]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
563aaf06 | 4 | * This implementation is a fallback for platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <[email protected]> | |
7 | * Copyright (C) 2000 Goutham Rao <[email protected]> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <[email protected]> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
fb05a379 | 17 | * 08/12/11 beckyb Add highmem support |
1da177e4 LT |
18 | */ |
19 | ||
20 | #include <linux/cache.h> | |
17e5ad6c | 21 | #include <linux/dma-mapping.h> |
1da177e4 | 22 | #include <linux/mm.h> |
8bc3bcc9 | 23 | #include <linux/export.h> |
1da177e4 LT |
24 | #include <linux/spinlock.h> |
25 | #include <linux/string.h> | |
0016fdee | 26 | #include <linux/swiotlb.h> |
fb05a379 | 27 | #include <linux/pfn.h> |
1da177e4 LT |
28 | #include <linux/types.h> |
29 | #include <linux/ctype.h> | |
ef9b1893 | 30 | #include <linux/highmem.h> |
5a0e3ad6 | 31 | #include <linux/gfp.h> |
1da177e4 LT |
32 | |
33 | #include <asm/io.h> | |
1da177e4 | 34 | #include <asm/dma.h> |
17e5ad6c | 35 | #include <asm/scatterlist.h> |
1da177e4 LT |
36 | |
37 | #include <linux/init.h> | |
38 | #include <linux/bootmem.h> | |
a8522509 | 39 | #include <linux/iommu-helper.h> |
1da177e4 | 40 | |
ce5be5a1 | 41 | #define CREATE_TRACE_POINTS |
2b2b614d ZK |
42 | #include <trace/events/swiotlb.h> |
43 | ||
1da177e4 LT |
44 | #define OFFSET(val,align) ((unsigned long) \ |
45 | ( (val) & ( (align) - 1))) | |
46 | ||
0b9afede AW |
47 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
48 | ||
49 | /* | |
50 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
51 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
52 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
53 | */ | |
54 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
55 | ||
1da177e4 LT |
56 | int swiotlb_force; |
57 | ||
58 | /* | |
bfc5501f KRW |
59 | * Used to do a quick range check in swiotlb_tbl_unmap_single and |
60 | * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | |
1da177e4 LT |
61 | * API. |
62 | */ | |
ff7204a7 | 63 | static phys_addr_t io_tlb_start, io_tlb_end; |
1da177e4 LT |
64 | |
65 | /* | |
b595076a | 66 | * The number of IO TLB blocks (in groups of 64) between io_tlb_start and |
1da177e4 LT |
67 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. |
68 | */ | |
69 | static unsigned long io_tlb_nslabs; | |
70 | ||
71 | /* | |
72 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | |
73 | */ | |
74 | static unsigned long io_tlb_overflow = 32*1024; | |
75 | ||
ee3f6ba8 | 76 | static phys_addr_t io_tlb_overflow_buffer; |
1da177e4 LT |
77 | |
78 | /* | |
79 | * This is a free list describing the number of free entries available from | |
80 | * each index | |
81 | */ | |
82 | static unsigned int *io_tlb_list; | |
83 | static unsigned int io_tlb_index; | |
84 | ||
85 | /* | |
86 | * We need to save away the original address corresponding to a mapped entry | |
87 | * for the sync operations. | |
88 | */ | |
bc40ac66 | 89 | static phys_addr_t *io_tlb_orig_addr; |
1da177e4 LT |
90 | |
91 | /* | |
92 | * Protect the above data structures in the map and unmap calls | |
93 | */ | |
94 | static DEFINE_SPINLOCK(io_tlb_lock); | |
95 | ||
5740afdb FT |
96 | static int late_alloc; |
97 | ||
1da177e4 LT |
98 | static int __init |
99 | setup_io_tlb_npages(char *str) | |
100 | { | |
101 | if (isdigit(*str)) { | |
e8579e72 | 102 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
103 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
104 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
105 | } | |
106 | if (*str == ',') | |
107 | ++str; | |
b18485e7 | 108 | if (!strcmp(str, "force")) |
1da177e4 | 109 | swiotlb_force = 1; |
b18485e7 | 110 | |
c729de8f | 111 | return 0; |
1da177e4 | 112 | } |
c729de8f | 113 | early_param("swiotlb", setup_io_tlb_npages); |
1da177e4 LT |
114 | /* make io_tlb_overflow tunable too? */ |
115 | ||
f21ffe9f | 116 | unsigned long swiotlb_nr_tbl(void) |
5f98ecdb FT |
117 | { |
118 | return io_tlb_nslabs; | |
119 | } | |
f21ffe9f | 120 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); |
c729de8f YL |
121 | |
122 | /* default to 64MB */ | |
123 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | |
124 | unsigned long swiotlb_size_or_default(void) | |
125 | { | |
126 | unsigned long size; | |
127 | ||
128 | size = io_tlb_nslabs << IO_TLB_SHIFT; | |
129 | ||
130 | return size ? size : (IO_TLB_DEFAULT_SIZE); | |
131 | } | |
132 | ||
02ca646e | 133 | /* Note that this doesn't work with highmem page */ |
70a7d3cc JF |
134 | static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, |
135 | volatile void *address) | |
e08e1f7a | 136 | { |
862d196b | 137 | return phys_to_dma(hwdev, virt_to_phys(address)); |
e08e1f7a IC |
138 | } |
139 | ||
ac2cbab2 YL |
140 | static bool no_iotlb_memory; |
141 | ||
ad32e8cb | 142 | void swiotlb_print_info(void) |
2e5b2b86 | 143 | { |
ad32e8cb | 144 | unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
ff7204a7 | 145 | unsigned char *vstart, *vend; |
2e5b2b86 | 146 | |
ac2cbab2 YL |
147 | if (no_iotlb_memory) { |
148 | pr_warn("software IO TLB: No low mem\n"); | |
149 | return; | |
150 | } | |
151 | ||
ff7204a7 | 152 | vstart = phys_to_virt(io_tlb_start); |
c40dba06 | 153 | vend = phys_to_virt(io_tlb_end); |
2e5b2b86 | 154 | |
3af684c7 | 155 | printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", |
ff7204a7 | 156 | (unsigned long long)io_tlb_start, |
c40dba06 | 157 | (unsigned long long)io_tlb_end, |
ff7204a7 | 158 | bytes >> 20, vstart, vend - 1); |
2e5b2b86 IC |
159 | } |
160 | ||
ac2cbab2 | 161 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) |
1da177e4 | 162 | { |
ee3f6ba8 | 163 | void *v_overflow_buffer; |
563aaf06 | 164 | unsigned long i, bytes; |
1da177e4 | 165 | |
abbceff7 | 166 | bytes = nslabs << IO_TLB_SHIFT; |
1da177e4 | 167 | |
abbceff7 | 168 | io_tlb_nslabs = nslabs; |
ff7204a7 AD |
169 | io_tlb_start = __pa(tlb); |
170 | io_tlb_end = io_tlb_start + bytes; | |
1da177e4 | 171 | |
ee3f6ba8 AD |
172 | /* |
173 | * Get the overflow emergency buffer | |
174 | */ | |
ac2cbab2 YL |
175 | v_overflow_buffer = alloc_bootmem_low_pages_nopanic( |
176 | PAGE_ALIGN(io_tlb_overflow)); | |
ee3f6ba8 | 177 | if (!v_overflow_buffer) |
ac2cbab2 | 178 | return -ENOMEM; |
ee3f6ba8 AD |
179 | |
180 | io_tlb_overflow_buffer = __pa(v_overflow_buffer); | |
181 | ||
1da177e4 LT |
182 | /* |
183 | * Allocate and initialize the free list array. This array is used | |
184 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
185 | * between io_tlb_start and io_tlb_end. | |
186 | */ | |
e79f86b2 | 187 | io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); |
25667d67 | 188 | for (i = 0; i < io_tlb_nslabs; i++) |
1da177e4 LT |
189 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); |
190 | io_tlb_index = 0; | |
e79f86b2 | 191 | io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); |
1da177e4 | 192 | |
ad32e8cb FT |
193 | if (verbose) |
194 | swiotlb_print_info(); | |
ac2cbab2 YL |
195 | |
196 | return 0; | |
1da177e4 LT |
197 | } |
198 | ||
abbceff7 FT |
199 | /* |
200 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
201 | * structures for the software IO TLB used to implement the DMA API. | |
202 | */ | |
ac2cbab2 YL |
203 | void __init |
204 | swiotlb_init(int verbose) | |
abbceff7 | 205 | { |
c729de8f | 206 | size_t default_size = IO_TLB_DEFAULT_SIZE; |
ff7204a7 | 207 | unsigned char *vstart; |
abbceff7 FT |
208 | unsigned long bytes; |
209 | ||
210 | if (!io_tlb_nslabs) { | |
211 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
212 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
213 | } | |
214 | ||
215 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; | |
216 | ||
ac2cbab2 YL |
217 | /* Get IO TLB memory from the low pages */ |
218 | vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes)); | |
219 | if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) | |
220 | return; | |
abbceff7 | 221 | |
ac2cbab2 YL |
222 | if (io_tlb_start) |
223 | free_bootmem(io_tlb_start, | |
224 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | |
225 | pr_warn("Cannot allocate SWIOTLB buffer"); | |
226 | no_iotlb_memory = true; | |
1da177e4 LT |
227 | } |
228 | ||
0b9afede AW |
229 | /* |
230 | * Systems with larger DMA zones (those that don't support ISA) can | |
231 | * initialize the swiotlb later using the slab allocator if needed. | |
232 | * This should be just like above, but with some error catching. | |
233 | */ | |
234 | int | |
563aaf06 | 235 | swiotlb_late_init_with_default_size(size_t default_size) |
0b9afede | 236 | { |
74838b75 | 237 | unsigned long bytes, req_nslabs = io_tlb_nslabs; |
ff7204a7 | 238 | unsigned char *vstart = NULL; |
0b9afede | 239 | unsigned int order; |
74838b75 | 240 | int rc = 0; |
0b9afede AW |
241 | |
242 | if (!io_tlb_nslabs) { | |
243 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
244 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
245 | } | |
246 | ||
247 | /* | |
248 | * Get IO TLB memory from the low pages | |
249 | */ | |
563aaf06 | 250 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); |
0b9afede | 251 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
563aaf06 | 252 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede AW |
253 | |
254 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
ff7204a7 AD |
255 | vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, |
256 | order); | |
257 | if (vstart) | |
0b9afede AW |
258 | break; |
259 | order--; | |
260 | } | |
261 | ||
ff7204a7 | 262 | if (!vstart) { |
74838b75 KRW |
263 | io_tlb_nslabs = req_nslabs; |
264 | return -ENOMEM; | |
265 | } | |
563aaf06 | 266 | if (order != get_order(bytes)) { |
0b9afede AW |
267 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " |
268 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | |
269 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
270 | } | |
ff7204a7 | 271 | rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); |
74838b75 | 272 | if (rc) |
ff7204a7 | 273 | free_pages((unsigned long)vstart, order); |
74838b75 KRW |
274 | return rc; |
275 | } | |
276 | ||
277 | int | |
278 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | |
279 | { | |
280 | unsigned long i, bytes; | |
ee3f6ba8 | 281 | unsigned char *v_overflow_buffer; |
74838b75 KRW |
282 | |
283 | bytes = nslabs << IO_TLB_SHIFT; | |
284 | ||
285 | io_tlb_nslabs = nslabs; | |
ff7204a7 AD |
286 | io_tlb_start = virt_to_phys(tlb); |
287 | io_tlb_end = io_tlb_start + bytes; | |
74838b75 | 288 | |
ff7204a7 | 289 | memset(tlb, 0, bytes); |
0b9afede | 290 | |
ee3f6ba8 AD |
291 | /* |
292 | * Get the overflow emergency buffer | |
293 | */ | |
294 | v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | |
295 | get_order(io_tlb_overflow)); | |
296 | if (!v_overflow_buffer) | |
297 | goto cleanup2; | |
298 | ||
299 | io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); | |
300 | ||
0b9afede AW |
301 | /* |
302 | * Allocate and initialize the free list array. This array is used | |
303 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
304 | * between io_tlb_start and io_tlb_end. | |
305 | */ | |
306 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
307 | get_order(io_tlb_nslabs * sizeof(int))); | |
308 | if (!io_tlb_list) | |
ee3f6ba8 | 309 | goto cleanup3; |
0b9afede AW |
310 | |
311 | for (i = 0; i < io_tlb_nslabs; i++) | |
312 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
313 | io_tlb_index = 0; | |
314 | ||
bc40ac66 BB |
315 | io_tlb_orig_addr = (phys_addr_t *) |
316 | __get_free_pages(GFP_KERNEL, | |
317 | get_order(io_tlb_nslabs * | |
318 | sizeof(phys_addr_t))); | |
0b9afede | 319 | if (!io_tlb_orig_addr) |
ee3f6ba8 | 320 | goto cleanup4; |
0b9afede | 321 | |
bc40ac66 | 322 | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t)); |
0b9afede | 323 | |
ad32e8cb | 324 | swiotlb_print_info(); |
0b9afede | 325 | |
5740afdb FT |
326 | late_alloc = 1; |
327 | ||
0b9afede AW |
328 | return 0; |
329 | ||
330 | cleanup4: | |
25667d67 TL |
331 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * |
332 | sizeof(int))); | |
0b9afede | 333 | io_tlb_list = NULL; |
ee3f6ba8 AD |
334 | cleanup3: |
335 | free_pages((unsigned long)v_overflow_buffer, | |
336 | get_order(io_tlb_overflow)); | |
337 | io_tlb_overflow_buffer = 0; | |
0b9afede | 338 | cleanup2: |
c40dba06 | 339 | io_tlb_end = 0; |
ff7204a7 | 340 | io_tlb_start = 0; |
74838b75 | 341 | io_tlb_nslabs = 0; |
0b9afede AW |
342 | return -ENOMEM; |
343 | } | |
344 | ||
5740afdb FT |
345 | void __init swiotlb_free(void) |
346 | { | |
ee3f6ba8 | 347 | if (!io_tlb_orig_addr) |
5740afdb FT |
348 | return; |
349 | ||
350 | if (late_alloc) { | |
ee3f6ba8 | 351 | free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), |
5740afdb FT |
352 | get_order(io_tlb_overflow)); |
353 | free_pages((unsigned long)io_tlb_orig_addr, | |
354 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
355 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | |
356 | sizeof(int))); | |
ff7204a7 | 357 | free_pages((unsigned long)phys_to_virt(io_tlb_start), |
5740afdb FT |
358 | get_order(io_tlb_nslabs << IO_TLB_SHIFT)); |
359 | } else { | |
ee3f6ba8 | 360 | free_bootmem_late(io_tlb_overflow_buffer, |
e79f86b2 | 361 | PAGE_ALIGN(io_tlb_overflow)); |
5740afdb | 362 | free_bootmem_late(__pa(io_tlb_orig_addr), |
e79f86b2 | 363 | PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); |
5740afdb | 364 | free_bootmem_late(__pa(io_tlb_list), |
e79f86b2 | 365 | PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); |
ff7204a7 | 366 | free_bootmem_late(io_tlb_start, |
e79f86b2 | 367 | PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); |
5740afdb | 368 | } |
f21ffe9f | 369 | io_tlb_nslabs = 0; |
5740afdb FT |
370 | } |
371 | ||
02ca646e | 372 | static int is_swiotlb_buffer(phys_addr_t paddr) |
640aebfe | 373 | { |
ff7204a7 | 374 | return paddr >= io_tlb_start && paddr < io_tlb_end; |
640aebfe FT |
375 | } |
376 | ||
fb05a379 BB |
377 | /* |
378 | * Bounce: copy the swiotlb buffer back to the original dma location | |
379 | */ | |
af51a9f1 AD |
380 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, |
381 | size_t size, enum dma_data_direction dir) | |
fb05a379 | 382 | { |
af51a9f1 AD |
383 | unsigned long pfn = PFN_DOWN(orig_addr); |
384 | unsigned char *vaddr = phys_to_virt(tlb_addr); | |
fb05a379 BB |
385 | |
386 | if (PageHighMem(pfn_to_page(pfn))) { | |
387 | /* The buffer does not have a mapping. Map it in and copy */ | |
af51a9f1 | 388 | unsigned int offset = orig_addr & ~PAGE_MASK; |
fb05a379 BB |
389 | char *buffer; |
390 | unsigned int sz = 0; | |
391 | unsigned long flags; | |
392 | ||
393 | while (size) { | |
67131ad0 | 394 | sz = min_t(size_t, PAGE_SIZE - offset, size); |
fb05a379 BB |
395 | |
396 | local_irq_save(flags); | |
c3eede8e | 397 | buffer = kmap_atomic(pfn_to_page(pfn)); |
fb05a379 | 398 | if (dir == DMA_TO_DEVICE) |
af51a9f1 | 399 | memcpy(vaddr, buffer + offset, sz); |
ef9b1893 | 400 | else |
af51a9f1 | 401 | memcpy(buffer + offset, vaddr, sz); |
c3eede8e | 402 | kunmap_atomic(buffer); |
ef9b1893 | 403 | local_irq_restore(flags); |
fb05a379 BB |
404 | |
405 | size -= sz; | |
406 | pfn++; | |
af51a9f1 | 407 | vaddr += sz; |
fb05a379 | 408 | offset = 0; |
ef9b1893 | 409 | } |
af51a9f1 AD |
410 | } else if (dir == DMA_TO_DEVICE) { |
411 | memcpy(vaddr, phys_to_virt(orig_addr), size); | |
ef9b1893 | 412 | } else { |
af51a9f1 | 413 | memcpy(phys_to_virt(orig_addr), vaddr, size); |
ef9b1893 | 414 | } |
1b548f66 JF |
415 | } |
416 | ||
e05ed4d1 AD |
417 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, |
418 | dma_addr_t tbl_dma_addr, | |
419 | phys_addr_t orig_addr, size_t size, | |
420 | enum dma_data_direction dir) | |
1da177e4 LT |
421 | { |
422 | unsigned long flags; | |
e05ed4d1 | 423 | phys_addr_t tlb_addr; |
1da177e4 LT |
424 | unsigned int nslots, stride, index, wrap; |
425 | int i; | |
681cc5cd FT |
426 | unsigned long mask; |
427 | unsigned long offset_slots; | |
428 | unsigned long max_slots; | |
429 | ||
ac2cbab2 YL |
430 | if (no_iotlb_memory) |
431 | panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | |
432 | ||
681cc5cd | 433 | mask = dma_get_seg_boundary(hwdev); |
681cc5cd | 434 | |
eb605a57 FT |
435 | tbl_dma_addr &= mask; |
436 | ||
437 | offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
a5ddde4a IC |
438 | |
439 | /* | |
440 | * Carefully handle integer overflow which can occur when mask == ~0UL. | |
441 | */ | |
b15a3891 JB |
442 | max_slots = mask + 1 |
443 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | |
444 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | |
1da177e4 LT |
445 | |
446 | /* | |
447 | * For mappings greater than a page, we limit the stride (and | |
448 | * hence alignment) to a page size. | |
449 | */ | |
450 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
451 | if (size > PAGE_SIZE) | |
452 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | |
453 | else | |
454 | stride = 1; | |
455 | ||
34814545 | 456 | BUG_ON(!nslots); |
1da177e4 LT |
457 | |
458 | /* | |
459 | * Find suitable number of IO TLB entries size that will fit this | |
460 | * request and allocate a buffer from that IO TLB pool. | |
461 | */ | |
462 | spin_lock_irqsave(&io_tlb_lock, flags); | |
a7133a15 AM |
463 | index = ALIGN(io_tlb_index, stride); |
464 | if (index >= io_tlb_nslabs) | |
465 | index = 0; | |
466 | wrap = index; | |
467 | ||
468 | do { | |
a8522509 FT |
469 | while (iommu_is_span_boundary(index, nslots, offset_slots, |
470 | max_slots)) { | |
b15a3891 JB |
471 | index += stride; |
472 | if (index >= io_tlb_nslabs) | |
473 | index = 0; | |
a7133a15 AM |
474 | if (index == wrap) |
475 | goto not_found; | |
476 | } | |
477 | ||
478 | /* | |
479 | * If we find a slot that indicates we have 'nslots' number of | |
480 | * contiguous buffers, we allocate the buffers from that slot | |
481 | * and mark the entries as '0' indicating unavailable. | |
482 | */ | |
483 | if (io_tlb_list[index] >= nslots) { | |
484 | int count = 0; | |
485 | ||
486 | for (i = index; i < (int) (index + nslots); i++) | |
487 | io_tlb_list[i] = 0; | |
488 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | |
489 | io_tlb_list[i] = ++count; | |
e05ed4d1 | 490 | tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); |
1da177e4 | 491 | |
a7133a15 AM |
492 | /* |
493 | * Update the indices to avoid searching in the next | |
494 | * round. | |
495 | */ | |
496 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
497 | ? (index + nslots) : 0); | |
498 | ||
499 | goto found; | |
500 | } | |
501 | index += stride; | |
502 | if (index >= io_tlb_nslabs) | |
503 | index = 0; | |
504 | } while (index != wrap); | |
505 | ||
506 | not_found: | |
507 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
783d0281 | 508 | dev_warn(hwdev, "swiotlb buffer is full\n"); |
e05ed4d1 | 509 | return SWIOTLB_MAP_ERROR; |
a7133a15 | 510 | found: |
1da177e4 LT |
511 | spin_unlock_irqrestore(&io_tlb_lock, flags); |
512 | ||
513 | /* | |
514 | * Save away the mapping from the original address to the DMA address. | |
515 | * This is needed when we sync the memory. Then we sync the buffer if | |
516 | * needed. | |
517 | */ | |
bc40ac66 | 518 | for (i = 0; i < nslots; i++) |
e05ed4d1 | 519 | io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); |
1da177e4 | 520 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) |
af51a9f1 | 521 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); |
1da177e4 | 522 | |
e05ed4d1 | 523 | return tlb_addr; |
1da177e4 | 524 | } |
d7ef1533 | 525 | EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single); |
1da177e4 | 526 | |
eb605a57 FT |
527 | /* |
528 | * Allocates bounce buffer and returns its kernel virtual address. | |
529 | */ | |
530 | ||
e05ed4d1 AD |
531 | phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size, |
532 | enum dma_data_direction dir) | |
eb605a57 | 533 | { |
ff7204a7 | 534 | dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start); |
eb605a57 FT |
535 | |
536 | return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir); | |
537 | } | |
538 | ||
1da177e4 LT |
539 | /* |
540 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | |
541 | */ | |
61ca08c3 AD |
542 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, |
543 | size_t size, enum dma_data_direction dir) | |
1da177e4 LT |
544 | { |
545 | unsigned long flags; | |
546 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
61ca08c3 AD |
547 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
548 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
1da177e4 LT |
549 | |
550 | /* | |
551 | * First, sync the memory before unmapping the entry | |
552 | */ | |
af51a9f1 AD |
553 | if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) |
554 | swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); | |
1da177e4 LT |
555 | |
556 | /* | |
557 | * Return the buffer to the free list by setting the corresponding | |
af901ca1 | 558 | * entries to indicate the number of contiguous entries available. |
1da177e4 LT |
559 | * While returning the entries to the free list, we merge the entries |
560 | * with slots below and above the pool being returned. | |
561 | */ | |
562 | spin_lock_irqsave(&io_tlb_lock, flags); | |
563 | { | |
564 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
565 | io_tlb_list[index + nslots] : 0); | |
566 | /* | |
567 | * Step 1: return the slots to the free list, merging the | |
568 | * slots with superceeding slots | |
569 | */ | |
570 | for (i = index + nslots - 1; i >= index; i--) | |
571 | io_tlb_list[i] = ++count; | |
572 | /* | |
573 | * Step 2: merge the returned slots with the preceding slots, | |
574 | * if available (non zero) | |
575 | */ | |
576 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
577 | io_tlb_list[i] = ++count; | |
578 | } | |
579 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
580 | } | |
d7ef1533 | 581 | EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single); |
1da177e4 | 582 | |
fbfda893 AD |
583 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, |
584 | size_t size, enum dma_data_direction dir, | |
585 | enum dma_sync_target target) | |
1da177e4 | 586 | { |
fbfda893 AD |
587 | int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; |
588 | phys_addr_t orig_addr = io_tlb_orig_addr[index]; | |
bc40ac66 | 589 | |
fbfda893 | 590 | orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); |
df336d1c | 591 | |
de69e0f0 JL |
592 | switch (target) { |
593 | case SYNC_FOR_CPU: | |
594 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 595 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 596 | size, DMA_FROM_DEVICE); |
34814545 ES |
597 | else |
598 | BUG_ON(dir != DMA_TO_DEVICE); | |
de69e0f0 JL |
599 | break; |
600 | case SYNC_FOR_DEVICE: | |
601 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
af51a9f1 | 602 | swiotlb_bounce(orig_addr, tlb_addr, |
fbfda893 | 603 | size, DMA_TO_DEVICE); |
34814545 ES |
604 | else |
605 | BUG_ON(dir != DMA_FROM_DEVICE); | |
de69e0f0 JL |
606 | break; |
607 | default: | |
1da177e4 | 608 | BUG(); |
de69e0f0 | 609 | } |
1da177e4 | 610 | } |
d7ef1533 | 611 | EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single); |
1da177e4 LT |
612 | |
613 | void * | |
614 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
06a54497 | 615 | dma_addr_t *dma_handle, gfp_t flags) |
1da177e4 | 616 | { |
563aaf06 | 617 | dma_addr_t dev_addr; |
1da177e4 LT |
618 | void *ret; |
619 | int order = get_order(size); | |
284901a9 | 620 | u64 dma_mask = DMA_BIT_MASK(32); |
1e74f300 FT |
621 | |
622 | if (hwdev && hwdev->coherent_dma_mask) | |
623 | dma_mask = hwdev->coherent_dma_mask; | |
1da177e4 | 624 | |
25667d67 | 625 | ret = (void *)__get_free_pages(flags, order); |
e05ed4d1 AD |
626 | if (ret) { |
627 | dev_addr = swiotlb_virt_to_bus(hwdev, ret); | |
628 | if (dev_addr + size - 1 > dma_mask) { | |
629 | /* | |
630 | * The allocated memory isn't reachable by the device. | |
631 | */ | |
632 | free_pages((unsigned long) ret, order); | |
633 | ret = NULL; | |
634 | } | |
1da177e4 LT |
635 | } |
636 | if (!ret) { | |
637 | /* | |
bfc5501f KRW |
638 | * We are either out of memory or the device can't DMA to |
639 | * GFP_DMA memory; fall back on map_single(), which | |
ceb5ac32 | 640 | * will grab memory from the lowest available address range. |
1da177e4 | 641 | */ |
e05ed4d1 AD |
642 | phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE); |
643 | if (paddr == SWIOTLB_MAP_ERROR) | |
1da177e4 | 644 | return NULL; |
1da177e4 | 645 | |
e05ed4d1 AD |
646 | ret = phys_to_virt(paddr); |
647 | dev_addr = phys_to_dma(hwdev, paddr); | |
1da177e4 | 648 | |
61ca08c3 AD |
649 | /* Confirm address can be DMA'd by device */ |
650 | if (dev_addr + size - 1 > dma_mask) { | |
651 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", | |
652 | (unsigned long long)dma_mask, | |
653 | (unsigned long long)dev_addr); | |
a2b89b59 | 654 | |
61ca08c3 AD |
655 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ |
656 | swiotlb_tbl_unmap_single(hwdev, paddr, | |
657 | size, DMA_TO_DEVICE); | |
658 | return NULL; | |
659 | } | |
1da177e4 | 660 | } |
e05ed4d1 | 661 | |
1da177e4 | 662 | *dma_handle = dev_addr; |
e05ed4d1 AD |
663 | memset(ret, 0, size); |
664 | ||
1da177e4 LT |
665 | return ret; |
666 | } | |
874d6a95 | 667 | EXPORT_SYMBOL(swiotlb_alloc_coherent); |
1da177e4 LT |
668 | |
669 | void | |
670 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
02ca646e | 671 | dma_addr_t dev_addr) |
1da177e4 | 672 | { |
862d196b | 673 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
02ca646e | 674 | |
aa24886e | 675 | WARN_ON(irqs_disabled()); |
02ca646e FT |
676 | if (!is_swiotlb_buffer(paddr)) |
677 | free_pages((unsigned long)vaddr, get_order(size)); | |
1da177e4 | 678 | else |
bfc5501f | 679 | /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */ |
61ca08c3 | 680 | swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE); |
1da177e4 | 681 | } |
874d6a95 | 682 | EXPORT_SYMBOL(swiotlb_free_coherent); |
1da177e4 LT |
683 | |
684 | static void | |
22d48269 KRW |
685 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, |
686 | int do_panic) | |
1da177e4 LT |
687 | { |
688 | /* | |
689 | * Ran out of IOMMU space for this operation. This is very bad. | |
690 | * Unfortunately the drivers cannot handle this operation properly. | |
17e5ad6c | 691 | * unless they check for dma_mapping_error (most don't) |
1da177e4 LT |
692 | * When the mapping is small enough return a static buffer to limit |
693 | * the damage, or panic when the transfer is too big. | |
694 | */ | |
563aaf06 | 695 | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at " |
94b32486 | 696 | "device %s\n", size, dev ? dev_name(dev) : "?"); |
1da177e4 | 697 | |
c7084b35 CD |
698 | if (size <= io_tlb_overflow || !do_panic) |
699 | return; | |
700 | ||
701 | if (dir == DMA_BIDIRECTIONAL) | |
702 | panic("DMA: Random memory could be DMA accessed\n"); | |
703 | if (dir == DMA_FROM_DEVICE) | |
704 | panic("DMA: Random memory could be DMA written\n"); | |
705 | if (dir == DMA_TO_DEVICE) | |
706 | panic("DMA: Random memory could be DMA read\n"); | |
1da177e4 LT |
707 | } |
708 | ||
709 | /* | |
710 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 711 | * physical address to use is returned. |
1da177e4 LT |
712 | * |
713 | * Once the device is given the dma address, the device owns this memory until | |
ceb5ac32 | 714 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. |
1da177e4 | 715 | */ |
f98eee8e FT |
716 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, |
717 | unsigned long offset, size_t size, | |
718 | enum dma_data_direction dir, | |
719 | struct dma_attrs *attrs) | |
1da177e4 | 720 | { |
e05ed4d1 | 721 | phys_addr_t map, phys = page_to_phys(page) + offset; |
862d196b | 722 | dma_addr_t dev_addr = phys_to_dma(dev, phys); |
1da177e4 | 723 | |
34814545 | 724 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 725 | /* |
ceb5ac32 | 726 | * If the address happens to be in the device's DMA window, |
1da177e4 LT |
727 | * we can safely return the device addr and not worry about bounce |
728 | * buffering it. | |
729 | */ | |
b9394647 | 730 | if (dma_capable(dev, dev_addr, size) && !swiotlb_force) |
1da177e4 LT |
731 | return dev_addr; |
732 | ||
2b2b614d ZK |
733 | trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); |
734 | ||
e05ed4d1 | 735 | /* Oh well, have to allocate and map a bounce buffer. */ |
f98eee8e | 736 | map = map_single(dev, phys, size, dir); |
e05ed4d1 | 737 | if (map == SWIOTLB_MAP_ERROR) { |
f98eee8e | 738 | swiotlb_full(dev, size, dir, 1); |
ee3f6ba8 | 739 | return phys_to_dma(dev, io_tlb_overflow_buffer); |
1da177e4 LT |
740 | } |
741 | ||
e05ed4d1 | 742 | dev_addr = phys_to_dma(dev, map); |
1da177e4 | 743 | |
e05ed4d1 | 744 | /* Ensure that the address returned is DMA'ble */ |
fba99fa3 | 745 | if (!dma_capable(dev, dev_addr, size)) { |
61ca08c3 | 746 | swiotlb_tbl_unmap_single(dev, map, size, dir); |
ee3f6ba8 | 747 | return phys_to_dma(dev, io_tlb_overflow_buffer); |
fba99fa3 | 748 | } |
1da177e4 LT |
749 | |
750 | return dev_addr; | |
751 | } | |
f98eee8e | 752 | EXPORT_SYMBOL_GPL(swiotlb_map_page); |
1da177e4 | 753 | |
1da177e4 LT |
754 | /* |
755 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
ceb5ac32 | 756 | * match what was provided for in a previous swiotlb_map_page call. All |
1da177e4 LT |
757 | * other usages are undefined. |
758 | * | |
759 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
760 | * whatever the device wrote there. | |
761 | */ | |
7fcebbd2 | 762 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, |
22d48269 | 763 | size_t size, enum dma_data_direction dir) |
1da177e4 | 764 | { |
862d196b | 765 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 766 | |
34814545 | 767 | BUG_ON(dir == DMA_NONE); |
7fcebbd2 | 768 | |
02ca646e | 769 | if (is_swiotlb_buffer(paddr)) { |
61ca08c3 | 770 | swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); |
7fcebbd2 BB |
771 | return; |
772 | } | |
773 | ||
774 | if (dir != DMA_FROM_DEVICE) | |
775 | return; | |
776 | ||
02ca646e FT |
777 | /* |
778 | * phys_to_virt doesn't work with hihgmem page but we could | |
779 | * call dma_mark_clean() with hihgmem page here. However, we | |
780 | * are fine since dma_mark_clean() is null on POWERPC. We can | |
781 | * make dma_mark_clean() take a physical address if necessary. | |
782 | */ | |
783 | dma_mark_clean(phys_to_virt(paddr), size); | |
7fcebbd2 BB |
784 | } |
785 | ||
786 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | |
787 | size_t size, enum dma_data_direction dir, | |
788 | struct dma_attrs *attrs) | |
789 | { | |
790 | unmap_single(hwdev, dev_addr, size, dir); | |
1da177e4 | 791 | } |
f98eee8e | 792 | EXPORT_SYMBOL_GPL(swiotlb_unmap_page); |
874d6a95 | 793 | |
1da177e4 LT |
794 | /* |
795 | * Make physical memory consistent for a single streaming mode DMA translation | |
796 | * after a transfer. | |
797 | * | |
ceb5ac32 | 798 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer |
17e5ad6c TL |
799 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
800 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
801 | * address back to the card, you must first perform a |
802 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
803 | */ | |
be6b0267 | 804 | static void |
8270f3f1 | 805 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, |
d7ef1533 KRW |
806 | size_t size, enum dma_data_direction dir, |
807 | enum dma_sync_target target) | |
1da177e4 | 808 | { |
862d196b | 809 | phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); |
1da177e4 | 810 | |
34814545 | 811 | BUG_ON(dir == DMA_NONE); |
380d6878 | 812 | |
02ca646e | 813 | if (is_swiotlb_buffer(paddr)) { |
fbfda893 | 814 | swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); |
380d6878 BB |
815 | return; |
816 | } | |
817 | ||
818 | if (dir != DMA_FROM_DEVICE) | |
819 | return; | |
820 | ||
02ca646e | 821 | dma_mark_clean(phys_to_virt(paddr), size); |
1da177e4 LT |
822 | } |
823 | ||
8270f3f1 JL |
824 | void |
825 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 826 | size_t size, enum dma_data_direction dir) |
8270f3f1 | 827 | { |
de69e0f0 | 828 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 | 829 | } |
874d6a95 | 830 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); |
8270f3f1 | 831 | |
1da177e4 LT |
832 | void |
833 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 834 | size_t size, enum dma_data_direction dir) |
1da177e4 | 835 | { |
de69e0f0 | 836 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 | 837 | } |
874d6a95 | 838 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); |
1da177e4 LT |
839 | |
840 | /* | |
841 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
ceb5ac32 | 842 | * This is the scatter-gather version of the above swiotlb_map_page |
1da177e4 LT |
843 | * interface. Here the scatter gather list elements are each tagged with the |
844 | * appropriate dma address and length. They are obtained via | |
845 | * sg_dma_{address,length}(SG). | |
846 | * | |
847 | * NOTE: An implementation may be able to use a smaller number of | |
848 | * DMA address/length pairs than there are SG table elements. | |
849 | * (for example via virtual mapping capabilities) | |
850 | * The routine returns the number of addr/length pairs actually | |
851 | * used, at most nents. | |
852 | * | |
ceb5ac32 | 853 | * Device ownership issues as mentioned above for swiotlb_map_page are the |
1da177e4 LT |
854 | * same here. |
855 | */ | |
856 | int | |
309df0c5 | 857 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, |
160c1d8e | 858 | enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 859 | { |
dbfd49fe | 860 | struct scatterlist *sg; |
1da177e4 LT |
861 | int i; |
862 | ||
34814545 | 863 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 864 | |
dbfd49fe | 865 | for_each_sg(sgl, sg, nelems, i) { |
961d7d0e | 866 | phys_addr_t paddr = sg_phys(sg); |
862d196b | 867 | dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); |
bc40ac66 | 868 | |
cf56e3f2 | 869 | if (swiotlb_force || |
b9394647 | 870 | !dma_capable(hwdev, dev_addr, sg->length)) { |
e05ed4d1 AD |
871 | phys_addr_t map = map_single(hwdev, sg_phys(sg), |
872 | sg->length, dir); | |
873 | if (map == SWIOTLB_MAP_ERROR) { | |
1da177e4 LT |
874 | /* Don't panic here, we expect map_sg users |
875 | to do proper error handling. */ | |
876 | swiotlb_full(hwdev, sg->length, dir, 0); | |
309df0c5 AK |
877 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, |
878 | attrs); | |
4d86ec7a | 879 | sg_dma_len(sgl) = 0; |
1da177e4 LT |
880 | return 0; |
881 | } | |
e05ed4d1 | 882 | sg->dma_address = phys_to_dma(hwdev, map); |
1da177e4 LT |
883 | } else |
884 | sg->dma_address = dev_addr; | |
4d86ec7a | 885 | sg_dma_len(sg) = sg->length; |
1da177e4 LT |
886 | } |
887 | return nelems; | |
888 | } | |
309df0c5 AK |
889 | EXPORT_SYMBOL(swiotlb_map_sg_attrs); |
890 | ||
891 | int | |
892 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
22d48269 | 893 | enum dma_data_direction dir) |
309df0c5 AK |
894 | { |
895 | return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
896 | } | |
874d6a95 | 897 | EXPORT_SYMBOL(swiotlb_map_sg); |
1da177e4 LT |
898 | |
899 | /* | |
900 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
ceb5ac32 | 901 | * concerning calls here are the same as for swiotlb_unmap_page() above. |
1da177e4 LT |
902 | */ |
903 | void | |
309df0c5 | 904 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, |
160c1d8e | 905 | int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 906 | { |
dbfd49fe | 907 | struct scatterlist *sg; |
1da177e4 LT |
908 | int i; |
909 | ||
34814545 | 910 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 911 | |
7fcebbd2 | 912 | for_each_sg(sgl, sg, nelems, i) |
4d86ec7a | 913 | unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir); |
7fcebbd2 | 914 | |
1da177e4 | 915 | } |
309df0c5 AK |
916 | EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); |
917 | ||
918 | void | |
919 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
22d48269 | 920 | enum dma_data_direction dir) |
309df0c5 AK |
921 | { |
922 | return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
923 | } | |
874d6a95 | 924 | EXPORT_SYMBOL(swiotlb_unmap_sg); |
1da177e4 LT |
925 | |
926 | /* | |
927 | * Make physical memory consistent for a set of streaming mode DMA translations | |
928 | * after a transfer. | |
929 | * | |
930 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
931 | * and usage. | |
932 | */ | |
be6b0267 | 933 | static void |
dbfd49fe | 934 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, |
d7ef1533 KRW |
935 | int nelems, enum dma_data_direction dir, |
936 | enum dma_sync_target target) | |
1da177e4 | 937 | { |
dbfd49fe | 938 | struct scatterlist *sg; |
1da177e4 LT |
939 | int i; |
940 | ||
380d6878 BB |
941 | for_each_sg(sgl, sg, nelems, i) |
942 | swiotlb_sync_single(hwdev, sg->dma_address, | |
4d86ec7a | 943 | sg_dma_len(sg), dir, target); |
1da177e4 LT |
944 | } |
945 | ||
8270f3f1 JL |
946 | void |
947 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 948 | int nelems, enum dma_data_direction dir) |
8270f3f1 | 949 | { |
de69e0f0 | 950 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 | 951 | } |
874d6a95 | 952 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); |
8270f3f1 | 953 | |
1da177e4 LT |
954 | void |
955 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 956 | int nelems, enum dma_data_direction dir) |
1da177e4 | 957 | { |
de69e0f0 | 958 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 | 959 | } |
874d6a95 | 960 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); |
1da177e4 LT |
961 | |
962 | int | |
8d8bb39b | 963 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) |
1da177e4 | 964 | { |
ee3f6ba8 | 965 | return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer)); |
1da177e4 | 966 | } |
874d6a95 | 967 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); |
1da177e4 LT |
968 | |
969 | /* | |
17e5ad6c | 970 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 971 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 972 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
973 | * this function. |
974 | */ | |
975 | int | |
563aaf06 | 976 | swiotlb_dma_supported(struct device *hwdev, u64 mask) |
1da177e4 | 977 | { |
c40dba06 | 978 | return phys_to_dma(hwdev, io_tlb_end - 1) <= mask; |
1da177e4 | 979 | } |
1da177e4 | 980 | EXPORT_SYMBOL(swiotlb_dma_supported); |