]>
Commit | Line | Data |
---|---|---|
c494e070 RS |
1 | /* gf128mul.c - GF(2^128) multiplication functions |
2 | * | |
3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | |
4 | * Copyright (c) 2006, Rik Snel <[email protected]> | |
5 | * | |
6 | * Based on Dr Brian Gladman's (GPL'd) work published at | |
8c882f64 | 7 | * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php |
c494e070 RS |
8 | * See the original copyright notice below. |
9 | * | |
10 | * This program is free software; you can redistribute it and/or modify it | |
11 | * under the terms of the GNU General Public License as published by the Free | |
12 | * Software Foundation; either version 2 of the License, or (at your option) | |
13 | * any later version. | |
14 | */ | |
15 | ||
16 | /* | |
17 | --------------------------------------------------------------------------- | |
18 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. | |
19 | ||
20 | LICENSE TERMS | |
21 | ||
22 | The free distribution and use of this software in both source and binary | |
23 | form is allowed (with or without changes) provided that: | |
24 | ||
25 | 1. distributions of this source code include the above copyright | |
26 | notice, this list of conditions and the following disclaimer; | |
27 | ||
28 | 2. distributions in binary form include the above copyright | |
29 | notice, this list of conditions and the following disclaimer | |
30 | in the documentation and/or other associated materials; | |
31 | ||
32 | 3. the copyright holder's name is not used to endorse products | |
33 | built using this software without specific written permission. | |
34 | ||
35 | ALTERNATIVELY, provided that this notice is retained in full, this product | |
36 | may be distributed under the terms of the GNU General Public License (GPL), | |
37 | in which case the provisions of the GPL apply INSTEAD OF those given above. | |
38 | ||
39 | DISCLAIMER | |
40 | ||
41 | This software is provided 'as is' with no explicit or implied warranties | |
42 | in respect of its properties, including, but not limited to, correctness | |
43 | and/or fitness for purpose. | |
44 | --------------------------------------------------------------------------- | |
45 | Issue 31/01/2006 | |
46 | ||
63be5b53 | 47 | This file provides fast multiplication in GF(2^128) as required by several |
c494e070 RS |
48 | cryptographic authentication modes |
49 | */ | |
50 | ||
51 | #include <crypto/gf128mul.h> | |
52 | #include <linux/kernel.h> | |
53 | #include <linux/module.h> | |
54 | #include <linux/slab.h> | |
55 | ||
56 | #define gf128mul_dat(q) { \ | |
57 | q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ | |
58 | q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ | |
59 | q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ | |
60 | q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ | |
61 | q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ | |
62 | q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ | |
63 | q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ | |
64 | q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ | |
65 | q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ | |
66 | q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ | |
67 | q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ | |
68 | q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ | |
69 | q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ | |
70 | q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ | |
71 | q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ | |
72 | q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ | |
73 | q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ | |
74 | q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ | |
75 | q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ | |
76 | q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ | |
77 | q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ | |
78 | q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ | |
79 | q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ | |
80 | q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ | |
81 | q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ | |
82 | q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ | |
83 | q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ | |
84 | q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ | |
85 | q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ | |
86 | q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ | |
87 | q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ | |
88 | q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ | |
89 | } | |
90 | ||
f33fd647 EB |
91 | /* |
92 | * Given a value i in 0..255 as the byte overflow when a field element | |
93 | * in GF(2^128) is multiplied by x^8, the following macro returns the | |
94 | * 16-bit value that must be XOR-ed into the low-degree end of the | |
95 | * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1. | |
96 | * | |
97 | * There are two versions of the macro, and hence two tables: one for | |
98 | * the "be" convention where the highest-order bit is the coefficient of | |
99 | * the highest-degree polynomial term, and one for the "le" convention | |
100 | * where the highest-order bit is the coefficient of the lowest-degree | |
101 | * polynomial term. In both cases the values are stored in CPU byte | |
102 | * endianness such that the coefficients are ordered consistently across | |
103 | * bytes, i.e. in the "be" table bits 15..0 of the stored value | |
104 | * correspond to the coefficients of x^15..x^0, and in the "le" table | |
105 | * bits 15..0 correspond to the coefficients of x^0..x^15. | |
106 | * | |
107 | * Therefore, provided that the appropriate byte endianness conversions | |
108 | * are done by the multiplication functions (and these must be in place | |
109 | * anyway to support both little endian and big endian CPUs), the "be" | |
110 | * table can be used for multiplications of both "bbe" and "ble" | |
111 | * elements, and the "le" table can be used for multiplications of both | |
112 | * "lle" and "lbe" elements. | |
113 | */ | |
c494e070 | 114 | |
f33fd647 | 115 | #define xda_be(i) ( \ |
2416e4fa EB |
116 | (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \ |
117 | (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \ | |
118 | (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \ | |
119 | (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \ | |
c494e070 RS |
120 | ) |
121 | ||
f33fd647 | 122 | #define xda_le(i) ( \ |
2416e4fa EB |
123 | (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \ |
124 | (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \ | |
125 | (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \ | |
126 | (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \ | |
c494e070 RS |
127 | ) |
128 | ||
f33fd647 EB |
129 | static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le); |
130 | static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be); | |
c494e070 | 131 | |
63be5b53 | 132 | /* |
acb9b159 | 133 | * The following functions multiply a field element by x^8 in |
63be5b53 EB |
134 | * the polynomial field representation. They use 64-bit word operations |
135 | * to gain speed but compensate for machine endianness and hence work | |
c494e070 RS |
136 | * correctly on both styles of machine. |
137 | */ | |
138 | ||
c494e070 RS |
139 | static void gf128mul_x8_lle(be128 *x) |
140 | { | |
141 | u64 a = be64_to_cpu(x->a); | |
142 | u64 b = be64_to_cpu(x->b); | |
f33fd647 | 143 | u64 _tt = gf128mul_table_le[b & 0xff]; |
c494e070 RS |
144 | |
145 | x->b = cpu_to_be64((b >> 8) | (a << 56)); | |
146 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | |
147 | } | |
148 | ||
b67ce439 AB |
149 | /* time invariant version of gf128mul_x8_lle */ |
150 | static void gf128mul_x8_lle_ti(be128 *x) | |
151 | { | |
152 | u64 a = be64_to_cpu(x->a); | |
153 | u64 b = be64_to_cpu(x->b); | |
154 | u64 _tt = xda_le(b & 0xff); /* avoid table lookup */ | |
155 | ||
156 | x->b = cpu_to_be64((b >> 8) | (a << 56)); | |
157 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | |
158 | } | |
159 | ||
c494e070 RS |
160 | static void gf128mul_x8_bbe(be128 *x) |
161 | { | |
162 | u64 a = be64_to_cpu(x->a); | |
163 | u64 b = be64_to_cpu(x->b); | |
f33fd647 | 164 | u64 _tt = gf128mul_table_be[a >> 56]; |
c494e070 RS |
165 | |
166 | x->a = cpu_to_be64((a << 8) | (b >> 56)); | |
167 | x->b = cpu_to_be64((b << 8) ^ _tt); | |
168 | } | |
169 | ||
acfc5878 HJ |
170 | void gf128mul_x8_ble(le128 *r, const le128 *x) |
171 | { | |
172 | u64 a = le64_to_cpu(x->a); | |
173 | u64 b = le64_to_cpu(x->b); | |
acfc5878 HJ |
174 | u64 _tt = gf128mul_table_be[a >> 56]; |
175 | ||
176 | r->a = cpu_to_le64((a << 8) | (b >> 56)); | |
177 | r->b = cpu_to_le64((b << 8) ^ _tt); | |
178 | } | |
179 | EXPORT_SYMBOL(gf128mul_x8_ble); | |
180 | ||
c494e070 RS |
181 | void gf128mul_lle(be128 *r, const be128 *b) |
182 | { | |
b67ce439 AB |
183 | /* |
184 | * The p array should be aligned to twice the size of its element type, | |
185 | * so that every even/odd pair is guaranteed to share a cacheline | |
186 | * (assuming a cacheline size of 32 bytes or more, which is by far the | |
187 | * most common). This ensures that each be128_xor() call in the loop | |
188 | * takes the same amount of time regardless of the value of 'ch', which | |
189 | * is derived from function parameter 'b', which is commonly used as a | |
190 | * key, e.g., for GHASH. The odd array elements are all set to zero, | |
191 | * making each be128_xor() a NOP if its associated bit in 'ch' is not | |
192 | * set, and this is equivalent to calling be128_xor() conditionally. | |
193 | * This approach aims to avoid leaking information about such keys | |
194 | * through execution time variances. | |
195 | * | |
196 | * Unfortunately, __aligned(16) or higher does not work on x86 for | |
197 | * variables on the stack so we need to perform the alignment by hand. | |
198 | */ | |
199 | be128 array[16 + 3] = {}; | |
200 | be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128)); | |
c494e070 RS |
201 | int i; |
202 | ||
203 | p[0] = *r; | |
204 | for (i = 0; i < 7; ++i) | |
b67ce439 | 205 | gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]); |
c494e070 | 206 | |
62542663 | 207 | memset(r, 0, sizeof(*r)); |
c494e070 RS |
208 | for (i = 0;;) { |
209 | u8 ch = ((u8 *)b)[15 - i]; | |
210 | ||
b67ce439 AB |
211 | be128_xor(r, r, &p[ 0 + !(ch & 0x80)]); |
212 | be128_xor(r, r, &p[ 2 + !(ch & 0x40)]); | |
213 | be128_xor(r, r, &p[ 4 + !(ch & 0x20)]); | |
214 | be128_xor(r, r, &p[ 6 + !(ch & 0x10)]); | |
215 | be128_xor(r, r, &p[ 8 + !(ch & 0x08)]); | |
216 | be128_xor(r, r, &p[10 + !(ch & 0x04)]); | |
217 | be128_xor(r, r, &p[12 + !(ch & 0x02)]); | |
218 | be128_xor(r, r, &p[14 + !(ch & 0x01)]); | |
c494e070 RS |
219 | |
220 | if (++i >= 16) | |
221 | break; | |
222 | ||
b67ce439 | 223 | gf128mul_x8_lle_ti(r); /* use the time invariant version */ |
c494e070 RS |
224 | } |
225 | } | |
226 | EXPORT_SYMBOL(gf128mul_lle); | |
227 | ||
228 | void gf128mul_bbe(be128 *r, const be128 *b) | |
229 | { | |
230 | be128 p[8]; | |
231 | int i; | |
232 | ||
233 | p[0] = *r; | |
234 | for (i = 0; i < 7; ++i) | |
235 | gf128mul_x_bbe(&p[i + 1], &p[i]); | |
236 | ||
62542663 | 237 | memset(r, 0, sizeof(*r)); |
c494e070 RS |
238 | for (i = 0;;) { |
239 | u8 ch = ((u8 *)b)[i]; | |
240 | ||
241 | if (ch & 0x80) | |
242 | be128_xor(r, r, &p[7]); | |
243 | if (ch & 0x40) | |
244 | be128_xor(r, r, &p[6]); | |
245 | if (ch & 0x20) | |
246 | be128_xor(r, r, &p[5]); | |
247 | if (ch & 0x10) | |
248 | be128_xor(r, r, &p[4]); | |
249 | if (ch & 0x08) | |
250 | be128_xor(r, r, &p[3]); | |
251 | if (ch & 0x04) | |
252 | be128_xor(r, r, &p[2]); | |
253 | if (ch & 0x02) | |
254 | be128_xor(r, r, &p[1]); | |
255 | if (ch & 0x01) | |
256 | be128_xor(r, r, &p[0]); | |
257 | ||
258 | if (++i >= 16) | |
259 | break; | |
260 | ||
261 | gf128mul_x8_bbe(r); | |
262 | } | |
263 | } | |
264 | EXPORT_SYMBOL(gf128mul_bbe); | |
265 | ||
266 | /* This version uses 64k bytes of table space. | |
267 | A 16 byte buffer has to be multiplied by a 16 byte key | |
63be5b53 | 268 | value in GF(2^128). If we consider a GF(2^128) value in |
c494e070 RS |
269 | the buffer's lowest byte, we can construct a table of |
270 | the 256 16 byte values that result from the 256 values | |
271 | of this byte. This requires 4096 bytes. But we also | |
272 | need tables for each of the 16 higher bytes in the | |
273 | buffer as well, which makes 64 kbytes in total. | |
274 | */ | |
275 | /* additional explanation | |
276 | * t[0][BYTE] contains g*BYTE | |
277 | * t[1][BYTE] contains g*x^8*BYTE | |
278 | * .. | |
279 | * t[15][BYTE] contains g*x^120*BYTE */ | |
c494e070 RS |
280 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) |
281 | { | |
282 | struct gf128mul_64k *t; | |
283 | int i, j, k; | |
284 | ||
285 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
286 | if (!t) | |
287 | goto out; | |
288 | ||
289 | for (i = 0; i < 16; i++) { | |
290 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | |
291 | if (!t->t[i]) { | |
292 | gf128mul_free_64k(t); | |
293 | t = NULL; | |
294 | goto out; | |
295 | } | |
296 | } | |
297 | ||
298 | t->t[0]->t[1] = *g; | |
299 | for (j = 1; j <= 64; j <<= 1) | |
300 | gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); | |
301 | ||
302 | for (i = 0;;) { | |
303 | for (j = 2; j < 256; j += j) | |
304 | for (k = 1; k < j; ++k) | |
305 | be128_xor(&t->t[i]->t[j + k], | |
306 | &t->t[i]->t[j], &t->t[i]->t[k]); | |
307 | ||
308 | if (++i >= 16) | |
309 | break; | |
310 | ||
311 | for (j = 128; j > 0; j >>= 1) { | |
312 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | |
313 | gf128mul_x8_bbe(&t->t[i]->t[j]); | |
314 | } | |
315 | } | |
316 | ||
317 | out: | |
318 | return t; | |
319 | } | |
320 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); | |
321 | ||
322 | void gf128mul_free_64k(struct gf128mul_64k *t) | |
323 | { | |
324 | int i; | |
325 | ||
326 | for (i = 0; i < 16; i++) | |
453431a5 WL |
327 | kfree_sensitive(t->t[i]); |
328 | kfree_sensitive(t); | |
c494e070 RS |
329 | } |
330 | EXPORT_SYMBOL(gf128mul_free_64k); | |
331 | ||
3ea996dd | 332 | void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t) |
c494e070 RS |
333 | { |
334 | u8 *ap = (u8 *)a; | |
335 | be128 r[1]; | |
336 | int i; | |
337 | ||
338 | *r = t->t[0]->t[ap[15]]; | |
339 | for (i = 1; i < 16; ++i) | |
340 | be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); | |
341 | *a = *r; | |
342 | } | |
343 | EXPORT_SYMBOL(gf128mul_64k_bbe); | |
344 | ||
345 | /* This version uses 4k bytes of table space. | |
346 | A 16 byte buffer has to be multiplied by a 16 byte key | |
63be5b53 | 347 | value in GF(2^128). If we consider a GF(2^128) value in a |
c494e070 RS |
348 | single byte, we can construct a table of the 256 16 byte |
349 | values that result from the 256 values of this byte. | |
350 | This requires 4096 bytes. If we take the highest byte in | |
351 | the buffer and use this table to get the result, we then | |
352 | have to multiply by x^120 to get the final value. For the | |
353 | next highest byte the result has to be multiplied by x^112 | |
354 | and so on. But we can do this by accumulating the result | |
355 | in an accumulator starting with the result for the top | |
356 | byte. We repeatedly multiply the accumulator value by | |
357 | x^8 and then add in (i.e. xor) the 16 bytes of the next | |
358 | lower byte in the buffer, stopping when we reach the | |
359 | lowest byte. This requires a 4096 byte table. | |
360 | */ | |
361 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) | |
362 | { | |
363 | struct gf128mul_4k *t; | |
364 | int j, k; | |
365 | ||
366 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
367 | if (!t) | |
368 | goto out; | |
369 | ||
370 | t->t[128] = *g; | |
371 | for (j = 64; j > 0; j >>= 1) | |
372 | gf128mul_x_lle(&t->t[j], &t->t[j+j]); | |
373 | ||
374 | for (j = 2; j < 256; j += j) | |
375 | for (k = 1; k < j; ++k) | |
376 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | |
377 | ||
378 | out: | |
379 | return t; | |
380 | } | |
381 | EXPORT_SYMBOL(gf128mul_init_4k_lle); | |
382 | ||
383 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) | |
384 | { | |
385 | struct gf128mul_4k *t; | |
386 | int j, k; | |
387 | ||
388 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
389 | if (!t) | |
390 | goto out; | |
391 | ||
392 | t->t[1] = *g; | |
393 | for (j = 1; j <= 64; j <<= 1) | |
394 | gf128mul_x_bbe(&t->t[j + j], &t->t[j]); | |
395 | ||
396 | for (j = 2; j < 256; j += j) | |
397 | for (k = 1; k < j; ++k) | |
398 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | |
399 | ||
400 | out: | |
401 | return t; | |
402 | } | |
403 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); | |
404 | ||
3ea996dd | 405 | void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t) |
c494e070 RS |
406 | { |
407 | u8 *ap = (u8 *)a; | |
408 | be128 r[1]; | |
409 | int i = 15; | |
410 | ||
411 | *r = t->t[ap[15]]; | |
412 | while (i--) { | |
413 | gf128mul_x8_lle(r); | |
414 | be128_xor(r, r, &t->t[ap[i]]); | |
415 | } | |
416 | *a = *r; | |
417 | } | |
418 | EXPORT_SYMBOL(gf128mul_4k_lle); | |
419 | ||
3ea996dd | 420 | void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t) |
c494e070 RS |
421 | { |
422 | u8 *ap = (u8 *)a; | |
423 | be128 r[1]; | |
424 | int i = 0; | |
425 | ||
426 | *r = t->t[ap[0]]; | |
427 | while (++i < 16) { | |
428 | gf128mul_x8_bbe(r); | |
429 | be128_xor(r, r, &t->t[ap[i]]); | |
430 | } | |
431 | *a = *r; | |
432 | } | |
433 | EXPORT_SYMBOL(gf128mul_4k_bbe); | |
434 | ||
435 | MODULE_LICENSE("GPL"); | |
436 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |