]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/slab.c | |
4 | * Written by Mark Hemment, 1996/97. | |
5 | * ([email protected]) | |
6 | * | |
7 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
8 | * | |
9 | * Major cleanup, different bufctl logic, per-cpu arrays | |
10 | * (c) 2000 Manfred Spraul | |
11 | * | |
12 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
13 | * (c) 2002 Manfred Spraul | |
14 | * | |
15 | * An implementation of the Slab Allocator as described in outline in; | |
16 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
17 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
18 | * or with a little more detail in; | |
19 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
20 | * Jeff Bonwick (Sun Microsystems). | |
21 | * Presented at: USENIX Summer 1994 Technical Conference | |
22 | * | |
23 | * The memory is organized in caches, one cache for each object type. | |
24 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
25 | * Each cache consists out of many slabs (they are small (usually one | |
26 | * page long) and always contiguous), and each slab contains multiple | |
27 | * initialized objects. | |
28 | * | |
29 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 30 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
31 | * kmem_cache_free. |
32 | * | |
33 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
34 | * normal). If you need a special memory type, then must create a new | |
35 | * cache for that memory type. | |
36 | * | |
37 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
38 | * full slabs with 0 free objects | |
39 | * partial slabs | |
40 | * empty slabs with no allocated objects | |
41 | * | |
42 | * If partial slabs exist, then new allocations come from these slabs, | |
43 | * otherwise from empty slabs or new slabs are allocated. | |
44 | * | |
45 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
46 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
47 | * | |
48 | * Each cache has a short per-cpu head array, most allocs | |
49 | * and frees go into that array, and if that array overflows, then 1/2 | |
50 | * of the entries in the array are given back into the global cache. | |
51 | * The head array is strictly LIFO and should improve the cache hit rates. | |
52 | * On SMP, it additionally reduces the spinlock operations. | |
53 | * | |
a737b3e2 | 54 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
55 | * it's changed with a smp_call_function(). |
56 | * | |
57 | * SMP synchronization: | |
58 | * constructors and destructors are called without any locking. | |
343e0d7a | 59 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
60 | * are accessed without any locking. |
61 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
62 | * and local interrupts are disabled so slab code is preempt-safe. | |
63 | * The non-constant members are protected with a per-cache irq spinlock. | |
64 | * | |
65 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
66 | * in 2000 - many ideas in the current implementation are derived from | |
67 | * his patch. | |
68 | * | |
69 | * Further notes from the original documentation: | |
70 | * | |
71 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 72 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
73 | * The sem is only needed when accessing/extending the cache-chain, which |
74 | * can never happen inside an interrupt (kmem_cache_create(), | |
75 | * kmem_cache_shrink() and kmem_cache_reap()). | |
76 | * | |
77 | * At present, each engine can be growing a cache. This should be blocked. | |
78 | * | |
e498be7d CL |
79 | * 15 March 2005. NUMA slab allocator. |
80 | * Shai Fultheim <[email protected]>. | |
81 | * Shobhit Dayal <[email protected]> | |
82 | * Alok N Kataria <[email protected]> | |
83 | * Christoph Lameter <[email protected]> | |
84 | * | |
85 | * Modified the slab allocator to be node aware on NUMA systems. | |
86 | * Each node has its own list of partial, free and full slabs. | |
87 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
88 | */ |
89 | ||
1da177e4 LT |
90 | #include <linux/slab.h> |
91 | #include <linux/mm.h> | |
c9cf5528 | 92 | #include <linux/poison.h> |
1da177e4 LT |
93 | #include <linux/swap.h> |
94 | #include <linux/cache.h> | |
95 | #include <linux/interrupt.h> | |
96 | #include <linux/init.h> | |
97 | #include <linux/compiler.h> | |
101a5001 | 98 | #include <linux/cpuset.h> |
a0ec95a8 | 99 | #include <linux/proc_fs.h> |
1da177e4 LT |
100 | #include <linux/seq_file.h> |
101 | #include <linux/notifier.h> | |
102 | #include <linux/kallsyms.h> | |
d3fb45f3 | 103 | #include <linux/kfence.h> |
1da177e4 LT |
104 | #include <linux/cpu.h> |
105 | #include <linux/sysctl.h> | |
106 | #include <linux/module.h> | |
107 | #include <linux/rcupdate.h> | |
543537bd | 108 | #include <linux/string.h> |
138ae663 | 109 | #include <linux/uaccess.h> |
e498be7d | 110 | #include <linux/nodemask.h> |
d5cff635 | 111 | #include <linux/kmemleak.h> |
dc85da15 | 112 | #include <linux/mempolicy.h> |
fc0abb14 | 113 | #include <linux/mutex.h> |
8a8b6502 | 114 | #include <linux/fault-inject.h> |
e7eebaf6 | 115 | #include <linux/rtmutex.h> |
6a2d7a95 | 116 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 117 | #include <linux/debugobjects.h> |
8f9f8d9e | 118 | #include <linux/memory.h> |
268bb0ce | 119 | #include <linux/prefetch.h> |
3f8c2452 | 120 | #include <linux/sched/task_stack.h> |
1da177e4 | 121 | |
381760ea MG |
122 | #include <net/sock.h> |
123 | ||
1da177e4 LT |
124 | #include <asm/cacheflush.h> |
125 | #include <asm/tlbflush.h> | |
126 | #include <asm/page.h> | |
127 | ||
4dee6b64 SR |
128 | #include <trace/events/kmem.h> |
129 | ||
072bb0aa MG |
130 | #include "internal.h" |
131 | ||
b9ce5ef4 GC |
132 | #include "slab.h" |
133 | ||
1da177e4 | 134 | /* |
50953fe9 | 135 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
136 | * 0 for faster, smaller code (especially in the critical paths). |
137 | * | |
138 | * STATS - 1 to collect stats for /proc/slabinfo. | |
139 | * 0 for faster, smaller code (especially in the critical paths). | |
140 | * | |
141 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
142 | */ | |
143 | ||
144 | #ifdef CONFIG_DEBUG_SLAB | |
145 | #define DEBUG 1 | |
146 | #define STATS 1 | |
147 | #define FORCED_DEBUG 1 | |
148 | #else | |
149 | #define DEBUG 0 | |
150 | #define STATS 0 | |
151 | #define FORCED_DEBUG 0 | |
152 | #endif | |
153 | ||
1da177e4 LT |
154 | /* Shouldn't this be in a header file somewhere? */ |
155 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 156 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 157 | |
1da177e4 LT |
158 | #ifndef ARCH_KMALLOC_FLAGS |
159 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
160 | #endif | |
161 | ||
f315e3fa JK |
162 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
163 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
164 | ||
165 | #if FREELIST_BYTE_INDEX | |
166 | typedef unsigned char freelist_idx_t; | |
167 | #else | |
168 | typedef unsigned short freelist_idx_t; | |
169 | #endif | |
170 | ||
30321c7b | 171 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 172 | |
1da177e4 LT |
173 | /* |
174 | * struct array_cache | |
175 | * | |
1da177e4 LT |
176 | * Purpose: |
177 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
178 | * - reduce the number of linked list operations | |
179 | * - reduce spinlock operations | |
180 | * | |
181 | * The limit is stored in the per-cpu structure to reduce the data cache | |
182 | * footprint. | |
183 | * | |
184 | */ | |
185 | struct array_cache { | |
186 | unsigned int avail; | |
187 | unsigned int limit; | |
188 | unsigned int batchcount; | |
189 | unsigned int touched; | |
bda5b655 | 190 | void *entry[]; /* |
a737b3e2 AM |
191 | * Must have this definition in here for the proper |
192 | * alignment of array_cache. Also simplifies accessing | |
193 | * the entries. | |
a737b3e2 | 194 | */ |
1da177e4 LT |
195 | }; |
196 | ||
c8522a3a JK |
197 | struct alien_cache { |
198 | spinlock_t lock; | |
199 | struct array_cache ac; | |
200 | }; | |
201 | ||
e498be7d CL |
202 | /* |
203 | * Need this for bootstrapping a per node allocator. | |
204 | */ | |
bf0dea23 | 205 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 206 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 207 | #define CACHE_CACHE 0 |
bf0dea23 | 208 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 209 | |
ed11d9eb | 210 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 211 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 212 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
213 | int node, struct list_head *list); |
214 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 215 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 216 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 217 | |
76b342bd JK |
218 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
219 | void **list); | |
220 | static inline void fixup_slab_list(struct kmem_cache *cachep, | |
7981e67e | 221 | struct kmem_cache_node *n, struct slab *slab, |
76b342bd | 222 | void **list); |
e0a42726 IM |
223 | static int slab_early_init = 1; |
224 | ||
ce8eb6c4 | 225 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 226 | |
ce8eb6c4 | 227 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
228 | { |
229 | INIT_LIST_HEAD(&parent->slabs_full); | |
230 | INIT_LIST_HEAD(&parent->slabs_partial); | |
231 | INIT_LIST_HEAD(&parent->slabs_free); | |
bf00bd34 | 232 | parent->total_slabs = 0; |
f728b0a5 | 233 | parent->free_slabs = 0; |
e498be7d CL |
234 | parent->shared = NULL; |
235 | parent->alien = NULL; | |
2e1217cf | 236 | parent->colour_next = 0; |
e498be7d CL |
237 | spin_lock_init(&parent->list_lock); |
238 | parent->free_objects = 0; | |
239 | parent->free_touched = 0; | |
240 | } | |
241 | ||
a737b3e2 AM |
242 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
243 | do { \ | |
244 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 245 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
246 | } while (0) |
247 | ||
a737b3e2 AM |
248 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
249 | do { \ | |
e498be7d CL |
250 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
251 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
252 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
253 | } while (0) | |
1da177e4 | 254 | |
4fd0b46e AD |
255 | #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) |
256 | #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) | |
b03a017b | 257 | #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
1da177e4 LT |
258 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
259 | ||
260 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 | 261 | /* |
f0953a1b | 262 | * Optimization question: fewer reaps means less probability for unnecessary |
a737b3e2 | 263 | * cpucache drain/refill cycles. |
1da177e4 | 264 | * |
dc6f3f27 | 265 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
266 | * which could lock up otherwise freeable slabs. |
267 | */ | |
5f0985bb JZ |
268 | #define REAPTIMEOUT_AC (2*HZ) |
269 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
270 | |
271 | #if STATS | |
272 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
273 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
274 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
275 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
0b411634 | 276 | #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) |
a737b3e2 AM |
277 | #define STATS_SET_HIGH(x) \ |
278 | do { \ | |
279 | if ((x)->num_active > (x)->high_mark) \ | |
280 | (x)->high_mark = (x)->num_active; \ | |
281 | } while (0) | |
1da177e4 LT |
282 | #define STATS_INC_ERR(x) ((x)->errors++) |
283 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 284 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 285 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
286 | #define STATS_SET_FREEABLE(x, i) \ |
287 | do { \ | |
288 | if ((x)->max_freeable < i) \ | |
289 | (x)->max_freeable = i; \ | |
290 | } while (0) | |
1da177e4 LT |
291 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
292 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
293 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
294 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
295 | #else | |
296 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
297 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
298 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
299 | #define STATS_INC_GROWN(x) do { } while (0) | |
0b411634 | 300 | #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) |
1da177e4 LT |
301 | #define STATS_SET_HIGH(x) do { } while (0) |
302 | #define STATS_INC_ERR(x) do { } while (0) | |
303 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 304 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 305 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 306 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
307 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
308 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
309 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
310 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
311 | #endif | |
312 | ||
313 | #if DEBUG | |
1da177e4 | 314 | |
a737b3e2 AM |
315 | /* |
316 | * memory layout of objects: | |
1da177e4 | 317 | * 0 : objp |
3dafccf2 | 318 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
319 | * the end of an object is aligned with the end of the real |
320 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 321 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 322 | * redzone word. |
3dafccf2 | 323 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
324 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
325 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 326 | * [BYTES_PER_WORD long] |
1da177e4 | 327 | */ |
343e0d7a | 328 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 329 | { |
3dafccf2 | 330 | return cachep->obj_offset; |
1da177e4 LT |
331 | } |
332 | ||
b46b8f19 | 333 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
334 | { |
335 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
0b411634 | 336 | return (unsigned long long *) (objp + obj_offset(cachep) - |
b46b8f19 | 337 | sizeof(unsigned long long)); |
1da177e4 LT |
338 | } |
339 | ||
b46b8f19 | 340 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
341 | { |
342 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
343 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 344 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 345 | sizeof(unsigned long long) - |
87a927c7 | 346 | REDZONE_ALIGN); |
3b0efdfa | 347 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 348 | sizeof(unsigned long long)); |
1da177e4 LT |
349 | } |
350 | ||
343e0d7a | 351 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
352 | { |
353 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 354 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
355 | } |
356 | ||
357 | #else | |
358 | ||
3dafccf2 | 359 | #define obj_offset(x) 0 |
b46b8f19 DW |
360 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
361 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
362 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
363 | ||
364 | #endif | |
365 | ||
1da177e4 | 366 | /* |
3df1cccd DR |
367 | * Do not go above this order unless 0 objects fit into the slab or |
368 | * overridden on the command line. | |
1da177e4 | 369 | */ |
543585cc DR |
370 | #define SLAB_MAX_ORDER_HI 1 |
371 | #define SLAB_MAX_ORDER_LO 0 | |
372 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 373 | static bool slab_max_order_set __initdata; |
1da177e4 | 374 | |
0b3eb091 | 375 | static inline void *index_to_obj(struct kmem_cache *cache, |
7981e67e | 376 | const struct slab *slab, unsigned int idx) |
8fea4e96 | 377 | { |
7981e67e | 378 | return slab->s_mem + cache->size * idx; |
8fea4e96 PE |
379 | } |
380 | ||
6fb92430 | 381 | #define BOOT_CPUCACHE_ENTRIES 1 |
1da177e4 | 382 | /* internal cache of cache description objs */ |
9b030cb8 | 383 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
384 | .batchcount = 1, |
385 | .limit = BOOT_CPUCACHE_ENTRIES, | |
386 | .shared = 1, | |
3b0efdfa | 387 | .size = sizeof(struct kmem_cache), |
b28a02de | 388 | .name = "kmem_cache", |
1da177e4 LT |
389 | }; |
390 | ||
1871e52c | 391 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 392 | |
343e0d7a | 393 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 394 | { |
bf0dea23 | 395 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
396 | } |
397 | ||
a737b3e2 AM |
398 | /* |
399 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
400 | */ | |
70f75067 | 401 | static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
d50112ed | 402 | slab_flags_t flags, size_t *left_over) |
fbaccacf | 403 | { |
70f75067 | 404 | unsigned int num; |
fbaccacf | 405 | size_t slab_size = PAGE_SIZE << gfporder; |
1da177e4 | 406 | |
fbaccacf SR |
407 | /* |
408 | * The slab management structure can be either off the slab or | |
409 | * on it. For the latter case, the memory allocated for a | |
410 | * slab is used for: | |
411 | * | |
fbaccacf | 412 | * - @buffer_size bytes for each object |
2e6b3602 JK |
413 | * - One freelist_idx_t for each object |
414 | * | |
415 | * We don't need to consider alignment of freelist because | |
416 | * freelist will be at the end of slab page. The objects will be | |
417 | * at the correct alignment. | |
fbaccacf SR |
418 | * |
419 | * If the slab management structure is off the slab, then the | |
420 | * alignment will already be calculated into the size. Because | |
421 | * the slabs are all pages aligned, the objects will be at the | |
422 | * correct alignment when allocated. | |
423 | */ | |
b03a017b | 424 | if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
70f75067 | 425 | num = slab_size / buffer_size; |
2e6b3602 | 426 | *left_over = slab_size % buffer_size; |
fbaccacf | 427 | } else { |
70f75067 | 428 | num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
2e6b3602 JK |
429 | *left_over = slab_size % |
430 | (buffer_size + sizeof(freelist_idx_t)); | |
fbaccacf | 431 | } |
70f75067 JK |
432 | |
433 | return num; | |
1da177e4 LT |
434 | } |
435 | ||
f28510d3 | 436 | #if DEBUG |
d40cee24 | 437 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 438 | |
a737b3e2 AM |
439 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
440 | char *msg) | |
1da177e4 | 441 | { |
1170532b | 442 | pr_err("slab error in %s(): cache `%s': %s\n", |
b28a02de | 443 | function, cachep->name, msg); |
1da177e4 | 444 | dump_stack(); |
373d4d09 | 445 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 446 | } |
f28510d3 | 447 | #endif |
1da177e4 | 448 | |
3395ee05 PM |
449 | /* |
450 | * By default on NUMA we use alien caches to stage the freeing of | |
451 | * objects allocated from other nodes. This causes massive memory | |
452 | * inefficiencies when using fake NUMA setup to split memory into a | |
453 | * large number of small nodes, so it can be disabled on the command | |
454 | * line | |
455 | */ | |
456 | ||
457 | static int use_alien_caches __read_mostly = 1; | |
458 | static int __init noaliencache_setup(char *s) | |
459 | { | |
460 | use_alien_caches = 0; | |
461 | return 1; | |
462 | } | |
463 | __setup("noaliencache", noaliencache_setup); | |
464 | ||
3df1cccd DR |
465 | static int __init slab_max_order_setup(char *str) |
466 | { | |
467 | get_option(&str, &slab_max_order); | |
468 | slab_max_order = slab_max_order < 0 ? 0 : | |
469 | min(slab_max_order, MAX_ORDER - 1); | |
470 | slab_max_order_set = true; | |
471 | ||
472 | return 1; | |
473 | } | |
474 | __setup("slab_max_order=", slab_max_order_setup); | |
475 | ||
8fce4d8e CL |
476 | #ifdef CONFIG_NUMA |
477 | /* | |
478 | * Special reaping functions for NUMA systems called from cache_reap(). | |
479 | * These take care of doing round robin flushing of alien caches (containing | |
480 | * objects freed on different nodes from which they were allocated) and the | |
481 | * flushing of remote pcps by calling drain_node_pages. | |
482 | */ | |
1871e52c | 483 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
484 | |
485 | static void init_reap_node(int cpu) | |
486 | { | |
0edaf86c AM |
487 | per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
488 | node_online_map); | |
8fce4d8e CL |
489 | } |
490 | ||
491 | static void next_reap_node(void) | |
492 | { | |
909ea964 | 493 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 494 | |
0edaf86c | 495 | node = next_node_in(node, node_online_map); |
909ea964 | 496 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
497 | } |
498 | ||
499 | #else | |
500 | #define init_reap_node(cpu) do { } while (0) | |
501 | #define next_reap_node(void) do { } while (0) | |
502 | #endif | |
503 | ||
1da177e4 LT |
504 | /* |
505 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
506 | * via the workqueue/eventd. | |
507 | * Add the CPU number into the expiration time to minimize the possibility of | |
508 | * the CPUs getting into lockstep and contending for the global cache chain | |
509 | * lock. | |
510 | */ | |
0db0628d | 511 | static void start_cpu_timer(int cpu) |
1da177e4 | 512 | { |
1871e52c | 513 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 | 514 | |
eac0337a | 515 | if (reap_work->work.func == NULL) { |
8fce4d8e | 516 | init_reap_node(cpu); |
203b42f7 | 517 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
518 | schedule_delayed_work_on(cpu, reap_work, |
519 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
520 | } |
521 | } | |
522 | ||
1fe00d50 | 523 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 524 | { |
1fe00d50 JK |
525 | if (ac) { |
526 | ac->avail = 0; | |
527 | ac->limit = limit; | |
528 | ac->batchcount = batch; | |
529 | ac->touched = 0; | |
1da177e4 | 530 | } |
1fe00d50 JK |
531 | } |
532 | ||
533 | static struct array_cache *alloc_arraycache(int node, int entries, | |
534 | int batchcount, gfp_t gfp) | |
535 | { | |
5e804789 | 536 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
537 | struct array_cache *ac = NULL; |
538 | ||
539 | ac = kmalloc_node(memsize, gfp, node); | |
92d1d07d QC |
540 | /* |
541 | * The array_cache structures contain pointers to free object. | |
542 | * However, when such objects are allocated or transferred to another | |
543 | * cache the pointers are not cleared and they could be counted as | |
544 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
545 | * not scan such objects. | |
546 | */ | |
547 | kmemleak_no_scan(ac); | |
1fe00d50 JK |
548 | init_arraycache(ac, entries, batchcount); |
549 | return ac; | |
1da177e4 LT |
550 | } |
551 | ||
f68f8ddd | 552 | static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
7981e67e | 553 | struct slab *slab, void *objp) |
072bb0aa | 554 | { |
f68f8ddd | 555 | struct kmem_cache_node *n; |
7981e67e | 556 | int slab_node; |
f68f8ddd | 557 | LIST_HEAD(list); |
072bb0aa | 558 | |
7981e67e VB |
559 | slab_node = slab_nid(slab); |
560 | n = get_node(cachep, slab_node); | |
381760ea | 561 | |
f68f8ddd | 562 | spin_lock(&n->list_lock); |
7981e67e | 563 | free_block(cachep, &objp, 1, slab_node, &list); |
f68f8ddd | 564 | spin_unlock(&n->list_lock); |
381760ea | 565 | |
f68f8ddd | 566 | slabs_destroy(cachep, &list); |
072bb0aa MG |
567 | } |
568 | ||
3ded175a CL |
569 | /* |
570 | * Transfer objects in one arraycache to another. | |
571 | * Locking must be handled by the caller. | |
572 | * | |
573 | * Return the number of entries transferred. | |
574 | */ | |
575 | static int transfer_objects(struct array_cache *to, | |
576 | struct array_cache *from, unsigned int max) | |
577 | { | |
578 | /* Figure out how many entries to transfer */ | |
732eacc0 | 579 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
580 | |
581 | if (!nr) | |
582 | return 0; | |
583 | ||
0b411634 | 584 | memcpy(to->entry + to->avail, from->entry + from->avail - nr, |
3ded175a CL |
585 | sizeof(void *) *nr); |
586 | ||
587 | from->avail -= nr; | |
588 | to->avail += nr; | |
3ded175a CL |
589 | return nr; |
590 | } | |
591 | ||
dabc3e29 KC |
592 | /* &alien->lock must be held by alien callers. */ |
593 | static __always_inline void __free_one(struct array_cache *ac, void *objp) | |
594 | { | |
595 | /* Avoid trivial double-free. */ | |
596 | if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
597 | WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) | |
598 | return; | |
599 | ac->entry[ac->avail++] = objp; | |
600 | } | |
601 | ||
765c4507 CL |
602 | #ifndef CONFIG_NUMA |
603 | ||
604 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 605 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 606 | |
c8522a3a JK |
607 | static inline struct alien_cache **alloc_alien_cache(int node, |
608 | int limit, gfp_t gfp) | |
765c4507 | 609 | { |
8888177e | 610 | return NULL; |
765c4507 CL |
611 | } |
612 | ||
c8522a3a | 613 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
614 | { |
615 | } | |
616 | ||
617 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
618 | { | |
619 | return 0; | |
620 | } | |
621 | ||
4167e9b2 DR |
622 | static inline gfp_t gfp_exact_node(gfp_t flags) |
623 | { | |
444eb2a4 | 624 | return flags & ~__GFP_NOFAIL; |
4167e9b2 DR |
625 | } |
626 | ||
765c4507 CL |
627 | #else /* CONFIG_NUMA */ |
628 | ||
c8522a3a JK |
629 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
630 | int batch, gfp_t gfp) | |
631 | { | |
5e804789 | 632 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
633 | struct alien_cache *alc = NULL; |
634 | ||
635 | alc = kmalloc_node(memsize, gfp, node); | |
09c2e76e | 636 | if (alc) { |
92d1d07d | 637 | kmemleak_no_scan(alc); |
09c2e76e CL |
638 | init_arraycache(&alc->ac, entries, batch); |
639 | spin_lock_init(&alc->lock); | |
640 | } | |
c8522a3a JK |
641 | return alc; |
642 | } | |
643 | ||
644 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 645 | { |
c8522a3a | 646 | struct alien_cache **alc_ptr; |
e498be7d CL |
647 | int i; |
648 | ||
649 | if (limit > 1) | |
650 | limit = 12; | |
b9726c26 | 651 | alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); |
c8522a3a JK |
652 | if (!alc_ptr) |
653 | return NULL; | |
654 | ||
655 | for_each_node(i) { | |
656 | if (i == node || !node_online(i)) | |
657 | continue; | |
658 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
659 | if (!alc_ptr[i]) { | |
660 | for (i--; i >= 0; i--) | |
661 | kfree(alc_ptr[i]); | |
662 | kfree(alc_ptr); | |
663 | return NULL; | |
e498be7d CL |
664 | } |
665 | } | |
c8522a3a | 666 | return alc_ptr; |
e498be7d CL |
667 | } |
668 | ||
c8522a3a | 669 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
670 | { |
671 | int i; | |
672 | ||
c8522a3a | 673 | if (!alc_ptr) |
e498be7d | 674 | return; |
e498be7d | 675 | for_each_node(i) |
c8522a3a JK |
676 | kfree(alc_ptr[i]); |
677 | kfree(alc_ptr); | |
e498be7d CL |
678 | } |
679 | ||
343e0d7a | 680 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
681 | struct array_cache *ac, int node, |
682 | struct list_head *list) | |
e498be7d | 683 | { |
18bf8541 | 684 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
685 | |
686 | if (ac->avail) { | |
ce8eb6c4 | 687 | spin_lock(&n->list_lock); |
e00946fe CL |
688 | /* |
689 | * Stuff objects into the remote nodes shared array first. | |
690 | * That way we could avoid the overhead of putting the objects | |
691 | * into the free lists and getting them back later. | |
692 | */ | |
ce8eb6c4 CL |
693 | if (n->shared) |
694 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 695 | |
833b706c | 696 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 697 | ac->avail = 0; |
ce8eb6c4 | 698 | spin_unlock(&n->list_lock); |
e498be7d CL |
699 | } |
700 | } | |
701 | ||
8fce4d8e CL |
702 | /* |
703 | * Called from cache_reap() to regularly drain alien caches round robin. | |
704 | */ | |
ce8eb6c4 | 705 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 706 | { |
909ea964 | 707 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 708 | |
ce8eb6c4 | 709 | if (n->alien) { |
c8522a3a JK |
710 | struct alien_cache *alc = n->alien[node]; |
711 | struct array_cache *ac; | |
712 | ||
713 | if (alc) { | |
714 | ac = &alc->ac; | |
49dfc304 | 715 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
716 | LIST_HEAD(list); |
717 | ||
718 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 719 | spin_unlock_irq(&alc->lock); |
833b706c | 720 | slabs_destroy(cachep, &list); |
c8522a3a | 721 | } |
8fce4d8e CL |
722 | } |
723 | } | |
724 | } | |
725 | ||
a737b3e2 | 726 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 727 | struct alien_cache **alien) |
e498be7d | 728 | { |
b28a02de | 729 | int i = 0; |
c8522a3a | 730 | struct alien_cache *alc; |
e498be7d CL |
731 | struct array_cache *ac; |
732 | unsigned long flags; | |
733 | ||
734 | for_each_online_node(i) { | |
c8522a3a JK |
735 | alc = alien[i]; |
736 | if (alc) { | |
833b706c JK |
737 | LIST_HEAD(list); |
738 | ||
c8522a3a | 739 | ac = &alc->ac; |
49dfc304 | 740 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 741 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 742 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 743 | slabs_destroy(cachep, &list); |
e498be7d CL |
744 | } |
745 | } | |
746 | } | |
729bd0b7 | 747 | |
25c4f304 | 748 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
7981e67e | 749 | int node, int slab_node) |
729bd0b7 | 750 | { |
ce8eb6c4 | 751 | struct kmem_cache_node *n; |
c8522a3a JK |
752 | struct alien_cache *alien = NULL; |
753 | struct array_cache *ac; | |
97654dfa | 754 | LIST_HEAD(list); |
1ca4cb24 | 755 | |
18bf8541 | 756 | n = get_node(cachep, node); |
729bd0b7 | 757 | STATS_INC_NODEFREES(cachep); |
7981e67e VB |
758 | if (n->alien && n->alien[slab_node]) { |
759 | alien = n->alien[slab_node]; | |
c8522a3a | 760 | ac = &alien->ac; |
49dfc304 | 761 | spin_lock(&alien->lock); |
c8522a3a | 762 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 763 | STATS_INC_ACOVERFLOW(cachep); |
7981e67e | 764 | __drain_alien_cache(cachep, ac, slab_node, &list); |
729bd0b7 | 765 | } |
dabc3e29 | 766 | __free_one(ac, objp); |
49dfc304 | 767 | spin_unlock(&alien->lock); |
833b706c | 768 | slabs_destroy(cachep, &list); |
729bd0b7 | 769 | } else { |
7981e67e | 770 | n = get_node(cachep, slab_node); |
18bf8541 | 771 | spin_lock(&n->list_lock); |
7981e67e | 772 | free_block(cachep, &objp, 1, slab_node, &list); |
18bf8541 | 773 | spin_unlock(&n->list_lock); |
97654dfa | 774 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
775 | } |
776 | return 1; | |
777 | } | |
25c4f304 JK |
778 | |
779 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
780 | { | |
dd35f71a | 781 | int slab_node = slab_nid(virt_to_slab(objp)); |
25c4f304 JK |
782 | int node = numa_mem_id(); |
783 | /* | |
a8f23dd1 | 784 | * Make sure we are not freeing an object from another node to the array |
25c4f304 JK |
785 | * cache on this cpu. |
786 | */ | |
dd35f71a | 787 | if (likely(node == slab_node)) |
25c4f304 JK |
788 | return 0; |
789 | ||
dd35f71a | 790 | return __cache_free_alien(cachep, objp, node, slab_node); |
25c4f304 | 791 | } |
4167e9b2 DR |
792 | |
793 | /* | |
444eb2a4 MG |
794 | * Construct gfp mask to allocate from a specific node but do not reclaim or |
795 | * warn about failures. | |
4167e9b2 DR |
796 | */ |
797 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
798 | { | |
444eb2a4 | 799 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
4167e9b2 | 800 | } |
e498be7d CL |
801 | #endif |
802 | ||
ded0ecf6 JK |
803 | static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
804 | { | |
805 | struct kmem_cache_node *n; | |
806 | ||
807 | /* | |
808 | * Set up the kmem_cache_node for cpu before we can | |
809 | * begin anything. Make sure some other cpu on this | |
810 | * node has not already allocated this | |
811 | */ | |
812 | n = get_node(cachep, node); | |
813 | if (n) { | |
814 | spin_lock_irq(&n->list_lock); | |
815 | n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + | |
816 | cachep->num; | |
817 | spin_unlock_irq(&n->list_lock); | |
818 | ||
819 | return 0; | |
820 | } | |
821 | ||
822 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | |
823 | if (!n) | |
824 | return -ENOMEM; | |
825 | ||
826 | kmem_cache_node_init(n); | |
827 | n->next_reap = jiffies + REAPTIMEOUT_NODE + | |
828 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
829 | ||
830 | n->free_limit = | |
831 | (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; | |
832 | ||
833 | /* | |
834 | * The kmem_cache_nodes don't come and go as CPUs | |
a8f23dd1 | 835 | * come and go. slab_mutex provides sufficient |
ded0ecf6 JK |
836 | * protection here. |
837 | */ | |
838 | cachep->node[node] = n; | |
839 | ||
840 | return 0; | |
841 | } | |
842 | ||
6731d4f1 | 843 | #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) |
8f9f8d9e | 844 | /* |
6a67368c | 845 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 846 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 847 | * will be allocated off-node since memory is not yet online for the new node. |
a8f23dd1 | 848 | * When hotplugging memory or a cpu, existing nodes are not replaced if |
8f9f8d9e DR |
849 | * already in use. |
850 | * | |
18004c5d | 851 | * Must hold slab_mutex. |
8f9f8d9e | 852 | */ |
6a67368c | 853 | static int init_cache_node_node(int node) |
8f9f8d9e | 854 | { |
ded0ecf6 | 855 | int ret; |
8f9f8d9e | 856 | struct kmem_cache *cachep; |
8f9f8d9e | 857 | |
18004c5d | 858 | list_for_each_entry(cachep, &slab_caches, list) { |
ded0ecf6 JK |
859 | ret = init_cache_node(cachep, node, GFP_KERNEL); |
860 | if (ret) | |
861 | return ret; | |
8f9f8d9e | 862 | } |
ded0ecf6 | 863 | |
8f9f8d9e DR |
864 | return 0; |
865 | } | |
6731d4f1 | 866 | #endif |
8f9f8d9e | 867 | |
c3d332b6 JK |
868 | static int setup_kmem_cache_node(struct kmem_cache *cachep, |
869 | int node, gfp_t gfp, bool force_change) | |
870 | { | |
871 | int ret = -ENOMEM; | |
872 | struct kmem_cache_node *n; | |
873 | struct array_cache *old_shared = NULL; | |
874 | struct array_cache *new_shared = NULL; | |
875 | struct alien_cache **new_alien = NULL; | |
876 | LIST_HEAD(list); | |
877 | ||
878 | if (use_alien_caches) { | |
879 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
880 | if (!new_alien) | |
881 | goto fail; | |
882 | } | |
883 | ||
884 | if (cachep->shared) { | |
885 | new_shared = alloc_arraycache(node, | |
886 | cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); | |
887 | if (!new_shared) | |
888 | goto fail; | |
889 | } | |
890 | ||
891 | ret = init_cache_node(cachep, node, gfp); | |
892 | if (ret) | |
893 | goto fail; | |
894 | ||
895 | n = get_node(cachep, node); | |
896 | spin_lock_irq(&n->list_lock); | |
897 | if (n->shared && force_change) { | |
898 | free_block(cachep, n->shared->entry, | |
899 | n->shared->avail, node, &list); | |
900 | n->shared->avail = 0; | |
901 | } | |
902 | ||
903 | if (!n->shared || force_change) { | |
904 | old_shared = n->shared; | |
905 | n->shared = new_shared; | |
906 | new_shared = NULL; | |
907 | } | |
908 | ||
909 | if (!n->alien) { | |
910 | n->alien = new_alien; | |
911 | new_alien = NULL; | |
912 | } | |
913 | ||
914 | spin_unlock_irq(&n->list_lock); | |
915 | slabs_destroy(cachep, &list); | |
916 | ||
801faf0d JK |
917 | /* |
918 | * To protect lockless access to n->shared during irq disabled context. | |
919 | * If n->shared isn't NULL in irq disabled context, accessing to it is | |
920 | * guaranteed to be valid until irq is re-enabled, because it will be | |
6564a25e | 921 | * freed after synchronize_rcu(). |
801faf0d | 922 | */ |
86d9f485 | 923 | if (old_shared && force_change) |
6564a25e | 924 | synchronize_rcu(); |
801faf0d | 925 | |
c3d332b6 JK |
926 | fail: |
927 | kfree(old_shared); | |
928 | kfree(new_shared); | |
929 | free_alien_cache(new_alien); | |
930 | ||
931 | return ret; | |
932 | } | |
933 | ||
6731d4f1 SAS |
934 | #ifdef CONFIG_SMP |
935 | ||
0db0628d | 936 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
937 | { |
938 | struct kmem_cache *cachep; | |
ce8eb6c4 | 939 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 940 | int node = cpu_to_mem(cpu); |
a70f7302 | 941 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 942 | |
18004c5d | 943 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
944 | struct array_cache *nc; |
945 | struct array_cache *shared; | |
c8522a3a | 946 | struct alien_cache **alien; |
97654dfa | 947 | LIST_HEAD(list); |
fbf1e473 | 948 | |
18bf8541 | 949 | n = get_node(cachep, node); |
ce8eb6c4 | 950 | if (!n) |
bf0dea23 | 951 | continue; |
fbf1e473 | 952 | |
ce8eb6c4 | 953 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 954 | |
ce8eb6c4 CL |
955 | /* Free limit for this kmem_cache_node */ |
956 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
957 | |
958 | /* cpu is dead; no one can alloc from it. */ | |
959 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
517f9f1e LR |
960 | free_block(cachep, nc->entry, nc->avail, node, &list); |
961 | nc->avail = 0; | |
fbf1e473 | 962 | |
58463c1f | 963 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 964 | spin_unlock_irq(&n->list_lock); |
bf0dea23 | 965 | goto free_slab; |
fbf1e473 AM |
966 | } |
967 | ||
ce8eb6c4 | 968 | shared = n->shared; |
fbf1e473 AM |
969 | if (shared) { |
970 | free_block(cachep, shared->entry, | |
97654dfa | 971 | shared->avail, node, &list); |
ce8eb6c4 | 972 | n->shared = NULL; |
fbf1e473 AM |
973 | } |
974 | ||
ce8eb6c4 CL |
975 | alien = n->alien; |
976 | n->alien = NULL; | |
fbf1e473 | 977 | |
ce8eb6c4 | 978 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
979 | |
980 | kfree(shared); | |
981 | if (alien) { | |
982 | drain_alien_cache(cachep, alien); | |
983 | free_alien_cache(alien); | |
984 | } | |
bf0dea23 JK |
985 | |
986 | free_slab: | |
97654dfa | 987 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
988 | } |
989 | /* | |
990 | * In the previous loop, all the objects were freed to | |
991 | * the respective cache's slabs, now we can go ahead and | |
992 | * shrink each nodelist to its limit. | |
993 | */ | |
18004c5d | 994 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 995 | n = get_node(cachep, node); |
ce8eb6c4 | 996 | if (!n) |
fbf1e473 | 997 | continue; |
a5aa63a5 | 998 | drain_freelist(cachep, n, INT_MAX); |
fbf1e473 AM |
999 | } |
1000 | } | |
1001 | ||
0db0628d | 1002 | static int cpuup_prepare(long cpu) |
1da177e4 | 1003 | { |
343e0d7a | 1004 | struct kmem_cache *cachep; |
7d6e6d09 | 1005 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1006 | int err; |
1da177e4 | 1007 | |
fbf1e473 AM |
1008 | /* |
1009 | * We need to do this right in the beginning since | |
1010 | * alloc_arraycache's are going to use this list. | |
1011 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1012 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1013 | */ |
6a67368c | 1014 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1015 | if (err < 0) |
1016 | goto bad; | |
fbf1e473 AM |
1017 | |
1018 | /* | |
1019 | * Now we can go ahead with allocating the shared arrays and | |
1020 | * array caches | |
1021 | */ | |
18004c5d | 1022 | list_for_each_entry(cachep, &slab_caches, list) { |
c3d332b6 JK |
1023 | err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
1024 | if (err) | |
1025 | goto bad; | |
fbf1e473 | 1026 | } |
ce79ddc8 | 1027 | |
fbf1e473 AM |
1028 | return 0; |
1029 | bad: | |
12d00f6a | 1030 | cpuup_canceled(cpu); |
fbf1e473 AM |
1031 | return -ENOMEM; |
1032 | } | |
1033 | ||
6731d4f1 | 1034 | int slab_prepare_cpu(unsigned int cpu) |
fbf1e473 | 1035 | { |
6731d4f1 | 1036 | int err; |
fbf1e473 | 1037 | |
6731d4f1 SAS |
1038 | mutex_lock(&slab_mutex); |
1039 | err = cpuup_prepare(cpu); | |
1040 | mutex_unlock(&slab_mutex); | |
1041 | return err; | |
1042 | } | |
1043 | ||
1044 | /* | |
1045 | * This is called for a failed online attempt and for a successful | |
1046 | * offline. | |
1047 | * | |
1048 | * Even if all the cpus of a node are down, we don't free the | |
a8f23dd1 | 1049 | * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and |
6731d4f1 | 1050 | * a kmalloc allocation from another cpu for memory from the node of |
70b6d25e | 1051 | * the cpu going down. The kmem_cache_node structure is usually allocated from |
6731d4f1 SAS |
1052 | * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). |
1053 | */ | |
1054 | int slab_dead_cpu(unsigned int cpu) | |
1055 | { | |
1056 | mutex_lock(&slab_mutex); | |
1057 | cpuup_canceled(cpu); | |
1058 | mutex_unlock(&slab_mutex); | |
1059 | return 0; | |
1060 | } | |
8f5be20b | 1061 | #endif |
6731d4f1 SAS |
1062 | |
1063 | static int slab_online_cpu(unsigned int cpu) | |
1064 | { | |
1065 | start_cpu_timer(cpu); | |
1066 | return 0; | |
1da177e4 LT |
1067 | } |
1068 | ||
6731d4f1 SAS |
1069 | static int slab_offline_cpu(unsigned int cpu) |
1070 | { | |
1071 | /* | |
1072 | * Shutdown cache reaper. Note that the slab_mutex is held so | |
1073 | * that if cache_reap() is invoked it cannot do anything | |
1074 | * expensive but will only modify reap_work and reschedule the | |
1075 | * timer. | |
1076 | */ | |
1077 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | |
1078 | /* Now the cache_reaper is guaranteed to be not running. */ | |
1079 | per_cpu(slab_reap_work, cpu).work.func = NULL; | |
1080 | return 0; | |
1081 | } | |
1da177e4 | 1082 | |
76af6a05 | 1083 | #if defined(CONFIG_NUMA) |
8f9f8d9e DR |
1084 | /* |
1085 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1086 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1087 | * removed. | |
1088 | * | |
18004c5d | 1089 | * Must hold slab_mutex. |
8f9f8d9e | 1090 | */ |
6a67368c | 1091 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1092 | { |
1093 | struct kmem_cache *cachep; | |
1094 | int ret = 0; | |
1095 | ||
18004c5d | 1096 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1097 | struct kmem_cache_node *n; |
8f9f8d9e | 1098 | |
18bf8541 | 1099 | n = get_node(cachep, node); |
ce8eb6c4 | 1100 | if (!n) |
8f9f8d9e DR |
1101 | continue; |
1102 | ||
a5aa63a5 | 1103 | drain_freelist(cachep, n, INT_MAX); |
8f9f8d9e | 1104 | |
ce8eb6c4 CL |
1105 | if (!list_empty(&n->slabs_full) || |
1106 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1107 | ret = -EBUSY; |
1108 | break; | |
1109 | } | |
1110 | } | |
1111 | return ret; | |
1112 | } | |
1113 | ||
1114 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1115 | unsigned long action, void *arg) | |
1116 | { | |
1117 | struct memory_notify *mnb = arg; | |
1118 | int ret = 0; | |
1119 | int nid; | |
1120 | ||
1121 | nid = mnb->status_change_nid; | |
1122 | if (nid < 0) | |
1123 | goto out; | |
1124 | ||
1125 | switch (action) { | |
1126 | case MEM_GOING_ONLINE: | |
18004c5d | 1127 | mutex_lock(&slab_mutex); |
6a67368c | 1128 | ret = init_cache_node_node(nid); |
18004c5d | 1129 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1130 | break; |
1131 | case MEM_GOING_OFFLINE: | |
18004c5d | 1132 | mutex_lock(&slab_mutex); |
6a67368c | 1133 | ret = drain_cache_node_node(nid); |
18004c5d | 1134 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1135 | break; |
1136 | case MEM_ONLINE: | |
1137 | case MEM_OFFLINE: | |
1138 | case MEM_CANCEL_ONLINE: | |
1139 | case MEM_CANCEL_OFFLINE: | |
1140 | break; | |
1141 | } | |
1142 | out: | |
5fda1bd5 | 1143 | return notifier_from_errno(ret); |
8f9f8d9e | 1144 | } |
76af6a05 | 1145 | #endif /* CONFIG_NUMA */ |
8f9f8d9e | 1146 | |
e498be7d | 1147 | /* |
ce8eb6c4 | 1148 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1149 | */ |
6744f087 | 1150 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1151 | int nodeid) |
e498be7d | 1152 | { |
6744f087 | 1153 | struct kmem_cache_node *ptr; |
e498be7d | 1154 | |
6744f087 | 1155 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1156 | BUG_ON(!ptr); |
1157 | ||
6744f087 | 1158 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1159 | /* |
1160 | * Do not assume that spinlocks can be initialized via memcpy: | |
1161 | */ | |
1162 | spin_lock_init(&ptr->list_lock); | |
1163 | ||
e498be7d | 1164 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1165 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1166 | } |
1167 | ||
556a169d | 1168 | /* |
ce8eb6c4 CL |
1169 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1170 | * size of kmem_cache_node. | |
556a169d | 1171 | */ |
ce8eb6c4 | 1172 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1173 | { |
1174 | int node; | |
1175 | ||
1176 | for_each_online_node(node) { | |
ce8eb6c4 | 1177 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1178 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1179 | REAPTIMEOUT_NODE + |
1180 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1181 | } |
1182 | } | |
1183 | ||
a737b3e2 AM |
1184 | /* |
1185 | * Initialisation. Called after the page allocator have been initialised and | |
1186 | * before smp_init(). | |
1da177e4 LT |
1187 | */ |
1188 | void __init kmem_cache_init(void) | |
1189 | { | |
e498be7d CL |
1190 | int i; |
1191 | ||
9b030cb8 CL |
1192 | kmem_cache = &kmem_cache_boot; |
1193 | ||
8888177e | 1194 | if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
62918a03 SS |
1195 | use_alien_caches = 0; |
1196 | ||
3c583465 | 1197 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1198 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1199 | |
1da177e4 LT |
1200 | /* |
1201 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1202 | * page orders on machines with more than 32MB of memory if |
1203 | * not overridden on the command line. | |
1da177e4 | 1204 | */ |
ca79b0c2 | 1205 | if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1206 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1207 | |
1da177e4 LT |
1208 | /* Bootstrap is tricky, because several objects are allocated |
1209 | * from caches that do not exist yet: | |
9b030cb8 CL |
1210 | * 1) initialize the kmem_cache cache: it contains the struct |
1211 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1212 | * kmem_cache is statically allocated. | |
e498be7d | 1213 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1214 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1215 | * array at the end of the bootstrap. |
1da177e4 | 1216 | * 2) Create the first kmalloc cache. |
343e0d7a | 1217 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1218 | * An __init data area is used for the head array. |
1219 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1220 | * head arrays. | |
9b030cb8 | 1221 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1222 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1223 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1224 | * the other cache's with kmalloc allocated memory. |
1225 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1226 | */ |
1227 | ||
9b030cb8 | 1228 | /* 1) create the kmem_cache */ |
1da177e4 | 1229 | |
8da3430d | 1230 | /* |
b56efcf0 | 1231 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1232 | */ |
2f9baa9f | 1233 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1234 | offsetof(struct kmem_cache, node) + |
6744f087 | 1235 | nr_node_ids * sizeof(struct kmem_cache_node *), |
8eb8284b | 1236 | SLAB_HWCACHE_ALIGN, 0, 0); |
2f9baa9f | 1237 | list_add(&kmem_cache->list, &slab_caches); |
bf0dea23 | 1238 | slab_state = PARTIAL; |
1da177e4 | 1239 | |
a737b3e2 | 1240 | /* |
bf0dea23 JK |
1241 | * Initialize the caches that provide memory for the kmem_cache_node |
1242 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1243 | */ |
cc252eae | 1244 | kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( |
cb5d9fb3 | 1245 | kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], |
dc0a7f75 PL |
1246 | kmalloc_info[INDEX_NODE].size, |
1247 | ARCH_KMALLOC_FLAGS, 0, | |
1248 | kmalloc_info[INDEX_NODE].size); | |
bf0dea23 | 1249 | slab_state = PARTIAL_NODE; |
34cc6990 | 1250 | setup_kmalloc_cache_index_table(); |
e498be7d | 1251 | |
e0a42726 IM |
1252 | slab_early_init = 0; |
1253 | ||
ce8eb6c4 | 1254 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1255 | { |
1ca4cb24 PE |
1256 | int nid; |
1257 | ||
9c09a95c | 1258 | for_each_online_node(nid) { |
ce8eb6c4 | 1259 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1260 | |
cc252eae | 1261 | init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], |
ce8eb6c4 | 1262 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1263 | } |
1264 | } | |
1da177e4 | 1265 | |
f97d5f63 | 1266 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1267 | } |
1268 | ||
1269 | void __init kmem_cache_init_late(void) | |
1270 | { | |
1271 | struct kmem_cache *cachep; | |
1272 | ||
8429db5c | 1273 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1274 | mutex_lock(&slab_mutex); |
1275 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1276 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1277 | BUG(); | |
18004c5d | 1278 | mutex_unlock(&slab_mutex); |
056c6241 | 1279 | |
97d06609 CL |
1280 | /* Done! */ |
1281 | slab_state = FULL; | |
1282 | ||
8f9f8d9e DR |
1283 | #ifdef CONFIG_NUMA |
1284 | /* | |
1285 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1286 | * node. |
8f9f8d9e DR |
1287 | */ |
1288 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1289 | #endif | |
1290 | ||
a737b3e2 AM |
1291 | /* |
1292 | * The reap timers are started later, with a module init call: That part | |
1293 | * of the kernel is not yet operational. | |
1da177e4 LT |
1294 | */ |
1295 | } | |
1296 | ||
1297 | static int __init cpucache_init(void) | |
1298 | { | |
6731d4f1 | 1299 | int ret; |
1da177e4 | 1300 | |
a737b3e2 AM |
1301 | /* |
1302 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1303 | */ |
6731d4f1 SAS |
1304 | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", |
1305 | slab_online_cpu, slab_offline_cpu); | |
1306 | WARN_ON(ret < 0); | |
a164f896 | 1307 | |
1da177e4 LT |
1308 | return 0; |
1309 | } | |
1da177e4 LT |
1310 | __initcall(cpucache_init); |
1311 | ||
8bdec192 RA |
1312 | static noinline void |
1313 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1314 | { | |
9a02d699 | 1315 | #if DEBUG |
ce8eb6c4 | 1316 | struct kmem_cache_node *n; |
8bdec192 RA |
1317 | unsigned long flags; |
1318 | int node; | |
9a02d699 DR |
1319 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1320 | DEFAULT_RATELIMIT_BURST); | |
1321 | ||
1322 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1323 | return; | |
8bdec192 | 1324 | |
5b3810e5 VB |
1325 | pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
1326 | nodeid, gfpflags, &gfpflags); | |
1327 | pr_warn(" cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1328 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1329 | |
18bf8541 | 1330 | for_each_kmem_cache_node(cachep, node, n) { |
bf00bd34 | 1331 | unsigned long total_slabs, free_slabs, free_objs; |
8bdec192 | 1332 | |
ce8eb6c4 | 1333 | spin_lock_irqsave(&n->list_lock, flags); |
bf00bd34 DR |
1334 | total_slabs = n->total_slabs; |
1335 | free_slabs = n->free_slabs; | |
1336 | free_objs = n->free_objects; | |
ce8eb6c4 | 1337 | spin_unlock_irqrestore(&n->list_lock, flags); |
8bdec192 | 1338 | |
bf00bd34 DR |
1339 | pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", |
1340 | node, total_slabs - free_slabs, total_slabs, | |
1341 | (total_slabs * cachep->num) - free_objs, | |
1342 | total_slabs * cachep->num); | |
8bdec192 | 1343 | } |
9a02d699 | 1344 | #endif |
8bdec192 RA |
1345 | } |
1346 | ||
1da177e4 | 1347 | /* |
8a7d9b43 WSH |
1348 | * Interface to system's page allocator. No need to hold the |
1349 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1350 | * |
1351 | * If we requested dmaable memory, we will get it. Even if we | |
1352 | * did not request dmaable memory, we might get it, but that | |
1353 | * would be relatively rare and ignorable. | |
1354 | */ | |
42c0faac | 1355 | static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
0c3aa83e | 1356 | int nodeid) |
1da177e4 | 1357 | { |
42c0faac VB |
1358 | struct folio *folio; |
1359 | struct slab *slab; | |
765c4507 | 1360 | |
a618e89f | 1361 | flags |= cachep->allocflags; |
e1b6aa6f | 1362 | |
42c0faac VB |
1363 | folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); |
1364 | if (!folio) { | |
9a02d699 | 1365 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1366 | return NULL; |
8bdec192 | 1367 | } |
1da177e4 | 1368 | |
42c0faac VB |
1369 | slab = folio_slab(folio); |
1370 | ||
1371 | account_slab(slab, cachep->gfporder, cachep, flags); | |
1372 | __folio_set_slab(folio); | |
f68f8ddd | 1373 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
42c0faac VB |
1374 | if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0))) |
1375 | slab_set_pfmemalloc(slab); | |
072bb0aa | 1376 | |
42c0faac | 1377 | return slab; |
1da177e4 LT |
1378 | } |
1379 | ||
1380 | /* | |
1381 | * Interface to system's page release. | |
1382 | */ | |
42c0faac | 1383 | static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) |
1da177e4 | 1384 | { |
27ee57c9 | 1385 | int order = cachep->gfporder; |
42c0faac | 1386 | struct folio *folio = slab_folio(slab); |
73293c2f | 1387 | |
42c0faac VB |
1388 | BUG_ON(!folio_test_slab(folio)); |
1389 | __slab_clear_pfmemalloc(slab); | |
1390 | __folio_clear_slab(folio); | |
1391 | page_mapcount_reset(folio_page(folio, 0)); | |
1392 | folio->mapping = NULL; | |
1f458cbf | 1393 | |
1da177e4 | 1394 | if (current->reclaim_state) |
6cea1d56 | 1395 | current->reclaim_state->reclaimed_slab += 1 << order; |
42c0faac VB |
1396 | unaccount_slab(slab, order, cachep); |
1397 | __free_pages(folio_page(folio, 0), order); | |
1da177e4 LT |
1398 | } |
1399 | ||
1400 | static void kmem_rcu_free(struct rcu_head *head) | |
1401 | { | |
68126702 | 1402 | struct kmem_cache *cachep; |
42c0faac | 1403 | struct slab *slab; |
1da177e4 | 1404 | |
42c0faac VB |
1405 | slab = container_of(head, struct slab, rcu_head); |
1406 | cachep = slab->slab_cache; | |
68126702 | 1407 | |
42c0faac | 1408 | kmem_freepages(cachep, slab); |
1da177e4 LT |
1409 | } |
1410 | ||
1411 | #if DEBUG | |
40b44137 JK |
1412 | static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
1413 | { | |
8e57f8ac | 1414 | if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && |
40b44137 JK |
1415 | (cachep->size % PAGE_SIZE) == 0) |
1416 | return true; | |
1417 | ||
1418 | return false; | |
1419 | } | |
1da177e4 LT |
1420 | |
1421 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
80552f0f | 1422 | static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) |
40b44137 JK |
1423 | { |
1424 | if (!is_debug_pagealloc_cache(cachep)) | |
1425 | return; | |
1426 | ||
77bc7fd6 | 1427 | __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); |
40b44137 JK |
1428 | } |
1429 | ||
1430 | #else | |
1431 | static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
80552f0f | 1432 | int map) {} |
40b44137 | 1433 | |
1da177e4 LT |
1434 | #endif |
1435 | ||
343e0d7a | 1436 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1437 | { |
8c138bc0 | 1438 | int size = cachep->object_size; |
3dafccf2 | 1439 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1440 | |
1441 | memset(addr, val, size); | |
b28a02de | 1442 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1443 | } |
1444 | ||
1445 | static void dump_line(char *data, int offset, int limit) | |
1446 | { | |
1447 | int i; | |
aa83aa40 DJ |
1448 | unsigned char error = 0; |
1449 | int bad_count = 0; | |
1450 | ||
1170532b | 1451 | pr_err("%03x: ", offset); |
aa83aa40 DJ |
1452 | for (i = 0; i < limit; i++) { |
1453 | if (data[offset + i] != POISON_FREE) { | |
1454 | error = data[offset + i]; | |
1455 | bad_count++; | |
1456 | } | |
aa83aa40 | 1457 | } |
fdde6abb SAS |
1458 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1459 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1460 | |
1461 | if (bad_count == 1) { | |
1462 | error ^= POISON_FREE; | |
1463 | if (!(error & (error - 1))) { | |
1170532b | 1464 | pr_err("Single bit error detected. Probably bad RAM.\n"); |
aa83aa40 | 1465 | #ifdef CONFIG_X86 |
1170532b | 1466 | pr_err("Run memtest86+ or a similar memory test tool.\n"); |
aa83aa40 | 1467 | #else |
1170532b | 1468 | pr_err("Run a memory test tool.\n"); |
aa83aa40 DJ |
1469 | #endif |
1470 | } | |
1471 | } | |
1da177e4 LT |
1472 | } |
1473 | #endif | |
1474 | ||
1475 | #if DEBUG | |
1476 | ||
343e0d7a | 1477 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1478 | { |
1479 | int i, size; | |
1480 | char *realobj; | |
1481 | ||
1482 | if (cachep->flags & SLAB_RED_ZONE) { | |
1170532b JP |
1483 | pr_err("Redzone: 0x%llx/0x%llx\n", |
1484 | *dbg_redzone1(cachep, objp), | |
1485 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1486 | } |
1487 | ||
85c3e4a5 GU |
1488 | if (cachep->flags & SLAB_STORE_USER) |
1489 | pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); | |
3dafccf2 | 1490 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1491 | size = cachep->object_size; |
b28a02de | 1492 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1493 | int limit; |
1494 | limit = 16; | |
b28a02de PE |
1495 | if (i + limit > size) |
1496 | limit = size - i; | |
1da177e4 LT |
1497 | dump_line(realobj, i, limit); |
1498 | } | |
1499 | } | |
1500 | ||
343e0d7a | 1501 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1502 | { |
1503 | char *realobj; | |
1504 | int size, i; | |
1505 | int lines = 0; | |
1506 | ||
40b44137 JK |
1507 | if (is_debug_pagealloc_cache(cachep)) |
1508 | return; | |
1509 | ||
3dafccf2 | 1510 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1511 | size = cachep->object_size; |
1da177e4 | 1512 | |
b28a02de | 1513 | for (i = 0; i < size; i++) { |
1da177e4 | 1514 | char exp = POISON_FREE; |
b28a02de | 1515 | if (i == size - 1) |
1da177e4 LT |
1516 | exp = POISON_END; |
1517 | if (realobj[i] != exp) { | |
1518 | int limit; | |
1519 | /* Mismatch ! */ | |
1520 | /* Print header */ | |
1521 | if (lines == 0) { | |
85c3e4a5 | 1522 | pr_err("Slab corruption (%s): %s start=%px, len=%d\n", |
1170532b JP |
1523 | print_tainted(), cachep->name, |
1524 | realobj, size); | |
1da177e4 LT |
1525 | print_objinfo(cachep, objp, 0); |
1526 | } | |
1527 | /* Hexdump the affected line */ | |
b28a02de | 1528 | i = (i / 16) * 16; |
1da177e4 | 1529 | limit = 16; |
b28a02de PE |
1530 | if (i + limit > size) |
1531 | limit = size - i; | |
1da177e4 LT |
1532 | dump_line(realobj, i, limit); |
1533 | i += 16; | |
1534 | lines++; | |
1535 | /* Limit to 5 lines */ | |
1536 | if (lines > 5) | |
1537 | break; | |
1538 | } | |
1539 | } | |
1540 | if (lines != 0) { | |
1541 | /* Print some data about the neighboring objects, if they | |
1542 | * exist: | |
1543 | */ | |
7981e67e | 1544 | struct slab *slab = virt_to_slab(objp); |
8fea4e96 | 1545 | unsigned int objnr; |
1da177e4 | 1546 | |
40f3bf0c | 1547 | objnr = obj_to_index(cachep, slab, objp); |
1da177e4 | 1548 | if (objnr) { |
7981e67e | 1549 | objp = index_to_obj(cachep, slab, objnr - 1); |
3dafccf2 | 1550 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1551 | pr_err("Prev obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1552 | print_objinfo(cachep, objp, 2); |
1553 | } | |
b28a02de | 1554 | if (objnr + 1 < cachep->num) { |
7981e67e | 1555 | objp = index_to_obj(cachep, slab, objnr + 1); |
3dafccf2 | 1556 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1557 | pr_err("Next obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1558 | print_objinfo(cachep, objp, 2); |
1559 | } | |
1560 | } | |
1561 | } | |
1562 | #endif | |
1563 | ||
12dd36fa | 1564 | #if DEBUG |
8456a648 | 1565 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
7981e67e | 1566 | struct slab *slab) |
1da177e4 | 1567 | { |
1da177e4 | 1568 | int i; |
b03a017b JK |
1569 | |
1570 | if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { | |
7981e67e | 1571 | poison_obj(cachep, slab->freelist - obj_offset(cachep), |
b03a017b JK |
1572 | POISON_FREE); |
1573 | } | |
1574 | ||
1da177e4 | 1575 | for (i = 0; i < cachep->num; i++) { |
7981e67e | 1576 | void *objp = index_to_obj(cachep, slab, i); |
1da177e4 LT |
1577 | |
1578 | if (cachep->flags & SLAB_POISON) { | |
1da177e4 | 1579 | check_poison_obj(cachep, objp); |
80552f0f | 1580 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
1581 | } |
1582 | if (cachep->flags & SLAB_RED_ZONE) { | |
1583 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
756a025f | 1584 | slab_error(cachep, "start of a freed object was overwritten"); |
1da177e4 | 1585 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
756a025f | 1586 | slab_error(cachep, "end of a freed object was overwritten"); |
1da177e4 | 1587 | } |
1da177e4 | 1588 | } |
12dd36fa | 1589 | } |
1da177e4 | 1590 | #else |
8456a648 | 1591 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
7981e67e | 1592 | struct slab *slab) |
12dd36fa | 1593 | { |
12dd36fa | 1594 | } |
1da177e4 LT |
1595 | #endif |
1596 | ||
911851e6 RD |
1597 | /** |
1598 | * slab_destroy - destroy and release all objects in a slab | |
1599 | * @cachep: cache pointer being destroyed | |
dd35f71a | 1600 | * @slab: slab being destroyed |
911851e6 | 1601 | * |
dd35f71a VB |
1602 | * Destroy all the objs in a slab, and release the mem back to the system. |
1603 | * Before calling the slab must have been unlinked from the cache. The | |
8a7d9b43 | 1604 | * kmem_cache_node ->list_lock is not held/needed. |
12dd36fa | 1605 | */ |
7981e67e | 1606 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) |
12dd36fa | 1607 | { |
7e007355 | 1608 | void *freelist; |
12dd36fa | 1609 | |
7981e67e VB |
1610 | freelist = slab->freelist; |
1611 | slab_destroy_debugcheck(cachep, slab); | |
5f0d5a3a | 1612 | if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) |
7981e67e | 1613 | call_rcu(&slab->rcu_head, kmem_rcu_free); |
bc4f610d | 1614 | else |
7981e67e | 1615 | kmem_freepages(cachep, slab); |
68126702 JK |
1616 | |
1617 | /* | |
8456a648 | 1618 | * From now on, we don't use freelist |
68126702 JK |
1619 | * although actual page can be freed in rcu context |
1620 | */ | |
1621 | if (OFF_SLAB(cachep)) | |
8456a648 | 1622 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
1623 | } |
1624 | ||
678ff6a7 SB |
1625 | /* |
1626 | * Update the size of the caches before calling slabs_destroy as it may | |
1627 | * recursively call kfree. | |
1628 | */ | |
97654dfa JK |
1629 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1630 | { | |
7981e67e | 1631 | struct slab *slab, *n; |
97654dfa | 1632 | |
7981e67e VB |
1633 | list_for_each_entry_safe(slab, n, list, slab_list) { |
1634 | list_del(&slab->slab_list); | |
1635 | slab_destroy(cachep, slab); | |
97654dfa JK |
1636 | } |
1637 | } | |
1638 | ||
4d268eba | 1639 | /** |
a70773dd RD |
1640 | * calculate_slab_order - calculate size (page order) of slabs |
1641 | * @cachep: pointer to the cache that is being created | |
1642 | * @size: size of objects to be created in this cache. | |
a70773dd RD |
1643 | * @flags: slab allocation flags |
1644 | * | |
1645 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1646 | * |
1647 | * This could be made much more intelligent. For now, try to avoid using | |
1648 | * high order pages for slabs. When the gfp() functions are more friendly | |
1649 | * towards high-order requests, this should be changed. | |
a862f68a MR |
1650 | * |
1651 | * Return: number of left-over bytes in a slab | |
4d268eba | 1652 | */ |
a737b3e2 | 1653 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
d50112ed | 1654 | size_t size, slab_flags_t flags) |
4d268eba PE |
1655 | { |
1656 | size_t left_over = 0; | |
9888e6fa | 1657 | int gfporder; |
4d268eba | 1658 | |
0aa817f0 | 1659 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1660 | unsigned int num; |
1661 | size_t remainder; | |
1662 | ||
70f75067 | 1663 | num = cache_estimate(gfporder, size, flags, &remainder); |
4d268eba PE |
1664 | if (!num) |
1665 | continue; | |
9888e6fa | 1666 | |
f315e3fa JK |
1667 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1668 | if (num > SLAB_OBJ_MAX_NUM) | |
1669 | break; | |
1670 | ||
b1ab41c4 | 1671 | if (flags & CFLGS_OFF_SLAB) { |
3217fd9b JK |
1672 | struct kmem_cache *freelist_cache; |
1673 | size_t freelist_size; | |
1674 | ||
1675 | freelist_size = num * sizeof(freelist_idx_t); | |
1676 | freelist_cache = kmalloc_slab(freelist_size, 0u); | |
1677 | if (!freelist_cache) | |
1678 | continue; | |
1679 | ||
b1ab41c4 | 1680 | /* |
3217fd9b | 1681 | * Needed to avoid possible looping condition |
76b342bd | 1682 | * in cache_grow_begin() |
b1ab41c4 | 1683 | */ |
3217fd9b JK |
1684 | if (OFF_SLAB(freelist_cache)) |
1685 | continue; | |
b1ab41c4 | 1686 | |
3217fd9b JK |
1687 | /* check if off slab has enough benefit */ |
1688 | if (freelist_cache->size > cachep->size / 2) | |
1689 | continue; | |
b1ab41c4 | 1690 | } |
4d268eba | 1691 | |
9888e6fa | 1692 | /* Found something acceptable - save it away */ |
4d268eba | 1693 | cachep->num = num; |
9888e6fa | 1694 | cachep->gfporder = gfporder; |
4d268eba PE |
1695 | left_over = remainder; |
1696 | ||
f78bb8ad LT |
1697 | /* |
1698 | * A VFS-reclaimable slab tends to have most allocations | |
1699 | * as GFP_NOFS and we really don't want to have to be allocating | |
1700 | * higher-order pages when we are unable to shrink dcache. | |
1701 | */ | |
1702 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1703 | break; | |
1704 | ||
4d268eba PE |
1705 | /* |
1706 | * Large number of objects is good, but very large slabs are | |
1707 | * currently bad for the gfp()s. | |
1708 | */ | |
543585cc | 1709 | if (gfporder >= slab_max_order) |
4d268eba PE |
1710 | break; |
1711 | ||
9888e6fa LT |
1712 | /* |
1713 | * Acceptable internal fragmentation? | |
1714 | */ | |
a737b3e2 | 1715 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1716 | break; |
1717 | } | |
1718 | return left_over; | |
1719 | } | |
1720 | ||
bf0dea23 JK |
1721 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
1722 | struct kmem_cache *cachep, int entries, int batchcount) | |
1723 | { | |
1724 | int cpu; | |
1725 | size_t size; | |
1726 | struct array_cache __percpu *cpu_cache; | |
1727 | ||
1728 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 1729 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
1730 | |
1731 | if (!cpu_cache) | |
1732 | return NULL; | |
1733 | ||
1734 | for_each_possible_cpu(cpu) { | |
1735 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
1736 | entries, batchcount); | |
1737 | } | |
1738 | ||
1739 | return cpu_cache; | |
1740 | } | |
1741 | ||
bd721ea7 | 1742 | static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 1743 | { |
97d06609 | 1744 | if (slab_state >= FULL) |
83b519e8 | 1745 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 1746 | |
bf0dea23 JK |
1747 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
1748 | if (!cachep->cpu_cache) | |
1749 | return 1; | |
1750 | ||
97d06609 | 1751 | if (slab_state == DOWN) { |
bf0dea23 JK |
1752 | /* Creation of first cache (kmem_cache). */ |
1753 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 1754 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
1755 | /* For kmem_cache_node */ |
1756 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 1757 | } else { |
bf0dea23 | 1758 | int node; |
f30cf7d1 | 1759 | |
bf0dea23 JK |
1760 | for_each_online_node(node) { |
1761 | cachep->node[node] = kmalloc_node( | |
1762 | sizeof(struct kmem_cache_node), gfp, node); | |
1763 | BUG_ON(!cachep->node[node]); | |
1764 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
1765 | } |
1766 | } | |
bf0dea23 | 1767 | |
6a67368c | 1768 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
1769 | jiffies + REAPTIMEOUT_NODE + |
1770 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
1771 | |
1772 | cpu_cache_get(cachep)->avail = 0; | |
1773 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1774 | cpu_cache_get(cachep)->batchcount = 1; | |
1775 | cpu_cache_get(cachep)->touched = 0; | |
1776 | cachep->batchcount = 1; | |
1777 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 1778 | return 0; |
f30cf7d1 PE |
1779 | } |
1780 | ||
0293d1fd | 1781 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1782 | slab_flags_t flags, const char *name) |
12220dea JK |
1783 | { |
1784 | return flags; | |
1785 | } | |
1786 | ||
1787 | struct kmem_cache * | |
f4957d5b | 1788 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 1789 | slab_flags_t flags, void (*ctor)(void *)) |
12220dea JK |
1790 | { |
1791 | struct kmem_cache *cachep; | |
1792 | ||
1793 | cachep = find_mergeable(size, align, flags, name, ctor); | |
1794 | if (cachep) { | |
1795 | cachep->refcount++; | |
1796 | ||
1797 | /* | |
1798 | * Adjust the object sizes so that we clear | |
1799 | * the complete object on kzalloc. | |
1800 | */ | |
1801 | cachep->object_size = max_t(int, cachep->object_size, size); | |
1802 | } | |
1803 | return cachep; | |
1804 | } | |
1805 | ||
b03a017b | 1806 | static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1807 | size_t size, slab_flags_t flags) |
b03a017b JK |
1808 | { |
1809 | size_t left; | |
1810 | ||
1811 | cachep->num = 0; | |
1812 | ||
6471384a AP |
1813 | /* |
1814 | * If slab auto-initialization on free is enabled, store the freelist | |
1815 | * off-slab, so that its contents don't end up in one of the allocated | |
1816 | * objects. | |
1817 | */ | |
1818 | if (unlikely(slab_want_init_on_free(cachep))) | |
1819 | return false; | |
1820 | ||
5f0d5a3a | 1821 | if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) |
b03a017b JK |
1822 | return false; |
1823 | ||
1824 | left = calculate_slab_order(cachep, size, | |
1825 | flags | CFLGS_OBJFREELIST_SLAB); | |
1826 | if (!cachep->num) | |
1827 | return false; | |
1828 | ||
1829 | if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) | |
1830 | return false; | |
1831 | ||
1832 | cachep->colour = left / cachep->colour_off; | |
1833 | ||
1834 | return true; | |
1835 | } | |
1836 | ||
158e319b | 1837 | static bool set_off_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1838 | size_t size, slab_flags_t flags) |
158e319b JK |
1839 | { |
1840 | size_t left; | |
1841 | ||
1842 | cachep->num = 0; | |
1843 | ||
1844 | /* | |
3217fd9b JK |
1845 | * Always use on-slab management when SLAB_NOLEAKTRACE |
1846 | * to avoid recursive calls into kmemleak. | |
158e319b | 1847 | */ |
158e319b JK |
1848 | if (flags & SLAB_NOLEAKTRACE) |
1849 | return false; | |
1850 | ||
1851 | /* | |
1852 | * Size is large, assume best to place the slab management obj | |
1853 | * off-slab (should allow better packing of objs). | |
1854 | */ | |
1855 | left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); | |
1856 | if (!cachep->num) | |
1857 | return false; | |
1858 | ||
1859 | /* | |
1860 | * If the slab has been placed off-slab, and we have enough space then | |
1861 | * move it on-slab. This is at the expense of any extra colouring. | |
1862 | */ | |
1863 | if (left >= cachep->num * sizeof(freelist_idx_t)) | |
1864 | return false; | |
1865 | ||
1866 | cachep->colour = left / cachep->colour_off; | |
1867 | ||
1868 | return true; | |
1869 | } | |
1870 | ||
1871 | static bool set_on_slab_cache(struct kmem_cache *cachep, | |
d50112ed | 1872 | size_t size, slab_flags_t flags) |
158e319b JK |
1873 | { |
1874 | size_t left; | |
1875 | ||
1876 | cachep->num = 0; | |
1877 | ||
1878 | left = calculate_slab_order(cachep, size, flags); | |
1879 | if (!cachep->num) | |
1880 | return false; | |
1881 | ||
1882 | cachep->colour = left / cachep->colour_off; | |
1883 | ||
1884 | return true; | |
1885 | } | |
1886 | ||
1da177e4 | 1887 | /** |
039363f3 | 1888 | * __kmem_cache_create - Create a cache. |
a755b76a | 1889 | * @cachep: cache management descriptor |
1da177e4 | 1890 | * @flags: SLAB flags |
1da177e4 LT |
1891 | * |
1892 | * Returns a ptr to the cache on success, NULL on failure. | |
a8f23dd1 | 1893 | * Cannot be called within an int, but can be interrupted. |
20c2df83 | 1894 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 1895 | * |
1da177e4 LT |
1896 | * The flags are |
1897 | * | |
1898 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
1899 | * to catch references to uninitialised memory. | |
1900 | * | |
1901 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
1902 | * for buffer overruns. | |
1903 | * | |
1da177e4 LT |
1904 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
1905 | * cacheline. This can be beneficial if you're counting cycles as closely | |
1906 | * as davem. | |
a862f68a MR |
1907 | * |
1908 | * Return: a pointer to the created cache or %NULL in case of error | |
1da177e4 | 1909 | */ |
d50112ed | 1910 | int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) |
1da177e4 | 1911 | { |
d4a5fca5 | 1912 | size_t ralign = BYTES_PER_WORD; |
83b519e8 | 1913 | gfp_t gfp; |
278b1bb1 | 1914 | int err; |
be4a7988 | 1915 | unsigned int size = cachep->size; |
1da177e4 | 1916 | |
1da177e4 | 1917 | #if DEBUG |
1da177e4 LT |
1918 | #if FORCED_DEBUG |
1919 | /* | |
1920 | * Enable redzoning and last user accounting, except for caches with | |
1921 | * large objects, if the increased size would increase the object size | |
1922 | * above the next power of two: caches with object sizes just above a | |
1923 | * power of two have a significant amount of internal fragmentation. | |
1924 | */ | |
87a927c7 DW |
1925 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
1926 | 2 * sizeof(unsigned long long))) | |
b28a02de | 1927 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
5f0d5a3a | 1928 | if (!(flags & SLAB_TYPESAFE_BY_RCU)) |
1da177e4 LT |
1929 | flags |= SLAB_POISON; |
1930 | #endif | |
1da177e4 | 1931 | #endif |
1da177e4 | 1932 | |
a737b3e2 AM |
1933 | /* |
1934 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
1935 | * unaligned accesses for some archs when redzoning is used, and makes |
1936 | * sure any on-slab bufctl's are also correctly aligned. | |
1937 | */ | |
e0771950 | 1938 | size = ALIGN(size, BYTES_PER_WORD); |
1da177e4 | 1939 | |
87a927c7 DW |
1940 | if (flags & SLAB_RED_ZONE) { |
1941 | ralign = REDZONE_ALIGN; | |
1942 | /* If redzoning, ensure that the second redzone is suitably | |
1943 | * aligned, by adjusting the object size accordingly. */ | |
e0771950 | 1944 | size = ALIGN(size, REDZONE_ALIGN); |
87a927c7 | 1945 | } |
ca5f9703 | 1946 | |
a44b56d3 | 1947 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
1948 | if (ralign < cachep->align) { |
1949 | ralign = cachep->align; | |
1da177e4 | 1950 | } |
3ff84a7f PE |
1951 | /* disable debug if necessary */ |
1952 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 1953 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 1954 | /* |
ca5f9703 | 1955 | * 4) Store it. |
1da177e4 | 1956 | */ |
8a13a4cc | 1957 | cachep->align = ralign; |
158e319b JK |
1958 | cachep->colour_off = cache_line_size(); |
1959 | /* Offset must be a multiple of the alignment. */ | |
1960 | if (cachep->colour_off < cachep->align) | |
1961 | cachep->colour_off = cachep->align; | |
1da177e4 | 1962 | |
83b519e8 PE |
1963 | if (slab_is_available()) |
1964 | gfp = GFP_KERNEL; | |
1965 | else | |
1966 | gfp = GFP_NOWAIT; | |
1967 | ||
1da177e4 | 1968 | #if DEBUG |
1da177e4 | 1969 | |
ca5f9703 PE |
1970 | /* |
1971 | * Both debugging options require word-alignment which is calculated | |
1972 | * into align above. | |
1973 | */ | |
1da177e4 | 1974 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 1975 | /* add space for red zone words */ |
3ff84a7f PE |
1976 | cachep->obj_offset += sizeof(unsigned long long); |
1977 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
1978 | } |
1979 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 1980 | /* user store requires one word storage behind the end of |
87a927c7 DW |
1981 | * the real object. But if the second red zone needs to be |
1982 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 1983 | */ |
87a927c7 DW |
1984 | if (flags & SLAB_RED_ZONE) |
1985 | size += REDZONE_ALIGN; | |
1986 | else | |
1987 | size += BYTES_PER_WORD; | |
1da177e4 | 1988 | } |
832a15d2 JK |
1989 | #endif |
1990 | ||
7ed2f9e6 AP |
1991 | kasan_cache_create(cachep, &size, &flags); |
1992 | ||
832a15d2 JK |
1993 | size = ALIGN(size, cachep->align); |
1994 | /* | |
1995 | * We should restrict the number of objects in a slab to implement | |
1996 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
1997 | */ | |
1998 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
1999 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
2000 | ||
2001 | #if DEBUG | |
03a2d2a3 JK |
2002 | /* |
2003 | * To activate debug pagealloc, off-slab management is necessary | |
2004 | * requirement. In early phase of initialization, small sized slab | |
2005 | * doesn't get initialized so it would not be possible. So, we need | |
2006 | * to check size >= 256. It guarantees that all necessary small | |
2007 | * sized slab is initialized in current slab initialization sequence. | |
2008 | */ | |
8e57f8ac | 2009 | if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && |
f3a3c320 JK |
2010 | size >= 256 && cachep->object_size > cache_line_size()) { |
2011 | if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { | |
2012 | size_t tmp_size = ALIGN(size, PAGE_SIZE); | |
2013 | ||
2014 | if (set_off_slab_cache(cachep, tmp_size, flags)) { | |
2015 | flags |= CFLGS_OFF_SLAB; | |
2016 | cachep->obj_offset += tmp_size - size; | |
2017 | size = tmp_size; | |
2018 | goto done; | |
2019 | } | |
2020 | } | |
1da177e4 | 2021 | } |
1da177e4 LT |
2022 | #endif |
2023 | ||
b03a017b JK |
2024 | if (set_objfreelist_slab_cache(cachep, size, flags)) { |
2025 | flags |= CFLGS_OBJFREELIST_SLAB; | |
2026 | goto done; | |
2027 | } | |
2028 | ||
158e319b | 2029 | if (set_off_slab_cache(cachep, size, flags)) { |
1da177e4 | 2030 | flags |= CFLGS_OFF_SLAB; |
158e319b | 2031 | goto done; |
832a15d2 | 2032 | } |
1da177e4 | 2033 | |
158e319b JK |
2034 | if (set_on_slab_cache(cachep, size, flags)) |
2035 | goto done; | |
1da177e4 | 2036 | |
158e319b | 2037 | return -E2BIG; |
1da177e4 | 2038 | |
158e319b JK |
2039 | done: |
2040 | cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); | |
1da177e4 | 2041 | cachep->flags = flags; |
a57a4988 | 2042 | cachep->allocflags = __GFP_COMP; |
a3187e43 | 2043 | if (flags & SLAB_CACHE_DMA) |
a618e89f | 2044 | cachep->allocflags |= GFP_DMA; |
6d6ea1e9 NB |
2045 | if (flags & SLAB_CACHE_DMA32) |
2046 | cachep->allocflags |= GFP_DMA32; | |
a3ba0744 DR |
2047 | if (flags & SLAB_RECLAIM_ACCOUNT) |
2048 | cachep->allocflags |= __GFP_RECLAIMABLE; | |
3b0efdfa | 2049 | cachep->size = size; |
6a2d7a95 | 2050 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2051 | |
40b44137 JK |
2052 | #if DEBUG |
2053 | /* | |
2054 | * If we're going to use the generic kernel_map_pages() | |
2055 | * poisoning, then it's going to smash the contents of | |
2056 | * the redzone and userword anyhow, so switch them off. | |
2057 | */ | |
2058 | if (IS_ENABLED(CONFIG_PAGE_POISONING) && | |
2059 | (cachep->flags & SLAB_POISON) && | |
2060 | is_debug_pagealloc_cache(cachep)) | |
2061 | cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2062 | #endif | |
2063 | ||
2064 | if (OFF_SLAB(cachep)) { | |
158e319b JK |
2065 | cachep->freelist_cache = |
2066 | kmalloc_slab(cachep->freelist_size, 0u); | |
e5ac9c5a | 2067 | } |
1da177e4 | 2068 | |
278b1bb1 CL |
2069 | err = setup_cpu_cache(cachep, gfp); |
2070 | if (err) { | |
52b4b950 | 2071 | __kmem_cache_release(cachep); |
278b1bb1 | 2072 | return err; |
2ed3a4ef | 2073 | } |
1da177e4 | 2074 | |
278b1bb1 | 2075 | return 0; |
1da177e4 | 2076 | } |
1da177e4 LT |
2077 | |
2078 | #if DEBUG | |
2079 | static void check_irq_off(void) | |
2080 | { | |
2081 | BUG_ON(!irqs_disabled()); | |
2082 | } | |
2083 | ||
2084 | static void check_irq_on(void) | |
2085 | { | |
2086 | BUG_ON(irqs_disabled()); | |
2087 | } | |
2088 | ||
18726ca8 JK |
2089 | static void check_mutex_acquired(void) |
2090 | { | |
2091 | BUG_ON(!mutex_is_locked(&slab_mutex)); | |
2092 | } | |
2093 | ||
343e0d7a | 2094 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2095 | { |
2096 | #ifdef CONFIG_SMP | |
2097 | check_irq_off(); | |
18bf8541 | 2098 | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2099 | #endif |
2100 | } | |
e498be7d | 2101 | |
343e0d7a | 2102 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2103 | { |
2104 | #ifdef CONFIG_SMP | |
2105 | check_irq_off(); | |
18bf8541 | 2106 | assert_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2107 | #endif |
2108 | } | |
2109 | ||
1da177e4 LT |
2110 | #else |
2111 | #define check_irq_off() do { } while(0) | |
2112 | #define check_irq_on() do { } while(0) | |
18726ca8 | 2113 | #define check_mutex_acquired() do { } while(0) |
1da177e4 | 2114 | #define check_spinlock_acquired(x) do { } while(0) |
e498be7d | 2115 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2116 | #endif |
2117 | ||
18726ca8 JK |
2118 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
2119 | int node, bool free_all, struct list_head *list) | |
2120 | { | |
2121 | int tofree; | |
2122 | ||
2123 | if (!ac || !ac->avail) | |
2124 | return; | |
2125 | ||
2126 | tofree = free_all ? ac->avail : (ac->limit + 4) / 5; | |
2127 | if (tofree > ac->avail) | |
2128 | tofree = (ac->avail + 1) / 2; | |
2129 | ||
2130 | free_block(cachep, ac->entry, tofree, node, list); | |
2131 | ac->avail -= tofree; | |
2132 | memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); | |
2133 | } | |
aab2207c | 2134 | |
1da177e4 LT |
2135 | static void do_drain(void *arg) |
2136 | { | |
a737b3e2 | 2137 | struct kmem_cache *cachep = arg; |
1da177e4 | 2138 | struct array_cache *ac; |
7d6e6d09 | 2139 | int node = numa_mem_id(); |
18bf8541 | 2140 | struct kmem_cache_node *n; |
97654dfa | 2141 | LIST_HEAD(list); |
1da177e4 LT |
2142 | |
2143 | check_irq_off(); | |
9a2dba4b | 2144 | ac = cpu_cache_get(cachep); |
18bf8541 CL |
2145 | n = get_node(cachep, node); |
2146 | spin_lock(&n->list_lock); | |
97654dfa | 2147 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 2148 | spin_unlock(&n->list_lock); |
1da177e4 | 2149 | ac->avail = 0; |
678ff6a7 | 2150 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2151 | } |
2152 | ||
343e0d7a | 2153 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2154 | { |
ce8eb6c4 | 2155 | struct kmem_cache_node *n; |
e498be7d | 2156 | int node; |
18726ca8 | 2157 | LIST_HEAD(list); |
e498be7d | 2158 | |
15c8b6c1 | 2159 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2160 | check_irq_on(); |
18bf8541 CL |
2161 | for_each_kmem_cache_node(cachep, node, n) |
2162 | if (n->alien) | |
ce8eb6c4 | 2163 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2164 | |
18726ca8 JK |
2165 | for_each_kmem_cache_node(cachep, node, n) { |
2166 | spin_lock_irq(&n->list_lock); | |
2167 | drain_array_locked(cachep, n->shared, node, true, &list); | |
2168 | spin_unlock_irq(&n->list_lock); | |
2169 | ||
2170 | slabs_destroy(cachep, &list); | |
2171 | } | |
1da177e4 LT |
2172 | } |
2173 | ||
ed11d9eb CL |
2174 | /* |
2175 | * Remove slabs from the list of free slabs. | |
2176 | * Specify the number of slabs to drain in tofree. | |
2177 | * | |
2178 | * Returns the actual number of slabs released. | |
2179 | */ | |
2180 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2181 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2182 | { |
ed11d9eb CL |
2183 | struct list_head *p; |
2184 | int nr_freed; | |
7981e67e | 2185 | struct slab *slab; |
1da177e4 | 2186 | |
ed11d9eb | 2187 | nr_freed = 0; |
ce8eb6c4 | 2188 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2189 | |
ce8eb6c4 CL |
2190 | spin_lock_irq(&n->list_lock); |
2191 | p = n->slabs_free.prev; | |
2192 | if (p == &n->slabs_free) { | |
2193 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2194 | goto out; |
2195 | } | |
1da177e4 | 2196 | |
7981e67e VB |
2197 | slab = list_entry(p, struct slab, slab_list); |
2198 | list_del(&slab->slab_list); | |
f728b0a5 | 2199 | n->free_slabs--; |
bf00bd34 | 2200 | n->total_slabs--; |
ed11d9eb CL |
2201 | /* |
2202 | * Safe to drop the lock. The slab is no longer linked | |
2203 | * to the cache. | |
2204 | */ | |
ce8eb6c4 CL |
2205 | n->free_objects -= cache->num; |
2206 | spin_unlock_irq(&n->list_lock); | |
7981e67e | 2207 | slab_destroy(cache, slab); |
ed11d9eb | 2208 | nr_freed++; |
1da177e4 | 2209 | } |
ed11d9eb CL |
2210 | out: |
2211 | return nr_freed; | |
1da177e4 LT |
2212 | } |
2213 | ||
f9e13c0a SB |
2214 | bool __kmem_cache_empty(struct kmem_cache *s) |
2215 | { | |
2216 | int node; | |
2217 | struct kmem_cache_node *n; | |
2218 | ||
2219 | for_each_kmem_cache_node(s, node, n) | |
2220 | if (!list_empty(&n->slabs_full) || | |
2221 | !list_empty(&n->slabs_partial)) | |
2222 | return false; | |
2223 | return true; | |
2224 | } | |
2225 | ||
c9fc5864 | 2226 | int __kmem_cache_shrink(struct kmem_cache *cachep) |
e498be7d | 2227 | { |
18bf8541 CL |
2228 | int ret = 0; |
2229 | int node; | |
ce8eb6c4 | 2230 | struct kmem_cache_node *n; |
e498be7d CL |
2231 | |
2232 | drain_cpu_caches(cachep); | |
2233 | ||
2234 | check_irq_on(); | |
18bf8541 | 2235 | for_each_kmem_cache_node(cachep, node, n) { |
a5aa63a5 | 2236 | drain_freelist(cachep, n, INT_MAX); |
ed11d9eb | 2237 | |
ce8eb6c4 CL |
2238 | ret += !list_empty(&n->slabs_full) || |
2239 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2240 | } |
2241 | return (ret ? 1 : 0); | |
2242 | } | |
2243 | ||
945cf2b6 | 2244 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
52b4b950 | 2245 | { |
c9fc5864 | 2246 | return __kmem_cache_shrink(cachep); |
52b4b950 DS |
2247 | } |
2248 | ||
2249 | void __kmem_cache_release(struct kmem_cache *cachep) | |
1da177e4 | 2250 | { |
12c3667f | 2251 | int i; |
ce8eb6c4 | 2252 | struct kmem_cache_node *n; |
1da177e4 | 2253 | |
c7ce4f60 TG |
2254 | cache_random_seq_destroy(cachep); |
2255 | ||
bf0dea23 | 2256 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2257 | |
ce8eb6c4 | 2258 | /* NUMA: free the node structures */ |
18bf8541 CL |
2259 | for_each_kmem_cache_node(cachep, i, n) { |
2260 | kfree(n->shared); | |
2261 | free_alien_cache(n->alien); | |
2262 | kfree(n); | |
2263 | cachep->node[i] = NULL; | |
12c3667f | 2264 | } |
1da177e4 | 2265 | } |
1da177e4 | 2266 | |
e5ac9c5a RT |
2267 | /* |
2268 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2269 | * |
2270 | * For a slab cache when the slab descriptor is off-slab, the | |
2271 | * slab descriptor can't come from the same cache which is being created, | |
2272 | * Because if it is the case, that means we defer the creation of | |
2273 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2274 | * And we eventually call down to __kmem_cache_create(), which | |
80d01558 | 2275 | * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. |
5f0985bb JZ |
2276 | * This is a "chicken-and-egg" problem. |
2277 | * | |
2278 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2279 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2280 | */ |
7e007355 | 2281 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
7981e67e | 2282 | struct slab *slab, int colour_off, |
0c3aa83e | 2283 | gfp_t local_flags, int nodeid) |
1da177e4 | 2284 | { |
7e007355 | 2285 | void *freelist; |
7981e67e | 2286 | void *addr = slab_address(slab); |
b28a02de | 2287 | |
7981e67e VB |
2288 | slab->s_mem = addr + colour_off; |
2289 | slab->active = 0; | |
2e6b3602 | 2290 | |
b03a017b JK |
2291 | if (OBJFREELIST_SLAB(cachep)) |
2292 | freelist = NULL; | |
2293 | else if (OFF_SLAB(cachep)) { | |
1da177e4 | 2294 | /* Slab management obj is off-slab. */ |
8456a648 | 2295 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2296 | local_flags, nodeid); |
1da177e4 | 2297 | } else { |
2e6b3602 JK |
2298 | /* We will use last bytes at the slab for freelist */ |
2299 | freelist = addr + (PAGE_SIZE << cachep->gfporder) - | |
2300 | cachep->freelist_size; | |
1da177e4 | 2301 | } |
2e6b3602 | 2302 | |
8456a648 | 2303 | return freelist; |
1da177e4 LT |
2304 | } |
2305 | ||
7981e67e | 2306 | static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) |
1da177e4 | 2307 | { |
7981e67e | 2308 | return ((freelist_idx_t *) slab->freelist)[idx]; |
e5c58dfd JK |
2309 | } |
2310 | ||
7981e67e | 2311 | static inline void set_free_obj(struct slab *slab, |
7cc68973 | 2312 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2313 | { |
7981e67e | 2314 | ((freelist_idx_t *)(slab->freelist))[idx] = val; |
1da177e4 LT |
2315 | } |
2316 | ||
7981e67e | 2317 | static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) |
1da177e4 | 2318 | { |
10b2e9e8 | 2319 | #if DEBUG |
1da177e4 LT |
2320 | int i; |
2321 | ||
2322 | for (i = 0; i < cachep->num; i++) { | |
7981e67e | 2323 | void *objp = index_to_obj(cachep, slab, i); |
10b2e9e8 | 2324 | |
1da177e4 LT |
2325 | if (cachep->flags & SLAB_STORE_USER) |
2326 | *dbg_userword(cachep, objp) = NULL; | |
2327 | ||
2328 | if (cachep->flags & SLAB_RED_ZONE) { | |
2329 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2330 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2331 | } | |
2332 | /* | |
a737b3e2 AM |
2333 | * Constructors are not allowed to allocate memory from the same |
2334 | * cache which they are a constructor for. Otherwise, deadlock. | |
2335 | * They must also be threaded. | |
1da177e4 | 2336 | */ |
7ed2f9e6 AP |
2337 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
2338 | kasan_unpoison_object_data(cachep, | |
2339 | objp + obj_offset(cachep)); | |
51cc5068 | 2340 | cachep->ctor(objp + obj_offset(cachep)); |
7ed2f9e6 AP |
2341 | kasan_poison_object_data( |
2342 | cachep, objp + obj_offset(cachep)); | |
2343 | } | |
1da177e4 LT |
2344 | |
2345 | if (cachep->flags & SLAB_RED_ZONE) { | |
2346 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
756a025f | 2347 | slab_error(cachep, "constructor overwrote the end of an object"); |
1da177e4 | 2348 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
756a025f | 2349 | slab_error(cachep, "constructor overwrote the start of an object"); |
1da177e4 | 2350 | } |
40b44137 JK |
2351 | /* need to poison the objs? */ |
2352 | if (cachep->flags & SLAB_POISON) { | |
2353 | poison_obj(cachep, objp, POISON_FREE); | |
80552f0f | 2354 | slab_kernel_map(cachep, objp, 0); |
40b44137 | 2355 | } |
10b2e9e8 | 2356 | } |
1da177e4 | 2357 | #endif |
10b2e9e8 JK |
2358 | } |
2359 | ||
c7ce4f60 TG |
2360 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2361 | /* Hold information during a freelist initialization */ | |
2362 | union freelist_init_state { | |
2363 | struct { | |
2364 | unsigned int pos; | |
7c00fce9 | 2365 | unsigned int *list; |
c7ce4f60 | 2366 | unsigned int count; |
c7ce4f60 TG |
2367 | }; |
2368 | struct rnd_state rnd_state; | |
2369 | }; | |
2370 | ||
2371 | /* | |
f0953a1b IM |
2372 | * Initialize the state based on the randomization method available. |
2373 | * return true if the pre-computed list is available, false otherwise. | |
c7ce4f60 TG |
2374 | */ |
2375 | static bool freelist_state_initialize(union freelist_init_state *state, | |
2376 | struct kmem_cache *cachep, | |
2377 | unsigned int count) | |
2378 | { | |
2379 | bool ret; | |
2380 | unsigned int rand; | |
2381 | ||
2382 | /* Use best entropy available to define a random shift */ | |
7c00fce9 | 2383 | rand = get_random_int(); |
c7ce4f60 TG |
2384 | |
2385 | /* Use a random state if the pre-computed list is not available */ | |
2386 | if (!cachep->random_seq) { | |
2387 | prandom_seed_state(&state->rnd_state, rand); | |
2388 | ret = false; | |
2389 | } else { | |
2390 | state->list = cachep->random_seq; | |
2391 | state->count = count; | |
c4e490cf | 2392 | state->pos = rand % count; |
c7ce4f60 TG |
2393 | ret = true; |
2394 | } | |
2395 | return ret; | |
2396 | } | |
2397 | ||
2398 | /* Get the next entry on the list and randomize it using a random shift */ | |
2399 | static freelist_idx_t next_random_slot(union freelist_init_state *state) | |
2400 | { | |
c4e490cf JS |
2401 | if (state->pos >= state->count) |
2402 | state->pos = 0; | |
2403 | return state->list[state->pos++]; | |
c7ce4f60 TG |
2404 | } |
2405 | ||
7c00fce9 | 2406 | /* Swap two freelist entries */ |
7981e67e | 2407 | static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) |
7c00fce9 | 2408 | { |
7981e67e VB |
2409 | swap(((freelist_idx_t *) slab->freelist)[a], |
2410 | ((freelist_idx_t *) slab->freelist)[b]); | |
7c00fce9 TG |
2411 | } |
2412 | ||
c7ce4f60 TG |
2413 | /* |
2414 | * Shuffle the freelist initialization state based on pre-computed lists. | |
2415 | * return true if the list was successfully shuffled, false otherwise. | |
2416 | */ | |
7981e67e | 2417 | static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) |
c7ce4f60 | 2418 | { |
7c00fce9 | 2419 | unsigned int objfreelist = 0, i, rand, count = cachep->num; |
c7ce4f60 TG |
2420 | union freelist_init_state state; |
2421 | bool precomputed; | |
2422 | ||
2423 | if (count < 2) | |
2424 | return false; | |
2425 | ||
2426 | precomputed = freelist_state_initialize(&state, cachep, count); | |
2427 | ||
2428 | /* Take a random entry as the objfreelist */ | |
2429 | if (OBJFREELIST_SLAB(cachep)) { | |
2430 | if (!precomputed) | |
2431 | objfreelist = count - 1; | |
2432 | else | |
2433 | objfreelist = next_random_slot(&state); | |
7981e67e | 2434 | slab->freelist = index_to_obj(cachep, slab, objfreelist) + |
c7ce4f60 TG |
2435 | obj_offset(cachep); |
2436 | count--; | |
2437 | } | |
2438 | ||
2439 | /* | |
2440 | * On early boot, generate the list dynamically. | |
2441 | * Later use a pre-computed list for speed. | |
2442 | */ | |
2443 | if (!precomputed) { | |
7c00fce9 | 2444 | for (i = 0; i < count; i++) |
7981e67e | 2445 | set_free_obj(slab, i, i); |
7c00fce9 TG |
2446 | |
2447 | /* Fisher-Yates shuffle */ | |
2448 | for (i = count - 1; i > 0; i--) { | |
2449 | rand = prandom_u32_state(&state.rnd_state); | |
2450 | rand %= (i + 1); | |
7981e67e | 2451 | swap_free_obj(slab, i, rand); |
7c00fce9 | 2452 | } |
c7ce4f60 TG |
2453 | } else { |
2454 | for (i = 0; i < count; i++) | |
7981e67e | 2455 | set_free_obj(slab, i, next_random_slot(&state)); |
c7ce4f60 TG |
2456 | } |
2457 | ||
2458 | if (OBJFREELIST_SLAB(cachep)) | |
7981e67e | 2459 | set_free_obj(slab, cachep->num - 1, objfreelist); |
c7ce4f60 TG |
2460 | |
2461 | return true; | |
2462 | } | |
2463 | #else | |
2464 | static inline bool shuffle_freelist(struct kmem_cache *cachep, | |
7981e67e | 2465 | struct slab *slab) |
c7ce4f60 TG |
2466 | { |
2467 | return false; | |
2468 | } | |
2469 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2470 | ||
10b2e9e8 | 2471 | static void cache_init_objs(struct kmem_cache *cachep, |
7981e67e | 2472 | struct slab *slab) |
10b2e9e8 JK |
2473 | { |
2474 | int i; | |
7ed2f9e6 | 2475 | void *objp; |
c7ce4f60 | 2476 | bool shuffled; |
10b2e9e8 | 2477 | |
7981e67e | 2478 | cache_init_objs_debug(cachep, slab); |
10b2e9e8 | 2479 | |
c7ce4f60 | 2480 | /* Try to randomize the freelist if enabled */ |
7981e67e | 2481 | shuffled = shuffle_freelist(cachep, slab); |
c7ce4f60 TG |
2482 | |
2483 | if (!shuffled && OBJFREELIST_SLAB(cachep)) { | |
7981e67e | 2484 | slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + |
b03a017b JK |
2485 | obj_offset(cachep); |
2486 | } | |
2487 | ||
10b2e9e8 | 2488 | for (i = 0; i < cachep->num; i++) { |
7981e67e | 2489 | objp = index_to_obj(cachep, slab, i); |
4d176711 | 2490 | objp = kasan_init_slab_obj(cachep, objp); |
b3cbd9bf | 2491 | |
10b2e9e8 | 2492 | /* constructor could break poison info */ |
7ed2f9e6 | 2493 | if (DEBUG == 0 && cachep->ctor) { |
7ed2f9e6 AP |
2494 | kasan_unpoison_object_data(cachep, objp); |
2495 | cachep->ctor(objp); | |
2496 | kasan_poison_object_data(cachep, objp); | |
2497 | } | |
10b2e9e8 | 2498 | |
c7ce4f60 | 2499 | if (!shuffled) |
7981e67e | 2500 | set_free_obj(slab, i, i); |
1da177e4 | 2501 | } |
1da177e4 LT |
2502 | } |
2503 | ||
7981e67e | 2504 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) |
78d382d7 | 2505 | { |
b1cb0982 | 2506 | void *objp; |
78d382d7 | 2507 | |
7981e67e VB |
2508 | objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); |
2509 | slab->active++; | |
78d382d7 MD |
2510 | |
2511 | return objp; | |
2512 | } | |
2513 | ||
260b61dd | 2514 | static void slab_put_obj(struct kmem_cache *cachep, |
7981e67e | 2515 | struct slab *slab, void *objp) |
78d382d7 | 2516 | { |
40f3bf0c | 2517 | unsigned int objnr = obj_to_index(cachep, slab, objp); |
78d382d7 | 2518 | #if DEBUG |
16025177 | 2519 | unsigned int i; |
b1cb0982 | 2520 | |
b1cb0982 | 2521 | /* Verify double free bug */ |
7981e67e VB |
2522 | for (i = slab->active; i < cachep->num; i++) { |
2523 | if (get_free_obj(slab, i) == objnr) { | |
85c3e4a5 | 2524 | pr_err("slab: double free detected in cache '%s', objp %px\n", |
756a025f | 2525 | cachep->name, objp); |
b1cb0982 JK |
2526 | BUG(); |
2527 | } | |
78d382d7 MD |
2528 | } |
2529 | #endif | |
7981e67e VB |
2530 | slab->active--; |
2531 | if (!slab->freelist) | |
2532 | slab->freelist = objp + obj_offset(cachep); | |
b03a017b | 2533 | |
7981e67e | 2534 | set_free_obj(slab, slab->active, objnr); |
78d382d7 MD |
2535 | } |
2536 | ||
1da177e4 LT |
2537 | /* |
2538 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2539 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2540 | */ | |
7981e67e | 2541 | static struct slab *cache_grow_begin(struct kmem_cache *cachep, |
76b342bd | 2542 | gfp_t flags, int nodeid) |
1da177e4 | 2543 | { |
7e007355 | 2544 | void *freelist; |
b28a02de PE |
2545 | size_t offset; |
2546 | gfp_t local_flags; | |
dd35f71a | 2547 | int slab_node; |
ce8eb6c4 | 2548 | struct kmem_cache_node *n; |
7981e67e | 2549 | struct slab *slab; |
1da177e4 | 2550 | |
a737b3e2 AM |
2551 | /* |
2552 | * Be lazy and only check for valid flags here, keeping it out of the | |
2553 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2554 | */ |
44405099 LL |
2555 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2556 | flags = kmalloc_fix_flags(flags); | |
2557 | ||
128227e7 | 2558 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
6cb06229 | 2559 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2560 | |
1da177e4 | 2561 | check_irq_off(); |
d0164adc | 2562 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 LT |
2563 | local_irq_enable(); |
2564 | ||
a737b3e2 AM |
2565 | /* |
2566 | * Get mem for the objs. Attempt to allocate a physical page from | |
2567 | * 'nodeid'. | |
e498be7d | 2568 | */ |
7981e67e VB |
2569 | slab = kmem_getpages(cachep, local_flags, nodeid); |
2570 | if (!slab) | |
1da177e4 LT |
2571 | goto failed; |
2572 | ||
dd35f71a VB |
2573 | slab_node = slab_nid(slab); |
2574 | n = get_node(cachep, slab_node); | |
03d1d43a JK |
2575 | |
2576 | /* Get colour for the slab, and cal the next value. */ | |
2577 | n->colour_next++; | |
2578 | if (n->colour_next >= cachep->colour) | |
2579 | n->colour_next = 0; | |
2580 | ||
2581 | offset = n->colour_next; | |
2582 | if (offset >= cachep->colour) | |
2583 | offset = 0; | |
2584 | ||
2585 | offset *= cachep->colour_off; | |
2586 | ||
51dedad0 AK |
2587 | /* |
2588 | * Call kasan_poison_slab() before calling alloc_slabmgmt(), so | |
2589 | * page_address() in the latter returns a non-tagged pointer, | |
2590 | * as it should be for slab pages. | |
2591 | */ | |
6e48a966 | 2592 | kasan_poison_slab(slab); |
51dedad0 | 2593 | |
1da177e4 | 2594 | /* Get slab management. */ |
7981e67e | 2595 | freelist = alloc_slabmgmt(cachep, slab, offset, |
dd35f71a | 2596 | local_flags & ~GFP_CONSTRAINT_MASK, slab_node); |
b03a017b | 2597 | if (OFF_SLAB(cachep) && !freelist) |
1da177e4 LT |
2598 | goto opps1; |
2599 | ||
7981e67e VB |
2600 | slab->slab_cache = cachep; |
2601 | slab->freelist = freelist; | |
1da177e4 | 2602 | |
7981e67e | 2603 | cache_init_objs(cachep, slab); |
1da177e4 | 2604 | |
d0164adc | 2605 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2606 | local_irq_disable(); |
1da177e4 | 2607 | |
7981e67e | 2608 | return slab; |
76b342bd | 2609 | |
a737b3e2 | 2610 | opps1: |
7981e67e | 2611 | kmem_freepages(cachep, slab); |
a737b3e2 | 2612 | failed: |
d0164adc | 2613 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2614 | local_irq_disable(); |
76b342bd JK |
2615 | return NULL; |
2616 | } | |
2617 | ||
7981e67e | 2618 | static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) |
76b342bd JK |
2619 | { |
2620 | struct kmem_cache_node *n; | |
2621 | void *list = NULL; | |
2622 | ||
2623 | check_irq_off(); | |
2624 | ||
7981e67e | 2625 | if (!slab) |
76b342bd JK |
2626 | return; |
2627 | ||
7981e67e VB |
2628 | INIT_LIST_HEAD(&slab->slab_list); |
2629 | n = get_node(cachep, slab_nid(slab)); | |
76b342bd JK |
2630 | |
2631 | spin_lock(&n->list_lock); | |
bf00bd34 | 2632 | n->total_slabs++; |
7981e67e VB |
2633 | if (!slab->active) { |
2634 | list_add_tail(&slab->slab_list, &n->slabs_free); | |
f728b0a5 | 2635 | n->free_slabs++; |
bf00bd34 | 2636 | } else |
7981e67e | 2637 | fixup_slab_list(cachep, n, slab, &list); |
07a63c41 | 2638 | |
76b342bd | 2639 | STATS_INC_GROWN(cachep); |
7981e67e | 2640 | n->free_objects += cachep->num - slab->active; |
76b342bd JK |
2641 | spin_unlock(&n->list_lock); |
2642 | ||
2643 | fixup_objfreelist_debug(cachep, &list); | |
1da177e4 LT |
2644 | } |
2645 | ||
2646 | #if DEBUG | |
2647 | ||
2648 | /* | |
2649 | * Perform extra freeing checks: | |
2650 | * - detect bad pointers. | |
2651 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2652 | */ |
2653 | static void kfree_debugcheck(const void *objp) | |
2654 | { | |
1da177e4 | 2655 | if (!virt_addr_valid(objp)) { |
1170532b | 2656 | pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
b28a02de PE |
2657 | (unsigned long)objp); |
2658 | BUG(); | |
1da177e4 | 2659 | } |
1da177e4 LT |
2660 | } |
2661 | ||
58ce1fd5 PE |
2662 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2663 | { | |
b46b8f19 | 2664 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2665 | |
2666 | redzone1 = *dbg_redzone1(cache, obj); | |
2667 | redzone2 = *dbg_redzone2(cache, obj); | |
2668 | ||
2669 | /* | |
2670 | * Redzone is ok. | |
2671 | */ | |
2672 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2673 | return; | |
2674 | ||
2675 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2676 | slab_error(cache, "double free detected"); | |
2677 | else | |
2678 | slab_error(cache, "memory outside object was overwritten"); | |
2679 | ||
85c3e4a5 | 2680 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b | 2681 | obj, redzone1, redzone2); |
58ce1fd5 PE |
2682 | } |
2683 | ||
343e0d7a | 2684 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2685 | unsigned long caller) |
1da177e4 | 2686 | { |
1da177e4 | 2687 | unsigned int objnr; |
7981e67e | 2688 | struct slab *slab; |
1da177e4 | 2689 | |
80cbd911 MW |
2690 | BUG_ON(virt_to_cache(objp) != cachep); |
2691 | ||
3dafccf2 | 2692 | objp -= obj_offset(cachep); |
1da177e4 | 2693 | kfree_debugcheck(objp); |
7981e67e | 2694 | slab = virt_to_slab(objp); |
1da177e4 | 2695 | |
1da177e4 | 2696 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2697 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2698 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2699 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2700 | } | |
7878c231 | 2701 | if (cachep->flags & SLAB_STORE_USER) |
7c0cb9c6 | 2702 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 2703 | |
40f3bf0c | 2704 | objnr = obj_to_index(cachep, slab, objp); |
1da177e4 LT |
2705 | |
2706 | BUG_ON(objnr >= cachep->num); | |
7981e67e | 2707 | BUG_ON(objp != index_to_obj(cachep, slab, objnr)); |
1da177e4 | 2708 | |
1da177e4 | 2709 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2710 | poison_obj(cachep, objp, POISON_FREE); |
80552f0f | 2711 | slab_kernel_map(cachep, objp, 0); |
1da177e4 LT |
2712 | } |
2713 | return objp; | |
2714 | } | |
2715 | ||
1da177e4 LT |
2716 | #else |
2717 | #define kfree_debugcheck(x) do { } while(0) | |
0b411634 | 2718 | #define cache_free_debugcheck(x, objp, z) (objp) |
1da177e4 LT |
2719 | #endif |
2720 | ||
b03a017b JK |
2721 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
2722 | void **list) | |
2723 | { | |
2724 | #if DEBUG | |
2725 | void *next = *list; | |
2726 | void *objp; | |
2727 | ||
2728 | while (next) { | |
2729 | objp = next - obj_offset(cachep); | |
2730 | next = *(void **)next; | |
2731 | poison_obj(cachep, objp, POISON_FREE); | |
2732 | } | |
2733 | #endif | |
2734 | } | |
2735 | ||
d8410234 | 2736 | static inline void fixup_slab_list(struct kmem_cache *cachep, |
7981e67e | 2737 | struct kmem_cache_node *n, struct slab *slab, |
b03a017b | 2738 | void **list) |
d8410234 JK |
2739 | { |
2740 | /* move slabp to correct slabp list: */ | |
7981e67e VB |
2741 | list_del(&slab->slab_list); |
2742 | if (slab->active == cachep->num) { | |
2743 | list_add(&slab->slab_list, &n->slabs_full); | |
b03a017b JK |
2744 | if (OBJFREELIST_SLAB(cachep)) { |
2745 | #if DEBUG | |
2746 | /* Poisoning will be done without holding the lock */ | |
2747 | if (cachep->flags & SLAB_POISON) { | |
7981e67e | 2748 | void **objp = slab->freelist; |
b03a017b JK |
2749 | |
2750 | *objp = *list; | |
2751 | *list = objp; | |
2752 | } | |
2753 | #endif | |
7981e67e | 2754 | slab->freelist = NULL; |
b03a017b JK |
2755 | } |
2756 | } else | |
7981e67e | 2757 | list_add(&slab->slab_list, &n->slabs_partial); |
d8410234 JK |
2758 | } |
2759 | ||
f68f8ddd | 2760 | /* Try to find non-pfmemalloc slab if needed */ |
7981e67e VB |
2761 | static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, |
2762 | struct slab *slab, bool pfmemalloc) | |
f68f8ddd | 2763 | { |
7981e67e | 2764 | if (!slab) |
f68f8ddd JK |
2765 | return NULL; |
2766 | ||
2767 | if (pfmemalloc) | |
7981e67e | 2768 | return slab; |
f68f8ddd | 2769 | |
7981e67e VB |
2770 | if (!slab_test_pfmemalloc(slab)) |
2771 | return slab; | |
f68f8ddd JK |
2772 | |
2773 | /* No need to keep pfmemalloc slab if we have enough free objects */ | |
2774 | if (n->free_objects > n->free_limit) { | |
7981e67e VB |
2775 | slab_clear_pfmemalloc(slab); |
2776 | return slab; | |
f68f8ddd JK |
2777 | } |
2778 | ||
2779 | /* Move pfmemalloc slab to the end of list to speed up next search */ | |
7981e67e VB |
2780 | list_del(&slab->slab_list); |
2781 | if (!slab->active) { | |
2782 | list_add_tail(&slab->slab_list, &n->slabs_free); | |
bf00bd34 | 2783 | n->free_slabs++; |
f728b0a5 | 2784 | } else |
7981e67e | 2785 | list_add_tail(&slab->slab_list, &n->slabs_partial); |
f68f8ddd | 2786 | |
7981e67e VB |
2787 | list_for_each_entry(slab, &n->slabs_partial, slab_list) { |
2788 | if (!slab_test_pfmemalloc(slab)) | |
2789 | return slab; | |
f68f8ddd JK |
2790 | } |
2791 | ||
f728b0a5 | 2792 | n->free_touched = 1; |
7981e67e VB |
2793 | list_for_each_entry(slab, &n->slabs_free, slab_list) { |
2794 | if (!slab_test_pfmemalloc(slab)) { | |
bf00bd34 | 2795 | n->free_slabs--; |
7981e67e | 2796 | return slab; |
f728b0a5 | 2797 | } |
f68f8ddd JK |
2798 | } |
2799 | ||
2800 | return NULL; | |
2801 | } | |
2802 | ||
7981e67e | 2803 | static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) |
7aa0d227 | 2804 | { |
7981e67e | 2805 | struct slab *slab; |
7aa0d227 | 2806 | |
f728b0a5 | 2807 | assert_spin_locked(&n->list_lock); |
7981e67e | 2808 | slab = list_first_entry_or_null(&n->slabs_partial, struct slab, |
16cb0ec7 | 2809 | slab_list); |
7981e67e | 2810 | if (!slab) { |
7aa0d227 | 2811 | n->free_touched = 1; |
7981e67e | 2812 | slab = list_first_entry_or_null(&n->slabs_free, struct slab, |
16cb0ec7 | 2813 | slab_list); |
7981e67e | 2814 | if (slab) |
bf00bd34 | 2815 | n->free_slabs--; |
7aa0d227 GT |
2816 | } |
2817 | ||
f68f8ddd | 2818 | if (sk_memalloc_socks()) |
7981e67e | 2819 | slab = get_valid_first_slab(n, slab, pfmemalloc); |
f68f8ddd | 2820 | |
7981e67e | 2821 | return slab; |
7aa0d227 GT |
2822 | } |
2823 | ||
f68f8ddd JK |
2824 | static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
2825 | struct kmem_cache_node *n, gfp_t flags) | |
2826 | { | |
7981e67e | 2827 | struct slab *slab; |
f68f8ddd JK |
2828 | void *obj; |
2829 | void *list = NULL; | |
2830 | ||
2831 | if (!gfp_pfmemalloc_allowed(flags)) | |
2832 | return NULL; | |
2833 | ||
2834 | spin_lock(&n->list_lock); | |
7981e67e VB |
2835 | slab = get_first_slab(n, true); |
2836 | if (!slab) { | |
f68f8ddd JK |
2837 | spin_unlock(&n->list_lock); |
2838 | return NULL; | |
2839 | } | |
2840 | ||
7981e67e | 2841 | obj = slab_get_obj(cachep, slab); |
f68f8ddd JK |
2842 | n->free_objects--; |
2843 | ||
7981e67e | 2844 | fixup_slab_list(cachep, n, slab, &list); |
f68f8ddd JK |
2845 | |
2846 | spin_unlock(&n->list_lock); | |
2847 | fixup_objfreelist_debug(cachep, &list); | |
2848 | ||
2849 | return obj; | |
2850 | } | |
2851 | ||
213b4695 JK |
2852 | /* |
2853 | * Slab list should be fixed up by fixup_slab_list() for existing slab | |
2854 | * or cache_grow_end() for new slab | |
2855 | */ | |
2856 | static __always_inline int alloc_block(struct kmem_cache *cachep, | |
7981e67e | 2857 | struct array_cache *ac, struct slab *slab, int batchcount) |
213b4695 JK |
2858 | { |
2859 | /* | |
2860 | * There must be at least one object available for | |
2861 | * allocation. | |
2862 | */ | |
7981e67e | 2863 | BUG_ON(slab->active >= cachep->num); |
213b4695 | 2864 | |
7981e67e | 2865 | while (slab->active < cachep->num && batchcount--) { |
213b4695 JK |
2866 | STATS_INC_ALLOCED(cachep); |
2867 | STATS_INC_ACTIVE(cachep); | |
2868 | STATS_SET_HIGH(cachep); | |
2869 | ||
7981e67e | 2870 | ac->entry[ac->avail++] = slab_get_obj(cachep, slab); |
213b4695 JK |
2871 | } |
2872 | ||
2873 | return batchcount; | |
2874 | } | |
2875 | ||
f68f8ddd | 2876 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2877 | { |
2878 | int batchcount; | |
ce8eb6c4 | 2879 | struct kmem_cache_node *n; |
801faf0d | 2880 | struct array_cache *ac, *shared; |
1ca4cb24 | 2881 | int node; |
b03a017b | 2882 | void *list = NULL; |
7981e67e | 2883 | struct slab *slab; |
1ca4cb24 | 2884 | |
1da177e4 | 2885 | check_irq_off(); |
7d6e6d09 | 2886 | node = numa_mem_id(); |
f68f8ddd | 2887 | |
9a2dba4b | 2888 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2889 | batchcount = ac->batchcount; |
2890 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2891 | /* |
2892 | * If there was little recent activity on this cache, then | |
2893 | * perform only a partial refill. Otherwise we could generate | |
2894 | * refill bouncing. | |
1da177e4 LT |
2895 | */ |
2896 | batchcount = BATCHREFILL_LIMIT; | |
2897 | } | |
18bf8541 | 2898 | n = get_node(cachep, node); |
e498be7d | 2899 | |
ce8eb6c4 | 2900 | BUG_ON(ac->avail > 0 || !n); |
801faf0d JK |
2901 | shared = READ_ONCE(n->shared); |
2902 | if (!n->free_objects && (!shared || !shared->avail)) | |
2903 | goto direct_grow; | |
2904 | ||
ce8eb6c4 | 2905 | spin_lock(&n->list_lock); |
801faf0d | 2906 | shared = READ_ONCE(n->shared); |
1da177e4 | 2907 | |
3ded175a | 2908 | /* See if we can refill from the shared array */ |
801faf0d JK |
2909 | if (shared && transfer_objects(ac, shared, batchcount)) { |
2910 | shared->touched = 1; | |
3ded175a | 2911 | goto alloc_done; |
44b57f1c | 2912 | } |
3ded175a | 2913 | |
1da177e4 | 2914 | while (batchcount > 0) { |
1da177e4 | 2915 | /* Get slab alloc is to come from. */ |
7981e67e VB |
2916 | slab = get_first_slab(n, false); |
2917 | if (!slab) | |
7aa0d227 | 2918 | goto must_grow; |
1da177e4 | 2919 | |
1da177e4 | 2920 | check_spinlock_acquired(cachep); |
714b8171 | 2921 | |
7981e67e VB |
2922 | batchcount = alloc_block(cachep, ac, slab, batchcount); |
2923 | fixup_slab_list(cachep, n, slab, &list); | |
1da177e4 LT |
2924 | } |
2925 | ||
a737b3e2 | 2926 | must_grow: |
ce8eb6c4 | 2927 | n->free_objects -= ac->avail; |
a737b3e2 | 2928 | alloc_done: |
ce8eb6c4 | 2929 | spin_unlock(&n->list_lock); |
b03a017b | 2930 | fixup_objfreelist_debug(cachep, &list); |
1da177e4 | 2931 | |
801faf0d | 2932 | direct_grow: |
1da177e4 | 2933 | if (unlikely(!ac->avail)) { |
f68f8ddd JK |
2934 | /* Check if we can use obj in pfmemalloc slab */ |
2935 | if (sk_memalloc_socks()) { | |
2936 | void *obj = cache_alloc_pfmemalloc(cachep, n, flags); | |
2937 | ||
2938 | if (obj) | |
2939 | return obj; | |
2940 | } | |
2941 | ||
7981e67e | 2942 | slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
e498be7d | 2943 | |
76b342bd JK |
2944 | /* |
2945 | * cache_grow_begin() can reenable interrupts, | |
2946 | * then ac could change. | |
2947 | */ | |
9a2dba4b | 2948 | ac = cpu_cache_get(cachep); |
7981e67e VB |
2949 | if (!ac->avail && slab) |
2950 | alloc_block(cachep, ac, slab, batchcount); | |
2951 | cache_grow_end(cachep, slab); | |
072bb0aa | 2952 | |
213b4695 | 2953 | if (!ac->avail) |
1da177e4 | 2954 | return NULL; |
1da177e4 LT |
2955 | } |
2956 | ac->touched = 1; | |
072bb0aa | 2957 | |
f68f8ddd | 2958 | return ac->entry[--ac->avail]; |
1da177e4 LT |
2959 | } |
2960 | ||
a737b3e2 AM |
2961 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
2962 | gfp_t flags) | |
1da177e4 | 2963 | { |
d0164adc | 2964 | might_sleep_if(gfpflags_allow_blocking(flags)); |
1da177e4 LT |
2965 | } |
2966 | ||
2967 | #if DEBUG | |
a737b3e2 | 2968 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 2969 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 2970 | { |
128227e7 | 2971 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
df3ae2c9 | 2972 | if (!objp || is_kfence_address(objp)) |
1da177e4 | 2973 | return objp; |
b28a02de | 2974 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2975 | check_poison_obj(cachep, objp); |
80552f0f | 2976 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
2977 | poison_obj(cachep, objp, POISON_INUSE); |
2978 | } | |
2979 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2980 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
2981 | |
2982 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
2983 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
2984 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
756a025f | 2985 | slab_error(cachep, "double free, or memory outside object was overwritten"); |
85c3e4a5 | 2986 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b JP |
2987 | objp, *dbg_redzone1(cachep, objp), |
2988 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
2989 | } |
2990 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2991 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2992 | } | |
03787301 | 2993 | |
3dafccf2 | 2994 | objp += obj_offset(cachep); |
4f104934 | 2995 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 2996 | cachep->ctor(objp); |
d949a815 PC |
2997 | if ((unsigned long)objp & (arch_slab_minalign() - 1)) { |
2998 | pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, | |
2999 | arch_slab_minalign()); | |
a44b56d3 | 3000 | } |
1da177e4 LT |
3001 | return objp; |
3002 | } | |
3003 | #else | |
0b411634 | 3004 | #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) |
1da177e4 LT |
3005 | #endif |
3006 | ||
343e0d7a | 3007 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3008 | { |
b28a02de | 3009 | void *objp; |
1da177e4 LT |
3010 | struct array_cache *ac; |
3011 | ||
5c382300 | 3012 | check_irq_off(); |
8a8b6502 | 3013 | |
9a2dba4b | 3014 | ac = cpu_cache_get(cachep); |
1da177e4 | 3015 | if (likely(ac->avail)) { |
1da177e4 | 3016 | ac->touched = 1; |
f68f8ddd | 3017 | objp = ac->entry[--ac->avail]; |
072bb0aa | 3018 | |
f68f8ddd JK |
3019 | STATS_INC_ALLOCHIT(cachep); |
3020 | goto out; | |
1da177e4 | 3021 | } |
072bb0aa MG |
3022 | |
3023 | STATS_INC_ALLOCMISS(cachep); | |
f68f8ddd | 3024 | objp = cache_alloc_refill(cachep, flags); |
072bb0aa MG |
3025 | /* |
3026 | * the 'ac' may be updated by cache_alloc_refill(), | |
3027 | * and kmemleak_erase() requires its correct value. | |
3028 | */ | |
3029 | ac = cpu_cache_get(cachep); | |
3030 | ||
3031 | out: | |
d5cff635 CM |
3032 | /* |
3033 | * To avoid a false negative, if an object that is in one of the | |
3034 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3035 | * treat the array pointers as a reference to the object. | |
3036 | */ | |
f3d8b53a O |
3037 | if (objp) |
3038 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3039 | return objp; |
3040 | } | |
3041 | ||
e498be7d | 3042 | #ifdef CONFIG_NUMA |
1e703d05 ML |
3043 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
3044 | ||
c61afb18 | 3045 | /* |
2ad654bc | 3046 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3047 | * |
3048 | * If we are in_interrupt, then process context, including cpusets and | |
3049 | * mempolicy, may not apply and should not be used for allocation policy. | |
3050 | */ | |
3051 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3052 | { | |
3053 | int nid_alloc, nid_here; | |
3054 | ||
765c4507 | 3055 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3056 | return NULL; |
7d6e6d09 | 3057 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3058 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3059 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3060 | else if (current->mempolicy) |
2a389610 | 3061 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3062 | if (nid_alloc != nid_here) |
8b98c169 | 3063 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3064 | return NULL; |
3065 | } | |
3066 | ||
765c4507 CL |
3067 | /* |
3068 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3069 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3070 | * available node for available objects. If that fails then we |
3c517a61 CL |
3071 | * perform an allocation without specifying a node. This allows the page |
3072 | * allocator to do its reclaim / fallback magic. We then insert the | |
3073 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3074 | */ |
8c8cc2c1 | 3075 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3076 | { |
8c8cc2c1 | 3077 | struct zonelist *zonelist; |
dd1a239f | 3078 | struct zoneref *z; |
54a6eb5c | 3079 | struct zone *zone; |
97a225e6 | 3080 | enum zone_type highest_zoneidx = gfp_zone(flags); |
765c4507 | 3081 | void *obj = NULL; |
7981e67e | 3082 | struct slab *slab; |
3c517a61 | 3083 | int nid; |
cc9a6c87 | 3084 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3085 | |
3086 | if (flags & __GFP_THISNODE) | |
3087 | return NULL; | |
3088 | ||
cc9a6c87 | 3089 | retry_cpuset: |
d26914d1 | 3090 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3091 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3092 | |
3c517a61 CL |
3093 | retry: |
3094 | /* | |
3095 | * Look through allowed nodes for objects available | |
3096 | * from existing per node queues. | |
3097 | */ | |
97a225e6 | 3098 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
54a6eb5c | 3099 | nid = zone_to_nid(zone); |
aedb0eb1 | 3100 | |
061d7074 | 3101 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3102 | get_node(cache, nid) && |
3103 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3104 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3105 | gfp_exact_node(flags), nid); |
481c5346 CL |
3106 | if (obj) |
3107 | break; | |
3108 | } | |
3c517a61 CL |
3109 | } |
3110 | ||
cfce6604 | 3111 | if (!obj) { |
3c517a61 CL |
3112 | /* |
3113 | * This allocation will be performed within the constraints | |
3114 | * of the current cpuset / memory policy requirements. | |
3115 | * We may trigger various forms of reclaim on the allowed | |
3116 | * set and go into memory reserves if necessary. | |
3117 | */ | |
7981e67e VB |
3118 | slab = cache_grow_begin(cache, flags, numa_mem_id()); |
3119 | cache_grow_end(cache, slab); | |
3120 | if (slab) { | |
3121 | nid = slab_nid(slab); | |
511e3a05 JK |
3122 | obj = ____cache_alloc_node(cache, |
3123 | gfp_exact_node(flags), nid); | |
0c3aa83e | 3124 | |
3c517a61 | 3125 | /* |
511e3a05 JK |
3126 | * Another processor may allocate the objects in |
3127 | * the slab since we are not holding any locks. | |
3c517a61 | 3128 | */ |
511e3a05 JK |
3129 | if (!obj) |
3130 | goto retry; | |
3c517a61 | 3131 | } |
aedb0eb1 | 3132 | } |
cc9a6c87 | 3133 | |
d26914d1 | 3134 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3135 | goto retry_cpuset; |
765c4507 CL |
3136 | return obj; |
3137 | } | |
3138 | ||
e498be7d | 3139 | /* |
a8f23dd1 | 3140 | * An interface to enable slab creation on nodeid |
1da177e4 | 3141 | */ |
8b98c169 | 3142 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3143 | int nodeid) |
e498be7d | 3144 | { |
7981e67e | 3145 | struct slab *slab; |
ce8eb6c4 | 3146 | struct kmem_cache_node *n; |
213b4695 | 3147 | void *obj = NULL; |
b03a017b | 3148 | void *list = NULL; |
b28a02de | 3149 | |
7c3fbbdd | 3150 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3151 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3152 | BUG_ON(!n); |
b28a02de | 3153 | |
ca3b9b91 | 3154 | check_irq_off(); |
ce8eb6c4 | 3155 | spin_lock(&n->list_lock); |
7981e67e VB |
3156 | slab = get_first_slab(n, false); |
3157 | if (!slab) | |
7aa0d227 | 3158 | goto must_grow; |
b28a02de | 3159 | |
b28a02de | 3160 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3161 | |
3162 | STATS_INC_NODEALLOCS(cachep); | |
3163 | STATS_INC_ACTIVE(cachep); | |
3164 | STATS_SET_HIGH(cachep); | |
3165 | ||
7981e67e | 3166 | BUG_ON(slab->active == cachep->num); |
b28a02de | 3167 | |
7981e67e | 3168 | obj = slab_get_obj(cachep, slab); |
ce8eb6c4 | 3169 | n->free_objects--; |
b28a02de | 3170 | |
7981e67e | 3171 | fixup_slab_list(cachep, n, slab, &list); |
e498be7d | 3172 | |
ce8eb6c4 | 3173 | spin_unlock(&n->list_lock); |
b03a017b | 3174 | fixup_objfreelist_debug(cachep, &list); |
213b4695 | 3175 | return obj; |
e498be7d | 3176 | |
a737b3e2 | 3177 | must_grow: |
ce8eb6c4 | 3178 | spin_unlock(&n->list_lock); |
7981e67e VB |
3179 | slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
3180 | if (slab) { | |
213b4695 | 3181 | /* This slab isn't counted yet so don't update free_objects */ |
7981e67e | 3182 | obj = slab_get_obj(cachep, slab); |
213b4695 | 3183 | } |
7981e67e | 3184 | cache_grow_end(cachep, slab); |
1da177e4 | 3185 | |
213b4695 | 3186 | return obj ? obj : fallback_alloc(cachep, flags); |
e498be7d | 3187 | } |
8c8cc2c1 | 3188 | |
8c8cc2c1 | 3189 | static __always_inline void * |
d3fb45f3 | 3190 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size, |
7c0cb9c6 | 3191 | unsigned long caller) |
8c8cc2c1 PE |
3192 | { |
3193 | unsigned long save_flags; | |
3194 | void *ptr; | |
7d6e6d09 | 3195 | int slab_node = numa_mem_id(); |
964d4bd3 | 3196 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3197 | bool init = false; |
8c8cc2c1 | 3198 | |
dcce284a | 3199 | flags &= gfp_allowed_mask; |
88f2ef73 | 3200 | cachep = slab_pre_alloc_hook(cachep, NULL, &objcg, 1, flags); |
011eceaf | 3201 | if (unlikely(!cachep)) |
824ebef1 AM |
3202 | return NULL; |
3203 | ||
d3fb45f3 AP |
3204 | ptr = kfence_alloc(cachep, orig_size, flags); |
3205 | if (unlikely(ptr)) | |
3206 | goto out_hooks; | |
3207 | ||
8c8cc2c1 PE |
3208 | cache_alloc_debugcheck_before(cachep, flags); |
3209 | local_irq_save(save_flags); | |
3210 | ||
eacbbae3 | 3211 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3212 | nodeid = slab_node; |
8c8cc2c1 | 3213 | |
18bf8541 | 3214 | if (unlikely(!get_node(cachep, nodeid))) { |
8c8cc2c1 PE |
3215 | /* Node not bootstrapped yet */ |
3216 | ptr = fallback_alloc(cachep, flags); | |
3217 | goto out; | |
3218 | } | |
3219 | ||
7d6e6d09 | 3220 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3221 | /* |
3222 | * Use the locally cached objects if possible. | |
3223 | * However ____cache_alloc does not allow fallback | |
3224 | * to other nodes. It may fail while we still have | |
3225 | * objects on other nodes available. | |
3226 | */ | |
3227 | ptr = ____cache_alloc(cachep, flags); | |
3228 | if (ptr) | |
3229 | goto out; | |
3230 | } | |
3231 | /* ___cache_alloc_node can fall back to other nodes */ | |
3232 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3233 | out: | |
3234 | local_irq_restore(save_flags); | |
3235 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
da844b78 | 3236 | init = slab_want_init_on_alloc(flags, cachep); |
d07dbea4 | 3237 | |
d3fb45f3 | 3238 | out_hooks: |
da844b78 | 3239 | slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init); |
8c8cc2c1 PE |
3240 | return ptr; |
3241 | } | |
3242 | ||
3243 | static __always_inline void * | |
3244 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3245 | { | |
3246 | void *objp; | |
3247 | ||
2ad654bc | 3248 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
8c8cc2c1 PE |
3249 | objp = alternate_node_alloc(cache, flags); |
3250 | if (objp) | |
3251 | goto out; | |
3252 | } | |
3253 | objp = ____cache_alloc(cache, flags); | |
3254 | ||
3255 | /* | |
3256 | * We may just have run out of memory on the local node. | |
3257 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3258 | */ | |
7d6e6d09 LS |
3259 | if (!objp) |
3260 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3261 | |
3262 | out: | |
3263 | return objp; | |
3264 | } | |
3265 | #else | |
3266 | ||
3267 | static __always_inline void * | |
3268 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3269 | { | |
3270 | return ____cache_alloc(cachep, flags); | |
3271 | } | |
3272 | ||
3273 | #endif /* CONFIG_NUMA */ | |
3274 | ||
3275 | static __always_inline void * | |
88f2ef73 MS |
3276 | slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, |
3277 | size_t orig_size, unsigned long caller) | |
8c8cc2c1 PE |
3278 | { |
3279 | unsigned long save_flags; | |
3280 | void *objp; | |
964d4bd3 | 3281 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3282 | bool init = false; |
8c8cc2c1 | 3283 | |
dcce284a | 3284 | flags &= gfp_allowed_mask; |
88f2ef73 | 3285 | cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); |
011eceaf | 3286 | if (unlikely(!cachep)) |
824ebef1 AM |
3287 | return NULL; |
3288 | ||
d3fb45f3 AP |
3289 | objp = kfence_alloc(cachep, orig_size, flags); |
3290 | if (unlikely(objp)) | |
3291 | goto out; | |
3292 | ||
8c8cc2c1 PE |
3293 | cache_alloc_debugcheck_before(cachep, flags); |
3294 | local_irq_save(save_flags); | |
3295 | objp = __do_cache_alloc(cachep, flags); | |
3296 | local_irq_restore(save_flags); | |
3297 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3298 | prefetchw(objp); | |
da844b78 | 3299 | init = slab_want_init_on_alloc(flags, cachep); |
d07dbea4 | 3300 | |
d3fb45f3 | 3301 | out: |
da844b78 | 3302 | slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init); |
8c8cc2c1 PE |
3303 | return objp; |
3304 | } | |
e498be7d CL |
3305 | |
3306 | /* | |
5f0985bb | 3307 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3308 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3309 | */ |
97654dfa JK |
3310 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3311 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3312 | { |
3313 | int i; | |
25c063fb | 3314 | struct kmem_cache_node *n = get_node(cachep, node); |
7981e67e | 3315 | struct slab *slab; |
6052b788 JK |
3316 | |
3317 | n->free_objects += nr_objects; | |
1da177e4 LT |
3318 | |
3319 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3320 | void *objp; |
7981e67e | 3321 | struct slab *slab; |
1da177e4 | 3322 | |
072bb0aa MG |
3323 | objp = objpp[i]; |
3324 | ||
7981e67e VB |
3325 | slab = virt_to_slab(objp); |
3326 | list_del(&slab->slab_list); | |
ff69416e | 3327 | check_spinlock_acquired_node(cachep, node); |
7981e67e | 3328 | slab_put_obj(cachep, slab, objp); |
1da177e4 | 3329 | STATS_DEC_ACTIVE(cachep); |
1da177e4 LT |
3330 | |
3331 | /* fixup slab chains */ | |
7981e67e VB |
3332 | if (slab->active == 0) { |
3333 | list_add(&slab->slab_list, &n->slabs_free); | |
f728b0a5 | 3334 | n->free_slabs++; |
f728b0a5 | 3335 | } else { |
1da177e4 LT |
3336 | /* Unconditionally move a slab to the end of the |
3337 | * partial list on free - maximum time for the | |
3338 | * other objects to be freed, too. | |
3339 | */ | |
7981e67e | 3340 | list_add_tail(&slab->slab_list, &n->slabs_partial); |
1da177e4 LT |
3341 | } |
3342 | } | |
6052b788 JK |
3343 | |
3344 | while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { | |
3345 | n->free_objects -= cachep->num; | |
3346 | ||
7981e67e VB |
3347 | slab = list_last_entry(&n->slabs_free, struct slab, slab_list); |
3348 | list_move(&slab->slab_list, list); | |
f728b0a5 | 3349 | n->free_slabs--; |
bf00bd34 | 3350 | n->total_slabs--; |
6052b788 | 3351 | } |
1da177e4 LT |
3352 | } |
3353 | ||
343e0d7a | 3354 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3355 | { |
3356 | int batchcount; | |
ce8eb6c4 | 3357 | struct kmem_cache_node *n; |
7d6e6d09 | 3358 | int node = numa_mem_id(); |
97654dfa | 3359 | LIST_HEAD(list); |
1da177e4 LT |
3360 | |
3361 | batchcount = ac->batchcount; | |
260b61dd | 3362 | |
1da177e4 | 3363 | check_irq_off(); |
18bf8541 | 3364 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3365 | spin_lock(&n->list_lock); |
3366 | if (n->shared) { | |
3367 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3368 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3369 | if (max) { |
3370 | if (batchcount > max) | |
3371 | batchcount = max; | |
e498be7d | 3372 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3373 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3374 | shared_array->avail += batchcount; |
3375 | goto free_done; | |
3376 | } | |
3377 | } | |
3378 | ||
97654dfa | 3379 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3380 | free_done: |
1da177e4 LT |
3381 | #if STATS |
3382 | { | |
3383 | int i = 0; | |
7981e67e | 3384 | struct slab *slab; |
1da177e4 | 3385 | |
7981e67e VB |
3386 | list_for_each_entry(slab, &n->slabs_free, slab_list) { |
3387 | BUG_ON(slab->active); | |
1da177e4 LT |
3388 | |
3389 | i++; | |
1da177e4 LT |
3390 | } |
3391 | STATS_SET_FREEABLE(cachep, i); | |
3392 | } | |
3393 | #endif | |
ce8eb6c4 | 3394 | spin_unlock(&n->list_lock); |
1da177e4 | 3395 | ac->avail -= batchcount; |
a737b3e2 | 3396 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
678ff6a7 | 3397 | slabs_destroy(cachep, &list); |
1da177e4 LT |
3398 | } |
3399 | ||
3400 | /* | |
a737b3e2 AM |
3401 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3402 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3403 | */ |
ee3ce779 DV |
3404 | static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3405 | unsigned long caller) | |
1da177e4 | 3406 | { |
d57a964e AK |
3407 | bool init; |
3408 | ||
d3fb45f3 AP |
3409 | if (is_kfence_address(objp)) { |
3410 | kmemleak_free_recursive(objp, cachep->flags); | |
ae085d7f | 3411 | memcg_slab_free_hook(cachep, &objp, 1); |
d3fb45f3 AP |
3412 | __kfence_free(objp); |
3413 | return; | |
3414 | } | |
3415 | ||
d57a964e AK |
3416 | /* |
3417 | * As memory initialization might be integrated into KASAN, | |
3418 | * kasan_slab_free and initialization memset must be | |
3419 | * kept together to avoid discrepancies in behavior. | |
3420 | */ | |
3421 | init = slab_want_init_on_free(cachep); | |
3422 | if (init && !kasan_has_integrated_init()) | |
a32d654d | 3423 | memset(objp, 0, cachep->object_size); |
d57a964e AK |
3424 | /* KASAN might put objp into memory quarantine, delaying its reuse. */ |
3425 | if (kasan_slab_free(cachep, objp, init)) | |
55834c59 AP |
3426 | return; |
3427 | ||
cfbe1636 ME |
3428 | /* Use KCSAN to help debug racy use-after-free. */ |
3429 | if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) | |
3430 | __kcsan_check_access(objp, cachep->object_size, | |
3431 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
3432 | ||
55834c59 AP |
3433 | ___cache_free(cachep, objp, caller); |
3434 | } | |
1da177e4 | 3435 | |
55834c59 AP |
3436 | void ___cache_free(struct kmem_cache *cachep, void *objp, |
3437 | unsigned long caller) | |
3438 | { | |
3439 | struct array_cache *ac = cpu_cache_get(cachep); | |
7ed2f9e6 | 3440 | |
1da177e4 | 3441 | check_irq_off(); |
d5cff635 | 3442 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3443 | objp = cache_free_debugcheck(cachep, objp, caller); |
d1b2cf6c | 3444 | memcg_slab_free_hook(cachep, &objp, 1); |
1da177e4 | 3445 | |
1807a1aa SS |
3446 | /* |
3447 | * Skip calling cache_free_alien() when the platform is not numa. | |
3448 | * This will avoid cache misses that happen while accessing slabp (which | |
3449 | * is per page memory reference) to get nodeid. Instead use a global | |
3450 | * variable to skip the call, which is mostly likely to be present in | |
3451 | * the cache. | |
3452 | */ | |
b6e68bc1 | 3453 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3454 | return; |
3455 | ||
3d880194 | 3456 | if (ac->avail < ac->limit) { |
1da177e4 | 3457 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3458 | } else { |
3459 | STATS_INC_FREEMISS(cachep); | |
3460 | cache_flusharray(cachep, ac); | |
1da177e4 | 3461 | } |
42c8c99c | 3462 | |
f68f8ddd | 3463 | if (sk_memalloc_socks()) { |
7981e67e | 3464 | struct slab *slab = virt_to_slab(objp); |
f68f8ddd | 3465 | |
7981e67e VB |
3466 | if (unlikely(slab_test_pfmemalloc(slab))) { |
3467 | cache_free_pfmemalloc(cachep, slab, objp); | |
f68f8ddd JK |
3468 | return; |
3469 | } | |
3470 | } | |
3471 | ||
dabc3e29 | 3472 | __free_one(ac, objp); |
1da177e4 LT |
3473 | } |
3474 | ||
88f2ef73 MS |
3475 | static __always_inline |
3476 | void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, | |
3477 | gfp_t flags) | |
3478 | { | |
3479 | void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); | |
3480 | ||
3481 | trace_kmem_cache_alloc(_RET_IP_, ret, | |
3482 | cachep->object_size, cachep->size, flags); | |
3483 | ||
3484 | return ret; | |
3485 | } | |
3486 | ||
1da177e4 LT |
3487 | /** |
3488 | * kmem_cache_alloc - Allocate an object | |
3489 | * @cachep: The cache to allocate from. | |
3490 | * @flags: See kmalloc(). | |
3491 | * | |
3492 | * Allocate an object from this cache. The flags are only relevant | |
3493 | * if the cache has no available objects. | |
a862f68a MR |
3494 | * |
3495 | * Return: pointer to the new object or %NULL in case of error | |
1da177e4 | 3496 | */ |
343e0d7a | 3497 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3498 | { |
88f2ef73 | 3499 | return __kmem_cache_alloc_lru(cachep, NULL, flags); |
1da177e4 LT |
3500 | } |
3501 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3502 | ||
88f2ef73 MS |
3503 | void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, |
3504 | gfp_t flags) | |
3505 | { | |
3506 | return __kmem_cache_alloc_lru(cachep, lru, flags); | |
3507 | } | |
3508 | EXPORT_SYMBOL(kmem_cache_alloc_lru); | |
3509 | ||
7b0501dd JDB |
3510 | static __always_inline void |
3511 | cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, | |
3512 | size_t size, void **p, unsigned long caller) | |
3513 | { | |
3514 | size_t i; | |
3515 | ||
3516 | for (i = 0; i < size; i++) | |
3517 | p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); | |
3518 | } | |
3519 | ||
865762a8 | 3520 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2a777eac | 3521 | void **p) |
484748f0 | 3522 | { |
2a777eac | 3523 | size_t i; |
964d4bd3 | 3524 | struct obj_cgroup *objcg = NULL; |
2a777eac | 3525 | |
88f2ef73 | 3526 | s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); |
2a777eac JDB |
3527 | if (!s) |
3528 | return 0; | |
3529 | ||
3530 | cache_alloc_debugcheck_before(s, flags); | |
3531 | ||
3532 | local_irq_disable(); | |
3533 | for (i = 0; i < size; i++) { | |
d3fb45f3 | 3534 | void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags); |
2a777eac | 3535 | |
2a777eac JDB |
3536 | if (unlikely(!objp)) |
3537 | goto error; | |
3538 | p[i] = objp; | |
3539 | } | |
3540 | local_irq_enable(); | |
3541 | ||
7b0501dd JDB |
3542 | cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
3543 | ||
da844b78 AK |
3544 | /* |
3545 | * memcg and kmem_cache debug support and memory initialization. | |
3546 | * Done outside of the IRQ disabled section. | |
3547 | */ | |
3548 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
3549 | slab_want_init_on_alloc(flags, s)); | |
2a777eac JDB |
3550 | /* FIXME: Trace call missing. Christoph would like a bulk variant */ |
3551 | return size; | |
3552 | error: | |
3553 | local_irq_enable(); | |
7b0501dd | 3554 | cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
da844b78 | 3555 | slab_post_alloc_hook(s, objcg, flags, i, p, false); |
2a777eac JDB |
3556 | __kmem_cache_free_bulk(s, i, p); |
3557 | return 0; | |
484748f0 CL |
3558 | } |
3559 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3560 | ||
0f24f128 | 3561 | #ifdef CONFIG_TRACING |
85beb586 | 3562 | void * |
4052147c | 3563 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3564 | { |
85beb586 SR |
3565 | void *ret; |
3566 | ||
88f2ef73 | 3567 | ret = slab_alloc(cachep, NULL, flags, size, _RET_IP_); |
85beb586 | 3568 | |
0116523c | 3569 | ret = kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3570 | trace_kmalloc(_RET_IP_, ret, |
ff4fcd01 | 3571 | size, cachep->size, flags); |
85beb586 | 3572 | return ret; |
36555751 | 3573 | } |
85beb586 | 3574 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3575 | #endif |
3576 | ||
1da177e4 | 3577 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3578 | /** |
3579 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3580 | * @cachep: The cache to allocate from. | |
3581 | * @flags: See kmalloc(). | |
3582 | * @nodeid: node number of the target node. | |
3583 | * | |
3584 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3585 | * node, which can improve the performance for cpu bound structures. | |
3586 | * | |
3587 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
a862f68a MR |
3588 | * |
3589 | * Return: pointer to the new object or %NULL in case of error | |
d0d04b78 | 3590 | */ |
8b98c169 CH |
3591 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3592 | { | |
d3fb45f3 | 3593 | void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_); |
36555751 | 3594 | |
ca2b84cb | 3595 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3596 | cachep->object_size, cachep->size, |
ca2b84cb | 3597 | flags, nodeid); |
36555751 EGM |
3598 | |
3599 | return ret; | |
8b98c169 | 3600 | } |
1da177e4 LT |
3601 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3602 | ||
0f24f128 | 3603 | #ifdef CONFIG_TRACING |
4052147c | 3604 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3605 | gfp_t flags, |
4052147c EG |
3606 | int nodeid, |
3607 | size_t size) | |
36555751 | 3608 | { |
85beb586 SR |
3609 | void *ret; |
3610 | ||
d3fb45f3 | 3611 | ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_); |
505f5dcb | 3612 | |
0116523c | 3613 | ret = kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3614 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3615 | size, cachep->size, |
85beb586 SR |
3616 | flags, nodeid); |
3617 | return ret; | |
36555751 | 3618 | } |
85beb586 | 3619 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3620 | #endif |
3621 | ||
8b98c169 | 3622 | static __always_inline void * |
7c0cb9c6 | 3623 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3624 | { |
343e0d7a | 3625 | struct kmem_cache *cachep; |
7ed2f9e6 | 3626 | void *ret; |
97e2bde4 | 3627 | |
61448479 DV |
3628 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3629 | return NULL; | |
2c59dd65 | 3630 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3631 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3632 | return cachep; | |
7ed2f9e6 | 3633 | ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); |
0116523c | 3634 | ret = kasan_kmalloc(cachep, ret, size, flags); |
7ed2f9e6 AP |
3635 | |
3636 | return ret; | |
97e2bde4 | 3637 | } |
8b98c169 | 3638 | |
8b98c169 CH |
3639 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3640 | { | |
7c0cb9c6 | 3641 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3642 | } |
dbe5e69d | 3643 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3644 | |
3645 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3646 | int node, unsigned long caller) |
8b98c169 | 3647 | { |
7c0cb9c6 | 3648 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3649 | } |
3650 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
8b98c169 | 3651 | #endif /* CONFIG_NUMA */ |
1da177e4 | 3652 | |
5bb1bb35 | 3653 | #ifdef CONFIG_PRINTK |
2dfe63e6 | 3654 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
8e7f37f2 PM |
3655 | { |
3656 | struct kmem_cache *cachep; | |
3657 | unsigned int objnr; | |
3658 | void *objp; | |
3659 | ||
3660 | kpp->kp_ptr = object; | |
7213230a MWO |
3661 | kpp->kp_slab = slab; |
3662 | cachep = slab->slab_cache; | |
8e7f37f2 PM |
3663 | kpp->kp_slab_cache = cachep; |
3664 | objp = object - obj_offset(cachep); | |
3665 | kpp->kp_data_offset = obj_offset(cachep); | |
7213230a | 3666 | slab = virt_to_slab(objp); |
40f3bf0c | 3667 | objnr = obj_to_index(cachep, slab, objp); |
7981e67e | 3668 | objp = index_to_obj(cachep, slab, objnr); |
8e7f37f2 PM |
3669 | kpp->kp_objp = objp; |
3670 | if (DEBUG && cachep->flags & SLAB_STORE_USER) | |
3671 | kpp->kp_ret = *dbg_userword(cachep, objp); | |
3672 | } | |
5bb1bb35 | 3673 | #endif |
8e7f37f2 | 3674 | |
1da177e4 | 3675 | /** |
800590f5 | 3676 | * __do_kmalloc - allocate memory |
1da177e4 | 3677 | * @size: how many bytes of memory are required. |
800590f5 | 3678 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3679 | * @caller: function caller for debug tracking of the caller |
a862f68a MR |
3680 | * |
3681 | * Return: pointer to the allocated memory or %NULL in case of error | |
1da177e4 | 3682 | */ |
7fd6b141 | 3683 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3684 | unsigned long caller) |
1da177e4 | 3685 | { |
343e0d7a | 3686 | struct kmem_cache *cachep; |
36555751 | 3687 | void *ret; |
1da177e4 | 3688 | |
61448479 DV |
3689 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3690 | return NULL; | |
2c59dd65 | 3691 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3692 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3693 | return cachep; | |
88f2ef73 | 3694 | ret = slab_alloc(cachep, NULL, flags, size, caller); |
36555751 | 3695 | |
0116523c | 3696 | ret = kasan_kmalloc(cachep, ret, size, flags); |
7c0cb9c6 | 3697 | trace_kmalloc(caller, ret, |
3b0efdfa | 3698 | size, cachep->size, flags); |
36555751 EGM |
3699 | |
3700 | return ret; | |
7fd6b141 PE |
3701 | } |
3702 | ||
7fd6b141 PE |
3703 | void *__kmalloc(size_t size, gfp_t flags) |
3704 | { | |
7c0cb9c6 | 3705 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3706 | } |
3707 | EXPORT_SYMBOL(__kmalloc); | |
3708 | ||
ce71e27c | 3709 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3710 | { |
7c0cb9c6 | 3711 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3712 | } |
3713 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea | 3714 | |
1da177e4 LT |
3715 | /** |
3716 | * kmem_cache_free - Deallocate an object | |
3717 | * @cachep: The cache the allocation was from. | |
3718 | * @objp: The previously allocated object. | |
3719 | * | |
3720 | * Free an object which was previously allocated from this | |
3721 | * cache. | |
3722 | */ | |
343e0d7a | 3723 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3724 | { |
3725 | unsigned long flags; | |
b9ce5ef4 GC |
3726 | cachep = cache_from_obj(cachep, objp); |
3727 | if (!cachep) | |
3728 | return; | |
1da177e4 | 3729 | |
9a543f00 | 3730 | trace_kmem_cache_free(_RET_IP_, objp, cachep->name); |
1da177e4 | 3731 | local_irq_save(flags); |
d97d476b | 3732 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3733 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3734 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3735 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 LT |
3736 | local_irq_restore(flags); |
3737 | } | |
3738 | EXPORT_SYMBOL(kmem_cache_free); | |
3739 | ||
e6cdb58d JDB |
3740 | void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
3741 | { | |
3742 | struct kmem_cache *s; | |
3743 | size_t i; | |
3744 | ||
3745 | local_irq_disable(); | |
3746 | for (i = 0; i < size; i++) { | |
3747 | void *objp = p[i]; | |
3748 | ||
ca257195 JDB |
3749 | if (!orig_s) /* called via kfree_bulk */ |
3750 | s = virt_to_cache(objp); | |
3751 | else | |
3752 | s = cache_from_obj(orig_s, objp); | |
a64b5378 KC |
3753 | if (!s) |
3754 | continue; | |
e6cdb58d JDB |
3755 | |
3756 | debug_check_no_locks_freed(objp, s->object_size); | |
3757 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
3758 | debug_check_no_obj_freed(objp, s->object_size); | |
3759 | ||
3760 | __cache_free(s, objp, _RET_IP_); | |
3761 | } | |
3762 | local_irq_enable(); | |
3763 | ||
3764 | /* FIXME: add tracing */ | |
3765 | } | |
3766 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3767 | ||
1da177e4 LT |
3768 | /** |
3769 | * kfree - free previously allocated memory | |
3770 | * @objp: pointer returned by kmalloc. | |
3771 | * | |
80e93eff PE |
3772 | * If @objp is NULL, no operation is performed. |
3773 | * | |
1da177e4 LT |
3774 | * Don't free memory not originally allocated by kmalloc() |
3775 | * or you will run into trouble. | |
3776 | */ | |
3777 | void kfree(const void *objp) | |
3778 | { | |
343e0d7a | 3779 | struct kmem_cache *c; |
1da177e4 LT |
3780 | unsigned long flags; |
3781 | ||
2121db74 PE |
3782 | trace_kfree(_RET_IP_, objp); |
3783 | ||
6cb8f913 | 3784 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3785 | return; |
3786 | local_irq_save(flags); | |
3787 | kfree_debugcheck(objp); | |
6ed5eb22 | 3788 | c = virt_to_cache(objp); |
a64b5378 KC |
3789 | if (!c) { |
3790 | local_irq_restore(flags); | |
3791 | return; | |
3792 | } | |
8c138bc0 CL |
3793 | debug_check_no_locks_freed(objp, c->object_size); |
3794 | ||
3795 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3796 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3797 | local_irq_restore(flags); |
3798 | } | |
3799 | EXPORT_SYMBOL(kfree); | |
3800 | ||
e498be7d | 3801 | /* |
ce8eb6c4 | 3802 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3803 | */ |
c3d332b6 | 3804 | static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d | 3805 | { |
c3d332b6 | 3806 | int ret; |
e498be7d | 3807 | int node; |
ce8eb6c4 | 3808 | struct kmem_cache_node *n; |
e498be7d | 3809 | |
9c09a95c | 3810 | for_each_online_node(node) { |
c3d332b6 JK |
3811 | ret = setup_kmem_cache_node(cachep, node, gfp, true); |
3812 | if (ret) | |
e498be7d CL |
3813 | goto fail; |
3814 | ||
e498be7d | 3815 | } |
c3d332b6 | 3816 | |
cafeb02e | 3817 | return 0; |
0718dc2a | 3818 | |
a737b3e2 | 3819 | fail: |
3b0efdfa | 3820 | if (!cachep->list.next) { |
0718dc2a CL |
3821 | /* Cache is not active yet. Roll back what we did */ |
3822 | node--; | |
3823 | while (node >= 0) { | |
18bf8541 CL |
3824 | n = get_node(cachep, node); |
3825 | if (n) { | |
ce8eb6c4 CL |
3826 | kfree(n->shared); |
3827 | free_alien_cache(n->alien); | |
3828 | kfree(n); | |
6a67368c | 3829 | cachep->node[node] = NULL; |
0718dc2a CL |
3830 | } |
3831 | node--; | |
3832 | } | |
3833 | } | |
cafeb02e | 3834 | return -ENOMEM; |
e498be7d CL |
3835 | } |
3836 | ||
18004c5d | 3837 | /* Always called with the slab_mutex held */ |
10befea9 RG |
3838 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3839 | int batchcount, int shared, gfp_t gfp) | |
1da177e4 | 3840 | { |
bf0dea23 JK |
3841 | struct array_cache __percpu *cpu_cache, *prev; |
3842 | int cpu; | |
1da177e4 | 3843 | |
bf0dea23 JK |
3844 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3845 | if (!cpu_cache) | |
d2e7b7d0 SS |
3846 | return -ENOMEM; |
3847 | ||
bf0dea23 JK |
3848 | prev = cachep->cpu_cache; |
3849 | cachep->cpu_cache = cpu_cache; | |
a87c75fb GT |
3850 | /* |
3851 | * Without a previous cpu_cache there's no need to synchronize remote | |
3852 | * cpus, so skip the IPIs. | |
3853 | */ | |
3854 | if (prev) | |
3855 | kick_all_cpus_sync(); | |
e498be7d | 3856 | |
1da177e4 | 3857 | check_irq_on(); |
1da177e4 LT |
3858 | cachep->batchcount = batchcount; |
3859 | cachep->limit = limit; | |
e498be7d | 3860 | cachep->shared = shared; |
1da177e4 | 3861 | |
bf0dea23 | 3862 | if (!prev) |
c3d332b6 | 3863 | goto setup_node; |
bf0dea23 JK |
3864 | |
3865 | for_each_online_cpu(cpu) { | |
97654dfa | 3866 | LIST_HEAD(list); |
18bf8541 CL |
3867 | int node; |
3868 | struct kmem_cache_node *n; | |
bf0dea23 | 3869 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3870 | |
bf0dea23 | 3871 | node = cpu_to_mem(cpu); |
18bf8541 CL |
3872 | n = get_node(cachep, node); |
3873 | spin_lock_irq(&n->list_lock); | |
bf0dea23 | 3874 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 3875 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3876 | slabs_destroy(cachep, &list); |
1da177e4 | 3877 | } |
bf0dea23 JK |
3878 | free_percpu(prev); |
3879 | ||
c3d332b6 JK |
3880 | setup_node: |
3881 | return setup_kmem_cache_nodes(cachep, gfp); | |
1da177e4 LT |
3882 | } |
3883 | ||
18004c5d | 3884 | /* Called with slab_mutex held always */ |
83b519e8 | 3885 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3886 | { |
3887 | int err; | |
943a451a GC |
3888 | int limit = 0; |
3889 | int shared = 0; | |
3890 | int batchcount = 0; | |
3891 | ||
7c00fce9 | 3892 | err = cache_random_seq_create(cachep, cachep->num, gfp); |
c7ce4f60 TG |
3893 | if (err) |
3894 | goto end; | |
3895 | ||
a737b3e2 AM |
3896 | /* |
3897 | * The head array serves three purposes: | |
1da177e4 LT |
3898 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3899 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3900 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3901 | * bufctl chains: array operations are cheaper. |
3902 | * The numbers are guessed, we should auto-tune as described by | |
3903 | * Bonwick. | |
3904 | */ | |
3b0efdfa | 3905 | if (cachep->size > 131072) |
1da177e4 | 3906 | limit = 1; |
3b0efdfa | 3907 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3908 | limit = 8; |
3b0efdfa | 3909 | else if (cachep->size > 1024) |
1da177e4 | 3910 | limit = 24; |
3b0efdfa | 3911 | else if (cachep->size > 256) |
1da177e4 LT |
3912 | limit = 54; |
3913 | else | |
3914 | limit = 120; | |
3915 | ||
a737b3e2 AM |
3916 | /* |
3917 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3918 | * allocation behaviour: Most allocs on one cpu, most free operations |
3919 | * on another cpu. For these cases, an efficient object passing between | |
3920 | * cpus is necessary. This is provided by a shared array. The array | |
3921 | * replaces Bonwick's magazine layer. | |
3922 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3923 | * to a larger limit. Thus disabled by default. | |
3924 | */ | |
3925 | shared = 0; | |
3b0efdfa | 3926 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3927 | shared = 8; |
1da177e4 LT |
3928 | |
3929 | #if DEBUG | |
a737b3e2 AM |
3930 | /* |
3931 | * With debugging enabled, large batchcount lead to excessively long | |
3932 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3933 | */ |
3934 | if (limit > 32) | |
3935 | limit = 32; | |
3936 | #endif | |
943a451a | 3937 | batchcount = (limit + 1) / 2; |
943a451a | 3938 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); |
c7ce4f60 | 3939 | end: |
1da177e4 | 3940 | if (err) |
1170532b | 3941 | pr_err("enable_cpucache failed for %s, error %d\n", |
b28a02de | 3942 | cachep->name, -err); |
2ed3a4ef | 3943 | return err; |
1da177e4 LT |
3944 | } |
3945 | ||
1b55253a | 3946 | /* |
ce8eb6c4 CL |
3947 | * Drain an array if it contains any elements taking the node lock only if |
3948 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 3949 | * if drain_array() is used on the shared array. |
1b55253a | 3950 | */ |
ce8eb6c4 | 3951 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
18726ca8 | 3952 | struct array_cache *ac, int node) |
1da177e4 | 3953 | { |
97654dfa | 3954 | LIST_HEAD(list); |
18726ca8 JK |
3955 | |
3956 | /* ac from n->shared can be freed if we don't hold the slab_mutex. */ | |
3957 | check_mutex_acquired(); | |
1da177e4 | 3958 | |
1b55253a CL |
3959 | if (!ac || !ac->avail) |
3960 | return; | |
18726ca8 JK |
3961 | |
3962 | if (ac->touched) { | |
1da177e4 | 3963 | ac->touched = 0; |
18726ca8 | 3964 | return; |
1da177e4 | 3965 | } |
18726ca8 JK |
3966 | |
3967 | spin_lock_irq(&n->list_lock); | |
3968 | drain_array_locked(cachep, ac, node, false, &list); | |
3969 | spin_unlock_irq(&n->list_lock); | |
3970 | ||
3971 | slabs_destroy(cachep, &list); | |
1da177e4 LT |
3972 | } |
3973 | ||
3974 | /** | |
3975 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 3976 | * @w: work descriptor |
1da177e4 LT |
3977 | * |
3978 | * Called from workqueue/eventd every few seconds. | |
3979 | * Purpose: | |
3980 | * - clear the per-cpu caches for this CPU. | |
3981 | * - return freeable pages to the main free memory pool. | |
3982 | * | |
a737b3e2 AM |
3983 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
3984 | * again on the next iteration. | |
1da177e4 | 3985 | */ |
7c5cae36 | 3986 | static void cache_reap(struct work_struct *w) |
1da177e4 | 3987 | { |
7a7c381d | 3988 | struct kmem_cache *searchp; |
ce8eb6c4 | 3989 | struct kmem_cache_node *n; |
7d6e6d09 | 3990 | int node = numa_mem_id(); |
bf6aede7 | 3991 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 3992 | |
18004c5d | 3993 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 3994 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 3995 | goto out; |
1da177e4 | 3996 | |
18004c5d | 3997 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
3998 | check_irq_on(); |
3999 | ||
35386e3b | 4000 | /* |
ce8eb6c4 | 4001 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
4002 | * have established with reasonable certainty that |
4003 | * we can do some work if the lock was obtained. | |
4004 | */ | |
18bf8541 | 4005 | n = get_node(searchp, node); |
35386e3b | 4006 | |
ce8eb6c4 | 4007 | reap_alien(searchp, n); |
1da177e4 | 4008 | |
18726ca8 | 4009 | drain_array(searchp, n, cpu_cache_get(searchp), node); |
1da177e4 | 4010 | |
35386e3b CL |
4011 | /* |
4012 | * These are racy checks but it does not matter | |
4013 | * if we skip one check or scan twice. | |
4014 | */ | |
ce8eb6c4 | 4015 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 4016 | goto next; |
1da177e4 | 4017 | |
5f0985bb | 4018 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 4019 | |
18726ca8 | 4020 | drain_array(searchp, n, n->shared, node); |
1da177e4 | 4021 | |
ce8eb6c4 CL |
4022 | if (n->free_touched) |
4023 | n->free_touched = 0; | |
ed11d9eb CL |
4024 | else { |
4025 | int freed; | |
1da177e4 | 4026 | |
ce8eb6c4 | 4027 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
4028 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4029 | STATS_ADD_REAPED(searchp, freed); | |
4030 | } | |
35386e3b | 4031 | next: |
1da177e4 LT |
4032 | cond_resched(); |
4033 | } | |
4034 | check_irq_on(); | |
18004c5d | 4035 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4036 | next_reap_node(); |
7c5cae36 | 4037 | out: |
a737b3e2 | 4038 | /* Set up the next iteration */ |
a9f2a846 VB |
4039 | schedule_delayed_work_on(smp_processor_id(), work, |
4040 | round_jiffies_relative(REAPTIMEOUT_AC)); | |
1da177e4 LT |
4041 | } |
4042 | ||
0d7561c6 | 4043 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4044 | { |
f728b0a5 | 4045 | unsigned long active_objs, num_objs, active_slabs; |
bf00bd34 DR |
4046 | unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; |
4047 | unsigned long free_slabs = 0; | |
e498be7d | 4048 | int node; |
ce8eb6c4 | 4049 | struct kmem_cache_node *n; |
1da177e4 | 4050 | |
18bf8541 | 4051 | for_each_kmem_cache_node(cachep, node, n) { |
ca3b9b91 | 4052 | check_irq_on(); |
ce8eb6c4 | 4053 | spin_lock_irq(&n->list_lock); |
e498be7d | 4054 | |
bf00bd34 DR |
4055 | total_slabs += n->total_slabs; |
4056 | free_slabs += n->free_slabs; | |
f728b0a5 | 4057 | free_objs += n->free_objects; |
07a63c41 | 4058 | |
ce8eb6c4 CL |
4059 | if (n->shared) |
4060 | shared_avail += n->shared->avail; | |
e498be7d | 4061 | |
ce8eb6c4 | 4062 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 4063 | } |
bf00bd34 DR |
4064 | num_objs = total_slabs * cachep->num; |
4065 | active_slabs = total_slabs - free_slabs; | |
f728b0a5 | 4066 | active_objs = num_objs - free_objs; |
1da177e4 | 4067 | |
0d7561c6 GC |
4068 | sinfo->active_objs = active_objs; |
4069 | sinfo->num_objs = num_objs; | |
4070 | sinfo->active_slabs = active_slabs; | |
bf00bd34 | 4071 | sinfo->num_slabs = total_slabs; |
0d7561c6 GC |
4072 | sinfo->shared_avail = shared_avail; |
4073 | sinfo->limit = cachep->limit; | |
4074 | sinfo->batchcount = cachep->batchcount; | |
4075 | sinfo->shared = cachep->shared; | |
4076 | sinfo->objects_per_slab = cachep->num; | |
4077 | sinfo->cache_order = cachep->gfporder; | |
4078 | } | |
4079 | ||
4080 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4081 | { | |
1da177e4 | 4082 | #if STATS |
ce8eb6c4 | 4083 | { /* node stats */ |
1da177e4 LT |
4084 | unsigned long high = cachep->high_mark; |
4085 | unsigned long allocs = cachep->num_allocations; | |
4086 | unsigned long grown = cachep->grown; | |
4087 | unsigned long reaped = cachep->reaped; | |
4088 | unsigned long errors = cachep->errors; | |
4089 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4090 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4091 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4092 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4093 | |
756a025f | 4094 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
e92dd4fd JP |
4095 | allocs, high, grown, |
4096 | reaped, errors, max_freeable, node_allocs, | |
4097 | node_frees, overflows); | |
1da177e4 LT |
4098 | } |
4099 | /* cpu stats */ | |
4100 | { | |
4101 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4102 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4103 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4104 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4105 | ||
4106 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4107 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4108 | } |
4109 | #endif | |
1da177e4 LT |
4110 | } |
4111 | ||
1da177e4 LT |
4112 | #define MAX_SLABINFO_WRITE 128 |
4113 | /** | |
4114 | * slabinfo_write - Tuning for the slab allocator | |
4115 | * @file: unused | |
4116 | * @buffer: user buffer | |
4117 | * @count: data length | |
4118 | * @ppos: unused | |
a862f68a MR |
4119 | * |
4120 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 4121 | */ |
b7454ad3 | 4122 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4123 | size_t count, loff_t *ppos) |
1da177e4 | 4124 | { |
b28a02de | 4125 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4126 | int limit, batchcount, shared, res; |
7a7c381d | 4127 | struct kmem_cache *cachep; |
b28a02de | 4128 | |
1da177e4 LT |
4129 | if (count > MAX_SLABINFO_WRITE) |
4130 | return -EINVAL; | |
4131 | if (copy_from_user(&kbuf, buffer, count)) | |
4132 | return -EFAULT; | |
b28a02de | 4133 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4134 | |
4135 | tmp = strchr(kbuf, ' '); | |
4136 | if (!tmp) | |
4137 | return -EINVAL; | |
4138 | *tmp = '\0'; | |
4139 | tmp++; | |
4140 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4141 | return -EINVAL; | |
4142 | ||
4143 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4144 | mutex_lock(&slab_mutex); |
1da177e4 | 4145 | res = -EINVAL; |
18004c5d | 4146 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4147 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4148 | if (limit < 1 || batchcount < 1 || |
4149 | batchcount > limit || shared < 0) { | |
e498be7d | 4150 | res = 0; |
1da177e4 | 4151 | } else { |
e498be7d | 4152 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4153 | batchcount, shared, |
4154 | GFP_KERNEL); | |
1da177e4 LT |
4155 | } |
4156 | break; | |
4157 | } | |
4158 | } | |
18004c5d | 4159 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4160 | if (res >= 0) |
4161 | res = count; | |
4162 | return res; | |
4163 | } | |
871751e2 | 4164 | |
04385fc5 KC |
4165 | #ifdef CONFIG_HARDENED_USERCOPY |
4166 | /* | |
afcc90f8 KC |
4167 | * Rejects incorrectly sized objects and objects that are to be copied |
4168 | * to/from userspace but do not fall entirely within the containing slab | |
4169 | * cache's usercopy region. | |
04385fc5 KC |
4170 | * |
4171 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4172 | * to indicate an error. | |
4173 | */ | |
0b3eb091 MWO |
4174 | void __check_heap_object(const void *ptr, unsigned long n, |
4175 | const struct slab *slab, bool to_user) | |
04385fc5 KC |
4176 | { |
4177 | struct kmem_cache *cachep; | |
4178 | unsigned int objnr; | |
4179 | unsigned long offset; | |
4180 | ||
219667c2 AK |
4181 | ptr = kasan_reset_tag(ptr); |
4182 | ||
04385fc5 | 4183 | /* Find and validate object. */ |
0b3eb091 | 4184 | cachep = slab->slab_cache; |
40f3bf0c | 4185 | objnr = obj_to_index(cachep, slab, (void *)ptr); |
04385fc5 KC |
4186 | BUG_ON(objnr >= cachep->num); |
4187 | ||
4188 | /* Find offset within object. */ | |
d3fb45f3 AP |
4189 | if (is_kfence_address(ptr)) |
4190 | offset = ptr - kfence_object_start(ptr); | |
4191 | else | |
7981e67e | 4192 | offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); |
04385fc5 | 4193 | |
afcc90f8 KC |
4194 | /* Allow address range falling entirely within usercopy region. */ |
4195 | if (offset >= cachep->useroffset && | |
4196 | offset - cachep->useroffset <= cachep->usersize && | |
4197 | n <= cachep->useroffset - offset + cachep->usersize) | |
f4e6e289 | 4198 | return; |
04385fc5 | 4199 | |
f4e6e289 | 4200 | usercopy_abort("SLAB object", cachep->name, to_user, offset, n); |
04385fc5 KC |
4201 | } |
4202 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4203 | ||
00e145b6 | 4204 | /** |
10d1f8cb | 4205 | * __ksize -- Uninstrumented ksize. |
87bf4f71 | 4206 | * @objp: pointer to the object |
00e145b6 | 4207 | * |
10d1f8cb ME |
4208 | * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same |
4209 | * safety checks as ksize() with KASAN instrumentation enabled. | |
87bf4f71 RD |
4210 | * |
4211 | * Return: size of the actual memory used by @objp in bytes | |
00e145b6 | 4212 | */ |
10d1f8cb | 4213 | size_t __ksize(const void *objp) |
1da177e4 | 4214 | { |
a64b5378 | 4215 | struct kmem_cache *c; |
7ed2f9e6 AP |
4216 | size_t size; |
4217 | ||
ef8b4520 CL |
4218 | BUG_ON(!objp); |
4219 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4220 | return 0; |
1da177e4 | 4221 | |
a64b5378 KC |
4222 | c = virt_to_cache(objp); |
4223 | size = c ? c->object_size : 0; | |
7ed2f9e6 AP |
4224 | |
4225 | return size; | |
1da177e4 | 4226 | } |
10d1f8cb | 4227 | EXPORT_SYMBOL(__ksize); |