]> Git Repo - linux.git/blame - fs/dcache.c
superblock: move pin_sb_for_writeback() to fs/super.c
[linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
07f3f05c 39#include "internal.h"
1da177e4 40
789680d1
NP
41/*
42 * Usage:
873feea0
NP
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
23044507
NP
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
b7ab39f6 55 * - d_count
da502956 56 * - d_unhashed()
2fd6b7f5
NP
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
b23fb0a6 59 * - d_alias, d_inode
789680d1
NP
60 *
61 * Ordering:
873feea0 62 * dentry->d_inode->i_lock
b5c84bf6
NP
63 * dentry->d_lock
64 * dcache_lru_lock
ceb5bdc2
NP
65 * dcache_hash_bucket lock
66 * s_anon lock
789680d1 67 *
da502956
NP
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
789680d1
NP
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
fa3536cc 79int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
80EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
23044507 82static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 84
949854d0 85EXPORT_SYMBOL(rename_lock);
1da177e4 86
e18b890b 87static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 88
1da177e4
LT
89/*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97#define D_HASHBITS d_hash_shift
98#define D_HASHMASK d_hash_mask
99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
b07ad996 105static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
106 unsigned long hash)
107{
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3e880fb5 118static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
121static int get_nr_dentry(void)
122{
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128}
129
312d3ca8
CH
130int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132{
3e880fb5 133 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135}
136#endif
137
9c82ab9c 138static void __d_free(struct rcu_head *head)
1da177e4 139{
9c82ab9c
CH
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
fd217f4d 142 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146}
147
148/*
b5c84bf6 149 * no locks, please.
1da177e4
LT
150 */
151static void d_free(struct dentry *dentry)
152{
b7ab39f6 153 BUG_ON(dentry->d_count);
3e880fb5 154 this_cpu_dec(nr_dentry);
1da177e4
LT
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
312d3ca8 157
dea3667b
LT
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 160 __d_free(&dentry->d_u.d_rcu);
b3423415 161 else
9c82ab9c 162 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
163}
164
31e6b01f
NP
165/**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 167 * @dentry: the target dentry
31e6b01f
NP
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173{
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177}
178
1da177e4
LT
179/*
180 * Release the dentry's inode, using the filesystem
31e6b01f
NP
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
1da177e4 183 */
858119e1 184static void dentry_iput(struct dentry * dentry)
31f3e0b3 185 __releases(dentry->d_lock)
873feea0 186 __releases(dentry->d_inode->i_lock)
1da177e4
LT
187{
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
873feea0 193 spin_unlock(&inode->i_lock);
f805fbda
LT
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
1da177e4
LT
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
1da177e4
LT
202 }
203}
204
31e6b01f
NP
205/*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
873feea0 211 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
212{
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
873feea0 218 spin_unlock(&inode->i_lock);
31e6b01f
NP
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225}
226
da3bbdd4 227/*
23044507 228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
229 */
230static void dentry_lru_add(struct dentry *dentry)
231{
a4633357 232 if (list_empty(&dentry->d_lru)) {
23044507 233 spin_lock(&dcache_lru_lock);
a4633357
CH
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 236 dentry_stat.nr_unused++;
23044507 237 spin_unlock(&dcache_lru_lock);
a4633357 238 }
da3bbdd4
KM
239}
240
23044507
NP
241static void __dentry_lru_del(struct dentry *dentry)
242{
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246}
247
da3bbdd4
KM
248static void dentry_lru_del(struct dentry *dentry)
249{
250 if (!list_empty(&dentry->d_lru)) {
23044507
NP
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
254 }
255}
256
a4633357 257static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 258{
23044507 259 spin_lock(&dcache_lru_lock);
a4633357
CH
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 263 dentry_stat.nr_unused++;
a4633357
CH
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 266 }
23044507 267 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
268}
269
d52b9086
MS
270/**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
ff5fdb61 273 * @parent: parent dentry
d52b9086 274 *
31f3e0b3 275 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
276 *
277 * If this is the root of the dentry tree, return NULL.
23044507 278 *
b5c84bf6
NP
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
d52b9086 281 */
2fd6b7f5 282static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 283 __releases(dentry->d_lock)
2fd6b7f5 284 __releases(parent->d_lock)
873feea0 285 __releases(dentry->d_inode->i_lock)
d52b9086 286{
d52b9086 287 list_del(&dentry->d_u.d_child);
c83ce989
TM
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
293 if (parent)
294 spin_unlock(&parent->d_lock);
d52b9086 295 dentry_iput(dentry);
b7ab39f6
NP
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
d52b9086 300 d_free(dentry);
871c0067 301 return parent;
d52b9086
MS
302}
303
789680d1
NP
304/**
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
307 *
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
313 *
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
316 *
317 * __d_drop requires dentry->d_lock.
318 */
319void __d_drop(struct dentry *dentry)
320{
dea3667b 321 if (!d_unhashed(dentry)) {
b07ad996 322 struct hlist_bl_head *b;
dea3667b 323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
b07ad996 324 b = &dentry->d_sb->s_anon;
dea3667b 325 else
ceb5bdc2 326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
dea3667b 327
1879fd6a 328 hlist_bl_lock(b);
dea3667b
LT
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
1879fd6a 331 hlist_bl_unlock(b);
dea3667b
LT
332
333 dentry_rcuwalk_barrier(dentry);
789680d1
NP
334 }
335}
336EXPORT_SYMBOL(__d_drop);
337
338void d_drop(struct dentry *dentry)
339{
789680d1
NP
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
789680d1
NP
343}
344EXPORT_SYMBOL(d_drop);
345
44396f4b
JB
346/*
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
349 *
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
354 */
355void d_clear_need_lookup(struct dentry *dentry)
356{
357 spin_lock(&dentry->d_lock);
358 __d_drop(dentry);
359 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
360 spin_unlock(&dentry->d_lock);
361}
362EXPORT_SYMBOL(d_clear_need_lookup);
363
77812a1e
NP
364/*
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
369 */
370static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
372{
873feea0 373 struct inode *inode;
77812a1e
NP
374 struct dentry *parent;
375
873feea0
NP
376 inode = dentry->d_inode;
377 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
378relock:
379 spin_unlock(&dentry->d_lock);
380 cpu_relax();
381 return dentry; /* try again with same dentry */
382 }
383 if (IS_ROOT(dentry))
384 parent = NULL;
385 else
386 parent = dentry->d_parent;
387 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
388 if (inode)
389 spin_unlock(&inode->i_lock);
77812a1e
NP
390 goto relock;
391 }
31e6b01f 392
77812a1e
NP
393 if (ref)
394 dentry->d_count--;
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry);
397 /* if it was on the hash then remove it */
398 __d_drop(dentry);
399 return d_kill(dentry, parent);
400}
401
1da177e4
LT
402/*
403 * This is dput
404 *
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
408 *
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
413 *
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
417 */
418
419/*
420 * dput - release a dentry
421 * @dentry: dentry to release
422 *
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
1da177e4 427 */
1da177e4
LT
428void dput(struct dentry *dentry)
429{
430 if (!dentry)
431 return;
432
433repeat:
b7ab39f6 434 if (dentry->d_count == 1)
1da177e4 435 might_sleep();
1da177e4 436 spin_lock(&dentry->d_lock);
61f3dee4
NP
437 BUG_ON(!dentry->d_count);
438 if (dentry->d_count > 1) {
439 dentry->d_count--;
1da177e4 440 spin_unlock(&dentry->d_lock);
1da177e4
LT
441 return;
442 }
443
fb045adb 444 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 445 if (dentry->d_op->d_delete(dentry))
61f3dee4 446 goto kill_it;
1da177e4 447 }
265ac902 448
1da177e4
LT
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry))
451 goto kill_it;
265ac902 452
44396f4b
JB
453 /*
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
456 * memory pressure.
457 */
458 if (!d_need_lookup(dentry))
459 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 460 dentry_lru_add(dentry);
265ac902 461
61f3dee4
NP
462 dentry->d_count--;
463 spin_unlock(&dentry->d_lock);
1da177e4
LT
464 return;
465
d52b9086 466kill_it:
77812a1e 467 dentry = dentry_kill(dentry, 1);
d52b9086
MS
468 if (dentry)
469 goto repeat;
1da177e4 470}
ec4f8605 471EXPORT_SYMBOL(dput);
1da177e4
LT
472
473/**
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
476 *
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
481 *
482 * no dcache lock.
483 */
484
485int d_invalidate(struct dentry * dentry)
486{
487 /*
488 * If it's already been dropped, return OK.
489 */
da502956 490 spin_lock(&dentry->d_lock);
1da177e4 491 if (d_unhashed(dentry)) {
da502956 492 spin_unlock(&dentry->d_lock);
1da177e4
LT
493 return 0;
494 }
495 /*
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
498 */
499 if (!list_empty(&dentry->d_subdirs)) {
da502956 500 spin_unlock(&dentry->d_lock);
1da177e4 501 shrink_dcache_parent(dentry);
da502956 502 spin_lock(&dentry->d_lock);
1da177e4
LT
503 }
504
505 /*
506 * Somebody else still using it?
507 *
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
514 */
b7ab39f6 515 if (dentry->d_count > 1) {
1da177e4
LT
516 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
517 spin_unlock(&dentry->d_lock);
1da177e4
LT
518 return -EBUSY;
519 }
520 }
521
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
1da177e4
LT
524 return 0;
525}
ec4f8605 526EXPORT_SYMBOL(d_invalidate);
1da177e4 527
b5c84bf6 528/* This must be called with d_lock held */
dc0474be 529static inline void __dget_dlock(struct dentry *dentry)
23044507 530{
b7ab39f6 531 dentry->d_count++;
23044507
NP
532}
533
dc0474be 534static inline void __dget(struct dentry *dentry)
1da177e4 535{
23044507 536 spin_lock(&dentry->d_lock);
dc0474be 537 __dget_dlock(dentry);
23044507 538 spin_unlock(&dentry->d_lock);
1da177e4
LT
539}
540
b7ab39f6
NP
541struct dentry *dget_parent(struct dentry *dentry)
542{
543 struct dentry *ret;
544
545repeat:
a734eb45
NP
546 /*
547 * Don't need rcu_dereference because we re-check it was correct under
548 * the lock.
549 */
550 rcu_read_lock();
b7ab39f6 551 ret = dentry->d_parent;
a734eb45
NP
552 if (!ret) {
553 rcu_read_unlock();
b7ab39f6
NP
554 goto out;
555 }
a734eb45
NP
556 spin_lock(&ret->d_lock);
557 if (unlikely(ret != dentry->d_parent)) {
558 spin_unlock(&ret->d_lock);
559 rcu_read_unlock();
b7ab39f6
NP
560 goto repeat;
561 }
a734eb45 562 rcu_read_unlock();
b7ab39f6
NP
563 BUG_ON(!ret->d_count);
564 ret->d_count++;
565 spin_unlock(&ret->d_lock);
566out:
b7ab39f6
NP
567 return ret;
568}
569EXPORT_SYMBOL(dget_parent);
570
1da177e4
LT
571/**
572 * d_find_alias - grab a hashed alias of inode
573 * @inode: inode in question
574 * @want_discon: flag, used by d_splice_alias, to request
575 * that only a DISCONNECTED alias be returned.
576 *
577 * If inode has a hashed alias, or is a directory and has any alias,
578 * acquire the reference to alias and return it. Otherwise return NULL.
579 * Notice that if inode is a directory there can be only one alias and
580 * it can be unhashed only if it has no children, or if it is the root
581 * of a filesystem.
582 *
21c0d8fd 583 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 584 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 585 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 586 */
da502956 587static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 588{
da502956 589 struct dentry *alias, *discon_alias;
1da177e4 590
da502956
NP
591again:
592 discon_alias = NULL;
593 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
594 spin_lock(&alias->d_lock);
1da177e4 595 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 596 if (IS_ROOT(alias) &&
da502956 597 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 598 discon_alias = alias;
da502956 599 } else if (!want_discon) {
dc0474be 600 __dget_dlock(alias);
da502956
NP
601 spin_unlock(&alias->d_lock);
602 return alias;
603 }
604 }
605 spin_unlock(&alias->d_lock);
606 }
607 if (discon_alias) {
608 alias = discon_alias;
609 spin_lock(&alias->d_lock);
610 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
611 if (IS_ROOT(alias) &&
612 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 613 __dget_dlock(alias);
da502956 614 spin_unlock(&alias->d_lock);
1da177e4
LT
615 return alias;
616 }
617 }
da502956
NP
618 spin_unlock(&alias->d_lock);
619 goto again;
1da177e4 620 }
da502956 621 return NULL;
1da177e4
LT
622}
623
da502956 624struct dentry *d_find_alias(struct inode *inode)
1da177e4 625{
214fda1f
DH
626 struct dentry *de = NULL;
627
628 if (!list_empty(&inode->i_dentry)) {
873feea0 629 spin_lock(&inode->i_lock);
214fda1f 630 de = __d_find_alias(inode, 0);
873feea0 631 spin_unlock(&inode->i_lock);
214fda1f 632 }
1da177e4
LT
633 return de;
634}
ec4f8605 635EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
636
637/*
638 * Try to kill dentries associated with this inode.
639 * WARNING: you must own a reference to inode.
640 */
641void d_prune_aliases(struct inode *inode)
642{
0cdca3f9 643 struct dentry *dentry;
1da177e4 644restart:
873feea0 645 spin_lock(&inode->i_lock);
0cdca3f9 646 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 647 spin_lock(&dentry->d_lock);
b7ab39f6 648 if (!dentry->d_count) {
dc0474be 649 __dget_dlock(dentry);
1da177e4
LT
650 __d_drop(dentry);
651 spin_unlock(&dentry->d_lock);
873feea0 652 spin_unlock(&inode->i_lock);
1da177e4
LT
653 dput(dentry);
654 goto restart;
655 }
656 spin_unlock(&dentry->d_lock);
657 }
873feea0 658 spin_unlock(&inode->i_lock);
1da177e4 659}
ec4f8605 660EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
661
662/*
77812a1e
NP
663 * Try to throw away a dentry - free the inode, dput the parent.
664 * Requires dentry->d_lock is held, and dentry->d_count == 0.
665 * Releases dentry->d_lock.
d702ccb3 666 *
77812a1e 667 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 668 */
77812a1e 669static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 670 __releases(dentry->d_lock)
1da177e4 671{
77812a1e 672 struct dentry *parent;
d52b9086 673
77812a1e 674 parent = dentry_kill(dentry, 0);
d52b9086 675 /*
77812a1e
NP
676 * If dentry_kill returns NULL, we have nothing more to do.
677 * if it returns the same dentry, trylocks failed. In either
678 * case, just loop again.
679 *
680 * Otherwise, we need to prune ancestors too. This is necessary
681 * to prevent quadratic behavior of shrink_dcache_parent(), but
682 * is also expected to be beneficial in reducing dentry cache
683 * fragmentation.
d52b9086 684 */
77812a1e
NP
685 if (!parent)
686 return;
687 if (parent == dentry)
688 return;
689
690 /* Prune ancestors. */
691 dentry = parent;
d52b9086 692 while (dentry) {
b7ab39f6 693 spin_lock(&dentry->d_lock);
89e60548
NP
694 if (dentry->d_count > 1) {
695 dentry->d_count--;
696 spin_unlock(&dentry->d_lock);
697 return;
698 }
77812a1e 699 dentry = dentry_kill(dentry, 1);
d52b9086 700 }
1da177e4
LT
701}
702
3049cfe2 703static void shrink_dentry_list(struct list_head *list)
1da177e4 704{
da3bbdd4 705 struct dentry *dentry;
da3bbdd4 706
ec33679d
NP
707 rcu_read_lock();
708 for (;;) {
ec33679d
NP
709 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
710 if (&dentry->d_lru == list)
711 break; /* empty */
712 spin_lock(&dentry->d_lock);
713 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
714 spin_unlock(&dentry->d_lock);
23044507
NP
715 continue;
716 }
717
1da177e4
LT
718 /*
719 * We found an inuse dentry which was not removed from
da3bbdd4
KM
720 * the LRU because of laziness during lookup. Do not free
721 * it - just keep it off the LRU list.
1da177e4 722 */
b7ab39f6 723 if (dentry->d_count) {
ec33679d 724 dentry_lru_del(dentry);
da3bbdd4 725 spin_unlock(&dentry->d_lock);
1da177e4
LT
726 continue;
727 }
ec33679d 728
ec33679d 729 rcu_read_unlock();
77812a1e
NP
730
731 try_prune_one_dentry(dentry);
732
ec33679d 733 rcu_read_lock();
da3bbdd4 734 }
ec33679d 735 rcu_read_unlock();
3049cfe2
CH
736}
737
738/**
739 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
740 * @sb: superblock to shrink dentry LRU.
741 * @count: number of entries to prune
742 * @flags: flags to control the dentry processing
743 *
744 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
745 */
746static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
747{
748 /* called from prune_dcache() and shrink_dcache_parent() */
749 struct dentry *dentry;
750 LIST_HEAD(referenced);
751 LIST_HEAD(tmp);
752 int cnt = *count;
753
23044507
NP
754relock:
755 spin_lock(&dcache_lru_lock);
3049cfe2
CH
756 while (!list_empty(&sb->s_dentry_lru)) {
757 dentry = list_entry(sb->s_dentry_lru.prev,
758 struct dentry, d_lru);
759 BUG_ON(dentry->d_sb != sb);
760
23044507
NP
761 if (!spin_trylock(&dentry->d_lock)) {
762 spin_unlock(&dcache_lru_lock);
763 cpu_relax();
764 goto relock;
765 }
766
3049cfe2
CH
767 /*
768 * If we are honouring the DCACHE_REFERENCED flag and the
769 * dentry has this flag set, don't free it. Clear the flag
770 * and put it back on the LRU.
771 */
23044507
NP
772 if (flags & DCACHE_REFERENCED &&
773 dentry->d_flags & DCACHE_REFERENCED) {
774 dentry->d_flags &= ~DCACHE_REFERENCED;
775 list_move(&dentry->d_lru, &referenced);
3049cfe2 776 spin_unlock(&dentry->d_lock);
23044507
NP
777 } else {
778 list_move_tail(&dentry->d_lru, &tmp);
779 spin_unlock(&dentry->d_lock);
780 if (!--cnt)
781 break;
3049cfe2 782 }
ec33679d 783 cond_resched_lock(&dcache_lru_lock);
3049cfe2 784 }
da3bbdd4
KM
785 if (!list_empty(&referenced))
786 list_splice(&referenced, &sb->s_dentry_lru);
23044507 787 spin_unlock(&dcache_lru_lock);
ec33679d
NP
788
789 shrink_dentry_list(&tmp);
790
791 *count = cnt;
da3bbdd4
KM
792}
793
794/**
795 * prune_dcache - shrink the dcache
796 * @count: number of entries to try to free
797 *
798 * Shrink the dcache. This is done when we need more memory, or simply when we
799 * need to unmount something (at which point we need to unuse all dentries).
800 *
801 * This function may fail to free any resources if all the dentries are in use.
802 */
803static void prune_dcache(int count)
804{
dca33252 805 struct super_block *sb, *p = NULL;
da3bbdd4 806 int w_count;
86c8749e 807 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
808 int prune_ratio;
809 int pruned;
810
811 if (unused == 0 || count == 0)
812 return;
da3bbdd4
KM
813 if (count >= unused)
814 prune_ratio = 1;
815 else
816 prune_ratio = unused / count;
817 spin_lock(&sb_lock);
dca33252 818 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
819 if (list_empty(&sb->s_instances))
820 continue;
da3bbdd4 821 if (sb->s_nr_dentry_unused == 0)
1da177e4 822 continue;
da3bbdd4
KM
823 sb->s_count++;
824 /* Now, we reclaim unused dentrins with fairness.
825 * We reclaim them same percentage from each superblock.
826 * We calculate number of dentries to scan on this sb
827 * as follows, but the implementation is arranged to avoid
828 * overflows:
829 * number of dentries to scan on this sb =
830 * count * (number of dentries on this sb /
831 * number of dentries in the machine)
0feae5c4 832 */
da3bbdd4
KM
833 spin_unlock(&sb_lock);
834 if (prune_ratio != 1)
835 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
836 else
837 w_count = sb->s_nr_dentry_unused;
838 pruned = w_count;
0feae5c4 839 /*
da3bbdd4
KM
840 * We need to be sure this filesystem isn't being unmounted,
841 * otherwise we could race with generic_shutdown_super(), and
842 * end up holding a reference to an inode while the filesystem
843 * is unmounted. So we try to get s_umount, and make sure
844 * s_root isn't NULL.
0feae5c4 845 */
da3bbdd4
KM
846 if (down_read_trylock(&sb->s_umount)) {
847 if ((sb->s_root != NULL) &&
848 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
849 __shrink_dcache_sb(sb, &w_count,
850 DCACHE_REFERENCED);
851 pruned -= w_count;
0feae5c4 852 }
da3bbdd4 853 up_read(&sb->s_umount);
0feae5c4 854 }
da3bbdd4 855 spin_lock(&sb_lock);
dca33252
AV
856 if (p)
857 __put_super(p);
da3bbdd4 858 count -= pruned;
dca33252 859 p = sb;
79893c17
AV
860 /* more work left to do? */
861 if (count <= 0)
862 break;
1da177e4 863 }
dca33252
AV
864 if (p)
865 __put_super(p);
da3bbdd4 866 spin_unlock(&sb_lock);
1da177e4
LT
867}
868
1da177e4
LT
869/**
870 * shrink_dcache_sb - shrink dcache for a superblock
871 * @sb: superblock
872 *
3049cfe2
CH
873 * Shrink the dcache for the specified super block. This is used to free
874 * the dcache before unmounting a file system.
1da177e4 875 */
3049cfe2 876void shrink_dcache_sb(struct super_block *sb)
1da177e4 877{
3049cfe2
CH
878 LIST_HEAD(tmp);
879
23044507 880 spin_lock(&dcache_lru_lock);
3049cfe2
CH
881 while (!list_empty(&sb->s_dentry_lru)) {
882 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 883 spin_unlock(&dcache_lru_lock);
3049cfe2 884 shrink_dentry_list(&tmp);
ec33679d 885 spin_lock(&dcache_lru_lock);
3049cfe2 886 }
23044507 887 spin_unlock(&dcache_lru_lock);
1da177e4 888}
ec4f8605 889EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 890
c636ebdb
DH
891/*
892 * destroy a single subtree of dentries for unmount
893 * - see the comments on shrink_dcache_for_umount() for a description of the
894 * locking
895 */
896static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
897{
898 struct dentry *parent;
f8713576 899 unsigned detached = 0;
c636ebdb
DH
900
901 BUG_ON(!IS_ROOT(dentry));
902
903 /* detach this root from the system */
23044507 904 spin_lock(&dentry->d_lock);
a4633357 905 dentry_lru_del(dentry);
c636ebdb 906 __d_drop(dentry);
da502956 907 spin_unlock(&dentry->d_lock);
c636ebdb
DH
908
909 for (;;) {
910 /* descend to the first leaf in the current subtree */
911 while (!list_empty(&dentry->d_subdirs)) {
912 struct dentry *loop;
913
914 /* this is a branch with children - detach all of them
915 * from the system in one go */
2fd6b7f5 916 spin_lock(&dentry->d_lock);
c636ebdb
DH
917 list_for_each_entry(loop, &dentry->d_subdirs,
918 d_u.d_child) {
2fd6b7f5
NP
919 spin_lock_nested(&loop->d_lock,
920 DENTRY_D_LOCK_NESTED);
a4633357 921 dentry_lru_del(loop);
c636ebdb 922 __d_drop(loop);
da502956 923 spin_unlock(&loop->d_lock);
c636ebdb 924 }
2fd6b7f5 925 spin_unlock(&dentry->d_lock);
c636ebdb
DH
926
927 /* move to the first child */
928 dentry = list_entry(dentry->d_subdirs.next,
929 struct dentry, d_u.d_child);
930 }
931
932 /* consume the dentries from this leaf up through its parents
933 * until we find one with children or run out altogether */
934 do {
935 struct inode *inode;
936
b7ab39f6 937 if (dentry->d_count != 0) {
c636ebdb
DH
938 printk(KERN_ERR
939 "BUG: Dentry %p{i=%lx,n=%s}"
940 " still in use (%d)"
941 " [unmount of %s %s]\n",
942 dentry,
943 dentry->d_inode ?
944 dentry->d_inode->i_ino : 0UL,
945 dentry->d_name.name,
b7ab39f6 946 dentry->d_count,
c636ebdb
DH
947 dentry->d_sb->s_type->name,
948 dentry->d_sb->s_id);
949 BUG();
950 }
951
2fd6b7f5 952 if (IS_ROOT(dentry)) {
c636ebdb 953 parent = NULL;
2fd6b7f5
NP
954 list_del(&dentry->d_u.d_child);
955 } else {
871c0067 956 parent = dentry->d_parent;
b7ab39f6
NP
957 spin_lock(&parent->d_lock);
958 parent->d_count--;
2fd6b7f5 959 list_del(&dentry->d_u.d_child);
b7ab39f6 960 spin_unlock(&parent->d_lock);
871c0067 961 }
c636ebdb 962
f8713576 963 detached++;
c636ebdb
DH
964
965 inode = dentry->d_inode;
966 if (inode) {
967 dentry->d_inode = NULL;
968 list_del_init(&dentry->d_alias);
969 if (dentry->d_op && dentry->d_op->d_iput)
970 dentry->d_op->d_iput(dentry, inode);
971 else
972 iput(inode);
973 }
974
975 d_free(dentry);
976
977 /* finished when we fall off the top of the tree,
978 * otherwise we ascend to the parent and move to the
979 * next sibling if there is one */
980 if (!parent)
312d3ca8 981 return;
c636ebdb 982 dentry = parent;
c636ebdb
DH
983 } while (list_empty(&dentry->d_subdirs));
984
985 dentry = list_entry(dentry->d_subdirs.next,
986 struct dentry, d_u.d_child);
987 }
988}
989
990/*
991 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 992 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
993 * - the superblock is detached from all mountings and open files, so the
994 * dentry trees will not be rearranged by the VFS
995 * - s_umount is write-locked, so the memory pressure shrinker will ignore
996 * any dentries belonging to this superblock that it comes across
997 * - the filesystem itself is no longer permitted to rearrange the dentries
998 * in this superblock
999 */
1000void shrink_dcache_for_umount(struct super_block *sb)
1001{
1002 struct dentry *dentry;
1003
1004 if (down_read_trylock(&sb->s_umount))
1005 BUG();
1006
1007 dentry = sb->s_root;
1008 sb->s_root = NULL;
b7ab39f6
NP
1009 spin_lock(&dentry->d_lock);
1010 dentry->d_count--;
1011 spin_unlock(&dentry->d_lock);
c636ebdb
DH
1012 shrink_dcache_for_umount_subtree(dentry);
1013
ceb5bdc2
NP
1014 while (!hlist_bl_empty(&sb->s_anon)) {
1015 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1016 shrink_dcache_for_umount_subtree(dentry);
1017 }
1018}
1019
c826cb7d
LT
1020/*
1021 * This tries to ascend one level of parenthood, but
1022 * we can race with renaming, so we need to re-check
1023 * the parenthood after dropping the lock and check
1024 * that the sequence number still matches.
1025 */
1026static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1027{
1028 struct dentry *new = old->d_parent;
1029
1030 rcu_read_lock();
1031 spin_unlock(&old->d_lock);
1032 spin_lock(&new->d_lock);
1033
1034 /*
1035 * might go back up the wrong parent if we have had a rename
1036 * or deletion
1037 */
1038 if (new != old->d_parent ||
c83ce989 1039 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
1040 (!locked && read_seqretry(&rename_lock, seq))) {
1041 spin_unlock(&new->d_lock);
1042 new = NULL;
1043 }
1044 rcu_read_unlock();
1045 return new;
1046}
1047
1048
1da177e4
LT
1049/*
1050 * Search for at least 1 mount point in the dentry's subdirs.
1051 * We descend to the next level whenever the d_subdirs
1052 * list is non-empty and continue searching.
1053 */
1054
1055/**
1056 * have_submounts - check for mounts over a dentry
1057 * @parent: dentry to check.
1058 *
1059 * Return true if the parent or its subdirectories contain
1060 * a mount point
1061 */
1da177e4
LT
1062int have_submounts(struct dentry *parent)
1063{
949854d0 1064 struct dentry *this_parent;
1da177e4 1065 struct list_head *next;
949854d0 1066 unsigned seq;
58db63d0 1067 int locked = 0;
949854d0 1068
949854d0 1069 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1070again:
1071 this_parent = parent;
1da177e4 1072
1da177e4
LT
1073 if (d_mountpoint(parent))
1074 goto positive;
2fd6b7f5 1075 spin_lock(&this_parent->d_lock);
1da177e4
LT
1076repeat:
1077 next = this_parent->d_subdirs.next;
1078resume:
1079 while (next != &this_parent->d_subdirs) {
1080 struct list_head *tmp = next;
5160ee6f 1081 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1082 next = tmp->next;
2fd6b7f5
NP
1083
1084 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1085 /* Have we found a mount point ? */
2fd6b7f5
NP
1086 if (d_mountpoint(dentry)) {
1087 spin_unlock(&dentry->d_lock);
1088 spin_unlock(&this_parent->d_lock);
1da177e4 1089 goto positive;
2fd6b7f5 1090 }
1da177e4 1091 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1092 spin_unlock(&this_parent->d_lock);
1093 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1094 this_parent = dentry;
2fd6b7f5 1095 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1096 goto repeat;
1097 }
2fd6b7f5 1098 spin_unlock(&dentry->d_lock);
1da177e4
LT
1099 }
1100 /*
1101 * All done at this level ... ascend and resume the search.
1102 */
1103 if (this_parent != parent) {
c826cb7d
LT
1104 struct dentry *child = this_parent;
1105 this_parent = try_to_ascend(this_parent, locked, seq);
1106 if (!this_parent)
949854d0 1107 goto rename_retry;
949854d0 1108 next = child->d_u.d_child.next;
1da177e4
LT
1109 goto resume;
1110 }
2fd6b7f5 1111 spin_unlock(&this_parent->d_lock);
58db63d0 1112 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1113 goto rename_retry;
58db63d0
NP
1114 if (locked)
1115 write_sequnlock(&rename_lock);
1da177e4
LT
1116 return 0; /* No mount points found in tree */
1117positive:
58db63d0 1118 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1119 goto rename_retry;
58db63d0
NP
1120 if (locked)
1121 write_sequnlock(&rename_lock);
1da177e4 1122 return 1;
58db63d0
NP
1123
1124rename_retry:
1125 locked = 1;
1126 write_seqlock(&rename_lock);
1127 goto again;
1da177e4 1128}
ec4f8605 1129EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1130
1131/*
1132 * Search the dentry child list for the specified parent,
1133 * and move any unused dentries to the end of the unused
1134 * list for prune_dcache(). We descend to the next level
1135 * whenever the d_subdirs list is non-empty and continue
1136 * searching.
1137 *
1138 * It returns zero iff there are no unused children,
1139 * otherwise it returns the number of children moved to
1140 * the end of the unused list. This may not be the total
1141 * number of unused children, because select_parent can
1142 * drop the lock and return early due to latency
1143 * constraints.
1144 */
1145static int select_parent(struct dentry * parent)
1146{
949854d0 1147 struct dentry *this_parent;
1da177e4 1148 struct list_head *next;
949854d0 1149 unsigned seq;
1da177e4 1150 int found = 0;
58db63d0 1151 int locked = 0;
1da177e4 1152
949854d0 1153 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1154again:
1155 this_parent = parent;
2fd6b7f5 1156 spin_lock(&this_parent->d_lock);
1da177e4
LT
1157repeat:
1158 next = this_parent->d_subdirs.next;
1159resume:
1160 while (next != &this_parent->d_subdirs) {
1161 struct list_head *tmp = next;
5160ee6f 1162 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1163 next = tmp->next;
1164
2fd6b7f5 1165 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1166
1da177e4
LT
1167 /*
1168 * move only zero ref count dentries to the end
1169 * of the unused list for prune_dcache
1170 */
b7ab39f6 1171 if (!dentry->d_count) {
a4633357 1172 dentry_lru_move_tail(dentry);
1da177e4 1173 found++;
a4633357
CH
1174 } else {
1175 dentry_lru_del(dentry);
1da177e4
LT
1176 }
1177
1178 /*
1179 * We can return to the caller if we have found some (this
1180 * ensures forward progress). We'll be coming back to find
1181 * the rest.
1182 */
2fd6b7f5
NP
1183 if (found && need_resched()) {
1184 spin_unlock(&dentry->d_lock);
1da177e4 1185 goto out;
2fd6b7f5 1186 }
1da177e4
LT
1187
1188 /*
1189 * Descend a level if the d_subdirs list is non-empty.
1190 */
1191 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1192 spin_unlock(&this_parent->d_lock);
1193 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1194 this_parent = dentry;
2fd6b7f5 1195 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1196 goto repeat;
1197 }
2fd6b7f5
NP
1198
1199 spin_unlock(&dentry->d_lock);
1da177e4
LT
1200 }
1201 /*
1202 * All done at this level ... ascend and resume the search.
1203 */
1204 if (this_parent != parent) {
c826cb7d
LT
1205 struct dentry *child = this_parent;
1206 this_parent = try_to_ascend(this_parent, locked, seq);
1207 if (!this_parent)
949854d0 1208 goto rename_retry;
949854d0 1209 next = child->d_u.d_child.next;
1da177e4
LT
1210 goto resume;
1211 }
1212out:
2fd6b7f5 1213 spin_unlock(&this_parent->d_lock);
58db63d0 1214 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1215 goto rename_retry;
58db63d0
NP
1216 if (locked)
1217 write_sequnlock(&rename_lock);
1da177e4 1218 return found;
58db63d0
NP
1219
1220rename_retry:
1221 if (found)
1222 return found;
1223 locked = 1;
1224 write_seqlock(&rename_lock);
1225 goto again;
1da177e4
LT
1226}
1227
1228/**
1229 * shrink_dcache_parent - prune dcache
1230 * @parent: parent of entries to prune
1231 *
1232 * Prune the dcache to remove unused children of the parent dentry.
1233 */
1234
1235void shrink_dcache_parent(struct dentry * parent)
1236{
da3bbdd4 1237 struct super_block *sb = parent->d_sb;
1da177e4
LT
1238 int found;
1239
1240 while ((found = select_parent(parent)) != 0)
da3bbdd4 1241 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1242}
ec4f8605 1243EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1244
1da177e4 1245/*
1495f230 1246 * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1da177e4
LT
1247 *
1248 * We need to avoid reentering the filesystem if the caller is performing a
1249 * GFP_NOFS allocation attempt. One example deadlock is:
1250 *
1251 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1252 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1253 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1254 *
1255 * In this case we return -1 to tell the caller that we baled.
1256 */
1495f230
YH
1257static int shrink_dcache_memory(struct shrinker *shrink,
1258 struct shrink_control *sc)
1da177e4 1259{
1495f230
YH
1260 int nr = sc->nr_to_scan;
1261 gfp_t gfp_mask = sc->gfp_mask;
1262
1da177e4
LT
1263 if (nr) {
1264 if (!(gfp_mask & __GFP_FS))
1265 return -1;
da3bbdd4 1266 prune_dcache(nr);
1da177e4 1267 }
312d3ca8 1268
86c8749e 1269 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1270}
1271
8e1f936b
RR
1272static struct shrinker dcache_shrinker = {
1273 .shrink = shrink_dcache_memory,
1274 .seeks = DEFAULT_SEEKS,
1275};
1276
1da177e4 1277/**
a4464dbc
AV
1278 * __d_alloc - allocate a dcache entry
1279 * @sb: filesystem it will belong to
1da177e4
LT
1280 * @name: qstr of the name
1281 *
1282 * Allocates a dentry. It returns %NULL if there is insufficient memory
1283 * available. On a success the dentry is returned. The name passed in is
1284 * copied and the copy passed in may be reused after this call.
1285 */
1286
a4464dbc 1287struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1288{
1289 struct dentry *dentry;
1290 char *dname;
1291
e12ba74d 1292 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1293 if (!dentry)
1294 return NULL;
1295
1296 if (name->len > DNAME_INLINE_LEN-1) {
1297 dname = kmalloc(name->len + 1, GFP_KERNEL);
1298 if (!dname) {
1299 kmem_cache_free(dentry_cache, dentry);
1300 return NULL;
1301 }
1302 } else {
1303 dname = dentry->d_iname;
1304 }
1305 dentry->d_name.name = dname;
1306
1307 dentry->d_name.len = name->len;
1308 dentry->d_name.hash = name->hash;
1309 memcpy(dname, name->name, name->len);
1310 dname[name->len] = 0;
1311
b7ab39f6 1312 dentry->d_count = 1;
dea3667b 1313 dentry->d_flags = 0;
1da177e4 1314 spin_lock_init(&dentry->d_lock);
31e6b01f 1315 seqcount_init(&dentry->d_seq);
1da177e4 1316 dentry->d_inode = NULL;
a4464dbc
AV
1317 dentry->d_parent = dentry;
1318 dentry->d_sb = sb;
1da177e4
LT
1319 dentry->d_op = NULL;
1320 dentry->d_fsdata = NULL;
ceb5bdc2 1321 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1322 INIT_LIST_HEAD(&dentry->d_lru);
1323 INIT_LIST_HEAD(&dentry->d_subdirs);
1324 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1325 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1326 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1327
3e880fb5 1328 this_cpu_inc(nr_dentry);
312d3ca8 1329
1da177e4
LT
1330 return dentry;
1331}
a4464dbc
AV
1332
1333/**
1334 * d_alloc - allocate a dcache entry
1335 * @parent: parent of entry to allocate
1336 * @name: qstr of the name
1337 *
1338 * Allocates a dentry. It returns %NULL if there is insufficient memory
1339 * available. On a success the dentry is returned. The name passed in is
1340 * copied and the copy passed in may be reused after this call.
1341 */
1342struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1343{
1344 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1345 if (!dentry)
1346 return NULL;
1347
1348 spin_lock(&parent->d_lock);
1349 /*
1350 * don't need child lock because it is not subject
1351 * to concurrency here
1352 */
1353 __dget_dlock(parent);
1354 dentry->d_parent = parent;
1355 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1356 spin_unlock(&parent->d_lock);
1357
1358 return dentry;
1359}
ec4f8605 1360EXPORT_SYMBOL(d_alloc);
1da177e4 1361
4b936885
NP
1362struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1363{
a4464dbc
AV
1364 struct dentry *dentry = __d_alloc(sb, name);
1365 if (dentry)
4b936885 1366 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1367 return dentry;
1368}
1369EXPORT_SYMBOL(d_alloc_pseudo);
1370
1da177e4
LT
1371struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1372{
1373 struct qstr q;
1374
1375 q.name = name;
1376 q.len = strlen(name);
1377 q.hash = full_name_hash(q.name, q.len);
1378 return d_alloc(parent, &q);
1379}
ef26ca97 1380EXPORT_SYMBOL(d_alloc_name);
1da177e4 1381
fb045adb
NP
1382void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1383{
6f7f7caa
LT
1384 WARN_ON_ONCE(dentry->d_op);
1385 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1386 DCACHE_OP_COMPARE |
1387 DCACHE_OP_REVALIDATE |
1388 DCACHE_OP_DELETE ));
1389 dentry->d_op = op;
1390 if (!op)
1391 return;
1392 if (op->d_hash)
1393 dentry->d_flags |= DCACHE_OP_HASH;
1394 if (op->d_compare)
1395 dentry->d_flags |= DCACHE_OP_COMPARE;
1396 if (op->d_revalidate)
1397 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1398 if (op->d_delete)
1399 dentry->d_flags |= DCACHE_OP_DELETE;
1400
1401}
1402EXPORT_SYMBOL(d_set_d_op);
1403
360da900
OH
1404static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1405{
b23fb0a6 1406 spin_lock(&dentry->d_lock);
9875cf80
DH
1407 if (inode) {
1408 if (unlikely(IS_AUTOMOUNT(inode)))
1409 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1410 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1411 }
360da900 1412 dentry->d_inode = inode;
31e6b01f 1413 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1414 spin_unlock(&dentry->d_lock);
360da900
OH
1415 fsnotify_d_instantiate(dentry, inode);
1416}
1417
1da177e4
LT
1418/**
1419 * d_instantiate - fill in inode information for a dentry
1420 * @entry: dentry to complete
1421 * @inode: inode to attach to this dentry
1422 *
1423 * Fill in inode information in the entry.
1424 *
1425 * This turns negative dentries into productive full members
1426 * of society.
1427 *
1428 * NOTE! This assumes that the inode count has been incremented
1429 * (or otherwise set) by the caller to indicate that it is now
1430 * in use by the dcache.
1431 */
1432
1433void d_instantiate(struct dentry *entry, struct inode * inode)
1434{
28133c7b 1435 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1436 if (inode)
1437 spin_lock(&inode->i_lock);
360da900 1438 __d_instantiate(entry, inode);
873feea0
NP
1439 if (inode)
1440 spin_unlock(&inode->i_lock);
1da177e4
LT
1441 security_d_instantiate(entry, inode);
1442}
ec4f8605 1443EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1444
1445/**
1446 * d_instantiate_unique - instantiate a non-aliased dentry
1447 * @entry: dentry to instantiate
1448 * @inode: inode to attach to this dentry
1449 *
1450 * Fill in inode information in the entry. On success, it returns NULL.
1451 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1452 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1453 *
1454 * Note that in order to avoid conflicts with rename() etc, the caller
1455 * had better be holding the parent directory semaphore.
e866cfa9
OD
1456 *
1457 * This also assumes that the inode count has been incremented
1458 * (or otherwise set) by the caller to indicate that it is now
1459 * in use by the dcache.
1da177e4 1460 */
770bfad8
DH
1461static struct dentry *__d_instantiate_unique(struct dentry *entry,
1462 struct inode *inode)
1da177e4
LT
1463{
1464 struct dentry *alias;
1465 int len = entry->d_name.len;
1466 const char *name = entry->d_name.name;
1467 unsigned int hash = entry->d_name.hash;
1468
770bfad8 1469 if (!inode) {
360da900 1470 __d_instantiate(entry, NULL);
770bfad8
DH
1471 return NULL;
1472 }
1473
1da177e4
LT
1474 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1475 struct qstr *qstr = &alias->d_name;
1476
9abca360
NP
1477 /*
1478 * Don't need alias->d_lock here, because aliases with
1479 * d_parent == entry->d_parent are not subject to name or
1480 * parent changes, because the parent inode i_mutex is held.
1481 */
1da177e4
LT
1482 if (qstr->hash != hash)
1483 continue;
1484 if (alias->d_parent != entry->d_parent)
1485 continue;
9d55c369 1486 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1487 continue;
dc0474be 1488 __dget(alias);
1da177e4
LT
1489 return alias;
1490 }
770bfad8 1491
360da900 1492 __d_instantiate(entry, inode);
1da177e4
LT
1493 return NULL;
1494}
770bfad8
DH
1495
1496struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1497{
1498 struct dentry *result;
1499
1500 BUG_ON(!list_empty(&entry->d_alias));
1501
873feea0
NP
1502 if (inode)
1503 spin_lock(&inode->i_lock);
770bfad8 1504 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1505 if (inode)
1506 spin_unlock(&inode->i_lock);
770bfad8
DH
1507
1508 if (!result) {
1509 security_d_instantiate(entry, inode);
1510 return NULL;
1511 }
1512
1513 BUG_ON(!d_unhashed(result));
1514 iput(inode);
1515 return result;
1516}
1517
1da177e4
LT
1518EXPORT_SYMBOL(d_instantiate_unique);
1519
1520/**
1521 * d_alloc_root - allocate root dentry
1522 * @root_inode: inode to allocate the root for
1523 *
1524 * Allocate a root ("/") dentry for the inode given. The inode is
1525 * instantiated and returned. %NULL is returned if there is insufficient
1526 * memory or the inode passed is %NULL.
1527 */
1528
1529struct dentry * d_alloc_root(struct inode * root_inode)
1530{
1531 struct dentry *res = NULL;
1532
1533 if (root_inode) {
1534 static const struct qstr name = { .name = "/", .len = 1 };
1535
a4464dbc
AV
1536 res = __d_alloc(root_inode->i_sb, &name);
1537 if (res)
1da177e4 1538 d_instantiate(res, root_inode);
1da177e4
LT
1539 }
1540 return res;
1541}
ec4f8605 1542EXPORT_SYMBOL(d_alloc_root);
1da177e4 1543
d891eedb
BF
1544static struct dentry * __d_find_any_alias(struct inode *inode)
1545{
1546 struct dentry *alias;
1547
1548 if (list_empty(&inode->i_dentry))
1549 return NULL;
1550 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1551 __dget(alias);
1552 return alias;
1553}
1554
1555static struct dentry * d_find_any_alias(struct inode *inode)
1556{
1557 struct dentry *de;
1558
1559 spin_lock(&inode->i_lock);
1560 de = __d_find_any_alias(inode);
1561 spin_unlock(&inode->i_lock);
1562 return de;
1563}
1564
1565
4ea3ada2
CH
1566/**
1567 * d_obtain_alias - find or allocate a dentry for a given inode
1568 * @inode: inode to allocate the dentry for
1569 *
1570 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1571 * similar open by handle operations. The returned dentry may be anonymous,
1572 * or may have a full name (if the inode was already in the cache).
1573 *
1574 * When called on a directory inode, we must ensure that the inode only ever
1575 * has one dentry. If a dentry is found, that is returned instead of
1576 * allocating a new one.
1577 *
1578 * On successful return, the reference to the inode has been transferred
44003728
CH
1579 * to the dentry. In case of an error the reference on the inode is released.
1580 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1581 * be passed in and will be the error will be propagate to the return value,
1582 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1583 */
1584struct dentry *d_obtain_alias(struct inode *inode)
1585{
9308a612
CH
1586 static const struct qstr anonstring = { .name = "" };
1587 struct dentry *tmp;
1588 struct dentry *res;
4ea3ada2
CH
1589
1590 if (!inode)
44003728 1591 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1592 if (IS_ERR(inode))
1593 return ERR_CAST(inode);
1594
d891eedb 1595 res = d_find_any_alias(inode);
9308a612
CH
1596 if (res)
1597 goto out_iput;
1598
a4464dbc 1599 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1600 if (!tmp) {
1601 res = ERR_PTR(-ENOMEM);
1602 goto out_iput;
4ea3ada2 1603 }
b5c84bf6 1604
873feea0 1605 spin_lock(&inode->i_lock);
d891eedb 1606 res = __d_find_any_alias(inode);
9308a612 1607 if (res) {
873feea0 1608 spin_unlock(&inode->i_lock);
9308a612
CH
1609 dput(tmp);
1610 goto out_iput;
1611 }
1612
1613 /* attach a disconnected dentry */
1614 spin_lock(&tmp->d_lock);
9308a612
CH
1615 tmp->d_inode = inode;
1616 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1617 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1618 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1619 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1620 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1621 spin_unlock(&tmp->d_lock);
873feea0 1622 spin_unlock(&inode->i_lock);
24ff6663 1623 security_d_instantiate(tmp, inode);
9308a612 1624
9308a612
CH
1625 return tmp;
1626
1627 out_iput:
24ff6663
JB
1628 if (res && !IS_ERR(res))
1629 security_d_instantiate(res, inode);
9308a612
CH
1630 iput(inode);
1631 return res;
4ea3ada2 1632}
adc48720 1633EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1634
1635/**
1636 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1637 * @inode: the inode which may have a disconnected dentry
1638 * @dentry: a negative dentry which we want to point to the inode.
1639 *
1640 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1641 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1642 * and return it, else simply d_add the inode to the dentry and return NULL.
1643 *
1644 * This is needed in the lookup routine of any filesystem that is exportable
1645 * (via knfsd) so that we can build dcache paths to directories effectively.
1646 *
1647 * If a dentry was found and moved, then it is returned. Otherwise NULL
1648 * is returned. This matches the expected return value of ->lookup.
1649 *
1650 */
1651struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1652{
1653 struct dentry *new = NULL;
1654
a9049376
AV
1655 if (IS_ERR(inode))
1656 return ERR_CAST(inode);
1657
21c0d8fd 1658 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1659 spin_lock(&inode->i_lock);
1da177e4
LT
1660 new = __d_find_alias(inode, 1);
1661 if (new) {
1662 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1663 spin_unlock(&inode->i_lock);
1da177e4 1664 security_d_instantiate(new, inode);
1da177e4
LT
1665 d_move(new, dentry);
1666 iput(inode);
1667 } else {
873feea0 1668 /* already taking inode->i_lock, so d_add() by hand */
360da900 1669 __d_instantiate(dentry, inode);
873feea0 1670 spin_unlock(&inode->i_lock);
1da177e4
LT
1671 security_d_instantiate(dentry, inode);
1672 d_rehash(dentry);
1673 }
1674 } else
1675 d_add(dentry, inode);
1676 return new;
1677}
ec4f8605 1678EXPORT_SYMBOL(d_splice_alias);
1da177e4 1679
9403540c
BN
1680/**
1681 * d_add_ci - lookup or allocate new dentry with case-exact name
1682 * @inode: the inode case-insensitive lookup has found
1683 * @dentry: the negative dentry that was passed to the parent's lookup func
1684 * @name: the case-exact name to be associated with the returned dentry
1685 *
1686 * This is to avoid filling the dcache with case-insensitive names to the
1687 * same inode, only the actual correct case is stored in the dcache for
1688 * case-insensitive filesystems.
1689 *
1690 * For a case-insensitive lookup match and if the the case-exact dentry
1691 * already exists in in the dcache, use it and return it.
1692 *
1693 * If no entry exists with the exact case name, allocate new dentry with
1694 * the exact case, and return the spliced entry.
1695 */
e45b590b 1696struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1697 struct qstr *name)
1698{
1699 int error;
1700 struct dentry *found;
1701 struct dentry *new;
1702
b6520c81
CH
1703 /*
1704 * First check if a dentry matching the name already exists,
1705 * if not go ahead and create it now.
1706 */
9403540c 1707 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1708 if (!found) {
1709 new = d_alloc(dentry->d_parent, name);
1710 if (!new) {
1711 error = -ENOMEM;
1712 goto err_out;
1713 }
b6520c81 1714
9403540c
BN
1715 found = d_splice_alias(inode, new);
1716 if (found) {
1717 dput(new);
1718 return found;
1719 }
1720 return new;
1721 }
b6520c81
CH
1722
1723 /*
1724 * If a matching dentry exists, and it's not negative use it.
1725 *
1726 * Decrement the reference count to balance the iget() done
1727 * earlier on.
1728 */
9403540c
BN
1729 if (found->d_inode) {
1730 if (unlikely(found->d_inode != inode)) {
1731 /* This can't happen because bad inodes are unhashed. */
1732 BUG_ON(!is_bad_inode(inode));
1733 BUG_ON(!is_bad_inode(found->d_inode));
1734 }
9403540c
BN
1735 iput(inode);
1736 return found;
1737 }
b6520c81 1738
44396f4b
JB
1739 /*
1740 * We are going to instantiate this dentry, unhash it and clear the
1741 * lookup flag so we can do that.
1742 */
1743 if (unlikely(d_need_lookup(found)))
1744 d_clear_need_lookup(found);
1745
9403540c
BN
1746 /*
1747 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1748 * already has a dentry.
9403540c 1749 */
873feea0 1750 spin_lock(&inode->i_lock);
b6520c81 1751 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1752 __d_instantiate(found, inode);
873feea0 1753 spin_unlock(&inode->i_lock);
9403540c
BN
1754 security_d_instantiate(found, inode);
1755 return found;
1756 }
b6520c81 1757
9403540c 1758 /*
b6520c81
CH
1759 * In case a directory already has a (disconnected) entry grab a
1760 * reference to it, move it in place and use it.
9403540c
BN
1761 */
1762 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dc0474be 1763 __dget(new);
873feea0 1764 spin_unlock(&inode->i_lock);
9403540c 1765 security_d_instantiate(found, inode);
9403540c 1766 d_move(new, found);
9403540c 1767 iput(inode);
9403540c 1768 dput(found);
9403540c
BN
1769 return new;
1770
1771err_out:
1772 iput(inode);
1773 return ERR_PTR(error);
1774}
ec4f8605 1775EXPORT_SYMBOL(d_add_ci);
1da177e4 1776
31e6b01f
NP
1777/**
1778 * __d_lookup_rcu - search for a dentry (racy, store-free)
1779 * @parent: parent dentry
1780 * @name: qstr of name we wish to find
1781 * @seq: returns d_seq value at the point where the dentry was found
1782 * @inode: returns dentry->d_inode when the inode was found valid.
1783 * Returns: dentry, or NULL
1784 *
1785 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1786 * resolution (store-free path walking) design described in
1787 * Documentation/filesystems/path-lookup.txt.
1788 *
1789 * This is not to be used outside core vfs.
1790 *
1791 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1792 * held, and rcu_read_lock held. The returned dentry must not be stored into
1793 * without taking d_lock and checking d_seq sequence count against @seq
1794 * returned here.
1795 *
1796 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1797 * function.
1798 *
1799 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1800 * the returned dentry, so long as its parent's seqlock is checked after the
1801 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1802 * is formed, giving integrity down the path walk.
1803 */
1804struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1805 unsigned *seq, struct inode **inode)
1806{
1807 unsigned int len = name->len;
1808 unsigned int hash = name->hash;
1809 const unsigned char *str = name->name;
b07ad996 1810 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1811 struct hlist_bl_node *node;
31e6b01f
NP
1812 struct dentry *dentry;
1813
1814 /*
1815 * Note: There is significant duplication with __d_lookup_rcu which is
1816 * required to prevent single threaded performance regressions
1817 * especially on architectures where smp_rmb (in seqcounts) are costly.
1818 * Keep the two functions in sync.
1819 */
1820
1821 /*
1822 * The hash list is protected using RCU.
1823 *
1824 * Carefully use d_seq when comparing a candidate dentry, to avoid
1825 * races with d_move().
1826 *
1827 * It is possible that concurrent renames can mess up our list
1828 * walk here and result in missing our dentry, resulting in the
1829 * false-negative result. d_lookup() protects against concurrent
1830 * renames using rename_lock seqlock.
1831 *
b0a4bb83 1832 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1833 */
b07ad996 1834 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1835 struct inode *i;
1836 const char *tname;
1837 int tlen;
1838
1839 if (dentry->d_name.hash != hash)
1840 continue;
1841
1842seqretry:
1843 *seq = read_seqcount_begin(&dentry->d_seq);
1844 if (dentry->d_parent != parent)
1845 continue;
1846 if (d_unhashed(dentry))
1847 continue;
1848 tlen = dentry->d_name.len;
1849 tname = dentry->d_name.name;
1850 i = dentry->d_inode;
e1bb5782
NP
1851 prefetch(tname);
1852 if (i)
1853 prefetch(i);
31e6b01f
NP
1854 /*
1855 * This seqcount check is required to ensure name and
1856 * len are loaded atomically, so as not to walk off the
1857 * edge of memory when walking. If we could load this
1858 * atomically some other way, we could drop this check.
1859 */
1860 if (read_seqcount_retry(&dentry->d_seq, *seq))
1861 goto seqretry;
fb045adb 1862 if (parent->d_flags & DCACHE_OP_COMPARE) {
31e6b01f
NP
1863 if (parent->d_op->d_compare(parent, *inode,
1864 dentry, i,
1865 tlen, tname, name))
1866 continue;
1867 } else {
9d55c369 1868 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1869 continue;
1870 }
1871 /*
1872 * No extra seqcount check is required after the name
1873 * compare. The caller must perform a seqcount check in
1874 * order to do anything useful with the returned dentry
1875 * anyway.
1876 */
1877 *inode = i;
1878 return dentry;
1879 }
1880 return NULL;
1881}
1882
1da177e4
LT
1883/**
1884 * d_lookup - search for a dentry
1885 * @parent: parent dentry
1886 * @name: qstr of name we wish to find
b04f784e 1887 * Returns: dentry, or NULL
1da177e4 1888 *
b04f784e
NP
1889 * d_lookup searches the children of the parent dentry for the name in
1890 * question. If the dentry is found its reference count is incremented and the
1891 * dentry is returned. The caller must use dput to free the entry when it has
1892 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1893 */
31e6b01f 1894struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1895{
31e6b01f 1896 struct dentry *dentry;
949854d0 1897 unsigned seq;
1da177e4
LT
1898
1899 do {
1900 seq = read_seqbegin(&rename_lock);
1901 dentry = __d_lookup(parent, name);
1902 if (dentry)
1903 break;
1904 } while (read_seqretry(&rename_lock, seq));
1905 return dentry;
1906}
ec4f8605 1907EXPORT_SYMBOL(d_lookup);
1da177e4 1908
31e6b01f 1909/**
b04f784e
NP
1910 * __d_lookup - search for a dentry (racy)
1911 * @parent: parent dentry
1912 * @name: qstr of name we wish to find
1913 * Returns: dentry, or NULL
1914 *
1915 * __d_lookup is like d_lookup, however it may (rarely) return a
1916 * false-negative result due to unrelated rename activity.
1917 *
1918 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1919 * however it must be used carefully, eg. with a following d_lookup in
1920 * the case of failure.
1921 *
1922 * __d_lookup callers must be commented.
1923 */
31e6b01f 1924struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1925{
1926 unsigned int len = name->len;
1927 unsigned int hash = name->hash;
1928 const unsigned char *str = name->name;
b07ad996 1929 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1930 struct hlist_bl_node *node;
31e6b01f 1931 struct dentry *found = NULL;
665a7583 1932 struct dentry *dentry;
1da177e4 1933
31e6b01f
NP
1934 /*
1935 * Note: There is significant duplication with __d_lookup_rcu which is
1936 * required to prevent single threaded performance regressions
1937 * especially on architectures where smp_rmb (in seqcounts) are costly.
1938 * Keep the two functions in sync.
1939 */
1940
b04f784e
NP
1941 /*
1942 * The hash list is protected using RCU.
1943 *
1944 * Take d_lock when comparing a candidate dentry, to avoid races
1945 * with d_move().
1946 *
1947 * It is possible that concurrent renames can mess up our list
1948 * walk here and result in missing our dentry, resulting in the
1949 * false-negative result. d_lookup() protects against concurrent
1950 * renames using rename_lock seqlock.
1951 *
b0a4bb83 1952 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1953 */
1da177e4
LT
1954 rcu_read_lock();
1955
b07ad996 1956 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1957 const char *tname;
1958 int tlen;
1da177e4 1959
1da177e4
LT
1960 if (dentry->d_name.hash != hash)
1961 continue;
1da177e4
LT
1962
1963 spin_lock(&dentry->d_lock);
1da177e4
LT
1964 if (dentry->d_parent != parent)
1965 goto next;
d0185c08
LT
1966 if (d_unhashed(dentry))
1967 goto next;
1968
1da177e4
LT
1969 /*
1970 * It is safe to compare names since d_move() cannot
1971 * change the qstr (protected by d_lock).
1972 */
31e6b01f
NP
1973 tlen = dentry->d_name.len;
1974 tname = dentry->d_name.name;
fb045adb 1975 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1976 if (parent->d_op->d_compare(parent, parent->d_inode,
1977 dentry, dentry->d_inode,
31e6b01f 1978 tlen, tname, name))
1da177e4
LT
1979 goto next;
1980 } else {
9d55c369 1981 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1982 goto next;
1983 }
1984
b7ab39f6 1985 dentry->d_count++;
d0185c08 1986 found = dentry;
1da177e4
LT
1987 spin_unlock(&dentry->d_lock);
1988 break;
1989next:
1990 spin_unlock(&dentry->d_lock);
1991 }
1992 rcu_read_unlock();
1993
1994 return found;
1995}
1996
3e7e241f
EB
1997/**
1998 * d_hash_and_lookup - hash the qstr then search for a dentry
1999 * @dir: Directory to search in
2000 * @name: qstr of name we wish to find
2001 *
2002 * On hash failure or on lookup failure NULL is returned.
2003 */
2004struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2005{
2006 struct dentry *dentry = NULL;
2007
2008 /*
2009 * Check for a fs-specific hash function. Note that we must
2010 * calculate the standard hash first, as the d_op->d_hash()
2011 * routine may choose to leave the hash value unchanged.
2012 */
2013 name->hash = full_name_hash(name->name, name->len);
fb045adb 2014 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2015 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2016 goto out;
2017 }
2018 dentry = d_lookup(dir, name);
2019out:
2020 return dentry;
2021}
2022
1da177e4 2023/**
786a5e15 2024 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2025 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2026 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2027 *
2028 * An insecure source has sent us a dentry, here we verify it and dget() it.
2029 * This is used by ncpfs in its readdir implementation.
2030 * Zero is returned in the dentry is invalid.
786a5e15
NP
2031 *
2032 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2033 */
d3a23e16 2034int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2035{
786a5e15 2036 struct dentry *child;
d3a23e16 2037
2fd6b7f5 2038 spin_lock(&dparent->d_lock);
786a5e15
NP
2039 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2040 if (dentry == child) {
2fd6b7f5 2041 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2042 __dget_dlock(dentry);
2fd6b7f5
NP
2043 spin_unlock(&dentry->d_lock);
2044 spin_unlock(&dparent->d_lock);
1da177e4
LT
2045 return 1;
2046 }
2047 }
2fd6b7f5 2048 spin_unlock(&dparent->d_lock);
786a5e15 2049
1da177e4
LT
2050 return 0;
2051}
ec4f8605 2052EXPORT_SYMBOL(d_validate);
1da177e4
LT
2053
2054/*
2055 * When a file is deleted, we have two options:
2056 * - turn this dentry into a negative dentry
2057 * - unhash this dentry and free it.
2058 *
2059 * Usually, we want to just turn this into
2060 * a negative dentry, but if anybody else is
2061 * currently using the dentry or the inode
2062 * we can't do that and we fall back on removing
2063 * it from the hash queues and waiting for
2064 * it to be deleted later when it has no users
2065 */
2066
2067/**
2068 * d_delete - delete a dentry
2069 * @dentry: The dentry to delete
2070 *
2071 * Turn the dentry into a negative dentry if possible, otherwise
2072 * remove it from the hash queues so it can be deleted later
2073 */
2074
2075void d_delete(struct dentry * dentry)
2076{
873feea0 2077 struct inode *inode;
7a91bf7f 2078 int isdir = 0;
1da177e4
LT
2079 /*
2080 * Are we the only user?
2081 */
357f8e65 2082again:
1da177e4 2083 spin_lock(&dentry->d_lock);
873feea0
NP
2084 inode = dentry->d_inode;
2085 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2086 if (dentry->d_count == 1) {
873feea0 2087 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2088 spin_unlock(&dentry->d_lock);
2089 cpu_relax();
2090 goto again;
2091 }
13e3c5e5 2092 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2093 dentry_unlink_inode(dentry);
7a91bf7f 2094 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2095 return;
2096 }
2097
2098 if (!d_unhashed(dentry))
2099 __d_drop(dentry);
2100
2101 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2102
2103 fsnotify_nameremove(dentry, isdir);
1da177e4 2104}
ec4f8605 2105EXPORT_SYMBOL(d_delete);
1da177e4 2106
b07ad996 2107static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2108{
ceb5bdc2 2109 BUG_ON(!d_unhashed(entry));
1879fd6a 2110 hlist_bl_lock(b);
dea3667b 2111 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2112 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2113 hlist_bl_unlock(b);
1da177e4
LT
2114}
2115
770bfad8
DH
2116static void _d_rehash(struct dentry * entry)
2117{
2118 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2119}
2120
1da177e4
LT
2121/**
2122 * d_rehash - add an entry back to the hash
2123 * @entry: dentry to add to the hash
2124 *
2125 * Adds a dentry to the hash according to its name.
2126 */
2127
2128void d_rehash(struct dentry * entry)
2129{
1da177e4 2130 spin_lock(&entry->d_lock);
770bfad8 2131 _d_rehash(entry);
1da177e4 2132 spin_unlock(&entry->d_lock);
1da177e4 2133}
ec4f8605 2134EXPORT_SYMBOL(d_rehash);
1da177e4 2135
fb2d5b86
NP
2136/**
2137 * dentry_update_name_case - update case insensitive dentry with a new name
2138 * @dentry: dentry to be updated
2139 * @name: new name
2140 *
2141 * Update a case insensitive dentry with new case of name.
2142 *
2143 * dentry must have been returned by d_lookup with name @name. Old and new
2144 * name lengths must match (ie. no d_compare which allows mismatched name
2145 * lengths).
2146 *
2147 * Parent inode i_mutex must be held over d_lookup and into this call (to
2148 * keep renames and concurrent inserts, and readdir(2) away).
2149 */
2150void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2151{
7ebfa57f 2152 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2153 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2154
fb2d5b86 2155 spin_lock(&dentry->d_lock);
31e6b01f 2156 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2157 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2158 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2159 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2160}
2161EXPORT_SYMBOL(dentry_update_name_case);
2162
1da177e4
LT
2163static void switch_names(struct dentry *dentry, struct dentry *target)
2164{
2165 if (dname_external(target)) {
2166 if (dname_external(dentry)) {
2167 /*
2168 * Both external: swap the pointers
2169 */
9a8d5bb4 2170 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2171 } else {
2172 /*
2173 * dentry:internal, target:external. Steal target's
2174 * storage and make target internal.
2175 */
321bcf92
BF
2176 memcpy(target->d_iname, dentry->d_name.name,
2177 dentry->d_name.len + 1);
1da177e4
LT
2178 dentry->d_name.name = target->d_name.name;
2179 target->d_name.name = target->d_iname;
2180 }
2181 } else {
2182 if (dname_external(dentry)) {
2183 /*
2184 * dentry:external, target:internal. Give dentry's
2185 * storage to target and make dentry internal
2186 */
2187 memcpy(dentry->d_iname, target->d_name.name,
2188 target->d_name.len + 1);
2189 target->d_name.name = dentry->d_name.name;
2190 dentry->d_name.name = dentry->d_iname;
2191 } else {
2192 /*
2193 * Both are internal. Just copy target to dentry
2194 */
2195 memcpy(dentry->d_iname, target->d_name.name,
2196 target->d_name.len + 1);
dc711ca3
AV
2197 dentry->d_name.len = target->d_name.len;
2198 return;
1da177e4
LT
2199 }
2200 }
9a8d5bb4 2201 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2202}
2203
2fd6b7f5
NP
2204static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2205{
2206 /*
2207 * XXXX: do we really need to take target->d_lock?
2208 */
2209 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2210 spin_lock(&target->d_parent->d_lock);
2211 else {
2212 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2213 spin_lock(&dentry->d_parent->d_lock);
2214 spin_lock_nested(&target->d_parent->d_lock,
2215 DENTRY_D_LOCK_NESTED);
2216 } else {
2217 spin_lock(&target->d_parent->d_lock);
2218 spin_lock_nested(&dentry->d_parent->d_lock,
2219 DENTRY_D_LOCK_NESTED);
2220 }
2221 }
2222 if (target < dentry) {
2223 spin_lock_nested(&target->d_lock, 2);
2224 spin_lock_nested(&dentry->d_lock, 3);
2225 } else {
2226 spin_lock_nested(&dentry->d_lock, 2);
2227 spin_lock_nested(&target->d_lock, 3);
2228 }
2229}
2230
2231static void dentry_unlock_parents_for_move(struct dentry *dentry,
2232 struct dentry *target)
2233{
2234 if (target->d_parent != dentry->d_parent)
2235 spin_unlock(&dentry->d_parent->d_lock);
2236 if (target->d_parent != target)
2237 spin_unlock(&target->d_parent->d_lock);
2238}
2239
1da177e4 2240/*
2fd6b7f5
NP
2241 * When switching names, the actual string doesn't strictly have to
2242 * be preserved in the target - because we're dropping the target
2243 * anyway. As such, we can just do a simple memcpy() to copy over
2244 * the new name before we switch.
2245 *
2246 * Note that we have to be a lot more careful about getting the hash
2247 * switched - we have to switch the hash value properly even if it
2248 * then no longer matches the actual (corrupted) string of the target.
2249 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2250 */
9eaef27b 2251/*
18367501 2252 * __d_move - move a dentry
1da177e4
LT
2253 * @dentry: entry to move
2254 * @target: new dentry
2255 *
2256 * Update the dcache to reflect the move of a file name. Negative
18367501
AV
2257 * dcache entries should not be moved in this way. Caller hold
2258 * rename_lock.
1da177e4 2259 */
18367501 2260static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2261{
1da177e4
LT
2262 if (!dentry->d_inode)
2263 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2264
2fd6b7f5
NP
2265 BUG_ON(d_ancestor(dentry, target));
2266 BUG_ON(d_ancestor(target, dentry));
2267
2fd6b7f5 2268 dentry_lock_for_move(dentry, target);
1da177e4 2269
31e6b01f
NP
2270 write_seqcount_begin(&dentry->d_seq);
2271 write_seqcount_begin(&target->d_seq);
2272
ceb5bdc2
NP
2273 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2274
2275 /*
2276 * Move the dentry to the target hash queue. Don't bother checking
2277 * for the same hash queue because of how unlikely it is.
2278 */
2279 __d_drop(dentry);
789680d1 2280 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2281
2282 /* Unhash the target: dput() will then get rid of it */
2283 __d_drop(target);
2284
5160ee6f
ED
2285 list_del(&dentry->d_u.d_child);
2286 list_del(&target->d_u.d_child);
1da177e4
LT
2287
2288 /* Switch the names.. */
2289 switch_names(dentry, target);
9a8d5bb4 2290 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2291
2292 /* ... and switch the parents */
2293 if (IS_ROOT(dentry)) {
2294 dentry->d_parent = target->d_parent;
2295 target->d_parent = target;
5160ee6f 2296 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2297 } else {
9a8d5bb4 2298 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2299
2300 /* And add them back to the (new) parent lists */
5160ee6f 2301 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2302 }
2303
5160ee6f 2304 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2305
31e6b01f
NP
2306 write_seqcount_end(&target->d_seq);
2307 write_seqcount_end(&dentry->d_seq);
2308
2fd6b7f5 2309 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2310 spin_unlock(&target->d_lock);
c32ccd87 2311 fsnotify_d_move(dentry);
1da177e4 2312 spin_unlock(&dentry->d_lock);
18367501
AV
2313}
2314
2315/*
2316 * d_move - move a dentry
2317 * @dentry: entry to move
2318 * @target: new dentry
2319 *
2320 * Update the dcache to reflect the move of a file name. Negative
2321 * dcache entries should not be moved in this way.
2322 */
2323void d_move(struct dentry *dentry, struct dentry *target)
2324{
2325 write_seqlock(&rename_lock);
2326 __d_move(dentry, target);
1da177e4 2327 write_sequnlock(&rename_lock);
9eaef27b 2328}
ec4f8605 2329EXPORT_SYMBOL(d_move);
1da177e4 2330
e2761a11
OH
2331/**
2332 * d_ancestor - search for an ancestor
2333 * @p1: ancestor dentry
2334 * @p2: child dentry
2335 *
2336 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2337 * an ancestor of p2, else NULL.
9eaef27b 2338 */
e2761a11 2339struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2340{
2341 struct dentry *p;
2342
871c0067 2343 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2344 if (p->d_parent == p1)
e2761a11 2345 return p;
9eaef27b 2346 }
e2761a11 2347 return NULL;
9eaef27b
TM
2348}
2349
2350/*
2351 * This helper attempts to cope with remotely renamed directories
2352 *
2353 * It assumes that the caller is already holding
18367501 2354 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2355 *
2356 * Note: If ever the locking in lock_rename() changes, then please
2357 * remember to update this too...
9eaef27b 2358 */
873feea0
NP
2359static struct dentry *__d_unalias(struct inode *inode,
2360 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2361{
2362 struct mutex *m1 = NULL, *m2 = NULL;
2363 struct dentry *ret;
2364
2365 /* If alias and dentry share a parent, then no extra locks required */
2366 if (alias->d_parent == dentry->d_parent)
2367 goto out_unalias;
2368
9eaef27b
TM
2369 /* See lock_rename() */
2370 ret = ERR_PTR(-EBUSY);
2371 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2372 goto out_err;
2373 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2374 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2375 goto out_err;
2376 m2 = &alias->d_parent->d_inode->i_mutex;
2377out_unalias:
18367501 2378 __d_move(alias, dentry);
9eaef27b
TM
2379 ret = alias;
2380out_err:
873feea0 2381 spin_unlock(&inode->i_lock);
9eaef27b
TM
2382 if (m2)
2383 mutex_unlock(m2);
2384 if (m1)
2385 mutex_unlock(m1);
2386 return ret;
2387}
2388
770bfad8
DH
2389/*
2390 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2391 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2392 * returns with anon->d_lock held!
770bfad8
DH
2393 */
2394static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2395{
2396 struct dentry *dparent, *aparent;
2397
2fd6b7f5 2398 dentry_lock_for_move(anon, dentry);
770bfad8 2399
31e6b01f
NP
2400 write_seqcount_begin(&dentry->d_seq);
2401 write_seqcount_begin(&anon->d_seq);
2402
770bfad8
DH
2403 dparent = dentry->d_parent;
2404 aparent = anon->d_parent;
2405
2fd6b7f5
NP
2406 switch_names(dentry, anon);
2407 swap(dentry->d_name.hash, anon->d_name.hash);
2408
770bfad8
DH
2409 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2410 list_del(&dentry->d_u.d_child);
2411 if (!IS_ROOT(dentry))
2412 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2413 else
2414 INIT_LIST_HEAD(&dentry->d_u.d_child);
2415
2416 anon->d_parent = (dparent == dentry) ? anon : dparent;
2417 list_del(&anon->d_u.d_child);
2418 if (!IS_ROOT(anon))
2419 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2420 else
2421 INIT_LIST_HEAD(&anon->d_u.d_child);
2422
31e6b01f
NP
2423 write_seqcount_end(&dentry->d_seq);
2424 write_seqcount_end(&anon->d_seq);
2425
2fd6b7f5
NP
2426 dentry_unlock_parents_for_move(anon, dentry);
2427 spin_unlock(&dentry->d_lock);
2428
2429 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2430 anon->d_flags &= ~DCACHE_DISCONNECTED;
2431}
2432
2433/**
2434 * d_materialise_unique - introduce an inode into the tree
2435 * @dentry: candidate dentry
2436 * @inode: inode to bind to the dentry, to which aliases may be attached
2437 *
2438 * Introduces an dentry into the tree, substituting an extant disconnected
2439 * root directory alias in its place if there is one
2440 */
2441struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2442{
9eaef27b 2443 struct dentry *actual;
770bfad8
DH
2444
2445 BUG_ON(!d_unhashed(dentry));
2446
770bfad8
DH
2447 if (!inode) {
2448 actual = dentry;
360da900 2449 __d_instantiate(dentry, NULL);
357f8e65
NP
2450 d_rehash(actual);
2451 goto out_nolock;
770bfad8
DH
2452 }
2453
873feea0 2454 spin_lock(&inode->i_lock);
357f8e65 2455
9eaef27b
TM
2456 if (S_ISDIR(inode->i_mode)) {
2457 struct dentry *alias;
2458
2459 /* Does an aliased dentry already exist? */
2460 alias = __d_find_alias(inode, 0);
2461 if (alias) {
2462 actual = alias;
18367501
AV
2463 write_seqlock(&rename_lock);
2464
2465 if (d_ancestor(alias, dentry)) {
2466 /* Check for loops */
2467 actual = ERR_PTR(-ELOOP);
2468 } else if (IS_ROOT(alias)) {
2469 /* Is this an anonymous mountpoint that we
2470 * could splice into our tree? */
9eaef27b 2471 __d_materialise_dentry(dentry, alias);
18367501 2472 write_sequnlock(&rename_lock);
9eaef27b
TM
2473 __d_drop(alias);
2474 goto found;
18367501
AV
2475 } else {
2476 /* Nope, but we must(!) avoid directory
2477 * aliasing */
2478 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2479 }
18367501 2480 write_sequnlock(&rename_lock);
9eaef27b
TM
2481 if (IS_ERR(actual))
2482 dput(alias);
2483 goto out_nolock;
2484 }
770bfad8
DH
2485 }
2486
2487 /* Add a unique reference */
2488 actual = __d_instantiate_unique(dentry, inode);
2489 if (!actual)
2490 actual = dentry;
357f8e65
NP
2491 else
2492 BUG_ON(!d_unhashed(actual));
770bfad8 2493
770bfad8
DH
2494 spin_lock(&actual->d_lock);
2495found:
2496 _d_rehash(actual);
2497 spin_unlock(&actual->d_lock);
873feea0 2498 spin_unlock(&inode->i_lock);
9eaef27b 2499out_nolock:
770bfad8
DH
2500 if (actual == dentry) {
2501 security_d_instantiate(dentry, inode);
2502 return NULL;
2503 }
2504
2505 iput(inode);
2506 return actual;
770bfad8 2507}
ec4f8605 2508EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2509
cdd16d02 2510static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2511{
2512 *buflen -= namelen;
2513 if (*buflen < 0)
2514 return -ENAMETOOLONG;
2515 *buffer -= namelen;
2516 memcpy(*buffer, str, namelen);
2517 return 0;
2518}
2519
cdd16d02
MS
2520static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2521{
2522 return prepend(buffer, buflen, name->name, name->len);
2523}
2524
1da177e4 2525/**
208898c1 2526 * prepend_path - Prepend path string to a buffer
9d1bc601
MS
2527 * @path: the dentry/vfsmount to report
2528 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2529 * @buffer: pointer to the end of the buffer
2530 * @buflen: pointer to buffer length
552ce544 2531 *
949854d0 2532 * Caller holds the rename_lock.
9d1bc601
MS
2533 *
2534 * If path is not reachable from the supplied root, then the value of
2535 * root is changed (without modifying refcounts).
1da177e4 2536 */
f2eb6575
MS
2537static int prepend_path(const struct path *path, struct path *root,
2538 char **buffer, int *buflen)
1da177e4 2539{
9d1bc601
MS
2540 struct dentry *dentry = path->dentry;
2541 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2542 bool slash = false;
2543 int error = 0;
6092d048 2544
99b7db7b 2545 br_read_lock(vfsmount_lock);
f2eb6575 2546 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2547 struct dentry * parent;
2548
1da177e4 2549 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2550 /* Global root? */
1da177e4 2551 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2552 goto global_root;
2553 }
2554 dentry = vfsmnt->mnt_mountpoint;
2555 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2556 continue;
2557 }
2558 parent = dentry->d_parent;
2559 prefetch(parent);
9abca360 2560 spin_lock(&dentry->d_lock);
f2eb6575 2561 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2562 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2563 if (!error)
2564 error = prepend(buffer, buflen, "/", 1);
2565 if (error)
2566 break;
2567
2568 slash = true;
1da177e4
LT
2569 dentry = parent;
2570 }
2571
be285c71 2572out:
f2eb6575
MS
2573 if (!error && !slash)
2574 error = prepend(buffer, buflen, "/", 1);
2575
99b7db7b 2576 br_read_unlock(vfsmount_lock);
f2eb6575 2577 return error;
1da177e4
LT
2578
2579global_root:
98dc568b
MS
2580 /*
2581 * Filesystems needing to implement special "root names"
2582 * should do so with ->d_dname()
2583 */
2584 if (IS_ROOT(dentry) &&
2585 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2586 WARN(1, "Root dentry has weird name <%.*s>\n",
2587 (int) dentry->d_name.len, dentry->d_name.name);
2588 }
9d1bc601
MS
2589 root->mnt = vfsmnt;
2590 root->dentry = dentry;
be285c71 2591 goto out;
f2eb6575 2592}
be285c71 2593
f2eb6575
MS
2594/**
2595 * __d_path - return the path of a dentry
2596 * @path: the dentry/vfsmount to report
2597 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2598 * @buf: buffer to return value in
f2eb6575
MS
2599 * @buflen: buffer length
2600 *
ffd1f4ed 2601 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2602 *
2603 * Returns a pointer into the buffer or an error code if the
2604 * path was too long.
2605 *
be148247 2606 * "buflen" should be positive.
f2eb6575
MS
2607 *
2608 * If path is not reachable from the supplied root, then the value of
2609 * root is changed (without modifying refcounts).
2610 */
2611char *__d_path(const struct path *path, struct path *root,
2612 char *buf, int buflen)
2613{
2614 char *res = buf + buflen;
2615 int error;
2616
2617 prepend(&res, &buflen, "\0", 1);
949854d0 2618 write_seqlock(&rename_lock);
f2eb6575 2619 error = prepend_path(path, root, &res, &buflen);
949854d0 2620 write_sequnlock(&rename_lock);
be148247 2621
f2eb6575
MS
2622 if (error)
2623 return ERR_PTR(error);
f2eb6575 2624 return res;
1da177e4
LT
2625}
2626
ffd1f4ed
MS
2627/*
2628 * same as __d_path but appends "(deleted)" for unlinked files.
2629 */
2630static int path_with_deleted(const struct path *path, struct path *root,
2631 char **buf, int *buflen)
2632{
2633 prepend(buf, buflen, "\0", 1);
2634 if (d_unlinked(path->dentry)) {
2635 int error = prepend(buf, buflen, " (deleted)", 10);
2636 if (error)
2637 return error;
2638 }
2639
2640 return prepend_path(path, root, buf, buflen);
2641}
2642
8df9d1a4
MS
2643static int prepend_unreachable(char **buffer, int *buflen)
2644{
2645 return prepend(buffer, buflen, "(unreachable)", 13);
2646}
2647
a03a8a70
JB
2648/**
2649 * d_path - return the path of a dentry
cf28b486 2650 * @path: path to report
a03a8a70
JB
2651 * @buf: buffer to return value in
2652 * @buflen: buffer length
2653 *
2654 * Convert a dentry into an ASCII path name. If the entry has been deleted
2655 * the string " (deleted)" is appended. Note that this is ambiguous.
2656 *
52afeefb
AV
2657 * Returns a pointer into the buffer or an error code if the path was
2658 * too long. Note: Callers should use the returned pointer, not the passed
2659 * in buffer, to use the name! The implementation often starts at an offset
2660 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2661 *
31f3e0b3 2662 * "buflen" should be positive.
a03a8a70 2663 */
20d4fdc1 2664char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2665{
ffd1f4ed 2666 char *res = buf + buflen;
6ac08c39 2667 struct path root;
9d1bc601 2668 struct path tmp;
ffd1f4ed 2669 int error;
1da177e4 2670
c23fbb6b
ED
2671 /*
2672 * We have various synthetic filesystems that never get mounted. On
2673 * these filesystems dentries are never used for lookup purposes, and
2674 * thus don't need to be hashed. They also don't need a name until a
2675 * user wants to identify the object in /proc/pid/fd/. The little hack
2676 * below allows us to generate a name for these objects on demand:
2677 */
cf28b486
JB
2678 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2679 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2680
f7ad3c6b 2681 get_fs_root(current->fs, &root);
949854d0 2682 write_seqlock(&rename_lock);
9d1bc601 2683 tmp = root;
ffd1f4ed
MS
2684 error = path_with_deleted(path, &tmp, &res, &buflen);
2685 if (error)
2686 res = ERR_PTR(error);
949854d0 2687 write_sequnlock(&rename_lock);
6ac08c39 2688 path_put(&root);
1da177e4
LT
2689 return res;
2690}
ec4f8605 2691EXPORT_SYMBOL(d_path);
1da177e4 2692
8df9d1a4
MS
2693/**
2694 * d_path_with_unreachable - return the path of a dentry
2695 * @path: path to report
2696 * @buf: buffer to return value in
2697 * @buflen: buffer length
2698 *
2699 * The difference from d_path() is that this prepends "(unreachable)"
2700 * to paths which are unreachable from the current process' root.
2701 */
2702char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2703{
2704 char *res = buf + buflen;
2705 struct path root;
2706 struct path tmp;
2707 int error;
2708
2709 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2710 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2711
2712 get_fs_root(current->fs, &root);
949854d0 2713 write_seqlock(&rename_lock);
8df9d1a4
MS
2714 tmp = root;
2715 error = path_with_deleted(path, &tmp, &res, &buflen);
2716 if (!error && !path_equal(&tmp, &root))
2717 error = prepend_unreachable(&res, &buflen);
949854d0 2718 write_sequnlock(&rename_lock);
8df9d1a4
MS
2719 path_put(&root);
2720 if (error)
2721 res = ERR_PTR(error);
2722
2723 return res;
2724}
2725
c23fbb6b
ED
2726/*
2727 * Helper function for dentry_operations.d_dname() members
2728 */
2729char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2730 const char *fmt, ...)
2731{
2732 va_list args;
2733 char temp[64];
2734 int sz;
2735
2736 va_start(args, fmt);
2737 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2738 va_end(args);
2739
2740 if (sz > sizeof(temp) || sz > buflen)
2741 return ERR_PTR(-ENAMETOOLONG);
2742
2743 buffer += buflen - sz;
2744 return memcpy(buffer, temp, sz);
2745}
2746
6092d048
RP
2747/*
2748 * Write full pathname from the root of the filesystem into the buffer.
2749 */
ec2447c2 2750static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2751{
2752 char *end = buf + buflen;
2753 char *retval;
2754
6092d048 2755 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2756 if (buflen < 1)
2757 goto Elong;
2758 /* Get '/' right */
2759 retval = end-1;
2760 *retval = '/';
2761
cdd16d02
MS
2762 while (!IS_ROOT(dentry)) {
2763 struct dentry *parent = dentry->d_parent;
9abca360 2764 int error;
6092d048 2765
6092d048 2766 prefetch(parent);
9abca360
NP
2767 spin_lock(&dentry->d_lock);
2768 error = prepend_name(&end, &buflen, &dentry->d_name);
2769 spin_unlock(&dentry->d_lock);
2770 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2771 goto Elong;
2772
2773 retval = end;
2774 dentry = parent;
2775 }
c103135c
AV
2776 return retval;
2777Elong:
2778 return ERR_PTR(-ENAMETOOLONG);
2779}
ec2447c2
NP
2780
2781char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2782{
2783 char *retval;
2784
949854d0 2785 write_seqlock(&rename_lock);
ec2447c2 2786 retval = __dentry_path(dentry, buf, buflen);
949854d0 2787 write_sequnlock(&rename_lock);
ec2447c2
NP
2788
2789 return retval;
2790}
2791EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2792
2793char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2794{
2795 char *p = NULL;
2796 char *retval;
2797
949854d0 2798 write_seqlock(&rename_lock);
c103135c
AV
2799 if (d_unlinked(dentry)) {
2800 p = buf + buflen;
2801 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2802 goto Elong;
2803 buflen++;
2804 }
2805 retval = __dentry_path(dentry, buf, buflen);
949854d0 2806 write_sequnlock(&rename_lock);
c103135c
AV
2807 if (!IS_ERR(retval) && p)
2808 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2809 return retval;
2810Elong:
6092d048
RP
2811 return ERR_PTR(-ENAMETOOLONG);
2812}
2813
1da177e4
LT
2814/*
2815 * NOTE! The user-level library version returns a
2816 * character pointer. The kernel system call just
2817 * returns the length of the buffer filled (which
2818 * includes the ending '\0' character), or a negative
2819 * error value. So libc would do something like
2820 *
2821 * char *getcwd(char * buf, size_t size)
2822 * {
2823 * int retval;
2824 *
2825 * retval = sys_getcwd(buf, size);
2826 * if (retval >= 0)
2827 * return buf;
2828 * errno = -retval;
2829 * return NULL;
2830 * }
2831 */
3cdad428 2832SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2833{
552ce544 2834 int error;
6ac08c39 2835 struct path pwd, root;
552ce544 2836 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2837
2838 if (!page)
2839 return -ENOMEM;
2840
f7ad3c6b 2841 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2842
552ce544 2843 error = -ENOENT;
949854d0 2844 write_seqlock(&rename_lock);
f3da392e 2845 if (!d_unlinked(pwd.dentry)) {
552ce544 2846 unsigned long len;
9d1bc601 2847 struct path tmp = root;
8df9d1a4
MS
2848 char *cwd = page + PAGE_SIZE;
2849 int buflen = PAGE_SIZE;
1da177e4 2850
8df9d1a4
MS
2851 prepend(&cwd, &buflen, "\0", 1);
2852 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2853 write_sequnlock(&rename_lock);
552ce544 2854
8df9d1a4 2855 if (error)
552ce544
LT
2856 goto out;
2857
8df9d1a4
MS
2858 /* Unreachable from current root */
2859 if (!path_equal(&tmp, &root)) {
2860 error = prepend_unreachable(&cwd, &buflen);
2861 if (error)
2862 goto out;
2863 }
2864
552ce544
LT
2865 error = -ERANGE;
2866 len = PAGE_SIZE + page - cwd;
2867 if (len <= size) {
2868 error = len;
2869 if (copy_to_user(buf, cwd, len))
2870 error = -EFAULT;
2871 }
949854d0
NP
2872 } else {
2873 write_sequnlock(&rename_lock);
949854d0 2874 }
1da177e4
LT
2875
2876out:
6ac08c39
JB
2877 path_put(&pwd);
2878 path_put(&root);
1da177e4
LT
2879 free_page((unsigned long) page);
2880 return error;
2881}
2882
2883/*
2884 * Test whether new_dentry is a subdirectory of old_dentry.
2885 *
2886 * Trivially implemented using the dcache structure
2887 */
2888
2889/**
2890 * is_subdir - is new dentry a subdirectory of old_dentry
2891 * @new_dentry: new dentry
2892 * @old_dentry: old dentry
2893 *
2894 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2895 * Returns 0 otherwise.
2896 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2897 */
2898
e2761a11 2899int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2900{
2901 int result;
949854d0 2902 unsigned seq;
1da177e4 2903
e2761a11
OH
2904 if (new_dentry == old_dentry)
2905 return 1;
2906
e2761a11 2907 do {
1da177e4 2908 /* for restarting inner loop in case of seq retry */
1da177e4 2909 seq = read_seqbegin(&rename_lock);
949854d0
NP
2910 /*
2911 * Need rcu_readlock to protect against the d_parent trashing
2912 * due to d_move
2913 */
2914 rcu_read_lock();
e2761a11 2915 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2916 result = 1;
e2761a11
OH
2917 else
2918 result = 0;
949854d0 2919 rcu_read_unlock();
1da177e4 2920 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2921
2922 return result;
2923}
2924
2096f759
AV
2925int path_is_under(struct path *path1, struct path *path2)
2926{
2927 struct vfsmount *mnt = path1->mnt;
2928 struct dentry *dentry = path1->dentry;
2929 int res;
99b7db7b
NP
2930
2931 br_read_lock(vfsmount_lock);
2096f759
AV
2932 if (mnt != path2->mnt) {
2933 for (;;) {
2934 if (mnt->mnt_parent == mnt) {
99b7db7b 2935 br_read_unlock(vfsmount_lock);
2096f759
AV
2936 return 0;
2937 }
2938 if (mnt->mnt_parent == path2->mnt)
2939 break;
2940 mnt = mnt->mnt_parent;
2941 }
2942 dentry = mnt->mnt_mountpoint;
2943 }
2944 res = is_subdir(dentry, path2->dentry);
99b7db7b 2945 br_read_unlock(vfsmount_lock);
2096f759
AV
2946 return res;
2947}
2948EXPORT_SYMBOL(path_is_under);
2949
1da177e4
LT
2950void d_genocide(struct dentry *root)
2951{
949854d0 2952 struct dentry *this_parent;
1da177e4 2953 struct list_head *next;
949854d0 2954 unsigned seq;
58db63d0 2955 int locked = 0;
1da177e4 2956
949854d0 2957 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2958again:
2959 this_parent = root;
2fd6b7f5 2960 spin_lock(&this_parent->d_lock);
1da177e4
LT
2961repeat:
2962 next = this_parent->d_subdirs.next;
2963resume:
2964 while (next != &this_parent->d_subdirs) {
2965 struct list_head *tmp = next;
5160ee6f 2966 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2967 next = tmp->next;
949854d0 2968
da502956
NP
2969 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2970 if (d_unhashed(dentry) || !dentry->d_inode) {
2971 spin_unlock(&dentry->d_lock);
1da177e4 2972 continue;
da502956 2973 }
1da177e4 2974 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2975 spin_unlock(&this_parent->d_lock);
2976 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2977 this_parent = dentry;
2fd6b7f5 2978 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2979 goto repeat;
2980 }
949854d0
NP
2981 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2982 dentry->d_flags |= DCACHE_GENOCIDE;
2983 dentry->d_count--;
2984 }
b7ab39f6 2985 spin_unlock(&dentry->d_lock);
1da177e4
LT
2986 }
2987 if (this_parent != root) {
c826cb7d 2988 struct dentry *child = this_parent;
949854d0
NP
2989 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2990 this_parent->d_flags |= DCACHE_GENOCIDE;
2991 this_parent->d_count--;
2992 }
c826cb7d
LT
2993 this_parent = try_to_ascend(this_parent, locked, seq);
2994 if (!this_parent)
949854d0 2995 goto rename_retry;
949854d0 2996 next = child->d_u.d_child.next;
1da177e4
LT
2997 goto resume;
2998 }
2fd6b7f5 2999 spin_unlock(&this_parent->d_lock);
58db63d0 3000 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3001 goto rename_retry;
58db63d0
NP
3002 if (locked)
3003 write_sequnlock(&rename_lock);
3004 return;
3005
3006rename_retry:
3007 locked = 1;
3008 write_seqlock(&rename_lock);
3009 goto again;
1da177e4
LT
3010}
3011
3012/**
3013 * find_inode_number - check for dentry with name
3014 * @dir: directory to check
3015 * @name: Name to find.
3016 *
3017 * Check whether a dentry already exists for the given name,
3018 * and return the inode number if it has an inode. Otherwise
3019 * 0 is returned.
3020 *
3021 * This routine is used to post-process directory listings for
3022 * filesystems using synthetic inode numbers, and is necessary
3023 * to keep getcwd() working.
3024 */
3025
3026ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3027{
3028 struct dentry * dentry;
3029 ino_t ino = 0;
3030
3e7e241f
EB
3031 dentry = d_hash_and_lookup(dir, name);
3032 if (dentry) {
1da177e4
LT
3033 if (dentry->d_inode)
3034 ino = dentry->d_inode->i_ino;
3035 dput(dentry);
3036 }
1da177e4
LT
3037 return ino;
3038}
ec4f8605 3039EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3040
3041static __initdata unsigned long dhash_entries;
3042static int __init set_dhash_entries(char *str)
3043{
3044 if (!str)
3045 return 0;
3046 dhash_entries = simple_strtoul(str, &str, 0);
3047 return 1;
3048}
3049__setup("dhash_entries=", set_dhash_entries);
3050
3051static void __init dcache_init_early(void)
3052{
3053 int loop;
3054
3055 /* If hashes are distributed across NUMA nodes, defer
3056 * hash allocation until vmalloc space is available.
3057 */
3058 if (hashdist)
3059 return;
3060
3061 dentry_hashtable =
3062 alloc_large_system_hash("Dentry cache",
b07ad996 3063 sizeof(struct hlist_bl_head),
1da177e4
LT
3064 dhash_entries,
3065 13,
3066 HASH_EARLY,
3067 &d_hash_shift,
3068 &d_hash_mask,
3069 0);
3070
3071 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3072 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3073}
3074
74bf17cf 3075static void __init dcache_init(void)
1da177e4
LT
3076{
3077 int loop;
3078
3079 /*
3080 * A constructor could be added for stable state like the lists,
3081 * but it is probably not worth it because of the cache nature
3082 * of the dcache.
3083 */
0a31bd5f
CL
3084 dentry_cache = KMEM_CACHE(dentry,
3085 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 3086
8e1f936b 3087 register_shrinker(&dcache_shrinker);
1da177e4
LT
3088
3089 /* Hash may have been set up in dcache_init_early */
3090 if (!hashdist)
3091 return;
3092
3093 dentry_hashtable =
3094 alloc_large_system_hash("Dentry cache",
b07ad996 3095 sizeof(struct hlist_bl_head),
1da177e4
LT
3096 dhash_entries,
3097 13,
3098 0,
3099 &d_hash_shift,
3100 &d_hash_mask,
3101 0);
3102
3103 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3104 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3105}
3106
3107/* SLAB cache for __getname() consumers */
e18b890b 3108struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3109EXPORT_SYMBOL(names_cachep);
1da177e4 3110
1da177e4
LT
3111EXPORT_SYMBOL(d_genocide);
3112
1da177e4
LT
3113void __init vfs_caches_init_early(void)
3114{
3115 dcache_init_early();
3116 inode_init_early();
3117}
3118
3119void __init vfs_caches_init(unsigned long mempages)
3120{
3121 unsigned long reserve;
3122
3123 /* Base hash sizes on available memory, with a reserve equal to
3124 150% of current kernel size */
3125
3126 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3127 mempages -= reserve;
3128
3129 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3130 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3131
74bf17cf
DC
3132 dcache_init();
3133 inode_init();
1da177e4 3134 files_init(mempages);
74bf17cf 3135 mnt_init();
1da177e4
LT
3136 bdev_cache_init();
3137 chrdev_init();
3138}
This page took 1.170801 seconds and 4 git commands to generate.