]>
Commit | Line | Data |
---|---|---|
1439f94c | 1 | // SPDX-License-Identifier: GPL-2.0-only |
6a46079c AK |
2 | /* |
3 | * Copyright (C) 2008, 2009 Intel Corporation | |
4 | * Authors: Andi Kleen, Fengguang Wu | |
5 | * | |
6a46079c | 6 | * High level machine check handler. Handles pages reported by the |
1c80b990 | 7 | * hardware as being corrupted usually due to a multi-bit ECC memory or cache |
6a46079c | 8 | * failure. |
1c80b990 AK |
9 | * |
10 | * In addition there is a "soft offline" entry point that allows stop using | |
11 | * not-yet-corrupted-by-suspicious pages without killing anything. | |
6a46079c AK |
12 | * |
13 | * Handles page cache pages in various states. The tricky part | |
1c80b990 AK |
14 | * here is that we can access any page asynchronously in respect to |
15 | * other VM users, because memory failures could happen anytime and | |
16 | * anywhere. This could violate some of their assumptions. This is why | |
17 | * this code has to be extremely careful. Generally it tries to use | |
18 | * normal locking rules, as in get the standard locks, even if that means | |
19 | * the error handling takes potentially a long time. | |
e0de78df AK |
20 | * |
21 | * It can be very tempting to add handling for obscure cases here. | |
22 | * In general any code for handling new cases should only be added iff: | |
23 | * - You know how to test it. | |
24 | * - You have a test that can be added to mce-test | |
25 | * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ | |
26 | * - The case actually shows up as a frequent (top 10) page state in | |
27 | * tools/vm/page-types when running a real workload. | |
1c80b990 AK |
28 | * |
29 | * There are several operations here with exponential complexity because | |
30 | * of unsuitable VM data structures. For example the operation to map back | |
31 | * from RMAP chains to processes has to walk the complete process list and | |
32 | * has non linear complexity with the number. But since memory corruptions | |
33 | * are rare we hope to get away with this. This avoids impacting the core | |
34 | * VM. | |
6a46079c | 35 | */ |
96f96763 KW |
36 | |
37 | #define pr_fmt(fmt) "Memory failure: " fmt | |
38 | ||
6a46079c AK |
39 | #include <linux/kernel.h> |
40 | #include <linux/mm.h> | |
41 | #include <linux/page-flags.h> | |
478c5ffc | 42 | #include <linux/kernel-page-flags.h> |
3f07c014 | 43 | #include <linux/sched/signal.h> |
29930025 | 44 | #include <linux/sched/task.h> |
96c84dde | 45 | #include <linux/dax.h> |
01e00f88 | 46 | #include <linux/ksm.h> |
6a46079c | 47 | #include <linux/rmap.h> |
b9e15baf | 48 | #include <linux/export.h> |
6a46079c AK |
49 | #include <linux/pagemap.h> |
50 | #include <linux/swap.h> | |
51 | #include <linux/backing-dev.h> | |
facb6011 | 52 | #include <linux/migrate.h> |
facb6011 | 53 | #include <linux/suspend.h> |
5a0e3ad6 | 54 | #include <linux/slab.h> |
bf998156 | 55 | #include <linux/swapops.h> |
7af446a8 | 56 | #include <linux/hugetlb.h> |
20d6c96b | 57 | #include <linux/memory_hotplug.h> |
5db8a73a | 58 | #include <linux/mm_inline.h> |
6100e34b | 59 | #include <linux/memremap.h> |
ea8f5fb8 | 60 | #include <linux/kfifo.h> |
a5f65109 | 61 | #include <linux/ratelimit.h> |
d4ae9916 | 62 | #include <linux/page-isolation.h> |
a3f5d80e | 63 | #include <linux/pagewalk.h> |
a7605426 | 64 | #include <linux/shmem_fs.h> |
014bb1de | 65 | #include "swap.h" |
6a46079c | 66 | #include "internal.h" |
97f0b134 | 67 | #include "ras/ras_event.h" |
6a46079c AK |
68 | |
69 | int sysctl_memory_failure_early_kill __read_mostly = 0; | |
70 | ||
71 | int sysctl_memory_failure_recovery __read_mostly = 1; | |
72 | ||
293c07e3 | 73 | atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); |
6a46079c | 74 | |
67f22ba7 | 75 | static bool hw_memory_failure __read_mostly = false; |
76 | ||
7453bf62 NH |
77 | /* |
78 | * Return values: | |
79 | * 1: the page is dissolved (if needed) and taken off from buddy, | |
80 | * 0: the page is dissolved (if needed) and not taken off from buddy, | |
81 | * < 0: failed to dissolve. | |
82 | */ | |
83 | static int __page_handle_poison(struct page *page) | |
510d25c9 | 84 | { |
f87060d3 | 85 | int ret; |
510d25c9 NH |
86 | |
87 | zone_pcp_disable(page_zone(page)); | |
88 | ret = dissolve_free_huge_page(page); | |
89 | if (!ret) | |
90 | ret = take_page_off_buddy(page); | |
91 | zone_pcp_enable(page_zone(page)); | |
92 | ||
7453bf62 | 93 | return ret; |
510d25c9 NH |
94 | } |
95 | ||
6b9a217e | 96 | static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) |
06be6ff3 | 97 | { |
6b9a217e OS |
98 | if (hugepage_or_freepage) { |
99 | /* | |
100 | * Doing this check for free pages is also fine since dissolve_free_huge_page | |
101 | * returns 0 for non-hugetlb pages as well. | |
102 | */ | |
7453bf62 | 103 | if (__page_handle_poison(page) <= 0) |
6b9a217e OS |
104 | /* |
105 | * We could fail to take off the target page from buddy | |
f0953a1b | 106 | * for example due to racy page allocation, but that's |
6b9a217e OS |
107 | * acceptable because soft-offlined page is not broken |
108 | * and if someone really want to use it, they should | |
109 | * take it. | |
110 | */ | |
111 | return false; | |
112 | } | |
113 | ||
06be6ff3 | 114 | SetPageHWPoison(page); |
79f5f8fa OS |
115 | if (release) |
116 | put_page(page); | |
06be6ff3 OS |
117 | page_ref_inc(page); |
118 | num_poisoned_pages_inc(); | |
6b9a217e OS |
119 | |
120 | return true; | |
06be6ff3 OS |
121 | } |
122 | ||
27df5068 AK |
123 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) |
124 | ||
1bfe5feb | 125 | u32 hwpoison_filter_enable = 0; |
7c116f2b WF |
126 | u32 hwpoison_filter_dev_major = ~0U; |
127 | u32 hwpoison_filter_dev_minor = ~0U; | |
478c5ffc WF |
128 | u64 hwpoison_filter_flags_mask; |
129 | u64 hwpoison_filter_flags_value; | |
1bfe5feb | 130 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); |
7c116f2b WF |
131 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); |
132 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | |
478c5ffc WF |
133 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); |
134 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | |
7c116f2b WF |
135 | |
136 | static int hwpoison_filter_dev(struct page *p) | |
137 | { | |
138 | struct address_space *mapping; | |
139 | dev_t dev; | |
140 | ||
141 | if (hwpoison_filter_dev_major == ~0U && | |
142 | hwpoison_filter_dev_minor == ~0U) | |
143 | return 0; | |
144 | ||
7c116f2b WF |
145 | mapping = page_mapping(p); |
146 | if (mapping == NULL || mapping->host == NULL) | |
147 | return -EINVAL; | |
148 | ||
149 | dev = mapping->host->i_sb->s_dev; | |
150 | if (hwpoison_filter_dev_major != ~0U && | |
151 | hwpoison_filter_dev_major != MAJOR(dev)) | |
152 | return -EINVAL; | |
153 | if (hwpoison_filter_dev_minor != ~0U && | |
154 | hwpoison_filter_dev_minor != MINOR(dev)) | |
155 | return -EINVAL; | |
156 | ||
157 | return 0; | |
158 | } | |
159 | ||
478c5ffc WF |
160 | static int hwpoison_filter_flags(struct page *p) |
161 | { | |
162 | if (!hwpoison_filter_flags_mask) | |
163 | return 0; | |
164 | ||
165 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | |
166 | hwpoison_filter_flags_value) | |
167 | return 0; | |
168 | else | |
169 | return -EINVAL; | |
170 | } | |
171 | ||
4fd466eb AK |
172 | /* |
173 | * This allows stress tests to limit test scope to a collection of tasks | |
174 | * by putting them under some memcg. This prevents killing unrelated/important | |
175 | * processes such as /sbin/init. Note that the target task may share clean | |
176 | * pages with init (eg. libc text), which is harmless. If the target task | |
177 | * share _dirty_ pages with another task B, the test scheme must make sure B | |
178 | * is also included in the memcg. At last, due to race conditions this filter | |
179 | * can only guarantee that the page either belongs to the memcg tasks, or is | |
180 | * a freed page. | |
181 | */ | |
94a59fb3 | 182 | #ifdef CONFIG_MEMCG |
4fd466eb AK |
183 | u64 hwpoison_filter_memcg; |
184 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | |
185 | static int hwpoison_filter_task(struct page *p) | |
186 | { | |
4fd466eb AK |
187 | if (!hwpoison_filter_memcg) |
188 | return 0; | |
189 | ||
94a59fb3 | 190 | if (page_cgroup_ino(p) != hwpoison_filter_memcg) |
4fd466eb AK |
191 | return -EINVAL; |
192 | ||
193 | return 0; | |
194 | } | |
195 | #else | |
196 | static int hwpoison_filter_task(struct page *p) { return 0; } | |
197 | #endif | |
198 | ||
7c116f2b WF |
199 | int hwpoison_filter(struct page *p) |
200 | { | |
1bfe5feb HL |
201 | if (!hwpoison_filter_enable) |
202 | return 0; | |
203 | ||
7c116f2b WF |
204 | if (hwpoison_filter_dev(p)) |
205 | return -EINVAL; | |
206 | ||
478c5ffc WF |
207 | if (hwpoison_filter_flags(p)) |
208 | return -EINVAL; | |
209 | ||
4fd466eb AK |
210 | if (hwpoison_filter_task(p)) |
211 | return -EINVAL; | |
212 | ||
7c116f2b WF |
213 | return 0; |
214 | } | |
27df5068 AK |
215 | #else |
216 | int hwpoison_filter(struct page *p) | |
217 | { | |
218 | return 0; | |
219 | } | |
220 | #endif | |
221 | ||
7c116f2b WF |
222 | EXPORT_SYMBOL_GPL(hwpoison_filter); |
223 | ||
ae1139ec DW |
224 | /* |
225 | * Kill all processes that have a poisoned page mapped and then isolate | |
226 | * the page. | |
227 | * | |
228 | * General strategy: | |
229 | * Find all processes having the page mapped and kill them. | |
230 | * But we keep a page reference around so that the page is not | |
231 | * actually freed yet. | |
232 | * Then stash the page away | |
233 | * | |
234 | * There's no convenient way to get back to mapped processes | |
235 | * from the VMAs. So do a brute-force search over all | |
236 | * running processes. | |
237 | * | |
238 | * Remember that machine checks are not common (or rather | |
239 | * if they are common you have other problems), so this shouldn't | |
240 | * be a performance issue. | |
241 | * | |
242 | * Also there are some races possible while we get from the | |
243 | * error detection to actually handle it. | |
244 | */ | |
245 | ||
246 | struct to_kill { | |
247 | struct list_head nd; | |
248 | struct task_struct *tsk; | |
249 | unsigned long addr; | |
250 | short size_shift; | |
ae1139ec DW |
251 | }; |
252 | ||
6a46079c | 253 | /* |
7329bbeb TL |
254 | * Send all the processes who have the page mapped a signal. |
255 | * ``action optional'' if they are not immediately affected by the error | |
256 | * ``action required'' if error happened in current execution context | |
6a46079c | 257 | */ |
ae1139ec | 258 | static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) |
6a46079c | 259 | { |
ae1139ec DW |
260 | struct task_struct *t = tk->tsk; |
261 | short addr_lsb = tk->size_shift; | |
872e9a20 | 262 | int ret = 0; |
6a46079c | 263 | |
96f96763 | 264 | pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", |
872e9a20 | 265 | pfn, t->comm, t->pid); |
7329bbeb | 266 | |
49775047 ML |
267 | if ((flags & MF_ACTION_REQUIRED) && (t == current)) |
268 | ret = force_sig_mceerr(BUS_MCEERR_AR, | |
269 | (void __user *)tk->addr, addr_lsb); | |
270 | else | |
7329bbeb | 271 | /* |
49775047 ML |
272 | * Signal other processes sharing the page if they have |
273 | * PF_MCE_EARLY set. | |
7329bbeb TL |
274 | * Don't use force here, it's convenient if the signal |
275 | * can be temporarily blocked. | |
276 | * This could cause a loop when the user sets SIGBUS | |
277 | * to SIG_IGN, but hopefully no one will do that? | |
278 | */ | |
ae1139ec | 279 | ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, |
c0f45555 | 280 | addr_lsb, t); /* synchronous? */ |
6a46079c | 281 | if (ret < 0) |
96f96763 | 282 | pr_info("Error sending signal to %s:%d: %d\n", |
1170532b | 283 | t->comm, t->pid, ret); |
6a46079c AK |
284 | return ret; |
285 | } | |
286 | ||
588f9ce6 | 287 | /* |
47e431f4 | 288 | * Unknown page type encountered. Try to check whether it can turn PageLRU by |
d0505e9f | 289 | * lru_add_drain_all. |
588f9ce6 | 290 | */ |
d0505e9f | 291 | void shake_page(struct page *p) |
588f9ce6 | 292 | { |
8bcb74de NH |
293 | if (PageHuge(p)) |
294 | return; | |
295 | ||
588f9ce6 AK |
296 | if (!PageSlab(p)) { |
297 | lru_add_drain_all(); | |
588f9ce6 AK |
298 | if (PageLRU(p) || is_free_buddy_page(p)) |
299 | return; | |
300 | } | |
facb6011 | 301 | |
588f9ce6 | 302 | /* |
d0505e9f YS |
303 | * TODO: Could shrink slab caches here if a lightweight range-based |
304 | * shrinker will be available. | |
588f9ce6 AK |
305 | */ |
306 | } | |
307 | EXPORT_SYMBOL_GPL(shake_page); | |
308 | ||
c36e2024 SR |
309 | static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, |
310 | unsigned long address) | |
6100e34b | 311 | { |
5c91c0e7 | 312 | unsigned long ret = 0; |
6100e34b DW |
313 | pgd_t *pgd; |
314 | p4d_t *p4d; | |
315 | pud_t *pud; | |
316 | pmd_t *pmd; | |
317 | pte_t *pte; | |
318 | ||
a994402b | 319 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
6100e34b DW |
320 | pgd = pgd_offset(vma->vm_mm, address); |
321 | if (!pgd_present(*pgd)) | |
322 | return 0; | |
323 | p4d = p4d_offset(pgd, address); | |
324 | if (!p4d_present(*p4d)) | |
325 | return 0; | |
326 | pud = pud_offset(p4d, address); | |
327 | if (!pud_present(*pud)) | |
328 | return 0; | |
329 | if (pud_devmap(*pud)) | |
330 | return PUD_SHIFT; | |
331 | pmd = pmd_offset(pud, address); | |
332 | if (!pmd_present(*pmd)) | |
333 | return 0; | |
334 | if (pmd_devmap(*pmd)) | |
335 | return PMD_SHIFT; | |
336 | pte = pte_offset_map(pmd, address); | |
5c91c0e7 QZ |
337 | if (pte_present(*pte) && pte_devmap(*pte)) |
338 | ret = PAGE_SHIFT; | |
339 | pte_unmap(pte); | |
340 | return ret; | |
6100e34b | 341 | } |
6a46079c AK |
342 | |
343 | /* | |
344 | * Failure handling: if we can't find or can't kill a process there's | |
345 | * not much we can do. We just print a message and ignore otherwise. | |
346 | */ | |
347 | ||
348 | /* | |
349 | * Schedule a process for later kill. | |
350 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | |
c36e2024 SR |
351 | * |
352 | * Notice: @fsdax_pgoff is used only when @p is a fsdax page. | |
353 | * In other cases, such as anonymous and file-backend page, the address to be | |
354 | * killed can be caculated by @p itself. | |
6a46079c AK |
355 | */ |
356 | static void add_to_kill(struct task_struct *tsk, struct page *p, | |
c36e2024 SR |
357 | pgoff_t fsdax_pgoff, struct vm_area_struct *vma, |
358 | struct list_head *to_kill) | |
6a46079c AK |
359 | { |
360 | struct to_kill *tk; | |
361 | ||
996ff7a0 JC |
362 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); |
363 | if (!tk) { | |
96f96763 | 364 | pr_err("Out of memory while machine check handling\n"); |
996ff7a0 | 365 | return; |
6a46079c | 366 | } |
996ff7a0 | 367 | |
6a46079c | 368 | tk->addr = page_address_in_vma(p, vma); |
c36e2024 SR |
369 | if (is_zone_device_page(p)) { |
370 | /* | |
371 | * Since page->mapping is not used for fsdax, we need | |
372 | * calculate the address based on the vma. | |
373 | */ | |
374 | if (p->pgmap->type == MEMORY_DEVICE_FS_DAX) | |
375 | tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); | |
376 | tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); | |
377 | } else | |
75068518 | 378 | tk->size_shift = page_shift(compound_head(p)); |
6a46079c AK |
379 | |
380 | /* | |
3d7fed4a JC |
381 | * Send SIGKILL if "tk->addr == -EFAULT". Also, as |
382 | * "tk->size_shift" is always non-zero for !is_zone_device_page(), | |
383 | * so "tk->size_shift == 0" effectively checks no mapping on | |
384 | * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times | |
385 | * to a process' address space, it's possible not all N VMAs | |
386 | * contain mappings for the page, but at least one VMA does. | |
387 | * Only deliver SIGBUS with payload derived from the VMA that | |
388 | * has a mapping for the page. | |
6a46079c | 389 | */ |
3d7fed4a | 390 | if (tk->addr == -EFAULT) { |
96f96763 | 391 | pr_info("Unable to find user space address %lx in %s\n", |
6a46079c | 392 | page_to_pfn(p), tsk->comm); |
3d7fed4a JC |
393 | } else if (tk->size_shift == 0) { |
394 | kfree(tk); | |
395 | return; | |
6a46079c | 396 | } |
996ff7a0 | 397 | |
6a46079c AK |
398 | get_task_struct(tsk); |
399 | tk->tsk = tsk; | |
400 | list_add_tail(&tk->nd, to_kill); | |
401 | } | |
402 | ||
403 | /* | |
404 | * Kill the processes that have been collected earlier. | |
405 | * | |
a21c184f ML |
406 | * Only do anything when FORCEKILL is set, otherwise just free the |
407 | * list (this is used for clean pages which do not need killing) | |
6a46079c AK |
408 | * Also when FAIL is set do a force kill because something went |
409 | * wrong earlier. | |
410 | */ | |
ae1139ec DW |
411 | static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, |
412 | unsigned long pfn, int flags) | |
6a46079c AK |
413 | { |
414 | struct to_kill *tk, *next; | |
415 | ||
416 | list_for_each_entry_safe (tk, next, to_kill, nd) { | |
6751ed65 | 417 | if (forcekill) { |
6a46079c | 418 | /* |
af901ca1 | 419 | * In case something went wrong with munmapping |
6a46079c AK |
420 | * make sure the process doesn't catch the |
421 | * signal and then access the memory. Just kill it. | |
6a46079c | 422 | */ |
3d7fed4a | 423 | if (fail || tk->addr == -EFAULT) { |
96f96763 | 424 | pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", |
1170532b | 425 | pfn, tk->tsk->comm, tk->tsk->pid); |
6376360e NH |
426 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, |
427 | tk->tsk, PIDTYPE_PID); | |
6a46079c AK |
428 | } |
429 | ||
430 | /* | |
431 | * In theory the process could have mapped | |
432 | * something else on the address in-between. We could | |
433 | * check for that, but we need to tell the | |
434 | * process anyways. | |
435 | */ | |
ae1139ec | 436 | else if (kill_proc(tk, pfn, flags) < 0) |
96f96763 | 437 | pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", |
1170532b | 438 | pfn, tk->tsk->comm, tk->tsk->pid); |
6a46079c AK |
439 | } |
440 | put_task_struct(tk->tsk); | |
441 | kfree(tk); | |
442 | } | |
443 | } | |
444 | ||
3ba08129 NH |
445 | /* |
446 | * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) | |
447 | * on behalf of the thread group. Return task_struct of the (first found) | |
448 | * dedicated thread if found, and return NULL otherwise. | |
449 | * | |
450 | * We already hold read_lock(&tasklist_lock) in the caller, so we don't | |
451 | * have to call rcu_read_lock/unlock() in this function. | |
452 | */ | |
453 | static struct task_struct *find_early_kill_thread(struct task_struct *tsk) | |
6a46079c | 454 | { |
3ba08129 NH |
455 | struct task_struct *t; |
456 | ||
4e018b45 NH |
457 | for_each_thread(tsk, t) { |
458 | if (t->flags & PF_MCE_PROCESS) { | |
459 | if (t->flags & PF_MCE_EARLY) | |
460 | return t; | |
461 | } else { | |
462 | if (sysctl_memory_failure_early_kill) | |
463 | return t; | |
464 | } | |
465 | } | |
3ba08129 NH |
466 | return NULL; |
467 | } | |
468 | ||
469 | /* | |
470 | * Determine whether a given process is "early kill" process which expects | |
471 | * to be signaled when some page under the process is hwpoisoned. | |
472 | * Return task_struct of the dedicated thread (main thread unless explicitly | |
30c9cf49 | 473 | * specified) if the process is "early kill" and otherwise returns NULL. |
03151c6e | 474 | * |
30c9cf49 AY |
475 | * Note that the above is true for Action Optional case. For Action Required |
476 | * case, it's only meaningful to the current thread which need to be signaled | |
477 | * with SIGBUS, this error is Action Optional for other non current | |
478 | * processes sharing the same error page,if the process is "early kill", the | |
479 | * task_struct of the dedicated thread will also be returned. | |
3ba08129 NH |
480 | */ |
481 | static struct task_struct *task_early_kill(struct task_struct *tsk, | |
482 | int force_early) | |
483 | { | |
6a46079c | 484 | if (!tsk->mm) |
3ba08129 | 485 | return NULL; |
30c9cf49 AY |
486 | /* |
487 | * Comparing ->mm here because current task might represent | |
488 | * a subthread, while tsk always points to the main thread. | |
489 | */ | |
490 | if (force_early && tsk->mm == current->mm) | |
491 | return current; | |
492 | ||
4e018b45 | 493 | return find_early_kill_thread(tsk); |
6a46079c AK |
494 | } |
495 | ||
496 | /* | |
497 | * Collect processes when the error hit an anonymous page. | |
498 | */ | |
499 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | |
996ff7a0 | 500 | int force_early) |
6a46079c | 501 | { |
9595d769 | 502 | struct folio *folio = page_folio(page); |
6a46079c AK |
503 | struct vm_area_struct *vma; |
504 | struct task_struct *tsk; | |
505 | struct anon_vma *av; | |
bf181b9f | 506 | pgoff_t pgoff; |
6a46079c | 507 | |
6d4675e6 | 508 | av = folio_lock_anon_vma_read(folio, NULL); |
6a46079c | 509 | if (av == NULL) /* Not actually mapped anymore */ |
9b679320 PZ |
510 | return; |
511 | ||
a0f7a756 | 512 | pgoff = page_to_pgoff(page); |
9b679320 | 513 | read_lock(&tasklist_lock); |
6a46079c | 514 | for_each_process (tsk) { |
5beb4930 | 515 | struct anon_vma_chain *vmac; |
3ba08129 | 516 | struct task_struct *t = task_early_kill(tsk, force_early); |
5beb4930 | 517 | |
3ba08129 | 518 | if (!t) |
6a46079c | 519 | continue; |
bf181b9f ML |
520 | anon_vma_interval_tree_foreach(vmac, &av->rb_root, |
521 | pgoff, pgoff) { | |
5beb4930 | 522 | vma = vmac->vma; |
6a46079c AK |
523 | if (!page_mapped_in_vma(page, vma)) |
524 | continue; | |
3ba08129 | 525 | if (vma->vm_mm == t->mm) |
c36e2024 | 526 | add_to_kill(t, page, 0, vma, to_kill); |
6a46079c AK |
527 | } |
528 | } | |
6a46079c | 529 | read_unlock(&tasklist_lock); |
4fc3f1d6 | 530 | page_unlock_anon_vma_read(av); |
6a46079c AK |
531 | } |
532 | ||
533 | /* | |
534 | * Collect processes when the error hit a file mapped page. | |
535 | */ | |
536 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | |
996ff7a0 | 537 | int force_early) |
6a46079c AK |
538 | { |
539 | struct vm_area_struct *vma; | |
540 | struct task_struct *tsk; | |
6a46079c | 541 | struct address_space *mapping = page->mapping; |
c43bc03d | 542 | pgoff_t pgoff; |
6a46079c | 543 | |
d28eb9c8 | 544 | i_mmap_lock_read(mapping); |
9b679320 | 545 | read_lock(&tasklist_lock); |
c43bc03d | 546 | pgoff = page_to_pgoff(page); |
6a46079c | 547 | for_each_process(tsk) { |
3ba08129 | 548 | struct task_struct *t = task_early_kill(tsk, force_early); |
6a46079c | 549 | |
3ba08129 | 550 | if (!t) |
6a46079c | 551 | continue; |
6b2dbba8 | 552 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, |
6a46079c AK |
553 | pgoff) { |
554 | /* | |
555 | * Send early kill signal to tasks where a vma covers | |
556 | * the page but the corrupted page is not necessarily | |
557 | * mapped it in its pte. | |
558 | * Assume applications who requested early kill want | |
559 | * to be informed of all such data corruptions. | |
560 | */ | |
3ba08129 | 561 | if (vma->vm_mm == t->mm) |
c36e2024 | 562 | add_to_kill(t, page, 0, vma, to_kill); |
6a46079c AK |
563 | } |
564 | } | |
6a46079c | 565 | read_unlock(&tasklist_lock); |
d28eb9c8 | 566 | i_mmap_unlock_read(mapping); |
6a46079c AK |
567 | } |
568 | ||
c36e2024 SR |
569 | #ifdef CONFIG_FS_DAX |
570 | /* | |
571 | * Collect processes when the error hit a fsdax page. | |
572 | */ | |
573 | static void collect_procs_fsdax(struct page *page, | |
574 | struct address_space *mapping, pgoff_t pgoff, | |
575 | struct list_head *to_kill) | |
576 | { | |
577 | struct vm_area_struct *vma; | |
578 | struct task_struct *tsk; | |
579 | ||
580 | i_mmap_lock_read(mapping); | |
581 | read_lock(&tasklist_lock); | |
582 | for_each_process(tsk) { | |
583 | struct task_struct *t = task_early_kill(tsk, true); | |
584 | ||
585 | if (!t) | |
586 | continue; | |
587 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | |
588 | if (vma->vm_mm == t->mm) | |
589 | add_to_kill(t, page, pgoff, vma, to_kill); | |
590 | } | |
591 | } | |
592 | read_unlock(&tasklist_lock); | |
593 | i_mmap_unlock_read(mapping); | |
594 | } | |
595 | #endif /* CONFIG_FS_DAX */ | |
596 | ||
6a46079c AK |
597 | /* |
598 | * Collect the processes who have the corrupted page mapped to kill. | |
6a46079c | 599 | */ |
74614de1 TL |
600 | static void collect_procs(struct page *page, struct list_head *tokill, |
601 | int force_early) | |
6a46079c | 602 | { |
6a46079c AK |
603 | if (!page->mapping) |
604 | return; | |
605 | ||
6a46079c | 606 | if (PageAnon(page)) |
996ff7a0 | 607 | collect_procs_anon(page, tokill, force_early); |
6a46079c | 608 | else |
996ff7a0 | 609 | collect_procs_file(page, tokill, force_early); |
6a46079c AK |
610 | } |
611 | ||
a3f5d80e NH |
612 | struct hwp_walk { |
613 | struct to_kill tk; | |
614 | unsigned long pfn; | |
615 | int flags; | |
616 | }; | |
617 | ||
618 | static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) | |
619 | { | |
620 | tk->addr = addr; | |
621 | tk->size_shift = shift; | |
622 | } | |
623 | ||
624 | static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, | |
625 | unsigned long poisoned_pfn, struct to_kill *tk) | |
626 | { | |
627 | unsigned long pfn = 0; | |
628 | ||
629 | if (pte_present(pte)) { | |
630 | pfn = pte_pfn(pte); | |
631 | } else { | |
632 | swp_entry_t swp = pte_to_swp_entry(pte); | |
633 | ||
634 | if (is_hwpoison_entry(swp)) | |
635 | pfn = hwpoison_entry_to_pfn(swp); | |
636 | } | |
637 | ||
638 | if (!pfn || pfn != poisoned_pfn) | |
639 | return 0; | |
640 | ||
641 | set_to_kill(tk, addr, shift); | |
642 | return 1; | |
643 | } | |
644 | ||
645 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
646 | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | |
647 | struct hwp_walk *hwp) | |
648 | { | |
649 | pmd_t pmd = *pmdp; | |
650 | unsigned long pfn; | |
651 | unsigned long hwpoison_vaddr; | |
652 | ||
653 | if (!pmd_present(pmd)) | |
654 | return 0; | |
655 | pfn = pmd_pfn(pmd); | |
656 | if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { | |
657 | hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); | |
658 | set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); | |
659 | return 1; | |
660 | } | |
661 | return 0; | |
662 | } | |
663 | #else | |
664 | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | |
665 | struct hwp_walk *hwp) | |
666 | { | |
667 | return 0; | |
668 | } | |
669 | #endif | |
670 | ||
671 | static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, | |
672 | unsigned long end, struct mm_walk *walk) | |
673 | { | |
f142e707 | 674 | struct hwp_walk *hwp = walk->private; |
a3f5d80e | 675 | int ret = 0; |
ea3732f7 | 676 | pte_t *ptep, *mapped_pte; |
a3f5d80e NH |
677 | spinlock_t *ptl; |
678 | ||
679 | ptl = pmd_trans_huge_lock(pmdp, walk->vma); | |
680 | if (ptl) { | |
681 | ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); | |
682 | spin_unlock(ptl); | |
683 | goto out; | |
684 | } | |
685 | ||
686 | if (pmd_trans_unstable(pmdp)) | |
687 | goto out; | |
688 | ||
ea3732f7 ML |
689 | mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, |
690 | addr, &ptl); | |
a3f5d80e NH |
691 | for (; addr != end; ptep++, addr += PAGE_SIZE) { |
692 | ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, | |
693 | hwp->pfn, &hwp->tk); | |
694 | if (ret == 1) | |
695 | break; | |
696 | } | |
ea3732f7 | 697 | pte_unmap_unlock(mapped_pte, ptl); |
a3f5d80e NH |
698 | out: |
699 | cond_resched(); | |
700 | return ret; | |
701 | } | |
702 | ||
703 | #ifdef CONFIG_HUGETLB_PAGE | |
704 | static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, | |
705 | unsigned long addr, unsigned long end, | |
706 | struct mm_walk *walk) | |
707 | { | |
f142e707 | 708 | struct hwp_walk *hwp = walk->private; |
a3f5d80e NH |
709 | pte_t pte = huge_ptep_get(ptep); |
710 | struct hstate *h = hstate_vma(walk->vma); | |
711 | ||
712 | return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), | |
713 | hwp->pfn, &hwp->tk); | |
714 | } | |
715 | #else | |
716 | #define hwpoison_hugetlb_range NULL | |
717 | #endif | |
718 | ||
ba9eb3ce | 719 | static const struct mm_walk_ops hwp_walk_ops = { |
a3f5d80e NH |
720 | .pmd_entry = hwpoison_pte_range, |
721 | .hugetlb_entry = hwpoison_hugetlb_range, | |
722 | }; | |
723 | ||
724 | /* | |
725 | * Sends SIGBUS to the current process with error info. | |
726 | * | |
727 | * This function is intended to handle "Action Required" MCEs on already | |
728 | * hardware poisoned pages. They could happen, for example, when | |
729 | * memory_failure() failed to unmap the error page at the first call, or | |
730 | * when multiple local machine checks happened on different CPUs. | |
731 | * | |
732 | * MCE handler currently has no easy access to the error virtual address, | |
733 | * so this function walks page table to find it. The returned virtual address | |
734 | * is proper in most cases, but it could be wrong when the application | |
735 | * process has multiple entries mapping the error page. | |
736 | */ | |
737 | static int kill_accessing_process(struct task_struct *p, unsigned long pfn, | |
738 | int flags) | |
739 | { | |
740 | int ret; | |
741 | struct hwp_walk priv = { | |
742 | .pfn = pfn, | |
743 | }; | |
744 | priv.tk.tsk = p; | |
745 | ||
746 | mmap_read_lock(p->mm); | |
747 | ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, | |
748 | (void *)&priv); | |
749 | if (ret == 1 && priv.tk.addr) | |
750 | kill_proc(&priv.tk, pfn, flags); | |
046545a6 NH |
751 | else |
752 | ret = 0; | |
a3f5d80e | 753 | mmap_read_unlock(p->mm); |
046545a6 | 754 | return ret > 0 ? -EHWPOISON : -EFAULT; |
a3f5d80e NH |
755 | } |
756 | ||
6a46079c | 757 | static const char *action_name[] = { |
cc637b17 XX |
758 | [MF_IGNORED] = "Ignored", |
759 | [MF_FAILED] = "Failed", | |
760 | [MF_DELAYED] = "Delayed", | |
761 | [MF_RECOVERED] = "Recovered", | |
64d37a2b NH |
762 | }; |
763 | ||
764 | static const char * const action_page_types[] = { | |
cc637b17 XX |
765 | [MF_MSG_KERNEL] = "reserved kernel page", |
766 | [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", | |
767 | [MF_MSG_SLAB] = "kernel slab page", | |
768 | [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", | |
cc637b17 XX |
769 | [MF_MSG_HUGE] = "huge page", |
770 | [MF_MSG_FREE_HUGE] = "free huge page", | |
771 | [MF_MSG_UNMAP_FAILED] = "unmapping failed page", | |
772 | [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", | |
773 | [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", | |
774 | [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", | |
775 | [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", | |
776 | [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", | |
777 | [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", | |
778 | [MF_MSG_DIRTY_LRU] = "dirty LRU page", | |
779 | [MF_MSG_CLEAN_LRU] = "clean LRU page", | |
780 | [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", | |
781 | [MF_MSG_BUDDY] = "free buddy page", | |
6100e34b | 782 | [MF_MSG_DAX] = "dax page", |
5d1fd5dc | 783 | [MF_MSG_UNSPLIT_THP] = "unsplit thp", |
cc637b17 | 784 | [MF_MSG_UNKNOWN] = "unknown page", |
64d37a2b NH |
785 | }; |
786 | ||
dc2a1cbf WF |
787 | /* |
788 | * XXX: It is possible that a page is isolated from LRU cache, | |
789 | * and then kept in swap cache or failed to remove from page cache. | |
790 | * The page count will stop it from being freed by unpoison. | |
791 | * Stress tests should be aware of this memory leak problem. | |
792 | */ | |
793 | static int delete_from_lru_cache(struct page *p) | |
794 | { | |
795 | if (!isolate_lru_page(p)) { | |
796 | /* | |
797 | * Clear sensible page flags, so that the buddy system won't | |
798 | * complain when the page is unpoison-and-freed. | |
799 | */ | |
800 | ClearPageActive(p); | |
801 | ClearPageUnevictable(p); | |
18365225 MH |
802 | |
803 | /* | |
804 | * Poisoned page might never drop its ref count to 0 so we have | |
805 | * to uncharge it manually from its memcg. | |
806 | */ | |
bbc6b703 | 807 | mem_cgroup_uncharge(page_folio(p)); |
18365225 | 808 | |
dc2a1cbf WF |
809 | /* |
810 | * drop the page count elevated by isolate_lru_page() | |
811 | */ | |
09cbfeaf | 812 | put_page(p); |
dc2a1cbf WF |
813 | return 0; |
814 | } | |
815 | return -EIO; | |
816 | } | |
817 | ||
78bb9203 NH |
818 | static int truncate_error_page(struct page *p, unsigned long pfn, |
819 | struct address_space *mapping) | |
820 | { | |
821 | int ret = MF_FAILED; | |
822 | ||
823 | if (mapping->a_ops->error_remove_page) { | |
824 | int err = mapping->a_ops->error_remove_page(mapping, p); | |
825 | ||
826 | if (err != 0) { | |
96f96763 | 827 | pr_info("%#lx: Failed to punch page: %d\n", pfn, err); |
78bb9203 NH |
828 | } else if (page_has_private(p) && |
829 | !try_to_release_page(p, GFP_NOIO)) { | |
96f96763 | 830 | pr_info("%#lx: failed to release buffers\n", pfn); |
78bb9203 NH |
831 | } else { |
832 | ret = MF_RECOVERED; | |
833 | } | |
834 | } else { | |
835 | /* | |
836 | * If the file system doesn't support it just invalidate | |
837 | * This fails on dirty or anything with private pages | |
838 | */ | |
839 | if (invalidate_inode_page(p)) | |
840 | ret = MF_RECOVERED; | |
841 | else | |
96f96763 | 842 | pr_info("%#lx: Failed to invalidate\n", pfn); |
78bb9203 NH |
843 | } |
844 | ||
845 | return ret; | |
846 | } | |
847 | ||
dd0f230a YS |
848 | struct page_state { |
849 | unsigned long mask; | |
850 | unsigned long res; | |
851 | enum mf_action_page_type type; | |
852 | ||
853 | /* Callback ->action() has to unlock the relevant page inside it. */ | |
854 | int (*action)(struct page_state *ps, struct page *p); | |
855 | }; | |
856 | ||
857 | /* | |
858 | * Return true if page is still referenced by others, otherwise return | |
859 | * false. | |
860 | * | |
861 | * The extra_pins is true when one extra refcount is expected. | |
862 | */ | |
863 | static bool has_extra_refcount(struct page_state *ps, struct page *p, | |
864 | bool extra_pins) | |
865 | { | |
866 | int count = page_count(p) - 1; | |
867 | ||
868 | if (extra_pins) | |
869 | count -= 1; | |
870 | ||
871 | if (count > 0) { | |
96f96763 | 872 | pr_err("%#lx: %s still referenced by %d users\n", |
dd0f230a YS |
873 | page_to_pfn(p), action_page_types[ps->type], count); |
874 | return true; | |
875 | } | |
876 | ||
877 | return false; | |
878 | } | |
879 | ||
6a46079c AK |
880 | /* |
881 | * Error hit kernel page. | |
882 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | |
883 | * could be more sophisticated. | |
884 | */ | |
dd0f230a | 885 | static int me_kernel(struct page_state *ps, struct page *p) |
6a46079c | 886 | { |
ea6d0630 | 887 | unlock_page(p); |
cc637b17 | 888 | return MF_IGNORED; |
6a46079c AK |
889 | } |
890 | ||
891 | /* | |
892 | * Page in unknown state. Do nothing. | |
893 | */ | |
dd0f230a | 894 | static int me_unknown(struct page_state *ps, struct page *p) |
6a46079c | 895 | { |
96f96763 | 896 | pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); |
ea6d0630 | 897 | unlock_page(p); |
cc637b17 | 898 | return MF_FAILED; |
6a46079c AK |
899 | } |
900 | ||
6a46079c AK |
901 | /* |
902 | * Clean (or cleaned) page cache page. | |
903 | */ | |
dd0f230a | 904 | static int me_pagecache_clean(struct page_state *ps, struct page *p) |
6a46079c | 905 | { |
ea6d0630 | 906 | int ret; |
6a46079c | 907 | struct address_space *mapping; |
a7605426 | 908 | bool extra_pins; |
6a46079c | 909 | |
dc2a1cbf WF |
910 | delete_from_lru_cache(p); |
911 | ||
6a46079c AK |
912 | /* |
913 | * For anonymous pages we're done the only reference left | |
914 | * should be the one m_f() holds. | |
915 | */ | |
ea6d0630 NH |
916 | if (PageAnon(p)) { |
917 | ret = MF_RECOVERED; | |
918 | goto out; | |
919 | } | |
6a46079c AK |
920 | |
921 | /* | |
922 | * Now truncate the page in the page cache. This is really | |
923 | * more like a "temporary hole punch" | |
924 | * Don't do this for block devices when someone else | |
925 | * has a reference, because it could be file system metadata | |
926 | * and that's not safe to truncate. | |
927 | */ | |
928 | mapping = page_mapping(p); | |
929 | if (!mapping) { | |
930 | /* | |
931 | * Page has been teared down in the meanwhile | |
932 | */ | |
ea6d0630 NH |
933 | ret = MF_FAILED; |
934 | goto out; | |
6a46079c AK |
935 | } |
936 | ||
a7605426 YS |
937 | /* |
938 | * The shmem page is kept in page cache instead of truncating | |
939 | * so is expected to have an extra refcount after error-handling. | |
940 | */ | |
941 | extra_pins = shmem_mapping(mapping); | |
942 | ||
6a46079c AK |
943 | /* |
944 | * Truncation is a bit tricky. Enable it per file system for now. | |
945 | * | |
9608703e | 946 | * Open: to take i_rwsem or not for this? Right now we don't. |
6a46079c | 947 | */ |
dd0f230a | 948 | ret = truncate_error_page(p, page_to_pfn(p), mapping); |
a7605426 YS |
949 | if (has_extra_refcount(ps, p, extra_pins)) |
950 | ret = MF_FAILED; | |
951 | ||
ea6d0630 NH |
952 | out: |
953 | unlock_page(p); | |
dd0f230a | 954 | |
ea6d0630 | 955 | return ret; |
6a46079c AK |
956 | } |
957 | ||
958 | /* | |
549543df | 959 | * Dirty pagecache page |
6a46079c AK |
960 | * Issues: when the error hit a hole page the error is not properly |
961 | * propagated. | |
962 | */ | |
dd0f230a | 963 | static int me_pagecache_dirty(struct page_state *ps, struct page *p) |
6a46079c AK |
964 | { |
965 | struct address_space *mapping = page_mapping(p); | |
966 | ||
967 | SetPageError(p); | |
968 | /* TBD: print more information about the file. */ | |
969 | if (mapping) { | |
970 | /* | |
971 | * IO error will be reported by write(), fsync(), etc. | |
972 | * who check the mapping. | |
973 | * This way the application knows that something went | |
974 | * wrong with its dirty file data. | |
975 | * | |
976 | * There's one open issue: | |
977 | * | |
978 | * The EIO will be only reported on the next IO | |
979 | * operation and then cleared through the IO map. | |
980 | * Normally Linux has two mechanisms to pass IO error | |
981 | * first through the AS_EIO flag in the address space | |
982 | * and then through the PageError flag in the page. | |
983 | * Since we drop pages on memory failure handling the | |
984 | * only mechanism open to use is through AS_AIO. | |
985 | * | |
986 | * This has the disadvantage that it gets cleared on | |
987 | * the first operation that returns an error, while | |
988 | * the PageError bit is more sticky and only cleared | |
989 | * when the page is reread or dropped. If an | |
990 | * application assumes it will always get error on | |
991 | * fsync, but does other operations on the fd before | |
25985edc | 992 | * and the page is dropped between then the error |
6a46079c AK |
993 | * will not be properly reported. |
994 | * | |
995 | * This can already happen even without hwpoisoned | |
996 | * pages: first on metadata IO errors (which only | |
997 | * report through AS_EIO) or when the page is dropped | |
998 | * at the wrong time. | |
999 | * | |
1000 | * So right now we assume that the application DTRT on | |
1001 | * the first EIO, but we're not worse than other parts | |
1002 | * of the kernel. | |
1003 | */ | |
af21bfaf | 1004 | mapping_set_error(mapping, -EIO); |
6a46079c AK |
1005 | } |
1006 | ||
dd0f230a | 1007 | return me_pagecache_clean(ps, p); |
6a46079c AK |
1008 | } |
1009 | ||
1010 | /* | |
1011 | * Clean and dirty swap cache. | |
1012 | * | |
1013 | * Dirty swap cache page is tricky to handle. The page could live both in page | |
1014 | * cache and swap cache(ie. page is freshly swapped in). So it could be | |
1015 | * referenced concurrently by 2 types of PTEs: | |
1016 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | |
1017 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | |
1018 | * and then | |
1019 | * - clear dirty bit to prevent IO | |
1020 | * - remove from LRU | |
1021 | * - but keep in the swap cache, so that when we return to it on | |
1022 | * a later page fault, we know the application is accessing | |
1023 | * corrupted data and shall be killed (we installed simple | |
1024 | * interception code in do_swap_page to catch it). | |
1025 | * | |
1026 | * Clean swap cache pages can be directly isolated. A later page fault will | |
1027 | * bring in the known good data from disk. | |
1028 | */ | |
dd0f230a | 1029 | static int me_swapcache_dirty(struct page_state *ps, struct page *p) |
6a46079c | 1030 | { |
ea6d0630 | 1031 | int ret; |
dd0f230a | 1032 | bool extra_pins = false; |
ea6d0630 | 1033 | |
6a46079c AK |
1034 | ClearPageDirty(p); |
1035 | /* Trigger EIO in shmem: */ | |
1036 | ClearPageUptodate(p); | |
1037 | ||
ea6d0630 NH |
1038 | ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; |
1039 | unlock_page(p); | |
dd0f230a YS |
1040 | |
1041 | if (ret == MF_DELAYED) | |
1042 | extra_pins = true; | |
1043 | ||
1044 | if (has_extra_refcount(ps, p, extra_pins)) | |
1045 | ret = MF_FAILED; | |
1046 | ||
ea6d0630 | 1047 | return ret; |
6a46079c AK |
1048 | } |
1049 | ||
dd0f230a | 1050 | static int me_swapcache_clean(struct page_state *ps, struct page *p) |
6a46079c | 1051 | { |
75fa68a5 | 1052 | struct folio *folio = page_folio(p); |
ea6d0630 NH |
1053 | int ret; |
1054 | ||
75fa68a5 | 1055 | delete_from_swap_cache(folio); |
e43c3afb | 1056 | |
ea6d0630 | 1057 | ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; |
75fa68a5 | 1058 | folio_unlock(folio); |
dd0f230a YS |
1059 | |
1060 | if (has_extra_refcount(ps, p, false)) | |
1061 | ret = MF_FAILED; | |
1062 | ||
ea6d0630 | 1063 | return ret; |
6a46079c AK |
1064 | } |
1065 | ||
1066 | /* | |
1067 | * Huge pages. Needs work. | |
1068 | * Issues: | |
93f70f90 NH |
1069 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
1070 | * To narrow down kill region to one page, we need to break up pmd. | |
6a46079c | 1071 | */ |
dd0f230a | 1072 | static int me_huge_page(struct page_state *ps, struct page *p) |
6a46079c | 1073 | { |
a8b2c2ce | 1074 | int res; |
93f70f90 | 1075 | struct page *hpage = compound_head(p); |
78bb9203 | 1076 | struct address_space *mapping; |
2491ffee NH |
1077 | |
1078 | if (!PageHuge(hpage)) | |
1079 | return MF_DELAYED; | |
1080 | ||
78bb9203 NH |
1081 | mapping = page_mapping(hpage); |
1082 | if (mapping) { | |
dd0f230a | 1083 | res = truncate_error_page(hpage, page_to_pfn(p), mapping); |
ea6d0630 | 1084 | unlock_page(hpage); |
78bb9203 NH |
1085 | } else { |
1086 | unlock_page(hpage); | |
1087 | /* | |
ef526b17 ML |
1088 | * migration entry prevents later access on error hugepage, |
1089 | * so we can free and dissolve it into buddy to save healthy | |
1090 | * subpages. | |
78bb9203 | 1091 | */ |
ef526b17 | 1092 | put_page(hpage); |
ceaf8fbe | 1093 | if (__page_handle_poison(p) >= 0) { |
a8b2c2ce OS |
1094 | page_ref_inc(p); |
1095 | res = MF_RECOVERED; | |
ceaf8fbe NH |
1096 | } else { |
1097 | res = MF_FAILED; | |
a8b2c2ce | 1098 | } |
93f70f90 | 1099 | } |
78bb9203 | 1100 | |
dd0f230a YS |
1101 | if (has_extra_refcount(ps, p, false)) |
1102 | res = MF_FAILED; | |
1103 | ||
78bb9203 | 1104 | return res; |
6a46079c AK |
1105 | } |
1106 | ||
1107 | /* | |
1108 | * Various page states we can handle. | |
1109 | * | |
1110 | * A page state is defined by its current page->flags bits. | |
1111 | * The table matches them in order and calls the right handler. | |
1112 | * | |
1113 | * This is quite tricky because we can access page at any time | |
25985edc | 1114 | * in its live cycle, so all accesses have to be extremely careful. |
6a46079c AK |
1115 | * |
1116 | * This is not complete. More states could be added. | |
1117 | * For any missing state don't attempt recovery. | |
1118 | */ | |
1119 | ||
1120 | #define dirty (1UL << PG_dirty) | |
6326fec1 | 1121 | #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) |
6a46079c AK |
1122 | #define unevict (1UL << PG_unevictable) |
1123 | #define mlock (1UL << PG_mlocked) | |
6a46079c | 1124 | #define lru (1UL << PG_lru) |
6a46079c | 1125 | #define head (1UL << PG_head) |
6a46079c | 1126 | #define slab (1UL << PG_slab) |
6a46079c AK |
1127 | #define reserved (1UL << PG_reserved) |
1128 | ||
dd0f230a | 1129 | static struct page_state error_states[] = { |
cc637b17 | 1130 | { reserved, reserved, MF_MSG_KERNEL, me_kernel }, |
95d01fc6 WF |
1131 | /* |
1132 | * free pages are specially detected outside this table: | |
1133 | * PG_buddy pages only make a small fraction of all free pages. | |
1134 | */ | |
6a46079c AK |
1135 | |
1136 | /* | |
1137 | * Could in theory check if slab page is free or if we can drop | |
1138 | * currently unused objects without touching them. But just | |
1139 | * treat it as standard kernel for now. | |
1140 | */ | |
cc637b17 | 1141 | { slab, slab, MF_MSG_SLAB, me_kernel }, |
6a46079c | 1142 | |
cc637b17 | 1143 | { head, head, MF_MSG_HUGE, me_huge_page }, |
6a46079c | 1144 | |
cc637b17 XX |
1145 | { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, |
1146 | { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, | |
6a46079c | 1147 | |
cc637b17 XX |
1148 | { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, |
1149 | { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, | |
6a46079c | 1150 | |
cc637b17 XX |
1151 | { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, |
1152 | { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, | |
5f4b9fc5 | 1153 | |
cc637b17 XX |
1154 | { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, |
1155 | { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, | |
6a46079c AK |
1156 | |
1157 | /* | |
1158 | * Catchall entry: must be at end. | |
1159 | */ | |
cc637b17 | 1160 | { 0, 0, MF_MSG_UNKNOWN, me_unknown }, |
6a46079c AK |
1161 | }; |
1162 | ||
2326c467 AK |
1163 | #undef dirty |
1164 | #undef sc | |
1165 | #undef unevict | |
1166 | #undef mlock | |
2326c467 | 1167 | #undef lru |
2326c467 | 1168 | #undef head |
2326c467 AK |
1169 | #undef slab |
1170 | #undef reserved | |
1171 | ||
ff604cf6 NH |
1172 | /* |
1173 | * "Dirty/Clean" indication is not 100% accurate due to the possibility of | |
1174 | * setting PG_dirty outside page lock. See also comment above set_page_dirty(). | |
1175 | */ | |
cc3e2af4 XX |
1176 | static void action_result(unsigned long pfn, enum mf_action_page_type type, |
1177 | enum mf_result result) | |
6a46079c | 1178 | { |
97f0b134 XX |
1179 | trace_memory_failure_event(pfn, type, result); |
1180 | ||
e240ac52 | 1181 | num_poisoned_pages_inc(); |
96f96763 | 1182 | pr_err("%#lx: recovery action for %s: %s\n", |
64d37a2b | 1183 | pfn, action_page_types[type], action_name[result]); |
6a46079c AK |
1184 | } |
1185 | ||
1186 | static int page_action(struct page_state *ps, struct page *p, | |
bd1ce5f9 | 1187 | unsigned long pfn) |
6a46079c AK |
1188 | { |
1189 | int result; | |
1190 | ||
ea6d0630 | 1191 | /* page p should be unlocked after returning from ps->action(). */ |
dd0f230a | 1192 | result = ps->action(ps, p); |
7456b040 | 1193 | |
64d37a2b | 1194 | action_result(pfn, ps->type, result); |
6a46079c AK |
1195 | |
1196 | /* Could do more checks here if page looks ok */ | |
1197 | /* | |
1198 | * Could adjust zone counters here to correct for the missing page. | |
1199 | */ | |
1200 | ||
cc637b17 | 1201 | return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; |
6a46079c AK |
1202 | } |
1203 | ||
bf181c58 NH |
1204 | static inline bool PageHWPoisonTakenOff(struct page *page) |
1205 | { | |
1206 | return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; | |
1207 | } | |
1208 | ||
1209 | void SetPageHWPoisonTakenOff(struct page *page) | |
1210 | { | |
1211 | set_page_private(page, MAGIC_HWPOISON); | |
1212 | } | |
1213 | ||
1214 | void ClearPageHWPoisonTakenOff(struct page *page) | |
1215 | { | |
1216 | if (PageHWPoison(page)) | |
1217 | set_page_private(page, 0); | |
1218 | } | |
1219 | ||
25182f05 NH |
1220 | /* |
1221 | * Return true if a page type of a given page is supported by hwpoison | |
1222 | * mechanism (while handling could fail), otherwise false. This function | |
1223 | * does not return true for hugetlb or device memory pages, so it's assumed | |
1224 | * to be called only in the context where we never have such pages. | |
1225 | */ | |
bf6445bc | 1226 | static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) |
25182f05 | 1227 | { |
3f871370 | 1228 | /* Soft offline could migrate non-LRU movable pages */ |
bf6445bc | 1229 | if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) |
3f871370 | 1230 | return true; |
bf6445bc | 1231 | |
3f871370 | 1232 | return PageLRU(page) || is_free_buddy_page(page); |
25182f05 NH |
1233 | } |
1234 | ||
bf6445bc | 1235 | static int __get_hwpoison_page(struct page *page, unsigned long flags) |
ead07f6a NH |
1236 | { |
1237 | struct page *head = compound_head(page); | |
25182f05 NH |
1238 | int ret = 0; |
1239 | bool hugetlb = false; | |
1240 | ||
1241 | ret = get_hwpoison_huge_page(head, &hugetlb); | |
1242 | if (hugetlb) | |
1243 | return ret; | |
1244 | ||
1245 | /* | |
1246 | * This check prevents from calling get_hwpoison_unless_zero() | |
1247 | * for any unsupported type of page in order to reduce the risk of | |
1248 | * unexpected races caused by taking a page refcount. | |
1249 | */ | |
bf6445bc | 1250 | if (!HWPoisonHandlable(head, flags)) |
fcc00621 | 1251 | return -EBUSY; |
ead07f6a | 1252 | |
c2e7e00b KK |
1253 | if (get_page_unless_zero(head)) { |
1254 | if (head == compound_head(page)) | |
1255 | return 1; | |
1256 | ||
96f96763 | 1257 | pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); |
c2e7e00b KK |
1258 | put_page(head); |
1259 | } | |
1260 | ||
1261 | return 0; | |
ead07f6a | 1262 | } |
ead07f6a | 1263 | |
2f714160 | 1264 | static int get_any_page(struct page *p, unsigned long flags) |
17e395b6 | 1265 | { |
2f714160 OS |
1266 | int ret = 0, pass = 0; |
1267 | bool count_increased = false; | |
17e395b6 | 1268 | |
2f714160 OS |
1269 | if (flags & MF_COUNT_INCREASED) |
1270 | count_increased = true; | |
1271 | ||
1272 | try_again: | |
0ed950d1 | 1273 | if (!count_increased) { |
bf6445bc | 1274 | ret = __get_hwpoison_page(p, flags); |
0ed950d1 NH |
1275 | if (!ret) { |
1276 | if (page_count(p)) { | |
1277 | /* We raced with an allocation, retry. */ | |
1278 | if (pass++ < 3) | |
1279 | goto try_again; | |
1280 | ret = -EBUSY; | |
1281 | } else if (!PageHuge(p) && !is_free_buddy_page(p)) { | |
1282 | /* We raced with put_page, retry. */ | |
1283 | if (pass++ < 3) | |
1284 | goto try_again; | |
1285 | ret = -EIO; | |
1286 | } | |
1287 | goto out; | |
1288 | } else if (ret == -EBUSY) { | |
fcc00621 NH |
1289 | /* |
1290 | * We raced with (possibly temporary) unhandlable | |
1291 | * page, retry. | |
1292 | */ | |
1293 | if (pass++ < 3) { | |
d0505e9f | 1294 | shake_page(p); |
2f714160 | 1295 | goto try_again; |
fcc00621 NH |
1296 | } |
1297 | ret = -EIO; | |
0ed950d1 | 1298 | goto out; |
2f714160 | 1299 | } |
0ed950d1 NH |
1300 | } |
1301 | ||
bf6445bc | 1302 | if (PageHuge(p) || HWPoisonHandlable(p, flags)) { |
0ed950d1 | 1303 | ret = 1; |
2f714160 | 1304 | } else { |
0ed950d1 NH |
1305 | /* |
1306 | * A page we cannot handle. Check whether we can turn | |
1307 | * it into something we can handle. | |
1308 | */ | |
1309 | if (pass++ < 3) { | |
2f714160 | 1310 | put_page(p); |
d0505e9f | 1311 | shake_page(p); |
0ed950d1 NH |
1312 | count_increased = false; |
1313 | goto try_again; | |
2f714160 | 1314 | } |
0ed950d1 NH |
1315 | put_page(p); |
1316 | ret = -EIO; | |
17e395b6 | 1317 | } |
0ed950d1 | 1318 | out: |
941ca063 | 1319 | if (ret == -EIO) |
96f96763 | 1320 | pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); |
941ca063 | 1321 | |
17e395b6 OS |
1322 | return ret; |
1323 | } | |
1324 | ||
bf181c58 NH |
1325 | static int __get_unpoison_page(struct page *page) |
1326 | { | |
1327 | struct page *head = compound_head(page); | |
1328 | int ret = 0; | |
1329 | bool hugetlb = false; | |
1330 | ||
1331 | ret = get_hwpoison_huge_page(head, &hugetlb); | |
1332 | if (hugetlb) | |
1333 | return ret; | |
1334 | ||
1335 | /* | |
1336 | * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, | |
1337 | * but also isolated from buddy freelist, so need to identify the | |
1338 | * state and have to cancel both operations to unpoison. | |
1339 | */ | |
1340 | if (PageHWPoisonTakenOff(page)) | |
1341 | return -EHWPOISON; | |
1342 | ||
1343 | return get_page_unless_zero(page) ? 1 : 0; | |
1344 | } | |
1345 | ||
0ed950d1 NH |
1346 | /** |
1347 | * get_hwpoison_page() - Get refcount for memory error handling | |
1348 | * @p: Raw error page (hit by memory error) | |
1349 | * @flags: Flags controlling behavior of error handling | |
1350 | * | |
1351 | * get_hwpoison_page() takes a page refcount of an error page to handle memory | |
1352 | * error on it, after checking that the error page is in a well-defined state | |
0b8f0d87 | 1353 | * (defined as a page-type we can successfully handle the memory error on it, |
0ed950d1 NH |
1354 | * such as LRU page and hugetlb page). |
1355 | * | |
1356 | * Memory error handling could be triggered at any time on any type of page, | |
1357 | * so it's prone to race with typical memory management lifecycle (like | |
1358 | * allocation and free). So to avoid such races, get_hwpoison_page() takes | |
1359 | * extra care for the error page's state (as done in __get_hwpoison_page()), | |
1360 | * and has some retry logic in get_any_page(). | |
1361 | * | |
bf181c58 NH |
1362 | * When called from unpoison_memory(), the caller should already ensure that |
1363 | * the given page has PG_hwpoison. So it's never reused for other page | |
1364 | * allocations, and __get_unpoison_page() never races with them. | |
1365 | * | |
0ed950d1 NH |
1366 | * Return: 0 on failure, |
1367 | * 1 on success for in-use pages in a well-defined state, | |
1368 | * -EIO for pages on which we can not handle memory errors, | |
1369 | * -EBUSY when get_hwpoison_page() has raced with page lifecycle | |
bf181c58 NH |
1370 | * operations like allocation and free, |
1371 | * -EHWPOISON when the page is hwpoisoned and taken off from buddy. | |
0ed950d1 NH |
1372 | */ |
1373 | static int get_hwpoison_page(struct page *p, unsigned long flags) | |
2f714160 OS |
1374 | { |
1375 | int ret; | |
1376 | ||
1377 | zone_pcp_disable(page_zone(p)); | |
bf181c58 NH |
1378 | if (flags & MF_UNPOISON) |
1379 | ret = __get_unpoison_page(p); | |
1380 | else | |
1381 | ret = get_any_page(p, flags); | |
2f714160 OS |
1382 | zone_pcp_enable(page_zone(p)); |
1383 | ||
1384 | return ret; | |
1385 | } | |
1386 | ||
6a46079c AK |
1387 | /* |
1388 | * Do all that is necessary to remove user space mappings. Unmap | |
1389 | * the pages and send SIGBUS to the processes if the data was dirty. | |
1390 | */ | |
666e5a40 | 1391 | static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, |
ed8c2f49 | 1392 | int flags, struct page *hpage) |
6a46079c | 1393 | { |
869f7ee6 | 1394 | struct folio *folio = page_folio(hpage); |
36af6737 | 1395 | enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; |
6a46079c AK |
1396 | struct address_space *mapping; |
1397 | LIST_HEAD(tokill); | |
1fb08ac6 | 1398 | bool unmap_success; |
6751ed65 | 1399 | int kill = 1, forcekill; |
286c469a | 1400 | bool mlocked = PageMlocked(hpage); |
6a46079c | 1401 | |
93a9eb39 NH |
1402 | /* |
1403 | * Here we are interested only in user-mapped pages, so skip any | |
1404 | * other types of pages. | |
1405 | */ | |
1406 | if (PageReserved(p) || PageSlab(p)) | |
666e5a40 | 1407 | return true; |
93a9eb39 | 1408 | if (!(PageLRU(hpage) || PageHuge(p))) |
666e5a40 | 1409 | return true; |
6a46079c | 1410 | |
6a46079c AK |
1411 | /* |
1412 | * This check implies we don't kill processes if their pages | |
1413 | * are in the swap cache early. Those are always late kills. | |
1414 | */ | |
7af446a8 | 1415 | if (!page_mapped(hpage)) |
666e5a40 | 1416 | return true; |
1668bfd5 | 1417 | |
52089b14 | 1418 | if (PageKsm(p)) { |
96f96763 | 1419 | pr_err("%#lx: can't handle KSM pages.\n", pfn); |
666e5a40 | 1420 | return false; |
52089b14 | 1421 | } |
6a46079c AK |
1422 | |
1423 | if (PageSwapCache(p)) { | |
96f96763 | 1424 | pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); |
6a46079c AK |
1425 | ttu |= TTU_IGNORE_HWPOISON; |
1426 | } | |
1427 | ||
1428 | /* | |
1429 | * Propagate the dirty bit from PTEs to struct page first, because we | |
1430 | * need this to decide if we should kill or just drop the page. | |
db0480b3 WF |
1431 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
1432 | * be called inside page lock (it's recommended but not enforced). | |
6a46079c | 1433 | */ |
7af446a8 | 1434 | mapping = page_mapping(hpage); |
6751ed65 | 1435 | if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && |
f56753ac | 1436 | mapping_can_writeback(mapping)) { |
7af446a8 NH |
1437 | if (page_mkclean(hpage)) { |
1438 | SetPageDirty(hpage); | |
6a46079c AK |
1439 | } else { |
1440 | kill = 0; | |
1441 | ttu |= TTU_IGNORE_HWPOISON; | |
96f96763 | 1442 | pr_info("%#lx: corrupted page was clean: dropped without side effects\n", |
6a46079c AK |
1443 | pfn); |
1444 | } | |
1445 | } | |
1446 | ||
1447 | /* | |
1448 | * First collect all the processes that have the page | |
1449 | * mapped in dirty form. This has to be done before try_to_unmap, | |
1450 | * because ttu takes the rmap data structures down. | |
1451 | * | |
1452 | * Error handling: We ignore errors here because | |
1453 | * there's nothing that can be done. | |
1454 | */ | |
1455 | if (kill) | |
415c64c1 | 1456 | collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); |
6a46079c | 1457 | |
357670f7 ML |
1458 | if (PageHuge(hpage) && !PageAnon(hpage)) { |
1459 | /* | |
1460 | * For hugetlb pages in shared mappings, try_to_unmap | |
1461 | * could potentially call huge_pmd_unshare. Because of | |
1462 | * this, take semaphore in write mode here and set | |
1463 | * TTU_RMAP_LOCKED to indicate we have taken the lock | |
1464 | * at this higher level. | |
1465 | */ | |
1466 | mapping = hugetlb_page_mapping_lock_write(hpage); | |
1467 | if (mapping) { | |
9030fb0b | 1468 | try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); |
357670f7 ML |
1469 | i_mmap_unlock_write(mapping); |
1470 | } else | |
96f96763 | 1471 | pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); |
c0d0381a | 1472 | } else { |
9030fb0b | 1473 | try_to_unmap(folio, ttu); |
c0d0381a | 1474 | } |
1fb08ac6 YS |
1475 | |
1476 | unmap_success = !page_mapped(hpage); | |
666e5a40 | 1477 | if (!unmap_success) |
96f96763 | 1478 | pr_err("%#lx: failed to unmap page (mapcount=%d)\n", |
1170532b | 1479 | pfn, page_mapcount(hpage)); |
a6d30ddd | 1480 | |
286c469a NH |
1481 | /* |
1482 | * try_to_unmap() might put mlocked page in lru cache, so call | |
1483 | * shake_page() again to ensure that it's flushed. | |
1484 | */ | |
1485 | if (mlocked) | |
d0505e9f | 1486 | shake_page(hpage); |
286c469a | 1487 | |
6a46079c AK |
1488 | /* |
1489 | * Now that the dirty bit has been propagated to the | |
1490 | * struct page and all unmaps done we can decide if | |
1491 | * killing is needed or not. Only kill when the page | |
6751ed65 TL |
1492 | * was dirty or the process is not restartable, |
1493 | * otherwise the tokill list is merely | |
6a46079c AK |
1494 | * freed. When there was a problem unmapping earlier |
1495 | * use a more force-full uncatchable kill to prevent | |
1496 | * any accesses to the poisoned memory. | |
1497 | */ | |
415c64c1 | 1498 | forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); |
ae1139ec | 1499 | kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); |
1668bfd5 | 1500 | |
666e5a40 | 1501 | return unmap_success; |
6a46079c AK |
1502 | } |
1503 | ||
0348d2eb NH |
1504 | static int identify_page_state(unsigned long pfn, struct page *p, |
1505 | unsigned long page_flags) | |
761ad8d7 NH |
1506 | { |
1507 | struct page_state *ps; | |
0348d2eb NH |
1508 | |
1509 | /* | |
1510 | * The first check uses the current page flags which may not have any | |
1511 | * relevant information. The second check with the saved page flags is | |
1512 | * carried out only if the first check can't determine the page status. | |
1513 | */ | |
1514 | for (ps = error_states;; ps++) | |
1515 | if ((p->flags & ps->mask) == ps->res) | |
1516 | break; | |
1517 | ||
1518 | page_flags |= (p->flags & (1UL << PG_dirty)); | |
1519 | ||
1520 | if (!ps->mask) | |
1521 | for (ps = error_states;; ps++) | |
1522 | if ((page_flags & ps->mask) == ps->res) | |
1523 | break; | |
1524 | return page_action(ps, p, pfn); | |
1525 | } | |
1526 | ||
694bf0b0 OS |
1527 | static int try_to_split_thp_page(struct page *page, const char *msg) |
1528 | { | |
1529 | lock_page(page); | |
4966455d | 1530 | if (unlikely(split_huge_page(page))) { |
694bf0b0 OS |
1531 | unsigned long pfn = page_to_pfn(page); |
1532 | ||
1533 | unlock_page(page); | |
4966455d | 1534 | pr_info("%s: %#lx: thp split failed\n", msg, pfn); |
694bf0b0 OS |
1535 | put_page(page); |
1536 | return -EBUSY; | |
1537 | } | |
1538 | unlock_page(page); | |
1539 | ||
1540 | return 0; | |
1541 | } | |
1542 | ||
00cc790e SR |
1543 | static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, |
1544 | struct address_space *mapping, pgoff_t index, int flags) | |
1545 | { | |
1546 | struct to_kill *tk; | |
1547 | unsigned long size = 0; | |
1548 | ||
1549 | list_for_each_entry(tk, to_kill, nd) | |
1550 | if (tk->size_shift) | |
1551 | size = max(size, 1UL << tk->size_shift); | |
1552 | ||
1553 | if (size) { | |
1554 | /* | |
1555 | * Unmap the largest mapping to avoid breaking up device-dax | |
1556 | * mappings which are constant size. The actual size of the | |
1557 | * mapping being torn down is communicated in siginfo, see | |
1558 | * kill_proc() | |
1559 | */ | |
1560 | loff_t start = (index << PAGE_SHIFT) & ~(size - 1); | |
1561 | ||
1562 | unmap_mapping_range(mapping, start, size, 0); | |
1563 | } | |
1564 | ||
1565 | kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); | |
1566 | } | |
1567 | ||
1568 | static int mf_generic_kill_procs(unsigned long long pfn, int flags, | |
1569 | struct dev_pagemap *pgmap) | |
1570 | { | |
1571 | struct page *page = pfn_to_page(pfn); | |
1572 | LIST_HEAD(to_kill); | |
1573 | dax_entry_t cookie; | |
1574 | int rc = 0; | |
1575 | ||
1576 | /* | |
1577 | * Pages instantiated by device-dax (not filesystem-dax) | |
1578 | * may be compound pages. | |
1579 | */ | |
1580 | page = compound_head(page); | |
1581 | ||
1582 | /* | |
1583 | * Prevent the inode from being freed while we are interrogating | |
1584 | * the address_space, typically this would be handled by | |
1585 | * lock_page(), but dax pages do not use the page lock. This | |
1586 | * also prevents changes to the mapping of this pfn until | |
1587 | * poison signaling is complete. | |
1588 | */ | |
1589 | cookie = dax_lock_page(page); | |
1590 | if (!cookie) | |
1591 | return -EBUSY; | |
1592 | ||
1593 | if (hwpoison_filter(page)) { | |
1594 | rc = -EOPNOTSUPP; | |
1595 | goto unlock; | |
1596 | } | |
1597 | ||
1598 | switch (pgmap->type) { | |
1599 | case MEMORY_DEVICE_PRIVATE: | |
1600 | case MEMORY_DEVICE_COHERENT: | |
1601 | /* | |
1602 | * TODO: Handle device pages which may need coordination | |
1603 | * with device-side memory. | |
1604 | */ | |
1605 | rc = -ENXIO; | |
1606 | goto unlock; | |
1607 | default: | |
1608 | break; | |
1609 | } | |
1610 | ||
1611 | /* | |
1612 | * Use this flag as an indication that the dax page has been | |
1613 | * remapped UC to prevent speculative consumption of poison. | |
1614 | */ | |
1615 | SetPageHWPoison(page); | |
1616 | ||
1617 | /* | |
1618 | * Unlike System-RAM there is no possibility to swap in a | |
1619 | * different physical page at a given virtual address, so all | |
1620 | * userspace consumption of ZONE_DEVICE memory necessitates | |
1621 | * SIGBUS (i.e. MF_MUST_KILL) | |
1622 | */ | |
1623 | flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | |
1624 | collect_procs(page, &to_kill, true); | |
1625 | ||
1626 | unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); | |
1627 | unlock: | |
1628 | dax_unlock_page(page, cookie); | |
1629 | return rc; | |
1630 | } | |
1631 | ||
c36e2024 SR |
1632 | #ifdef CONFIG_FS_DAX |
1633 | /** | |
1634 | * mf_dax_kill_procs - Collect and kill processes who are using this file range | |
1635 | * @mapping: address_space of the file in use | |
1636 | * @index: start pgoff of the range within the file | |
1637 | * @count: length of the range, in unit of PAGE_SIZE | |
1638 | * @mf_flags: memory failure flags | |
1639 | */ | |
1640 | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, | |
1641 | unsigned long count, int mf_flags) | |
1642 | { | |
1643 | LIST_HEAD(to_kill); | |
1644 | dax_entry_t cookie; | |
1645 | struct page *page; | |
1646 | size_t end = index + count; | |
1647 | ||
1648 | mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | |
1649 | ||
1650 | for (; index < end; index++) { | |
1651 | page = NULL; | |
1652 | cookie = dax_lock_mapping_entry(mapping, index, &page); | |
1653 | if (!cookie) | |
1654 | return -EBUSY; | |
1655 | if (!page) | |
1656 | goto unlock; | |
1657 | ||
1658 | SetPageHWPoison(page); | |
1659 | ||
1660 | collect_procs_fsdax(page, mapping, index, &to_kill); | |
1661 | unmap_and_kill(&to_kill, page_to_pfn(page), mapping, | |
1662 | index, mf_flags); | |
1663 | unlock: | |
1664 | dax_unlock_mapping_entry(mapping, index, cookie); | |
1665 | } | |
1666 | return 0; | |
1667 | } | |
1668 | EXPORT_SYMBOL_GPL(mf_dax_kill_procs); | |
1669 | #endif /* CONFIG_FS_DAX */ | |
1670 | ||
161df60e NH |
1671 | #ifdef CONFIG_HUGETLB_PAGE |
1672 | /* | |
1673 | * Struct raw_hwp_page represents information about "raw error page", | |
1674 | * constructing singly linked list originated from ->private field of | |
1675 | * SUBPAGE_INDEX_HWPOISON-th tail page. | |
1676 | */ | |
1677 | struct raw_hwp_page { | |
1678 | struct llist_node node; | |
1679 | struct page *page; | |
1680 | }; | |
1681 | ||
1682 | static inline struct llist_head *raw_hwp_list_head(struct page *hpage) | |
1683 | { | |
1684 | return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON); | |
1685 | } | |
1686 | ||
ac5fcde0 | 1687 | static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag) |
161df60e NH |
1688 | { |
1689 | struct llist_head *head; | |
1690 | struct llist_node *t, *tnode; | |
ac5fcde0 | 1691 | unsigned long count = 0; |
161df60e NH |
1692 | |
1693 | head = raw_hwp_list_head(hpage); | |
1694 | llist_for_each_safe(tnode, t, head->first) { | |
1695 | struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); | |
1696 | ||
ac5fcde0 NH |
1697 | if (move_flag) |
1698 | SetPageHWPoison(p->page); | |
161df60e | 1699 | kfree(p); |
ac5fcde0 | 1700 | count++; |
161df60e NH |
1701 | } |
1702 | llist_del_all(head); | |
ac5fcde0 | 1703 | return count; |
161df60e NH |
1704 | } |
1705 | ||
1706 | static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page) | |
1707 | { | |
1708 | struct llist_head *head; | |
1709 | struct raw_hwp_page *raw_hwp; | |
1710 | struct llist_node *t, *tnode; | |
1711 | int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0; | |
1712 | ||
1713 | /* | |
1714 | * Once the hwpoison hugepage has lost reliable raw error info, | |
1715 | * there is little meaning to keep additional error info precisely, | |
1716 | * so skip to add additional raw error info. | |
1717 | */ | |
1718 | if (HPageRawHwpUnreliable(hpage)) | |
1719 | return -EHWPOISON; | |
1720 | head = raw_hwp_list_head(hpage); | |
1721 | llist_for_each_safe(tnode, t, head->first) { | |
1722 | struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); | |
1723 | ||
1724 | if (p->page == page) | |
1725 | return -EHWPOISON; | |
1726 | } | |
1727 | ||
1728 | raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); | |
1729 | if (raw_hwp) { | |
1730 | raw_hwp->page = page; | |
1731 | llist_add(&raw_hwp->node, head); | |
1732 | /* the first error event will be counted in action_result(). */ | |
1733 | if (ret) | |
1734 | num_poisoned_pages_inc(); | |
1735 | } else { | |
1736 | /* | |
1737 | * Failed to save raw error info. We no longer trace all | |
1738 | * hwpoisoned subpages, and we need refuse to free/dissolve | |
1739 | * this hwpoisoned hugepage. | |
1740 | */ | |
1741 | SetHPageRawHwpUnreliable(hpage); | |
1742 | /* | |
1743 | * Once HPageRawHwpUnreliable is set, raw_hwp_page is not | |
1744 | * used any more, so free it. | |
1745 | */ | |
ac5fcde0 | 1746 | __free_raw_hwp_pages(hpage, false); |
161df60e NH |
1747 | } |
1748 | return ret; | |
1749 | } | |
1750 | ||
ac5fcde0 NH |
1751 | static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag) |
1752 | { | |
1753 | /* | |
1754 | * HPageVmemmapOptimized hugepages can't be freed because struct | |
1755 | * pages for tail pages are required but they don't exist. | |
1756 | */ | |
1757 | if (move_flag && HPageVmemmapOptimized(hpage)) | |
1758 | return 0; | |
1759 | ||
1760 | /* | |
1761 | * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by | |
1762 | * definition. | |
1763 | */ | |
1764 | if (HPageRawHwpUnreliable(hpage)) | |
1765 | return 0; | |
1766 | ||
1767 | return __free_raw_hwp_pages(hpage, move_flag); | |
1768 | } | |
1769 | ||
161df60e NH |
1770 | void hugetlb_clear_page_hwpoison(struct page *hpage) |
1771 | { | |
1772 | if (HPageRawHwpUnreliable(hpage)) | |
1773 | return; | |
1774 | ClearPageHWPoison(hpage); | |
ac5fcde0 | 1775 | free_raw_hwp_pages(hpage, true); |
161df60e NH |
1776 | } |
1777 | ||
405ce051 NH |
1778 | /* |
1779 | * Called from hugetlb code with hugetlb_lock held. | |
1780 | * | |
1781 | * Return values: | |
1782 | * 0 - free hugepage | |
1783 | * 1 - in-use hugepage | |
1784 | * 2 - not a hugepage | |
1785 | * -EBUSY - the hugepage is busy (try to retry) | |
1786 | * -EHWPOISON - the hugepage is already hwpoisoned | |
1787 | */ | |
1788 | int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) | |
1789 | { | |
1790 | struct page *page = pfn_to_page(pfn); | |
1791 | struct page *head = compound_head(page); | |
1792 | int ret = 2; /* fallback to normal page handling */ | |
1793 | bool count_increased = false; | |
1794 | ||
1795 | if (!PageHeadHuge(head)) | |
1796 | goto out; | |
1797 | ||
1798 | if (flags & MF_COUNT_INCREASED) { | |
1799 | ret = 1; | |
1800 | count_increased = true; | |
b283d983 NH |
1801 | } else if (HPageFreed(head)) { |
1802 | ret = 0; | |
1803 | } else if (HPageMigratable(head)) { | |
405ce051 NH |
1804 | ret = get_page_unless_zero(head); |
1805 | if (ret) | |
1806 | count_increased = true; | |
1807 | } else { | |
1808 | ret = -EBUSY; | |
38f6d293 NH |
1809 | if (!(flags & MF_NO_RETRY)) |
1810 | goto out; | |
405ce051 NH |
1811 | } |
1812 | ||
161df60e | 1813 | if (hugetlb_set_page_hwpoison(head, page)) { |
405ce051 NH |
1814 | ret = -EHWPOISON; |
1815 | goto out; | |
1816 | } | |
1817 | ||
1818 | return ret; | |
1819 | out: | |
1820 | if (count_increased) | |
1821 | put_page(head); | |
1822 | return ret; | |
1823 | } | |
1824 | ||
405ce051 NH |
1825 | /* |
1826 | * Taking refcount of hugetlb pages needs extra care about race conditions | |
1827 | * with basic operations like hugepage allocation/free/demotion. | |
1828 | * So some of prechecks for hwpoison (pinning, and testing/setting | |
1829 | * PageHWPoison) should be done in single hugetlb_lock range. | |
1830 | */ | |
1831 | static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | |
0348d2eb | 1832 | { |
761ad8d7 | 1833 | int res; |
405ce051 NH |
1834 | struct page *p = pfn_to_page(pfn); |
1835 | struct page *head; | |
761ad8d7 NH |
1836 | unsigned long page_flags; |
1837 | ||
405ce051 NH |
1838 | *hugetlb = 1; |
1839 | retry: | |
1840 | res = get_huge_page_for_hwpoison(pfn, flags); | |
1841 | if (res == 2) { /* fallback to normal page handling */ | |
1842 | *hugetlb = 0; | |
1843 | return 0; | |
1844 | } else if (res == -EHWPOISON) { | |
96f96763 | 1845 | pr_err("%#lx: already hardware poisoned\n", pfn); |
405ce051 NH |
1846 | if (flags & MF_ACTION_REQUIRED) { |
1847 | head = compound_head(p); | |
a3f5d80e | 1848 | res = kill_accessing_process(current, page_to_pfn(head), flags); |
405ce051 NH |
1849 | } |
1850 | return res; | |
1851 | } else if (res == -EBUSY) { | |
38f6d293 NH |
1852 | if (!(flags & MF_NO_RETRY)) { |
1853 | flags |= MF_NO_RETRY; | |
405ce051 NH |
1854 | goto retry; |
1855 | } | |
1856 | action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); | |
a3f5d80e | 1857 | return res; |
761ad8d7 NH |
1858 | } |
1859 | ||
405ce051 NH |
1860 | head = compound_head(p); |
1861 | lock_page(head); | |
1862 | ||
1863 | if (hwpoison_filter(p)) { | |
161df60e | 1864 | hugetlb_clear_page_hwpoison(head); |
405ce051 NH |
1865 | res = -EOPNOTSUPP; |
1866 | goto out; | |
1867 | } | |
1868 | ||
405ce051 NH |
1869 | /* |
1870 | * Handling free hugepage. The possible race with hugepage allocation | |
1871 | * or demotion can be prevented by PageHWPoison flag. | |
1872 | */ | |
1873 | if (res == 0) { | |
1874 | unlock_page(head); | |
ceaf8fbe | 1875 | if (__page_handle_poison(p) >= 0) { |
405ce051 NH |
1876 | page_ref_inc(p); |
1877 | res = MF_RECOVERED; | |
ceaf8fbe NH |
1878 | } else { |
1879 | res = MF_FAILED; | |
761ad8d7 | 1880 | } |
405ce051 NH |
1881 | action_result(pfn, MF_MSG_FREE_HUGE, res); |
1882 | return res == MF_RECOVERED ? 0 : -EBUSY; | |
761ad8d7 NH |
1883 | } |
1884 | ||
761ad8d7 NH |
1885 | page_flags = head->flags; |
1886 | ||
ed8c2f49 | 1887 | if (!hwpoison_user_mappings(p, pfn, flags, head)) { |
761ad8d7 NH |
1888 | action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); |
1889 | res = -EBUSY; | |
1890 | goto out; | |
1891 | } | |
1892 | ||
ea6d0630 | 1893 | return identify_page_state(pfn, p, page_flags); |
761ad8d7 NH |
1894 | out: |
1895 | unlock_page(head); | |
1896 | return res; | |
1897 | } | |
00cc790e | 1898 | |
405ce051 NH |
1899 | #else |
1900 | static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | |
1901 | { | |
1902 | return 0; | |
1903 | } | |
00cc790e | 1904 | |
ac5fcde0 NH |
1905 | static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag) |
1906 | { | |
1907 | return 0; | |
1908 | } | |
00cc790e | 1909 | #endif /* CONFIG_HUGETLB_PAGE */ |
761ad8d7 | 1910 | |
6100e34b DW |
1911 | static int memory_failure_dev_pagemap(unsigned long pfn, int flags, |
1912 | struct dev_pagemap *pgmap) | |
1913 | { | |
1914 | struct page *page = pfn_to_page(pfn); | |
00cc790e | 1915 | int rc = -ENXIO; |
6100e34b | 1916 | |
1e8aaedb OS |
1917 | if (flags & MF_COUNT_INCREASED) |
1918 | /* | |
1919 | * Drop the extra refcount in case we come from madvise(). | |
1920 | */ | |
1921 | put_page(page); | |
1922 | ||
34dc45be | 1923 | /* device metadata space is not recoverable */ |
00cc790e | 1924 | if (!pgmap_pfn_valid(pgmap, pfn)) |
34dc45be | 1925 | goto out; |
61e28cf0 | 1926 | |
6100e34b | 1927 | /* |
33a8f7f2 SR |
1928 | * Call driver's implementation to handle the memory failure, otherwise |
1929 | * fall back to generic handler. | |
6100e34b | 1930 | */ |
33a8f7f2 SR |
1931 | if (pgmap->ops->memory_failure) { |
1932 | rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); | |
6100e34b | 1933 | /* |
33a8f7f2 SR |
1934 | * Fall back to generic handler too if operation is not |
1935 | * supported inside the driver/device/filesystem. | |
6100e34b | 1936 | */ |
33a8f7f2 SR |
1937 | if (rc != -EOPNOTSUPP) |
1938 | goto out; | |
6100e34b DW |
1939 | } |
1940 | ||
00cc790e | 1941 | rc = mf_generic_kill_procs(pfn, flags, pgmap); |
6100e34b DW |
1942 | out: |
1943 | /* drop pgmap ref acquired in caller */ | |
1944 | put_dev_pagemap(pgmap); | |
1945 | action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); | |
1946 | return rc; | |
1947 | } | |
1948 | ||
91d00547 NH |
1949 | static DEFINE_MUTEX(mf_mutex); |
1950 | ||
cd42f4a3 TL |
1951 | /** |
1952 | * memory_failure - Handle memory failure of a page. | |
1953 | * @pfn: Page Number of the corrupted page | |
cd42f4a3 TL |
1954 | * @flags: fine tune action taken |
1955 | * | |
1956 | * This function is called by the low level machine check code | |
1957 | * of an architecture when it detects hardware memory corruption | |
1958 | * of a page. It tries its best to recover, which includes | |
1959 | * dropping pages, killing processes etc. | |
1960 | * | |
1961 | * The function is primarily of use for corruptions that | |
1962 | * happen outside the current execution context (e.g. when | |
1963 | * detected by a background scrubber) | |
1964 | * | |
1965 | * Must run in process context (e.g. a work queue) with interrupts | |
1966 | * enabled and no spinlocks hold. | |
d1fe111f | 1967 | * |
1968 | * Return: 0 for successfully handled the memory error, | |
9113eaf3 | 1969 | * -EOPNOTSUPP for hwpoison_filter() filtered the error event, |
d1fe111f | 1970 | * < 0(except -EOPNOTSUPP) on failure. |
cd42f4a3 | 1971 | */ |
83b57531 | 1972 | int memory_failure(unsigned long pfn, int flags) |
6a46079c | 1973 | { |
6a46079c | 1974 | struct page *p; |
7af446a8 | 1975 | struct page *hpage; |
6100e34b | 1976 | struct dev_pagemap *pgmap; |
171936dd | 1977 | int res = 0; |
524fca1e | 1978 | unsigned long page_flags; |
a8b2c2ce | 1979 | bool retry = true; |
405ce051 | 1980 | int hugetlb = 0; |
6a46079c AK |
1981 | |
1982 | if (!sysctl_memory_failure_recovery) | |
83b57531 | 1983 | panic("Memory failure on page %lx", pfn); |
6a46079c | 1984 | |
03b122da TL |
1985 | mutex_lock(&mf_mutex); |
1986 | ||
67f22ba7 | 1987 | if (!(flags & MF_SW_SIMULATED)) |
1988 | hw_memory_failure = true; | |
1989 | ||
96c804a6 DH |
1990 | p = pfn_to_online_page(pfn); |
1991 | if (!p) { | |
03b122da TL |
1992 | res = arch_memory_failure(pfn, flags); |
1993 | if (res == 0) | |
1994 | goto unlock_mutex; | |
1995 | ||
96c804a6 DH |
1996 | if (pfn_valid(pfn)) { |
1997 | pgmap = get_dev_pagemap(pfn, NULL); | |
03b122da TL |
1998 | if (pgmap) { |
1999 | res = memory_failure_dev_pagemap(pfn, flags, | |
2000 | pgmap); | |
2001 | goto unlock_mutex; | |
2002 | } | |
96c804a6 | 2003 | } |
96f96763 | 2004 | pr_err("%#lx: memory outside kernel control\n", pfn); |
03b122da TL |
2005 | res = -ENXIO; |
2006 | goto unlock_mutex; | |
6a46079c AK |
2007 | } |
2008 | ||
a8b2c2ce | 2009 | try_again: |
405ce051 NH |
2010 | res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); |
2011 | if (hugetlb) | |
171936dd | 2012 | goto unlock_mutex; |
171936dd | 2013 | |
6a46079c | 2014 | if (TestSetPageHWPoison(p)) { |
96f96763 | 2015 | pr_err("%#lx: already hardware poisoned\n", pfn); |
47af12ba | 2016 | res = -EHWPOISON; |
a3f5d80e NH |
2017 | if (flags & MF_ACTION_REQUIRED) |
2018 | res = kill_accessing_process(current, pfn, flags); | |
f361e246 NH |
2019 | if (flags & MF_COUNT_INCREASED) |
2020 | put_page(p); | |
171936dd | 2021 | goto unlock_mutex; |
6a46079c AK |
2022 | } |
2023 | ||
75ee64b3 | 2024 | hpage = compound_head(p); |
6a46079c AK |
2025 | |
2026 | /* | |
2027 | * We need/can do nothing about count=0 pages. | |
2028 | * 1) it's a free page, and therefore in safe hand: | |
2029 | * prep_new_page() will be the gate keeper. | |
761ad8d7 | 2030 | * 2) it's part of a non-compound high order page. |
6a46079c AK |
2031 | * Implies some kernel user: cannot stop them from |
2032 | * R/W the page; let's pray that the page has been | |
2033 | * used and will be freed some time later. | |
2034 | * In fact it's dangerous to directly bump up page count from 0, | |
1c4c3b99 | 2035 | * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. |
6a46079c | 2036 | */ |
0ed950d1 NH |
2037 | if (!(flags & MF_COUNT_INCREASED)) { |
2038 | res = get_hwpoison_page(p, flags); | |
2039 | if (!res) { | |
2040 | if (is_free_buddy_page(p)) { | |
2041 | if (take_page_off_buddy(p)) { | |
2042 | page_ref_inc(p); | |
2043 | res = MF_RECOVERED; | |
2044 | } else { | |
2045 | /* We lost the race, try again */ | |
2046 | if (retry) { | |
2047 | ClearPageHWPoison(p); | |
0ed950d1 NH |
2048 | retry = false; |
2049 | goto try_again; | |
2050 | } | |
2051 | res = MF_FAILED; | |
a8b2c2ce | 2052 | } |
0ed950d1 NH |
2053 | action_result(pfn, MF_MSG_BUDDY, res); |
2054 | res = res == MF_RECOVERED ? 0 : -EBUSY; | |
2055 | } else { | |
2056 | action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); | |
2057 | res = -EBUSY; | |
a8b2c2ce | 2058 | } |
0ed950d1 NH |
2059 | goto unlock_mutex; |
2060 | } else if (res < 0) { | |
2061 | action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); | |
171936dd | 2062 | res = -EBUSY; |
0ed950d1 | 2063 | goto unlock_mutex; |
8d22ba1b | 2064 | } |
6a46079c AK |
2065 | } |
2066 | ||
761ad8d7 | 2067 | if (PageTransHuge(hpage)) { |
eac96c3e YS |
2068 | /* |
2069 | * The flag must be set after the refcount is bumped | |
2070 | * otherwise it may race with THP split. | |
2071 | * And the flag can't be set in get_hwpoison_page() since | |
2072 | * it is called by soft offline too and it is just called | |
2073 | * for !MF_COUNT_INCREASE. So here seems to be the best | |
2074 | * place. | |
2075 | * | |
2076 | * Don't need care about the above error handling paths for | |
2077 | * get_hwpoison_page() since they handle either free page | |
2078 | * or unhandlable page. The refcount is bumped iff the | |
2079 | * page is a valid handlable page. | |
2080 | */ | |
2081 | SetPageHasHWPoisoned(hpage); | |
5d1fd5dc NH |
2082 | if (try_to_split_thp_page(p, "Memory Failure") < 0) { |
2083 | action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); | |
171936dd TL |
2084 | res = -EBUSY; |
2085 | goto unlock_mutex; | |
5d1fd5dc | 2086 | } |
415c64c1 | 2087 | VM_BUG_ON_PAGE(!page_count(p), p); |
415c64c1 NH |
2088 | } |
2089 | ||
e43c3afb WF |
2090 | /* |
2091 | * We ignore non-LRU pages for good reasons. | |
2092 | * - PG_locked is only well defined for LRU pages and a few others | |
48c935ad | 2093 | * - to avoid races with __SetPageLocked() |
e43c3afb WF |
2094 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) |
2095 | * The check (unnecessarily) ignores LRU pages being isolated and | |
2096 | * walked by the page reclaim code, however that's not a big loss. | |
2097 | */ | |
d0505e9f | 2098 | shake_page(p); |
e43c3afb | 2099 | |
761ad8d7 | 2100 | lock_page(p); |
847ce401 | 2101 | |
f37d4298 | 2102 | /* |
75ee64b3 ML |
2103 | * We're only intended to deal with the non-Compound page here. |
2104 | * However, the page could have changed compound pages due to | |
2105 | * race window. If this happens, we could try again to hopefully | |
2106 | * handle the page next round. | |
f37d4298 | 2107 | */ |
75ee64b3 ML |
2108 | if (PageCompound(p)) { |
2109 | if (retry) { | |
e240ac52 | 2110 | ClearPageHWPoison(p); |
75ee64b3 ML |
2111 | unlock_page(p); |
2112 | put_page(p); | |
2113 | flags &= ~MF_COUNT_INCREASED; | |
2114 | retry = false; | |
2115 | goto try_again; | |
2116 | } | |
cc637b17 | 2117 | action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); |
f37d4298 | 2118 | res = -EBUSY; |
171936dd | 2119 | goto unlock_page; |
f37d4298 AK |
2120 | } |
2121 | ||
524fca1e NH |
2122 | /* |
2123 | * We use page flags to determine what action should be taken, but | |
2124 | * the flags can be modified by the error containment action. One | |
2125 | * example is an mlocked page, where PG_mlocked is cleared by | |
2126 | * page_remove_rmap() in try_to_unmap_one(). So to determine page status | |
2127 | * correctly, we save a copy of the page flags at this time. | |
2128 | */ | |
7d9d46ac | 2129 | page_flags = p->flags; |
524fca1e | 2130 | |
7c116f2b | 2131 | if (hwpoison_filter(p)) { |
e240ac52 | 2132 | TestClearPageHWPoison(p); |
761ad8d7 | 2133 | unlock_page(p); |
dd6e2402 | 2134 | put_page(p); |
d1fe111f | 2135 | res = -EOPNOTSUPP; |
171936dd | 2136 | goto unlock_mutex; |
7c116f2b | 2137 | } |
847ce401 | 2138 | |
e8675d29 | 2139 | /* |
2140 | * __munlock_pagevec may clear a writeback page's LRU flag without | |
2141 | * page_lock. We need wait writeback completion for this page or it | |
2142 | * may trigger vfs BUG while evict inode. | |
2143 | */ | |
b04d3eeb | 2144 | if (!PageLRU(p) && !PageWriteback(p)) |
0bc1f8b0 CY |
2145 | goto identify_page_state; |
2146 | ||
6edd6cc6 NH |
2147 | /* |
2148 | * It's very difficult to mess with pages currently under IO | |
2149 | * and in many cases impossible, so we just avoid it here. | |
2150 | */ | |
6a46079c AK |
2151 | wait_on_page_writeback(p); |
2152 | ||
2153 | /* | |
2154 | * Now take care of user space mappings. | |
6ffcd825 | 2155 | * Abort on fail: __filemap_remove_folio() assumes unmapped page. |
6a46079c | 2156 | */ |
ed8c2f49 | 2157 | if (!hwpoison_user_mappings(p, pfn, flags, p)) { |
cc637b17 | 2158 | action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); |
1668bfd5 | 2159 | res = -EBUSY; |
171936dd | 2160 | goto unlock_page; |
1668bfd5 | 2161 | } |
6a46079c AK |
2162 | |
2163 | /* | |
2164 | * Torn down by someone else? | |
2165 | */ | |
dc2a1cbf | 2166 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { |
cc637b17 | 2167 | action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); |
d95ea51e | 2168 | res = -EBUSY; |
171936dd | 2169 | goto unlock_page; |
6a46079c AK |
2170 | } |
2171 | ||
0bc1f8b0 | 2172 | identify_page_state: |
0348d2eb | 2173 | res = identify_page_state(pfn, p, page_flags); |
ea6d0630 NH |
2174 | mutex_unlock(&mf_mutex); |
2175 | return res; | |
171936dd | 2176 | unlock_page: |
761ad8d7 | 2177 | unlock_page(p); |
171936dd TL |
2178 | unlock_mutex: |
2179 | mutex_unlock(&mf_mutex); | |
6a46079c AK |
2180 | return res; |
2181 | } | |
cd42f4a3 | 2182 | EXPORT_SYMBOL_GPL(memory_failure); |
847ce401 | 2183 | |
ea8f5fb8 YH |
2184 | #define MEMORY_FAILURE_FIFO_ORDER 4 |
2185 | #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) | |
2186 | ||
2187 | struct memory_failure_entry { | |
2188 | unsigned long pfn; | |
ea8f5fb8 YH |
2189 | int flags; |
2190 | }; | |
2191 | ||
2192 | struct memory_failure_cpu { | |
2193 | DECLARE_KFIFO(fifo, struct memory_failure_entry, | |
2194 | MEMORY_FAILURE_FIFO_SIZE); | |
2195 | spinlock_t lock; | |
2196 | struct work_struct work; | |
2197 | }; | |
2198 | ||
2199 | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); | |
2200 | ||
2201 | /** | |
2202 | * memory_failure_queue - Schedule handling memory failure of a page. | |
2203 | * @pfn: Page Number of the corrupted page | |
ea8f5fb8 YH |
2204 | * @flags: Flags for memory failure handling |
2205 | * | |
2206 | * This function is called by the low level hardware error handler | |
2207 | * when it detects hardware memory corruption of a page. It schedules | |
2208 | * the recovering of error page, including dropping pages, killing | |
2209 | * processes etc. | |
2210 | * | |
2211 | * The function is primarily of use for corruptions that | |
2212 | * happen outside the current execution context (e.g. when | |
2213 | * detected by a background scrubber) | |
2214 | * | |
2215 | * Can run in IRQ context. | |
2216 | */ | |
83b57531 | 2217 | void memory_failure_queue(unsigned long pfn, int flags) |
ea8f5fb8 YH |
2218 | { |
2219 | struct memory_failure_cpu *mf_cpu; | |
2220 | unsigned long proc_flags; | |
2221 | struct memory_failure_entry entry = { | |
2222 | .pfn = pfn, | |
ea8f5fb8 YH |
2223 | .flags = flags, |
2224 | }; | |
2225 | ||
2226 | mf_cpu = &get_cpu_var(memory_failure_cpu); | |
2227 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); | |
498d319b | 2228 | if (kfifo_put(&mf_cpu->fifo, entry)) |
ea8f5fb8 YH |
2229 | schedule_work_on(smp_processor_id(), &mf_cpu->work); |
2230 | else | |
96f96763 | 2231 | pr_err("buffer overflow when queuing memory failure at %#lx\n", |
ea8f5fb8 YH |
2232 | pfn); |
2233 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | |
2234 | put_cpu_var(memory_failure_cpu); | |
2235 | } | |
2236 | EXPORT_SYMBOL_GPL(memory_failure_queue); | |
2237 | ||
2238 | static void memory_failure_work_func(struct work_struct *work) | |
2239 | { | |
2240 | struct memory_failure_cpu *mf_cpu; | |
2241 | struct memory_failure_entry entry = { 0, }; | |
2242 | unsigned long proc_flags; | |
2243 | int gotten; | |
2244 | ||
06202231 | 2245 | mf_cpu = container_of(work, struct memory_failure_cpu, work); |
ea8f5fb8 YH |
2246 | for (;;) { |
2247 | spin_lock_irqsave(&mf_cpu->lock, proc_flags); | |
2248 | gotten = kfifo_get(&mf_cpu->fifo, &entry); | |
2249 | spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | |
2250 | if (!gotten) | |
2251 | break; | |
cf870c70 | 2252 | if (entry.flags & MF_SOFT_OFFLINE) |
feec24a6 | 2253 | soft_offline_page(entry.pfn, entry.flags); |
cf870c70 | 2254 | else |
83b57531 | 2255 | memory_failure(entry.pfn, entry.flags); |
ea8f5fb8 YH |
2256 | } |
2257 | } | |
2258 | ||
06202231 JM |
2259 | /* |
2260 | * Process memory_failure work queued on the specified CPU. | |
2261 | * Used to avoid return-to-userspace racing with the memory_failure workqueue. | |
2262 | */ | |
2263 | void memory_failure_queue_kick(int cpu) | |
2264 | { | |
2265 | struct memory_failure_cpu *mf_cpu; | |
2266 | ||
2267 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | |
2268 | cancel_work_sync(&mf_cpu->work); | |
2269 | memory_failure_work_func(&mf_cpu->work); | |
2270 | } | |
2271 | ||
ea8f5fb8 YH |
2272 | static int __init memory_failure_init(void) |
2273 | { | |
2274 | struct memory_failure_cpu *mf_cpu; | |
2275 | int cpu; | |
2276 | ||
2277 | for_each_possible_cpu(cpu) { | |
2278 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | |
2279 | spin_lock_init(&mf_cpu->lock); | |
2280 | INIT_KFIFO(mf_cpu->fifo); | |
2281 | INIT_WORK(&mf_cpu->work, memory_failure_work_func); | |
2282 | } | |
2283 | ||
2284 | return 0; | |
2285 | } | |
2286 | core_initcall(memory_failure_init); | |
2287 | ||
96f96763 KW |
2288 | #undef pr_fmt |
2289 | #define pr_fmt(fmt) "" fmt | |
a5f65109 NH |
2290 | #define unpoison_pr_info(fmt, pfn, rs) \ |
2291 | ({ \ | |
2292 | if (__ratelimit(rs)) \ | |
2293 | pr_info(fmt, pfn); \ | |
2294 | }) | |
2295 | ||
847ce401 WF |
2296 | /** |
2297 | * unpoison_memory - Unpoison a previously poisoned page | |
2298 | * @pfn: Page number of the to be unpoisoned page | |
2299 | * | |
2300 | * Software-unpoison a page that has been poisoned by | |
2301 | * memory_failure() earlier. | |
2302 | * | |
2303 | * This is only done on the software-level, so it only works | |
2304 | * for linux injected failures, not real hardware failures | |
2305 | * | |
2306 | * Returns 0 for success, otherwise -errno. | |
2307 | */ | |
2308 | int unpoison_memory(unsigned long pfn) | |
2309 | { | |
2310 | struct page *page; | |
2311 | struct page *p; | |
bf181c58 | 2312 | int ret = -EBUSY; |
c8bd84f7 | 2313 | int freeit = 0; |
ac5fcde0 | 2314 | unsigned long count = 1; |
a5f65109 NH |
2315 | static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, |
2316 | DEFAULT_RATELIMIT_BURST); | |
847ce401 WF |
2317 | |
2318 | if (!pfn_valid(pfn)) | |
2319 | return -ENXIO; | |
2320 | ||
2321 | p = pfn_to_page(pfn); | |
2322 | page = compound_head(p); | |
2323 | ||
91d00547 NH |
2324 | mutex_lock(&mf_mutex); |
2325 | ||
67f22ba7 | 2326 | if (hw_memory_failure) { |
2327 | unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", | |
2328 | pfn, &unpoison_rs); | |
2329 | ret = -EOPNOTSUPP; | |
2330 | goto unlock_mutex; | |
2331 | } | |
2332 | ||
847ce401 | 2333 | if (!PageHWPoison(p)) { |
495367c0 | 2334 | unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", |
a5f65109 | 2335 | pfn, &unpoison_rs); |
91d00547 | 2336 | goto unlock_mutex; |
847ce401 WF |
2337 | } |
2338 | ||
230ac719 | 2339 | if (page_count(page) > 1) { |
495367c0 | 2340 | unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", |
a5f65109 | 2341 | pfn, &unpoison_rs); |
91d00547 | 2342 | goto unlock_mutex; |
230ac719 NH |
2343 | } |
2344 | ||
2345 | if (page_mapped(page)) { | |
495367c0 | 2346 | unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", |
a5f65109 | 2347 | pfn, &unpoison_rs); |
91d00547 | 2348 | goto unlock_mutex; |
230ac719 NH |
2349 | } |
2350 | ||
2351 | if (page_mapping(page)) { | |
495367c0 | 2352 | unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", |
a5f65109 | 2353 | pfn, &unpoison_rs); |
91d00547 | 2354 | goto unlock_mutex; |
0cea3fdc WL |
2355 | } |
2356 | ||
bf181c58 | 2357 | if (PageSlab(page) || PageTable(page)) |
91d00547 | 2358 | goto unlock_mutex; |
847ce401 | 2359 | |
bf181c58 NH |
2360 | ret = get_hwpoison_page(p, MF_UNPOISON); |
2361 | if (!ret) { | |
ac5fcde0 NH |
2362 | if (PageHuge(p)) { |
2363 | count = free_raw_hwp_pages(page, false); | |
2364 | if (count == 0) { | |
2365 | ret = -EBUSY; | |
2366 | goto unlock_mutex; | |
2367 | } | |
2368 | } | |
c8bd84f7 | 2369 | ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; |
bf181c58 NH |
2370 | } else if (ret < 0) { |
2371 | if (ret == -EHWPOISON) { | |
c8bd84f7 | 2372 | ret = put_page_back_buddy(p) ? 0 : -EBUSY; |
bf181c58 NH |
2373 | } else |
2374 | unpoison_pr_info("Unpoison: failed to grab page %#lx\n", | |
2375 | pfn, &unpoison_rs); | |
2376 | } else { | |
ac5fcde0 NH |
2377 | if (PageHuge(p)) { |
2378 | count = free_raw_hwp_pages(page, false); | |
2379 | if (count == 0) { | |
2380 | ret = -EBUSY; | |
2381 | goto unlock_mutex; | |
2382 | } | |
2383 | } | |
c8bd84f7 | 2384 | freeit = !!TestClearPageHWPoison(p); |
847ce401 | 2385 | |
dd6e2402 | 2386 | put_page(page); |
bf181c58 NH |
2387 | if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { |
2388 | put_page(page); | |
2389 | ret = 0; | |
2390 | } | |
2391 | } | |
847ce401 | 2392 | |
91d00547 NH |
2393 | unlock_mutex: |
2394 | mutex_unlock(&mf_mutex); | |
c8bd84f7 | 2395 | if (!ret || freeit) { |
ac5fcde0 | 2396 | num_poisoned_pages_sub(count); |
c8bd84f7 | 2397 | unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", |
2398 | page_to_pfn(p), &unpoison_rs); | |
2399 | } | |
91d00547 | 2400 | return ret; |
847ce401 WF |
2401 | } |
2402 | EXPORT_SYMBOL(unpoison_memory); | |
facb6011 | 2403 | |
6b9a217e | 2404 | static bool isolate_page(struct page *page, struct list_head *pagelist) |
d950b958 | 2405 | { |
6b9a217e OS |
2406 | bool isolated = false; |
2407 | bool lru = PageLRU(page); | |
d950b958 | 2408 | |
6b9a217e | 2409 | if (PageHuge(page)) { |
7ce82f4c | 2410 | isolated = !isolate_hugetlb(page, pagelist); |
6b9a217e OS |
2411 | } else { |
2412 | if (lru) | |
2413 | isolated = !isolate_lru_page(page); | |
2414 | else | |
2415 | isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); | |
2416 | ||
2417 | if (isolated) | |
2418 | list_add(&page->lru, pagelist); | |
0ebff32c | 2419 | } |
d950b958 | 2420 | |
6b9a217e OS |
2421 | if (isolated && lru) |
2422 | inc_node_page_state(page, NR_ISOLATED_ANON + | |
2423 | page_is_file_lru(page)); | |
2424 | ||
03613808 | 2425 | /* |
6b9a217e OS |
2426 | * If we succeed to isolate the page, we grabbed another refcount on |
2427 | * the page, so we can safely drop the one we got from get_any_pages(). | |
2428 | * If we failed to isolate the page, it means that we cannot go further | |
2429 | * and we will return an error, so drop the reference we got from | |
2430 | * get_any_pages() as well. | |
03613808 | 2431 | */ |
6b9a217e OS |
2432 | put_page(page); |
2433 | return isolated; | |
d950b958 NH |
2434 | } |
2435 | ||
6b9a217e OS |
2436 | /* |
2437 | * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. | |
2438 | * If the page is a non-dirty unmapped page-cache page, it simply invalidates. | |
2439 | * If the page is mapped, it migrates the contents over. | |
2440 | */ | |
2441 | static int __soft_offline_page(struct page *page) | |
af8fae7c | 2442 | { |
d6c75dc2 | 2443 | long ret = 0; |
af8fae7c | 2444 | unsigned long pfn = page_to_pfn(page); |
6b9a217e OS |
2445 | struct page *hpage = compound_head(page); |
2446 | char const *msg_page[] = {"page", "hugepage"}; | |
2447 | bool huge = PageHuge(page); | |
2448 | LIST_HEAD(pagelist); | |
54608759 JK |
2449 | struct migration_target_control mtc = { |
2450 | .nid = NUMA_NO_NODE, | |
2451 | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | |
2452 | }; | |
facb6011 | 2453 | |
0ebff32c | 2454 | lock_page(page); |
6b9a217e OS |
2455 | if (!PageHuge(page)) |
2456 | wait_on_page_writeback(page); | |
af8fae7c NH |
2457 | if (PageHWPoison(page)) { |
2458 | unlock_page(page); | |
dd6e2402 | 2459 | put_page(page); |
af8fae7c | 2460 | pr_info("soft offline: %#lx page already poisoned\n", pfn); |
5a2ffca3 | 2461 | return 0; |
af8fae7c | 2462 | } |
6b9a217e | 2463 | |
593396b8 | 2464 | if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) |
6b9a217e OS |
2465 | /* |
2466 | * Try to invalidate first. This should work for | |
2467 | * non dirty unmapped page cache pages. | |
2468 | */ | |
2469 | ret = invalidate_inode_page(page); | |
facb6011 | 2470 | unlock_page(page); |
6b9a217e | 2471 | |
6b9a217e | 2472 | if (ret) { |
fb46e735 | 2473 | pr_info("soft_offline: %#lx: invalidated\n", pfn); |
6b9a217e | 2474 | page_handle_poison(page, false, true); |
af8fae7c | 2475 | return 0; |
facb6011 AK |
2476 | } |
2477 | ||
6b9a217e | 2478 | if (isolate_page(hpage, &pagelist)) { |
54608759 | 2479 | ret = migrate_pages(&pagelist, alloc_migration_target, NULL, |
5ac95884 | 2480 | (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); |
79f5f8fa | 2481 | if (!ret) { |
6b9a217e OS |
2482 | bool release = !huge; |
2483 | ||
2484 | if (!page_handle_poison(page, huge, release)) | |
2485 | ret = -EBUSY; | |
79f5f8fa | 2486 | } else { |
85fbe5d1 YX |
2487 | if (!list_empty(&pagelist)) |
2488 | putback_movable_pages(&pagelist); | |
59c82b70 | 2489 | |
d6c75dc2 | 2490 | pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", |
23efd080 | 2491 | pfn, msg_page[huge], ret, &page->flags); |
facb6011 | 2492 | if (ret > 0) |
3f4b815a | 2493 | ret = -EBUSY; |
facb6011 AK |
2494 | } |
2495 | } else { | |
23efd080 MWO |
2496 | pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", |
2497 | pfn, msg_page[huge], page_count(page), &page->flags); | |
6b9a217e | 2498 | ret = -EBUSY; |
facb6011 | 2499 | } |
facb6011 AK |
2500 | return ret; |
2501 | } | |
86e05773 | 2502 | |
6b9a217e | 2503 | static int soft_offline_in_use_page(struct page *page) |
acc14dc4 | 2504 | { |
acc14dc4 NH |
2505 | struct page *hpage = compound_head(page); |
2506 | ||
694bf0b0 OS |
2507 | if (!PageHuge(page) && PageTransHuge(hpage)) |
2508 | if (try_to_split_thp_page(page, "soft offline") < 0) | |
acc14dc4 | 2509 | return -EBUSY; |
6b9a217e | 2510 | return __soft_offline_page(page); |
acc14dc4 NH |
2511 | } |
2512 | ||
d4ae9916 | 2513 | static int soft_offline_free_page(struct page *page) |
acc14dc4 | 2514 | { |
6b9a217e | 2515 | int rc = 0; |
acc14dc4 | 2516 | |
6b9a217e OS |
2517 | if (!page_handle_poison(page, true, false)) |
2518 | rc = -EBUSY; | |
06be6ff3 | 2519 | |
d4ae9916 | 2520 | return rc; |
acc14dc4 NH |
2521 | } |
2522 | ||
dad4e5b3 DW |
2523 | static void put_ref_page(struct page *page) |
2524 | { | |
2525 | if (page) | |
2526 | put_page(page); | |
2527 | } | |
2528 | ||
86e05773 WL |
2529 | /** |
2530 | * soft_offline_page - Soft offline a page. | |
feec24a6 | 2531 | * @pfn: pfn to soft-offline |
86e05773 WL |
2532 | * @flags: flags. Same as memory_failure(). |
2533 | * | |
9113eaf3 | 2534 | * Returns 0 on success |
2535 | * -EOPNOTSUPP for hwpoison_filter() filtered the error event | |
2536 | * < 0 otherwise negated errno. | |
86e05773 WL |
2537 | * |
2538 | * Soft offline a page, by migration or invalidation, | |
2539 | * without killing anything. This is for the case when | |
2540 | * a page is not corrupted yet (so it's still valid to access), | |
2541 | * but has had a number of corrected errors and is better taken | |
2542 | * out. | |
2543 | * | |
2544 | * The actual policy on when to do that is maintained by | |
2545 | * user space. | |
2546 | * | |
2547 | * This should never impact any application or cause data loss, | |
2548 | * however it might take some time. | |
2549 | * | |
2550 | * This is not a 100% solution for all memory, but tries to be | |
2551 | * ``good enough'' for the majority of memory. | |
2552 | */ | |
feec24a6 | 2553 | int soft_offline_page(unsigned long pfn, int flags) |
86e05773 WL |
2554 | { |
2555 | int ret; | |
b94e0282 | 2556 | bool try_again = true; |
dad4e5b3 DW |
2557 | struct page *page, *ref_page = NULL; |
2558 | ||
2559 | WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); | |
86e05773 | 2560 | |
feec24a6 NH |
2561 | if (!pfn_valid(pfn)) |
2562 | return -ENXIO; | |
dad4e5b3 DW |
2563 | if (flags & MF_COUNT_INCREASED) |
2564 | ref_page = pfn_to_page(pfn); | |
2565 | ||
feec24a6 NH |
2566 | /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ |
2567 | page = pfn_to_online_page(pfn); | |
dad4e5b3 DW |
2568 | if (!page) { |
2569 | put_ref_page(ref_page); | |
86a66810 | 2570 | return -EIO; |
dad4e5b3 | 2571 | } |
86a66810 | 2572 | |
91d00547 NH |
2573 | mutex_lock(&mf_mutex); |
2574 | ||
86e05773 | 2575 | if (PageHWPoison(page)) { |
8295d535 | 2576 | pr_info("%s: %#lx page already poisoned\n", __func__, pfn); |
dad4e5b3 | 2577 | put_ref_page(ref_page); |
91d00547 | 2578 | mutex_unlock(&mf_mutex); |
5a2ffca3 | 2579 | return 0; |
86e05773 | 2580 | } |
86e05773 | 2581 | |
b94e0282 | 2582 | retry: |
bfc8c901 | 2583 | get_online_mems(); |
bf6445bc | 2584 | ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); |
bfc8c901 | 2585 | put_online_mems(); |
4e41a30c | 2586 | |
9113eaf3 | 2587 | if (hwpoison_filter(page)) { |
2588 | if (ret > 0) | |
2589 | put_page(page); | |
2590 | else | |
2591 | put_ref_page(ref_page); | |
2592 | ||
2593 | mutex_unlock(&mf_mutex); | |
2594 | return -EOPNOTSUPP; | |
2595 | } | |
2596 | ||
8295d535 | 2597 | if (ret > 0) { |
6b9a217e | 2598 | ret = soft_offline_in_use_page(page); |
8295d535 | 2599 | } else if (ret == 0) { |
b94e0282 OS |
2600 | if (soft_offline_free_page(page) && try_again) { |
2601 | try_again = false; | |
2a57d83c | 2602 | flags &= ~MF_COUNT_INCREASED; |
b94e0282 OS |
2603 | goto retry; |
2604 | } | |
8295d535 | 2605 | } |
4e41a30c | 2606 | |
91d00547 NH |
2607 | mutex_unlock(&mf_mutex); |
2608 | ||
86e05773 WL |
2609 | return ret; |
2610 | } | |
60f272f6 | 2611 | |
2612 | void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) | |
2613 | { | |
2614 | int i; | |
2615 | ||
2616 | /* | |
2617 | * A further optimization is to have per section refcounted | |
2618 | * num_poisoned_pages. But that would need more space per memmap, so | |
2619 | * for now just do a quick global check to speed up this routine in the | |
2620 | * absence of bad pages. | |
2621 | */ | |
2622 | if (atomic_long_read(&num_poisoned_pages) == 0) | |
2623 | return; | |
2624 | ||
2625 | for (i = 0; i < nr_pages; i++) { | |
2626 | if (PageHWPoison(&memmap[i])) { | |
2627 | num_poisoned_pages_dec(); | |
2628 | ClearPageHWPoison(&memmap[i]); | |
2629 | } | |
2630 | } | |
2631 | } |