]>
Commit | Line | Data |
---|---|---|
e02119d5 CM |
1 | /* |
2 | * Copyright (C) 2008 Oracle. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public | |
6 | * License v2 as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
11 | * General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public | |
14 | * License along with this program; if not, write to the | |
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
16 | * Boston, MA 021110-1307, USA. | |
17 | */ | |
18 | ||
19 | #include <linux/sched.h> | |
5a0e3ad6 | 20 | #include <linux/slab.h> |
e02119d5 CM |
21 | #include "ctree.h" |
22 | #include "transaction.h" | |
23 | #include "disk-io.h" | |
24 | #include "locking.h" | |
25 | #include "print-tree.h" | |
26 | #include "compat.h" | |
b2950863 | 27 | #include "tree-log.h" |
e02119d5 CM |
28 | |
29 | /* magic values for the inode_only field in btrfs_log_inode: | |
30 | * | |
31 | * LOG_INODE_ALL means to log everything | |
32 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | |
33 | * during log replay | |
34 | */ | |
35 | #define LOG_INODE_ALL 0 | |
36 | #define LOG_INODE_EXISTS 1 | |
37 | ||
12fcfd22 CM |
38 | /* |
39 | * directory trouble cases | |
40 | * | |
41 | * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | |
42 | * log, we must force a full commit before doing an fsync of the directory | |
43 | * where the unlink was done. | |
44 | * ---> record transid of last unlink/rename per directory | |
45 | * | |
46 | * mkdir foo/some_dir | |
47 | * normal commit | |
48 | * rename foo/some_dir foo2/some_dir | |
49 | * mkdir foo/some_dir | |
50 | * fsync foo/some_dir/some_file | |
51 | * | |
52 | * The fsync above will unlink the original some_dir without recording | |
53 | * it in its new location (foo2). After a crash, some_dir will be gone | |
54 | * unless the fsync of some_file forces a full commit | |
55 | * | |
56 | * 2) we must log any new names for any file or dir that is in the fsync | |
57 | * log. ---> check inode while renaming/linking. | |
58 | * | |
59 | * 2a) we must log any new names for any file or dir during rename | |
60 | * when the directory they are being removed from was logged. | |
61 | * ---> check inode and old parent dir during rename | |
62 | * | |
63 | * 2a is actually the more important variant. With the extra logging | |
64 | * a crash might unlink the old name without recreating the new one | |
65 | * | |
66 | * 3) after a crash, we must go through any directories with a link count | |
67 | * of zero and redo the rm -rf | |
68 | * | |
69 | * mkdir f1/foo | |
70 | * normal commit | |
71 | * rm -rf f1/foo | |
72 | * fsync(f1) | |
73 | * | |
74 | * The directory f1 was fully removed from the FS, but fsync was never | |
75 | * called on f1, only its parent dir. After a crash the rm -rf must | |
76 | * be replayed. This must be able to recurse down the entire | |
77 | * directory tree. The inode link count fixup code takes care of the | |
78 | * ugly details. | |
79 | */ | |
80 | ||
e02119d5 CM |
81 | /* |
82 | * stages for the tree walking. The first | |
83 | * stage (0) is to only pin down the blocks we find | |
84 | * the second stage (1) is to make sure that all the inodes | |
85 | * we find in the log are created in the subvolume. | |
86 | * | |
87 | * The last stage is to deal with directories and links and extents | |
88 | * and all the other fun semantics | |
89 | */ | |
90 | #define LOG_WALK_PIN_ONLY 0 | |
91 | #define LOG_WALK_REPLAY_INODES 1 | |
92 | #define LOG_WALK_REPLAY_ALL 2 | |
93 | ||
12fcfd22 | 94 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
e02119d5 CM |
95 | struct btrfs_root *root, struct inode *inode, |
96 | int inode_only); | |
ec051c0f YZ |
97 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
98 | struct btrfs_root *root, | |
99 | struct btrfs_path *path, u64 objectid); | |
12fcfd22 CM |
100 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
101 | struct btrfs_root *root, | |
102 | struct btrfs_root *log, | |
103 | struct btrfs_path *path, | |
104 | u64 dirid, int del_all); | |
e02119d5 CM |
105 | |
106 | /* | |
107 | * tree logging is a special write ahead log used to make sure that | |
108 | * fsyncs and O_SYNCs can happen without doing full tree commits. | |
109 | * | |
110 | * Full tree commits are expensive because they require commonly | |
111 | * modified blocks to be recowed, creating many dirty pages in the | |
112 | * extent tree an 4x-6x higher write load than ext3. | |
113 | * | |
114 | * Instead of doing a tree commit on every fsync, we use the | |
115 | * key ranges and transaction ids to find items for a given file or directory | |
116 | * that have changed in this transaction. Those items are copied into | |
117 | * a special tree (one per subvolume root), that tree is written to disk | |
118 | * and then the fsync is considered complete. | |
119 | * | |
120 | * After a crash, items are copied out of the log-tree back into the | |
121 | * subvolume tree. Any file data extents found are recorded in the extent | |
122 | * allocation tree, and the log-tree freed. | |
123 | * | |
124 | * The log tree is read three times, once to pin down all the extents it is | |
125 | * using in ram and once, once to create all the inodes logged in the tree | |
126 | * and once to do all the other items. | |
127 | */ | |
128 | ||
e02119d5 CM |
129 | /* |
130 | * start a sub transaction and setup the log tree | |
131 | * this increments the log tree writer count to make the people | |
132 | * syncing the tree wait for us to finish | |
133 | */ | |
134 | static int start_log_trans(struct btrfs_trans_handle *trans, | |
135 | struct btrfs_root *root) | |
136 | { | |
137 | int ret; | |
4a500fd1 | 138 | int err = 0; |
7237f183 YZ |
139 | |
140 | mutex_lock(&root->log_mutex); | |
141 | if (root->log_root) { | |
ff782e0a JB |
142 | if (!root->log_start_pid) { |
143 | root->log_start_pid = current->pid; | |
144 | root->log_multiple_pids = false; | |
145 | } else if (root->log_start_pid != current->pid) { | |
146 | root->log_multiple_pids = true; | |
147 | } | |
148 | ||
7237f183 YZ |
149 | root->log_batch++; |
150 | atomic_inc(&root->log_writers); | |
151 | mutex_unlock(&root->log_mutex); | |
152 | return 0; | |
153 | } | |
ff782e0a JB |
154 | root->log_multiple_pids = false; |
155 | root->log_start_pid = current->pid; | |
e02119d5 CM |
156 | mutex_lock(&root->fs_info->tree_log_mutex); |
157 | if (!root->fs_info->log_root_tree) { | |
158 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | |
4a500fd1 YZ |
159 | if (ret) |
160 | err = ret; | |
e02119d5 | 161 | } |
4a500fd1 | 162 | if (err == 0 && !root->log_root) { |
e02119d5 | 163 | ret = btrfs_add_log_tree(trans, root); |
4a500fd1 YZ |
164 | if (ret) |
165 | err = ret; | |
e02119d5 | 166 | } |
e02119d5 | 167 | mutex_unlock(&root->fs_info->tree_log_mutex); |
7237f183 YZ |
168 | root->log_batch++; |
169 | atomic_inc(&root->log_writers); | |
170 | mutex_unlock(&root->log_mutex); | |
4a500fd1 | 171 | return err; |
e02119d5 CM |
172 | } |
173 | ||
174 | /* | |
175 | * returns 0 if there was a log transaction running and we were able | |
176 | * to join, or returns -ENOENT if there were not transactions | |
177 | * in progress | |
178 | */ | |
179 | static int join_running_log_trans(struct btrfs_root *root) | |
180 | { | |
181 | int ret = -ENOENT; | |
182 | ||
183 | smp_mb(); | |
184 | if (!root->log_root) | |
185 | return -ENOENT; | |
186 | ||
7237f183 | 187 | mutex_lock(&root->log_mutex); |
e02119d5 CM |
188 | if (root->log_root) { |
189 | ret = 0; | |
7237f183 | 190 | atomic_inc(&root->log_writers); |
e02119d5 | 191 | } |
7237f183 | 192 | mutex_unlock(&root->log_mutex); |
e02119d5 CM |
193 | return ret; |
194 | } | |
195 | ||
12fcfd22 CM |
196 | /* |
197 | * This either makes the current running log transaction wait | |
198 | * until you call btrfs_end_log_trans() or it makes any future | |
199 | * log transactions wait until you call btrfs_end_log_trans() | |
200 | */ | |
201 | int btrfs_pin_log_trans(struct btrfs_root *root) | |
202 | { | |
203 | int ret = -ENOENT; | |
204 | ||
205 | mutex_lock(&root->log_mutex); | |
206 | atomic_inc(&root->log_writers); | |
207 | mutex_unlock(&root->log_mutex); | |
208 | return ret; | |
209 | } | |
210 | ||
e02119d5 CM |
211 | /* |
212 | * indicate we're done making changes to the log tree | |
213 | * and wake up anyone waiting to do a sync | |
214 | */ | |
143bede5 | 215 | void btrfs_end_log_trans(struct btrfs_root *root) |
e02119d5 | 216 | { |
7237f183 YZ |
217 | if (atomic_dec_and_test(&root->log_writers)) { |
218 | smp_mb(); | |
219 | if (waitqueue_active(&root->log_writer_wait)) | |
220 | wake_up(&root->log_writer_wait); | |
221 | } | |
e02119d5 CM |
222 | } |
223 | ||
224 | ||
225 | /* | |
226 | * the walk control struct is used to pass state down the chain when | |
227 | * processing the log tree. The stage field tells us which part | |
228 | * of the log tree processing we are currently doing. The others | |
229 | * are state fields used for that specific part | |
230 | */ | |
231 | struct walk_control { | |
232 | /* should we free the extent on disk when done? This is used | |
233 | * at transaction commit time while freeing a log tree | |
234 | */ | |
235 | int free; | |
236 | ||
237 | /* should we write out the extent buffer? This is used | |
238 | * while flushing the log tree to disk during a sync | |
239 | */ | |
240 | int write; | |
241 | ||
242 | /* should we wait for the extent buffer io to finish? Also used | |
243 | * while flushing the log tree to disk for a sync | |
244 | */ | |
245 | int wait; | |
246 | ||
247 | /* pin only walk, we record which extents on disk belong to the | |
248 | * log trees | |
249 | */ | |
250 | int pin; | |
251 | ||
252 | /* what stage of the replay code we're currently in */ | |
253 | int stage; | |
254 | ||
255 | /* the root we are currently replaying */ | |
256 | struct btrfs_root *replay_dest; | |
257 | ||
258 | /* the trans handle for the current replay */ | |
259 | struct btrfs_trans_handle *trans; | |
260 | ||
261 | /* the function that gets used to process blocks we find in the | |
262 | * tree. Note the extent_buffer might not be up to date when it is | |
263 | * passed in, and it must be checked or read if you need the data | |
264 | * inside it | |
265 | */ | |
266 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | |
267 | struct walk_control *wc, u64 gen); | |
268 | }; | |
269 | ||
270 | /* | |
271 | * process_func used to pin down extents, write them or wait on them | |
272 | */ | |
273 | static int process_one_buffer(struct btrfs_root *log, | |
274 | struct extent_buffer *eb, | |
275 | struct walk_control *wc, u64 gen) | |
276 | { | |
04018de5 | 277 | if (wc->pin) |
e688b725 CM |
278 | btrfs_pin_extent_for_log_replay(wc->trans, |
279 | log->fs_info->extent_root, | |
280 | eb->start, eb->len); | |
e02119d5 | 281 | |
b9fab919 | 282 | if (btrfs_buffer_uptodate(eb, gen, 0)) { |
e02119d5 CM |
283 | if (wc->write) |
284 | btrfs_write_tree_block(eb); | |
285 | if (wc->wait) | |
286 | btrfs_wait_tree_block_writeback(eb); | |
287 | } | |
288 | return 0; | |
289 | } | |
290 | ||
291 | /* | |
292 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | |
293 | * to the src data we are copying out. | |
294 | * | |
295 | * root is the tree we are copying into, and path is a scratch | |
296 | * path for use in this function (it should be released on entry and | |
297 | * will be released on exit). | |
298 | * | |
299 | * If the key is already in the destination tree the existing item is | |
300 | * overwritten. If the existing item isn't big enough, it is extended. | |
301 | * If it is too large, it is truncated. | |
302 | * | |
303 | * If the key isn't in the destination yet, a new item is inserted. | |
304 | */ | |
305 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | |
306 | struct btrfs_root *root, | |
307 | struct btrfs_path *path, | |
308 | struct extent_buffer *eb, int slot, | |
309 | struct btrfs_key *key) | |
310 | { | |
311 | int ret; | |
312 | u32 item_size; | |
313 | u64 saved_i_size = 0; | |
314 | int save_old_i_size = 0; | |
315 | unsigned long src_ptr; | |
316 | unsigned long dst_ptr; | |
317 | int overwrite_root = 0; | |
318 | ||
319 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | |
320 | overwrite_root = 1; | |
321 | ||
322 | item_size = btrfs_item_size_nr(eb, slot); | |
323 | src_ptr = btrfs_item_ptr_offset(eb, slot); | |
324 | ||
325 | /* look for the key in the destination tree */ | |
326 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | |
327 | if (ret == 0) { | |
328 | char *src_copy; | |
329 | char *dst_copy; | |
330 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | |
331 | path->slots[0]); | |
332 | if (dst_size != item_size) | |
333 | goto insert; | |
334 | ||
335 | if (item_size == 0) { | |
b3b4aa74 | 336 | btrfs_release_path(path); |
e02119d5 CM |
337 | return 0; |
338 | } | |
339 | dst_copy = kmalloc(item_size, GFP_NOFS); | |
340 | src_copy = kmalloc(item_size, GFP_NOFS); | |
2a29edc6 | 341 | if (!dst_copy || !src_copy) { |
b3b4aa74 | 342 | btrfs_release_path(path); |
2a29edc6 | 343 | kfree(dst_copy); |
344 | kfree(src_copy); | |
345 | return -ENOMEM; | |
346 | } | |
e02119d5 CM |
347 | |
348 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | |
349 | ||
350 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
351 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | |
352 | item_size); | |
353 | ret = memcmp(dst_copy, src_copy, item_size); | |
354 | ||
355 | kfree(dst_copy); | |
356 | kfree(src_copy); | |
357 | /* | |
358 | * they have the same contents, just return, this saves | |
359 | * us from cowing blocks in the destination tree and doing | |
360 | * extra writes that may not have been done by a previous | |
361 | * sync | |
362 | */ | |
363 | if (ret == 0) { | |
b3b4aa74 | 364 | btrfs_release_path(path); |
e02119d5 CM |
365 | return 0; |
366 | } | |
367 | ||
368 | } | |
369 | insert: | |
b3b4aa74 | 370 | btrfs_release_path(path); |
e02119d5 CM |
371 | /* try to insert the key into the destination tree */ |
372 | ret = btrfs_insert_empty_item(trans, root, path, | |
373 | key, item_size); | |
374 | ||
375 | /* make sure any existing item is the correct size */ | |
376 | if (ret == -EEXIST) { | |
377 | u32 found_size; | |
378 | found_size = btrfs_item_size_nr(path->nodes[0], | |
379 | path->slots[0]); | |
143bede5 | 380 | if (found_size > item_size) |
e02119d5 | 381 | btrfs_truncate_item(trans, root, path, item_size, 1); |
143bede5 JM |
382 | else if (found_size < item_size) |
383 | btrfs_extend_item(trans, root, path, | |
384 | item_size - found_size); | |
e02119d5 | 385 | } else if (ret) { |
4a500fd1 | 386 | return ret; |
e02119d5 CM |
387 | } |
388 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | |
389 | path->slots[0]); | |
390 | ||
391 | /* don't overwrite an existing inode if the generation number | |
392 | * was logged as zero. This is done when the tree logging code | |
393 | * is just logging an inode to make sure it exists after recovery. | |
394 | * | |
395 | * Also, don't overwrite i_size on directories during replay. | |
396 | * log replay inserts and removes directory items based on the | |
397 | * state of the tree found in the subvolume, and i_size is modified | |
398 | * as it goes | |
399 | */ | |
400 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | |
401 | struct btrfs_inode_item *src_item; | |
402 | struct btrfs_inode_item *dst_item; | |
403 | ||
404 | src_item = (struct btrfs_inode_item *)src_ptr; | |
405 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
406 | ||
407 | if (btrfs_inode_generation(eb, src_item) == 0) | |
408 | goto no_copy; | |
409 | ||
410 | if (overwrite_root && | |
411 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | |
412 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | |
413 | save_old_i_size = 1; | |
414 | saved_i_size = btrfs_inode_size(path->nodes[0], | |
415 | dst_item); | |
416 | } | |
417 | } | |
418 | ||
419 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | |
420 | src_ptr, item_size); | |
421 | ||
422 | if (save_old_i_size) { | |
423 | struct btrfs_inode_item *dst_item; | |
424 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
425 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | |
426 | } | |
427 | ||
428 | /* make sure the generation is filled in */ | |
429 | if (key->type == BTRFS_INODE_ITEM_KEY) { | |
430 | struct btrfs_inode_item *dst_item; | |
431 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
432 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | |
433 | btrfs_set_inode_generation(path->nodes[0], dst_item, | |
434 | trans->transid); | |
435 | } | |
436 | } | |
437 | no_copy: | |
438 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
b3b4aa74 | 439 | btrfs_release_path(path); |
e02119d5 CM |
440 | return 0; |
441 | } | |
442 | ||
443 | /* | |
444 | * simple helper to read an inode off the disk from a given root | |
445 | * This can only be called for subvolume roots and not for the log | |
446 | */ | |
447 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | |
448 | u64 objectid) | |
449 | { | |
5d4f98a2 | 450 | struct btrfs_key key; |
e02119d5 | 451 | struct inode *inode; |
e02119d5 | 452 | |
5d4f98a2 YZ |
453 | key.objectid = objectid; |
454 | key.type = BTRFS_INODE_ITEM_KEY; | |
455 | key.offset = 0; | |
73f73415 | 456 | inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); |
5d4f98a2 YZ |
457 | if (IS_ERR(inode)) { |
458 | inode = NULL; | |
459 | } else if (is_bad_inode(inode)) { | |
e02119d5 CM |
460 | iput(inode); |
461 | inode = NULL; | |
462 | } | |
463 | return inode; | |
464 | } | |
465 | ||
466 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | |
467 | * subvolume 'root'. path is released on entry and should be released | |
468 | * on exit. | |
469 | * | |
470 | * extents in the log tree have not been allocated out of the extent | |
471 | * tree yet. So, this completes the allocation, taking a reference | |
472 | * as required if the extent already exists or creating a new extent | |
473 | * if it isn't in the extent allocation tree yet. | |
474 | * | |
475 | * The extent is inserted into the file, dropping any existing extents | |
476 | * from the file that overlap the new one. | |
477 | */ | |
478 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | |
479 | struct btrfs_root *root, | |
480 | struct btrfs_path *path, | |
481 | struct extent_buffer *eb, int slot, | |
482 | struct btrfs_key *key) | |
483 | { | |
484 | int found_type; | |
485 | u64 mask = root->sectorsize - 1; | |
486 | u64 extent_end; | |
487 | u64 alloc_hint; | |
488 | u64 start = key->offset; | |
07d400a6 | 489 | u64 saved_nbytes; |
e02119d5 CM |
490 | struct btrfs_file_extent_item *item; |
491 | struct inode *inode = NULL; | |
492 | unsigned long size; | |
493 | int ret = 0; | |
494 | ||
495 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | |
496 | found_type = btrfs_file_extent_type(eb, item); | |
497 | ||
d899e052 YZ |
498 | if (found_type == BTRFS_FILE_EXTENT_REG || |
499 | found_type == BTRFS_FILE_EXTENT_PREALLOC) | |
e02119d5 CM |
500 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); |
501 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | |
c8b97818 | 502 | size = btrfs_file_extent_inline_len(eb, item); |
e02119d5 CM |
503 | extent_end = (start + size + mask) & ~mask; |
504 | } else { | |
505 | ret = 0; | |
506 | goto out; | |
507 | } | |
508 | ||
509 | inode = read_one_inode(root, key->objectid); | |
510 | if (!inode) { | |
511 | ret = -EIO; | |
512 | goto out; | |
513 | } | |
514 | ||
515 | /* | |
516 | * first check to see if we already have this extent in the | |
517 | * file. This must be done before the btrfs_drop_extents run | |
518 | * so we don't try to drop this extent. | |
519 | */ | |
33345d01 | 520 | ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), |
e02119d5 CM |
521 | start, 0); |
522 | ||
d899e052 YZ |
523 | if (ret == 0 && |
524 | (found_type == BTRFS_FILE_EXTENT_REG || | |
525 | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | |
e02119d5 CM |
526 | struct btrfs_file_extent_item cmp1; |
527 | struct btrfs_file_extent_item cmp2; | |
528 | struct btrfs_file_extent_item *existing; | |
529 | struct extent_buffer *leaf; | |
530 | ||
531 | leaf = path->nodes[0]; | |
532 | existing = btrfs_item_ptr(leaf, path->slots[0], | |
533 | struct btrfs_file_extent_item); | |
534 | ||
535 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | |
536 | sizeof(cmp1)); | |
537 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | |
538 | sizeof(cmp2)); | |
539 | ||
540 | /* | |
541 | * we already have a pointer to this exact extent, | |
542 | * we don't have to do anything | |
543 | */ | |
544 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | |
b3b4aa74 | 545 | btrfs_release_path(path); |
e02119d5 CM |
546 | goto out; |
547 | } | |
548 | } | |
b3b4aa74 | 549 | btrfs_release_path(path); |
e02119d5 | 550 | |
07d400a6 | 551 | saved_nbytes = inode_get_bytes(inode); |
e02119d5 | 552 | /* drop any overlapping extents */ |
920bbbfb YZ |
553 | ret = btrfs_drop_extents(trans, inode, start, extent_end, |
554 | &alloc_hint, 1); | |
e02119d5 CM |
555 | BUG_ON(ret); |
556 | ||
07d400a6 YZ |
557 | if (found_type == BTRFS_FILE_EXTENT_REG || |
558 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | |
5d4f98a2 | 559 | u64 offset; |
07d400a6 YZ |
560 | unsigned long dest_offset; |
561 | struct btrfs_key ins; | |
562 | ||
563 | ret = btrfs_insert_empty_item(trans, root, path, key, | |
564 | sizeof(*item)); | |
565 | BUG_ON(ret); | |
566 | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | |
567 | path->slots[0]); | |
568 | copy_extent_buffer(path->nodes[0], eb, dest_offset, | |
569 | (unsigned long)item, sizeof(*item)); | |
570 | ||
571 | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | |
572 | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | |
573 | ins.type = BTRFS_EXTENT_ITEM_KEY; | |
5d4f98a2 | 574 | offset = key->offset - btrfs_file_extent_offset(eb, item); |
07d400a6 YZ |
575 | |
576 | if (ins.objectid > 0) { | |
577 | u64 csum_start; | |
578 | u64 csum_end; | |
579 | LIST_HEAD(ordered_sums); | |
580 | /* | |
581 | * is this extent already allocated in the extent | |
582 | * allocation tree? If so, just add a reference | |
583 | */ | |
584 | ret = btrfs_lookup_extent(root, ins.objectid, | |
585 | ins.offset); | |
586 | if (ret == 0) { | |
587 | ret = btrfs_inc_extent_ref(trans, root, | |
588 | ins.objectid, ins.offset, | |
5d4f98a2 | 589 | 0, root->root_key.objectid, |
66d7e7f0 | 590 | key->objectid, offset, 0); |
37daa4f9 | 591 | BUG_ON(ret); |
07d400a6 YZ |
592 | } else { |
593 | /* | |
594 | * insert the extent pointer in the extent | |
595 | * allocation tree | |
596 | */ | |
5d4f98a2 YZ |
597 | ret = btrfs_alloc_logged_file_extent(trans, |
598 | root, root->root_key.objectid, | |
599 | key->objectid, offset, &ins); | |
07d400a6 YZ |
600 | BUG_ON(ret); |
601 | } | |
b3b4aa74 | 602 | btrfs_release_path(path); |
07d400a6 YZ |
603 | |
604 | if (btrfs_file_extent_compression(eb, item)) { | |
605 | csum_start = ins.objectid; | |
606 | csum_end = csum_start + ins.offset; | |
607 | } else { | |
608 | csum_start = ins.objectid + | |
609 | btrfs_file_extent_offset(eb, item); | |
610 | csum_end = csum_start + | |
611 | btrfs_file_extent_num_bytes(eb, item); | |
612 | } | |
613 | ||
614 | ret = btrfs_lookup_csums_range(root->log_root, | |
615 | csum_start, csum_end - 1, | |
a2de733c | 616 | &ordered_sums, 0); |
07d400a6 YZ |
617 | BUG_ON(ret); |
618 | while (!list_empty(&ordered_sums)) { | |
619 | struct btrfs_ordered_sum *sums; | |
620 | sums = list_entry(ordered_sums.next, | |
621 | struct btrfs_ordered_sum, | |
622 | list); | |
623 | ret = btrfs_csum_file_blocks(trans, | |
624 | root->fs_info->csum_root, | |
625 | sums); | |
626 | BUG_ON(ret); | |
627 | list_del(&sums->list); | |
628 | kfree(sums); | |
629 | } | |
630 | } else { | |
b3b4aa74 | 631 | btrfs_release_path(path); |
07d400a6 YZ |
632 | } |
633 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | |
634 | /* inline extents are easy, we just overwrite them */ | |
635 | ret = overwrite_item(trans, root, path, eb, slot, key); | |
636 | BUG_ON(ret); | |
637 | } | |
e02119d5 | 638 | |
07d400a6 | 639 | inode_set_bytes(inode, saved_nbytes); |
b9959295 | 640 | ret = btrfs_update_inode(trans, root, inode); |
e02119d5 CM |
641 | out: |
642 | if (inode) | |
643 | iput(inode); | |
644 | return ret; | |
645 | } | |
646 | ||
647 | /* | |
648 | * when cleaning up conflicts between the directory names in the | |
649 | * subvolume, directory names in the log and directory names in the | |
650 | * inode back references, we may have to unlink inodes from directories. | |
651 | * | |
652 | * This is a helper function to do the unlink of a specific directory | |
653 | * item | |
654 | */ | |
655 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | |
656 | struct btrfs_root *root, | |
657 | struct btrfs_path *path, | |
658 | struct inode *dir, | |
659 | struct btrfs_dir_item *di) | |
660 | { | |
661 | struct inode *inode; | |
662 | char *name; | |
663 | int name_len; | |
664 | struct extent_buffer *leaf; | |
665 | struct btrfs_key location; | |
666 | int ret; | |
667 | ||
668 | leaf = path->nodes[0]; | |
669 | ||
670 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | |
671 | name_len = btrfs_dir_name_len(leaf, di); | |
672 | name = kmalloc(name_len, GFP_NOFS); | |
2a29edc6 | 673 | if (!name) |
674 | return -ENOMEM; | |
675 | ||
e02119d5 | 676 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); |
b3b4aa74 | 677 | btrfs_release_path(path); |
e02119d5 CM |
678 | |
679 | inode = read_one_inode(root, location.objectid); | |
c00e9493 TI |
680 | if (!inode) { |
681 | kfree(name); | |
682 | return -EIO; | |
683 | } | |
e02119d5 | 684 | |
ec051c0f YZ |
685 | ret = link_to_fixup_dir(trans, root, path, location.objectid); |
686 | BUG_ON(ret); | |
12fcfd22 | 687 | |
e02119d5 | 688 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); |
ec051c0f | 689 | BUG_ON(ret); |
e02119d5 CM |
690 | kfree(name); |
691 | ||
692 | iput(inode); | |
b6305567 CM |
693 | |
694 | btrfs_run_delayed_items(trans, root); | |
e02119d5 CM |
695 | return ret; |
696 | } | |
697 | ||
698 | /* | |
699 | * helper function to see if a given name and sequence number found | |
700 | * in an inode back reference are already in a directory and correctly | |
701 | * point to this inode | |
702 | */ | |
703 | static noinline int inode_in_dir(struct btrfs_root *root, | |
704 | struct btrfs_path *path, | |
705 | u64 dirid, u64 objectid, u64 index, | |
706 | const char *name, int name_len) | |
707 | { | |
708 | struct btrfs_dir_item *di; | |
709 | struct btrfs_key location; | |
710 | int match = 0; | |
711 | ||
712 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | |
713 | index, name, name_len, 0); | |
714 | if (di && !IS_ERR(di)) { | |
715 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | |
716 | if (location.objectid != objectid) | |
717 | goto out; | |
718 | } else | |
719 | goto out; | |
b3b4aa74 | 720 | btrfs_release_path(path); |
e02119d5 CM |
721 | |
722 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | |
723 | if (di && !IS_ERR(di)) { | |
724 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | |
725 | if (location.objectid != objectid) | |
726 | goto out; | |
727 | } else | |
728 | goto out; | |
729 | match = 1; | |
730 | out: | |
b3b4aa74 | 731 | btrfs_release_path(path); |
e02119d5 CM |
732 | return match; |
733 | } | |
734 | ||
735 | /* | |
736 | * helper function to check a log tree for a named back reference in | |
737 | * an inode. This is used to decide if a back reference that is | |
738 | * found in the subvolume conflicts with what we find in the log. | |
739 | * | |
740 | * inode backreferences may have multiple refs in a single item, | |
741 | * during replay we process one reference at a time, and we don't | |
742 | * want to delete valid links to a file from the subvolume if that | |
743 | * link is also in the log. | |
744 | */ | |
745 | static noinline int backref_in_log(struct btrfs_root *log, | |
746 | struct btrfs_key *key, | |
747 | char *name, int namelen) | |
748 | { | |
749 | struct btrfs_path *path; | |
750 | struct btrfs_inode_ref *ref; | |
751 | unsigned long ptr; | |
752 | unsigned long ptr_end; | |
753 | unsigned long name_ptr; | |
754 | int found_name_len; | |
755 | int item_size; | |
756 | int ret; | |
757 | int match = 0; | |
758 | ||
759 | path = btrfs_alloc_path(); | |
2a29edc6 | 760 | if (!path) |
761 | return -ENOMEM; | |
762 | ||
e02119d5 CM |
763 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); |
764 | if (ret != 0) | |
765 | goto out; | |
766 | ||
767 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | |
768 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
769 | ptr_end = ptr + item_size; | |
770 | while (ptr < ptr_end) { | |
771 | ref = (struct btrfs_inode_ref *)ptr; | |
772 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | |
773 | if (found_name_len == namelen) { | |
774 | name_ptr = (unsigned long)(ref + 1); | |
775 | ret = memcmp_extent_buffer(path->nodes[0], name, | |
776 | name_ptr, namelen); | |
777 | if (ret == 0) { | |
778 | match = 1; | |
779 | goto out; | |
780 | } | |
781 | } | |
782 | ptr = (unsigned long)(ref + 1) + found_name_len; | |
783 | } | |
784 | out: | |
785 | btrfs_free_path(path); | |
786 | return match; | |
787 | } | |
788 | ||
789 | ||
790 | /* | |
791 | * replay one inode back reference item found in the log tree. | |
792 | * eb, slot and key refer to the buffer and key found in the log tree. | |
793 | * root is the destination we are replaying into, and path is for temp | |
794 | * use by this function. (it should be released on return). | |
795 | */ | |
796 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | |
797 | struct btrfs_root *root, | |
798 | struct btrfs_root *log, | |
799 | struct btrfs_path *path, | |
800 | struct extent_buffer *eb, int slot, | |
801 | struct btrfs_key *key) | |
802 | { | |
e02119d5 | 803 | struct btrfs_inode_ref *ref; |
34f3e4f2 | 804 | struct btrfs_dir_item *di; |
805 | struct inode *dir; | |
e02119d5 | 806 | struct inode *inode; |
e02119d5 CM |
807 | unsigned long ref_ptr; |
808 | unsigned long ref_end; | |
34f3e4f2 | 809 | char *name; |
810 | int namelen; | |
811 | int ret; | |
c622ae60 | 812 | int search_done = 0; |
e02119d5 | 813 | |
e02119d5 CM |
814 | /* |
815 | * it is possible that we didn't log all the parent directories | |
816 | * for a given inode. If we don't find the dir, just don't | |
817 | * copy the back ref in. The link count fixup code will take | |
818 | * care of the rest | |
819 | */ | |
820 | dir = read_one_inode(root, key->offset); | |
821 | if (!dir) | |
822 | return -ENOENT; | |
823 | ||
824 | inode = read_one_inode(root, key->objectid); | |
c00e9493 TI |
825 | if (!inode) { |
826 | iput(dir); | |
827 | return -EIO; | |
828 | } | |
e02119d5 CM |
829 | |
830 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | |
831 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | |
832 | ||
833 | again: | |
834 | ref = (struct btrfs_inode_ref *)ref_ptr; | |
835 | ||
836 | namelen = btrfs_inode_ref_name_len(eb, ref); | |
837 | name = kmalloc(namelen, GFP_NOFS); | |
838 | BUG_ON(!name); | |
839 | ||
840 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | |
841 | ||
842 | /* if we already have a perfect match, we're done */ | |
33345d01 | 843 | if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), |
e02119d5 CM |
844 | btrfs_inode_ref_index(eb, ref), |
845 | name, namelen)) { | |
846 | goto out; | |
847 | } | |
848 | ||
849 | /* | |
850 | * look for a conflicting back reference in the metadata. | |
851 | * if we find one we have to unlink that name of the file | |
852 | * before we add our new link. Later on, we overwrite any | |
853 | * existing back reference, and we don't want to create | |
854 | * dangling pointers in the directory. | |
855 | */ | |
c622ae60 | 856 | |
857 | if (search_done) | |
858 | goto insert; | |
859 | ||
e02119d5 CM |
860 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
861 | if (ret == 0) { | |
862 | char *victim_name; | |
863 | int victim_name_len; | |
864 | struct btrfs_inode_ref *victim_ref; | |
865 | unsigned long ptr; | |
866 | unsigned long ptr_end; | |
867 | struct extent_buffer *leaf = path->nodes[0]; | |
868 | ||
869 | /* are we trying to overwrite a back ref for the root directory | |
870 | * if so, just jump out, we're done | |
871 | */ | |
872 | if (key->objectid == key->offset) | |
873 | goto out_nowrite; | |
874 | ||
875 | /* check all the names in this back reference to see | |
876 | * if they are in the log. if so, we allow them to stay | |
877 | * otherwise they must be unlinked as a conflict | |
878 | */ | |
879 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | |
880 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | |
d397712b | 881 | while (ptr < ptr_end) { |
e02119d5 CM |
882 | victim_ref = (struct btrfs_inode_ref *)ptr; |
883 | victim_name_len = btrfs_inode_ref_name_len(leaf, | |
884 | victim_ref); | |
885 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | |
886 | BUG_ON(!victim_name); | |
887 | ||
888 | read_extent_buffer(leaf, victim_name, | |
889 | (unsigned long)(victim_ref + 1), | |
890 | victim_name_len); | |
891 | ||
892 | if (!backref_in_log(log, key, victim_name, | |
893 | victim_name_len)) { | |
894 | btrfs_inc_nlink(inode); | |
b3b4aa74 | 895 | btrfs_release_path(path); |
12fcfd22 | 896 | |
e02119d5 CM |
897 | ret = btrfs_unlink_inode(trans, root, dir, |
898 | inode, victim_name, | |
899 | victim_name_len); | |
b6305567 | 900 | btrfs_run_delayed_items(trans, root); |
e02119d5 CM |
901 | } |
902 | kfree(victim_name); | |
903 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | |
904 | } | |
905 | BUG_ON(ret); | |
e02119d5 | 906 | |
c622ae60 | 907 | /* |
908 | * NOTE: we have searched root tree and checked the | |
909 | * coresponding ref, it does not need to check again. | |
910 | */ | |
911 | search_done = 1; | |
e02119d5 | 912 | } |
b3b4aa74 | 913 | btrfs_release_path(path); |
e02119d5 | 914 | |
34f3e4f2 | 915 | /* look for a conflicting sequence number */ |
916 | di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), | |
917 | btrfs_inode_ref_index(eb, ref), | |
918 | name, namelen, 0); | |
919 | if (di && !IS_ERR(di)) { | |
920 | ret = drop_one_dir_item(trans, root, path, dir, di); | |
921 | BUG_ON(ret); | |
922 | } | |
923 | btrfs_release_path(path); | |
924 | ||
925 | /* look for a conflicing name */ | |
926 | di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), | |
927 | name, namelen, 0); | |
928 | if (di && !IS_ERR(di)) { | |
929 | ret = drop_one_dir_item(trans, root, path, dir, di); | |
930 | BUG_ON(ret); | |
931 | } | |
932 | btrfs_release_path(path); | |
933 | ||
c622ae60 | 934 | insert: |
e02119d5 CM |
935 | /* insert our name */ |
936 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | |
937 | btrfs_inode_ref_index(eb, ref)); | |
938 | BUG_ON(ret); | |
939 | ||
940 | btrfs_update_inode(trans, root, inode); | |
941 | ||
942 | out: | |
943 | ref_ptr = (unsigned long)(ref + 1) + namelen; | |
944 | kfree(name); | |
945 | if (ref_ptr < ref_end) | |
946 | goto again; | |
947 | ||
948 | /* finally write the back reference in the inode */ | |
949 | ret = overwrite_item(trans, root, path, eb, slot, key); | |
950 | BUG_ON(ret); | |
951 | ||
952 | out_nowrite: | |
b3b4aa74 | 953 | btrfs_release_path(path); |
e02119d5 CM |
954 | iput(dir); |
955 | iput(inode); | |
956 | return 0; | |
957 | } | |
958 | ||
c71bf099 YZ |
959 | static int insert_orphan_item(struct btrfs_trans_handle *trans, |
960 | struct btrfs_root *root, u64 offset) | |
961 | { | |
962 | int ret; | |
963 | ret = btrfs_find_orphan_item(root, offset); | |
964 | if (ret > 0) | |
965 | ret = btrfs_insert_orphan_item(trans, root, offset); | |
966 | return ret; | |
967 | } | |
968 | ||
969 | ||
e02119d5 CM |
970 | /* |
971 | * There are a few corners where the link count of the file can't | |
972 | * be properly maintained during replay. So, instead of adding | |
973 | * lots of complexity to the log code, we just scan the backrefs | |
974 | * for any file that has been through replay. | |
975 | * | |
976 | * The scan will update the link count on the inode to reflect the | |
977 | * number of back refs found. If it goes down to zero, the iput | |
978 | * will free the inode. | |
979 | */ | |
980 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | |
981 | struct btrfs_root *root, | |
982 | struct inode *inode) | |
983 | { | |
984 | struct btrfs_path *path; | |
985 | int ret; | |
986 | struct btrfs_key key; | |
987 | u64 nlink = 0; | |
988 | unsigned long ptr; | |
989 | unsigned long ptr_end; | |
990 | int name_len; | |
33345d01 | 991 | u64 ino = btrfs_ino(inode); |
e02119d5 | 992 | |
33345d01 | 993 | key.objectid = ino; |
e02119d5 CM |
994 | key.type = BTRFS_INODE_REF_KEY; |
995 | key.offset = (u64)-1; | |
996 | ||
997 | path = btrfs_alloc_path(); | |
2a29edc6 | 998 | if (!path) |
999 | return -ENOMEM; | |
e02119d5 | 1000 | |
d397712b | 1001 | while (1) { |
e02119d5 CM |
1002 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
1003 | if (ret < 0) | |
1004 | break; | |
1005 | if (ret > 0) { | |
1006 | if (path->slots[0] == 0) | |
1007 | break; | |
1008 | path->slots[0]--; | |
1009 | } | |
1010 | btrfs_item_key_to_cpu(path->nodes[0], &key, | |
1011 | path->slots[0]); | |
33345d01 | 1012 | if (key.objectid != ino || |
e02119d5 CM |
1013 | key.type != BTRFS_INODE_REF_KEY) |
1014 | break; | |
1015 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
1016 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | |
1017 | path->slots[0]); | |
d397712b | 1018 | while (ptr < ptr_end) { |
e02119d5 CM |
1019 | struct btrfs_inode_ref *ref; |
1020 | ||
1021 | ref = (struct btrfs_inode_ref *)ptr; | |
1022 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | |
1023 | ref); | |
1024 | ptr = (unsigned long)(ref + 1) + name_len; | |
1025 | nlink++; | |
1026 | } | |
1027 | ||
1028 | if (key.offset == 0) | |
1029 | break; | |
1030 | key.offset--; | |
b3b4aa74 | 1031 | btrfs_release_path(path); |
e02119d5 | 1032 | } |
b3b4aa74 | 1033 | btrfs_release_path(path); |
e02119d5 | 1034 | if (nlink != inode->i_nlink) { |
bfe86848 | 1035 | set_nlink(inode, nlink); |
e02119d5 CM |
1036 | btrfs_update_inode(trans, root, inode); |
1037 | } | |
8d5bf1cb | 1038 | BTRFS_I(inode)->index_cnt = (u64)-1; |
e02119d5 | 1039 | |
c71bf099 YZ |
1040 | if (inode->i_nlink == 0) { |
1041 | if (S_ISDIR(inode->i_mode)) { | |
1042 | ret = replay_dir_deletes(trans, root, NULL, path, | |
33345d01 | 1043 | ino, 1); |
c71bf099 YZ |
1044 | BUG_ON(ret); |
1045 | } | |
33345d01 | 1046 | ret = insert_orphan_item(trans, root, ino); |
12fcfd22 CM |
1047 | BUG_ON(ret); |
1048 | } | |
1049 | btrfs_free_path(path); | |
1050 | ||
e02119d5 CM |
1051 | return 0; |
1052 | } | |
1053 | ||
1054 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | |
1055 | struct btrfs_root *root, | |
1056 | struct btrfs_path *path) | |
1057 | { | |
1058 | int ret; | |
1059 | struct btrfs_key key; | |
1060 | struct inode *inode; | |
1061 | ||
1062 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | |
1063 | key.type = BTRFS_ORPHAN_ITEM_KEY; | |
1064 | key.offset = (u64)-1; | |
d397712b | 1065 | while (1) { |
e02119d5 CM |
1066 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
1067 | if (ret < 0) | |
1068 | break; | |
1069 | ||
1070 | if (ret == 1) { | |
1071 | if (path->slots[0] == 0) | |
1072 | break; | |
1073 | path->slots[0]--; | |
1074 | } | |
1075 | ||
1076 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1077 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | |
1078 | key.type != BTRFS_ORPHAN_ITEM_KEY) | |
1079 | break; | |
1080 | ||
1081 | ret = btrfs_del_item(trans, root, path); | |
65a246c5 TI |
1082 | if (ret) |
1083 | goto out; | |
e02119d5 | 1084 | |
b3b4aa74 | 1085 | btrfs_release_path(path); |
e02119d5 | 1086 | inode = read_one_inode(root, key.offset); |
c00e9493 TI |
1087 | if (!inode) |
1088 | return -EIO; | |
e02119d5 CM |
1089 | |
1090 | ret = fixup_inode_link_count(trans, root, inode); | |
1091 | BUG_ON(ret); | |
1092 | ||
1093 | iput(inode); | |
1094 | ||
12fcfd22 CM |
1095 | /* |
1096 | * fixup on a directory may create new entries, | |
1097 | * make sure we always look for the highset possible | |
1098 | * offset | |
1099 | */ | |
1100 | key.offset = (u64)-1; | |
e02119d5 | 1101 | } |
65a246c5 TI |
1102 | ret = 0; |
1103 | out: | |
b3b4aa74 | 1104 | btrfs_release_path(path); |
65a246c5 | 1105 | return ret; |
e02119d5 CM |
1106 | } |
1107 | ||
1108 | ||
1109 | /* | |
1110 | * record a given inode in the fixup dir so we can check its link | |
1111 | * count when replay is done. The link count is incremented here | |
1112 | * so the inode won't go away until we check it | |
1113 | */ | |
1114 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | |
1115 | struct btrfs_root *root, | |
1116 | struct btrfs_path *path, | |
1117 | u64 objectid) | |
1118 | { | |
1119 | struct btrfs_key key; | |
1120 | int ret = 0; | |
1121 | struct inode *inode; | |
1122 | ||
1123 | inode = read_one_inode(root, objectid); | |
c00e9493 TI |
1124 | if (!inode) |
1125 | return -EIO; | |
e02119d5 CM |
1126 | |
1127 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | |
1128 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | |
1129 | key.offset = objectid; | |
1130 | ||
1131 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | |
1132 | ||
b3b4aa74 | 1133 | btrfs_release_path(path); |
e02119d5 CM |
1134 | if (ret == 0) { |
1135 | btrfs_inc_nlink(inode); | |
b9959295 | 1136 | ret = btrfs_update_inode(trans, root, inode); |
e02119d5 CM |
1137 | } else if (ret == -EEXIST) { |
1138 | ret = 0; | |
1139 | } else { | |
1140 | BUG(); | |
1141 | } | |
1142 | iput(inode); | |
1143 | ||
1144 | return ret; | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * when replaying the log for a directory, we only insert names | |
1149 | * for inodes that actually exist. This means an fsync on a directory | |
1150 | * does not implicitly fsync all the new files in it | |
1151 | */ | |
1152 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | |
1153 | struct btrfs_root *root, | |
1154 | struct btrfs_path *path, | |
1155 | u64 dirid, u64 index, | |
1156 | char *name, int name_len, u8 type, | |
1157 | struct btrfs_key *location) | |
1158 | { | |
1159 | struct inode *inode; | |
1160 | struct inode *dir; | |
1161 | int ret; | |
1162 | ||
1163 | inode = read_one_inode(root, location->objectid); | |
1164 | if (!inode) | |
1165 | return -ENOENT; | |
1166 | ||
1167 | dir = read_one_inode(root, dirid); | |
1168 | if (!dir) { | |
1169 | iput(inode); | |
1170 | return -EIO; | |
1171 | } | |
1172 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | |
1173 | ||
1174 | /* FIXME, put inode into FIXUP list */ | |
1175 | ||
1176 | iput(inode); | |
1177 | iput(dir); | |
1178 | return ret; | |
1179 | } | |
1180 | ||
1181 | /* | |
1182 | * take a single entry in a log directory item and replay it into | |
1183 | * the subvolume. | |
1184 | * | |
1185 | * if a conflicting item exists in the subdirectory already, | |
1186 | * the inode it points to is unlinked and put into the link count | |
1187 | * fix up tree. | |
1188 | * | |
1189 | * If a name from the log points to a file or directory that does | |
1190 | * not exist in the FS, it is skipped. fsyncs on directories | |
1191 | * do not force down inodes inside that directory, just changes to the | |
1192 | * names or unlinks in a directory. | |
1193 | */ | |
1194 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | |
1195 | struct btrfs_root *root, | |
1196 | struct btrfs_path *path, | |
1197 | struct extent_buffer *eb, | |
1198 | struct btrfs_dir_item *di, | |
1199 | struct btrfs_key *key) | |
1200 | { | |
1201 | char *name; | |
1202 | int name_len; | |
1203 | struct btrfs_dir_item *dst_di; | |
1204 | struct btrfs_key found_key; | |
1205 | struct btrfs_key log_key; | |
1206 | struct inode *dir; | |
e02119d5 | 1207 | u8 log_type; |
4bef0848 | 1208 | int exists; |
e02119d5 CM |
1209 | int ret; |
1210 | ||
1211 | dir = read_one_inode(root, key->objectid); | |
c00e9493 TI |
1212 | if (!dir) |
1213 | return -EIO; | |
e02119d5 CM |
1214 | |
1215 | name_len = btrfs_dir_name_len(eb, di); | |
1216 | name = kmalloc(name_len, GFP_NOFS); | |
2a29edc6 | 1217 | if (!name) |
1218 | return -ENOMEM; | |
1219 | ||
e02119d5 CM |
1220 | log_type = btrfs_dir_type(eb, di); |
1221 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | |
1222 | name_len); | |
1223 | ||
1224 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | |
4bef0848 CM |
1225 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); |
1226 | if (exists == 0) | |
1227 | exists = 1; | |
1228 | else | |
1229 | exists = 0; | |
b3b4aa74 | 1230 | btrfs_release_path(path); |
4bef0848 | 1231 | |
e02119d5 CM |
1232 | if (key->type == BTRFS_DIR_ITEM_KEY) { |
1233 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | |
1234 | name, name_len, 1); | |
d397712b | 1235 | } else if (key->type == BTRFS_DIR_INDEX_KEY) { |
e02119d5 CM |
1236 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, |
1237 | key->objectid, | |
1238 | key->offset, name, | |
1239 | name_len, 1); | |
1240 | } else { | |
1241 | BUG(); | |
1242 | } | |
c704005d | 1243 | if (IS_ERR_OR_NULL(dst_di)) { |
e02119d5 CM |
1244 | /* we need a sequence number to insert, so we only |
1245 | * do inserts for the BTRFS_DIR_INDEX_KEY types | |
1246 | */ | |
1247 | if (key->type != BTRFS_DIR_INDEX_KEY) | |
1248 | goto out; | |
1249 | goto insert; | |
1250 | } | |
1251 | ||
1252 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | |
1253 | /* the existing item matches the logged item */ | |
1254 | if (found_key.objectid == log_key.objectid && | |
1255 | found_key.type == log_key.type && | |
1256 | found_key.offset == log_key.offset && | |
1257 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | |
1258 | goto out; | |
1259 | } | |
1260 | ||
1261 | /* | |
1262 | * don't drop the conflicting directory entry if the inode | |
1263 | * for the new entry doesn't exist | |
1264 | */ | |
4bef0848 | 1265 | if (!exists) |
e02119d5 CM |
1266 | goto out; |
1267 | ||
e02119d5 CM |
1268 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); |
1269 | BUG_ON(ret); | |
1270 | ||
1271 | if (key->type == BTRFS_DIR_INDEX_KEY) | |
1272 | goto insert; | |
1273 | out: | |
b3b4aa74 | 1274 | btrfs_release_path(path); |
e02119d5 CM |
1275 | kfree(name); |
1276 | iput(dir); | |
1277 | return 0; | |
1278 | ||
1279 | insert: | |
b3b4aa74 | 1280 | btrfs_release_path(path); |
e02119d5 CM |
1281 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, |
1282 | name, name_len, log_type, &log_key); | |
1283 | ||
c293498b | 1284 | BUG_ON(ret && ret != -ENOENT); |
e02119d5 CM |
1285 | goto out; |
1286 | } | |
1287 | ||
1288 | /* | |
1289 | * find all the names in a directory item and reconcile them into | |
1290 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | |
1291 | * one name in a directory item, but the same code gets used for | |
1292 | * both directory index types | |
1293 | */ | |
1294 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | |
1295 | struct btrfs_root *root, | |
1296 | struct btrfs_path *path, | |
1297 | struct extent_buffer *eb, int slot, | |
1298 | struct btrfs_key *key) | |
1299 | { | |
1300 | int ret; | |
1301 | u32 item_size = btrfs_item_size_nr(eb, slot); | |
1302 | struct btrfs_dir_item *di; | |
1303 | int name_len; | |
1304 | unsigned long ptr; | |
1305 | unsigned long ptr_end; | |
1306 | ||
1307 | ptr = btrfs_item_ptr_offset(eb, slot); | |
1308 | ptr_end = ptr + item_size; | |
d397712b | 1309 | while (ptr < ptr_end) { |
e02119d5 | 1310 | di = (struct btrfs_dir_item *)ptr; |
22a94d44 JB |
1311 | if (verify_dir_item(root, eb, di)) |
1312 | return -EIO; | |
e02119d5 CM |
1313 | name_len = btrfs_dir_name_len(eb, di); |
1314 | ret = replay_one_name(trans, root, path, eb, di, key); | |
1315 | BUG_ON(ret); | |
1316 | ptr = (unsigned long)(di + 1); | |
1317 | ptr += name_len; | |
1318 | } | |
1319 | return 0; | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * directory replay has two parts. There are the standard directory | |
1324 | * items in the log copied from the subvolume, and range items | |
1325 | * created in the log while the subvolume was logged. | |
1326 | * | |
1327 | * The range items tell us which parts of the key space the log | |
1328 | * is authoritative for. During replay, if a key in the subvolume | |
1329 | * directory is in a logged range item, but not actually in the log | |
1330 | * that means it was deleted from the directory before the fsync | |
1331 | * and should be removed. | |
1332 | */ | |
1333 | static noinline int find_dir_range(struct btrfs_root *root, | |
1334 | struct btrfs_path *path, | |
1335 | u64 dirid, int key_type, | |
1336 | u64 *start_ret, u64 *end_ret) | |
1337 | { | |
1338 | struct btrfs_key key; | |
1339 | u64 found_end; | |
1340 | struct btrfs_dir_log_item *item; | |
1341 | int ret; | |
1342 | int nritems; | |
1343 | ||
1344 | if (*start_ret == (u64)-1) | |
1345 | return 1; | |
1346 | ||
1347 | key.objectid = dirid; | |
1348 | key.type = key_type; | |
1349 | key.offset = *start_ret; | |
1350 | ||
1351 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
1352 | if (ret < 0) | |
1353 | goto out; | |
1354 | if (ret > 0) { | |
1355 | if (path->slots[0] == 0) | |
1356 | goto out; | |
1357 | path->slots[0]--; | |
1358 | } | |
1359 | if (ret != 0) | |
1360 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1361 | ||
1362 | if (key.type != key_type || key.objectid != dirid) { | |
1363 | ret = 1; | |
1364 | goto next; | |
1365 | } | |
1366 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
1367 | struct btrfs_dir_log_item); | |
1368 | found_end = btrfs_dir_log_end(path->nodes[0], item); | |
1369 | ||
1370 | if (*start_ret >= key.offset && *start_ret <= found_end) { | |
1371 | ret = 0; | |
1372 | *start_ret = key.offset; | |
1373 | *end_ret = found_end; | |
1374 | goto out; | |
1375 | } | |
1376 | ret = 1; | |
1377 | next: | |
1378 | /* check the next slot in the tree to see if it is a valid item */ | |
1379 | nritems = btrfs_header_nritems(path->nodes[0]); | |
1380 | if (path->slots[0] >= nritems) { | |
1381 | ret = btrfs_next_leaf(root, path); | |
1382 | if (ret) | |
1383 | goto out; | |
1384 | } else { | |
1385 | path->slots[0]++; | |
1386 | } | |
1387 | ||
1388 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1389 | ||
1390 | if (key.type != key_type || key.objectid != dirid) { | |
1391 | ret = 1; | |
1392 | goto out; | |
1393 | } | |
1394 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
1395 | struct btrfs_dir_log_item); | |
1396 | found_end = btrfs_dir_log_end(path->nodes[0], item); | |
1397 | *start_ret = key.offset; | |
1398 | *end_ret = found_end; | |
1399 | ret = 0; | |
1400 | out: | |
b3b4aa74 | 1401 | btrfs_release_path(path); |
e02119d5 CM |
1402 | return ret; |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | * this looks for a given directory item in the log. If the directory | |
1407 | * item is not in the log, the item is removed and the inode it points | |
1408 | * to is unlinked | |
1409 | */ | |
1410 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | |
1411 | struct btrfs_root *root, | |
1412 | struct btrfs_root *log, | |
1413 | struct btrfs_path *path, | |
1414 | struct btrfs_path *log_path, | |
1415 | struct inode *dir, | |
1416 | struct btrfs_key *dir_key) | |
1417 | { | |
1418 | int ret; | |
1419 | struct extent_buffer *eb; | |
1420 | int slot; | |
1421 | u32 item_size; | |
1422 | struct btrfs_dir_item *di; | |
1423 | struct btrfs_dir_item *log_di; | |
1424 | int name_len; | |
1425 | unsigned long ptr; | |
1426 | unsigned long ptr_end; | |
1427 | char *name; | |
1428 | struct inode *inode; | |
1429 | struct btrfs_key location; | |
1430 | ||
1431 | again: | |
1432 | eb = path->nodes[0]; | |
1433 | slot = path->slots[0]; | |
1434 | item_size = btrfs_item_size_nr(eb, slot); | |
1435 | ptr = btrfs_item_ptr_offset(eb, slot); | |
1436 | ptr_end = ptr + item_size; | |
d397712b | 1437 | while (ptr < ptr_end) { |
e02119d5 | 1438 | di = (struct btrfs_dir_item *)ptr; |
22a94d44 JB |
1439 | if (verify_dir_item(root, eb, di)) { |
1440 | ret = -EIO; | |
1441 | goto out; | |
1442 | } | |
1443 | ||
e02119d5 CM |
1444 | name_len = btrfs_dir_name_len(eb, di); |
1445 | name = kmalloc(name_len, GFP_NOFS); | |
1446 | if (!name) { | |
1447 | ret = -ENOMEM; | |
1448 | goto out; | |
1449 | } | |
1450 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | |
1451 | name_len); | |
1452 | log_di = NULL; | |
12fcfd22 | 1453 | if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { |
e02119d5 CM |
1454 | log_di = btrfs_lookup_dir_item(trans, log, log_path, |
1455 | dir_key->objectid, | |
1456 | name, name_len, 0); | |
12fcfd22 | 1457 | } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { |
e02119d5 CM |
1458 | log_di = btrfs_lookup_dir_index_item(trans, log, |
1459 | log_path, | |
1460 | dir_key->objectid, | |
1461 | dir_key->offset, | |
1462 | name, name_len, 0); | |
1463 | } | |
c704005d | 1464 | if (IS_ERR_OR_NULL(log_di)) { |
e02119d5 | 1465 | btrfs_dir_item_key_to_cpu(eb, di, &location); |
b3b4aa74 DS |
1466 | btrfs_release_path(path); |
1467 | btrfs_release_path(log_path); | |
e02119d5 | 1468 | inode = read_one_inode(root, location.objectid); |
c00e9493 TI |
1469 | if (!inode) { |
1470 | kfree(name); | |
1471 | return -EIO; | |
1472 | } | |
e02119d5 CM |
1473 | |
1474 | ret = link_to_fixup_dir(trans, root, | |
1475 | path, location.objectid); | |
1476 | BUG_ON(ret); | |
1477 | btrfs_inc_nlink(inode); | |
1478 | ret = btrfs_unlink_inode(trans, root, dir, inode, | |
1479 | name, name_len); | |
1480 | BUG_ON(ret); | |
b6305567 CM |
1481 | |
1482 | btrfs_run_delayed_items(trans, root); | |
1483 | ||
e02119d5 CM |
1484 | kfree(name); |
1485 | iput(inode); | |
1486 | ||
1487 | /* there might still be more names under this key | |
1488 | * check and repeat if required | |
1489 | */ | |
1490 | ret = btrfs_search_slot(NULL, root, dir_key, path, | |
1491 | 0, 0); | |
1492 | if (ret == 0) | |
1493 | goto again; | |
1494 | ret = 0; | |
1495 | goto out; | |
1496 | } | |
b3b4aa74 | 1497 | btrfs_release_path(log_path); |
e02119d5 CM |
1498 | kfree(name); |
1499 | ||
1500 | ptr = (unsigned long)(di + 1); | |
1501 | ptr += name_len; | |
1502 | } | |
1503 | ret = 0; | |
1504 | out: | |
b3b4aa74 DS |
1505 | btrfs_release_path(path); |
1506 | btrfs_release_path(log_path); | |
e02119d5 CM |
1507 | return ret; |
1508 | } | |
1509 | ||
1510 | /* | |
1511 | * deletion replay happens before we copy any new directory items | |
1512 | * out of the log or out of backreferences from inodes. It | |
1513 | * scans the log to find ranges of keys that log is authoritative for, | |
1514 | * and then scans the directory to find items in those ranges that are | |
1515 | * not present in the log. | |
1516 | * | |
1517 | * Anything we don't find in the log is unlinked and removed from the | |
1518 | * directory. | |
1519 | */ | |
1520 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | |
1521 | struct btrfs_root *root, | |
1522 | struct btrfs_root *log, | |
1523 | struct btrfs_path *path, | |
12fcfd22 | 1524 | u64 dirid, int del_all) |
e02119d5 CM |
1525 | { |
1526 | u64 range_start; | |
1527 | u64 range_end; | |
1528 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | |
1529 | int ret = 0; | |
1530 | struct btrfs_key dir_key; | |
1531 | struct btrfs_key found_key; | |
1532 | struct btrfs_path *log_path; | |
1533 | struct inode *dir; | |
1534 | ||
1535 | dir_key.objectid = dirid; | |
1536 | dir_key.type = BTRFS_DIR_ITEM_KEY; | |
1537 | log_path = btrfs_alloc_path(); | |
1538 | if (!log_path) | |
1539 | return -ENOMEM; | |
1540 | ||
1541 | dir = read_one_inode(root, dirid); | |
1542 | /* it isn't an error if the inode isn't there, that can happen | |
1543 | * because we replay the deletes before we copy in the inode item | |
1544 | * from the log | |
1545 | */ | |
1546 | if (!dir) { | |
1547 | btrfs_free_path(log_path); | |
1548 | return 0; | |
1549 | } | |
1550 | again: | |
1551 | range_start = 0; | |
1552 | range_end = 0; | |
d397712b | 1553 | while (1) { |
12fcfd22 CM |
1554 | if (del_all) |
1555 | range_end = (u64)-1; | |
1556 | else { | |
1557 | ret = find_dir_range(log, path, dirid, key_type, | |
1558 | &range_start, &range_end); | |
1559 | if (ret != 0) | |
1560 | break; | |
1561 | } | |
e02119d5 CM |
1562 | |
1563 | dir_key.offset = range_start; | |
d397712b | 1564 | while (1) { |
e02119d5 CM |
1565 | int nritems; |
1566 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | |
1567 | 0, 0); | |
1568 | if (ret < 0) | |
1569 | goto out; | |
1570 | ||
1571 | nritems = btrfs_header_nritems(path->nodes[0]); | |
1572 | if (path->slots[0] >= nritems) { | |
1573 | ret = btrfs_next_leaf(root, path); | |
1574 | if (ret) | |
1575 | break; | |
1576 | } | |
1577 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
1578 | path->slots[0]); | |
1579 | if (found_key.objectid != dirid || | |
1580 | found_key.type != dir_key.type) | |
1581 | goto next_type; | |
1582 | ||
1583 | if (found_key.offset > range_end) | |
1584 | break; | |
1585 | ||
1586 | ret = check_item_in_log(trans, root, log, path, | |
12fcfd22 CM |
1587 | log_path, dir, |
1588 | &found_key); | |
e02119d5 CM |
1589 | BUG_ON(ret); |
1590 | if (found_key.offset == (u64)-1) | |
1591 | break; | |
1592 | dir_key.offset = found_key.offset + 1; | |
1593 | } | |
b3b4aa74 | 1594 | btrfs_release_path(path); |
e02119d5 CM |
1595 | if (range_end == (u64)-1) |
1596 | break; | |
1597 | range_start = range_end + 1; | |
1598 | } | |
1599 | ||
1600 | next_type: | |
1601 | ret = 0; | |
1602 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | |
1603 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | |
1604 | dir_key.type = BTRFS_DIR_INDEX_KEY; | |
b3b4aa74 | 1605 | btrfs_release_path(path); |
e02119d5 CM |
1606 | goto again; |
1607 | } | |
1608 | out: | |
b3b4aa74 | 1609 | btrfs_release_path(path); |
e02119d5 CM |
1610 | btrfs_free_path(log_path); |
1611 | iput(dir); | |
1612 | return ret; | |
1613 | } | |
1614 | ||
1615 | /* | |
1616 | * the process_func used to replay items from the log tree. This | |
1617 | * gets called in two different stages. The first stage just looks | |
1618 | * for inodes and makes sure they are all copied into the subvolume. | |
1619 | * | |
1620 | * The second stage copies all the other item types from the log into | |
1621 | * the subvolume. The two stage approach is slower, but gets rid of | |
1622 | * lots of complexity around inodes referencing other inodes that exist | |
1623 | * only in the log (references come from either directory items or inode | |
1624 | * back refs). | |
1625 | */ | |
1626 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | |
1627 | struct walk_control *wc, u64 gen) | |
1628 | { | |
1629 | int nritems; | |
1630 | struct btrfs_path *path; | |
1631 | struct btrfs_root *root = wc->replay_dest; | |
1632 | struct btrfs_key key; | |
e02119d5 CM |
1633 | int level; |
1634 | int i; | |
1635 | int ret; | |
1636 | ||
018642a1 TI |
1637 | ret = btrfs_read_buffer(eb, gen); |
1638 | if (ret) | |
1639 | return ret; | |
e02119d5 CM |
1640 | |
1641 | level = btrfs_header_level(eb); | |
1642 | ||
1643 | if (level != 0) | |
1644 | return 0; | |
1645 | ||
1646 | path = btrfs_alloc_path(); | |
1e5063d0 MF |
1647 | if (!path) |
1648 | return -ENOMEM; | |
e02119d5 CM |
1649 | |
1650 | nritems = btrfs_header_nritems(eb); | |
1651 | for (i = 0; i < nritems; i++) { | |
1652 | btrfs_item_key_to_cpu(eb, &key, i); | |
e02119d5 CM |
1653 | |
1654 | /* inode keys are done during the first stage */ | |
1655 | if (key.type == BTRFS_INODE_ITEM_KEY && | |
1656 | wc->stage == LOG_WALK_REPLAY_INODES) { | |
e02119d5 CM |
1657 | struct btrfs_inode_item *inode_item; |
1658 | u32 mode; | |
1659 | ||
1660 | inode_item = btrfs_item_ptr(eb, i, | |
1661 | struct btrfs_inode_item); | |
1662 | mode = btrfs_inode_mode(eb, inode_item); | |
1663 | if (S_ISDIR(mode)) { | |
1664 | ret = replay_dir_deletes(wc->trans, | |
12fcfd22 | 1665 | root, log, path, key.objectid, 0); |
e02119d5 CM |
1666 | BUG_ON(ret); |
1667 | } | |
1668 | ret = overwrite_item(wc->trans, root, path, | |
1669 | eb, i, &key); | |
1670 | BUG_ON(ret); | |
1671 | ||
c71bf099 YZ |
1672 | /* for regular files, make sure corresponding |
1673 | * orhpan item exist. extents past the new EOF | |
1674 | * will be truncated later by orphan cleanup. | |
e02119d5 CM |
1675 | */ |
1676 | if (S_ISREG(mode)) { | |
c71bf099 YZ |
1677 | ret = insert_orphan_item(wc->trans, root, |
1678 | key.objectid); | |
e02119d5 | 1679 | BUG_ON(ret); |
e02119d5 | 1680 | } |
c71bf099 | 1681 | |
e02119d5 CM |
1682 | ret = link_to_fixup_dir(wc->trans, root, |
1683 | path, key.objectid); | |
1684 | BUG_ON(ret); | |
1685 | } | |
1686 | if (wc->stage < LOG_WALK_REPLAY_ALL) | |
1687 | continue; | |
1688 | ||
1689 | /* these keys are simply copied */ | |
1690 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | |
1691 | ret = overwrite_item(wc->trans, root, path, | |
1692 | eb, i, &key); | |
1693 | BUG_ON(ret); | |
1694 | } else if (key.type == BTRFS_INODE_REF_KEY) { | |
1695 | ret = add_inode_ref(wc->trans, root, log, path, | |
1696 | eb, i, &key); | |
1697 | BUG_ON(ret && ret != -ENOENT); | |
1698 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | |
1699 | ret = replay_one_extent(wc->trans, root, path, | |
1700 | eb, i, &key); | |
1701 | BUG_ON(ret); | |
e02119d5 CM |
1702 | } else if (key.type == BTRFS_DIR_ITEM_KEY || |
1703 | key.type == BTRFS_DIR_INDEX_KEY) { | |
1704 | ret = replay_one_dir_item(wc->trans, root, path, | |
1705 | eb, i, &key); | |
1706 | BUG_ON(ret); | |
1707 | } | |
1708 | } | |
1709 | btrfs_free_path(path); | |
1710 | return 0; | |
1711 | } | |
1712 | ||
d397712b | 1713 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, |
e02119d5 CM |
1714 | struct btrfs_root *root, |
1715 | struct btrfs_path *path, int *level, | |
1716 | struct walk_control *wc) | |
1717 | { | |
1718 | u64 root_owner; | |
e02119d5 CM |
1719 | u64 bytenr; |
1720 | u64 ptr_gen; | |
1721 | struct extent_buffer *next; | |
1722 | struct extent_buffer *cur; | |
1723 | struct extent_buffer *parent; | |
1724 | u32 blocksize; | |
1725 | int ret = 0; | |
1726 | ||
1727 | WARN_ON(*level < 0); | |
1728 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1729 | ||
d397712b | 1730 | while (*level > 0) { |
e02119d5 CM |
1731 | WARN_ON(*level < 0); |
1732 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1733 | cur = path->nodes[*level]; | |
1734 | ||
1735 | if (btrfs_header_level(cur) != *level) | |
1736 | WARN_ON(1); | |
1737 | ||
1738 | if (path->slots[*level] >= | |
1739 | btrfs_header_nritems(cur)) | |
1740 | break; | |
1741 | ||
1742 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | |
1743 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | |
1744 | blocksize = btrfs_level_size(root, *level - 1); | |
1745 | ||
1746 | parent = path->nodes[*level]; | |
1747 | root_owner = btrfs_header_owner(parent); | |
e02119d5 CM |
1748 | |
1749 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | |
2a29edc6 | 1750 | if (!next) |
1751 | return -ENOMEM; | |
e02119d5 | 1752 | |
e02119d5 | 1753 | if (*level == 1) { |
1e5063d0 MF |
1754 | ret = wc->process_func(root, next, wc, ptr_gen); |
1755 | if (ret) | |
1756 | return ret; | |
4a500fd1 | 1757 | |
e02119d5 CM |
1758 | path->slots[*level]++; |
1759 | if (wc->free) { | |
018642a1 TI |
1760 | ret = btrfs_read_buffer(next, ptr_gen); |
1761 | if (ret) { | |
1762 | free_extent_buffer(next); | |
1763 | return ret; | |
1764 | } | |
e02119d5 CM |
1765 | |
1766 | btrfs_tree_lock(next); | |
b4ce94de | 1767 | btrfs_set_lock_blocking(next); |
bd681513 | 1768 | clean_tree_block(trans, root, next); |
e02119d5 CM |
1769 | btrfs_wait_tree_block_writeback(next); |
1770 | btrfs_tree_unlock(next); | |
1771 | ||
e02119d5 CM |
1772 | WARN_ON(root_owner != |
1773 | BTRFS_TREE_LOG_OBJECTID); | |
e688b725 | 1774 | ret = btrfs_free_and_pin_reserved_extent(root, |
d00aff00 | 1775 | bytenr, blocksize); |
79787eaa | 1776 | BUG_ON(ret); /* -ENOMEM or logic errors */ |
e02119d5 CM |
1777 | } |
1778 | free_extent_buffer(next); | |
1779 | continue; | |
1780 | } | |
018642a1 TI |
1781 | ret = btrfs_read_buffer(next, ptr_gen); |
1782 | if (ret) { | |
1783 | free_extent_buffer(next); | |
1784 | return ret; | |
1785 | } | |
e02119d5 CM |
1786 | |
1787 | WARN_ON(*level <= 0); | |
1788 | if (path->nodes[*level-1]) | |
1789 | free_extent_buffer(path->nodes[*level-1]); | |
1790 | path->nodes[*level-1] = next; | |
1791 | *level = btrfs_header_level(next); | |
1792 | path->slots[*level] = 0; | |
1793 | cond_resched(); | |
1794 | } | |
1795 | WARN_ON(*level < 0); | |
1796 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1797 | ||
4a500fd1 | 1798 | path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); |
e02119d5 CM |
1799 | |
1800 | cond_resched(); | |
1801 | return 0; | |
1802 | } | |
1803 | ||
d397712b | 1804 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, |
e02119d5 CM |
1805 | struct btrfs_root *root, |
1806 | struct btrfs_path *path, int *level, | |
1807 | struct walk_control *wc) | |
1808 | { | |
1809 | u64 root_owner; | |
e02119d5 CM |
1810 | int i; |
1811 | int slot; | |
1812 | int ret; | |
1813 | ||
d397712b | 1814 | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { |
e02119d5 | 1815 | slot = path->slots[i]; |
4a500fd1 | 1816 | if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { |
e02119d5 CM |
1817 | path->slots[i]++; |
1818 | *level = i; | |
1819 | WARN_ON(*level == 0); | |
1820 | return 0; | |
1821 | } else { | |
31840ae1 ZY |
1822 | struct extent_buffer *parent; |
1823 | if (path->nodes[*level] == root->node) | |
1824 | parent = path->nodes[*level]; | |
1825 | else | |
1826 | parent = path->nodes[*level + 1]; | |
1827 | ||
1828 | root_owner = btrfs_header_owner(parent); | |
1e5063d0 | 1829 | ret = wc->process_func(root, path->nodes[*level], wc, |
e02119d5 | 1830 | btrfs_header_generation(path->nodes[*level])); |
1e5063d0 MF |
1831 | if (ret) |
1832 | return ret; | |
1833 | ||
e02119d5 CM |
1834 | if (wc->free) { |
1835 | struct extent_buffer *next; | |
1836 | ||
1837 | next = path->nodes[*level]; | |
1838 | ||
1839 | btrfs_tree_lock(next); | |
b4ce94de | 1840 | btrfs_set_lock_blocking(next); |
bd681513 | 1841 | clean_tree_block(trans, root, next); |
e02119d5 CM |
1842 | btrfs_wait_tree_block_writeback(next); |
1843 | btrfs_tree_unlock(next); | |
1844 | ||
e02119d5 | 1845 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); |
e688b725 | 1846 | ret = btrfs_free_and_pin_reserved_extent(root, |
e02119d5 | 1847 | path->nodes[*level]->start, |
d00aff00 | 1848 | path->nodes[*level]->len); |
e02119d5 CM |
1849 | BUG_ON(ret); |
1850 | } | |
1851 | free_extent_buffer(path->nodes[*level]); | |
1852 | path->nodes[*level] = NULL; | |
1853 | *level = i + 1; | |
1854 | } | |
1855 | } | |
1856 | return 1; | |
1857 | } | |
1858 | ||
1859 | /* | |
1860 | * drop the reference count on the tree rooted at 'snap'. This traverses | |
1861 | * the tree freeing any blocks that have a ref count of zero after being | |
1862 | * decremented. | |
1863 | */ | |
1864 | static int walk_log_tree(struct btrfs_trans_handle *trans, | |
1865 | struct btrfs_root *log, struct walk_control *wc) | |
1866 | { | |
1867 | int ret = 0; | |
1868 | int wret; | |
1869 | int level; | |
1870 | struct btrfs_path *path; | |
1871 | int i; | |
1872 | int orig_level; | |
1873 | ||
1874 | path = btrfs_alloc_path(); | |
db5b493a TI |
1875 | if (!path) |
1876 | return -ENOMEM; | |
e02119d5 CM |
1877 | |
1878 | level = btrfs_header_level(log->node); | |
1879 | orig_level = level; | |
1880 | path->nodes[level] = log->node; | |
1881 | extent_buffer_get(log->node); | |
1882 | path->slots[level] = 0; | |
1883 | ||
d397712b | 1884 | while (1) { |
e02119d5 CM |
1885 | wret = walk_down_log_tree(trans, log, path, &level, wc); |
1886 | if (wret > 0) | |
1887 | break; | |
79787eaa | 1888 | if (wret < 0) { |
e02119d5 | 1889 | ret = wret; |
79787eaa JM |
1890 | goto out; |
1891 | } | |
e02119d5 CM |
1892 | |
1893 | wret = walk_up_log_tree(trans, log, path, &level, wc); | |
1894 | if (wret > 0) | |
1895 | break; | |
79787eaa | 1896 | if (wret < 0) { |
e02119d5 | 1897 | ret = wret; |
79787eaa JM |
1898 | goto out; |
1899 | } | |
e02119d5 CM |
1900 | } |
1901 | ||
1902 | /* was the root node processed? if not, catch it here */ | |
1903 | if (path->nodes[orig_level]) { | |
79787eaa | 1904 | ret = wc->process_func(log, path->nodes[orig_level], wc, |
e02119d5 | 1905 | btrfs_header_generation(path->nodes[orig_level])); |
79787eaa JM |
1906 | if (ret) |
1907 | goto out; | |
e02119d5 CM |
1908 | if (wc->free) { |
1909 | struct extent_buffer *next; | |
1910 | ||
1911 | next = path->nodes[orig_level]; | |
1912 | ||
1913 | btrfs_tree_lock(next); | |
b4ce94de | 1914 | btrfs_set_lock_blocking(next); |
bd681513 | 1915 | clean_tree_block(trans, log, next); |
e02119d5 CM |
1916 | btrfs_wait_tree_block_writeback(next); |
1917 | btrfs_tree_unlock(next); | |
1918 | ||
e02119d5 CM |
1919 | WARN_ON(log->root_key.objectid != |
1920 | BTRFS_TREE_LOG_OBJECTID); | |
e688b725 | 1921 | ret = btrfs_free_and_pin_reserved_extent(log, next->start, |
d00aff00 | 1922 | next->len); |
79787eaa | 1923 | BUG_ON(ret); /* -ENOMEM or logic errors */ |
e02119d5 CM |
1924 | } |
1925 | } | |
1926 | ||
79787eaa | 1927 | out: |
e02119d5 CM |
1928 | for (i = 0; i <= orig_level; i++) { |
1929 | if (path->nodes[i]) { | |
1930 | free_extent_buffer(path->nodes[i]); | |
1931 | path->nodes[i] = NULL; | |
1932 | } | |
1933 | } | |
1934 | btrfs_free_path(path); | |
e02119d5 CM |
1935 | return ret; |
1936 | } | |
1937 | ||
7237f183 YZ |
1938 | /* |
1939 | * helper function to update the item for a given subvolumes log root | |
1940 | * in the tree of log roots | |
1941 | */ | |
1942 | static int update_log_root(struct btrfs_trans_handle *trans, | |
1943 | struct btrfs_root *log) | |
1944 | { | |
1945 | int ret; | |
1946 | ||
1947 | if (log->log_transid == 1) { | |
1948 | /* insert root item on the first sync */ | |
1949 | ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, | |
1950 | &log->root_key, &log->root_item); | |
1951 | } else { | |
1952 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | |
1953 | &log->root_key, &log->root_item); | |
1954 | } | |
1955 | return ret; | |
1956 | } | |
1957 | ||
12fcfd22 CM |
1958 | static int wait_log_commit(struct btrfs_trans_handle *trans, |
1959 | struct btrfs_root *root, unsigned long transid) | |
e02119d5 CM |
1960 | { |
1961 | DEFINE_WAIT(wait); | |
7237f183 | 1962 | int index = transid % 2; |
e02119d5 | 1963 | |
7237f183 YZ |
1964 | /* |
1965 | * we only allow two pending log transactions at a time, | |
1966 | * so we know that if ours is more than 2 older than the | |
1967 | * current transaction, we're done | |
1968 | */ | |
e02119d5 | 1969 | do { |
7237f183 YZ |
1970 | prepare_to_wait(&root->log_commit_wait[index], |
1971 | &wait, TASK_UNINTERRUPTIBLE); | |
1972 | mutex_unlock(&root->log_mutex); | |
12fcfd22 CM |
1973 | |
1974 | if (root->fs_info->last_trans_log_full_commit != | |
1975 | trans->transid && root->log_transid < transid + 2 && | |
7237f183 YZ |
1976 | atomic_read(&root->log_commit[index])) |
1977 | schedule(); | |
12fcfd22 | 1978 | |
7237f183 YZ |
1979 | finish_wait(&root->log_commit_wait[index], &wait); |
1980 | mutex_lock(&root->log_mutex); | |
6dd70ce4 JK |
1981 | } while (root->fs_info->last_trans_log_full_commit != |
1982 | trans->transid && root->log_transid < transid + 2 && | |
7237f183 YZ |
1983 | atomic_read(&root->log_commit[index])); |
1984 | return 0; | |
1985 | } | |
1986 | ||
143bede5 JM |
1987 | static void wait_for_writer(struct btrfs_trans_handle *trans, |
1988 | struct btrfs_root *root) | |
7237f183 YZ |
1989 | { |
1990 | DEFINE_WAIT(wait); | |
6dd70ce4 JK |
1991 | while (root->fs_info->last_trans_log_full_commit != |
1992 | trans->transid && atomic_read(&root->log_writers)) { | |
7237f183 YZ |
1993 | prepare_to_wait(&root->log_writer_wait, |
1994 | &wait, TASK_UNINTERRUPTIBLE); | |
1995 | mutex_unlock(&root->log_mutex); | |
12fcfd22 CM |
1996 | if (root->fs_info->last_trans_log_full_commit != |
1997 | trans->transid && atomic_read(&root->log_writers)) | |
e02119d5 | 1998 | schedule(); |
7237f183 YZ |
1999 | mutex_lock(&root->log_mutex); |
2000 | finish_wait(&root->log_writer_wait, &wait); | |
2001 | } | |
e02119d5 CM |
2002 | } |
2003 | ||
2004 | /* | |
2005 | * btrfs_sync_log does sends a given tree log down to the disk and | |
2006 | * updates the super blocks to record it. When this call is done, | |
12fcfd22 CM |
2007 | * you know that any inodes previously logged are safely on disk only |
2008 | * if it returns 0. | |
2009 | * | |
2010 | * Any other return value means you need to call btrfs_commit_transaction. | |
2011 | * Some of the edge cases for fsyncing directories that have had unlinks | |
2012 | * or renames done in the past mean that sometimes the only safe | |
2013 | * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, | |
2014 | * that has happened. | |
e02119d5 CM |
2015 | */ |
2016 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | |
2017 | struct btrfs_root *root) | |
2018 | { | |
7237f183 YZ |
2019 | int index1; |
2020 | int index2; | |
8cef4e16 | 2021 | int mark; |
e02119d5 | 2022 | int ret; |
e02119d5 | 2023 | struct btrfs_root *log = root->log_root; |
7237f183 | 2024 | struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; |
8cef4e16 | 2025 | unsigned long log_transid = 0; |
e02119d5 | 2026 | |
7237f183 YZ |
2027 | mutex_lock(&root->log_mutex); |
2028 | index1 = root->log_transid % 2; | |
2029 | if (atomic_read(&root->log_commit[index1])) { | |
12fcfd22 | 2030 | wait_log_commit(trans, root, root->log_transid); |
7237f183 YZ |
2031 | mutex_unlock(&root->log_mutex); |
2032 | return 0; | |
e02119d5 | 2033 | } |
7237f183 YZ |
2034 | atomic_set(&root->log_commit[index1], 1); |
2035 | ||
2036 | /* wait for previous tree log sync to complete */ | |
2037 | if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | |
12fcfd22 | 2038 | wait_log_commit(trans, root, root->log_transid - 1); |
86df7eb9 | 2039 | while (1) { |
7237f183 | 2040 | unsigned long batch = root->log_batch; |
cd354ad6 CM |
2041 | /* when we're on an ssd, just kick the log commit out */ |
2042 | if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) { | |
86df7eb9 YZ |
2043 | mutex_unlock(&root->log_mutex); |
2044 | schedule_timeout_uninterruptible(1); | |
2045 | mutex_lock(&root->log_mutex); | |
2046 | } | |
12fcfd22 | 2047 | wait_for_writer(trans, root); |
7237f183 | 2048 | if (batch == root->log_batch) |
e02119d5 CM |
2049 | break; |
2050 | } | |
e02119d5 | 2051 | |
12fcfd22 CM |
2052 | /* bail out if we need to do a full commit */ |
2053 | if (root->fs_info->last_trans_log_full_commit == trans->transid) { | |
2054 | ret = -EAGAIN; | |
2055 | mutex_unlock(&root->log_mutex); | |
2056 | goto out; | |
2057 | } | |
2058 | ||
8cef4e16 YZ |
2059 | log_transid = root->log_transid; |
2060 | if (log_transid % 2 == 0) | |
2061 | mark = EXTENT_DIRTY; | |
2062 | else | |
2063 | mark = EXTENT_NEW; | |
2064 | ||
690587d1 CM |
2065 | /* we start IO on all the marked extents here, but we don't actually |
2066 | * wait for them until later. | |
2067 | */ | |
8cef4e16 | 2068 | ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); |
79787eaa JM |
2069 | if (ret) { |
2070 | btrfs_abort_transaction(trans, root, ret); | |
2071 | mutex_unlock(&root->log_mutex); | |
2072 | goto out; | |
2073 | } | |
7237f183 | 2074 | |
5d4f98a2 | 2075 | btrfs_set_root_node(&log->root_item, log->node); |
7237f183 YZ |
2076 | |
2077 | root->log_batch = 0; | |
2078 | root->log_transid++; | |
2079 | log->log_transid = root->log_transid; | |
ff782e0a | 2080 | root->log_start_pid = 0; |
7237f183 YZ |
2081 | smp_mb(); |
2082 | /* | |
8cef4e16 YZ |
2083 | * IO has been started, blocks of the log tree have WRITTEN flag set |
2084 | * in their headers. new modifications of the log will be written to | |
2085 | * new positions. so it's safe to allow log writers to go in. | |
7237f183 YZ |
2086 | */ |
2087 | mutex_unlock(&root->log_mutex); | |
2088 | ||
2089 | mutex_lock(&log_root_tree->log_mutex); | |
2090 | log_root_tree->log_batch++; | |
2091 | atomic_inc(&log_root_tree->log_writers); | |
2092 | mutex_unlock(&log_root_tree->log_mutex); | |
2093 | ||
2094 | ret = update_log_root(trans, log); | |
7237f183 YZ |
2095 | |
2096 | mutex_lock(&log_root_tree->log_mutex); | |
2097 | if (atomic_dec_and_test(&log_root_tree->log_writers)) { | |
2098 | smp_mb(); | |
2099 | if (waitqueue_active(&log_root_tree->log_writer_wait)) | |
2100 | wake_up(&log_root_tree->log_writer_wait); | |
2101 | } | |
2102 | ||
4a500fd1 | 2103 | if (ret) { |
79787eaa JM |
2104 | if (ret != -ENOSPC) { |
2105 | btrfs_abort_transaction(trans, root, ret); | |
2106 | mutex_unlock(&log_root_tree->log_mutex); | |
2107 | goto out; | |
2108 | } | |
4a500fd1 YZ |
2109 | root->fs_info->last_trans_log_full_commit = trans->transid; |
2110 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); | |
2111 | mutex_unlock(&log_root_tree->log_mutex); | |
2112 | ret = -EAGAIN; | |
2113 | goto out; | |
2114 | } | |
2115 | ||
7237f183 YZ |
2116 | index2 = log_root_tree->log_transid % 2; |
2117 | if (atomic_read(&log_root_tree->log_commit[index2])) { | |
8cef4e16 | 2118 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
12fcfd22 CM |
2119 | wait_log_commit(trans, log_root_tree, |
2120 | log_root_tree->log_transid); | |
7237f183 | 2121 | mutex_unlock(&log_root_tree->log_mutex); |
b31eabd8 | 2122 | ret = 0; |
7237f183 YZ |
2123 | goto out; |
2124 | } | |
2125 | atomic_set(&log_root_tree->log_commit[index2], 1); | |
2126 | ||
12fcfd22 CM |
2127 | if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { |
2128 | wait_log_commit(trans, log_root_tree, | |
2129 | log_root_tree->log_transid - 1); | |
2130 | } | |
2131 | ||
2132 | wait_for_writer(trans, log_root_tree); | |
7237f183 | 2133 | |
12fcfd22 CM |
2134 | /* |
2135 | * now that we've moved on to the tree of log tree roots, | |
2136 | * check the full commit flag again | |
2137 | */ | |
2138 | if (root->fs_info->last_trans_log_full_commit == trans->transid) { | |
8cef4e16 | 2139 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
12fcfd22 CM |
2140 | mutex_unlock(&log_root_tree->log_mutex); |
2141 | ret = -EAGAIN; | |
2142 | goto out_wake_log_root; | |
2143 | } | |
7237f183 YZ |
2144 | |
2145 | ret = btrfs_write_and_wait_marked_extents(log_root_tree, | |
8cef4e16 YZ |
2146 | &log_root_tree->dirty_log_pages, |
2147 | EXTENT_DIRTY | EXTENT_NEW); | |
79787eaa JM |
2148 | if (ret) { |
2149 | btrfs_abort_transaction(trans, root, ret); | |
2150 | mutex_unlock(&log_root_tree->log_mutex); | |
2151 | goto out_wake_log_root; | |
2152 | } | |
8cef4e16 | 2153 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
e02119d5 | 2154 | |
6c41761f | 2155 | btrfs_set_super_log_root(root->fs_info->super_for_commit, |
7237f183 | 2156 | log_root_tree->node->start); |
6c41761f | 2157 | btrfs_set_super_log_root_level(root->fs_info->super_for_commit, |
7237f183 | 2158 | btrfs_header_level(log_root_tree->node)); |
e02119d5 | 2159 | |
7237f183 YZ |
2160 | log_root_tree->log_batch = 0; |
2161 | log_root_tree->log_transid++; | |
e02119d5 | 2162 | smp_mb(); |
7237f183 YZ |
2163 | |
2164 | mutex_unlock(&log_root_tree->log_mutex); | |
2165 | ||
2166 | /* | |
2167 | * nobody else is going to jump in and write the the ctree | |
2168 | * super here because the log_commit atomic below is protecting | |
2169 | * us. We must be called with a transaction handle pinning | |
2170 | * the running transaction open, so a full commit can't hop | |
2171 | * in and cause problems either. | |
2172 | */ | |
a2de733c | 2173 | btrfs_scrub_pause_super(root); |
4722607d | 2174 | write_ctree_super(trans, root->fs_info->tree_root, 1); |
a2de733c | 2175 | btrfs_scrub_continue_super(root); |
12fcfd22 | 2176 | ret = 0; |
7237f183 | 2177 | |
257c62e1 CM |
2178 | mutex_lock(&root->log_mutex); |
2179 | if (root->last_log_commit < log_transid) | |
2180 | root->last_log_commit = log_transid; | |
2181 | mutex_unlock(&root->log_mutex); | |
2182 | ||
12fcfd22 | 2183 | out_wake_log_root: |
7237f183 YZ |
2184 | atomic_set(&log_root_tree->log_commit[index2], 0); |
2185 | smp_mb(); | |
2186 | if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) | |
2187 | wake_up(&log_root_tree->log_commit_wait[index2]); | |
e02119d5 | 2188 | out: |
7237f183 YZ |
2189 | atomic_set(&root->log_commit[index1], 0); |
2190 | smp_mb(); | |
2191 | if (waitqueue_active(&root->log_commit_wait[index1])) | |
2192 | wake_up(&root->log_commit_wait[index1]); | |
b31eabd8 | 2193 | return ret; |
e02119d5 CM |
2194 | } |
2195 | ||
4a500fd1 YZ |
2196 | static void free_log_tree(struct btrfs_trans_handle *trans, |
2197 | struct btrfs_root *log) | |
e02119d5 CM |
2198 | { |
2199 | int ret; | |
d0c803c4 CM |
2200 | u64 start; |
2201 | u64 end; | |
e02119d5 CM |
2202 | struct walk_control wc = { |
2203 | .free = 1, | |
2204 | .process_func = process_one_buffer | |
2205 | }; | |
2206 | ||
e02119d5 CM |
2207 | ret = walk_log_tree(trans, log, &wc); |
2208 | BUG_ON(ret); | |
2209 | ||
d397712b | 2210 | while (1) { |
d0c803c4 | 2211 | ret = find_first_extent_bit(&log->dirty_log_pages, |
8cef4e16 | 2212 | 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); |
d0c803c4 CM |
2213 | if (ret) |
2214 | break; | |
2215 | ||
8cef4e16 YZ |
2216 | clear_extent_bits(&log->dirty_log_pages, start, end, |
2217 | EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); | |
d0c803c4 CM |
2218 | } |
2219 | ||
7237f183 YZ |
2220 | free_extent_buffer(log->node); |
2221 | kfree(log); | |
4a500fd1 YZ |
2222 | } |
2223 | ||
2224 | /* | |
2225 | * free all the extents used by the tree log. This should be called | |
2226 | * at commit time of the full transaction | |
2227 | */ | |
2228 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | |
2229 | { | |
2230 | if (root->log_root) { | |
2231 | free_log_tree(trans, root->log_root); | |
2232 | root->log_root = NULL; | |
2233 | } | |
2234 | return 0; | |
2235 | } | |
2236 | ||
2237 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | |
2238 | struct btrfs_fs_info *fs_info) | |
2239 | { | |
2240 | if (fs_info->log_root_tree) { | |
2241 | free_log_tree(trans, fs_info->log_root_tree); | |
2242 | fs_info->log_root_tree = NULL; | |
2243 | } | |
e02119d5 CM |
2244 | return 0; |
2245 | } | |
2246 | ||
e02119d5 CM |
2247 | /* |
2248 | * If both a file and directory are logged, and unlinks or renames are | |
2249 | * mixed in, we have a few interesting corners: | |
2250 | * | |
2251 | * create file X in dir Y | |
2252 | * link file X to X.link in dir Y | |
2253 | * fsync file X | |
2254 | * unlink file X but leave X.link | |
2255 | * fsync dir Y | |
2256 | * | |
2257 | * After a crash we would expect only X.link to exist. But file X | |
2258 | * didn't get fsync'd again so the log has back refs for X and X.link. | |
2259 | * | |
2260 | * We solve this by removing directory entries and inode backrefs from the | |
2261 | * log when a file that was logged in the current transaction is | |
2262 | * unlinked. Any later fsync will include the updated log entries, and | |
2263 | * we'll be able to reconstruct the proper directory items from backrefs. | |
2264 | * | |
2265 | * This optimizations allows us to avoid relogging the entire inode | |
2266 | * or the entire directory. | |
2267 | */ | |
2268 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | |
2269 | struct btrfs_root *root, | |
2270 | const char *name, int name_len, | |
2271 | struct inode *dir, u64 index) | |
2272 | { | |
2273 | struct btrfs_root *log; | |
2274 | struct btrfs_dir_item *di; | |
2275 | struct btrfs_path *path; | |
2276 | int ret; | |
4a500fd1 | 2277 | int err = 0; |
e02119d5 | 2278 | int bytes_del = 0; |
33345d01 | 2279 | u64 dir_ino = btrfs_ino(dir); |
e02119d5 | 2280 | |
3a5f1d45 CM |
2281 | if (BTRFS_I(dir)->logged_trans < trans->transid) |
2282 | return 0; | |
2283 | ||
e02119d5 CM |
2284 | ret = join_running_log_trans(root); |
2285 | if (ret) | |
2286 | return 0; | |
2287 | ||
2288 | mutex_lock(&BTRFS_I(dir)->log_mutex); | |
2289 | ||
2290 | log = root->log_root; | |
2291 | path = btrfs_alloc_path(); | |
a62f44a5 TI |
2292 | if (!path) { |
2293 | err = -ENOMEM; | |
2294 | goto out_unlock; | |
2295 | } | |
2a29edc6 | 2296 | |
33345d01 | 2297 | di = btrfs_lookup_dir_item(trans, log, path, dir_ino, |
e02119d5 | 2298 | name, name_len, -1); |
4a500fd1 YZ |
2299 | if (IS_ERR(di)) { |
2300 | err = PTR_ERR(di); | |
2301 | goto fail; | |
2302 | } | |
2303 | if (di) { | |
e02119d5 CM |
2304 | ret = btrfs_delete_one_dir_name(trans, log, path, di); |
2305 | bytes_del += name_len; | |
2306 | BUG_ON(ret); | |
2307 | } | |
b3b4aa74 | 2308 | btrfs_release_path(path); |
33345d01 | 2309 | di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, |
e02119d5 | 2310 | index, name, name_len, -1); |
4a500fd1 YZ |
2311 | if (IS_ERR(di)) { |
2312 | err = PTR_ERR(di); | |
2313 | goto fail; | |
2314 | } | |
2315 | if (di) { | |
e02119d5 CM |
2316 | ret = btrfs_delete_one_dir_name(trans, log, path, di); |
2317 | bytes_del += name_len; | |
2318 | BUG_ON(ret); | |
2319 | } | |
2320 | ||
2321 | /* update the directory size in the log to reflect the names | |
2322 | * we have removed | |
2323 | */ | |
2324 | if (bytes_del) { | |
2325 | struct btrfs_key key; | |
2326 | ||
33345d01 | 2327 | key.objectid = dir_ino; |
e02119d5 CM |
2328 | key.offset = 0; |
2329 | key.type = BTRFS_INODE_ITEM_KEY; | |
b3b4aa74 | 2330 | btrfs_release_path(path); |
e02119d5 CM |
2331 | |
2332 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | |
4a500fd1 YZ |
2333 | if (ret < 0) { |
2334 | err = ret; | |
2335 | goto fail; | |
2336 | } | |
e02119d5 CM |
2337 | if (ret == 0) { |
2338 | struct btrfs_inode_item *item; | |
2339 | u64 i_size; | |
2340 | ||
2341 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
2342 | struct btrfs_inode_item); | |
2343 | i_size = btrfs_inode_size(path->nodes[0], item); | |
2344 | if (i_size > bytes_del) | |
2345 | i_size -= bytes_del; | |
2346 | else | |
2347 | i_size = 0; | |
2348 | btrfs_set_inode_size(path->nodes[0], item, i_size); | |
2349 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
2350 | } else | |
2351 | ret = 0; | |
b3b4aa74 | 2352 | btrfs_release_path(path); |
e02119d5 | 2353 | } |
4a500fd1 | 2354 | fail: |
e02119d5 | 2355 | btrfs_free_path(path); |
a62f44a5 | 2356 | out_unlock: |
e02119d5 | 2357 | mutex_unlock(&BTRFS_I(dir)->log_mutex); |
4a500fd1 YZ |
2358 | if (ret == -ENOSPC) { |
2359 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
2360 | ret = 0; | |
79787eaa JM |
2361 | } else if (ret < 0) |
2362 | btrfs_abort_transaction(trans, root, ret); | |
2363 | ||
12fcfd22 | 2364 | btrfs_end_log_trans(root); |
e02119d5 | 2365 | |
411fc6bc | 2366 | return err; |
e02119d5 CM |
2367 | } |
2368 | ||
2369 | /* see comments for btrfs_del_dir_entries_in_log */ | |
2370 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | |
2371 | struct btrfs_root *root, | |
2372 | const char *name, int name_len, | |
2373 | struct inode *inode, u64 dirid) | |
2374 | { | |
2375 | struct btrfs_root *log; | |
2376 | u64 index; | |
2377 | int ret; | |
2378 | ||
3a5f1d45 CM |
2379 | if (BTRFS_I(inode)->logged_trans < trans->transid) |
2380 | return 0; | |
2381 | ||
e02119d5 CM |
2382 | ret = join_running_log_trans(root); |
2383 | if (ret) | |
2384 | return 0; | |
2385 | log = root->log_root; | |
2386 | mutex_lock(&BTRFS_I(inode)->log_mutex); | |
2387 | ||
33345d01 | 2388 | ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), |
e02119d5 CM |
2389 | dirid, &index); |
2390 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | |
4a500fd1 YZ |
2391 | if (ret == -ENOSPC) { |
2392 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
2393 | ret = 0; | |
79787eaa JM |
2394 | } else if (ret < 0 && ret != -ENOENT) |
2395 | btrfs_abort_transaction(trans, root, ret); | |
12fcfd22 | 2396 | btrfs_end_log_trans(root); |
e02119d5 | 2397 | |
e02119d5 CM |
2398 | return ret; |
2399 | } | |
2400 | ||
2401 | /* | |
2402 | * creates a range item in the log for 'dirid'. first_offset and | |
2403 | * last_offset tell us which parts of the key space the log should | |
2404 | * be considered authoritative for. | |
2405 | */ | |
2406 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | |
2407 | struct btrfs_root *log, | |
2408 | struct btrfs_path *path, | |
2409 | int key_type, u64 dirid, | |
2410 | u64 first_offset, u64 last_offset) | |
2411 | { | |
2412 | int ret; | |
2413 | struct btrfs_key key; | |
2414 | struct btrfs_dir_log_item *item; | |
2415 | ||
2416 | key.objectid = dirid; | |
2417 | key.offset = first_offset; | |
2418 | if (key_type == BTRFS_DIR_ITEM_KEY) | |
2419 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | |
2420 | else | |
2421 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | |
2422 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | |
4a500fd1 YZ |
2423 | if (ret) |
2424 | return ret; | |
e02119d5 CM |
2425 | |
2426 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
2427 | struct btrfs_dir_log_item); | |
2428 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | |
2429 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
b3b4aa74 | 2430 | btrfs_release_path(path); |
e02119d5 CM |
2431 | return 0; |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * log all the items included in the current transaction for a given | |
2436 | * directory. This also creates the range items in the log tree required | |
2437 | * to replay anything deleted before the fsync | |
2438 | */ | |
2439 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | |
2440 | struct btrfs_root *root, struct inode *inode, | |
2441 | struct btrfs_path *path, | |
2442 | struct btrfs_path *dst_path, int key_type, | |
2443 | u64 min_offset, u64 *last_offset_ret) | |
2444 | { | |
2445 | struct btrfs_key min_key; | |
2446 | struct btrfs_key max_key; | |
2447 | struct btrfs_root *log = root->log_root; | |
2448 | struct extent_buffer *src; | |
4a500fd1 | 2449 | int err = 0; |
e02119d5 CM |
2450 | int ret; |
2451 | int i; | |
2452 | int nritems; | |
2453 | u64 first_offset = min_offset; | |
2454 | u64 last_offset = (u64)-1; | |
33345d01 | 2455 | u64 ino = btrfs_ino(inode); |
e02119d5 CM |
2456 | |
2457 | log = root->log_root; | |
33345d01 | 2458 | max_key.objectid = ino; |
e02119d5 CM |
2459 | max_key.offset = (u64)-1; |
2460 | max_key.type = key_type; | |
2461 | ||
33345d01 | 2462 | min_key.objectid = ino; |
e02119d5 CM |
2463 | min_key.type = key_type; |
2464 | min_key.offset = min_offset; | |
2465 | ||
2466 | path->keep_locks = 1; | |
2467 | ||
2468 | ret = btrfs_search_forward(root, &min_key, &max_key, | |
2469 | path, 0, trans->transid); | |
2470 | ||
2471 | /* | |
2472 | * we didn't find anything from this transaction, see if there | |
2473 | * is anything at all | |
2474 | */ | |
33345d01 LZ |
2475 | if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { |
2476 | min_key.objectid = ino; | |
e02119d5 CM |
2477 | min_key.type = key_type; |
2478 | min_key.offset = (u64)-1; | |
b3b4aa74 | 2479 | btrfs_release_path(path); |
e02119d5 CM |
2480 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
2481 | if (ret < 0) { | |
b3b4aa74 | 2482 | btrfs_release_path(path); |
e02119d5 CM |
2483 | return ret; |
2484 | } | |
33345d01 | 2485 | ret = btrfs_previous_item(root, path, ino, key_type); |
e02119d5 CM |
2486 | |
2487 | /* if ret == 0 there are items for this type, | |
2488 | * create a range to tell us the last key of this type. | |
2489 | * otherwise, there are no items in this directory after | |
2490 | * *min_offset, and we create a range to indicate that. | |
2491 | */ | |
2492 | if (ret == 0) { | |
2493 | struct btrfs_key tmp; | |
2494 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | |
2495 | path->slots[0]); | |
d397712b | 2496 | if (key_type == tmp.type) |
e02119d5 | 2497 | first_offset = max(min_offset, tmp.offset) + 1; |
e02119d5 CM |
2498 | } |
2499 | goto done; | |
2500 | } | |
2501 | ||
2502 | /* go backward to find any previous key */ | |
33345d01 | 2503 | ret = btrfs_previous_item(root, path, ino, key_type); |
e02119d5 CM |
2504 | if (ret == 0) { |
2505 | struct btrfs_key tmp; | |
2506 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | |
2507 | if (key_type == tmp.type) { | |
2508 | first_offset = tmp.offset; | |
2509 | ret = overwrite_item(trans, log, dst_path, | |
2510 | path->nodes[0], path->slots[0], | |
2511 | &tmp); | |
4a500fd1 YZ |
2512 | if (ret) { |
2513 | err = ret; | |
2514 | goto done; | |
2515 | } | |
e02119d5 CM |
2516 | } |
2517 | } | |
b3b4aa74 | 2518 | btrfs_release_path(path); |
e02119d5 CM |
2519 | |
2520 | /* find the first key from this transaction again */ | |
2521 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | |
2522 | if (ret != 0) { | |
2523 | WARN_ON(1); | |
2524 | goto done; | |
2525 | } | |
2526 | ||
2527 | /* | |
2528 | * we have a block from this transaction, log every item in it | |
2529 | * from our directory | |
2530 | */ | |
d397712b | 2531 | while (1) { |
e02119d5 CM |
2532 | struct btrfs_key tmp; |
2533 | src = path->nodes[0]; | |
2534 | nritems = btrfs_header_nritems(src); | |
2535 | for (i = path->slots[0]; i < nritems; i++) { | |
2536 | btrfs_item_key_to_cpu(src, &min_key, i); | |
2537 | ||
33345d01 | 2538 | if (min_key.objectid != ino || min_key.type != key_type) |
e02119d5 CM |
2539 | goto done; |
2540 | ret = overwrite_item(trans, log, dst_path, src, i, | |
2541 | &min_key); | |
4a500fd1 YZ |
2542 | if (ret) { |
2543 | err = ret; | |
2544 | goto done; | |
2545 | } | |
e02119d5 CM |
2546 | } |
2547 | path->slots[0] = nritems; | |
2548 | ||
2549 | /* | |
2550 | * look ahead to the next item and see if it is also | |
2551 | * from this directory and from this transaction | |
2552 | */ | |
2553 | ret = btrfs_next_leaf(root, path); | |
2554 | if (ret == 1) { | |
2555 | last_offset = (u64)-1; | |
2556 | goto done; | |
2557 | } | |
2558 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | |
33345d01 | 2559 | if (tmp.objectid != ino || tmp.type != key_type) { |
e02119d5 CM |
2560 | last_offset = (u64)-1; |
2561 | goto done; | |
2562 | } | |
2563 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | |
2564 | ret = overwrite_item(trans, log, dst_path, | |
2565 | path->nodes[0], path->slots[0], | |
2566 | &tmp); | |
4a500fd1 YZ |
2567 | if (ret) |
2568 | err = ret; | |
2569 | else | |
2570 | last_offset = tmp.offset; | |
e02119d5 CM |
2571 | goto done; |
2572 | } | |
2573 | } | |
2574 | done: | |
b3b4aa74 DS |
2575 | btrfs_release_path(path); |
2576 | btrfs_release_path(dst_path); | |
e02119d5 | 2577 | |
4a500fd1 YZ |
2578 | if (err == 0) { |
2579 | *last_offset_ret = last_offset; | |
2580 | /* | |
2581 | * insert the log range keys to indicate where the log | |
2582 | * is valid | |
2583 | */ | |
2584 | ret = insert_dir_log_key(trans, log, path, key_type, | |
33345d01 | 2585 | ino, first_offset, last_offset); |
4a500fd1 YZ |
2586 | if (ret) |
2587 | err = ret; | |
2588 | } | |
2589 | return err; | |
e02119d5 CM |
2590 | } |
2591 | ||
2592 | /* | |
2593 | * logging directories is very similar to logging inodes, We find all the items | |
2594 | * from the current transaction and write them to the log. | |
2595 | * | |
2596 | * The recovery code scans the directory in the subvolume, and if it finds a | |
2597 | * key in the range logged that is not present in the log tree, then it means | |
2598 | * that dir entry was unlinked during the transaction. | |
2599 | * | |
2600 | * In order for that scan to work, we must include one key smaller than | |
2601 | * the smallest logged by this transaction and one key larger than the largest | |
2602 | * key logged by this transaction. | |
2603 | */ | |
2604 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | |
2605 | struct btrfs_root *root, struct inode *inode, | |
2606 | struct btrfs_path *path, | |
2607 | struct btrfs_path *dst_path) | |
2608 | { | |
2609 | u64 min_key; | |
2610 | u64 max_key; | |
2611 | int ret; | |
2612 | int key_type = BTRFS_DIR_ITEM_KEY; | |
2613 | ||
2614 | again: | |
2615 | min_key = 0; | |
2616 | max_key = 0; | |
d397712b | 2617 | while (1) { |
e02119d5 CM |
2618 | ret = log_dir_items(trans, root, inode, path, |
2619 | dst_path, key_type, min_key, | |
2620 | &max_key); | |
4a500fd1 YZ |
2621 | if (ret) |
2622 | return ret; | |
e02119d5 CM |
2623 | if (max_key == (u64)-1) |
2624 | break; | |
2625 | min_key = max_key + 1; | |
2626 | } | |
2627 | ||
2628 | if (key_type == BTRFS_DIR_ITEM_KEY) { | |
2629 | key_type = BTRFS_DIR_INDEX_KEY; | |
2630 | goto again; | |
2631 | } | |
2632 | return 0; | |
2633 | } | |
2634 | ||
2635 | /* | |
2636 | * a helper function to drop items from the log before we relog an | |
2637 | * inode. max_key_type indicates the highest item type to remove. | |
2638 | * This cannot be run for file data extents because it does not | |
2639 | * free the extents they point to. | |
2640 | */ | |
2641 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | |
2642 | struct btrfs_root *log, | |
2643 | struct btrfs_path *path, | |
2644 | u64 objectid, int max_key_type) | |
2645 | { | |
2646 | int ret; | |
2647 | struct btrfs_key key; | |
2648 | struct btrfs_key found_key; | |
2649 | ||
2650 | key.objectid = objectid; | |
2651 | key.type = max_key_type; | |
2652 | key.offset = (u64)-1; | |
2653 | ||
d397712b | 2654 | while (1) { |
e02119d5 | 2655 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
4a500fd1 YZ |
2656 | BUG_ON(ret == 0); |
2657 | if (ret < 0) | |
e02119d5 CM |
2658 | break; |
2659 | ||
2660 | if (path->slots[0] == 0) | |
2661 | break; | |
2662 | ||
2663 | path->slots[0]--; | |
2664 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
2665 | path->slots[0]); | |
2666 | ||
2667 | if (found_key.objectid != objectid) | |
2668 | break; | |
2669 | ||
2670 | ret = btrfs_del_item(trans, log, path); | |
65a246c5 TI |
2671 | if (ret) |
2672 | break; | |
b3b4aa74 | 2673 | btrfs_release_path(path); |
e02119d5 | 2674 | } |
b3b4aa74 | 2675 | btrfs_release_path(path); |
5bdbeb21 JB |
2676 | if (ret > 0) |
2677 | ret = 0; | |
4a500fd1 | 2678 | return ret; |
e02119d5 CM |
2679 | } |
2680 | ||
31ff1cd2 CM |
2681 | static noinline int copy_items(struct btrfs_trans_handle *trans, |
2682 | struct btrfs_root *log, | |
2683 | struct btrfs_path *dst_path, | |
2684 | struct extent_buffer *src, | |
2685 | int start_slot, int nr, int inode_only) | |
2686 | { | |
2687 | unsigned long src_offset; | |
2688 | unsigned long dst_offset; | |
2689 | struct btrfs_file_extent_item *extent; | |
2690 | struct btrfs_inode_item *inode_item; | |
2691 | int ret; | |
2692 | struct btrfs_key *ins_keys; | |
2693 | u32 *ins_sizes; | |
2694 | char *ins_data; | |
2695 | int i; | |
d20f7043 CM |
2696 | struct list_head ordered_sums; |
2697 | ||
2698 | INIT_LIST_HEAD(&ordered_sums); | |
31ff1cd2 CM |
2699 | |
2700 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | |
2701 | nr * sizeof(u32), GFP_NOFS); | |
2a29edc6 | 2702 | if (!ins_data) |
2703 | return -ENOMEM; | |
2704 | ||
31ff1cd2 CM |
2705 | ins_sizes = (u32 *)ins_data; |
2706 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | |
2707 | ||
2708 | for (i = 0; i < nr; i++) { | |
2709 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | |
2710 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | |
2711 | } | |
2712 | ret = btrfs_insert_empty_items(trans, log, dst_path, | |
2713 | ins_keys, ins_sizes, nr); | |
4a500fd1 YZ |
2714 | if (ret) { |
2715 | kfree(ins_data); | |
2716 | return ret; | |
2717 | } | |
31ff1cd2 | 2718 | |
5d4f98a2 | 2719 | for (i = 0; i < nr; i++, dst_path->slots[0]++) { |
31ff1cd2 CM |
2720 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], |
2721 | dst_path->slots[0]); | |
2722 | ||
2723 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | |
2724 | ||
2725 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | |
2726 | src_offset, ins_sizes[i]); | |
2727 | ||
2728 | if (inode_only == LOG_INODE_EXISTS && | |
2729 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | |
2730 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | |
2731 | dst_path->slots[0], | |
2732 | struct btrfs_inode_item); | |
2733 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | |
2734 | ||
2735 | /* set the generation to zero so the recover code | |
2736 | * can tell the difference between an logging | |
2737 | * just to say 'this inode exists' and a logging | |
2738 | * to say 'update this inode with these values' | |
2739 | */ | |
2740 | btrfs_set_inode_generation(dst_path->nodes[0], | |
2741 | inode_item, 0); | |
2742 | } | |
2743 | /* take a reference on file data extents so that truncates | |
2744 | * or deletes of this inode don't have to relog the inode | |
2745 | * again | |
2746 | */ | |
2747 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | |
2748 | int found_type; | |
2749 | extent = btrfs_item_ptr(src, start_slot + i, | |
2750 | struct btrfs_file_extent_item); | |
2751 | ||
8e531cdf | 2752 | if (btrfs_file_extent_generation(src, extent) < trans->transid) |
2753 | continue; | |
2754 | ||
31ff1cd2 | 2755 | found_type = btrfs_file_extent_type(src, extent); |
d899e052 YZ |
2756 | if (found_type == BTRFS_FILE_EXTENT_REG || |
2757 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | |
5d4f98a2 YZ |
2758 | u64 ds, dl, cs, cl; |
2759 | ds = btrfs_file_extent_disk_bytenr(src, | |
2760 | extent); | |
2761 | /* ds == 0 is a hole */ | |
2762 | if (ds == 0) | |
2763 | continue; | |
2764 | ||
2765 | dl = btrfs_file_extent_disk_num_bytes(src, | |
2766 | extent); | |
2767 | cs = btrfs_file_extent_offset(src, extent); | |
2768 | cl = btrfs_file_extent_num_bytes(src, | |
a419aef8 | 2769 | extent); |
580afd76 CM |
2770 | if (btrfs_file_extent_compression(src, |
2771 | extent)) { | |
2772 | cs = 0; | |
2773 | cl = dl; | |
2774 | } | |
5d4f98a2 YZ |
2775 | |
2776 | ret = btrfs_lookup_csums_range( | |
2777 | log->fs_info->csum_root, | |
2778 | ds + cs, ds + cs + cl - 1, | |
a2de733c | 2779 | &ordered_sums, 0); |
5d4f98a2 | 2780 | BUG_ON(ret); |
31ff1cd2 CM |
2781 | } |
2782 | } | |
31ff1cd2 CM |
2783 | } |
2784 | ||
2785 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | |
b3b4aa74 | 2786 | btrfs_release_path(dst_path); |
31ff1cd2 | 2787 | kfree(ins_data); |
d20f7043 CM |
2788 | |
2789 | /* | |
2790 | * we have to do this after the loop above to avoid changing the | |
2791 | * log tree while trying to change the log tree. | |
2792 | */ | |
4a500fd1 | 2793 | ret = 0; |
d397712b | 2794 | while (!list_empty(&ordered_sums)) { |
d20f7043 CM |
2795 | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, |
2796 | struct btrfs_ordered_sum, | |
2797 | list); | |
4a500fd1 YZ |
2798 | if (!ret) |
2799 | ret = btrfs_csum_file_blocks(trans, log, sums); | |
d20f7043 CM |
2800 | list_del(&sums->list); |
2801 | kfree(sums); | |
2802 | } | |
4a500fd1 | 2803 | return ret; |
31ff1cd2 CM |
2804 | } |
2805 | ||
e02119d5 CM |
2806 | /* log a single inode in the tree log. |
2807 | * At least one parent directory for this inode must exist in the tree | |
2808 | * or be logged already. | |
2809 | * | |
2810 | * Any items from this inode changed by the current transaction are copied | |
2811 | * to the log tree. An extra reference is taken on any extents in this | |
2812 | * file, allowing us to avoid a whole pile of corner cases around logging | |
2813 | * blocks that have been removed from the tree. | |
2814 | * | |
2815 | * See LOG_INODE_ALL and related defines for a description of what inode_only | |
2816 | * does. | |
2817 | * | |
2818 | * This handles both files and directories. | |
2819 | */ | |
12fcfd22 | 2820 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
e02119d5 CM |
2821 | struct btrfs_root *root, struct inode *inode, |
2822 | int inode_only) | |
2823 | { | |
2824 | struct btrfs_path *path; | |
2825 | struct btrfs_path *dst_path; | |
2826 | struct btrfs_key min_key; | |
2827 | struct btrfs_key max_key; | |
2828 | struct btrfs_root *log = root->log_root; | |
31ff1cd2 | 2829 | struct extent_buffer *src = NULL; |
4a500fd1 | 2830 | int err = 0; |
e02119d5 | 2831 | int ret; |
3a5f1d45 | 2832 | int nritems; |
31ff1cd2 CM |
2833 | int ins_start_slot = 0; |
2834 | int ins_nr; | |
33345d01 | 2835 | u64 ino = btrfs_ino(inode); |
e02119d5 CM |
2836 | |
2837 | log = root->log_root; | |
2838 | ||
2839 | path = btrfs_alloc_path(); | |
5df67083 TI |
2840 | if (!path) |
2841 | return -ENOMEM; | |
e02119d5 | 2842 | dst_path = btrfs_alloc_path(); |
5df67083 TI |
2843 | if (!dst_path) { |
2844 | btrfs_free_path(path); | |
2845 | return -ENOMEM; | |
2846 | } | |
e02119d5 | 2847 | |
33345d01 | 2848 | min_key.objectid = ino; |
e02119d5 CM |
2849 | min_key.type = BTRFS_INODE_ITEM_KEY; |
2850 | min_key.offset = 0; | |
2851 | ||
33345d01 | 2852 | max_key.objectid = ino; |
12fcfd22 CM |
2853 | |
2854 | /* today the code can only do partial logging of directories */ | |
2855 | if (!S_ISDIR(inode->i_mode)) | |
2856 | inode_only = LOG_INODE_ALL; | |
2857 | ||
e02119d5 CM |
2858 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) |
2859 | max_key.type = BTRFS_XATTR_ITEM_KEY; | |
2860 | else | |
2861 | max_key.type = (u8)-1; | |
2862 | max_key.offset = (u64)-1; | |
2863 | ||
16cdcec7 MX |
2864 | ret = btrfs_commit_inode_delayed_items(trans, inode); |
2865 | if (ret) { | |
2866 | btrfs_free_path(path); | |
2867 | btrfs_free_path(dst_path); | |
2868 | return ret; | |
2869 | } | |
2870 | ||
e02119d5 CM |
2871 | mutex_lock(&BTRFS_I(inode)->log_mutex); |
2872 | ||
2873 | /* | |
2874 | * a brute force approach to making sure we get the most uptodate | |
2875 | * copies of everything. | |
2876 | */ | |
2877 | if (S_ISDIR(inode->i_mode)) { | |
2878 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | |
2879 | ||
2880 | if (inode_only == LOG_INODE_EXISTS) | |
2881 | max_key_type = BTRFS_XATTR_ITEM_KEY; | |
33345d01 | 2882 | ret = drop_objectid_items(trans, log, path, ino, max_key_type); |
e02119d5 CM |
2883 | } else { |
2884 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | |
2885 | } | |
4a500fd1 YZ |
2886 | if (ret) { |
2887 | err = ret; | |
2888 | goto out_unlock; | |
2889 | } | |
e02119d5 CM |
2890 | path->keep_locks = 1; |
2891 | ||
d397712b | 2892 | while (1) { |
31ff1cd2 | 2893 | ins_nr = 0; |
e02119d5 CM |
2894 | ret = btrfs_search_forward(root, &min_key, &max_key, |
2895 | path, 0, trans->transid); | |
2896 | if (ret != 0) | |
2897 | break; | |
3a5f1d45 | 2898 | again: |
31ff1cd2 | 2899 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ |
33345d01 | 2900 | if (min_key.objectid != ino) |
e02119d5 CM |
2901 | break; |
2902 | if (min_key.type > max_key.type) | |
2903 | break; | |
31ff1cd2 | 2904 | |
e02119d5 | 2905 | src = path->nodes[0]; |
31ff1cd2 CM |
2906 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { |
2907 | ins_nr++; | |
2908 | goto next_slot; | |
2909 | } else if (!ins_nr) { | |
2910 | ins_start_slot = path->slots[0]; | |
2911 | ins_nr = 1; | |
2912 | goto next_slot; | |
e02119d5 CM |
2913 | } |
2914 | ||
31ff1cd2 CM |
2915 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, |
2916 | ins_nr, inode_only); | |
4a500fd1 YZ |
2917 | if (ret) { |
2918 | err = ret; | |
2919 | goto out_unlock; | |
2920 | } | |
31ff1cd2 CM |
2921 | ins_nr = 1; |
2922 | ins_start_slot = path->slots[0]; | |
2923 | next_slot: | |
e02119d5 | 2924 | |
3a5f1d45 CM |
2925 | nritems = btrfs_header_nritems(path->nodes[0]); |
2926 | path->slots[0]++; | |
2927 | if (path->slots[0] < nritems) { | |
2928 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | |
2929 | path->slots[0]); | |
2930 | goto again; | |
2931 | } | |
31ff1cd2 CM |
2932 | if (ins_nr) { |
2933 | ret = copy_items(trans, log, dst_path, src, | |
2934 | ins_start_slot, | |
2935 | ins_nr, inode_only); | |
4a500fd1 YZ |
2936 | if (ret) { |
2937 | err = ret; | |
2938 | goto out_unlock; | |
2939 | } | |
31ff1cd2 CM |
2940 | ins_nr = 0; |
2941 | } | |
b3b4aa74 | 2942 | btrfs_release_path(path); |
3a5f1d45 | 2943 | |
e02119d5 CM |
2944 | if (min_key.offset < (u64)-1) |
2945 | min_key.offset++; | |
2946 | else if (min_key.type < (u8)-1) | |
2947 | min_key.type++; | |
2948 | else if (min_key.objectid < (u64)-1) | |
2949 | min_key.objectid++; | |
2950 | else | |
2951 | break; | |
2952 | } | |
31ff1cd2 CM |
2953 | if (ins_nr) { |
2954 | ret = copy_items(trans, log, dst_path, src, | |
2955 | ins_start_slot, | |
2956 | ins_nr, inode_only); | |
4a500fd1 YZ |
2957 | if (ret) { |
2958 | err = ret; | |
2959 | goto out_unlock; | |
2960 | } | |
31ff1cd2 CM |
2961 | ins_nr = 0; |
2962 | } | |
2963 | WARN_ON(ins_nr); | |
9623f9a3 | 2964 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { |
b3b4aa74 DS |
2965 | btrfs_release_path(path); |
2966 | btrfs_release_path(dst_path); | |
e02119d5 | 2967 | ret = log_directory_changes(trans, root, inode, path, dst_path); |
4a500fd1 YZ |
2968 | if (ret) { |
2969 | err = ret; | |
2970 | goto out_unlock; | |
2971 | } | |
e02119d5 | 2972 | } |
3a5f1d45 | 2973 | BTRFS_I(inode)->logged_trans = trans->transid; |
4a500fd1 | 2974 | out_unlock: |
e02119d5 CM |
2975 | mutex_unlock(&BTRFS_I(inode)->log_mutex); |
2976 | ||
2977 | btrfs_free_path(path); | |
2978 | btrfs_free_path(dst_path); | |
4a500fd1 | 2979 | return err; |
e02119d5 CM |
2980 | } |
2981 | ||
12fcfd22 CM |
2982 | /* |
2983 | * follow the dentry parent pointers up the chain and see if any | |
2984 | * of the directories in it require a full commit before they can | |
2985 | * be logged. Returns zero if nothing special needs to be done or 1 if | |
2986 | * a full commit is required. | |
2987 | */ | |
2988 | static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, | |
2989 | struct inode *inode, | |
2990 | struct dentry *parent, | |
2991 | struct super_block *sb, | |
2992 | u64 last_committed) | |
e02119d5 | 2993 | { |
12fcfd22 CM |
2994 | int ret = 0; |
2995 | struct btrfs_root *root; | |
6a912213 | 2996 | struct dentry *old_parent = NULL; |
e02119d5 | 2997 | |
af4176b4 CM |
2998 | /* |
2999 | * for regular files, if its inode is already on disk, we don't | |
3000 | * have to worry about the parents at all. This is because | |
3001 | * we can use the last_unlink_trans field to record renames | |
3002 | * and other fun in this file. | |
3003 | */ | |
3004 | if (S_ISREG(inode->i_mode) && | |
3005 | BTRFS_I(inode)->generation <= last_committed && | |
3006 | BTRFS_I(inode)->last_unlink_trans <= last_committed) | |
3007 | goto out; | |
3008 | ||
12fcfd22 CM |
3009 | if (!S_ISDIR(inode->i_mode)) { |
3010 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
3011 | goto out; | |
3012 | inode = parent->d_inode; | |
3013 | } | |
3014 | ||
3015 | while (1) { | |
3016 | BTRFS_I(inode)->logged_trans = trans->transid; | |
3017 | smp_mb(); | |
3018 | ||
3019 | if (BTRFS_I(inode)->last_unlink_trans > last_committed) { | |
3020 | root = BTRFS_I(inode)->root; | |
3021 | ||
3022 | /* | |
3023 | * make sure any commits to the log are forced | |
3024 | * to be full commits | |
3025 | */ | |
3026 | root->fs_info->last_trans_log_full_commit = | |
3027 | trans->transid; | |
3028 | ret = 1; | |
3029 | break; | |
3030 | } | |
3031 | ||
3032 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
3033 | break; | |
3034 | ||
76dda93c | 3035 | if (IS_ROOT(parent)) |
12fcfd22 CM |
3036 | break; |
3037 | ||
6a912213 JB |
3038 | parent = dget_parent(parent); |
3039 | dput(old_parent); | |
3040 | old_parent = parent; | |
12fcfd22 CM |
3041 | inode = parent->d_inode; |
3042 | ||
3043 | } | |
6a912213 | 3044 | dput(old_parent); |
12fcfd22 | 3045 | out: |
e02119d5 CM |
3046 | return ret; |
3047 | } | |
3048 | ||
3049 | /* | |
3050 | * helper function around btrfs_log_inode to make sure newly created | |
3051 | * parent directories also end up in the log. A minimal inode and backref | |
3052 | * only logging is done of any parent directories that are older than | |
3053 | * the last committed transaction | |
3054 | */ | |
12fcfd22 CM |
3055 | int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, |
3056 | struct btrfs_root *root, struct inode *inode, | |
3057 | struct dentry *parent, int exists_only) | |
e02119d5 | 3058 | { |
12fcfd22 | 3059 | int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; |
e02119d5 | 3060 | struct super_block *sb; |
6a912213 | 3061 | struct dentry *old_parent = NULL; |
12fcfd22 CM |
3062 | int ret = 0; |
3063 | u64 last_committed = root->fs_info->last_trans_committed; | |
3064 | ||
3065 | sb = inode->i_sb; | |
3066 | ||
3a5e1404 SW |
3067 | if (btrfs_test_opt(root, NOTREELOG)) { |
3068 | ret = 1; | |
3069 | goto end_no_trans; | |
3070 | } | |
3071 | ||
12fcfd22 CM |
3072 | if (root->fs_info->last_trans_log_full_commit > |
3073 | root->fs_info->last_trans_committed) { | |
3074 | ret = 1; | |
3075 | goto end_no_trans; | |
3076 | } | |
3077 | ||
76dda93c YZ |
3078 | if (root != BTRFS_I(inode)->root || |
3079 | btrfs_root_refs(&root->root_item) == 0) { | |
3080 | ret = 1; | |
3081 | goto end_no_trans; | |
3082 | } | |
3083 | ||
12fcfd22 CM |
3084 | ret = check_parent_dirs_for_sync(trans, inode, parent, |
3085 | sb, last_committed); | |
3086 | if (ret) | |
3087 | goto end_no_trans; | |
e02119d5 | 3088 | |
22ee6985 | 3089 | if (btrfs_inode_in_log(inode, trans->transid)) { |
257c62e1 CM |
3090 | ret = BTRFS_NO_LOG_SYNC; |
3091 | goto end_no_trans; | |
3092 | } | |
3093 | ||
4a500fd1 YZ |
3094 | ret = start_log_trans(trans, root); |
3095 | if (ret) | |
3096 | goto end_trans; | |
e02119d5 | 3097 | |
12fcfd22 | 3098 | ret = btrfs_log_inode(trans, root, inode, inode_only); |
4a500fd1 YZ |
3099 | if (ret) |
3100 | goto end_trans; | |
12fcfd22 | 3101 | |
af4176b4 CM |
3102 | /* |
3103 | * for regular files, if its inode is already on disk, we don't | |
3104 | * have to worry about the parents at all. This is because | |
3105 | * we can use the last_unlink_trans field to record renames | |
3106 | * and other fun in this file. | |
3107 | */ | |
3108 | if (S_ISREG(inode->i_mode) && | |
3109 | BTRFS_I(inode)->generation <= last_committed && | |
4a500fd1 YZ |
3110 | BTRFS_I(inode)->last_unlink_trans <= last_committed) { |
3111 | ret = 0; | |
3112 | goto end_trans; | |
3113 | } | |
af4176b4 CM |
3114 | |
3115 | inode_only = LOG_INODE_EXISTS; | |
12fcfd22 CM |
3116 | while (1) { |
3117 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
e02119d5 CM |
3118 | break; |
3119 | ||
12fcfd22 | 3120 | inode = parent->d_inode; |
76dda93c YZ |
3121 | if (root != BTRFS_I(inode)->root) |
3122 | break; | |
3123 | ||
12fcfd22 CM |
3124 | if (BTRFS_I(inode)->generation > |
3125 | root->fs_info->last_trans_committed) { | |
3126 | ret = btrfs_log_inode(trans, root, inode, inode_only); | |
4a500fd1 YZ |
3127 | if (ret) |
3128 | goto end_trans; | |
12fcfd22 | 3129 | } |
76dda93c | 3130 | if (IS_ROOT(parent)) |
e02119d5 | 3131 | break; |
12fcfd22 | 3132 | |
6a912213 JB |
3133 | parent = dget_parent(parent); |
3134 | dput(old_parent); | |
3135 | old_parent = parent; | |
e02119d5 | 3136 | } |
12fcfd22 | 3137 | ret = 0; |
4a500fd1 | 3138 | end_trans: |
6a912213 | 3139 | dput(old_parent); |
4a500fd1 YZ |
3140 | if (ret < 0) { |
3141 | BUG_ON(ret != -ENOSPC); | |
3142 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
3143 | ret = 1; | |
3144 | } | |
12fcfd22 CM |
3145 | btrfs_end_log_trans(root); |
3146 | end_no_trans: | |
3147 | return ret; | |
e02119d5 CM |
3148 | } |
3149 | ||
3150 | /* | |
3151 | * it is not safe to log dentry if the chunk root has added new | |
3152 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | |
3153 | * If this returns 1, you must commit the transaction to safely get your | |
3154 | * data on disk. | |
3155 | */ | |
3156 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | |
3157 | struct btrfs_root *root, struct dentry *dentry) | |
3158 | { | |
6a912213 JB |
3159 | struct dentry *parent = dget_parent(dentry); |
3160 | int ret; | |
3161 | ||
3162 | ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); | |
3163 | dput(parent); | |
3164 | ||
3165 | return ret; | |
e02119d5 CM |
3166 | } |
3167 | ||
3168 | /* | |
3169 | * should be called during mount to recover any replay any log trees | |
3170 | * from the FS | |
3171 | */ | |
3172 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | |
3173 | { | |
3174 | int ret; | |
3175 | struct btrfs_path *path; | |
3176 | struct btrfs_trans_handle *trans; | |
3177 | struct btrfs_key key; | |
3178 | struct btrfs_key found_key; | |
3179 | struct btrfs_key tmp_key; | |
3180 | struct btrfs_root *log; | |
3181 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | |
3182 | struct walk_control wc = { | |
3183 | .process_func = process_one_buffer, | |
3184 | .stage = 0, | |
3185 | }; | |
3186 | ||
e02119d5 | 3187 | path = btrfs_alloc_path(); |
db5b493a TI |
3188 | if (!path) |
3189 | return -ENOMEM; | |
3190 | ||
3191 | fs_info->log_root_recovering = 1; | |
e02119d5 | 3192 | |
4a500fd1 | 3193 | trans = btrfs_start_transaction(fs_info->tree_root, 0); |
79787eaa JM |
3194 | if (IS_ERR(trans)) { |
3195 | ret = PTR_ERR(trans); | |
3196 | goto error; | |
3197 | } | |
e02119d5 CM |
3198 | |
3199 | wc.trans = trans; | |
3200 | wc.pin = 1; | |
3201 | ||
db5b493a | 3202 | ret = walk_log_tree(trans, log_root_tree, &wc); |
79787eaa JM |
3203 | if (ret) { |
3204 | btrfs_error(fs_info, ret, "Failed to pin buffers while " | |
3205 | "recovering log root tree."); | |
3206 | goto error; | |
3207 | } | |
e02119d5 CM |
3208 | |
3209 | again: | |
3210 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | |
3211 | key.offset = (u64)-1; | |
3212 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | |
3213 | ||
d397712b | 3214 | while (1) { |
e02119d5 | 3215 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); |
79787eaa JM |
3216 | |
3217 | if (ret < 0) { | |
3218 | btrfs_error(fs_info, ret, | |
3219 | "Couldn't find tree log root."); | |
3220 | goto error; | |
3221 | } | |
e02119d5 CM |
3222 | if (ret > 0) { |
3223 | if (path->slots[0] == 0) | |
3224 | break; | |
3225 | path->slots[0]--; | |
3226 | } | |
3227 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
3228 | path->slots[0]); | |
b3b4aa74 | 3229 | btrfs_release_path(path); |
e02119d5 CM |
3230 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
3231 | break; | |
3232 | ||
3233 | log = btrfs_read_fs_root_no_radix(log_root_tree, | |
3234 | &found_key); | |
79787eaa JM |
3235 | if (IS_ERR(log)) { |
3236 | ret = PTR_ERR(log); | |
3237 | btrfs_error(fs_info, ret, | |
3238 | "Couldn't read tree log root."); | |
3239 | goto error; | |
3240 | } | |
e02119d5 CM |
3241 | |
3242 | tmp_key.objectid = found_key.offset; | |
3243 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | |
3244 | tmp_key.offset = (u64)-1; | |
3245 | ||
3246 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | |
79787eaa JM |
3247 | if (IS_ERR(wc.replay_dest)) { |
3248 | ret = PTR_ERR(wc.replay_dest); | |
3249 | btrfs_error(fs_info, ret, "Couldn't read target root " | |
3250 | "for tree log recovery."); | |
3251 | goto error; | |
3252 | } | |
e02119d5 | 3253 | |
07d400a6 | 3254 | wc.replay_dest->log_root = log; |
5d4f98a2 | 3255 | btrfs_record_root_in_trans(trans, wc.replay_dest); |
e02119d5 CM |
3256 | ret = walk_log_tree(trans, log, &wc); |
3257 | BUG_ON(ret); | |
3258 | ||
3259 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | |
3260 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | |
3261 | path); | |
3262 | BUG_ON(ret); | |
3263 | } | |
3264 | ||
3265 | key.offset = found_key.offset - 1; | |
07d400a6 | 3266 | wc.replay_dest->log_root = NULL; |
e02119d5 | 3267 | free_extent_buffer(log->node); |
b263c2c8 | 3268 | free_extent_buffer(log->commit_root); |
e02119d5 CM |
3269 | kfree(log); |
3270 | ||
3271 | if (found_key.offset == 0) | |
3272 | break; | |
3273 | } | |
b3b4aa74 | 3274 | btrfs_release_path(path); |
e02119d5 CM |
3275 | |
3276 | /* step one is to pin it all, step two is to replay just inodes */ | |
3277 | if (wc.pin) { | |
3278 | wc.pin = 0; | |
3279 | wc.process_func = replay_one_buffer; | |
3280 | wc.stage = LOG_WALK_REPLAY_INODES; | |
3281 | goto again; | |
3282 | } | |
3283 | /* step three is to replay everything */ | |
3284 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | |
3285 | wc.stage++; | |
3286 | goto again; | |
3287 | } | |
3288 | ||
3289 | btrfs_free_path(path); | |
3290 | ||
3291 | free_extent_buffer(log_root_tree->node); | |
3292 | log_root_tree->log_root = NULL; | |
3293 | fs_info->log_root_recovering = 0; | |
3294 | ||
3295 | /* step 4: commit the transaction, which also unpins the blocks */ | |
3296 | btrfs_commit_transaction(trans, fs_info->tree_root); | |
3297 | ||
3298 | kfree(log_root_tree); | |
3299 | return 0; | |
79787eaa JM |
3300 | |
3301 | error: | |
3302 | btrfs_free_path(path); | |
3303 | return ret; | |
e02119d5 | 3304 | } |
12fcfd22 CM |
3305 | |
3306 | /* | |
3307 | * there are some corner cases where we want to force a full | |
3308 | * commit instead of allowing a directory to be logged. | |
3309 | * | |
3310 | * They revolve around files there were unlinked from the directory, and | |
3311 | * this function updates the parent directory so that a full commit is | |
3312 | * properly done if it is fsync'd later after the unlinks are done. | |
3313 | */ | |
3314 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | |
3315 | struct inode *dir, struct inode *inode, | |
3316 | int for_rename) | |
3317 | { | |
af4176b4 CM |
3318 | /* |
3319 | * when we're logging a file, if it hasn't been renamed | |
3320 | * or unlinked, and its inode is fully committed on disk, | |
3321 | * we don't have to worry about walking up the directory chain | |
3322 | * to log its parents. | |
3323 | * | |
3324 | * So, we use the last_unlink_trans field to put this transid | |
3325 | * into the file. When the file is logged we check it and | |
3326 | * don't log the parents if the file is fully on disk. | |
3327 | */ | |
3328 | if (S_ISREG(inode->i_mode)) | |
3329 | BTRFS_I(inode)->last_unlink_trans = trans->transid; | |
3330 | ||
12fcfd22 CM |
3331 | /* |
3332 | * if this directory was already logged any new | |
3333 | * names for this file/dir will get recorded | |
3334 | */ | |
3335 | smp_mb(); | |
3336 | if (BTRFS_I(dir)->logged_trans == trans->transid) | |
3337 | return; | |
3338 | ||
3339 | /* | |
3340 | * if the inode we're about to unlink was logged, | |
3341 | * the log will be properly updated for any new names | |
3342 | */ | |
3343 | if (BTRFS_I(inode)->logged_trans == trans->transid) | |
3344 | return; | |
3345 | ||
3346 | /* | |
3347 | * when renaming files across directories, if the directory | |
3348 | * there we're unlinking from gets fsync'd later on, there's | |
3349 | * no way to find the destination directory later and fsync it | |
3350 | * properly. So, we have to be conservative and force commits | |
3351 | * so the new name gets discovered. | |
3352 | */ | |
3353 | if (for_rename) | |
3354 | goto record; | |
3355 | ||
3356 | /* we can safely do the unlink without any special recording */ | |
3357 | return; | |
3358 | ||
3359 | record: | |
3360 | BTRFS_I(dir)->last_unlink_trans = trans->transid; | |
3361 | } | |
3362 | ||
3363 | /* | |
3364 | * Call this after adding a new name for a file and it will properly | |
3365 | * update the log to reflect the new name. | |
3366 | * | |
3367 | * It will return zero if all goes well, and it will return 1 if a | |
3368 | * full transaction commit is required. | |
3369 | */ | |
3370 | int btrfs_log_new_name(struct btrfs_trans_handle *trans, | |
3371 | struct inode *inode, struct inode *old_dir, | |
3372 | struct dentry *parent) | |
3373 | { | |
3374 | struct btrfs_root * root = BTRFS_I(inode)->root; | |
3375 | ||
af4176b4 CM |
3376 | /* |
3377 | * this will force the logging code to walk the dentry chain | |
3378 | * up for the file | |
3379 | */ | |
3380 | if (S_ISREG(inode->i_mode)) | |
3381 | BTRFS_I(inode)->last_unlink_trans = trans->transid; | |
3382 | ||
12fcfd22 CM |
3383 | /* |
3384 | * if this inode hasn't been logged and directory we're renaming it | |
3385 | * from hasn't been logged, we don't need to log it | |
3386 | */ | |
3387 | if (BTRFS_I(inode)->logged_trans <= | |
3388 | root->fs_info->last_trans_committed && | |
3389 | (!old_dir || BTRFS_I(old_dir)->logged_trans <= | |
3390 | root->fs_info->last_trans_committed)) | |
3391 | return 0; | |
3392 | ||
3393 | return btrfs_log_inode_parent(trans, root, inode, parent, 1); | |
3394 | } | |
3395 |