775 | */ | |
776 | timer->state |= HRTIMER_STATE_ENQUEUED; | |
288867ec | 777 | } |
c0a31329 TG |
778 | |
779 | /* | |
780 | * __remove_hrtimer - internal function to remove a timer | |
781 | * | |
782 | * Caller must hold the base lock. | |
54cdfdb4 TG |
783 | * |
784 | * High resolution timer mode reprograms the clock event device when the | |
785 | * timer is the one which expires next. The caller can disable this by setting | |
786 | * reprogram to zero. This is useful, when the context does a reprogramming | |
787 | * anyway (e.g. timer interrupt) | |
c0a31329 | 788 | */ |
3c8aa39d | 789 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 790 | struct hrtimer_clock_base *base, |
54cdfdb4 | 791 | unsigned long newstate, int reprogram) |
c0a31329 | 792 | { |
54cdfdb4 TG |
793 | /* High res. callback list. NOP for !HIGHRES */ |
794 | if (hrtimer_cb_pending(timer)) | |
795 | hrtimer_remove_cb_pending(timer); | |
796 | else { | |
797 | /* | |
798 | * Remove the timer from the rbtree and replace the | |
799 | * first entry pointer if necessary. | |
800 | */ | |
801 | if (base->first == &timer->node) { | |
802 | base->first = rb_next(&timer->node); | |
803 | /* Reprogram the clock event device. if enabled */ | |
804 | if (reprogram && hrtimer_hres_active()) | |
805 | hrtimer_force_reprogram(base->cpu_base); | |
806 | } | |
807 | rb_erase(&timer->node, &base->active); | |
808 | } | |
303e967f | 809 | timer->state = newstate; |
c0a31329 TG |
810 | } |
811 | ||
812 | /* | |
813 | * remove hrtimer, called with base lock held | |
814 | */ | |
815 | static inline int | |
3c8aa39d | 816 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a31329 | 817 | { |
303e967f | 818 | if (hrtimer_is_queued(timer)) { |
54cdfdb4 TG |
819 | int reprogram; |
820 | ||
821 | /* | |
822 | * Remove the timer and force reprogramming when high | |
823 | * resolution mode is active and the timer is on the current | |
824 | * CPU. If we remove a timer on another CPU, reprogramming is | |
825 | * skipped. The interrupt event on this CPU is fired and | |
826 | * reprogramming happens in the interrupt handler. This is a | |
827 | * rare case and less expensive than a smp call. | |
828 | */ | |
82f67cd9 | 829 | timer_stats_hrtimer_clear_start_info(timer); |
54cdfdb4 TG |
830 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
831 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | |
832 | reprogram); | |
c0a31329 TG |
833 | return 1; |
834 | } | |
835 | return 0; | |
836 | } | |
837 | ||
838 | /** | |
839 | * hrtimer_start - (re)start an relative timer on the current CPU | |
c0a31329 TG |
840 | * @timer: the timer to be added |
841 | * @tim: expiry time | |
842 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | |
843 | * | |
844 | * Returns: | |
845 | * 0 on success | |
846 | * 1 when the timer was active | |
847 | */ | |
848 | int | |
849 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |
850 | { | |
3c8aa39d | 851 | struct hrtimer_clock_base *base, *new_base; |
c0a31329 TG |
852 | unsigned long flags; |
853 | int ret; | |
854 | ||
855 | base = lock_hrtimer_base(timer, &flags); | |
856 | ||
857 | /* Remove an active timer from the queue: */ | |
858 | ret = remove_hrtimer(timer, base); | |
859 | ||
860 | /* Switch the timer base, if necessary: */ | |
861 | new_base = switch_hrtimer_base(timer, base); | |
862 | ||
c9cb2e3d | 863 | if (mode == HRTIMER_MODE_REL) { |
5a7780e7 | 864 | tim = ktime_add_safe(tim, new_base->get_time()); |
06027bdd IM |
865 | /* |
866 | * CONFIG_TIME_LOW_RES is a temporary way for architectures | |
867 | * to signal that they simply return xtime in | |
868 | * do_gettimeoffset(). In this case we want to round up by | |
869 | * resolution when starting a relative timer, to avoid short | |
870 | * timeouts. This will go away with the GTOD framework. | |
871 | */ | |
872 | #ifdef CONFIG_TIME_LOW_RES | |
5a7780e7 | 873 | tim = ktime_add_safe(tim, base->resolution); |
06027bdd IM |
874 | #endif |
875 | } | |
c0a31329 TG |
876 | timer->expires = tim; |
877 | ||
82f67cd9 IM |
878 | timer_stats_hrtimer_set_start_info(timer); |
879 | ||
935c631d IM |
880 | /* |
881 | * Only allow reprogramming if the new base is on this CPU. | |
882 | * (it might still be on another CPU if the timer was pending) | |
883 | */ | |
884 | enqueue_hrtimer(timer, new_base, | |
885 | new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); | |
c0a31329 TG |
886 | |
887 | unlock_hrtimer_base(timer, &flags); | |
888 | ||
889 | return ret; | |
890 | } | |
8d16b764 | 891 | EXPORT_SYMBOL_GPL(hrtimer_start); |
c0a31329 TG |
892 | |
893 | /** | |
894 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
895 | * @timer: hrtimer to stop |
896 | * | |
897 | * Returns: | |
898 | * 0 when the timer was not active | |
899 | * 1 when the timer was active | |
900 | * -1 when the timer is currently excuting the callback function and | |
fa9799e3 | 901 | * cannot be stopped |
c0a31329 TG |
902 | */ |
903 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
904 | { | |
3c8aa39d | 905 | struct hrtimer_clock_base *base; |
c0a31329 TG |
906 | unsigned long flags; |
907 | int ret = -1; | |
908 | ||
909 | base = lock_hrtimer_base(timer, &flags); | |
910 | ||
303e967f | 911 | if (!hrtimer_callback_running(timer)) |
c0a31329 TG |
912 | ret = remove_hrtimer(timer, base); |
913 | ||
914 | unlock_hrtimer_base(timer, &flags); | |
915 | ||
916 | return ret; | |
917 | ||
918 | } | |
8d16b764 | 919 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 TG |
920 | |
921 | /** | |
922 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
923 | * @timer: the timer to be cancelled |
924 | * | |
925 | * Returns: | |
926 | * 0 when the timer was not active | |
927 | * 1 when the timer was active | |
928 | */ | |
929 | int hrtimer_cancel(struct hrtimer *timer) | |
930 | { | |
931 | for (;;) { | |
932 | int ret = hrtimer_try_to_cancel(timer); | |
933 | ||
934 | if (ret >= 0) | |
935 | return ret; | |
5ef37b19 | 936 | cpu_relax(); |
c0a31329 TG |
937 | } |
938 | } | |
8d16b764 | 939 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
940 | |
941 | /** | |
942 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 TG |
943 | * @timer: the timer to read |
944 | */ | |
945 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | |
946 | { | |
3c8aa39d | 947 | struct hrtimer_clock_base *base; |
c0a31329 TG |
948 | unsigned long flags; |
949 | ktime_t rem; | |
950 | ||
951 | base = lock_hrtimer_base(timer, &flags); | |
3c8aa39d | 952 | rem = ktime_sub(timer->expires, base->get_time()); |
c0a31329 TG |
953 | unlock_hrtimer_base(timer, &flags); |
954 | ||
955 | return rem; | |
956 | } | |
8d16b764 | 957 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
c0a31329 | 958 | |
fd064b9b | 959 | #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ) |
69239749 TL |
960 | /** |
961 | * hrtimer_get_next_event - get the time until next expiry event | |
962 | * | |
963 | * Returns the delta to the next expiry event or KTIME_MAX if no timer | |
964 | * is pending. | |
965 | */ | |
966 | ktime_t hrtimer_get_next_event(void) | |
967 | { | |
3c8aa39d TG |
968 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
969 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
69239749 TL |
970 | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
971 | unsigned long flags; | |
972 | int i; | |
973 | ||
3c8aa39d TG |
974 | spin_lock_irqsave(&cpu_base->lock, flags); |
975 | ||
54cdfdb4 TG |
976 | if (!hrtimer_hres_active()) { |
977 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
978 | struct hrtimer *timer; | |
69239749 | 979 | |
54cdfdb4 TG |
980 | if (!base->first) |
981 | continue; | |
3c8aa39d | 982 | |
54cdfdb4 TG |
983 | timer = rb_entry(base->first, struct hrtimer, node); |
984 | delta.tv64 = timer->expires.tv64; | |
985 | delta = ktime_sub(delta, base->get_time()); | |
986 | if (delta.tv64 < mindelta.tv64) | |
987 | mindelta.tv64 = delta.tv64; | |
988 | } | |
69239749 | 989 | } |
3c8aa39d TG |
990 | |
991 | spin_unlock_irqrestore(&cpu_base->lock, flags); | |
992 | ||
69239749 TL |
993 | if (mindelta.tv64 < 0) |
994 | mindelta.tv64 = 0; | |
995 | return mindelta; | |
996 | } | |
997 | #endif | |
998 | ||
c0a31329 | 999 | /** |
7978672c | 1000 | * hrtimer_init - initialize a timer to the given clock |
7978672c | 1001 | * @timer: the timer to be initialized |
c0a31329 | 1002 | * @clock_id: the clock to be used |
7978672c | 1003 | * @mode: timer mode abs/rel |
c0a31329 | 1004 | */ |
7978672c GA |
1005 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1006 | enum hrtimer_mode mode) | |
c0a31329 | 1007 | { |
3c8aa39d | 1008 | struct hrtimer_cpu_base *cpu_base; |
c0a31329 | 1009 | |
7978672c GA |
1010 | memset(timer, 0, sizeof(struct hrtimer)); |
1011 | ||
3c8aa39d | 1012 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
c0a31329 | 1013 | |
c9cb2e3d | 1014 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
7978672c GA |
1015 | clock_id = CLOCK_MONOTONIC; |
1016 | ||
3c8aa39d | 1017 | timer->base = &cpu_base->clock_base[clock_id]; |
d3d74453 | 1018 | INIT_LIST_HEAD(&timer->cb_entry); |
54cdfdb4 | 1019 | hrtimer_init_timer_hres(timer); |
82f67cd9 IM |
1020 | |
1021 | #ifdef CONFIG_TIMER_STATS | |
1022 | timer->start_site = NULL; | |
1023 | timer->start_pid = -1; | |
1024 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
1025 | #endif | |
c0a31329 | 1026 | } |
8d16b764 | 1027 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 TG |
1028 | |
1029 | /** | |
1030 | * hrtimer_get_res - get the timer resolution for a clock | |
c0a31329 TG |
1031 | * @which_clock: which clock to query |
1032 | * @tp: pointer to timespec variable to store the resolution | |
1033 | * | |
72fd4a35 RD |
1034 | * Store the resolution of the clock selected by @which_clock in the |
1035 | * variable pointed to by @tp. | |
c0a31329 TG |
1036 | */ |
1037 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |
1038 | { | |
3c8aa39d | 1039 | struct hrtimer_cpu_base *cpu_base; |
c0a31329 | 1040 | |
3c8aa39d TG |
1041 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
1042 | *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); | |
c0a31329 TG |
1043 | |
1044 | return 0; | |
1045 | } | |
8d16b764 | 1046 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
c0a31329 | 1047 | |
d3d74453 PZ |
1048 | static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base) |
1049 | { | |
1050 | spin_lock_irq(&cpu_base->lock); | |
1051 | ||
1052 | while (!list_empty(&cpu_base->cb_pending)) { | |
1053 | enum hrtimer_restart (*fn)(struct hrtimer *); | |
1054 | struct hrtimer *timer; | |
1055 | int restart; | |
1056 | ||
1057 | timer = list_entry(cpu_base->cb_pending.next, | |
1058 | struct hrtimer, cb_entry); | |
1059 | ||
1060 | timer_stats_account_hrtimer(timer); | |
1061 | ||
1062 | fn = timer->function; | |
1063 | __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0); | |
1064 | spin_unlock_irq(&cpu_base->lock); | |
1065 | ||
1066 | restart = fn(timer); | |
1067 | ||
1068 | spin_lock_irq(&cpu_base->lock); | |
1069 | ||
1070 | timer->state &= ~HRTIMER_STATE_CALLBACK; | |
1071 | if (restart == HRTIMER_RESTART) { | |
1072 | BUG_ON(hrtimer_active(timer)); | |
1073 | /* | |
1074 | * Enqueue the timer, allow reprogramming of the event | |
1075 | * device | |
1076 | */ | |
1077 | enqueue_hrtimer(timer, timer->base, 1); | |
1078 | } else if (hrtimer_active(timer)) { | |
1079 | /* | |
1080 | * If the timer was rearmed on another CPU, reprogram | |
1081 | * the event device. | |
1082 | */ | |
1083 | if (timer->base->first == &timer->node) | |
1084 | hrtimer_reprogram(timer, timer->base); | |
1085 | } | |
1086 | } | |
1087 | spin_unlock_irq(&cpu_base->lock); | |
1088 | } | |
1089 | ||
1090 | static void __run_hrtimer(struct hrtimer *timer) | |
1091 | { | |
1092 | struct hrtimer_clock_base *base = timer->base; | |
1093 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | |
1094 | enum hrtimer_restart (*fn)(struct hrtimer *); | |
1095 | int restart; | |
1096 | ||
1097 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | |
1098 | timer_stats_account_hrtimer(timer); | |
1099 | ||
1100 | fn = timer->function; | |
1101 | if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) { | |
1102 | /* | |
1103 | * Used for scheduler timers, avoid lock inversion with | |
1104 | * rq->lock and tasklist_lock. | |
1105 | * | |
1106 | * These timers are required to deal with enqueue expiry | |
1107 | * themselves and are not allowed to migrate. | |
1108 | */ | |
1109 | spin_unlock(&cpu_base->lock); | |
1110 | restart = fn(timer); | |
1111 | spin_lock(&cpu_base->lock); | |
1112 | } else | |
1113 | restart = fn(timer); | |
1114 | ||
1115 | /* | |
1116 | * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid | |
1117 | * reprogramming of the event hardware. This happens at the end of this | |
1118 | * function anyway. | |
1119 | */ | |
1120 | if (restart != HRTIMER_NORESTART) { | |
1121 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | |
1122 | enqueue_hrtimer(timer, base, 0); | |
1123 | } | |
1124 | timer->state &= ~HRTIMER_STATE_CALLBACK; | |
1125 | } | |
1126 | ||
54cdfdb4 TG |
1127 | #ifdef CONFIG_HIGH_RES_TIMERS |
1128 | ||
1129 | /* | |
1130 | * High resolution timer interrupt | |
1131 | * Called with interrupts disabled | |
1132 | */ | |
1133 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1134 | { | |
1135 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
1136 | struct hrtimer_clock_base *base; | |
1137 | ktime_t expires_next, now; | |
1138 | int i, raise = 0; | |
1139 | ||
1140 | BUG_ON(!cpu_base->hres_active); | |
1141 | cpu_base->nr_events++; | |
1142 | dev->next_event.tv64 = KTIME_MAX; | |
1143 | ||
1144 | retry: | |
1145 | now = ktime_get(); | |
1146 | ||
1147 | expires_next.tv64 = KTIME_MAX; | |
1148 | ||
1149 | base = cpu_base->clock_base; | |
1150 | ||
1151 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | |
1152 | ktime_t basenow; | |
1153 | struct rb_node *node; | |
1154 | ||
1155 | spin_lock(&cpu_base->lock); | |
1156 | ||
1157 | basenow = ktime_add(now, base->offset); | |
1158 | ||
1159 | while ((node = base->first)) { | |
1160 | struct hrtimer *timer; | |
1161 | ||
1162 | timer = rb_entry(node, struct hrtimer, node); | |
1163 | ||
1164 | if (basenow.tv64 < timer->expires.tv64) { | |
1165 | ktime_t expires; | |
1166 | ||
1167 | expires = ktime_sub(timer->expires, | |
1168 | base->offset); | |
1169 | if (expires.tv64 < expires_next.tv64) | |
1170 | expires_next = expires; | |
1171 | break; | |
1172 | } | |
1173 | ||
1174 | /* Move softirq callbacks to the pending list */ | |
1175 | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { | |
1176 | __remove_hrtimer(timer, base, | |
1177 | HRTIMER_STATE_PENDING, 0); | |
1178 | list_add_tail(&timer->cb_entry, | |
1179 | &base->cpu_base->cb_pending); | |
1180 | raise = 1; | |
1181 | continue; | |
1182 | } | |
1183 | ||
d3d74453 | 1184 | __run_hrtimer(timer); |
54cdfdb4 TG |
1185 | } |
1186 | spin_unlock(&cpu_base->lock); | |
1187 | base++; | |
1188 | } | |
1189 | ||
1190 | cpu_base->expires_next = expires_next; | |
1191 | ||
1192 | /* Reprogramming necessary ? */ | |
1193 | if (expires_next.tv64 != KTIME_MAX) { | |
1194 | if (tick_program_event(expires_next, 0)) | |
1195 | goto retry; | |
1196 | } | |
1197 | ||
1198 | /* Raise softirq ? */ | |
1199 | if (raise) | |
1200 | raise_softirq(HRTIMER_SOFTIRQ); | |
1201 | } | |
1202 | ||
1203 | static void run_hrtimer_softirq(struct softirq_action *h) | |
1204 | { | |
d3d74453 PZ |
1205 | run_hrtimer_pending(&__get_cpu_var(hrtimer_bases)); |
1206 | } | |
54cdfdb4 | 1207 | |
d3d74453 | 1208 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
82f67cd9 | 1209 | |
d3d74453 PZ |
1210 | /* |
1211 | * Called from timer softirq every jiffy, expire hrtimers: | |
1212 | * | |
1213 | * For HRT its the fall back code to run the softirq in the timer | |
1214 | * softirq context in case the hrtimer initialization failed or has | |
1215 | * not been done yet. | |
1216 | */ | |
1217 | void hrtimer_run_pending(void) | |
1218 | { | |
1219 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
54cdfdb4 | 1220 | |
d3d74453 PZ |
1221 | if (hrtimer_hres_active()) |
1222 | return; | |
54cdfdb4 | 1223 | |
d3d74453 PZ |
1224 | /* |
1225 | * This _is_ ugly: We have to check in the softirq context, | |
1226 | * whether we can switch to highres and / or nohz mode. The | |
1227 | * clocksource switch happens in the timer interrupt with | |
1228 | * xtime_lock held. Notification from there only sets the | |
1229 | * check bit in the tick_oneshot code, otherwise we might | |
1230 | * deadlock vs. xtime_lock. | |
1231 | */ | |
1232 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | |
1233 | hrtimer_switch_to_hres(); | |
54cdfdb4 | 1234 | |
d3d74453 | 1235 | run_hrtimer_pending(cpu_base); |
54cdfdb4 TG |
1236 | } |
1237 | ||
c0a31329 | 1238 | /* |
d3d74453 | 1239 | * Called from hardirq context every jiffy |
c0a31329 | 1240 | */ |
3c8aa39d TG |
1241 | static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, |
1242 | int index) | |
c0a31329 | 1243 | { |
288867ec | 1244 | struct rb_node *node; |
3c8aa39d | 1245 | struct hrtimer_clock_base *base = &cpu_base->clock_base[index]; |
c0a31329 | 1246 | |
3055adda DS |
1247 | if (!base->first) |
1248 | return; | |
1249 | ||
92127c7a TG |
1250 | if (base->get_softirq_time) |
1251 | base->softirq_time = base->get_softirq_time(); | |
1252 | ||
d3d74453 | 1253 | spin_lock(&cpu_base->lock); |
c0a31329 | 1254 | |
288867ec | 1255 | while ((node = base->first)) { |
c0a31329 | 1256 | struct hrtimer *timer; |
c0a31329 | 1257 | |
288867ec | 1258 | timer = rb_entry(node, struct hrtimer, node); |
92127c7a | 1259 | if (base->softirq_time.tv64 <= timer->expires.tv64) |
c0a31329 TG |
1260 | break; |
1261 | ||
d3d74453 PZ |
1262 | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { |
1263 | __remove_hrtimer(timer, base, HRTIMER_STATE_PENDING, 0); | |
1264 | list_add_tail(&timer->cb_entry, | |
1265 | &base->cpu_base->cb_pending); | |
1266 | continue; | |
b75f7a51 | 1267 | } |
d3d74453 PZ |
1268 | |
1269 | __run_hrtimer(timer); | |
c0a31329 | 1270 | } |
d3d74453 | 1271 | spin_unlock(&cpu_base->lock); |
c0a31329 TG |
1272 | } |
1273 | ||
c0a31329 TG |
1274 | void hrtimer_run_queues(void) |
1275 | { | |
3c8aa39d | 1276 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
c0a31329 TG |
1277 | int i; |
1278 | ||
54cdfdb4 TG |
1279 | if (hrtimer_hres_active()) |
1280 | return; | |
1281 | ||
3c8aa39d | 1282 | hrtimer_get_softirq_time(cpu_base); |
92127c7a | 1283 | |
3c8aa39d TG |
1284 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
1285 | run_hrtimer_queue(cpu_base, i); | |
c0a31329 TG |
1286 | } |
1287 | ||
10c94ec1 TG |
1288 | /* |
1289 | * Sleep related functions: | |
1290 | */ | |
c9cb2e3d | 1291 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1292 | { |
1293 | struct hrtimer_sleeper *t = | |
1294 | container_of(timer, struct hrtimer_sleeper, timer); | |
1295 | struct task_struct *task = t->task; | |
1296 | ||
1297 | t->task = NULL; | |
1298 | if (task) | |
1299 | wake_up_process(task); | |
1300 | ||
1301 | return HRTIMER_NORESTART; | |
1302 | } | |
1303 | ||
36c8b586 | 1304 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33 TG |
1305 | { |
1306 | sl->timer.function = hrtimer_wakeup; | |
1307 | sl->task = task; | |
54cdfdb4 | 1308 | #ifdef CONFIG_HIGH_RES_TIMERS |
37bb6cb4 | 1309 | sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; |
54cdfdb4 | 1310 | #endif |
00362e33 TG |
1311 | } |
1312 | ||
669d7868 | 1313 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1314 | { |
669d7868 | 1315 | hrtimer_init_sleeper(t, current); |
10c94ec1 | 1316 | |
432569bb RZ |
1317 | do { |
1318 | set_current_state(TASK_INTERRUPTIBLE); | |
1319 | hrtimer_start(&t->timer, t->timer.expires, mode); | |
37bb6cb4 PZ |
1320 | if (!hrtimer_active(&t->timer)) |
1321 | t->task = NULL; | |
432569bb | 1322 | |
54cdfdb4 TG |
1323 | if (likely(t->task)) |
1324 | schedule(); | |
432569bb | 1325 | |
669d7868 | 1326 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1327 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1328 | |
1329 | } while (t->task && !signal_pending(current)); | |
432569bb | 1330 | |
3588a085 PZ |
1331 | __set_current_state(TASK_RUNNING); |
1332 | ||
669d7868 | 1333 | return t->task == NULL; |
10c94ec1 TG |
1334 | } |
1335 | ||
080344b9 ON |
1336 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) |
1337 | { | |
1338 | struct timespec rmt; | |
1339 | ktime_t rem; | |
1340 | ||
1341 | rem = ktime_sub(timer->expires, timer->base->get_time()); | |
1342 | if (rem.tv64 <= 0) | |
1343 | return 0; | |
1344 | rmt = ktime_to_timespec(rem); | |
1345 | ||
1346 | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | |
1347 | return -EFAULT; | |
1348 | ||
1349 | return 1; | |
1350 | } | |
1351 | ||
1711ef38 | 1352 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1353 | { |
669d7868 | 1354 | struct hrtimer_sleeper t; |
080344b9 | 1355 | struct timespec __user *rmtp; |
10c94ec1 | 1356 | |
c9cb2e3d | 1357 | hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS); |
1711ef38 | 1358 | t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2; |
10c94ec1 | 1359 | |
c9cb2e3d | 1360 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
10c94ec1 TG |
1361 | return 0; |
1362 | ||
080344b9 | 1363 | rmtp = (struct timespec __user *)restart->arg1; |
432569bb | 1364 | if (rmtp) { |
080344b9 ON |
1365 | int ret = update_rmtp(&t.timer, rmtp); |
1366 | if (ret <= 0) | |
1367 | return ret; | |
432569bb | 1368 | } |
10c94ec1 | 1369 | |
10c94ec1 TG |
1370 | /* The other values in restart are already filled in */ |
1371 | return -ERESTART_RESTARTBLOCK; | |
1372 | } | |
1373 | ||
080344b9 | 1374 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
10c94ec1 TG |
1375 | const enum hrtimer_mode mode, const clockid_t clockid) |
1376 | { | |
1377 | struct restart_block *restart; | |
669d7868 | 1378 | struct hrtimer_sleeper t; |
10c94ec1 | 1379 | |
432569bb RZ |
1380 | hrtimer_init(&t.timer, clockid, mode); |
1381 | t.timer.expires = timespec_to_ktime(*rqtp); | |
1382 | if (do_nanosleep(&t, mode)) | |
10c94ec1 TG |
1383 | return 0; |
1384 | ||
7978672c | 1385 | /* Absolute timers do not update the rmtp value and restart: */ |
c9cb2e3d | 1386 | if (mode == HRTIMER_MODE_ABS) |
10c94ec1 TG |
1387 | return -ERESTARTNOHAND; |
1388 | ||
432569bb | 1389 | if (rmtp) { |
080344b9 ON |
1390 | int ret = update_rmtp(&t.timer, rmtp); |
1391 | if (ret <= 0) | |
1392 | return ret; | |
432569bb | 1393 | } |
10c94ec1 TG |
1394 | |
1395 | restart = ¤t_thread_info()->restart_block; | |
1711ef38 TA |
1396 | restart->fn = hrtimer_nanosleep_restart; |
1397 | restart->arg0 = (unsigned long) t.timer.base->index; | |
1398 | restart->arg1 = (unsigned long) rmtp; | |
1399 | restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF; | |
1400 | restart->arg3 = t.timer.expires.tv64 >> 32; | |
10c94ec1 TG |
1401 | |
1402 | return -ERESTART_RESTARTBLOCK; | |
1403 | } | |
1404 | ||
6ba1b912 TG |
1405 | asmlinkage long |
1406 | sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | |
1407 | { | |
080344b9 | 1408 | struct timespec tu; |
6ba1b912 TG |
1409 | |
1410 | if (copy_from_user(&tu, rqtp, sizeof(tu))) | |
1411 | return -EFAULT; | |
1412 | ||
1413 | if (!timespec_valid(&tu)) | |
1414 | return -EINVAL; | |
1415 | ||
080344b9 | 1416 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b912 TG |
1417 | } |
1418 | ||
c0a31329 TG |
1419 | /* |
1420 | * Functions related to boot-time initialization: | |
1421 | */ | |
0ec160dd | 1422 | static void __cpuinit init_hrtimers_cpu(int cpu) |
c0a31329 | 1423 | { |
3c8aa39d | 1424 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1425 | int i; |
1426 | ||
3c8aa39d TG |
1427 | spin_lock_init(&cpu_base->lock); |
1428 | lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key); | |
1429 | ||
1430 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | |
1431 | cpu_base->clock_base[i].cpu_base = cpu_base; | |
1432 | ||
d3d74453 | 1433 | INIT_LIST_HEAD(&cpu_base->cb_pending); |
54cdfdb4 | 1434 | hrtimer_init_hres(cpu_base); |
c0a31329 TG |
1435 | } |
1436 | ||
1437 | #ifdef CONFIG_HOTPLUG_CPU | |
1438 | ||
3c8aa39d TG |
1439 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
1440 | struct hrtimer_clock_base *new_base) | |
c0a31329 TG |
1441 | { |
1442 | struct hrtimer *timer; | |
1443 | struct rb_node *node; | |
1444 | ||
1445 | while ((node = rb_first(&old_base->active))) { | |
1446 | timer = rb_entry(node, struct hrtimer, node); | |
54cdfdb4 TG |
1447 | BUG_ON(hrtimer_callback_running(timer)); |
1448 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); | |
c0a31329 | 1449 | timer->base = new_base; |
54cdfdb4 TG |
1450 | /* |
1451 | * Enqueue the timer. Allow reprogramming of the event device | |
1452 | */ | |
1453 | enqueue_hrtimer(timer, new_base, 1); | |
c0a31329 TG |
1454 | } |
1455 | } | |
1456 | ||
1457 | static void migrate_hrtimers(int cpu) | |
1458 | { | |
3c8aa39d | 1459 | struct hrtimer_cpu_base *old_base, *new_base; |
c0a31329 TG |
1460 | int i; |
1461 | ||
1462 | BUG_ON(cpu_online(cpu)); | |
3c8aa39d TG |
1463 | old_base = &per_cpu(hrtimer_bases, cpu); |
1464 | new_base = &get_cpu_var(hrtimer_bases); | |
c0a31329 | 1465 | |
54cdfdb4 TG |
1466 | tick_cancel_sched_timer(cpu); |
1467 | ||
c0a31329 | 1468 | local_irq_disable(); |
e81ce1f7 HC |
1469 | double_spin_lock(&new_base->lock, &old_base->lock, |
1470 | smp_processor_id() < cpu); | |
c0a31329 | 1471 | |
3c8aa39d | 1472 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d TG |
1473 | migrate_hrtimer_list(&old_base->clock_base[i], |
1474 | &new_base->clock_base[i]); | |
c0a31329 TG |
1475 | } |
1476 | ||
e81ce1f7 HC |
1477 | double_spin_unlock(&new_base->lock, &old_base->lock, |
1478 | smp_processor_id() < cpu); | |
c0a31329 TG |
1479 | local_irq_enable(); |
1480 | put_cpu_var(hrtimer_bases); | |
1481 | } | |
1482 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1483 | ||
8c78f307 | 1484 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
c0a31329 TG |
1485 | unsigned long action, void *hcpu) |
1486 | { | |
7713a7d1 | 1487 | unsigned int cpu = (long)hcpu; |
c0a31329 TG |
1488 | |
1489 | switch (action) { | |
1490 | ||
1491 | case CPU_UP_PREPARE: | |
8bb78442 | 1492 | case CPU_UP_PREPARE_FROZEN: |
c0a31329 TG |
1493 | init_hrtimers_cpu(cpu); |
1494 | break; | |
1495 | ||
1496 | #ifdef CONFIG_HOTPLUG_CPU | |
1497 | case CPU_DEAD: | |
8bb78442 | 1498 | case CPU_DEAD_FROZEN: |
d316c57f | 1499 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu); |
c0a31329 TG |
1500 | migrate_hrtimers(cpu); |
1501 | break; | |
1502 | #endif | |
1503 | ||
1504 | default: | |
1505 | break; | |
1506 | } | |
1507 | ||
1508 | return NOTIFY_OK; | |
1509 | } | |
1510 | ||
8c78f307 | 1511 | static struct notifier_block __cpuinitdata hrtimers_nb = { |
c0a31329 TG |
1512 | .notifier_call = hrtimer_cpu_notify, |
1513 | }; | |
1514 | ||
1515 | void __init hrtimers_init(void) | |
1516 | { | |
1517 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | |
1518 | (void *)(long)smp_processor_id()); | |
1519 | register_cpu_notifier(&hrtimers_nb); | |
54cdfdb4 TG |
1520 | #ifdef CONFIG_HIGH_RES_TIMERS |
1521 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL); | |
1522 | #endif | |
c0a31329 TG |
1523 | } |
1524 |