]> Git Repo - linux.git/blame - fs/xfs/xfs_log.c
xfs: remove the aborted parameter to xlog_state_done_syncing
[linux.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
ad223e60
MT
27STATIC int
28xlog_commit_record(
29 struct xlog *log,
30 struct xlog_ticket *ticket,
31 struct xlog_in_core **iclog,
32 xfs_lsn_t *commitlsnp);
33
9a8d2fdb
MT
34STATIC struct xlog *
35xlog_alloc_log(
36 struct xfs_mount *mp,
37 struct xfs_buftarg *log_target,
38 xfs_daddr_t blk_offset,
39 int num_bblks);
ad223e60
MT
40STATIC int
41xlog_space_left(
42 struct xlog *log,
43 atomic64_t *head);
9a8d2fdb
MT
44STATIC void
45xlog_dealloc_log(
46 struct xlog *log);
1da177e4
LT
47
48/* local state machine functions */
d15cbf2f 49STATIC void xlog_state_done_syncing(
12e6a0f4 50 struct xlog_in_core *iclog);
9a8d2fdb
MT
51STATIC int
52xlog_state_get_iclog_space(
53 struct xlog *log,
54 int len,
55 struct xlog_in_core **iclog,
56 struct xlog_ticket *ticket,
57 int *continued_write,
58 int *logoffsetp);
9a8d2fdb
MT
59STATIC void
60xlog_state_switch_iclogs(
61 struct xlog *log,
62 struct xlog_in_core *iclog,
63 int eventual_size);
64STATIC void
65xlog_state_want_sync(
66 struct xlog *log,
67 struct xlog_in_core *iclog);
1da177e4 68
ad223e60
MT
69STATIC void
70xlog_grant_push_ail(
9a8d2fdb
MT
71 struct xlog *log,
72 int need_bytes);
73STATIC void
74xlog_regrant_reserve_log_space(
75 struct xlog *log,
76 struct xlog_ticket *ticket);
77STATIC void
78xlog_ungrant_log_space(
79 struct xlog *log,
80 struct xlog_ticket *ticket);
df732b29
CH
81STATIC void
82xlog_sync(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
cfcbbbd0 85#if defined(DEBUG)
9a8d2fdb
MT
86STATIC void
87xlog_verify_dest_ptr(
88 struct xlog *log,
5809d5e0 89 void *ptr);
ad223e60
MT
90STATIC void
91xlog_verify_grant_tail(
9a8d2fdb
MT
92 struct xlog *log);
93STATIC void
94xlog_verify_iclog(
95 struct xlog *log,
96 struct xlog_in_core *iclog,
abca1f33 97 int count);
9a8d2fdb
MT
98STATIC void
99xlog_verify_tail_lsn(
100 struct xlog *log,
101 struct xlog_in_core *iclog,
102 xfs_lsn_t tail_lsn);
1da177e4
LT
103#else
104#define xlog_verify_dest_ptr(a,b)
3f336c6f 105#define xlog_verify_grant_tail(a)
abca1f33 106#define xlog_verify_iclog(a,b,c)
1da177e4
LT
107#define xlog_verify_tail_lsn(a,b,c)
108#endif
109
9a8d2fdb
MT
110STATIC int
111xlog_iclogs_empty(
112 struct xlog *log);
1da177e4 113
dd954c69 114static void
663e496a 115xlog_grant_sub_space(
ad223e60
MT
116 struct xlog *log,
117 atomic64_t *head,
118 int bytes)
dd954c69 119{
d0eb2f38
DC
120 int64_t head_val = atomic64_read(head);
121 int64_t new, old;
a69ed03c 122
d0eb2f38
DC
123 do {
124 int cycle, space;
a69ed03c 125
d0eb2f38 126 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 127
d0eb2f38
DC
128 space -= bytes;
129 if (space < 0) {
130 space += log->l_logsize;
131 cycle--;
132 }
133
134 old = head_val;
135 new = xlog_assign_grant_head_val(cycle, space);
136 head_val = atomic64_cmpxchg(head, old, new);
137 } while (head_val != old);
dd954c69
CH
138}
139
140static void
663e496a 141xlog_grant_add_space(
ad223e60
MT
142 struct xlog *log,
143 atomic64_t *head,
144 int bytes)
dd954c69 145{
d0eb2f38
DC
146 int64_t head_val = atomic64_read(head);
147 int64_t new, old;
a69ed03c 148
d0eb2f38
DC
149 do {
150 int tmp;
151 int cycle, space;
a69ed03c 152
d0eb2f38 153 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 154
d0eb2f38
DC
155 tmp = log->l_logsize - space;
156 if (tmp > bytes)
157 space += bytes;
158 else {
159 space = bytes - tmp;
160 cycle++;
161 }
162
163 old = head_val;
164 new = xlog_assign_grant_head_val(cycle, space);
165 head_val = atomic64_cmpxchg(head, old, new);
166 } while (head_val != old);
dd954c69 167}
a69ed03c 168
c303c5b8
CH
169STATIC void
170xlog_grant_head_init(
171 struct xlog_grant_head *head)
172{
173 xlog_assign_grant_head(&head->grant, 1, 0);
174 INIT_LIST_HEAD(&head->waiters);
175 spin_lock_init(&head->lock);
176}
177
a79bf2d7
CH
178STATIC void
179xlog_grant_head_wake_all(
180 struct xlog_grant_head *head)
181{
182 struct xlog_ticket *tic;
183
184 spin_lock(&head->lock);
185 list_for_each_entry(tic, &head->waiters, t_queue)
186 wake_up_process(tic->t_task);
187 spin_unlock(&head->lock);
188}
189
e179840d
CH
190static inline int
191xlog_ticket_reservation(
ad223e60 192 struct xlog *log,
e179840d
CH
193 struct xlog_grant_head *head,
194 struct xlog_ticket *tic)
9f9c19ec 195{
e179840d
CH
196 if (head == &log->l_write_head) {
197 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
198 return tic->t_unit_res;
199 } else {
9f9c19ec 200 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 201 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 202 else
e179840d 203 return tic->t_unit_res;
9f9c19ec 204 }
9f9c19ec
CH
205}
206
207STATIC bool
e179840d 208xlog_grant_head_wake(
ad223e60 209 struct xlog *log,
e179840d 210 struct xlog_grant_head *head,
9f9c19ec
CH
211 int *free_bytes)
212{
213 struct xlog_ticket *tic;
214 int need_bytes;
7c107afb 215 bool woken_task = false;
9f9c19ec 216
e179840d 217 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
218
219 /*
220 * There is a chance that the size of the CIL checkpoints in
221 * progress at the last AIL push target calculation resulted in
222 * limiting the target to the log head (l_last_sync_lsn) at the
223 * time. This may not reflect where the log head is now as the
224 * CIL checkpoints may have completed.
225 *
226 * Hence when we are woken here, it may be that the head of the
227 * log that has moved rather than the tail. As the tail didn't
228 * move, there still won't be space available for the
229 * reservation we require. However, if the AIL has already
230 * pushed to the target defined by the old log head location, we
231 * will hang here waiting for something else to update the AIL
232 * push target.
233 *
234 * Therefore, if there isn't space to wake the first waiter on
235 * the grant head, we need to push the AIL again to ensure the
236 * target reflects both the current log tail and log head
237 * position before we wait for the tail to move again.
238 */
239
e179840d 240 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
241 if (*free_bytes < need_bytes) {
242 if (!woken_task)
243 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 244 return false;
7c107afb 245 }
9f9c19ec 246
e179840d
CH
247 *free_bytes -= need_bytes;
248 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 249 wake_up_process(tic->t_task);
7c107afb 250 woken_task = true;
9f9c19ec
CH
251 }
252
253 return true;
254}
255
256STATIC int
23ee3df3 257xlog_grant_head_wait(
ad223e60 258 struct xlog *log,
23ee3df3 259 struct xlog_grant_head *head,
9f9c19ec 260 struct xlog_ticket *tic,
a30b0367
DC
261 int need_bytes) __releases(&head->lock)
262 __acquires(&head->lock)
9f9c19ec 263{
23ee3df3 264 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
265
266 do {
267 if (XLOG_FORCED_SHUTDOWN(log))
268 goto shutdown;
269 xlog_grant_push_ail(log, need_bytes);
270
14a7235f 271 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 272 spin_unlock(&head->lock);
14a7235f 273
ff6d6af2 274 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 275
14a7235f
CH
276 trace_xfs_log_grant_sleep(log, tic);
277 schedule();
9f9c19ec
CH
278 trace_xfs_log_grant_wake(log, tic);
279
23ee3df3 280 spin_lock(&head->lock);
9f9c19ec
CH
281 if (XLOG_FORCED_SHUTDOWN(log))
282 goto shutdown;
23ee3df3 283 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
284
285 list_del_init(&tic->t_queue);
286 return 0;
287shutdown:
288 list_del_init(&tic->t_queue);
2451337d 289 return -EIO;
9f9c19ec
CH
290}
291
42ceedb3
CH
292/*
293 * Atomically get the log space required for a log ticket.
294 *
295 * Once a ticket gets put onto head->waiters, it will only return after the
296 * needed reservation is satisfied.
297 *
298 * This function is structured so that it has a lock free fast path. This is
299 * necessary because every new transaction reservation will come through this
300 * path. Hence any lock will be globally hot if we take it unconditionally on
301 * every pass.
302 *
303 * As tickets are only ever moved on and off head->waiters under head->lock, we
304 * only need to take that lock if we are going to add the ticket to the queue
305 * and sleep. We can avoid taking the lock if the ticket was never added to
306 * head->waiters because the t_queue list head will be empty and we hold the
307 * only reference to it so it can safely be checked unlocked.
308 */
309STATIC int
310xlog_grant_head_check(
ad223e60 311 struct xlog *log,
42ceedb3
CH
312 struct xlog_grant_head *head,
313 struct xlog_ticket *tic,
314 int *need_bytes)
315{
316 int free_bytes;
317 int error = 0;
318
319 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
320
321 /*
322 * If there are other waiters on the queue then give them a chance at
323 * logspace before us. Wake up the first waiters, if we do not wake
324 * up all the waiters then go to sleep waiting for more free space,
325 * otherwise try to get some space for this transaction.
326 */
327 *need_bytes = xlog_ticket_reservation(log, head, tic);
328 free_bytes = xlog_space_left(log, &head->grant);
329 if (!list_empty_careful(&head->waiters)) {
330 spin_lock(&head->lock);
331 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
332 free_bytes < *need_bytes) {
333 error = xlog_grant_head_wait(log, head, tic,
334 *need_bytes);
335 }
336 spin_unlock(&head->lock);
337 } else if (free_bytes < *need_bytes) {
338 spin_lock(&head->lock);
339 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
340 spin_unlock(&head->lock);
341 }
342
343 return error;
344}
345
0adba536
CH
346static void
347xlog_tic_reset_res(xlog_ticket_t *tic)
348{
349 tic->t_res_num = 0;
350 tic->t_res_arr_sum = 0;
351 tic->t_res_num_ophdrs = 0;
352}
353
354static void
355xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
356{
357 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
358 /* add to overflow and start again */
359 tic->t_res_o_flow += tic->t_res_arr_sum;
360 tic->t_res_num = 0;
361 tic->t_res_arr_sum = 0;
362 }
363
364 tic->t_res_arr[tic->t_res_num].r_len = len;
365 tic->t_res_arr[tic->t_res_num].r_type = type;
366 tic->t_res_arr_sum += len;
367 tic->t_res_num++;
368}
dd954c69 369
9006fb91
CH
370/*
371 * Replenish the byte reservation required by moving the grant write head.
372 */
373int
374xfs_log_regrant(
375 struct xfs_mount *mp,
376 struct xlog_ticket *tic)
377{
ad223e60 378 struct xlog *log = mp->m_log;
9006fb91
CH
379 int need_bytes;
380 int error = 0;
381
382 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 383 return -EIO;
9006fb91 384
ff6d6af2 385 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
386
387 /*
388 * This is a new transaction on the ticket, so we need to change the
389 * transaction ID so that the next transaction has a different TID in
390 * the log. Just add one to the existing tid so that we can see chains
391 * of rolling transactions in the log easily.
392 */
393 tic->t_tid++;
394
395 xlog_grant_push_ail(log, tic->t_unit_res);
396
397 tic->t_curr_res = tic->t_unit_res;
398 xlog_tic_reset_res(tic);
399
400 if (tic->t_cnt > 0)
401 return 0;
402
403 trace_xfs_log_regrant(log, tic);
404
405 error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 &need_bytes);
407 if (error)
408 goto out_error;
409
410 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 trace_xfs_log_regrant_exit(log, tic);
412 xlog_verify_grant_tail(log);
413 return 0;
414
415out_error:
416 /*
417 * If we are failing, make sure the ticket doesn't have any current
418 * reservations. We don't want to add this back when the ticket/
419 * transaction gets cancelled.
420 */
421 tic->t_curr_res = 0;
422 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
423 return error;
424}
425
426/*
a0e336ba 427 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
428 *
429 * Each reservation is going to reserve extra space for a log record header.
430 * When writes happen to the on-disk log, we don't subtract the length of the
431 * log record header from any reservation. By wasting space in each
432 * reservation, we prevent over allocation problems.
433 */
434int
435xfs_log_reserve(
436 struct xfs_mount *mp,
437 int unit_bytes,
438 int cnt,
439 struct xlog_ticket **ticp,
c8ce540d 440 uint8_t client,
710b1e2c 441 bool permanent)
9006fb91 442{
ad223e60 443 struct xlog *log = mp->m_log;
9006fb91
CH
444 struct xlog_ticket *tic;
445 int need_bytes;
446 int error = 0;
447
448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449
450 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 451 return -EIO;
9006fb91 452
ff6d6af2 453 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
454
455 ASSERT(*ticp == NULL);
707e0dda 456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
9006fb91
CH
457 *ticp = tic;
458
437a255a
DC
459 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 : tic->t_unit_res);
9006fb91
CH
461
462 trace_xfs_log_reserve(log, tic);
463
464 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 &need_bytes);
466 if (error)
467 goto out_error;
468
469 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 trace_xfs_log_reserve_exit(log, tic);
472 xlog_verify_grant_tail(log);
473 return 0;
474
475out_error:
476 /*
477 * If we are failing, make sure the ticket doesn't have any current
478 * reservations. We don't want to add this back when the ticket/
479 * transaction gets cancelled.
480 */
481 tic->t_curr_res = 0;
482 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
483 return error;
484}
485
486
1da177e4
LT
487/*
488 * NOTES:
489 *
490 * 1. currblock field gets updated at startup and after in-core logs
491 * marked as with WANT_SYNC.
492 */
493
494/*
495 * This routine is called when a user of a log manager ticket is done with
496 * the reservation. If the ticket was ever used, then a commit record for
497 * the associated transaction is written out as a log operation header with
498 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
499 * a given ticket. If the ticket was one with a permanent reservation, then
500 * a few operations are done differently. Permanent reservation tickets by
501 * default don't release the reservation. They just commit the current
502 * transaction with the belief that the reservation is still needed. A flag
503 * must be passed in before permanent reservations are actually released.
504 * When these type of tickets are not released, they need to be set into
505 * the inited state again. By doing this, a start record will be written
506 * out when the next write occurs.
507 */
508xfs_lsn_t
35a8a72f
CH
509xfs_log_done(
510 struct xfs_mount *mp,
511 struct xlog_ticket *ticket,
512 struct xlog_in_core **iclog,
f78c3901 513 bool regrant)
1da177e4 514{
ad223e60 515 struct xlog *log = mp->m_log;
35a8a72f 516 xfs_lsn_t lsn = 0;
1da177e4 517
1da177e4
LT
518 if (XLOG_FORCED_SHUTDOWN(log) ||
519 /*
520 * If nothing was ever written, don't write out commit record.
521 * If we get an error, just continue and give back the log ticket.
522 */
523 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 524 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4 525 lsn = (xfs_lsn_t) -1;
f78c3901 526 regrant = false;
1da177e4
LT
527 }
528
529
f78c3901 530 if (!regrant) {
0b1b213f
CH
531 trace_xfs_log_done_nonperm(log, ticket);
532
1da177e4 533 /*
c41564b5 534 * Release ticket if not permanent reservation or a specific
1da177e4
LT
535 * request has been made to release a permanent reservation.
536 */
537 xlog_ungrant_log_space(log, ticket);
1da177e4 538 } else {
0b1b213f
CH
539 trace_xfs_log_done_perm(log, ticket);
540
1da177e4 541 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
542 /* If this ticket was a permanent reservation and we aren't
543 * trying to release it, reset the inited flags; so next time
544 * we write, a start record will be written out.
545 */
1da177e4 546 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 547 }
1da177e4 548
f78c3901 549 xfs_log_ticket_put(ticket);
1da177e4 550 return lsn;
35a8a72f 551}
1da177e4 552
df732b29
CH
553static bool
554__xlog_state_release_iclog(
555 struct xlog *log,
556 struct xlog_in_core *iclog)
557{
558 lockdep_assert_held(&log->l_icloglock);
559
560 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
561 /* update tail before writing to iclog */
562 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
563
564 iclog->ic_state = XLOG_STATE_SYNCING;
565 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
566 xlog_verify_tail_lsn(log, iclog, tail_lsn);
567 /* cycle incremented when incrementing curr_block */
568 return true;
569 }
570
571 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
572 return false;
573}
574
575/*
576 * Flush iclog to disk if this is the last reference to the given iclog and the
577 * it is in the WANT_SYNC state.
578 */
579static int
580xlog_state_release_iclog(
581 struct xlog *log,
582 struct xlog_in_core *iclog)
583{
584 lockdep_assert_held(&log->l_icloglock);
585
1858bb0b 586 if (iclog->ic_state == XLOG_STATE_IOERROR)
df732b29
CH
587 return -EIO;
588
589 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
590 __xlog_state_release_iclog(log, iclog)) {
591 spin_unlock(&log->l_icloglock);
592 xlog_sync(log, iclog);
593 spin_lock(&log->l_icloglock);
594 }
595
596 return 0;
597}
598
f97a43e4 599void
35a8a72f 600xfs_log_release_iclog(
35a8a72f 601 struct xlog_in_core *iclog)
1da177e4 602{
f97a43e4 603 struct xlog *log = iclog->ic_log;
a582f32f 604 bool sync = false;
1da177e4 605
df732b29 606 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
a582f32f
CH
607 if (iclog->ic_state != XLOG_STATE_IOERROR)
608 sync = __xlog_state_release_iclog(log, iclog);
df732b29 609 spin_unlock(&log->l_icloglock);
df732b29 610 }
a582f32f
CH
611
612 if (sync)
613 xlog_sync(log, iclog);
1da177e4
LT
614}
615
1da177e4
LT
616/*
617 * Mount a log filesystem
618 *
619 * mp - ubiquitous xfs mount point structure
620 * log_target - buftarg of on-disk log device
621 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
622 * num_bblocks - Number of BBSIZE blocks in on-disk log
623 *
624 * Return error or zero.
625 */
626int
249a8c11
DC
627xfs_log_mount(
628 xfs_mount_t *mp,
629 xfs_buftarg_t *log_target,
630 xfs_daddr_t blk_offset,
631 int num_bblks)
1da177e4 632{
9c92ee20 633 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
634 int error = 0;
635 int min_logfsbs;
249a8c11 636
c99d609a
DC
637 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
638 xfs_notice(mp, "Mounting V%d Filesystem",
639 XFS_SB_VERSION_NUM(&mp->m_sb));
640 } else {
a0fa2b67 641 xfs_notice(mp,
c99d609a
DC
642"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
643 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 644 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
645 }
646
647 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 648 if (IS_ERR(mp->m_log)) {
2451337d 649 error = PTR_ERR(mp->m_log);
644c3567
DC
650 goto out;
651 }
1da177e4 652
3e7b91cf
JL
653 /*
654 * Validate the given log space and drop a critical message via syslog
655 * if the log size is too small that would lead to some unexpected
656 * situations in transaction log space reservation stage.
657 *
658 * Note: we can't just reject the mount if the validation fails. This
659 * would mean that people would have to downgrade their kernel just to
660 * remedy the situation as there is no way to grow the log (short of
661 * black magic surgery with xfs_db).
662 *
663 * We can, however, reject mounts for CRC format filesystems, as the
664 * mkfs binary being used to make the filesystem should never create a
665 * filesystem with a log that is too small.
666 */
667 min_logfsbs = xfs_log_calc_minimum_size(mp);
668
669 if (mp->m_sb.sb_logblocks < min_logfsbs) {
670 xfs_warn(mp,
671 "Log size %d blocks too small, minimum size is %d blocks",
672 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 673 error = -EINVAL;
3e7b91cf
JL
674 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
675 xfs_warn(mp,
676 "Log size %d blocks too large, maximum size is %lld blocks",
677 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 678 error = -EINVAL;
3e7b91cf
JL
679 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
680 xfs_warn(mp,
681 "log size %lld bytes too large, maximum size is %lld bytes",
682 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
683 XFS_MAX_LOG_BYTES);
2451337d 684 error = -EINVAL;
9c92ee20
DW
685 } else if (mp->m_sb.sb_logsunit > 1 &&
686 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
687 xfs_warn(mp,
688 "log stripe unit %u bytes must be a multiple of block size",
689 mp->m_sb.sb_logsunit);
690 error = -EINVAL;
691 fatal = true;
3e7b91cf
JL
692 }
693 if (error) {
9c92ee20
DW
694 /*
695 * Log check errors are always fatal on v5; or whenever bad
696 * metadata leads to a crash.
697 */
698 if (fatal) {
3e7b91cf
JL
699 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
700 ASSERT(0);
701 goto out_free_log;
702 }
f41febd2 703 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 704 xfs_crit(mp,
f41febd2 705"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
706 }
707
249a8c11
DC
708 /*
709 * Initialize the AIL now we have a log.
710 */
249a8c11
DC
711 error = xfs_trans_ail_init(mp);
712 if (error) {
a0fa2b67 713 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 714 goto out_free_log;
249a8c11 715 }
a9c21c1b 716 mp->m_log->l_ailp = mp->m_ail;
249a8c11 717
1da177e4
LT
718 /*
719 * skip log recovery on a norecovery mount. pretend it all
720 * just worked.
721 */
722 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 723 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
724
725 if (readonly)
bd186aa9 726 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 727
65be6054 728 error = xlog_recover(mp->m_log);
1da177e4
LT
729
730 if (readonly)
bd186aa9 731 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 732 if (error) {
a0fa2b67
DC
733 xfs_warn(mp, "log mount/recovery failed: error %d",
734 error);
f0b2efad 735 xlog_recover_cancel(mp->m_log);
26430752 736 goto out_destroy_ail;
1da177e4
LT
737 }
738 }
739
baff4e44
BF
740 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
741 "log");
742 if (error)
743 goto out_destroy_ail;
744
1da177e4
LT
745 /* Normal transactions can now occur */
746 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
747
71e330b5
DC
748 /*
749 * Now the log has been fully initialised and we know were our
750 * space grant counters are, we can initialise the permanent ticket
751 * needed for delayed logging to work.
752 */
753 xlog_cil_init_post_recovery(mp->m_log);
754
1da177e4 755 return 0;
26430752
CH
756
757out_destroy_ail:
758 xfs_trans_ail_destroy(mp);
759out_free_log:
760 xlog_dealloc_log(mp->m_log);
644c3567 761out:
249a8c11 762 return error;
26430752 763}
1da177e4
LT
764
765/*
f661f1e0
DC
766 * Finish the recovery of the file system. This is separate from the
767 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
768 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
769 * here.
1da177e4 770 *
f661f1e0
DC
771 * If we finish recovery successfully, start the background log work. If we are
772 * not doing recovery, then we have a RO filesystem and we don't need to start
773 * it.
1da177e4
LT
774 */
775int
f0b2efad
BF
776xfs_log_mount_finish(
777 struct xfs_mount *mp)
1da177e4 778{
f661f1e0 779 int error = 0;
6f4a1eef 780 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 781 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 782
f0b2efad 783 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 784 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 785 return 0;
6f4a1eef
ES
786 } else if (readonly) {
787 /* Allow unlinked processing to proceed */
788 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
789 }
790
8204f8dd
DW
791 /*
792 * During the second phase of log recovery, we need iget and
793 * iput to behave like they do for an active filesystem.
794 * xfs_fs_drop_inode needs to be able to prevent the deletion
795 * of inodes before we're done replaying log items on those
796 * inodes. Turn it off immediately after recovery finishes
797 * so that we don't leak the quota inodes if subsequent mount
798 * activities fail.
799ea9e9
DW
799 *
800 * We let all inodes involved in redo item processing end up on
801 * the LRU instead of being evicted immediately so that if we do
802 * something to an unlinked inode, the irele won't cause
803 * premature truncation and freeing of the inode, which results
804 * in log recovery failure. We have to evict the unreferenced
1751e8a6 805 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
806 * otherwise clean up the lru if there's a subsequent failure in
807 * xfs_mountfs, which leads to us leaking the inodes if nothing
808 * else (e.g. quotacheck) references the inodes before the
809 * mount failure occurs.
8204f8dd 810 */
1751e8a6 811 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
812 error = xlog_recover_finish(mp->m_log);
813 if (!error)
814 xfs_log_work_queue(mp);
1751e8a6 815 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 816 evict_inodes(mp->m_super);
f0b2efad 817
f1b92bbc
BF
818 /*
819 * Drain the buffer LRU after log recovery. This is required for v4
820 * filesystems to avoid leaving around buffers with NULL verifier ops,
821 * but we do it unconditionally to make sure we're always in a clean
822 * cache state after mount.
823 *
824 * Don't push in the error case because the AIL may have pending intents
825 * that aren't removed until recovery is cancelled.
826 */
827 if (!error && recovered) {
828 xfs_log_force(mp, XFS_LOG_SYNC);
829 xfs_ail_push_all_sync(mp->m_ail);
830 }
831 xfs_wait_buftarg(mp->m_ddev_targp);
832
6f4a1eef
ES
833 if (readonly)
834 mp->m_flags |= XFS_MOUNT_RDONLY;
835
f0b2efad
BF
836 return error;
837}
838
839/*
840 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
841 * the log.
842 */
a7a9250e 843void
f0b2efad
BF
844xfs_log_mount_cancel(
845 struct xfs_mount *mp)
846{
a7a9250e 847 xlog_recover_cancel(mp->m_log);
f0b2efad 848 xfs_log_unmount(mp);
1da177e4
LT
849}
850
81e5b50a
CH
851/*
852 * Wait for the iclog to be written disk, or return an error if the log has been
853 * shut down.
854 */
855static int
856xlog_wait_on_iclog(
857 struct xlog_in_core *iclog)
858 __releases(iclog->ic_log->l_icloglock)
859{
860 struct xlog *log = iclog->ic_log;
861
862 if (!XLOG_FORCED_SHUTDOWN(log) &&
863 iclog->ic_state != XLOG_STATE_ACTIVE &&
864 iclog->ic_state != XLOG_STATE_DIRTY) {
865 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
866 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
867 } else {
868 spin_unlock(&log->l_icloglock);
869 }
870
871 if (XLOG_FORCED_SHUTDOWN(log))
872 return -EIO;
873 return 0;
874}
875
1da177e4
LT
876/*
877 * Final log writes as part of unmount.
878 *
879 * Mark the filesystem clean as unmount happens. Note that during relocation
880 * this routine needs to be executed as part of source-bag while the
881 * deallocation must not be done until source-end.
882 */
883
53235f22
DW
884/* Actually write the unmount record to disk. */
885static void
886xfs_log_write_unmount_record(
887 struct xfs_mount *mp)
888{
889 /* the data section must be 32 bit size aligned */
890 struct xfs_unmount_log_format magic = {
891 .magic = XLOG_UNMOUNT_TYPE,
892 };
893 struct xfs_log_iovec reg = {
894 .i_addr = &magic,
895 .i_len = sizeof(magic),
896 .i_type = XLOG_REG_TYPE_UNMOUNT,
897 };
898 struct xfs_log_vec vec = {
899 .lv_niovecs = 1,
900 .lv_iovecp = &reg,
901 };
902 struct xlog *log = mp->m_log;
903 struct xlog_in_core *iclog;
904 struct xlog_ticket *tic = NULL;
905 xfs_lsn_t lsn;
f467cad9 906 uint flags = XLOG_UNMOUNT_TRANS;
53235f22
DW
907 int error;
908
909 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
910 if (error)
911 goto out_err;
912
f467cad9
DW
913 /*
914 * If we think the summary counters are bad, clear the unmount header
915 * flag in the unmount record so that the summary counters will be
916 * recalculated during log recovery at next mount. Refer to
917 * xlog_check_unmount_rec for more details.
918 */
39353ff6 919 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
f467cad9
DW
920 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
921 xfs_alert(mp, "%s: will fix summary counters at next mount",
922 __func__);
923 flags &= ~XLOG_UNMOUNT_TRANS;
924 }
925
53235f22
DW
926 /* remove inited flag, and account for space used */
927 tic->t_flags = 0;
928 tic->t_curr_res -= sizeof(magic);
f467cad9 929 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
53235f22
DW
930 /*
931 * At this point, we're umounting anyway, so there's no point in
932 * transitioning log state to IOERROR. Just continue...
933 */
934out_err:
935 if (error)
936 xfs_alert(mp, "%s: unmount record failed", __func__);
937
938 spin_lock(&log->l_icloglock);
939 iclog = log->l_iclog;
940 atomic_inc(&iclog->ic_refcnt);
941 xlog_state_want_sync(log, iclog);
53235f22 942 error = xlog_state_release_iclog(log, iclog);
81e5b50a 943 xlog_wait_on_iclog(iclog);
53235f22
DW
944
945 if (tic) {
946 trace_xfs_log_umount_write(log, tic);
947 xlog_ungrant_log_space(log, tic);
948 xfs_log_ticket_put(tic);
949 }
950}
951
13859c98
CH
952static void
953xfs_log_unmount_verify_iclog(
954 struct xlog *log)
955{
956 struct xlog_in_core *iclog = log->l_iclog;
957
958 do {
959 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
960 ASSERT(iclog->ic_offset == 0);
961 } while ((iclog = iclog->ic_next) != log->l_iclog);
962}
963
1da177e4
LT
964/*
965 * Unmount record used to have a string "Unmount filesystem--" in the
966 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
967 * We just write the magic number now since that particular field isn't
8e159e72 968 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
969 * As far as I know, there weren't any dependencies on the old behaviour.
970 */
550319e9 971static void
13859c98
CH
972xfs_log_unmount_write(
973 struct xfs_mount *mp)
1da177e4 974{
13859c98 975 struct xlog *log = mp->m_log;
1da177e4 976
1da177e4 977 /*
757a69ef 978 * Don't write out unmount record on norecovery mounts or ro devices.
1da177e4
LT
979 * Or, if we are doing a forced umount (typically because of IO errors).
980 */
757a69ef 981 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
2d15d2c0 982 xfs_readonly_buftarg(log->l_targ)) {
757a69ef 983 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
550319e9 984 return;
757a69ef 985 }
1da177e4 986
550319e9 987 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 988
6178d104
CH
989 if (XLOG_FORCED_SHUTDOWN(log))
990 return;
13859c98 991 xfs_log_unmount_verify_iclog(log);
6178d104 992 xfs_log_write_unmount_record(mp);
550319e9 993}
1da177e4
LT
994
995/*
c75921a7 996 * Empty the log for unmount/freeze.
cf2931db
DC
997 *
998 * To do this, we first need to shut down the background log work so it is not
999 * trying to cover the log as we clean up. We then need to unpin all objects in
1000 * the log so we can then flush them out. Once they have completed their IO and
1001 * run the callbacks removing themselves from the AIL, we can write the unmount
c75921a7 1002 * record.
1da177e4
LT
1003 */
1004void
c75921a7
DC
1005xfs_log_quiesce(
1006 struct xfs_mount *mp)
1da177e4 1007{
f661f1e0 1008 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
1009 xfs_log_force(mp, XFS_LOG_SYNC);
1010
1011 /*
1012 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1014 * xfs_buf_iowait() cannot be used because it was pushed with the
1015 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016 * the IO to complete.
1017 */
1018 xfs_ail_push_all_sync(mp->m_ail);
1019 xfs_wait_buftarg(mp->m_ddev_targp);
1020 xfs_buf_lock(mp->m_sb_bp);
1021 xfs_buf_unlock(mp->m_sb_bp);
1022
1023 xfs_log_unmount_write(mp);
c75921a7
DC
1024}
1025
1026/*
1027 * Shut down and release the AIL and Log.
1028 *
1029 * During unmount, we need to ensure we flush all the dirty metadata objects
1030 * from the AIL so that the log is empty before we write the unmount record to
1031 * the log. Once this is done, we can tear down the AIL and the log.
1032 */
1033void
1034xfs_log_unmount(
1035 struct xfs_mount *mp)
1036{
1037 xfs_log_quiesce(mp);
cf2931db 1038
249a8c11 1039 xfs_trans_ail_destroy(mp);
baff4e44
BF
1040
1041 xfs_sysfs_del(&mp->m_log->l_kobj);
1042
c41564b5 1043 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1044}
1045
43f5efc5
DC
1046void
1047xfs_log_item_init(
1048 struct xfs_mount *mp,
1049 struct xfs_log_item *item,
1050 int type,
272e42b2 1051 const struct xfs_item_ops *ops)
43f5efc5
DC
1052{
1053 item->li_mountp = mp;
1054 item->li_ailp = mp->m_ail;
1055 item->li_type = type;
1056 item->li_ops = ops;
71e330b5
DC
1057 item->li_lv = NULL;
1058
1059 INIT_LIST_HEAD(&item->li_ail);
1060 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1061 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1062 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1063}
1064
09a423a3
CH
1065/*
1066 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1067 */
1da177e4 1068void
09a423a3 1069xfs_log_space_wake(
cfb7cdca 1070 struct xfs_mount *mp)
1da177e4 1071{
ad223e60 1072 struct xlog *log = mp->m_log;
cfb7cdca 1073 int free_bytes;
1da177e4 1074
1da177e4
LT
1075 if (XLOG_FORCED_SHUTDOWN(log))
1076 return;
1da177e4 1077
28496968 1078 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1079 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1080
28496968
CH
1081 spin_lock(&log->l_write_head.lock);
1082 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1083 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1084 spin_unlock(&log->l_write_head.lock);
1da177e4 1085 }
10547941 1086
28496968 1087 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1088 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1089
28496968
CH
1090 spin_lock(&log->l_reserve_head.lock);
1091 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1092 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1093 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1094 }
3f16b985 1095}
1da177e4
LT
1096
1097/*
2c6e24ce
DC
1098 * Determine if we have a transaction that has gone to disk that needs to be
1099 * covered. To begin the transition to the idle state firstly the log needs to
1100 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1101 * we start attempting to cover the log.
b6f8dd49 1102 *
2c6e24ce
DC
1103 * Only if we are then in a state where covering is needed, the caller is
1104 * informed that dummy transactions are required to move the log into the idle
1105 * state.
1106 *
1107 * If there are any items in the AIl or CIL, then we do not want to attempt to
1108 * cover the log as we may be in a situation where there isn't log space
1109 * available to run a dummy transaction and this can lead to deadlocks when the
1110 * tail of the log is pinned by an item that is modified in the CIL. Hence
1111 * there's no point in running a dummy transaction at this point because we
1112 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1113 */
0d5a75e9 1114static int
1da177e4
LT
1115xfs_log_need_covered(xfs_mount_t *mp)
1116{
9a8d2fdb 1117 struct xlog *log = mp->m_log;
2c6e24ce 1118 int needed = 0;
1da177e4 1119
91ee575f 1120 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1da177e4
LT
1121 return 0;
1122
2c6e24ce
DC
1123 if (!xlog_cil_empty(log))
1124 return 0;
1125
b22cd72c 1126 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1127 switch (log->l_covered_state) {
1128 case XLOG_STATE_COVER_DONE:
1129 case XLOG_STATE_COVER_DONE2:
1130 case XLOG_STATE_COVER_IDLE:
1131 break;
1132 case XLOG_STATE_COVER_NEED:
1133 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1134 if (xfs_ail_min_lsn(log->l_ailp))
1135 break;
1136 if (!xlog_iclogs_empty(log))
1137 break;
1138
1139 needed = 1;
1140 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1141 log->l_covered_state = XLOG_STATE_COVER_DONE;
1142 else
1143 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1144 break;
b6f8dd49 1145 default:
1da177e4 1146 needed = 1;
b6f8dd49 1147 break;
1da177e4 1148 }
b22cd72c 1149 spin_unlock(&log->l_icloglock);
014c2544 1150 return needed;
1da177e4
LT
1151}
1152
09a423a3 1153/*
1da177e4
LT
1154 * We may be holding the log iclog lock upon entering this routine.
1155 */
1156xfs_lsn_t
1c304625 1157xlog_assign_tail_lsn_locked(
1c3cb9ec 1158 struct xfs_mount *mp)
1da177e4 1159{
ad223e60 1160 struct xlog *log = mp->m_log;
1c304625
CH
1161 struct xfs_log_item *lip;
1162 xfs_lsn_t tail_lsn;
1163
57e80956 1164 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1165
09a423a3
CH
1166 /*
1167 * To make sure we always have a valid LSN for the log tail we keep
1168 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1169 * and use that when the AIL was empty.
09a423a3 1170 */
1c304625
CH
1171 lip = xfs_ail_min(mp->m_ail);
1172 if (lip)
1173 tail_lsn = lip->li_lsn;
1174 else
84f3c683 1175 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1176 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1177 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1178 return tail_lsn;
1c3cb9ec 1179}
1da177e4 1180
1c304625
CH
1181xfs_lsn_t
1182xlog_assign_tail_lsn(
1183 struct xfs_mount *mp)
1184{
1185 xfs_lsn_t tail_lsn;
1186
57e80956 1187 spin_lock(&mp->m_ail->ail_lock);
1c304625 1188 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1189 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1190
1191 return tail_lsn;
1192}
1193
1da177e4
LT
1194/*
1195 * Return the space in the log between the tail and the head. The head
1196 * is passed in the cycle/bytes formal parms. In the special case where
1197 * the reserve head has wrapped passed the tail, this calculation is no
1198 * longer valid. In this case, just return 0 which means there is no space
1199 * in the log. This works for all places where this function is called
1200 * with the reserve head. Of course, if the write head were to ever
1201 * wrap the tail, we should blow up. Rather than catch this case here,
1202 * we depend on other ASSERTions in other parts of the code. XXXmiken
1203 *
1204 * This code also handles the case where the reservation head is behind
1205 * the tail. The details of this case are described below, but the end
1206 * result is that we return the size of the log as the amount of space left.
1207 */
a8272ce0 1208STATIC int
a69ed03c 1209xlog_space_left(
ad223e60 1210 struct xlog *log,
c8a09ff8 1211 atomic64_t *head)
1da177e4 1212{
a69ed03c
DC
1213 int free_bytes;
1214 int tail_bytes;
1215 int tail_cycle;
1216 int head_cycle;
1217 int head_bytes;
1da177e4 1218
a69ed03c 1219 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1220 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1221 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1222 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1223 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1224 else if (tail_cycle + 1 < head_cycle)
1da177e4 1225 return 0;
a69ed03c
DC
1226 else if (tail_cycle < head_cycle) {
1227 ASSERT(tail_cycle == (head_cycle - 1));
1228 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1229 } else {
1230 /*
1231 * The reservation head is behind the tail.
1232 * In this case we just want to return the size of the
1233 * log as the amount of space left.
1234 */
f41febd2 1235 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1236 xfs_alert(log->l_mp,
f41febd2
JP
1237 " tail_cycle = %d, tail_bytes = %d",
1238 tail_cycle, tail_bytes);
1239 xfs_alert(log->l_mp,
1240 " GH cycle = %d, GH bytes = %d",
1241 head_cycle, head_bytes);
1da177e4
LT
1242 ASSERT(0);
1243 free_bytes = log->l_logsize;
1244 }
1245 return free_bytes;
a69ed03c 1246}
1da177e4
LT
1247
1248
0d5a75e9 1249static void
79b54d9b
CH
1250xlog_ioend_work(
1251 struct work_struct *work)
1da177e4 1252{
79b54d9b
CH
1253 struct xlog_in_core *iclog =
1254 container_of(work, struct xlog_in_core, ic_end_io_work);
1255 struct xlog *log = iclog->ic_log;
79b54d9b 1256 int error;
1da177e4 1257
79b54d9b 1258 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1259#ifdef DEBUG
1260 /* treat writes with injected CRC errors as failed */
1261 if (iclog->ic_fail_crc)
79b54d9b 1262 error = -EIO;
366fc4b8
CH
1263#endif
1264
1da177e4 1265 /*
366fc4b8 1266 * Race to shutdown the filesystem if we see an error.
1da177e4 1267 */
79b54d9b
CH
1268 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1269 xfs_alert(log->l_mp, "log I/O error %d", error);
1270 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1271 }
3db296f3 1272
12e6a0f4 1273 xlog_state_done_syncing(iclog);
79b54d9b 1274 bio_uninit(&iclog->ic_bio);
9c23eccc 1275
3db296f3 1276 /*
79b54d9b
CH
1277 * Drop the lock to signal that we are done. Nothing references the
1278 * iclog after this, so an unmount waiting on this lock can now tear it
1279 * down safely. As such, it is unsafe to reference the iclog after the
1280 * unlock as we could race with it being freed.
3db296f3 1281 */
79b54d9b 1282 up(&iclog->ic_sema);
c3f8fc73 1283}
1da177e4 1284
1da177e4
LT
1285/*
1286 * Return size of each in-core log record buffer.
1287 *
9da096fd 1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1289 *
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1292 */
1da177e4 1293STATIC void
9a8d2fdb
MT
1294xlog_get_iclog_buffer_size(
1295 struct xfs_mount *mp,
1296 struct xlog *log)
1da177e4 1297{
1cb51258 1298 if (mp->m_logbufs <= 0)
4f62282a
CH
1299 mp->m_logbufs = XLOG_MAX_ICLOGS;
1300 if (mp->m_logbsize <= 0)
1301 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1302
1303 log->l_iclog_bufs = mp->m_logbufs;
1304 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1305
1306 /*
4f62282a 1307 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1308 */
4f62282a
CH
1309 log->l_iclog_heads =
1310 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1311 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1312}
1da177e4 1313
f661f1e0
DC
1314void
1315xfs_log_work_queue(
1316 struct xfs_mount *mp)
1317{
696a5620 1318 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1319 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1320}
1321
1322/*
1323 * Every sync period we need to unpin all items in the AIL and push them to
1324 * disk. If there is nothing dirty, then we might need to cover the log to
1325 * indicate that the filesystem is idle.
1326 */
0d5a75e9 1327static void
f661f1e0
DC
1328xfs_log_worker(
1329 struct work_struct *work)
1330{
1331 struct xlog *log = container_of(to_delayed_work(work),
1332 struct xlog, l_work);
1333 struct xfs_mount *mp = log->l_mp;
1334
1335 /* dgc: errors ignored - not fatal and nowhere to report them */
61e63ecb
DC
1336 if (xfs_log_need_covered(mp)) {
1337 /*
1338 * Dump a transaction into the log that contains no real change.
1339 * This is needed to stamp the current tail LSN into the log
1340 * during the covering operation.
1341 *
1342 * We cannot use an inode here for this - that will push dirty
1343 * state back up into the VFS and then periodic inode flushing
1344 * will prevent log covering from making progress. Hence we
1345 * synchronously log the superblock instead to ensure the
1346 * superblock is immediately unpinned and can be written back.
1347 */
1348 xfs_sync_sb(mp, true);
1349 } else
f661f1e0
DC
1350 xfs_log_force(mp, 0);
1351
1352 /* start pushing all the metadata that is currently dirty */
1353 xfs_ail_push_all(mp->m_ail);
1354
1355 /* queue us up again */
1356 xfs_log_work_queue(mp);
1357}
1358
1da177e4
LT
1359/*
1360 * This routine initializes some of the log structure for a given mount point.
1361 * Its primary purpose is to fill in enough, so recovery can occur. However,
1362 * some other stuff may be filled in too.
1363 */
9a8d2fdb
MT
1364STATIC struct xlog *
1365xlog_alloc_log(
1366 struct xfs_mount *mp,
1367 struct xfs_buftarg *log_target,
1368 xfs_daddr_t blk_offset,
1369 int num_bblks)
1da177e4 1370{
9a8d2fdb 1371 struct xlog *log;
1da177e4
LT
1372 xlog_rec_header_t *head;
1373 xlog_in_core_t **iclogp;
1374 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1375 int i;
2451337d 1376 int error = -ENOMEM;
69ce58f0 1377 uint log2_size = 0;
1da177e4 1378
9a8d2fdb 1379 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1380 if (!log) {
a0fa2b67 1381 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1382 goto out;
1383 }
1da177e4
LT
1384
1385 log->l_mp = mp;
1386 log->l_targ = log_target;
1387 log->l_logsize = BBTOB(num_bblks);
1388 log->l_logBBstart = blk_offset;
1389 log->l_logBBsize = num_bblks;
1390 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1391 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1392 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1393
1394 log->l_prev_block = -1;
1da177e4 1395 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1396 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1397 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1398 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1399
1400 xlog_grant_head_init(&log->l_reserve_head);
1401 xlog_grant_head_init(&log->l_write_head);
1da177e4 1402
2451337d 1403 error = -EFSCORRUPTED;
62118709 1404 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1405 log2_size = mp->m_sb.sb_logsectlog;
1406 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1407 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1408 log2_size, BBSHIFT);
a6cb767e
DC
1409 goto out_free_log;
1410 }
1411
69ce58f0
AE
1412 log2_size -= BBSHIFT;
1413 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1414 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1415 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1416 goto out_free_log;
1417 }
69ce58f0
AE
1418
1419 /* for larger sector sizes, must have v2 or external log */
1420 if (log2_size && log->l_logBBstart > 0 &&
1421 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1422 xfs_warn(mp,
1423 "log sector size (0x%x) invalid for configuration.",
1424 log2_size);
a6cb767e
DC
1425 goto out_free_log;
1426 }
1da177e4 1427 }
69ce58f0 1428 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1429
1430 xlog_get_iclog_buffer_size(mp, log);
1431
007c61c6 1432 spin_lock_init(&log->l_icloglock);
eb40a875 1433 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1434
1da177e4
LT
1435 iclogp = &log->l_iclog;
1436 /*
1437 * The amount of memory to allocate for the iclog structure is
1438 * rather funky due to the way the structure is defined. It is
1439 * done this way so that we can use different sizes for machines
1440 * with different amounts of memory. See the definition of
1441 * xlog_in_core_t in xfs_log_priv.h for details.
1442 */
1da177e4 1443 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1444 for (i = 0; i < log->l_iclog_bufs; i++) {
f8f9ee47 1445 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
89b171ac
CH
1446 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1447 sizeof(struct bio_vec);
79b54d9b
CH
1448
1449 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1450 if (!iclog)
644c3567
DC
1451 goto out_free_iclog;
1452
79b54d9b 1453 *iclogp = iclog;
1da177e4
LT
1454 iclog->ic_prev = prev_iclog;
1455 prev_iclog = iclog;
1fa40b01 1456
f8f9ee47 1457 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
3219e8cf 1458 KM_MAYFAIL | KM_ZERO);
79b54d9b 1459 if (!iclog->ic_data)
644c3567 1460 goto out_free_iclog;
4679b2d3 1461#ifdef DEBUG
5809d5e0 1462 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1463#endif
1da177e4
LT
1464 head = &iclog->ic_header;
1465 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1466 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1467 head->h_version = cpu_to_be32(
62118709 1468 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1469 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1470 /* new fields */
b53e675d 1471 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1472 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473
79b54d9b 1474 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1475 iclog->ic_state = XLOG_STATE_ACTIVE;
1476 iclog->ic_log = log;
114d23aa
DC
1477 atomic_set(&iclog->ic_refcnt, 0);
1478 spin_lock_init(&iclog->ic_callback_lock);
89ae379d 1479 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1480 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1481
eb40a875
DC
1482 init_waitqueue_head(&iclog->ic_force_wait);
1483 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1484 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1485 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1486
1487 iclogp = &iclog->ic_next;
1488 }
1489 *iclogp = log->l_iclog; /* complete ring */
1490 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1491
1058d0f5
CH
1492 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1493 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
e1d3d218 1494 mp->m_super->s_id);
1058d0f5
CH
1495 if (!log->l_ioend_workqueue)
1496 goto out_free_iclog;
1497
71e330b5
DC
1498 error = xlog_cil_init(log);
1499 if (error)
1058d0f5 1500 goto out_destroy_workqueue;
1da177e4 1501 return log;
644c3567 1502
1058d0f5
CH
1503out_destroy_workqueue:
1504 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1505out_free_iclog:
1506 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1507 prev_iclog = iclog->ic_next;
79b54d9b 1508 kmem_free(iclog->ic_data);
644c3567 1509 kmem_free(iclog);
798a9cad
BF
1510 if (prev_iclog == log->l_iclog)
1511 break;
644c3567 1512 }
644c3567
DC
1513out_free_log:
1514 kmem_free(log);
a6cb767e 1515out:
2451337d 1516 return ERR_PTR(error);
1da177e4
LT
1517} /* xlog_alloc_log */
1518
1519
1520/*
1521 * Write out the commit record of a transaction associated with the given
1522 * ticket. Return the lsn of the commit record.
1523 */
1524STATIC int
55b66332 1525xlog_commit_record(
ad223e60 1526 struct xlog *log,
55b66332
DC
1527 struct xlog_ticket *ticket,
1528 struct xlog_in_core **iclog,
1529 xfs_lsn_t *commitlsnp)
1da177e4 1530{
55b66332
DC
1531 struct xfs_mount *mp = log->l_mp;
1532 int error;
1533 struct xfs_log_iovec reg = {
1534 .i_addr = NULL,
1535 .i_len = 0,
1536 .i_type = XLOG_REG_TYPE_COMMIT,
1537 };
1538 struct xfs_log_vec vec = {
1539 .lv_niovecs = 1,
1540 .lv_iovecp = &reg,
1541 };
1da177e4
LT
1542
1543 ASSERT_ALWAYS(iclog);
55b66332
DC
1544 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545 XLOG_COMMIT_TRANS);
1546 if (error)
7d04a335 1547 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1548 return error;
55b66332 1549}
1da177e4
LT
1550
1551/*
1552 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553 * log space. This code pushes on the lsn which would supposedly free up
1554 * the 25% which we want to leave free. We may need to adopt a policy which
1555 * pushes on an lsn which is further along in the log once we reach the high
1556 * water mark. In this manner, we would be creating a low water mark.
1557 */
a8272ce0 1558STATIC void
2ced19cb 1559xlog_grant_push_ail(
ad223e60 1560 struct xlog *log,
2ced19cb 1561 int need_bytes)
1da177e4 1562{
2ced19cb 1563 xfs_lsn_t threshold_lsn = 0;
84f3c683 1564 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1565 int free_blocks;
1566 int free_bytes;
1567 int threshold_block;
1568 int threshold_cycle;
1569 int free_threshold;
1570
1571 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572
28496968 1573 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1574 free_blocks = BTOBBT(free_bytes);
1575
1576 /*
1577 * Set the threshold for the minimum number of free blocks in the
1578 * log to the maximum of what the caller needs, one quarter of the
1579 * log, and 256 blocks.
1580 */
1581 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1582 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1583 free_threshold = max(free_threshold, 256);
2ced19cb
DC
1584 if (free_blocks >= free_threshold)
1585 return;
1586
1c3cb9ec
DC
1587 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588 &threshold_block);
1589 threshold_block += free_threshold;
1da177e4 1590 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1591 threshold_block -= log->l_logBBsize;
1592 threshold_cycle += 1;
1da177e4 1593 }
2ced19cb
DC
1594 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595 threshold_block);
1596 /*
1597 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1598 * log record known to be on disk. Use a snapshot of the last sync lsn
1599 * so that it doesn't change between the compare and the set.
1da177e4 1600 */
84f3c683
DC
1601 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1604
1605 /*
1606 * Get the transaction layer to kick the dirty buffers out to
1607 * disk asynchronously. No point in trying to do this if
1608 * the filesystem is shutting down.
1609 */
1610 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1611 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1612}
1da177e4 1613
0e446be4
CH
1614/*
1615 * Stamp cycle number in every block
1616 */
1617STATIC void
1618xlog_pack_data(
1619 struct xlog *log,
1620 struct xlog_in_core *iclog,
1621 int roundoff)
1622{
1623 int i, j, k;
1624 int size = iclog->ic_offset + roundoff;
1625 __be32 cycle_lsn;
b2a922cd 1626 char *dp;
0e446be4
CH
1627
1628 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629
1630 dp = iclog->ic_datap;
1631 for (i = 0; i < BTOBB(size); i++) {
1632 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633 break;
1634 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635 *(__be32 *)dp = cycle_lsn;
1636 dp += BBSIZE;
1637 }
1638
1639 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640 xlog_in_core_2_t *xhdr = iclog->ic_data;
1641
1642 for ( ; i < BTOBB(size); i++) {
1643 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646 *(__be32 *)dp = cycle_lsn;
1647 dp += BBSIZE;
1648 }
1649
1650 for (i = 1; i < log->l_iclog_heads; i++)
1651 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652 }
1653}
1654
1655/*
1656 * Calculate the checksum for a log buffer.
1657 *
1658 * This is a little more complicated than it should be because the various
1659 * headers and the actual data are non-contiguous.
1660 */
f9668a09 1661__le32
0e446be4
CH
1662xlog_cksum(
1663 struct xlog *log,
1664 struct xlog_rec_header *rhead,
1665 char *dp,
1666 int size)
1667{
c8ce540d 1668 uint32_t crc;
0e446be4
CH
1669
1670 /* first generate the crc for the record header ... */
cae028df 1671 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1672 sizeof(struct xlog_rec_header),
1673 offsetof(struct xlog_rec_header, h_crc));
1674
1675 /* ... then for additional cycle data for v2 logs ... */
1676 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678 int i;
a3f20014 1679 int xheads;
0e446be4 1680
a3f20014
BF
1681 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682 if (size % XLOG_HEADER_CYCLE_SIZE)
1683 xheads++;
0e446be4 1684
a3f20014 1685 for (i = 1; i < xheads; i++) {
0e446be4
CH
1686 crc = crc32c(crc, &xhdr[i].hic_xheader,
1687 sizeof(struct xlog_rec_ext_header));
1688 }
1689 }
1690
1691 /* ... and finally for the payload */
1692 crc = crc32c(crc, dp, size);
1693
1694 return xfs_end_cksum(crc);
1695}
1696
79b54d9b
CH
1697static void
1698xlog_bio_end_io(
1699 struct bio *bio)
1700{
1701 struct xlog_in_core *iclog = bio->bi_private;
1702
1058d0f5 1703 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1704 &iclog->ic_end_io_work);
1705}
1706
1707static void
1708xlog_map_iclog_data(
1709 struct bio *bio,
1710 void *data,
1711 size_t count)
1712{
1713 do {
1714 struct page *page = kmem_to_page(data);
1715 unsigned int off = offset_in_page(data);
1716 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1717
1718 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1719
1720 data += len;
1721 count -= len;
1722 } while (count);
1723}
1724
94860a30
CH
1725STATIC void
1726xlog_write_iclog(
1727 struct xlog *log,
1728 struct xlog_in_core *iclog,
94860a30 1729 uint64_t bno,
79b54d9b 1730 unsigned int count,
94860a30 1731 bool need_flush)
873ff550 1732{
94860a30 1733 ASSERT(bno < log->l_logBBsize);
94860a30
CH
1734
1735 /*
1736 * We lock the iclogbufs here so that we can serialise against I/O
1737 * completion during unmount. We might be processing a shutdown
1738 * triggered during unmount, and that can occur asynchronously to the
1739 * unmount thread, and hence we need to ensure that completes before
1740 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1741 * across the log IO to archieve that.
1742 */
79b54d9b 1743 down(&iclog->ic_sema);
1858bb0b 1744 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
873ff550
CH
1745 /*
1746 * It would seem logical to return EIO here, but we rely on
1747 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1748 * doing it here. We kick of the state machine and unlock
1749 * the buffer manually, the code needs to be kept in sync
1750 * with the I/O completion path.
873ff550 1751 */
12e6a0f4 1752 xlog_state_done_syncing(iclog);
79b54d9b 1753 up(&iclog->ic_sema);
94860a30 1754 return;
873ff550
CH
1755 }
1756
79b54d9b
CH
1757 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1758 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1759 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1760 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1761 iclog->ic_bio.bi_private = iclog;
1762 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1763 if (need_flush)
1764 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1765
2c68a1df 1766 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
79b54d9b 1767 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1768 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1769
1770 /*
1771 * If this log buffer would straddle the end of the log we will have
1772 * to split it up into two bios, so that we can continue at the start.
1773 */
1774 if (bno + BTOBB(count) > log->l_logBBsize) {
1775 struct bio *split;
1776
1777 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1778 GFP_NOIO, &fs_bio_set);
1779 bio_chain(split, &iclog->ic_bio);
1780 submit_bio(split);
1781
1782 /* restart at logical offset zero for the remainder */
1783 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1784 }
1785
1786 submit_bio(&iclog->ic_bio);
873ff550 1787}
1da177e4 1788
56933848
CH
1789/*
1790 * We need to bump cycle number for the part of the iclog that is
1791 * written to the start of the log. Watch out for the header magic
1792 * number case, though.
1793 */
79b54d9b 1794static void
56933848
CH
1795xlog_split_iclog(
1796 struct xlog *log,
1797 void *data,
1798 uint64_t bno,
1799 unsigned int count)
1800{
1801 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1802 unsigned int i;
1803
1804 for (i = split_offset; i < count; i += BBSIZE) {
1805 uint32_t cycle = get_unaligned_be32(data + i);
1806
1807 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1808 cycle++;
1809 put_unaligned_be32(cycle, data + i);
1810 }
56933848
CH
1811}
1812
db0a6faf
CH
1813static int
1814xlog_calc_iclog_size(
1815 struct xlog *log,
1816 struct xlog_in_core *iclog,
1817 uint32_t *roundoff)
1818{
1819 uint32_t count_init, count;
1820 bool use_lsunit;
1821
1822 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1823 log->l_mp->m_sb.sb_logsunit > 1;
1824
1825 /* Add for LR header */
1826 count_init = log->l_iclog_hsize + iclog->ic_offset;
1827
1828 /* Round out the log write size */
1829 if (use_lsunit) {
1830 /* we have a v2 stripe unit to use */
1831 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1832 } else {
1833 count = BBTOB(BTOBB(count_init));
1834 }
1835
1836 ASSERT(count >= count_init);
1837 *roundoff = count - count_init;
1838
1839 if (use_lsunit)
1840 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1841 else
1842 ASSERT(*roundoff < BBTOB(1));
1843 return count;
1844}
1845
1da177e4
LT
1846/*
1847 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1848 * fashion. Previously, we should have moved the current iclog
1849 * ptr in the log to point to the next available iclog. This allows further
1850 * write to continue while this code syncs out an iclog ready to go.
1851 * Before an in-core log can be written out, the data section must be scanned
1852 * to save away the 1st word of each BBSIZE block into the header. We replace
1853 * it with the current cycle count. Each BBSIZE block is tagged with the
1854 * cycle count because there in an implicit assumption that drives will
1855 * guarantee that entire 512 byte blocks get written at once. In other words,
1856 * we can't have part of a 512 byte block written and part not written. By
1857 * tagging each block, we will know which blocks are valid when recovering
1858 * after an unclean shutdown.
1859 *
1860 * This routine is single threaded on the iclog. No other thread can be in
1861 * this routine with the same iclog. Changing contents of iclog can there-
1862 * fore be done without grabbing the state machine lock. Updating the global
1863 * log will require grabbing the lock though.
1864 *
1865 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1866 * xlog_write_iclog knows about the fact that the log may not start with
1867 * block zero on a given device.
1da177e4 1868 */
94860a30 1869STATIC void
9a8d2fdb
MT
1870xlog_sync(
1871 struct xlog *log,
1872 struct xlog_in_core *iclog)
1da177e4 1873{
db0a6faf
CH
1874 unsigned int count; /* byte count of bwrite */
1875 unsigned int roundoff; /* roundoff to BB or stripe */
1876 uint64_t bno;
db0a6faf 1877 unsigned int size;
79b54d9b 1878 bool need_flush = true, split = false;
1da177e4 1879
155cc6b7 1880 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4 1881
db0a6faf 1882 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1883
1884 /* move grant heads by roundoff in sync */
28496968
CH
1885 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1886 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1887
1888 /* put cycle number in every block */
1889 xlog_pack_data(log, iclog, roundoff);
1890
1891 /* real byte length */
0e446be4 1892 size = iclog->ic_offset;
db0a6faf 1893 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
1894 size += roundoff;
1895 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1896
9b0489c1 1897 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 1898 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 1899
94860a30
CH
1900 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1901
1da177e4 1902 /* Do we need to split this write into 2 parts? */
79b54d9b
CH
1903 if (bno + BTOBB(count) > log->l_logBBsize) {
1904 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1905 split = true;
1906 }
0e446be4
CH
1907
1908 /* calculcate the checksum */
1909 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1910 iclog->ic_datap, size);
609adfc2
BF
1911 /*
1912 * Intentionally corrupt the log record CRC based on the error injection
1913 * frequency, if defined. This facilitates testing log recovery in the
1914 * event of torn writes. Hence, set the IOABORT state to abort the log
1915 * write on I/O completion and shutdown the fs. The subsequent mount
1916 * detects the bad CRC and attempts to recover.
1917 */
366fc4b8 1918#ifdef DEBUG
3e88a007 1919 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1920 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 1921 iclog->ic_fail_crc = true;
609adfc2
BF
1922 xfs_warn(log->l_mp,
1923 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1924 be64_to_cpu(iclog->ic_header.h_lsn));
1925 }
366fc4b8 1926#endif
0e446be4 1927
2291dab2
DC
1928 /*
1929 * Flush the data device before flushing the log to make sure all meta
1930 * data written back from the AIL actually made it to disk before
1931 * stamping the new log tail LSN into the log buffer. For an external
1932 * log we need to issue the flush explicitly, and unfortunately
1933 * synchronously here; for an internal log we can simply use the block
1934 * layer state machine for preflushes.
1935 */
2d15d2c0 1936 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
2291dab2 1937 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
94860a30
CH
1938 need_flush = false;
1939 }
1da177e4 1940
abca1f33 1941 xlog_verify_iclog(log, iclog, count);
79b54d9b 1942 xlog_write_iclog(log, iclog, bno, count, need_flush);
94860a30 1943}
1da177e4 1944
1da177e4 1945/*
c41564b5 1946 * Deallocate a log structure
1da177e4 1947 */
a8272ce0 1948STATIC void
9a8d2fdb
MT
1949xlog_dealloc_log(
1950 struct xlog *log)
1da177e4
LT
1951{
1952 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1953 int i;
1954
71e330b5
DC
1955 xlog_cil_destroy(log);
1956
44396476 1957 /*
9c23eccc
DC
1958 * Cycle all the iclogbuf locks to make sure all log IO completion
1959 * is done before we tear down these buffers.
1960 */
1961 iclog = log->l_iclog;
1962 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
1963 down(&iclog->ic_sema);
1964 up(&iclog->ic_sema);
9c23eccc
DC
1965 iclog = iclog->ic_next;
1966 }
1967
1da177e4 1968 iclog = log->l_iclog;
9c23eccc 1969 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 1970 next_iclog = iclog->ic_next;
79b54d9b 1971 kmem_free(iclog->ic_data);
f0e2d93c 1972 kmem_free(iclog);
1da177e4
LT
1973 iclog = next_iclog;
1974 }
1da177e4 1975
1da177e4 1976 log->l_mp->m_log = NULL;
1058d0f5 1977 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 1978 kmem_free(log);
c41564b5 1979} /* xlog_dealloc_log */
1da177e4
LT
1980
1981/*
1982 * Update counters atomically now that memcpy is done.
1983 */
1da177e4 1984static inline void
9a8d2fdb
MT
1985xlog_state_finish_copy(
1986 struct xlog *log,
1987 struct xlog_in_core *iclog,
1988 int record_cnt,
1989 int copy_bytes)
1da177e4 1990{
390aab0a 1991 lockdep_assert_held(&log->l_icloglock);
1da177e4 1992
413d57c9 1993 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 1994 iclog->ic_offset += copy_bytes;
390aab0a 1995}
1da177e4 1996
7e9c6396
TS
1997/*
1998 * print out info relating to regions written which consume
1999 * the reservation
2000 */
71e330b5
DC
2001void
2002xlog_print_tic_res(
2003 struct xfs_mount *mp,
2004 struct xlog_ticket *ticket)
7e9c6396
TS
2005{
2006 uint i;
2007 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2008
2009 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2010#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2011 static char *res_type_str[] = {
5110cd82
DW
2012 REG_TYPE_STR(BFORMAT, "bformat"),
2013 REG_TYPE_STR(BCHUNK, "bchunk"),
2014 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2015 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2016 REG_TYPE_STR(IFORMAT, "iformat"),
2017 REG_TYPE_STR(ICORE, "icore"),
2018 REG_TYPE_STR(IEXT, "iext"),
2019 REG_TYPE_STR(IBROOT, "ibroot"),
2020 REG_TYPE_STR(ILOCAL, "ilocal"),
2021 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2022 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2023 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2024 REG_TYPE_STR(QFORMAT, "qformat"),
2025 REG_TYPE_STR(DQUOT, "dquot"),
2026 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2027 REG_TYPE_STR(LRHEADER, "LR header"),
2028 REG_TYPE_STR(UNMOUNT, "unmount"),
2029 REG_TYPE_STR(COMMIT, "commit"),
2030 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2031 REG_TYPE_STR(ICREATE, "inode create"),
2032 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2033 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2034 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2035 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2036 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2037 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2038 };
d31d7185 2039 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2040#undef REG_TYPE_STR
7e9c6396 2041
7d2d5653 2042 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2043 xfs_warn(mp, " unit res = %d bytes",
2044 ticket->t_unit_res);
2045 xfs_warn(mp, " current res = %d bytes",
2046 ticket->t_curr_res);
2047 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2048 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2049 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2050 ticket->t_res_num_ophdrs, ophdr_spc);
2051 xfs_warn(mp, " ophdr + reg = %u bytes",
2052 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2053 xfs_warn(mp, " num regions = %u",
2054 ticket->t_res_num);
7e9c6396
TS
2055
2056 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2057 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2058 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2059 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2060 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2061 ticket->t_res_arr[i].r_len);
2062 }
2063}
7e9c6396 2064
d4ca1d55
BF
2065/*
2066 * Print a summary of the transaction.
2067 */
2068void
2069xlog_print_trans(
e6631f85 2070 struct xfs_trans *tp)
d4ca1d55 2071{
e6631f85
DC
2072 struct xfs_mount *mp = tp->t_mountp;
2073 struct xfs_log_item *lip;
d4ca1d55
BF
2074
2075 /* dump core transaction and ticket info */
2076 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2077 xfs_warn(mp, " log res = %d", tp->t_log_res);
2078 xfs_warn(mp, " log count = %d", tp->t_log_count);
2079 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2080
2081 xlog_print_tic_res(mp, tp->t_ticket);
2082
2083 /* dump each log item */
e6631f85 2084 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2085 struct xfs_log_vec *lv = lip->li_lv;
2086 struct xfs_log_iovec *vec;
2087 int i;
2088
2089 xfs_warn(mp, "log item: ");
2090 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2091 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2092 if (!lv)
2093 continue;
2094 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2095 xfs_warn(mp, " size = %d", lv->lv_size);
2096 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2097 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2098
2099 /* dump each iovec for the log item */
2100 vec = lv->lv_iovecp;
2101 for (i = 0; i < lv->lv_niovecs; i++) {
2102 int dumplen = min(vec->i_len, 32);
2103
2104 xfs_warn(mp, " iovec[%d]", i);
2105 xfs_warn(mp, " type = 0x%x", vec->i_type);
2106 xfs_warn(mp, " len = %d", vec->i_len);
2107 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2108 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2109
2110 vec++;
2111 }
2112 }
2113}
2114
b5203cd0
DC
2115/*
2116 * Calculate the potential space needed by the log vector. Each region gets
2117 * its own xlog_op_header_t and may need to be double word aligned.
2118 */
2119static int
2120xlog_write_calc_vec_length(
2121 struct xlog_ticket *ticket,
55b66332 2122 struct xfs_log_vec *log_vector)
b5203cd0 2123{
55b66332 2124 struct xfs_log_vec *lv;
b5203cd0
DC
2125 int headers = 0;
2126 int len = 0;
2127 int i;
2128
2129 /* acct for start rec of xact */
2130 if (ticket->t_flags & XLOG_TIC_INITED)
2131 headers++;
2132
55b66332 2133 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2134 /* we don't write ordered log vectors */
2135 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2136 continue;
2137
55b66332
DC
2138 headers += lv->lv_niovecs;
2139
2140 for (i = 0; i < lv->lv_niovecs; i++) {
2141 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2142
55b66332
DC
2143 len += vecp->i_len;
2144 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2145 }
b5203cd0
DC
2146 }
2147
2148 ticket->t_res_num_ophdrs += headers;
2149 len += headers * sizeof(struct xlog_op_header);
2150
2151 return len;
2152}
2153
2154/*
2155 * If first write for transaction, insert start record We can't be trying to
2156 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2157 */
2158static int
2159xlog_write_start_rec(
e6b1f273 2160 struct xlog_op_header *ophdr,
b5203cd0
DC
2161 struct xlog_ticket *ticket)
2162{
b5203cd0
DC
2163 if (!(ticket->t_flags & XLOG_TIC_INITED))
2164 return 0;
2165
2166 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2167 ophdr->oh_clientid = ticket->t_clientid;
2168 ophdr->oh_len = 0;
2169 ophdr->oh_flags = XLOG_START_TRANS;
2170 ophdr->oh_res2 = 0;
2171
2172 ticket->t_flags &= ~XLOG_TIC_INITED;
2173
2174 return sizeof(struct xlog_op_header);
2175}
2176
2177static xlog_op_header_t *
2178xlog_write_setup_ophdr(
ad223e60 2179 struct xlog *log,
e6b1f273 2180 struct xlog_op_header *ophdr,
b5203cd0
DC
2181 struct xlog_ticket *ticket,
2182 uint flags)
2183{
b5203cd0
DC
2184 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2185 ophdr->oh_clientid = ticket->t_clientid;
2186 ophdr->oh_res2 = 0;
2187
2188 /* are we copying a commit or unmount record? */
2189 ophdr->oh_flags = flags;
2190
2191 /*
2192 * We've seen logs corrupted with bad transaction client ids. This
2193 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2194 * and shut down the filesystem.
2195 */
2196 switch (ophdr->oh_clientid) {
2197 case XFS_TRANSACTION:
2198 case XFS_VOLUME:
2199 case XFS_LOG:
2200 break;
2201 default:
a0fa2b67 2202 xfs_warn(log->l_mp,
c9690043 2203 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2204 ophdr->oh_clientid, ticket);
2205 return NULL;
2206 }
2207
2208 return ophdr;
2209}
2210
2211/*
2212 * Set up the parameters of the region copy into the log. This has
2213 * to handle region write split across multiple log buffers - this
2214 * state is kept external to this function so that this code can
ac0e300f 2215 * be written in an obvious, self documenting manner.
b5203cd0
DC
2216 */
2217static int
2218xlog_write_setup_copy(
2219 struct xlog_ticket *ticket,
2220 struct xlog_op_header *ophdr,
2221 int space_available,
2222 int space_required,
2223 int *copy_off,
2224 int *copy_len,
2225 int *last_was_partial_copy,
2226 int *bytes_consumed)
2227{
2228 int still_to_copy;
2229
2230 still_to_copy = space_required - *bytes_consumed;
2231 *copy_off = *bytes_consumed;
2232
2233 if (still_to_copy <= space_available) {
2234 /* write of region completes here */
2235 *copy_len = still_to_copy;
2236 ophdr->oh_len = cpu_to_be32(*copy_len);
2237 if (*last_was_partial_copy)
2238 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2239 *last_was_partial_copy = 0;
2240 *bytes_consumed = 0;
2241 return 0;
2242 }
2243
2244 /* partial write of region, needs extra log op header reservation */
2245 *copy_len = space_available;
2246 ophdr->oh_len = cpu_to_be32(*copy_len);
2247 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2248 if (*last_was_partial_copy)
2249 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2250 *bytes_consumed += *copy_len;
2251 (*last_was_partial_copy)++;
2252
2253 /* account for new log op header */
2254 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2255 ticket->t_res_num_ophdrs++;
2256
2257 return sizeof(struct xlog_op_header);
2258}
2259
2260static int
2261xlog_write_copy_finish(
ad223e60 2262 struct xlog *log,
b5203cd0
DC
2263 struct xlog_in_core *iclog,
2264 uint flags,
2265 int *record_cnt,
2266 int *data_cnt,
2267 int *partial_copy,
2268 int *partial_copy_len,
2269 int log_offset,
2270 struct xlog_in_core **commit_iclog)
2271{
df732b29
CH
2272 int error;
2273
b5203cd0
DC
2274 if (*partial_copy) {
2275 /*
2276 * This iclog has already been marked WANT_SYNC by
2277 * xlog_state_get_iclog_space.
2278 */
390aab0a 2279 spin_lock(&log->l_icloglock);
b5203cd0
DC
2280 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2281 *record_cnt = 0;
2282 *data_cnt = 0;
df732b29 2283 goto release_iclog;
b5203cd0
DC
2284 }
2285
2286 *partial_copy = 0;
2287 *partial_copy_len = 0;
2288
2289 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2290 /* no more space in this iclog - push it. */
390aab0a 2291 spin_lock(&log->l_icloglock);
b5203cd0
DC
2292 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2293 *record_cnt = 0;
2294 *data_cnt = 0;
2295
b5203cd0 2296 xlog_state_want_sync(log, iclog);
b5203cd0 2297 if (!commit_iclog)
df732b29
CH
2298 goto release_iclog;
2299 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2300 ASSERT(flags & XLOG_COMMIT_TRANS);
2301 *commit_iclog = iclog;
2302 }
2303
2304 return 0;
df732b29
CH
2305
2306release_iclog:
2307 error = xlog_state_release_iclog(log, iclog);
2308 spin_unlock(&log->l_icloglock);
2309 return error;
b5203cd0
DC
2310}
2311
1da177e4
LT
2312/*
2313 * Write some region out to in-core log
2314 *
2315 * This will be called when writing externally provided regions or when
2316 * writing out a commit record for a given transaction.
2317 *
2318 * General algorithm:
2319 * 1. Find total length of this write. This may include adding to the
2320 * lengths passed in.
2321 * 2. Check whether we violate the tickets reservation.
2322 * 3. While writing to this iclog
2323 * A. Reserve as much space in this iclog as can get
2324 * B. If this is first write, save away start lsn
2325 * C. While writing this region:
2326 * 1. If first write of transaction, write start record
2327 * 2. Write log operation header (header per region)
2328 * 3. Find out if we can fit entire region into this iclog
2329 * 4. Potentially, verify destination memcpy ptr
2330 * 5. Memcpy (partial) region
2331 * 6. If partial copy, release iclog; otherwise, continue
2332 * copying more regions into current iclog
2333 * 4. Mark want sync bit (in simulation mode)
2334 * 5. Release iclog for potential flush to on-disk log.
2335 *
2336 * ERRORS:
2337 * 1. Panic if reservation is overrun. This should never happen since
2338 * reservation amounts are generated internal to the filesystem.
2339 * NOTES:
2340 * 1. Tickets are single threaded data structures.
2341 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2342 * syncing routine. When a single log_write region needs to span
2343 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2344 * on all log operation writes which don't contain the end of the
2345 * region. The XLOG_END_TRANS bit is used for the in-core log
2346 * operation which contains the end of the continued log_write region.
2347 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2348 * we don't really know exactly how much space will be used. As a result,
2349 * we don't update ic_offset until the end when we know exactly how many
2350 * bytes have been written out.
2351 */
71e330b5 2352int
35a8a72f 2353xlog_write(
ad223e60 2354 struct xlog *log,
55b66332 2355 struct xfs_log_vec *log_vector,
35a8a72f
CH
2356 struct xlog_ticket *ticket,
2357 xfs_lsn_t *start_lsn,
2358 struct xlog_in_core **commit_iclog,
2359 uint flags)
1da177e4 2360{
99428ad0 2361 struct xlog_in_core *iclog = NULL;
55b66332
DC
2362 struct xfs_log_iovec *vecp;
2363 struct xfs_log_vec *lv;
99428ad0
CH
2364 int len;
2365 int index;
2366 int partial_copy = 0;
2367 int partial_copy_len = 0;
2368 int contwr = 0;
2369 int record_cnt = 0;
2370 int data_cnt = 0;
df732b29 2371 int error = 0;
99428ad0
CH
2372
2373 *start_lsn = 0;
2374
55b66332 2375 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2376
93b8a585
CH
2377 /*
2378 * Region headers and bytes are already accounted for.
2379 * We only need to take into account start records and
2380 * split regions in this function.
2381 */
2382 if (ticket->t_flags & XLOG_TIC_INITED)
2383 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2384
2385 /*
2386 * Commit record headers need to be accounted for. These
2387 * come in as separate writes so are easy to detect.
2388 */
2389 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2390 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5 2391
7d2d5653
BF
2392 if (ticket->t_curr_res < 0) {
2393 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2394 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2395 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2396 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2397 }
1da177e4 2398
55b66332
DC
2399 index = 0;
2400 lv = log_vector;
2401 vecp = lv->lv_iovecp;
fd63875c 2402 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2403 void *ptr;
99428ad0 2404 int log_offset;
1da177e4 2405
99428ad0
CH
2406 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2407 &contwr, &log_offset);
2408 if (error)
2409 return error;
1da177e4 2410
99428ad0 2411 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2412 ptr = iclog->ic_datap + log_offset;
1da177e4 2413
99428ad0
CH
2414 /* start_lsn is the first lsn written to. That's all we need. */
2415 if (!*start_lsn)
2416 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2417
99428ad0
CH
2418 /*
2419 * This loop writes out as many regions as can fit in the amount
2420 * of space which was allocated by xlog_state_get_iclog_space().
2421 */
fd63875c
DC
2422 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2423 struct xfs_log_iovec *reg;
99428ad0
CH
2424 struct xlog_op_header *ophdr;
2425 int start_rec_copy;
2426 int copy_len;
2427 int copy_off;
fd63875c
DC
2428 bool ordered = false;
2429
2430 /* ordered log vectors have no regions to write */
2431 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2432 ASSERT(lv->lv_niovecs == 0);
2433 ordered = true;
2434 goto next_lv;
2435 }
99428ad0 2436
fd63875c 2437 reg = &vecp[index];
c8ce540d
DW
2438 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2439 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0
CH
2440
2441 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2442 if (start_rec_copy) {
2443 record_cnt++;
e6b1f273 2444 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2445 start_rec_copy);
2446 }
b5203cd0 2447
99428ad0
CH
2448 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2449 if (!ophdr)
2451337d 2450 return -EIO;
99428ad0 2451
e6b1f273 2452 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2453 sizeof(struct xlog_op_header));
2454
2455 len += xlog_write_setup_copy(ticket, ophdr,
2456 iclog->ic_size-log_offset,
55b66332 2457 reg->i_len,
99428ad0
CH
2458 &copy_off, &copy_len,
2459 &partial_copy,
2460 &partial_copy_len);
2461 xlog_verify_dest_ptr(log, ptr);
2462
91f9f5fe
ES
2463 /*
2464 * Copy region.
2465 *
2466 * Unmount records just log an opheader, so can have
2467 * empty payloads with no data region to copy. Hence we
2468 * only copy the payload if the vector says it has data
2469 * to copy.
2470 */
99428ad0 2471 ASSERT(copy_len >= 0);
91f9f5fe
ES
2472 if (copy_len > 0) {
2473 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2474 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2475 copy_len);
2476 }
99428ad0
CH
2477 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2478 record_cnt++;
2479 data_cnt += contwr ? copy_len : 0;
2480
2481 error = xlog_write_copy_finish(log, iclog, flags,
2482 &record_cnt, &data_cnt,
2483 &partial_copy,
2484 &partial_copy_len,
2485 log_offset,
2486 commit_iclog);
2487 if (error)
2488 return error;
2489
2490 /*
2491 * if we had a partial copy, we need to get more iclog
2492 * space but we don't want to increment the region
2493 * index because there is still more is this region to
2494 * write.
2495 *
2496 * If we completed writing this region, and we flushed
2497 * the iclog (indicated by resetting of the record
2498 * count), then we also need to get more log space. If
2499 * this was the last record, though, we are done and
2500 * can just return.
2501 */
2502 if (partial_copy)
2503 break;
2504
55b66332 2505 if (++index == lv->lv_niovecs) {
fd63875c 2506next_lv:
55b66332
DC
2507 lv = lv->lv_next;
2508 index = 0;
2509 if (lv)
2510 vecp = lv->lv_iovecp;
2511 }
749f24f3 2512 if (record_cnt == 0 && !ordered) {
55b66332 2513 if (!lv)
99428ad0
CH
2514 return 0;
2515 break;
2516 }
2517 }
2518 }
2519
2520 ASSERT(len == 0);
2521
390aab0a 2522 spin_lock(&log->l_icloglock);
99428ad0 2523 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
df732b29
CH
2524 if (commit_iclog) {
2525 ASSERT(flags & XLOG_COMMIT_TRANS);
2526 *commit_iclog = iclog;
2527 } else {
2528 error = xlog_state_release_iclog(log, iclog);
2529 }
390aab0a 2530 spin_unlock(&log->l_icloglock);
1da177e4 2531
df732b29 2532 return error;
99428ad0 2533}
1da177e4
LT
2534
2535
2536/*****************************************************************************
2537 *
2538 * State Machine functions
2539 *
2540 *****************************************************************************
2541 */
2542
0383f543
DC
2543/*
2544 * An iclog has just finished IO completion processing, so we need to update
2545 * the iclog state and propagate that up into the overall log state. Hence we
2546 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2547 * starting from the head, and then wake up any threads that are waiting for the
2548 * iclog to be marked clean.
2549 *
2550 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2551 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2552 * maintain the notion that we use a ordered wait queue to hold off would be
2553 * writers to the log when every iclog is trying to sync to disk.
1da177e4 2554 *
0383f543
DC
2555 * Caller must hold the icloglock before calling us.
2556 *
2557 * State Change: !IOERROR -> DIRTY -> ACTIVE
1da177e4 2558 */
ba0f32d4 2559STATIC void
0383f543
DC
2560xlog_state_clean_iclog(
2561 struct xlog *log,
2562 struct xlog_in_core *dirty_iclog)
1da177e4 2563{
0383f543
DC
2564 struct xlog_in_core *iclog;
2565 int changed = 0;
2566
2567 /* Prepare the completed iclog. */
1858bb0b 2568 if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
0383f543 2569 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2570
0383f543 2571 /* Walk all the iclogs to update the ordered active state. */
1da177e4
LT
2572 iclog = log->l_iclog;
2573 do {
2574 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2575 iclog->ic_state = XLOG_STATE_ACTIVE;
2576 iclog->ic_offset = 0;
89ae379d 2577 ASSERT(list_empty_careful(&iclog->ic_callbacks));
1da177e4
LT
2578 /*
2579 * If the number of ops in this iclog indicate it just
2580 * contains the dummy transaction, we can
2581 * change state into IDLE (the second time around).
2582 * Otherwise we should change the state into
2583 * NEED a dummy.
2584 * We don't need to cover the dummy.
2585 */
2586 if (!changed &&
b53e675d
CH
2587 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2588 XLOG_COVER_OPS)) {
1da177e4
LT
2589 changed = 1;
2590 } else {
2591 /*
2592 * We have two dirty iclogs so start over
2593 * This could also be num of ops indicates
2594 * this is not the dummy going out.
2595 */
2596 changed = 2;
2597 }
2598 iclog->ic_header.h_num_logops = 0;
2599 memset(iclog->ic_header.h_cycle_data, 0,
2600 sizeof(iclog->ic_header.h_cycle_data));
2601 iclog->ic_header.h_lsn = 0;
2602 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2603 /* do nothing */;
2604 else
2605 break; /* stop cleaning */
2606 iclog = iclog->ic_next;
2607 } while (iclog != log->l_iclog);
2608
0383f543
DC
2609
2610 /*
2611 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2612 * to be cleaned.
2613 */
2614 wake_up_all(&dirty_iclog->ic_force_wait);
2615
1da177e4
LT
2616 /*
2617 * Change state for the dummy log recording.
2618 * We usually go to NEED. But we go to NEED2 if the changed indicates
2619 * we are done writing the dummy record.
2620 * If we are done with the second dummy recored (DONE2), then
2621 * we go to IDLE.
2622 */
2623 if (changed) {
2624 switch (log->l_covered_state) {
2625 case XLOG_STATE_COVER_IDLE:
2626 case XLOG_STATE_COVER_NEED:
2627 case XLOG_STATE_COVER_NEED2:
2628 log->l_covered_state = XLOG_STATE_COVER_NEED;
2629 break;
2630
2631 case XLOG_STATE_COVER_DONE:
2632 if (changed == 1)
2633 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2634 else
2635 log->l_covered_state = XLOG_STATE_COVER_NEED;
2636 break;
2637
2638 case XLOG_STATE_COVER_DONE2:
2639 if (changed == 1)
2640 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2641 else
2642 log->l_covered_state = XLOG_STATE_COVER_NEED;
2643 break;
2644
2645 default:
2646 ASSERT(0);
2647 }
2648 }
0383f543 2649}
1da177e4
LT
2650
2651STATIC xfs_lsn_t
2652xlog_get_lowest_lsn(
9bff3132 2653 struct xlog *log)
1da177e4 2654{
9bff3132
CH
2655 struct xlog_in_core *iclog = log->l_iclog;
2656 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2657
1da177e4 2658 do {
1858bb0b
CH
2659 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2660 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2661 continue;
2662
2663 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2664 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2665 lowest_lsn = lsn;
9bff3132
CH
2666 } while ((iclog = iclog->ic_next) != log->l_iclog);
2667
014c2544 2668 return lowest_lsn;
1da177e4
LT
2669}
2670
14e15f1b
DC
2671/*
2672 * Completion of a iclog IO does not imply that a transaction has completed, as
2673 * transactions can be large enough to span many iclogs. We cannot change the
2674 * tail of the log half way through a transaction as this may be the only
2675 * transaction in the log and moving the tail to point to the middle of it
2676 * will prevent recovery from finding the start of the transaction. Hence we
2677 * should only update the last_sync_lsn if this iclog contains transaction
2678 * completion callbacks on it.
2679 *
2680 * We have to do this before we drop the icloglock to ensure we are the only one
2681 * that can update it.
2682 *
2683 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2684 * the reservation grant head pushing. This is due to the fact that the push
2685 * target is bound by the current last_sync_lsn value. Hence if we have a large
2686 * amount of log space bound up in this committing transaction then the
2687 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2688 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2689 * should push the AIL to ensure the push target (and hence the grant head) is
2690 * no longer bound by the old log head location and can move forwards and make
2691 * progress again.
2692 */
2693static void
2694xlog_state_set_callback(
2695 struct xlog *log,
2696 struct xlog_in_core *iclog,
2697 xfs_lsn_t header_lsn)
2698{
2699 iclog->ic_state = XLOG_STATE_CALLBACK;
2700
2701 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2702 header_lsn) <= 0);
2703
2704 if (list_empty_careful(&iclog->ic_callbacks))
2705 return;
2706
2707 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2708 xlog_grant_push_ail(log, 0);
2709}
2710
5e96fa8d
DC
2711/*
2712 * Return true if we need to stop processing, false to continue to the next
2713 * iclog. The caller will need to run callbacks if the iclog is returned in the
2714 * XLOG_STATE_CALLBACK state.
2715 */
2716static bool
2717xlog_state_iodone_process_iclog(
2718 struct xlog *log,
2719 struct xlog_in_core *iclog,
5e96fa8d
DC
2720 bool *ioerror)
2721{
2722 xfs_lsn_t lowest_lsn;
14e15f1b 2723 xfs_lsn_t header_lsn;
5e96fa8d 2724
1858bb0b
CH
2725 switch (iclog->ic_state) {
2726 case XLOG_STATE_ACTIVE:
2727 case XLOG_STATE_DIRTY:
2728 /*
2729 * Skip all iclogs in the ACTIVE & DIRTY states:
2730 */
5e96fa8d 2731 return false;
1858bb0b
CH
2732 case XLOG_STATE_IOERROR:
2733 /*
2734 * Between marking a filesystem SHUTDOWN and stopping the log,
2735 * we do flush all iclogs to disk (if there wasn't a log I/O
2736 * error). So, we do want things to go smoothly in case of just
4b29ab04 2737 * a SHUTDOWN w/o a LOG_IO_ERROR.
1858bb0b 2738 */
5e96fa8d
DC
2739 *ioerror = true;
2740 return false;
1858bb0b 2741 case XLOG_STATE_DONE_SYNC:
1858bb0b 2742 /*
4b29ab04
CH
2743 * Now that we have an iclog that is in the DONE_SYNC state, do
2744 * one more check here to see if we have chased our tail around.
2745 * If this is not the lowest lsn iclog, then we will leave it
2746 * for another completion to process.
1858bb0b
CH
2747 */
2748 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2749 lowest_lsn = xlog_get_lowest_lsn(log);
2750 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2751 return false;
2752 xlog_state_set_callback(log, iclog, header_lsn);
2753 return false;
2754 default:
2755 /*
2756 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2757 * in the DONE_SYNC state, we skip the rest and just try to
2758 * clean up.
1858bb0b 2759 */
5e96fa8d
DC
2760 return true;
2761 }
5e96fa8d
DC
2762}
2763
6546818c
DC
2764/*
2765 * Keep processing entries in the iclog callback list until we come around and
2766 * it is empty. We need to atomically see that the list is empty and change the
2767 * state to DIRTY so that we don't miss any more callbacks being added.
2768 *
2769 * This function is called with the icloglock held and returns with it held. We
2770 * drop it while running callbacks, however, as holding it over thousands of
2771 * callbacks is unnecessary and causes excessive contention if we do.
2772 */
2773static void
2774xlog_state_do_iclog_callbacks(
2775 struct xlog *log,
12e6a0f4 2776 struct xlog_in_core *iclog)
f7559793
DW
2777 __releases(&log->l_icloglock)
2778 __acquires(&log->l_icloglock)
6546818c
DC
2779{
2780 spin_unlock(&log->l_icloglock);
2781 spin_lock(&iclog->ic_callback_lock);
2782 while (!list_empty(&iclog->ic_callbacks)) {
2783 LIST_HEAD(tmp);
2784
2785 list_splice_init(&iclog->ic_callbacks, &tmp);
2786
2787 spin_unlock(&iclog->ic_callback_lock);
12e6a0f4 2788 xlog_cil_process_committed(&tmp);
6546818c
DC
2789 spin_lock(&iclog->ic_callback_lock);
2790 }
2791
2792 /*
2793 * Pick up the icloglock while still holding the callback lock so we
2794 * serialise against anyone trying to add more callbacks to this iclog
2795 * now we've finished processing.
2796 */
2797 spin_lock(&log->l_icloglock);
2798 spin_unlock(&iclog->ic_callback_lock);
2799}
2800
1da177e4
LT
2801STATIC void
2802xlog_state_do_callback(
12e6a0f4 2803 struct xlog *log)
1da177e4 2804{
5e96fa8d
DC
2805 struct xlog_in_core *iclog;
2806 struct xlog_in_core *first_iclog;
5e96fa8d
DC
2807 bool cycled_icloglock;
2808 bool ioerror;
2809 int flushcnt = 0;
2810 int repeats = 0;
1da177e4 2811
b22cd72c 2812 spin_lock(&log->l_icloglock);
1da177e4
LT
2813 do {
2814 /*
2815 * Scan all iclogs starting with the one pointed to by the
2816 * log. Reset this starting point each time the log is
2817 * unlocked (during callbacks).
2818 *
2819 * Keep looping through iclogs until one full pass is made
2820 * without running any callbacks.
2821 */
2822 first_iclog = log->l_iclog;
2823 iclog = log->l_iclog;
6546818c 2824 cycled_icloglock = false;
5e96fa8d 2825 ioerror = false;
1da177e4
LT
2826 repeats++;
2827
2828 do {
5e96fa8d 2829 if (xlog_state_iodone_process_iclog(log, iclog,
4b29ab04 2830 &ioerror))
5e96fa8d 2831 break;
1da177e4 2832
1858bb0b
CH
2833 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2834 iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
2835 iclog = iclog->ic_next;
2836 continue;
2837 }
2838
114d23aa 2839 /*
6546818c
DC
2840 * Running callbacks will drop the icloglock which means
2841 * we'll have to run at least one more complete loop.
114d23aa 2842 */
6546818c 2843 cycled_icloglock = true;
12e6a0f4 2844 xlog_state_do_iclog_callbacks(log, iclog);
1da177e4 2845
0383f543 2846 xlog_state_clean_iclog(log, iclog);
1da177e4
LT
2847 iclog = iclog->ic_next;
2848 } while (first_iclog != iclog);
a3c6685e
NS
2849
2850 if (repeats > 5000) {
2851 flushcnt += repeats;
2852 repeats = 0;
a0fa2b67 2853 xfs_warn(log->l_mp,
a3c6685e 2854 "%s: possible infinite loop (%d iterations)",
34a622b2 2855 __func__, flushcnt);
1da177e4 2856 }
5e96fa8d 2857 } while (!ioerror && cycled_icloglock);
1da177e4 2858
1858bb0b
CH
2859 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2860 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
eb40a875 2861 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2862
2863 spin_unlock(&log->l_icloglock);
d748c623 2864}
1da177e4
LT
2865
2866
2867/*
2868 * Finish transitioning this iclog to the dirty state.
2869 *
2870 * Make sure that we completely execute this routine only when this is
2871 * the last call to the iclog. There is a good chance that iclog flushes,
2872 * when we reach the end of the physical log, get turned into 2 separate
2873 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2874 * routine. By using the reference count bwritecnt, we guarantee that only
2875 * the second completion goes through.
2876 *
2877 * Callbacks could take time, so they are done outside the scope of the
12017faf 2878 * global state machine log lock.
1da177e4 2879 */
a8272ce0 2880STATIC void
1da177e4 2881xlog_state_done_syncing(
12e6a0f4 2882 struct xlog_in_core *iclog)
1da177e4 2883{
d15cbf2f 2884 struct xlog *log = iclog->ic_log;
1da177e4 2885
b22cd72c 2886 spin_lock(&log->l_icloglock);
155cc6b7 2887 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2888
2889 /*
2890 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2891 * split log writes, on the second, we shut down the file system and
2892 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2893 */
12e6a0f4
CH
2894 if (!XLOG_FORCED_SHUTDOWN(log)) {
2895 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2896 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2897 }
1da177e4
LT
2898
2899 /*
2900 * Someone could be sleeping prior to writing out the next
2901 * iclog buffer, we wake them all, one will get to do the
2902 * I/O, the others get to wait for the result.
2903 */
eb40a875 2904 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2905 spin_unlock(&log->l_icloglock);
12e6a0f4
CH
2906 xlog_state_do_callback(log); /* also cleans log */
2907}
1da177e4
LT
2908
2909/*
2910 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2911 * sleep. We wait on the flush queue on the head iclog as that should be
2912 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2913 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2914 *
2915 * The in-core logs are used in a circular fashion. They are not used
2916 * out-of-order even when an iclog past the head is free.
2917 *
2918 * return:
2919 * * log_offset where xlog_write() can start writing into the in-core
2920 * log's data space.
2921 * * in-core log pointer to which xlog_write() should write.
2922 * * boolean indicating this is a continued write to an in-core log.
2923 * If this is the last write, then the in-core log's offset field
2924 * needs to be incremented, depending on the amount of data which
2925 * is copied.
2926 */
a8272ce0 2927STATIC int
9a8d2fdb
MT
2928xlog_state_get_iclog_space(
2929 struct xlog *log,
2930 int len,
2931 struct xlog_in_core **iclogp,
2932 struct xlog_ticket *ticket,
2933 int *continued_write,
2934 int *logoffsetp)
1da177e4 2935{
1da177e4
LT
2936 int log_offset;
2937 xlog_rec_header_t *head;
2938 xlog_in_core_t *iclog;
1da177e4
LT
2939
2940restart:
b22cd72c 2941 spin_lock(&log->l_icloglock);
1da177e4 2942 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2943 spin_unlock(&log->l_icloglock);
2451337d 2944 return -EIO;
1da177e4
LT
2945 }
2946
2947 iclog = log->l_iclog;
d748c623 2948 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2949 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2950
2951 /* Wait for log writes to have flushed */
eb40a875 2952 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2953 goto restart;
2954 }
d748c623 2955
1da177e4
LT
2956 head = &iclog->ic_header;
2957
155cc6b7 2958 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2959 log_offset = iclog->ic_offset;
2960
2961 /* On the 1st write to an iclog, figure out lsn. This works
2962 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2963 * committing to. If the offset is set, that's how many blocks
2964 * must be written.
2965 */
2966 if (log_offset == 0) {
2967 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2968 xlog_tic_add_region(ticket,
7e9c6396
TS
2969 log->l_iclog_hsize,
2970 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
2971 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2972 head->h_lsn = cpu_to_be64(
03bea6fe 2973 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
2974 ASSERT(log->l_curr_block >= 0);
2975 }
2976
2977 /* If there is enough room to write everything, then do it. Otherwise,
2978 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2979 * bit is on, so this will get flushed out. Don't update ic_offset
2980 * until you know exactly how many bytes get copied. Therefore, wait
2981 * until later to update ic_offset.
2982 *
2983 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2984 * can fit into remaining data section.
2985 */
2986 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
2987 int error = 0;
2988
1da177e4
LT
2989 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2990
49641f1a 2991 /*
df732b29
CH
2992 * If we are the only one writing to this iclog, sync it to
2993 * disk. We need to do an atomic compare and decrement here to
2994 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
2995 * xlog_state_release_iclog() when there is more than one
2996 * reference to the iclog.
2997 */
df732b29 2998 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
49641f1a 2999 error = xlog_state_release_iclog(log, iclog);
df732b29
CH
3000 spin_unlock(&log->l_icloglock);
3001 if (error)
3002 return error;
1da177e4
LT
3003 goto restart;
3004 }
3005
3006 /* Do we have enough room to write the full amount in the remainder
3007 * of this iclog? Or must we continue a write on the next iclog and
3008 * mark this iclog as completely taken? In the case where we switch
3009 * iclogs (to mark it taken), this particular iclog will release/sync
3010 * to disk in xlog_write().
3011 */
3012 if (len <= iclog->ic_size - iclog->ic_offset) {
3013 *continued_write = 0;
3014 iclog->ic_offset += len;
3015 } else {
3016 *continued_write = 1;
3017 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3018 }
3019 *iclogp = iclog;
3020
3021 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3022 spin_unlock(&log->l_icloglock);
1da177e4
LT
3023
3024 *logoffsetp = log_offset;
3025 return 0;
3026} /* xlog_state_get_iclog_space */
3027
1da177e4
LT
3028/* The first cnt-1 times through here we don't need to
3029 * move the grant write head because the permanent
3030 * reservation has reserved cnt times the unit amount.
3031 * Release part of current permanent unit reservation and
3032 * reset current reservation to be one units worth. Also
3033 * move grant reservation head forward.
3034 */
3035STATIC void
9a8d2fdb
MT
3036xlog_regrant_reserve_log_space(
3037 struct xlog *log,
3038 struct xlog_ticket *ticket)
1da177e4 3039{
0b1b213f
CH
3040 trace_xfs_log_regrant_reserve_enter(log, ticket);
3041
1da177e4
LT
3042 if (ticket->t_cnt > 0)
3043 ticket->t_cnt--;
3044
28496968 3045 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3046 ticket->t_curr_res);
28496968 3047 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3048 ticket->t_curr_res);
1da177e4 3049 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3050 xlog_tic_reset_res(ticket);
0b1b213f
CH
3051
3052 trace_xfs_log_regrant_reserve_sub(log, ticket);
3053
1da177e4 3054 /* just return if we still have some of the pre-reserved space */
d0eb2f38 3055 if (ticket->t_cnt > 0)
1da177e4 3056 return;
1da177e4 3057
28496968 3058 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 3059 ticket->t_unit_res);
0b1b213f
CH
3060
3061 trace_xfs_log_regrant_reserve_exit(log, ticket);
3062
1da177e4 3063 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3064 xlog_tic_reset_res(ticket);
1da177e4
LT
3065} /* xlog_regrant_reserve_log_space */
3066
3067
3068/*
3069 * Give back the space left from a reservation.
3070 *
3071 * All the information we need to make a correct determination of space left
3072 * is present. For non-permanent reservations, things are quite easy. The
3073 * count should have been decremented to zero. We only need to deal with the
3074 * space remaining in the current reservation part of the ticket. If the
3075 * ticket contains a permanent reservation, there may be left over space which
3076 * needs to be released. A count of N means that N-1 refills of the current
3077 * reservation can be done before we need to ask for more space. The first
3078 * one goes to fill up the first current reservation. Once we run out of
3079 * space, the count will stay at zero and the only space remaining will be
3080 * in the current reservation field.
3081 */
3082STATIC void
9a8d2fdb
MT
3083xlog_ungrant_log_space(
3084 struct xlog *log,
3085 struct xlog_ticket *ticket)
1da177e4 3086{
663e496a
DC
3087 int bytes;
3088
1da177e4
LT
3089 if (ticket->t_cnt > 0)
3090 ticket->t_cnt--;
3091
0b1b213f 3092 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 3093 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 3094
663e496a
DC
3095 /*
3096 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3097 * up more space based on the remaining count.
3098 */
663e496a 3099 bytes = ticket->t_curr_res;
1da177e4
LT
3100 if (ticket->t_cnt > 0) {
3101 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3102 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3103 }
3104
28496968
CH
3105 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3106 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3107
0b1b213f
CH
3108 trace_xfs_log_ungrant_exit(log, ticket);
3109
cfb7cdca 3110 xfs_log_space_wake(log->l_mp);
09a423a3 3111}
1da177e4 3112
1da177e4
LT
3113/*
3114 * This routine will mark the current iclog in the ring as WANT_SYNC
3115 * and move the current iclog pointer to the next iclog in the ring.
3116 * When this routine is called from xlog_state_get_iclog_space(), the
3117 * exact size of the iclog has not yet been determined. All we know is
3118 * that every data block. We have run out of space in this log record.
3119 */
3120STATIC void
9a8d2fdb
MT
3121xlog_state_switch_iclogs(
3122 struct xlog *log,
3123 struct xlog_in_core *iclog,
3124 int eventual_size)
1da177e4
LT
3125{
3126 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3127 if (!eventual_size)
3128 eventual_size = iclog->ic_offset;
3129 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3130 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3131 log->l_prev_block = log->l_curr_block;
3132 log->l_prev_cycle = log->l_curr_cycle;
3133
3134 /* roll log?: ic_offset changed later */
3135 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3136
3137 /* Round up to next log-sunit */
62118709 3138 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4 3139 log->l_mp->m_sb.sb_logsunit > 1) {
c8ce540d 3140 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
1da177e4
LT
3141 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3142 }
3143
3144 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3145 /*
3146 * Rewind the current block before the cycle is bumped to make
3147 * sure that the combined LSN never transiently moves forward
3148 * when the log wraps to the next cycle. This is to support the
3149 * unlocked sample of these fields from xlog_valid_lsn(). Most
3150 * other cases should acquire l_icloglock.
3151 */
3152 log->l_curr_block -= log->l_logBBsize;
3153 ASSERT(log->l_curr_block >= 0);
3154 smp_wmb();
1da177e4
LT
3155 log->l_curr_cycle++;
3156 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3157 log->l_curr_cycle++;
1da177e4
LT
3158 }
3159 ASSERT(iclog == log->l_iclog);
3160 log->l_iclog = iclog->ic_next;
3161} /* xlog_state_switch_iclogs */
3162
1da177e4
LT
3163/*
3164 * Write out all data in the in-core log as of this exact moment in time.
3165 *
3166 * Data may be written to the in-core log during this call. However,
3167 * we don't guarantee this data will be written out. A change from past
3168 * implementation means this routine will *not* write out zero length LRs.
3169 *
3170 * Basically, we try and perform an intelligent scan of the in-core logs.
3171 * If we determine there is no flushable data, we just return. There is no
3172 * flushable data if:
3173 *
3174 * 1. the current iclog is active and has no data; the previous iclog
3175 * is in the active or dirty state.
3176 * 2. the current iclog is drity, and the previous iclog is in the
3177 * active or dirty state.
3178 *
12017faf 3179 * We may sleep if:
1da177e4
LT
3180 *
3181 * 1. the current iclog is not in the active nor dirty state.
3182 * 2. the current iclog dirty, and the previous iclog is not in the
3183 * active nor dirty state.
3184 * 3. the current iclog is active, and there is another thread writing
3185 * to this particular iclog.
3186 * 4. a) the current iclog is active and has no other writers
3187 * b) when we return from flushing out this iclog, it is still
3188 * not in the active nor dirty state.
3189 */
a14a348b 3190int
60e5bb78 3191xfs_log_force(
a14a348b 3192 struct xfs_mount *mp,
60e5bb78 3193 uint flags)
1da177e4 3194{
ad223e60 3195 struct xlog *log = mp->m_log;
a14a348b
CH
3196 struct xlog_in_core *iclog;
3197 xfs_lsn_t lsn;
3198
ff6d6af2 3199 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3200 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3201
93b8a585 3202 xlog_cil_force(log);
71e330b5 3203
b22cd72c 3204 spin_lock(&log->l_icloglock);
1da177e4 3205 iclog = log->l_iclog;
1858bb0b 3206 if (iclog->ic_state == XLOG_STATE_IOERROR)
e6b96570 3207 goto out_error;
1da177e4 3208
e6b96570
CH
3209 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3210 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3211 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3212 /*
e6b96570
CH
3213 * If the head is dirty or (active and empty), then we need to
3214 * look at the previous iclog.
3215 *
3216 * If the previous iclog is active or dirty we are done. There
3217 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3218 * previous iclog and go to sleep.
3219 */
e6b96570 3220 iclog = iclog->ic_prev;
e6b96570
CH
3221 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3222 if (atomic_read(&iclog->ic_refcnt) == 0) {
3223 /*
3224 * We are the only one with access to this iclog.
3225 *
3226 * Flush it out now. There should be a roundoff of zero
3227 * to show that someone has already taken care of the
3228 * roundoff from the previous sync.
3229 */
3230 atomic_inc(&iclog->ic_refcnt);
3231 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3232 xlog_state_switch_iclogs(log, iclog, 0);
e6b96570 3233 if (xlog_state_release_iclog(log, iclog))
df732b29 3234 goto out_error;
1da177e4 3235
81e5b50a 3236 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
e6b96570
CH
3237 goto out_unlock;
3238 } else {
3239 /*
3240 * Someone else is writing to this iclog.
3241 *
3242 * Use its call to flush out the data. However, the
3243 * other thread may not force out this LR, so we mark
3244 * it WANT_SYNC.
3245 */
3246 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3247 }
e6b96570 3248 } else {
1da177e4 3249 /*
e6b96570
CH
3250 * If the head iclog is not active nor dirty, we just attach
3251 * ourselves to the head and go to sleep if necessary.
1da177e4 3252 */
e6b96570 3253 ;
1da177e4 3254 }
e6b96570 3255
81e5b50a
CH
3256 if (flags & XFS_LOG_SYNC)
3257 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3258out_unlock:
3259 spin_unlock(&log->l_icloglock);
3260 return 0;
3261out_error:
3262 spin_unlock(&log->l_icloglock);
3263 return -EIO;
a14a348b 3264}
1da177e4 3265
3e4da466
CH
3266static int
3267__xfs_log_force_lsn(
a14a348b
CH
3268 struct xfs_mount *mp,
3269 xfs_lsn_t lsn,
3270 uint flags,
3e4da466
CH
3271 int *log_flushed,
3272 bool already_slept)
1da177e4 3273{
ad223e60 3274 struct xlog *log = mp->m_log;
a14a348b 3275 struct xlog_in_core *iclog;
71e330b5 3276
a14a348b
CH
3277 spin_lock(&log->l_icloglock);
3278 iclog = log->l_iclog;
1858bb0b 3279 if (iclog->ic_state == XLOG_STATE_IOERROR)
93806299 3280 goto out_error;
1da177e4 3281
93806299
CH
3282 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3283 iclog = iclog->ic_next;
3284 if (iclog == log->l_iclog)
3285 goto out_unlock;
3286 }
a14a348b 3287
93806299
CH
3288 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3289 /*
3290 * We sleep here if we haven't already slept (e.g. this is the
3291 * first time we've looked at the correct iclog buf) and the
3292 * buffer before us is going to be sync'ed. The reason for this
3293 * is that if we are doing sync transactions here, by waiting
3294 * for the previous I/O to complete, we can allow a few more
3295 * transactions into this iclog before we close it down.
3296 *
3297 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3298 * refcnt so we can release the log (which drops the ref count).
3299 * The state switch keeps new transaction commits from using
3300 * this buffer. When the current commits finish writing into
3301 * the buffer, the refcount will drop to zero and the buffer
3302 * will go out then.
3303 */
3304 if (!already_slept &&
1858bb0b
CH
3305 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3306 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299 3307 XFS_STATS_INC(mp, xs_log_force_sleep);
a14a348b 3308
93806299
CH
3309 xlog_wait(&iclog->ic_prev->ic_write_wait,
3310 &log->l_icloglock);
3e4da466 3311 return -EAGAIN;
1da177e4 3312 }
93806299
CH
3313 atomic_inc(&iclog->ic_refcnt);
3314 xlog_state_switch_iclogs(log, iclog, 0);
93806299 3315 if (xlog_state_release_iclog(log, iclog))
df732b29 3316 goto out_error;
93806299
CH
3317 if (log_flushed)
3318 *log_flushed = 1;
93806299 3319 }
1da177e4 3320
81e5b50a
CH
3321 if (flags & XFS_LOG_SYNC)
3322 return xlog_wait_on_iclog(iclog);
93806299 3323out_unlock:
a14a348b
CH
3324 spin_unlock(&log->l_icloglock);
3325 return 0;
93806299
CH
3326out_error:
3327 spin_unlock(&log->l_icloglock);
3328 return -EIO;
a14a348b
CH
3329}
3330
3e4da466
CH
3331/*
3332 * Force the in-core log to disk for a specific LSN.
3333 *
3334 * Find in-core log with lsn.
3335 * If it is in the DIRTY state, just return.
3336 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3337 * state and go to sleep or return.
3338 * If it is in any other state, go to sleep or return.
3339 *
3340 * Synchronous forces are implemented with a wait queue. All callers trying
3341 * to force a given lsn to disk must wait on the queue attached to the
3342 * specific in-core log. When given in-core log finally completes its write
3343 * to disk, that thread will wake up all threads waiting on the queue.
3344 */
3345int
3346xfs_log_force_lsn(
3347 struct xfs_mount *mp,
3348 xfs_lsn_t lsn,
3349 uint flags,
3350 int *log_flushed)
3351{
3352 int ret;
3353 ASSERT(lsn != 0);
3354
3355 XFS_STATS_INC(mp, xs_log_force);
3356 trace_xfs_log_force(mp, lsn, _RET_IP_);
3357
3358 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3359 if (lsn == NULLCOMMITLSN)
3360 return 0;
3361
3362 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3363 if (ret == -EAGAIN)
3364 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3365 return ret;
3366}
3367
1da177e4
LT
3368/*
3369 * Called when we want to mark the current iclog as being ready to sync to
3370 * disk.
3371 */
a8272ce0 3372STATIC void
9a8d2fdb
MT
3373xlog_state_want_sync(
3374 struct xlog *log,
3375 struct xlog_in_core *iclog)
1da177e4 3376{
a8914f3a 3377 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3378
3379 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3380 xlog_state_switch_iclogs(log, iclog, 0);
3381 } else {
1858bb0b
CH
3382 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3383 iclog->ic_state == XLOG_STATE_IOERROR);
1da177e4 3384 }
39e2defe 3385}
1da177e4
LT
3386
3387
3388/*****************************************************************************
3389 *
3390 * TICKET functions
3391 *
3392 *****************************************************************************
3393 */
3394
3395/*
9da096fd 3396 * Free a used ticket when its refcount falls to zero.
1da177e4 3397 */
cc09c0dc
DC
3398void
3399xfs_log_ticket_put(
3400 xlog_ticket_t *ticket)
1da177e4 3401{
cc09c0dc 3402 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3403 if (atomic_dec_and_test(&ticket->t_ref))
377bcd5f 3404 kmem_cache_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3405}
1da177e4 3406
cc09c0dc
DC
3407xlog_ticket_t *
3408xfs_log_ticket_get(
3409 xlog_ticket_t *ticket)
3410{
3411 ASSERT(atomic_read(&ticket->t_ref) > 0);
3412 atomic_inc(&ticket->t_ref);
3413 return ticket;
3414}
1da177e4
LT
3415
3416/*
e773fc93
JL
3417 * Figure out the total log space unit (in bytes) that would be
3418 * required for a log ticket.
1da177e4 3419 */
e773fc93
JL
3420int
3421xfs_log_calc_unit_res(
3422 struct xfs_mount *mp,
3423 int unit_bytes)
1da177e4 3424{
e773fc93
JL
3425 struct xlog *log = mp->m_log;
3426 int iclog_space;
3427 uint num_headers;
1da177e4
LT
3428
3429 /*
3430 * Permanent reservations have up to 'cnt'-1 active log operations
3431 * in the log. A unit in this case is the amount of space for one
3432 * of these log operations. Normal reservations have a cnt of 1
3433 * and their unit amount is the total amount of space required.
3434 *
3435 * The following lines of code account for non-transaction data
32fb9b57
TS
3436 * which occupy space in the on-disk log.
3437 *
3438 * Normal form of a transaction is:
3439 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3440 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3441 *
3442 * We need to account for all the leadup data and trailer data
3443 * around the transaction data.
3444 * And then we need to account for the worst case in terms of using
3445 * more space.
3446 * The worst case will happen if:
3447 * - the placement of the transaction happens to be such that the
3448 * roundoff is at its maximum
3449 * - the transaction data is synced before the commit record is synced
3450 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3451 * Therefore the commit record is in its own Log Record.
3452 * This can happen as the commit record is called with its
3453 * own region to xlog_write().
3454 * This then means that in the worst case, roundoff can happen for
3455 * the commit-rec as well.
3456 * The commit-rec is smaller than padding in this scenario and so it is
3457 * not added separately.
1da177e4
LT
3458 */
3459
32fb9b57
TS
3460 /* for trans header */
3461 unit_bytes += sizeof(xlog_op_header_t);
3462 unit_bytes += sizeof(xfs_trans_header_t);
3463
1da177e4 3464 /* for start-rec */
32fb9b57
TS
3465 unit_bytes += sizeof(xlog_op_header_t);
3466
9b9fc2b7
DC
3467 /*
3468 * for LR headers - the space for data in an iclog is the size minus
3469 * the space used for the headers. If we use the iclog size, then we
3470 * undercalculate the number of headers required.
3471 *
3472 * Furthermore - the addition of op headers for split-recs might
3473 * increase the space required enough to require more log and op
3474 * headers, so take that into account too.
3475 *
3476 * IMPORTANT: This reservation makes the assumption that if this
3477 * transaction is the first in an iclog and hence has the LR headers
3478 * accounted to it, then the remaining space in the iclog is
3479 * exclusively for this transaction. i.e. if the transaction is larger
3480 * than the iclog, it will be the only thing in that iclog.
3481 * Fundamentally, this means we must pass the entire log vector to
3482 * xlog_write to guarantee this.
3483 */
3484 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3485 num_headers = howmany(unit_bytes, iclog_space);
3486
3487 /* for split-recs - ophdrs added when data split over LRs */
3488 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3489
3490 /* add extra header reservations if we overrun */
3491 while (!num_headers ||
3492 howmany(unit_bytes, iclog_space) > num_headers) {
3493 unit_bytes += sizeof(xlog_op_header_t);
3494 num_headers++;
3495 }
32fb9b57 3496 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3497
32fb9b57
TS
3498 /* for commit-rec LR header - note: padding will subsume the ophdr */
3499 unit_bytes += log->l_iclog_hsize;
3500
32fb9b57 3501 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3502 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3503 /* log su roundoff */
e773fc93 3504 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3505 } else {
3506 /* BB roundoff */
e773fc93 3507 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3508 }
3509
e773fc93
JL
3510 return unit_bytes;
3511}
3512
3513/*
3514 * Allocate and initialise a new log ticket.
3515 */
3516struct xlog_ticket *
3517xlog_ticket_alloc(
3518 struct xlog *log,
3519 int unit_bytes,
3520 int cnt,
3521 char client,
3522 bool permanent,
3523 xfs_km_flags_t alloc_flags)
3524{
3525 struct xlog_ticket *tic;
3526 int unit_res;
3527
3528 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3529 if (!tic)
3530 return NULL;
3531
3532 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3533
cc09c0dc 3534 atomic_set(&tic->t_ref, 1);
14a7235f 3535 tic->t_task = current;
10547941 3536 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3537 tic->t_unit_res = unit_res;
3538 tic->t_curr_res = unit_res;
1da177e4
LT
3539 tic->t_cnt = cnt;
3540 tic->t_ocnt = cnt;
ecb3403d 3541 tic->t_tid = prandom_u32();
1da177e4
LT
3542 tic->t_clientid = client;
3543 tic->t_flags = XLOG_TIC_INITED;
9006fb91 3544 if (permanent)
1da177e4 3545 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3546
0adba536 3547 xlog_tic_reset_res(tic);
7e9c6396 3548
1da177e4 3549 return tic;
cc09c0dc 3550}
1da177e4
LT
3551
3552
3553/******************************************************************************
3554 *
3555 * Log debug routines
3556 *
3557 ******************************************************************************
3558 */
cfcbbbd0 3559#if defined(DEBUG)
1da177e4
LT
3560/*
3561 * Make sure that the destination ptr is within the valid data region of
3562 * one of the iclogs. This uses backup pointers stored in a different
3563 * part of the log in case we trash the log structure.
3564 */
181fdfe6 3565STATIC void
e6b1f273 3566xlog_verify_dest_ptr(
ad223e60 3567 struct xlog *log,
5809d5e0 3568 void *ptr)
1da177e4
LT
3569{
3570 int i;
3571 int good_ptr = 0;
3572
e6b1f273
CH
3573 for (i = 0; i < log->l_iclog_bufs; i++) {
3574 if (ptr >= log->l_iclog_bak[i] &&
3575 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3576 good_ptr++;
3577 }
e6b1f273
CH
3578
3579 if (!good_ptr)
a0fa2b67 3580 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3581}
1da177e4 3582
da8a1a4a
DC
3583/*
3584 * Check to make sure the grant write head didn't just over lap the tail. If
3585 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3586 * the cycles differ by exactly one and check the byte count.
3587 *
3588 * This check is run unlocked, so can give false positives. Rather than assert
3589 * on failures, use a warn-once flag and a panic tag to allow the admin to
3590 * determine if they want to panic the machine when such an error occurs. For
3591 * debug kernels this will have the same effect as using an assert but, unlinke
3592 * an assert, it can be turned off at runtime.
3593 */
3f336c6f
DC
3594STATIC void
3595xlog_verify_grant_tail(
ad223e60 3596 struct xlog *log)
3f336c6f 3597{
1c3cb9ec 3598 int tail_cycle, tail_blocks;
a69ed03c 3599 int cycle, space;
3f336c6f 3600
28496968 3601 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3602 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3603 if (tail_cycle != cycle) {
da8a1a4a
DC
3604 if (cycle - 1 != tail_cycle &&
3605 !(log->l_flags & XLOG_TAIL_WARN)) {
3606 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3607 "%s: cycle - 1 != tail_cycle", __func__);
3608 log->l_flags |= XLOG_TAIL_WARN;
3609 }
3610
3611 if (space > BBTOB(tail_blocks) &&
3612 !(log->l_flags & XLOG_TAIL_WARN)) {
3613 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3614 "%s: space > BBTOB(tail_blocks)", __func__);
3615 log->l_flags |= XLOG_TAIL_WARN;
3616 }
3f336c6f
DC
3617 }
3618}
3619
1da177e4
LT
3620/* check if it will fit */
3621STATIC void
9a8d2fdb
MT
3622xlog_verify_tail_lsn(
3623 struct xlog *log,
3624 struct xlog_in_core *iclog,
3625 xfs_lsn_t tail_lsn)
1da177e4
LT
3626{
3627 int blocks;
3628
3629 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3630 blocks =
3631 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3632 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3633 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3634 } else {
3635 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3636
3637 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3638 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3639
3640 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3641 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3642 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3643 }
3644} /* xlog_verify_tail_lsn */
3645
3646/*
3647 * Perform a number of checks on the iclog before writing to disk.
3648 *
3649 * 1. Make sure the iclogs are still circular
3650 * 2. Make sure we have a good magic number
3651 * 3. Make sure we don't have magic numbers in the data
3652 * 4. Check fields of each log operation header for:
3653 * A. Valid client identifier
3654 * B. tid ptr value falls in valid ptr space (user space code)
3655 * C. Length in log record header is correct according to the
3656 * individual operation headers within record.
3657 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3658 * log, check the preceding blocks of the physical log to make sure all
3659 * the cycle numbers agree with the current cycle number.
3660 */
3661STATIC void
9a8d2fdb
MT
3662xlog_verify_iclog(
3663 struct xlog *log,
3664 struct xlog_in_core *iclog,
abca1f33 3665 int count)
1da177e4
LT
3666{
3667 xlog_op_header_t *ophead;
3668 xlog_in_core_t *icptr;
3669 xlog_in_core_2_t *xhdr;
5809d5e0 3670 void *base_ptr, *ptr, *p;
db9d67d6 3671 ptrdiff_t field_offset;
c8ce540d 3672 uint8_t clientid;
1da177e4
LT
3673 int len, i, j, k, op_len;
3674 int idx;
1da177e4
LT
3675
3676 /* check validity of iclog pointers */
b22cd72c 3677 spin_lock(&log->l_icloglock);
1da177e4 3678 icptr = log->l_iclog;
643f7c4e
GB
3679 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3680 ASSERT(icptr);
3681
1da177e4 3682 if (icptr != log->l_iclog)
a0fa2b67 3683 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3684 spin_unlock(&log->l_icloglock);
1da177e4
LT
3685
3686 /* check log magic numbers */
69ef921b 3687 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3688 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3689
5809d5e0
CH
3690 base_ptr = ptr = &iclog->ic_header;
3691 p = &iclog->ic_header;
3692 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3693 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3694 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3695 __func__);
1da177e4
LT
3696 }
3697
3698 /* check fields */
b53e675d 3699 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3700 base_ptr = ptr = iclog->ic_datap;
3701 ophead = ptr;
b28708d6 3702 xhdr = iclog->ic_data;
1da177e4 3703 for (i = 0; i < len; i++) {
5809d5e0 3704 ophead = ptr;
1da177e4
LT
3705
3706 /* clientid is only 1 byte */
5809d5e0
CH
3707 p = &ophead->oh_clientid;
3708 field_offset = p - base_ptr;
abca1f33 3709 if (field_offset & 0x1ff) {
1da177e4
LT
3710 clientid = ophead->oh_clientid;
3711 } else {
b2a922cd 3712 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3713 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3714 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3715 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3716 clientid = xlog_get_client_id(
3717 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3718 } else {
03bea6fe
CH
3719 clientid = xlog_get_client_id(
3720 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3721 }
3722 }
3723 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3724 xfs_warn(log->l_mp,
c9690043 3725 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3726 __func__, clientid, ophead,
3727 (unsigned long)field_offset);
1da177e4
LT
3728
3729 /* check length */
5809d5e0
CH
3730 p = &ophead->oh_len;
3731 field_offset = p - base_ptr;
abca1f33 3732 if (field_offset & 0x1ff) {
67fcb7bf 3733 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3734 } else {
db9d67d6
CH
3735 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3736 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3737 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3738 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3739 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3740 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3741 } else {
b53e675d 3742 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3743 }
3744 }
3745 ptr += sizeof(xlog_op_header_t) + op_len;
3746 }
3747} /* xlog_verify_iclog */
cfcbbbd0 3748#endif
1da177e4
LT
3749
3750/*
b22cd72c 3751 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3752 */
3753STATIC int
3754xlog_state_ioerror(
9a8d2fdb 3755 struct xlog *log)
1da177e4
LT
3756{
3757 xlog_in_core_t *iclog, *ic;
3758
3759 iclog = log->l_iclog;
1858bb0b 3760 if (iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
3761 /*
3762 * Mark all the incore logs IOERROR.
3763 * From now on, no log flushes will result.
3764 */
3765 ic = iclog;
3766 do {
3767 ic->ic_state = XLOG_STATE_IOERROR;
3768 ic = ic->ic_next;
3769 } while (ic != iclog);
014c2544 3770 return 0;
1da177e4
LT
3771 }
3772 /*
3773 * Return non-zero, if state transition has already happened.
3774 */
014c2544 3775 return 1;
1da177e4
LT
3776}
3777
3778/*
3779 * This is called from xfs_force_shutdown, when we're forcibly
3780 * shutting down the filesystem, typically because of an IO error.
3781 * Our main objectives here are to make sure that:
a870fe6d
DC
3782 * a. if !logerror, flush the logs to disk. Anything modified
3783 * after this is ignored.
3784 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3785 * parties to find out, 'atomically'.
a870fe6d 3786 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3787 * other resources get woken up, and be told the bad news.
a870fe6d 3788 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3789 *
a870fe6d
DC
3790 * Note: for the !logerror case we need to flush the regions held in memory out
3791 * to disk first. This needs to be done before the log is marked as shutdown,
3792 * otherwise the iclog writes will fail.
1da177e4
LT
3793 */
3794int
3795xfs_log_force_umount(
3796 struct xfs_mount *mp,
3797 int logerror)
3798{
9a8d2fdb 3799 struct xlog *log;
1da177e4 3800 int retval;
1da177e4
LT
3801
3802 log = mp->m_log;
3803
3804 /*
3805 * If this happens during log recovery, don't worry about
3806 * locking; the log isn't open for business yet.
3807 */
3808 if (!log ||
3809 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3810 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3811 if (mp->m_sb_bp)
b0388bf1 3812 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3813 return 0;
1da177e4
LT
3814 }
3815
3816 /*
3817 * Somebody could've already done the hard work for us.
3818 * No need to get locks for this.
3819 */
1858bb0b 3820 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
1da177e4 3821 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3822 return 1;
1da177e4 3823 }
9da1ab18
DC
3824
3825 /*
a870fe6d
DC
3826 * Flush all the completed transactions to disk before marking the log
3827 * being shut down. We need to do it in this order to ensure that
3828 * completed operations are safely on disk before we shut down, and that
3829 * we don't have to issue any buffer IO after the shutdown flags are set
3830 * to guarantee this.
9da1ab18 3831 */
93b8a585 3832 if (!logerror)
60e5bb78 3833 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3834
1da177e4 3835 /*
3f16b985
DC
3836 * mark the filesystem and the as in a shutdown state and wake
3837 * everybody up to tell them the bad news.
1da177e4 3838 */
b22cd72c 3839 spin_lock(&log->l_icloglock);
1da177e4 3840 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3841 if (mp->m_sb_bp)
b0388bf1 3842 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3843
1da177e4 3844 /*
a870fe6d
DC
3845 * Mark the log and the iclogs with IO error flags to prevent any
3846 * further log IO from being issued or completed.
1da177e4
LT
3847 */
3848 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3849 retval = xlog_state_ioerror(log);
b22cd72c 3850 spin_unlock(&log->l_icloglock);
1da177e4
LT
3851
3852 /*
10547941
DC
3853 * We don't want anybody waiting for log reservations after this. That
3854 * means we have to wake up everybody queued up on reserveq as well as
3855 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3856 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3857 * action is protected by the grant locks.
1da177e4 3858 */
a79bf2d7
CH
3859 xlog_grant_head_wake_all(&log->l_reserve_head);
3860 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3861
1da177e4 3862 /*
ac983517
DC
3863 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3864 * as if the log writes were completed. The abort handling in the log
3865 * item committed callback functions will do this again under lock to
3866 * avoid races.
1da177e4 3867 */
cdea5459 3868 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 3869 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3870 spin_unlock(&log->l_cilp->xc_push_lock);
12e6a0f4 3871 xlog_state_do_callback(log);
1da177e4 3872
1da177e4 3873 /* return non-zero if log IOERROR transition had already happened */
014c2544 3874 return retval;
1da177e4
LT
3875}
3876
ba0f32d4 3877STATIC int
9a8d2fdb
MT
3878xlog_iclogs_empty(
3879 struct xlog *log)
1da177e4
LT
3880{
3881 xlog_in_core_t *iclog;
3882
3883 iclog = log->l_iclog;
3884 do {
3885 /* endianness does not matter here, zero is zero in
3886 * any language.
3887 */
3888 if (iclog->ic_header.h_num_logops)
014c2544 3889 return 0;
1da177e4
LT
3890 iclog = iclog->ic_next;
3891 } while (iclog != log->l_iclog);
014c2544 3892 return 1;
1da177e4 3893}
f661f1e0 3894
a45086e2
BF
3895/*
3896 * Verify that an LSN stamped into a piece of metadata is valid. This is
3897 * intended for use in read verifiers on v5 superblocks.
3898 */
3899bool
3900xfs_log_check_lsn(
3901 struct xfs_mount *mp,
3902 xfs_lsn_t lsn)
3903{
3904 struct xlog *log = mp->m_log;
3905 bool valid;
3906
3907 /*
3908 * norecovery mode skips mount-time log processing and unconditionally
3909 * resets the in-core LSN. We can't validate in this mode, but
3910 * modifications are not allowed anyways so just return true.
3911 */
3912 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3913 return true;
3914
3915 /*
3916 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3917 * handled by recovery and thus safe to ignore here.
3918 */
3919 if (lsn == NULLCOMMITLSN)
3920 return true;
3921
3922 valid = xlog_valid_lsn(mp->m_log, lsn);
3923
3924 /* warn the user about what's gone wrong before verifier failure */
3925 if (!valid) {
3926 spin_lock(&log->l_icloglock);
3927 xfs_warn(mp,
3928"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3929"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3930 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3931 log->l_curr_cycle, log->l_curr_block);
3932 spin_unlock(&log->l_icloglock);
3933 }
3934
3935 return valid;
3936}
0c60d3aa
DW
3937
3938bool
3939xfs_log_in_recovery(
3940 struct xfs_mount *mp)
3941{
3942 struct xlog *log = mp->m_log;
3943
3944 return log->l_flags & XLOG_ACTIVE_RECOVERY;
3945}
This page took 1.777778 seconds and 4 git commands to generate.