]>
Commit | Line | Data |
---|---|---|
437aa565 ID |
1 | /* |
2 | * Generic binary BCH encoding/decoding library | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify it | |
5 | * under the terms of the GNU General Public License version 2 as published by | |
6 | * the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
11 | * more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public License along with | |
14 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
15 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | |
16 | * | |
17 | * Copyright © 2011 Parrot S.A. | |
18 | * | |
19 | * Author: Ivan Djelic <[email protected]> | |
20 | * | |
21 | * Description: | |
22 | * | |
23 | * This library provides runtime configurable encoding/decoding of binary | |
24 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. | |
25 | * | |
26 | * Call init_bch to get a pointer to a newly allocated bch_control structure for | |
27 | * the given m (Galois field order), t (error correction capability) and | |
28 | * (optional) primitive polynomial parameters. | |
29 | * | |
30 | * Call encode_bch to compute and store ecc parity bytes to a given buffer. | |
31 | * Call decode_bch to detect and locate errors in received data. | |
32 | * | |
33 | * On systems supporting hw BCH features, intermediate results may be provided | |
34 | * to decode_bch in order to skip certain steps. See decode_bch() documentation | |
35 | * for details. | |
36 | * | |
37 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | |
38 | * parameters m and t; thus allowing extra compiler optimizations and providing | |
39 | * better (up to 2x) encoding performance. Using this option makes sense when | |
40 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction | |
41 | * on a particular NAND flash device. | |
42 | * | |
43 | * Algorithmic details: | |
44 | * | |
45 | * Encoding is performed by processing 32 input bits in parallel, using 4 | |
46 | * remainder lookup tables. | |
47 | * | |
48 | * The final stage of decoding involves the following internal steps: | |
49 | * a. Syndrome computation | |
50 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm | |
51 | * c. Error locator root finding (by far the most expensive step) | |
52 | * | |
53 | * In this implementation, step c is not performed using the usual Chien search. | |
54 | * Instead, an alternative approach described in [1] is used. It consists in | |
55 | * factoring the error locator polynomial using the Berlekamp Trace algorithm | |
56 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | |
57 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | |
58 | * much better performance than Chien search for usual (m,t) values (typically | |
59 | * m >= 13, t < 32, see [1]). | |
60 | * | |
61 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | |
62 | * of characteristic 2, in: Western European Workshop on Research in Cryptology | |
63 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | |
64 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | |
65 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | |
66 | */ | |
67 | ||
68 | #include <linux/kernel.h> | |
69 | #include <linux/errno.h> | |
70 | #include <linux/init.h> | |
71 | #include <linux/module.h> | |
72 | #include <linux/slab.h> | |
73 | #include <linux/bitops.h> | |
74 | #include <asm/byteorder.h> | |
75 | #include <linux/bch.h> | |
76 | ||
77 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
78 | #define GF_M(_p) (CONFIG_BCH_CONST_M) | |
79 | #define GF_T(_p) (CONFIG_BCH_CONST_T) | |
80 | #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) | |
02361bc7 | 81 | #define BCH_MAX_M (CONFIG_BCH_CONST_M) |
437aa565 ID |
82 | #else |
83 | #define GF_M(_p) ((_p)->m) | |
84 | #define GF_T(_p) ((_p)->t) | |
85 | #define GF_N(_p) ((_p)->n) | |
02361bc7 | 86 | #define BCH_MAX_M 15 |
437aa565 ID |
87 | #endif |
88 | ||
02361bc7 KC |
89 | #define BCH_MAX_T (((1 << BCH_MAX_M) - 1) / BCH_MAX_M) |
90 | ||
437aa565 ID |
91 | #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) |
92 | #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | |
93 | ||
02361bc7 KC |
94 | #define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32) |
95 | #define BCH_ECC_MAX_BYTES DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 8) | |
96 | ||
437aa565 ID |
97 | #ifndef dbg |
98 | #define dbg(_fmt, args...) do {} while (0) | |
99 | #endif | |
100 | ||
101 | /* | |
102 | * represent a polynomial over GF(2^m) | |
103 | */ | |
104 | struct gf_poly { | |
105 | unsigned int deg; /* polynomial degree */ | |
106 | unsigned int c[0]; /* polynomial terms */ | |
107 | }; | |
108 | ||
109 | /* given its degree, compute a polynomial size in bytes */ | |
110 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | |
111 | ||
112 | /* polynomial of degree 1 */ | |
113 | struct gf_poly_deg1 { | |
114 | struct gf_poly poly; | |
115 | unsigned int c[2]; | |
116 | }; | |
117 | ||
118 | /* | |
119 | * same as encode_bch(), but process input data one byte at a time | |
120 | */ | |
121 | static void encode_bch_unaligned(struct bch_control *bch, | |
122 | const unsigned char *data, unsigned int len, | |
123 | uint32_t *ecc) | |
124 | { | |
125 | int i; | |
126 | const uint32_t *p; | |
127 | const int l = BCH_ECC_WORDS(bch)-1; | |
128 | ||
129 | while (len--) { | |
130 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | |
131 | ||
132 | for (i = 0; i < l; i++) | |
133 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | |
134 | ||
135 | ecc[l] = (ecc[l] << 8)^(*p); | |
136 | } | |
137 | } | |
138 | ||
139 | /* | |
140 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words | |
141 | */ | |
142 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | |
143 | const uint8_t *src) | |
144 | { | |
145 | uint8_t pad[4] = {0, 0, 0, 0}; | |
146 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
147 | ||
148 | for (i = 0; i < nwords; i++, src += 4) | |
149 | dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | |
150 | ||
151 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | |
152 | dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | |
153 | } | |
154 | ||
155 | /* | |
156 | * convert 32-bit ecc words to ecc bytes | |
157 | */ | |
158 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | |
159 | const uint32_t *src) | |
160 | { | |
161 | uint8_t pad[4]; | |
162 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | |
163 | ||
164 | for (i = 0; i < nwords; i++) { | |
165 | *dst++ = (src[i] >> 24); | |
166 | *dst++ = (src[i] >> 16) & 0xff; | |
167 | *dst++ = (src[i] >> 8) & 0xff; | |
168 | *dst++ = (src[i] >> 0) & 0xff; | |
169 | } | |
170 | pad[0] = (src[nwords] >> 24); | |
171 | pad[1] = (src[nwords] >> 16) & 0xff; | |
172 | pad[2] = (src[nwords] >> 8) & 0xff; | |
173 | pad[3] = (src[nwords] >> 0) & 0xff; | |
174 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | |
175 | } | |
176 | ||
177 | /** | |
178 | * encode_bch - calculate BCH ecc parity of data | |
179 | * @bch: BCH control structure | |
180 | * @data: data to encode | |
181 | * @len: data length in bytes | |
182 | * @ecc: ecc parity data, must be initialized by caller | |
183 | * | |
184 | * The @ecc parity array is used both as input and output parameter, in order to | |
185 | * allow incremental computations. It should be of the size indicated by member | |
186 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | |
187 | * | |
188 | * The exact number of computed ecc parity bits is given by member @ecc_bits of | |
189 | * @bch; it may be less than m*t for large values of t. | |
190 | */ | |
191 | void encode_bch(struct bch_control *bch, const uint8_t *data, | |
192 | unsigned int len, uint8_t *ecc) | |
193 | { | |
194 | const unsigned int l = BCH_ECC_WORDS(bch)-1; | |
195 | unsigned int i, mlen; | |
196 | unsigned long m; | |
02361bc7 KC |
197 | uint32_t w, r[BCH_ECC_MAX_WORDS]; |
198 | const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r); | |
437aa565 ID |
199 | const uint32_t * const tab0 = bch->mod8_tab; |
200 | const uint32_t * const tab1 = tab0 + 256*(l+1); | |
201 | const uint32_t * const tab2 = tab1 + 256*(l+1); | |
202 | const uint32_t * const tab3 = tab2 + 256*(l+1); | |
203 | const uint32_t *pdata, *p0, *p1, *p2, *p3; | |
204 | ||
205 | if (ecc) { | |
206 | /* load ecc parity bytes into internal 32-bit buffer */ | |
207 | load_ecc8(bch, bch->ecc_buf, ecc); | |
208 | } else { | |
02361bc7 | 209 | memset(bch->ecc_buf, 0, r_bytes); |
437aa565 ID |
210 | } |
211 | ||
212 | /* process first unaligned data bytes */ | |
213 | m = ((unsigned long)data) & 3; | |
214 | if (m) { | |
215 | mlen = (len < (4-m)) ? len : 4-m; | |
216 | encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | |
217 | data += mlen; | |
218 | len -= mlen; | |
219 | } | |
220 | ||
221 | /* process 32-bit aligned data words */ | |
222 | pdata = (uint32_t *)data; | |
223 | mlen = len/4; | |
224 | data += 4*mlen; | |
225 | len -= 4*mlen; | |
02361bc7 | 226 | memcpy(r, bch->ecc_buf, r_bytes); |
437aa565 ID |
227 | |
228 | /* | |
229 | * split each 32-bit word into 4 polynomials of weight 8 as follows: | |
230 | * | |
231 | * 31 ...24 23 ...16 15 ... 8 7 ... 0 | |
232 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt | |
233 | * tttttttt mod g = r0 (precomputed) | |
234 | * zzzzzzzz 00000000 mod g = r1 (precomputed) | |
235 | * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) | |
236 | * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) | |
237 | * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 | |
238 | */ | |
239 | while (mlen--) { | |
240 | /* input data is read in big-endian format */ | |
241 | w = r[0]^cpu_to_be32(*pdata++); | |
242 | p0 = tab0 + (l+1)*((w >> 0) & 0xff); | |
243 | p1 = tab1 + (l+1)*((w >> 8) & 0xff); | |
244 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); | |
245 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); | |
246 | ||
247 | for (i = 0; i < l; i++) | |
248 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | |
249 | ||
250 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | |
251 | } | |
02361bc7 | 252 | memcpy(bch->ecc_buf, r, r_bytes); |
437aa565 ID |
253 | |
254 | /* process last unaligned bytes */ | |
255 | if (len) | |
256 | encode_bch_unaligned(bch, data, len, bch->ecc_buf); | |
257 | ||
258 | /* store ecc parity bytes into original parity buffer */ | |
259 | if (ecc) | |
260 | store_ecc8(bch, ecc, bch->ecc_buf); | |
261 | } | |
262 | EXPORT_SYMBOL_GPL(encode_bch); | |
263 | ||
264 | static inline int modulo(struct bch_control *bch, unsigned int v) | |
265 | { | |
266 | const unsigned int n = GF_N(bch); | |
267 | while (v >= n) { | |
268 | v -= n; | |
269 | v = (v & n) + (v >> GF_M(bch)); | |
270 | } | |
271 | return v; | |
272 | } | |
273 | ||
274 | /* | |
275 | * shorter and faster modulo function, only works when v < 2N. | |
276 | */ | |
277 | static inline int mod_s(struct bch_control *bch, unsigned int v) | |
278 | { | |
279 | const unsigned int n = GF_N(bch); | |
280 | return (v < n) ? v : v-n; | |
281 | } | |
282 | ||
283 | static inline int deg(unsigned int poly) | |
284 | { | |
285 | /* polynomial degree is the most-significant bit index */ | |
286 | return fls(poly)-1; | |
287 | } | |
288 | ||
289 | static inline int parity(unsigned int x) | |
290 | { | |
291 | /* | |
292 | * public domain code snippet, lifted from | |
293 | * http://www-graphics.stanford.edu/~seander/bithacks.html | |
294 | */ | |
295 | x ^= x >> 1; | |
296 | x ^= x >> 2; | |
297 | x = (x & 0x11111111U) * 0x11111111U; | |
298 | return (x >> 28) & 1; | |
299 | } | |
300 | ||
301 | /* Galois field basic operations: multiply, divide, inverse, etc. */ | |
302 | ||
303 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | |
304 | unsigned int b) | |
305 | { | |
306 | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
307 | bch->a_log_tab[b])] : 0; | |
308 | } | |
309 | ||
310 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | |
311 | { | |
312 | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | |
313 | } | |
314 | ||
315 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | |
316 | unsigned int b) | |
317 | { | |
318 | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | |
319 | GF_N(bch)-bch->a_log_tab[b])] : 0; | |
320 | } | |
321 | ||
322 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | |
323 | { | |
324 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | |
325 | } | |
326 | ||
327 | static inline unsigned int a_pow(struct bch_control *bch, int i) | |
328 | { | |
329 | return bch->a_pow_tab[modulo(bch, i)]; | |
330 | } | |
331 | ||
332 | static inline int a_log(struct bch_control *bch, unsigned int x) | |
333 | { | |
334 | return bch->a_log_tab[x]; | |
335 | } | |
336 | ||
337 | static inline int a_ilog(struct bch_control *bch, unsigned int x) | |
338 | { | |
339 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | |
340 | } | |
341 | ||
342 | /* | |
343 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | |
344 | */ | |
345 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | |
346 | unsigned int *syn) | |
347 | { | |
348 | int i, j, s; | |
349 | unsigned int m; | |
350 | uint32_t poly; | |
351 | const int t = GF_T(bch); | |
352 | ||
353 | s = bch->ecc_bits; | |
354 | ||
355 | /* make sure extra bits in last ecc word are cleared */ | |
356 | m = ((unsigned int)s) & 31; | |
357 | if (m) | |
358 | ecc[s/32] &= ~((1u << (32-m))-1); | |
359 | memset(syn, 0, 2*t*sizeof(*syn)); | |
360 | ||
361 | /* compute v(a^j) for j=1 .. 2t-1 */ | |
362 | do { | |
363 | poly = *ecc++; | |
364 | s -= 32; | |
365 | while (poly) { | |
366 | i = deg(poly); | |
367 | for (j = 0; j < 2*t; j += 2) | |
368 | syn[j] ^= a_pow(bch, (j+1)*(i+s)); | |
369 | ||
370 | poly ^= (1 << i); | |
371 | } | |
372 | } while (s > 0); | |
373 | ||
374 | /* v(a^(2j)) = v(a^j)^2 */ | |
375 | for (j = 0; j < t; j++) | |
376 | syn[2*j+1] = gf_sqr(bch, syn[j]); | |
377 | } | |
378 | ||
379 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | |
380 | { | |
381 | memcpy(dst, src, GF_POLY_SZ(src->deg)); | |
382 | } | |
383 | ||
384 | static int compute_error_locator_polynomial(struct bch_control *bch, | |
385 | const unsigned int *syn) | |
386 | { | |
387 | const unsigned int t = GF_T(bch); | |
388 | const unsigned int n = GF_N(bch); | |
389 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | |
390 | struct gf_poly *elp = bch->elp; | |
391 | struct gf_poly *pelp = bch->poly_2t[0]; | |
392 | struct gf_poly *elp_copy = bch->poly_2t[1]; | |
393 | int k, pp = -1; | |
394 | ||
395 | memset(pelp, 0, GF_POLY_SZ(2*t)); | |
396 | memset(elp, 0, GF_POLY_SZ(2*t)); | |
397 | ||
398 | pelp->deg = 0; | |
399 | pelp->c[0] = 1; | |
400 | elp->deg = 0; | |
401 | elp->c[0] = 1; | |
402 | ||
403 | /* use simplified binary Berlekamp-Massey algorithm */ | |
404 | for (i = 0; (i < t) && (elp->deg <= t); i++) { | |
405 | if (d) { | |
406 | k = 2*i-pp; | |
407 | gf_poly_copy(elp_copy, elp); | |
408 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | |
409 | tmp = a_log(bch, d)+n-a_log(bch, pd); | |
410 | for (j = 0; j <= pelp->deg; j++) { | |
411 | if (pelp->c[j]) { | |
412 | l = a_log(bch, pelp->c[j]); | |
413 | elp->c[j+k] ^= a_pow(bch, tmp+l); | |
414 | } | |
415 | } | |
416 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | |
417 | tmp = pelp->deg+k; | |
418 | if (tmp > elp->deg) { | |
419 | elp->deg = tmp; | |
420 | gf_poly_copy(pelp, elp_copy); | |
421 | pd = d; | |
422 | pp = 2*i; | |
423 | } | |
424 | } | |
425 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | |
426 | if (i < t-1) { | |
427 | d = syn[2*i+2]; | |
428 | for (j = 1; j <= elp->deg; j++) | |
429 | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | |
430 | } | |
431 | } | |
432 | dbg("elp=%s\n", gf_poly_str(elp)); | |
433 | return (elp->deg > t) ? -1 : (int)elp->deg; | |
434 | } | |
435 | ||
436 | /* | |
437 | * solve a m x m linear system in GF(2) with an expected number of solutions, | |
438 | * and return the number of found solutions | |
439 | */ | |
440 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | |
441 | unsigned int *sol, int nsol) | |
442 | { | |
443 | const int m = GF_M(bch); | |
444 | unsigned int tmp, mask; | |
02361bc7 | 445 | int rem, c, r, p, k, param[BCH_MAX_M]; |
437aa565 ID |
446 | |
447 | k = 0; | |
448 | mask = 1 << m; | |
449 | ||
450 | /* Gaussian elimination */ | |
451 | for (c = 0; c < m; c++) { | |
452 | rem = 0; | |
453 | p = c-k; | |
454 | /* find suitable row for elimination */ | |
455 | for (r = p; r < m; r++) { | |
456 | if (rows[r] & mask) { | |
457 | if (r != p) { | |
458 | tmp = rows[r]; | |
459 | rows[r] = rows[p]; | |
460 | rows[p] = tmp; | |
461 | } | |
462 | rem = r+1; | |
463 | break; | |
464 | } | |
465 | } | |
466 | if (rem) { | |
467 | /* perform elimination on remaining rows */ | |
468 | tmp = rows[p]; | |
469 | for (r = rem; r < m; r++) { | |
470 | if (rows[r] & mask) | |
471 | rows[r] ^= tmp; | |
472 | } | |
473 | } else { | |
474 | /* elimination not needed, store defective row index */ | |
475 | param[k++] = c; | |
476 | } | |
477 | mask >>= 1; | |
478 | } | |
479 | /* rewrite system, inserting fake parameter rows */ | |
480 | if (k > 0) { | |
481 | p = k; | |
482 | for (r = m-1; r >= 0; r--) { | |
483 | if ((r > m-1-k) && rows[r]) | |
484 | /* system has no solution */ | |
485 | return 0; | |
486 | ||
487 | rows[r] = (p && (r == param[p-1])) ? | |
488 | p--, 1u << (m-r) : rows[r-p]; | |
489 | } | |
490 | } | |
491 | ||
492 | if (nsol != (1 << k)) | |
493 | /* unexpected number of solutions */ | |
494 | return 0; | |
495 | ||
496 | for (p = 0; p < nsol; p++) { | |
497 | /* set parameters for p-th solution */ | |
498 | for (c = 0; c < k; c++) | |
499 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | |
500 | ||
501 | /* compute unique solution */ | |
502 | tmp = 0; | |
503 | for (r = m-1; r >= 0; r--) { | |
504 | mask = rows[r] & (tmp|1); | |
505 | tmp |= parity(mask) << (m-r); | |
506 | } | |
507 | sol[p] = tmp >> 1; | |
508 | } | |
509 | return nsol; | |
510 | } | |
511 | ||
512 | /* | |
513 | * this function builds and solves a linear system for finding roots of a degree | |
514 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | |
515 | */ | |
516 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | |
517 | unsigned int b, unsigned int c, | |
518 | unsigned int *roots) | |
519 | { | |
520 | int i, j, k; | |
521 | const int m = GF_M(bch); | |
522 | unsigned int mask = 0xff, t, rows[16] = {0,}; | |
523 | ||
524 | j = a_log(bch, b); | |
525 | k = a_log(bch, a); | |
526 | rows[0] = c; | |
527 | ||
528 | /* buid linear system to solve X^4+aX^2+bX+c = 0 */ | |
529 | for (i = 0; i < m; i++) { | |
530 | rows[i+1] = bch->a_pow_tab[4*i]^ | |
531 | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | |
532 | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | |
533 | j++; | |
534 | k += 2; | |
535 | } | |
536 | /* | |
537 | * transpose 16x16 matrix before passing it to linear solver | |
538 | * warning: this code assumes m < 16 | |
539 | */ | |
540 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | |
541 | for (k = 0; k < 16; k = (k+j+1) & ~j) { | |
542 | t = ((rows[k] >> j)^rows[k+j]) & mask; | |
543 | rows[k] ^= (t << j); | |
544 | rows[k+j] ^= t; | |
545 | } | |
546 | } | |
547 | return solve_linear_system(bch, rows, roots, 4); | |
548 | } | |
549 | ||
550 | /* | |
551 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | |
552 | */ | |
553 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | |
554 | unsigned int *roots) | |
555 | { | |
556 | int n = 0; | |
557 | ||
558 | if (poly->c[0]) | |
559 | /* poly[X] = bX+c with c!=0, root=c/b */ | |
560 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | |
561 | bch->a_log_tab[poly->c[1]]); | |
562 | return n; | |
563 | } | |
564 | ||
565 | /* | |
566 | * compute roots of a degree 2 polynomial over GF(2^m) | |
567 | */ | |
568 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | |
569 | unsigned int *roots) | |
570 | { | |
571 | int n = 0, i, l0, l1, l2; | |
572 | unsigned int u, v, r; | |
573 | ||
574 | if (poly->c[0] && poly->c[1]) { | |
575 | ||
576 | l0 = bch->a_log_tab[poly->c[0]]; | |
577 | l1 = bch->a_log_tab[poly->c[1]]; | |
578 | l2 = bch->a_log_tab[poly->c[2]]; | |
579 | ||
580 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | |
581 | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | |
582 | /* | |
583 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | |
584 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | |
585 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | |
586 | * i.e. r and r+1 are roots iff Tr(u)=0 | |
587 | */ | |
588 | r = 0; | |
589 | v = u; | |
590 | while (v) { | |
591 | i = deg(v); | |
592 | r ^= bch->xi_tab[i]; | |
593 | v ^= (1 << i); | |
594 | } | |
595 | /* verify root */ | |
596 | if ((gf_sqr(bch, r)^r) == u) { | |
597 | /* reverse z=a/bX transformation and compute log(1/r) */ | |
598 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
599 | bch->a_log_tab[r]+l2); | |
600 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | |
601 | bch->a_log_tab[r^1]+l2); | |
602 | } | |
603 | } | |
604 | return n; | |
605 | } | |
606 | ||
607 | /* | |
608 | * compute roots of a degree 3 polynomial over GF(2^m) | |
609 | */ | |
610 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | |
611 | unsigned int *roots) | |
612 | { | |
613 | int i, n = 0; | |
614 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | |
615 | ||
616 | if (poly->c[0]) { | |
617 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | |
618 | e3 = poly->c[3]; | |
619 | c2 = gf_div(bch, poly->c[0], e3); | |
620 | b2 = gf_div(bch, poly->c[1], e3); | |
621 | a2 = gf_div(bch, poly->c[2], e3); | |
622 | ||
623 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | |
624 | c = gf_mul(bch, a2, c2); /* c = a2c2 */ | |
625 | b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ | |
626 | a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ | |
627 | ||
628 | /* find the 4 roots of this affine polynomial */ | |
629 | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | |
630 | /* remove a2 from final list of roots */ | |
631 | for (i = 0; i < 4; i++) { | |
632 | if (tmp[i] != a2) | |
633 | roots[n++] = a_ilog(bch, tmp[i]); | |
634 | } | |
635 | } | |
636 | } | |
637 | return n; | |
638 | } | |
639 | ||
640 | /* | |
641 | * compute roots of a degree 4 polynomial over GF(2^m) | |
642 | */ | |
643 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | |
644 | unsigned int *roots) | |
645 | { | |
646 | int i, l, n = 0; | |
647 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | |
648 | ||
649 | if (poly->c[0] == 0) | |
650 | return 0; | |
651 | ||
652 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | |
653 | e4 = poly->c[4]; | |
654 | d = gf_div(bch, poly->c[0], e4); | |
655 | c = gf_div(bch, poly->c[1], e4); | |
656 | b = gf_div(bch, poly->c[2], e4); | |
657 | a = gf_div(bch, poly->c[3], e4); | |
658 | ||
659 | /* use Y=1/X transformation to get an affine polynomial */ | |
660 | if (a) { | |
661 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ | |
662 | if (c) { | |
663 | /* compute e such that e^2 = c/a */ | |
664 | f = gf_div(bch, c, a); | |
665 | l = a_log(bch, f); | |
666 | l += (l & 1) ? GF_N(bch) : 0; | |
667 | e = a_pow(bch, l/2); | |
668 | /* | |
669 | * use transformation z=X+e: | |
670 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | |
671 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | |
672 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | |
673 | * z^4 + az^3 + b'z^2 + d' | |
674 | */ | |
675 | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | |
676 | b = gf_mul(bch, a, e)^b; | |
677 | } | |
678 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | |
679 | if (d == 0) | |
680 | /* assume all roots have multiplicity 1 */ | |
681 | return 0; | |
682 | ||
683 | c2 = gf_inv(bch, d); | |
684 | b2 = gf_div(bch, a, d); | |
685 | a2 = gf_div(bch, b, d); | |
686 | } else { | |
687 | /* polynomial is already affine */ | |
688 | c2 = d; | |
689 | b2 = c; | |
690 | a2 = b; | |
691 | } | |
692 | /* find the 4 roots of this affine polynomial */ | |
693 | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | |
694 | for (i = 0; i < 4; i++) { | |
695 | /* post-process roots (reverse transformations) */ | |
696 | f = a ? gf_inv(bch, roots[i]) : roots[i]; | |
697 | roots[i] = a_ilog(bch, f^e); | |
698 | } | |
699 | n = 4; | |
700 | } | |
701 | return n; | |
702 | } | |
703 | ||
704 | /* | |
705 | * build monic, log-based representation of a polynomial | |
706 | */ | |
707 | static void gf_poly_logrep(struct bch_control *bch, | |
708 | const struct gf_poly *a, int *rep) | |
709 | { | |
710 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | |
711 | ||
712 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ | |
713 | for (i = 0; i < d; i++) | |
714 | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | |
715 | } | |
716 | ||
717 | /* | |
718 | * compute polynomial Euclidean division remainder in GF(2^m)[X] | |
719 | */ | |
720 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | |
721 | const struct gf_poly *b, int *rep) | |
722 | { | |
723 | int la, p, m; | |
724 | unsigned int i, j, *c = a->c; | |
725 | const unsigned int d = b->deg; | |
726 | ||
727 | if (a->deg < d) | |
728 | return; | |
729 | ||
730 | /* reuse or compute log representation of denominator */ | |
731 | if (!rep) { | |
732 | rep = bch->cache; | |
733 | gf_poly_logrep(bch, b, rep); | |
734 | } | |
735 | ||
736 | for (j = a->deg; j >= d; j--) { | |
737 | if (c[j]) { | |
738 | la = a_log(bch, c[j]); | |
739 | p = j-d; | |
740 | for (i = 0; i < d; i++, p++) { | |
741 | m = rep[i]; | |
742 | if (m >= 0) | |
743 | c[p] ^= bch->a_pow_tab[mod_s(bch, | |
744 | m+la)]; | |
745 | } | |
746 | } | |
747 | } | |
748 | a->deg = d-1; | |
749 | while (!c[a->deg] && a->deg) | |
750 | a->deg--; | |
751 | } | |
752 | ||
753 | /* | |
754 | * compute polynomial Euclidean division quotient in GF(2^m)[X] | |
755 | */ | |
756 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | |
757 | const struct gf_poly *b, struct gf_poly *q) | |
758 | { | |
759 | if (a->deg >= b->deg) { | |
760 | q->deg = a->deg-b->deg; | |
761 | /* compute a mod b (modifies a) */ | |
762 | gf_poly_mod(bch, a, b, NULL); | |
763 | /* quotient is stored in upper part of polynomial a */ | |
764 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | |
765 | } else { | |
766 | q->deg = 0; | |
767 | q->c[0] = 0; | |
768 | } | |
769 | } | |
770 | ||
771 | /* | |
772 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | |
773 | */ | |
774 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | |
775 | struct gf_poly *b) | |
776 | { | |
777 | struct gf_poly *tmp; | |
778 | ||
779 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | |
780 | ||
781 | if (a->deg < b->deg) { | |
782 | tmp = b; | |
783 | b = a; | |
784 | a = tmp; | |
785 | } | |
786 | ||
787 | while (b->deg > 0) { | |
788 | gf_poly_mod(bch, a, b, NULL); | |
789 | tmp = b; | |
790 | b = a; | |
791 | a = tmp; | |
792 | } | |
793 | ||
794 | dbg("%s\n", gf_poly_str(a)); | |
795 | ||
796 | return a; | |
797 | } | |
798 | ||
799 | /* | |
800 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | |
801 | * This is used in Berlekamp Trace algorithm for splitting polynomials | |
802 | */ | |
803 | static void compute_trace_bk_mod(struct bch_control *bch, int k, | |
804 | const struct gf_poly *f, struct gf_poly *z, | |
805 | struct gf_poly *out) | |
806 | { | |
807 | const int m = GF_M(bch); | |
808 | int i, j; | |
809 | ||
810 | /* z contains z^2j mod f */ | |
811 | z->deg = 1; | |
812 | z->c[0] = 0; | |
813 | z->c[1] = bch->a_pow_tab[k]; | |
814 | ||
815 | out->deg = 0; | |
816 | memset(out, 0, GF_POLY_SZ(f->deg)); | |
817 | ||
818 | /* compute f log representation only once */ | |
819 | gf_poly_logrep(bch, f, bch->cache); | |
820 | ||
821 | for (i = 0; i < m; i++) { | |
822 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | |
823 | for (j = z->deg; j >= 0; j--) { | |
824 | out->c[j] ^= z->c[j]; | |
825 | z->c[2*j] = gf_sqr(bch, z->c[j]); | |
826 | z->c[2*j+1] = 0; | |
827 | } | |
828 | if (z->deg > out->deg) | |
829 | out->deg = z->deg; | |
830 | ||
831 | if (i < m-1) { | |
832 | z->deg *= 2; | |
833 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | |
834 | gf_poly_mod(bch, z, f, bch->cache); | |
835 | } | |
836 | } | |
837 | while (!out->c[out->deg] && out->deg) | |
838 | out->deg--; | |
839 | ||
840 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | |
841 | } | |
842 | ||
843 | /* | |
844 | * factor a polynomial using Berlekamp Trace algorithm (BTA) | |
845 | */ | |
846 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | |
847 | struct gf_poly **g, struct gf_poly **h) | |
848 | { | |
849 | struct gf_poly *f2 = bch->poly_2t[0]; | |
850 | struct gf_poly *q = bch->poly_2t[1]; | |
851 | struct gf_poly *tk = bch->poly_2t[2]; | |
852 | struct gf_poly *z = bch->poly_2t[3]; | |
853 | struct gf_poly *gcd; | |
854 | ||
855 | dbg("factoring %s...\n", gf_poly_str(f)); | |
856 | ||
857 | *g = f; | |
858 | *h = NULL; | |
859 | ||
860 | /* tk = Tr(a^k.X) mod f */ | |
861 | compute_trace_bk_mod(bch, k, f, z, tk); | |
862 | ||
863 | if (tk->deg > 0) { | |
864 | /* compute g = gcd(f, tk) (destructive operation) */ | |
865 | gf_poly_copy(f2, f); | |
866 | gcd = gf_poly_gcd(bch, f2, tk); | |
867 | if (gcd->deg < f->deg) { | |
868 | /* compute h=f/gcd(f,tk); this will modify f and q */ | |
869 | gf_poly_div(bch, f, gcd, q); | |
870 | /* store g and h in-place (clobbering f) */ | |
871 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | |
872 | gf_poly_copy(*g, gcd); | |
873 | gf_poly_copy(*h, q); | |
874 | } | |
875 | } | |
876 | } | |
877 | ||
878 | /* | |
879 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this | |
880 | * file for details | |
881 | */ | |
882 | static int find_poly_roots(struct bch_control *bch, unsigned int k, | |
883 | struct gf_poly *poly, unsigned int *roots) | |
884 | { | |
885 | int cnt; | |
886 | struct gf_poly *f1, *f2; | |
887 | ||
888 | switch (poly->deg) { | |
889 | /* handle low degree polynomials with ad hoc techniques */ | |
890 | case 1: | |
891 | cnt = find_poly_deg1_roots(bch, poly, roots); | |
892 | break; | |
893 | case 2: | |
894 | cnt = find_poly_deg2_roots(bch, poly, roots); | |
895 | break; | |
896 | case 3: | |
897 | cnt = find_poly_deg3_roots(bch, poly, roots); | |
898 | break; | |
899 | case 4: | |
900 | cnt = find_poly_deg4_roots(bch, poly, roots); | |
901 | break; | |
902 | default: | |
903 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | |
904 | cnt = 0; | |
905 | if (poly->deg && (k <= GF_M(bch))) { | |
906 | factor_polynomial(bch, k, poly, &f1, &f2); | |
907 | if (f1) | |
908 | cnt += find_poly_roots(bch, k+1, f1, roots); | |
909 | if (f2) | |
910 | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | |
911 | } | |
912 | break; | |
913 | } | |
914 | return cnt; | |
915 | } | |
916 | ||
917 | #if defined(USE_CHIEN_SEARCH) | |
918 | /* | |
919 | * exhaustive root search (Chien) implementation - not used, included only for | |
920 | * reference/comparison tests | |
921 | */ | |
922 | static int chien_search(struct bch_control *bch, unsigned int len, | |
923 | struct gf_poly *p, unsigned int *roots) | |
924 | { | |
925 | int m; | |
926 | unsigned int i, j, syn, syn0, count = 0; | |
927 | const unsigned int k = 8*len+bch->ecc_bits; | |
928 | ||
929 | /* use a log-based representation of polynomial */ | |
930 | gf_poly_logrep(bch, p, bch->cache); | |
931 | bch->cache[p->deg] = 0; | |
932 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | |
933 | ||
934 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | |
935 | /* compute elp(a^i) */ | |
936 | for (j = 1, syn = syn0; j <= p->deg; j++) { | |
937 | m = bch->cache[j]; | |
938 | if (m >= 0) | |
939 | syn ^= a_pow(bch, m+j*i); | |
940 | } | |
941 | if (syn == 0) { | |
942 | roots[count++] = GF_N(bch)-i; | |
943 | if (count == p->deg) | |
944 | break; | |
945 | } | |
946 | } | |
947 | return (count == p->deg) ? count : 0; | |
948 | } | |
949 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | |
950 | #endif /* USE_CHIEN_SEARCH */ | |
951 | ||
952 | /** | |
953 | * decode_bch - decode received codeword and find bit error locations | |
954 | * @bch: BCH control structure | |
955 | * @data: received data, ignored if @calc_ecc is provided | |
956 | * @len: data length in bytes, must always be provided | |
957 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | |
958 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | |
959 | * @syn: hw computed syndrome data (if NULL, syndrome is calculated) | |
960 | * @errloc: output array of error locations | |
961 | * | |
962 | * Returns: | |
963 | * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | |
964 | * invalid parameters were provided | |
965 | * | |
966 | * Depending on the available hw BCH support and the need to compute @calc_ecc | |
967 | * separately (using encode_bch()), this function should be called with one of | |
968 | * the following parameter configurations - | |
969 | * | |
970 | * by providing @data and @recv_ecc only: | |
971 | * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | |
972 | * | |
973 | * by providing @recv_ecc and @calc_ecc: | |
974 | * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | |
975 | * | |
976 | * by providing ecc = recv_ecc XOR calc_ecc: | |
977 | * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | |
978 | * | |
979 | * by providing syndrome results @syn: | |
980 | * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | |
981 | * | |
982 | * Once decode_bch() has successfully returned with a positive value, error | |
983 | * locations returned in array @errloc should be interpreted as follows - | |
984 | * | |
985 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | |
986 | * data correction) | |
987 | * | |
988 | * if (errloc[n] < 8*len), then n-th error is located in data and can be | |
989 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | |
990 | * | |
991 | * Note that this function does not perform any data correction by itself, it | |
992 | * merely indicates error locations. | |
993 | */ | |
994 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | |
995 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, | |
996 | const unsigned int *syn, unsigned int *errloc) | |
997 | { | |
998 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); | |
999 | unsigned int nbits; | |
1000 | int i, err, nroots; | |
1001 | uint32_t sum; | |
1002 | ||
1003 | /* sanity check: make sure data length can be handled */ | |
1004 | if (8*len > (bch->n-bch->ecc_bits)) | |
1005 | return -EINVAL; | |
1006 | ||
1007 | /* if caller does not provide syndromes, compute them */ | |
1008 | if (!syn) { | |
1009 | if (!calc_ecc) { | |
1010 | /* compute received data ecc into an internal buffer */ | |
1011 | if (!data || !recv_ecc) | |
1012 | return -EINVAL; | |
1013 | encode_bch(bch, data, len, NULL); | |
1014 | } else { | |
1015 | /* load provided calculated ecc */ | |
1016 | load_ecc8(bch, bch->ecc_buf, calc_ecc); | |
1017 | } | |
1018 | /* load received ecc or assume it was XORed in calc_ecc */ | |
1019 | if (recv_ecc) { | |
1020 | load_ecc8(bch, bch->ecc_buf2, recv_ecc); | |
1021 | /* XOR received and calculated ecc */ | |
1022 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { | |
1023 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | |
1024 | sum |= bch->ecc_buf[i]; | |
1025 | } | |
1026 | if (!sum) | |
1027 | /* no error found */ | |
1028 | return 0; | |
1029 | } | |
1030 | compute_syndromes(bch, bch->ecc_buf, bch->syn); | |
1031 | syn = bch->syn; | |
1032 | } | |
1033 | ||
1034 | err = compute_error_locator_polynomial(bch, syn); | |
1035 | if (err > 0) { | |
1036 | nroots = find_poly_roots(bch, 1, bch->elp, errloc); | |
1037 | if (err != nroots) | |
1038 | err = -1; | |
1039 | } | |
1040 | if (err > 0) { | |
1041 | /* post-process raw error locations for easier correction */ | |
1042 | nbits = (len*8)+bch->ecc_bits; | |
1043 | for (i = 0; i < err; i++) { | |
1044 | if (errloc[i] >= nbits) { | |
1045 | err = -1; | |
1046 | break; | |
1047 | } | |
1048 | errloc[i] = nbits-1-errloc[i]; | |
1049 | errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | |
1050 | } | |
1051 | } | |
1052 | return (err >= 0) ? err : -EBADMSG; | |
1053 | } | |
1054 | EXPORT_SYMBOL_GPL(decode_bch); | |
1055 | ||
1056 | /* | |
1057 | * generate Galois field lookup tables | |
1058 | */ | |
1059 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | |
1060 | { | |
1061 | unsigned int i, x = 1; | |
1062 | const unsigned int k = 1 << deg(poly); | |
1063 | ||
1064 | /* primitive polynomial must be of degree m */ | |
1065 | if (k != (1u << GF_M(bch))) | |
1066 | return -1; | |
1067 | ||
1068 | for (i = 0; i < GF_N(bch); i++) { | |
1069 | bch->a_pow_tab[i] = x; | |
1070 | bch->a_log_tab[x] = i; | |
1071 | if (i && (x == 1)) | |
1072 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | |
1073 | return -1; | |
1074 | x <<= 1; | |
1075 | if (x & k) | |
1076 | x ^= poly; | |
1077 | } | |
1078 | bch->a_pow_tab[GF_N(bch)] = 1; | |
1079 | bch->a_log_tab[0] = 0; | |
1080 | ||
1081 | return 0; | |
1082 | } | |
1083 | ||
1084 | /* | |
1085 | * compute generator polynomial remainder tables for fast encoding | |
1086 | */ | |
1087 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | |
1088 | { | |
1089 | int i, j, b, d; | |
1090 | uint32_t data, hi, lo, *tab; | |
1091 | const int l = BCH_ECC_WORDS(bch); | |
1092 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | |
1093 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | |
1094 | ||
1095 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | |
1096 | ||
1097 | for (i = 0; i < 256; i++) { | |
1098 | /* p(X)=i is a small polynomial of weight <= 8 */ | |
1099 | for (b = 0; b < 4; b++) { | |
1100 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | |
1101 | tab = bch->mod8_tab + (b*256+i)*l; | |
1102 | data = i << (8*b); | |
1103 | while (data) { | |
1104 | d = deg(data); | |
1105 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | |
1106 | data ^= g[0] >> (31-d); | |
1107 | for (j = 0; j < ecclen; j++) { | |
1108 | hi = (d < 31) ? g[j] << (d+1) : 0; | |
1109 | lo = (j+1 < plen) ? | |
1110 | g[j+1] >> (31-d) : 0; | |
1111 | tab[j] ^= hi|lo; | |
1112 | } | |
1113 | } | |
1114 | } | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | /* | |
1119 | * build a base for factoring degree 2 polynomials | |
1120 | */ | |
1121 | static int build_deg2_base(struct bch_control *bch) | |
1122 | { | |
1123 | const int m = GF_M(bch); | |
1124 | int i, j, r; | |
02361bc7 | 1125 | unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M]; |
437aa565 ID |
1126 | |
1127 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | |
1128 | for (i = 0; i < m; i++) { | |
1129 | for (j = 0, sum = 0; j < m; j++) | |
1130 | sum ^= a_pow(bch, i*(1 << j)); | |
1131 | ||
1132 | if (sum) { | |
1133 | ak = bch->a_pow_tab[i]; | |
1134 | break; | |
1135 | } | |
1136 | } | |
1137 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | |
1138 | remaining = m; | |
1139 | memset(xi, 0, sizeof(xi)); | |
1140 | ||
1141 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | |
1142 | y = gf_sqr(bch, x)^x; | |
1143 | for (i = 0; i < 2; i++) { | |
1144 | r = a_log(bch, y); | |
1145 | if (y && (r < m) && !xi[r]) { | |
1146 | bch->xi_tab[r] = x; | |
1147 | xi[r] = 1; | |
1148 | remaining--; | |
1149 | dbg("x%d = %x\n", r, x); | |
1150 | break; | |
1151 | } | |
1152 | y ^= ak; | |
1153 | } | |
1154 | } | |
1155 | /* should not happen but check anyway */ | |
1156 | return remaining ? -1 : 0; | |
1157 | } | |
1158 | ||
1159 | static void *bch_alloc(size_t size, int *err) | |
1160 | { | |
1161 | void *ptr; | |
1162 | ||
1163 | ptr = kmalloc(size, GFP_KERNEL); | |
1164 | if (ptr == NULL) | |
1165 | *err = 1; | |
1166 | return ptr; | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * compute generator polynomial for given (m,t) parameters. | |
1171 | */ | |
1172 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | |
1173 | { | |
1174 | const unsigned int m = GF_M(bch); | |
1175 | const unsigned int t = GF_T(bch); | |
1176 | int n, err = 0; | |
1177 | unsigned int i, j, nbits, r, word, *roots; | |
1178 | struct gf_poly *g; | |
1179 | uint32_t *genpoly; | |
1180 | ||
1181 | g = bch_alloc(GF_POLY_SZ(m*t), &err); | |
1182 | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | |
1183 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | |
1184 | ||
1185 | if (err) { | |
1186 | kfree(genpoly); | |
1187 | genpoly = NULL; | |
1188 | goto finish; | |
1189 | } | |
1190 | ||
1191 | /* enumerate all roots of g(X) */ | |
1192 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); | |
1193 | for (i = 0; i < t; i++) { | |
1194 | for (j = 0, r = 2*i+1; j < m; j++) { | |
1195 | roots[r] = 1; | |
1196 | r = mod_s(bch, 2*r); | |
1197 | } | |
1198 | } | |
1199 | /* build generator polynomial g(X) */ | |
1200 | g->deg = 0; | |
1201 | g->c[0] = 1; | |
1202 | for (i = 0; i < GF_N(bch); i++) { | |
1203 | if (roots[i]) { | |
1204 | /* multiply g(X) by (X+root) */ | |
1205 | r = bch->a_pow_tab[i]; | |
1206 | g->c[g->deg+1] = 1; | |
1207 | for (j = g->deg; j > 0; j--) | |
1208 | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | |
1209 | ||
1210 | g->c[0] = gf_mul(bch, g->c[0], r); | |
1211 | g->deg++; | |
1212 | } | |
1213 | } | |
1214 | /* store left-justified binary representation of g(X) */ | |
1215 | n = g->deg+1; | |
1216 | i = 0; | |
1217 | ||
1218 | while (n > 0) { | |
1219 | nbits = (n > 32) ? 32 : n; | |
1220 | for (j = 0, word = 0; j < nbits; j++) { | |
1221 | if (g->c[n-1-j]) | |
1222 | word |= 1u << (31-j); | |
1223 | } | |
1224 | genpoly[i++] = word; | |
1225 | n -= nbits; | |
1226 | } | |
1227 | bch->ecc_bits = g->deg; | |
1228 | ||
1229 | finish: | |
1230 | kfree(g); | |
1231 | kfree(roots); | |
1232 | ||
1233 | return genpoly; | |
1234 | } | |
1235 | ||
1236 | /** | |
1237 | * init_bch - initialize a BCH encoder/decoder | |
1238 | * @m: Galois field order, should be in the range 5-15 | |
1239 | * @t: maximum error correction capability, in bits | |
1240 | * @prim_poly: user-provided primitive polynomial (or 0 to use default) | |
1241 | * | |
1242 | * Returns: | |
1243 | * a newly allocated BCH control structure if successful, NULL otherwise | |
1244 | * | |
1245 | * This initialization can take some time, as lookup tables are built for fast | |
1246 | * encoding/decoding; make sure not to call this function from a time critical | |
1247 | * path. Usually, init_bch() should be called on module/driver init and | |
1248 | * free_bch() should be called to release memory on exit. | |
1249 | * | |
1250 | * You may provide your own primitive polynomial of degree @m in argument | |
1251 | * @prim_poly, or let init_bch() use its default polynomial. | |
1252 | * | |
1253 | * Once init_bch() has successfully returned a pointer to a newly allocated | |
1254 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | |
1255 | * the structure. | |
1256 | */ | |
1257 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | |
1258 | { | |
1259 | int err = 0; | |
1260 | unsigned int i, words; | |
1261 | uint32_t *genpoly; | |
1262 | struct bch_control *bch = NULL; | |
1263 | ||
1264 | const int min_m = 5; | |
437aa565 ID |
1265 | |
1266 | /* default primitive polynomials */ | |
1267 | static const unsigned int prim_poly_tab[] = { | |
1268 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | |
1269 | 0x402b, 0x8003, | |
1270 | }; | |
1271 | ||
1272 | #if defined(CONFIG_BCH_CONST_PARAMS) | |
1273 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | |
1274 | printk(KERN_ERR "bch encoder/decoder was configured to support " | |
1275 | "parameters m=%d, t=%d only!\n", | |
1276 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | |
1277 | goto fail; | |
1278 | } | |
1279 | #endif | |
02361bc7 | 1280 | if ((m < min_m) || (m > BCH_MAX_M)) |
437aa565 ID |
1281 | /* |
1282 | * values of m greater than 15 are not currently supported; | |
1283 | * supporting m > 15 would require changing table base type | |
1284 | * (uint16_t) and a small patch in matrix transposition | |
1285 | */ | |
1286 | goto fail; | |
1287 | ||
1288 | /* sanity checks */ | |
1289 | if ((t < 1) || (m*t >= ((1 << m)-1))) | |
1290 | /* invalid t value */ | |
1291 | goto fail; | |
1292 | ||
1293 | /* select a primitive polynomial for generating GF(2^m) */ | |
1294 | if (prim_poly == 0) | |
1295 | prim_poly = prim_poly_tab[m-min_m]; | |
1296 | ||
1297 | bch = kzalloc(sizeof(*bch), GFP_KERNEL); | |
1298 | if (bch == NULL) | |
1299 | goto fail; | |
1300 | ||
1301 | bch->m = m; | |
1302 | bch->t = t; | |
1303 | bch->n = (1 << m)-1; | |
1304 | words = DIV_ROUND_UP(m*t, 32); | |
1305 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | |
1306 | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | |
1307 | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | |
1308 | bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | |
1309 | bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | |
1310 | bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | |
1311 | bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); | |
1312 | bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); | |
1313 | bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); | |
1314 | bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | |
1315 | ||
1316 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1317 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | |
1318 | ||
1319 | if (err) | |
1320 | goto fail; | |
1321 | ||
1322 | err = build_gf_tables(bch, prim_poly); | |
1323 | if (err) | |
1324 | goto fail; | |
1325 | ||
1326 | /* use generator polynomial for computing encoding tables */ | |
1327 | genpoly = compute_generator_polynomial(bch); | |
1328 | if (genpoly == NULL) | |
1329 | goto fail; | |
1330 | ||
1331 | build_mod8_tables(bch, genpoly); | |
1332 | kfree(genpoly); | |
1333 | ||
1334 | err = build_deg2_base(bch); | |
1335 | if (err) | |
1336 | goto fail; | |
1337 | ||
1338 | return bch; | |
1339 | ||
1340 | fail: | |
1341 | free_bch(bch); | |
1342 | return NULL; | |
1343 | } | |
1344 | EXPORT_SYMBOL_GPL(init_bch); | |
1345 | ||
1346 | /** | |
1347 | * free_bch - free the BCH control structure | |
1348 | * @bch: BCH control structure to release | |
1349 | */ | |
1350 | void free_bch(struct bch_control *bch) | |
1351 | { | |
1352 | unsigned int i; | |
1353 | ||
1354 | if (bch) { | |
1355 | kfree(bch->a_pow_tab); | |
1356 | kfree(bch->a_log_tab); | |
1357 | kfree(bch->mod8_tab); | |
1358 | kfree(bch->ecc_buf); | |
1359 | kfree(bch->ecc_buf2); | |
1360 | kfree(bch->xi_tab); | |
1361 | kfree(bch->syn); | |
1362 | kfree(bch->cache); | |
1363 | kfree(bch->elp); | |
1364 | ||
1365 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | |
1366 | kfree(bch->poly_2t[i]); | |
1367 | ||
1368 | kfree(bch); | |
1369 | } | |
1370 | } | |
1371 | EXPORT_SYMBOL_GPL(free_bch); | |
1372 | ||
1373 | MODULE_LICENSE("GPL"); | |
1374 | MODULE_AUTHOR("Ivan Djelic <[email protected]>"); | |
1375 | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |