]>
Commit | Line | Data |
---|---|---|
e842f1c8 RP |
1 | /* |
2 | * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx | |
3 | * | |
4 | * Copyright (c) 2000 Nils Faerber | |
5 | * | |
6 | * Based on rtc.c by Paul Gortmaker | |
7 | * | |
8 | * Original Driver by Nils Faerber <[email protected]> | |
9 | * | |
10 | * Modifications from: | |
11 | * CIH <[email protected]> | |
2f82af08 | 12 | * Nicolas Pitre <[email protected]> |
e842f1c8 RP |
13 | * Andrew Christian <[email protected]> |
14 | * | |
15 | * Converted to the RTC subsystem and Driver Model | |
16 | * by Richard Purdie <[email protected]> | |
17 | * | |
18 | * This program is free software; you can redistribute it and/or | |
19 | * modify it under the terms of the GNU General Public License | |
20 | * as published by the Free Software Foundation; either version | |
21 | * 2 of the License, or (at your option) any later version. | |
22 | */ | |
23 | ||
24 | #include <linux/platform_device.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/rtc.h> | |
27 | #include <linux/init.h> | |
28 | #include <linux/fs.h> | |
29 | #include <linux/interrupt.h> | |
30 | #include <linux/string.h> | |
31 | #include <linux/pm.h> | |
1977f032 | 32 | #include <linux/bitops.h> |
e842f1c8 | 33 | |
a09e64fb | 34 | #include <mach/hardware.h> |
e842f1c8 | 35 | #include <asm/irq.h> |
e842f1c8 RP |
36 | |
37 | #ifdef CONFIG_ARCH_PXA | |
5bf3df3f EM |
38 | #include <mach/regs-rtc.h> |
39 | #include <mach/regs-ost.h> | |
e842f1c8 RP |
40 | #endif |
41 | ||
e842f1c8 RP |
42 | #define RTC_DEF_DIVIDER 32768 - 1 |
43 | #define RTC_DEF_TRIM 0 | |
44 | ||
45 | static unsigned long rtc_freq = 1024; | |
6769717d | 46 | static unsigned long timer_freq; |
e842f1c8 | 47 | static struct rtc_time rtc_alarm; |
34af946a | 48 | static DEFINE_SPINLOCK(sa1100_rtc_lock); |
e842f1c8 | 49 | |
797276ec RK |
50 | static inline int rtc_periodic_alarm(struct rtc_time *tm) |
51 | { | |
52 | return (tm->tm_year == -1) || | |
53 | ((unsigned)tm->tm_mon >= 12) || | |
54 | ((unsigned)(tm->tm_mday - 1) >= 31) || | |
55 | ((unsigned)tm->tm_hour > 23) || | |
56 | ((unsigned)tm->tm_min > 59) || | |
57 | ((unsigned)tm->tm_sec > 59); | |
58 | } | |
59 | ||
60 | /* | |
61 | * Calculate the next alarm time given the requested alarm time mask | |
62 | * and the current time. | |
63 | */ | |
64 | static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm) | |
65 | { | |
66 | unsigned long next_time; | |
67 | unsigned long now_time; | |
68 | ||
69 | next->tm_year = now->tm_year; | |
70 | next->tm_mon = now->tm_mon; | |
71 | next->tm_mday = now->tm_mday; | |
72 | next->tm_hour = alrm->tm_hour; | |
73 | next->tm_min = alrm->tm_min; | |
74 | next->tm_sec = alrm->tm_sec; | |
75 | ||
76 | rtc_tm_to_time(now, &now_time); | |
77 | rtc_tm_to_time(next, &next_time); | |
78 | ||
79 | if (next_time < now_time) { | |
80 | /* Advance one day */ | |
81 | next_time += 60 * 60 * 24; | |
82 | rtc_time_to_tm(next_time, next); | |
83 | } | |
84 | } | |
85 | ||
e842f1c8 RP |
86 | static int rtc_update_alarm(struct rtc_time *alrm) |
87 | { | |
88 | struct rtc_time alarm_tm, now_tm; | |
89 | unsigned long now, time; | |
90 | int ret; | |
91 | ||
92 | do { | |
93 | now = RCNR; | |
94 | rtc_time_to_tm(now, &now_tm); | |
95 | rtc_next_alarm_time(&alarm_tm, &now_tm, alrm); | |
96 | ret = rtc_tm_to_time(&alarm_tm, &time); | |
97 | if (ret != 0) | |
98 | break; | |
99 | ||
100 | RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL); | |
101 | RTAR = time; | |
102 | } while (now != RCNR); | |
103 | ||
104 | return ret; | |
105 | } | |
106 | ||
7d12e780 | 107 | static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) |
e842f1c8 RP |
108 | { |
109 | struct platform_device *pdev = to_platform_device(dev_id); | |
110 | struct rtc_device *rtc = platform_get_drvdata(pdev); | |
111 | unsigned int rtsr; | |
112 | unsigned long events = 0; | |
113 | ||
114 | spin_lock(&sa1100_rtc_lock); | |
115 | ||
116 | rtsr = RTSR; | |
117 | /* clear interrupt sources */ | |
118 | RTSR = 0; | |
119 | RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2); | |
120 | ||
121 | /* clear alarm interrupt if it has occurred */ | |
122 | if (rtsr & RTSR_AL) | |
123 | rtsr &= ~RTSR_ALE; | |
124 | RTSR = rtsr & (RTSR_ALE | RTSR_HZE); | |
125 | ||
126 | /* update irq data & counter */ | |
127 | if (rtsr & RTSR_AL) | |
128 | events |= RTC_AF | RTC_IRQF; | |
129 | if (rtsr & RTSR_HZ) | |
130 | events |= RTC_UF | RTC_IRQF; | |
131 | ||
ab6a2d70 | 132 | rtc_update_irq(rtc, 1, events); |
e842f1c8 RP |
133 | |
134 | if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm)) | |
135 | rtc_update_alarm(&rtc_alarm); | |
136 | ||
137 | spin_unlock(&sa1100_rtc_lock); | |
138 | ||
139 | return IRQ_HANDLED; | |
140 | } | |
141 | ||
142 | static int rtc_timer1_count; | |
143 | ||
7d12e780 | 144 | static irqreturn_t timer1_interrupt(int irq, void *dev_id) |
e842f1c8 RP |
145 | { |
146 | struct platform_device *pdev = to_platform_device(dev_id); | |
147 | struct rtc_device *rtc = platform_get_drvdata(pdev); | |
148 | ||
149 | /* | |
150 | * If we match for the first time, rtc_timer1_count will be 1. | |
151 | * Otherwise, we wrapped around (very unlikely but | |
152 | * still possible) so compute the amount of missed periods. | |
153 | * The match reg is updated only when the data is actually retrieved | |
154 | * to avoid unnecessary interrupts. | |
155 | */ | |
156 | OSSR = OSSR_M1; /* clear match on timer1 */ | |
157 | ||
ab6a2d70 | 158 | rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF); |
e842f1c8 RP |
159 | |
160 | if (rtc_timer1_count == 1) | |
6769717d | 161 | rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2))); |
e842f1c8 RP |
162 | |
163 | return IRQ_HANDLED; | |
164 | } | |
165 | ||
166 | static int sa1100_rtc_read_callback(struct device *dev, int data) | |
167 | { | |
168 | if (data & RTC_PF) { | |
169 | /* interpolate missed periods and set match for the next */ | |
6769717d | 170 | unsigned long period = timer_freq / rtc_freq; |
e842f1c8 RP |
171 | unsigned long oscr = OSCR; |
172 | unsigned long osmr1 = OSMR1; | |
173 | unsigned long missed = (oscr - osmr1)/period; | |
174 | data += missed << 8; | |
175 | OSSR = OSSR_M1; /* clear match on timer 1 */ | |
176 | OSMR1 = osmr1 + (missed + 1)*period; | |
177 | /* Ensure we didn't miss another match in the mean time. | |
178 | * Here we compare (match - OSCR) 8 instead of 0 -- | |
179 | * see comment in pxa_timer_interrupt() for explanation. | |
180 | */ | |
181 | while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) { | |
182 | data += 0x100; | |
183 | OSSR = OSSR_M1; /* clear match on timer 1 */ | |
184 | OSMR1 = osmr1 + period; | |
185 | } | |
186 | } | |
187 | return data; | |
188 | } | |
189 | ||
190 | static int sa1100_rtc_open(struct device *dev) | |
191 | { | |
192 | int ret; | |
193 | ||
dace1453 | 194 | ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED, |
e842f1c8 RP |
195 | "rtc 1Hz", dev); |
196 | if (ret) { | |
2260a25c | 197 | dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz); |
e842f1c8 RP |
198 | goto fail_ui; |
199 | } | |
dace1453 | 200 | ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED, |
e842f1c8 RP |
201 | "rtc Alrm", dev); |
202 | if (ret) { | |
2260a25c | 203 | dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm); |
e842f1c8 RP |
204 | goto fail_ai; |
205 | } | |
dace1453 | 206 | ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED, |
e842f1c8 RP |
207 | "rtc timer", dev); |
208 | if (ret) { | |
2260a25c | 209 | dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1); |
e842f1c8 RP |
210 | goto fail_pi; |
211 | } | |
212 | return 0; | |
213 | ||
214 | fail_pi: | |
f1226701 | 215 | free_irq(IRQ_RTCAlrm, dev); |
e842f1c8 | 216 | fail_ai: |
f1226701 | 217 | free_irq(IRQ_RTC1Hz, dev); |
e842f1c8 RP |
218 | fail_ui: |
219 | return ret; | |
220 | } | |
221 | ||
222 | static void sa1100_rtc_release(struct device *dev) | |
223 | { | |
224 | spin_lock_irq(&sa1100_rtc_lock); | |
225 | RTSR = 0; | |
226 | OIER &= ~OIER_E1; | |
227 | OSSR = OSSR_M1; | |
228 | spin_unlock_irq(&sa1100_rtc_lock); | |
229 | ||
230 | free_irq(IRQ_OST1, dev); | |
231 | free_irq(IRQ_RTCAlrm, dev); | |
232 | free_irq(IRQ_RTC1Hz, dev); | |
233 | } | |
234 | ||
235 | ||
236 | static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd, | |
237 | unsigned long arg) | |
238 | { | |
239 | switch(cmd) { | |
240 | case RTC_AIE_OFF: | |
241 | spin_lock_irq(&sa1100_rtc_lock); | |
242 | RTSR &= ~RTSR_ALE; | |
243 | spin_unlock_irq(&sa1100_rtc_lock); | |
244 | return 0; | |
245 | case RTC_AIE_ON: | |
246 | spin_lock_irq(&sa1100_rtc_lock); | |
247 | RTSR |= RTSR_ALE; | |
248 | spin_unlock_irq(&sa1100_rtc_lock); | |
249 | return 0; | |
250 | case RTC_UIE_OFF: | |
251 | spin_lock_irq(&sa1100_rtc_lock); | |
252 | RTSR &= ~RTSR_HZE; | |
253 | spin_unlock_irq(&sa1100_rtc_lock); | |
254 | return 0; | |
255 | case RTC_UIE_ON: | |
256 | spin_lock_irq(&sa1100_rtc_lock); | |
257 | RTSR |= RTSR_HZE; | |
258 | spin_unlock_irq(&sa1100_rtc_lock); | |
259 | return 0; | |
260 | case RTC_PIE_OFF: | |
261 | spin_lock_irq(&sa1100_rtc_lock); | |
262 | OIER &= ~OIER_E1; | |
263 | spin_unlock_irq(&sa1100_rtc_lock); | |
264 | return 0; | |
265 | case RTC_PIE_ON: | |
e842f1c8 | 266 | spin_lock_irq(&sa1100_rtc_lock); |
6769717d | 267 | OSMR1 = timer_freq / rtc_freq + OSCR; |
e842f1c8 RP |
268 | OIER |= OIER_E1; |
269 | rtc_timer1_count = 1; | |
270 | spin_unlock_irq(&sa1100_rtc_lock); | |
271 | return 0; | |
272 | case RTC_IRQP_READ: | |
273 | return put_user(rtc_freq, (unsigned long *)arg); | |
274 | case RTC_IRQP_SET: | |
6769717d | 275 | if (arg < 1 || arg > timer_freq) |
e842f1c8 | 276 | return -EINVAL; |
e842f1c8 RP |
277 | rtc_freq = arg; |
278 | return 0; | |
279 | } | |
b3969e58 | 280 | return -ENOIOCTLCMD; |
e842f1c8 RP |
281 | } |
282 | ||
283 | static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) | |
284 | { | |
285 | rtc_time_to_tm(RCNR, tm); | |
286 | return 0; | |
287 | } | |
288 | ||
289 | static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) | |
290 | { | |
291 | unsigned long time; | |
292 | int ret; | |
293 | ||
294 | ret = rtc_tm_to_time(tm, &time); | |
295 | if (ret == 0) | |
296 | RCNR = time; | |
297 | return ret; | |
298 | } | |
299 | ||
300 | static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) | |
301 | { | |
32b49da4 DB |
302 | u32 rtsr; |
303 | ||
e842f1c8 | 304 | memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time)); |
32b49da4 DB |
305 | rtsr = RTSR; |
306 | alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; | |
307 | alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; | |
e842f1c8 RP |
308 | return 0; |
309 | } | |
310 | ||
311 | static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) | |
312 | { | |
313 | int ret; | |
314 | ||
315 | spin_lock_irq(&sa1100_rtc_lock); | |
316 | ret = rtc_update_alarm(&alrm->time); | |
317 | if (ret == 0) { | |
e842f1c8 | 318 | if (alrm->enabled) |
32b49da4 | 319 | RTSR |= RTSR_ALE; |
e842f1c8 | 320 | else |
32b49da4 | 321 | RTSR &= ~RTSR_ALE; |
e842f1c8 RP |
322 | } |
323 | spin_unlock_irq(&sa1100_rtc_lock); | |
324 | ||
325 | return ret; | |
326 | } | |
327 | ||
328 | static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) | |
329 | { | |
a2db8dfc | 330 | seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR); |
e842f1c8 RP |
331 | seq_printf(seq, "update_IRQ\t: %s\n", |
332 | (RTSR & RTSR_HZE) ? "yes" : "no"); | |
333 | seq_printf(seq, "periodic_IRQ\t: %s\n", | |
334 | (OIER & OIER_E1) ? "yes" : "no"); | |
335 | seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq); | |
336 | ||
337 | return 0; | |
338 | } | |
339 | ||
ff8371ac | 340 | static const struct rtc_class_ops sa1100_rtc_ops = { |
e842f1c8 RP |
341 | .open = sa1100_rtc_open, |
342 | .read_callback = sa1100_rtc_read_callback, | |
343 | .release = sa1100_rtc_release, | |
344 | .ioctl = sa1100_rtc_ioctl, | |
345 | .read_time = sa1100_rtc_read_time, | |
346 | .set_time = sa1100_rtc_set_time, | |
347 | .read_alarm = sa1100_rtc_read_alarm, | |
348 | .set_alarm = sa1100_rtc_set_alarm, | |
349 | .proc = sa1100_rtc_proc, | |
350 | }; | |
351 | ||
352 | static int sa1100_rtc_probe(struct platform_device *pdev) | |
353 | { | |
354 | struct rtc_device *rtc; | |
355 | ||
6769717d EM |
356 | timer_freq = get_clock_tick_rate(); |
357 | ||
e842f1c8 RP |
358 | /* |
359 | * According to the manual we should be able to let RTTR be zero | |
360 | * and then a default diviser for a 32.768KHz clock is used. | |
361 | * Apparently this doesn't work, at least for my SA1110 rev 5. | |
362 | * If the clock divider is uninitialized then reset it to the | |
363 | * default value to get the 1Hz clock. | |
364 | */ | |
365 | if (RTTR == 0) { | |
366 | RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); | |
2260a25c | 367 | dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n"); |
e842f1c8 RP |
368 | /* The current RTC value probably doesn't make sense either */ |
369 | RCNR = 0; | |
370 | } | |
371 | ||
e5a2c9cc UL |
372 | device_init_wakeup(&pdev->dev, 1); |
373 | ||
e842f1c8 RP |
374 | rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops, |
375 | THIS_MODULE); | |
376 | ||
2260a25c | 377 | if (IS_ERR(rtc)) |
e842f1c8 | 378 | return PTR_ERR(rtc); |
e842f1c8 RP |
379 | |
380 | platform_set_drvdata(pdev, rtc); | |
381 | ||
e842f1c8 RP |
382 | return 0; |
383 | } | |
384 | ||
385 | static int sa1100_rtc_remove(struct platform_device *pdev) | |
386 | { | |
387 | struct rtc_device *rtc = platform_get_drvdata(pdev); | |
388 | ||
389 | if (rtc) | |
390 | rtc_device_unregister(rtc); | |
391 | ||
392 | return 0; | |
393 | } | |
394 | ||
6bc54e69 | 395 | #ifdef CONFIG_PM |
5d027cd2 | 396 | static int sa1100_rtc_suspend(struct device *dev) |
6bc54e69 | 397 | { |
5d027cd2 | 398 | if (device_may_wakeup(dev)) |
f618258a | 399 | enable_irq_wake(IRQ_RTCAlrm); |
6bc54e69 RK |
400 | return 0; |
401 | } | |
402 | ||
5d027cd2 | 403 | static int sa1100_rtc_resume(struct device *dev) |
6bc54e69 | 404 | { |
5d027cd2 | 405 | if (device_may_wakeup(dev)) |
f618258a | 406 | disable_irq_wake(IRQ_RTCAlrm); |
6bc54e69 RK |
407 | return 0; |
408 | } | |
5d027cd2 HZ |
409 | |
410 | static struct dev_pm_ops sa1100_rtc_pm_ops = { | |
411 | .suspend = sa1100_rtc_suspend, | |
412 | .resume = sa1100_rtc_resume, | |
413 | }; | |
6bc54e69 RK |
414 | #endif |
415 | ||
e842f1c8 RP |
416 | static struct platform_driver sa1100_rtc_driver = { |
417 | .probe = sa1100_rtc_probe, | |
418 | .remove = sa1100_rtc_remove, | |
419 | .driver = { | |
5d027cd2 HZ |
420 | .name = "sa1100-rtc", |
421 | #ifdef CONFIG_PM | |
422 | .pm = &sa1100_rtc_pm_ops, | |
423 | #endif | |
e842f1c8 RP |
424 | }, |
425 | }; | |
426 | ||
427 | static int __init sa1100_rtc_init(void) | |
428 | { | |
429 | return platform_driver_register(&sa1100_rtc_driver); | |
430 | } | |
431 | ||
432 | static void __exit sa1100_rtc_exit(void) | |
433 | { | |
434 | platform_driver_unregister(&sa1100_rtc_driver); | |
435 | } | |
436 | ||
437 | module_init(sa1100_rtc_init); | |
438 | module_exit(sa1100_rtc_exit); | |
439 | ||
440 | MODULE_AUTHOR("Richard Purdie <[email protected]>"); | |
441 | MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)"); | |
442 | MODULE_LICENSE("GPL"); | |
ad28a07b | 443 | MODULE_ALIAS("platform:sa1100-rtc"); |