]>
Commit | Line | Data |
---|---|---|
86039bd3 AA |
1 | /* |
2 | * fs/userfaultfd.c | |
3 | * | |
4 | * Copyright (C) 2007 Davide Libenzi <[email protected]> | |
5 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
6 | * Copyright (C) 2015 Red Hat, Inc. | |
7 | * | |
8 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
9 | * the COPYING file in the top-level directory. | |
10 | * | |
11 | * Some part derived from fs/eventfd.c (anon inode setup) and | |
12 | * mm/ksm.c (mm hashing). | |
13 | */ | |
14 | ||
15 | #include <linux/hashtable.h> | |
16 | #include <linux/sched.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/poll.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/seq_file.h> | |
21 | #include <linux/file.h> | |
22 | #include <linux/bug.h> | |
23 | #include <linux/anon_inodes.h> | |
24 | #include <linux/syscalls.h> | |
25 | #include <linux/userfaultfd_k.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ioctl.h> | |
28 | #include <linux/security.h> | |
29 | ||
3004ec9c AA |
30 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
31 | ||
86039bd3 AA |
32 | enum userfaultfd_state { |
33 | UFFD_STATE_WAIT_API, | |
34 | UFFD_STATE_RUNNING, | |
35 | }; | |
36 | ||
3004ec9c AA |
37 | /* |
38 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
39 | * to be in the same cacheline. | |
40 | */ | |
86039bd3 | 41 | struct userfaultfd_ctx { |
15b726ef AA |
42 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
43 | wait_queue_head_t fault_pending_wqh; | |
44 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
45 | wait_queue_head_t fault_wqh; |
46 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
47 | wait_queue_head_t fd_wqh; | |
2c5b7e1b AA |
48 | /* a refile sequence protected by fault_pending_wqh lock */ |
49 | struct seqcount refile_seq; | |
3004ec9c AA |
50 | /* pseudo fd refcounting */ |
51 | atomic_t refcount; | |
86039bd3 AA |
52 | /* userfaultfd syscall flags */ |
53 | unsigned int flags; | |
54 | /* state machine */ | |
55 | enum userfaultfd_state state; | |
56 | /* released */ | |
57 | bool released; | |
58 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ | |
59 | struct mm_struct *mm; | |
60 | }; | |
61 | ||
62 | struct userfaultfd_wait_queue { | |
a9b85f94 | 63 | struct uffd_msg msg; |
86039bd3 | 64 | wait_queue_t wq; |
86039bd3 AA |
65 | struct userfaultfd_ctx *ctx; |
66 | }; | |
67 | ||
68 | struct userfaultfd_wake_range { | |
69 | unsigned long start; | |
70 | unsigned long len; | |
71 | }; | |
72 | ||
73 | static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, | |
74 | int wake_flags, void *key) | |
75 | { | |
76 | struct userfaultfd_wake_range *range = key; | |
77 | int ret; | |
78 | struct userfaultfd_wait_queue *uwq; | |
79 | unsigned long start, len; | |
80 | ||
81 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
82 | ret = 0; | |
86039bd3 AA |
83 | /* len == 0 means wake all */ |
84 | start = range->start; | |
85 | len = range->len; | |
a9b85f94 AA |
86 | if (len && (start > uwq->msg.arg.pagefault.address || |
87 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 AA |
88 | goto out; |
89 | ret = wake_up_state(wq->private, mode); | |
90 | if (ret) | |
91 | /* | |
92 | * Wake only once, autoremove behavior. | |
93 | * | |
94 | * After the effect of list_del_init is visible to the | |
95 | * other CPUs, the waitqueue may disappear from under | |
96 | * us, see the !list_empty_careful() in | |
97 | * handle_userfault(). try_to_wake_up() has an | |
98 | * implicit smp_mb__before_spinlock, and the | |
99 | * wq->private is read before calling the extern | |
100 | * function "wake_up_state" (which in turns calls | |
101 | * try_to_wake_up). While the spin_lock;spin_unlock; | |
102 | * wouldn't be enough, the smp_mb__before_spinlock is | |
103 | * enough to avoid an explicit smp_mb() here. | |
104 | */ | |
105 | list_del_init(&wq->task_list); | |
106 | out: | |
107 | return ret; | |
108 | } | |
109 | ||
110 | /** | |
111 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
112 | * context. | |
113 | * @ctx: [in] Pointer to the userfaultfd context. | |
114 | * | |
115 | * Returns: In case of success, returns not zero. | |
116 | */ | |
117 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
118 | { | |
119 | if (!atomic_inc_not_zero(&ctx->refcount)) | |
120 | BUG(); | |
121 | } | |
122 | ||
123 | /** | |
124 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
125 | * context. | |
126 | * @ctx: [in] Pointer to userfaultfd context. | |
127 | * | |
128 | * The userfaultfd context reference must have been previously acquired either | |
129 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
130 | */ | |
131 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
132 | { | |
133 | if (atomic_dec_and_test(&ctx->refcount)) { | |
134 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | |
135 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
136 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
137 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
138 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); | |
139 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
140 | mmput(ctx->mm); | |
3004ec9c | 141 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
142 | } |
143 | } | |
144 | ||
a9b85f94 | 145 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 146 | { |
a9b85f94 AA |
147 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
148 | /* | |
149 | * Must use memset to zero out the paddings or kernel data is | |
150 | * leaked to userland. | |
151 | */ | |
152 | memset(msg, 0, sizeof(struct uffd_msg)); | |
153 | } | |
154 | ||
155 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
156 | unsigned int flags, | |
157 | unsigned long reason) | |
158 | { | |
159 | struct uffd_msg msg; | |
160 | msg_init(&msg); | |
161 | msg.event = UFFD_EVENT_PAGEFAULT; | |
162 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
163 | if (flags & FAULT_FLAG_WRITE) |
164 | /* | |
a9b85f94 AA |
165 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the |
166 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE | |
167 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
168 | * was a read fault, otherwise if set it means it's | |
169 | * a write fault. | |
86039bd3 | 170 | */ |
a9b85f94 | 171 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
172 | if (reason & VM_UFFD_WP) |
173 | /* | |
a9b85f94 AA |
174 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
175 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
176 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
177 | * a missing fault, otherwise if set it means it's a | |
178 | * write protect fault. | |
86039bd3 | 179 | */ |
a9b85f94 AA |
180 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
181 | return msg; | |
86039bd3 AA |
182 | } |
183 | ||
8d2afd96 AA |
184 | /* |
185 | * Verify the pagetables are still not ok after having reigstered into | |
186 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
187 | * userfault that has already been resolved, if userfaultfd_read and | |
188 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
189 | * threads. | |
190 | */ | |
191 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
192 | unsigned long address, | |
193 | unsigned long flags, | |
194 | unsigned long reason) | |
195 | { | |
196 | struct mm_struct *mm = ctx->mm; | |
197 | pgd_t *pgd; | |
198 | pud_t *pud; | |
199 | pmd_t *pmd, _pmd; | |
200 | pte_t *pte; | |
201 | bool ret = true; | |
202 | ||
203 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
204 | ||
205 | pgd = pgd_offset(mm, address); | |
206 | if (!pgd_present(*pgd)) | |
207 | goto out; | |
208 | pud = pud_offset(pgd, address); | |
209 | if (!pud_present(*pud)) | |
210 | goto out; | |
211 | pmd = pmd_offset(pud, address); | |
212 | /* | |
213 | * READ_ONCE must function as a barrier with narrower scope | |
214 | * and it must be equivalent to: | |
215 | * _pmd = *pmd; barrier(); | |
216 | * | |
217 | * This is to deal with the instability (as in | |
218 | * pmd_trans_unstable) of the pmd. | |
219 | */ | |
220 | _pmd = READ_ONCE(*pmd); | |
221 | if (!pmd_present(_pmd)) | |
222 | goto out; | |
223 | ||
224 | ret = false; | |
225 | if (pmd_trans_huge(_pmd)) | |
226 | goto out; | |
227 | ||
228 | /* | |
229 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
230 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
231 | */ | |
232 | pte = pte_offset_map(pmd, address); | |
233 | /* | |
234 | * Lockless access: we're in a wait_event so it's ok if it | |
235 | * changes under us. | |
236 | */ | |
237 | if (pte_none(*pte)) | |
238 | ret = true; | |
239 | pte_unmap(pte); | |
240 | ||
241 | out: | |
242 | return ret; | |
243 | } | |
244 | ||
86039bd3 AA |
245 | /* |
246 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
247 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
248 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
249 | * recommendation in __lock_page_or_retry is not an understatement. | |
250 | * | |
251 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | |
252 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | |
253 | * not set. | |
254 | * | |
255 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
256 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
257 | * fatal_signal_pending()s, and the mmap_sem must be released before | |
258 | * returning it. | |
259 | */ | |
260 | int handle_userfault(struct vm_area_struct *vma, unsigned long address, | |
261 | unsigned int flags, unsigned long reason) | |
262 | { | |
263 | struct mm_struct *mm = vma->vm_mm; | |
264 | struct userfaultfd_ctx *ctx; | |
265 | struct userfaultfd_wait_queue uwq; | |
ba85c702 | 266 | int ret; |
dfa37dc3 | 267 | bool must_wait, return_to_userland; |
86039bd3 AA |
268 | |
269 | BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
270 | ||
ba85c702 | 271 | ret = VM_FAULT_SIGBUS; |
86039bd3 AA |
272 | ctx = vma->vm_userfaultfd_ctx.ctx; |
273 | if (!ctx) | |
ba85c702 | 274 | goto out; |
86039bd3 AA |
275 | |
276 | BUG_ON(ctx->mm != mm); | |
277 | ||
278 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
279 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
280 | ||
281 | /* | |
282 | * If it's already released don't get it. This avoids to loop | |
283 | * in __get_user_pages if userfaultfd_release waits on the | |
284 | * caller of handle_userfault to release the mmap_sem. | |
285 | */ | |
286 | if (unlikely(ACCESS_ONCE(ctx->released))) | |
ba85c702 | 287 | goto out; |
86039bd3 AA |
288 | |
289 | /* | |
290 | * Check that we can return VM_FAULT_RETRY. | |
291 | * | |
292 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
293 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
294 | * -EBUSY failures, if the userfaultfd is to be extended for | |
295 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
296 | * without first stopping userland access to the memory. For | |
297 | * VM_UFFD_MISSING userfaults this is enough for now. | |
298 | */ | |
299 | if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) { | |
300 | /* | |
301 | * Validate the invariant that nowait must allow retry | |
302 | * to be sure not to return SIGBUS erroneously on | |
303 | * nowait invocations. | |
304 | */ | |
305 | BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT); | |
306 | #ifdef CONFIG_DEBUG_VM | |
307 | if (printk_ratelimit()) { | |
308 | printk(KERN_WARNING | |
309 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags); | |
310 | dump_stack(); | |
311 | } | |
312 | #endif | |
ba85c702 | 313 | goto out; |
86039bd3 AA |
314 | } |
315 | ||
316 | /* | |
317 | * Handle nowait, not much to do other than tell it to retry | |
318 | * and wait. | |
319 | */ | |
ba85c702 | 320 | ret = VM_FAULT_RETRY; |
86039bd3 | 321 | if (flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 322 | goto out; |
86039bd3 AA |
323 | |
324 | /* take the reference before dropping the mmap_sem */ | |
325 | userfaultfd_ctx_get(ctx); | |
326 | ||
86039bd3 AA |
327 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
328 | uwq.wq.private = current; | |
a9b85f94 | 329 | uwq.msg = userfault_msg(address, flags, reason); |
86039bd3 AA |
330 | uwq.ctx = ctx; |
331 | ||
dfa37dc3 AA |
332 | return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == |
333 | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); | |
334 | ||
15b726ef | 335 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
336 | /* |
337 | * After the __add_wait_queue the uwq is visible to userland | |
338 | * through poll/read(). | |
339 | */ | |
15b726ef AA |
340 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
341 | /* | |
342 | * The smp_mb() after __set_current_state prevents the reads | |
343 | * following the spin_unlock to happen before the list_add in | |
344 | * __add_wait_queue. | |
345 | */ | |
dfa37dc3 AA |
346 | set_current_state(return_to_userland ? TASK_INTERRUPTIBLE : |
347 | TASK_KILLABLE); | |
15b726ef | 348 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 349 | |
8d2afd96 AA |
350 | must_wait = userfaultfd_must_wait(ctx, address, flags, reason); |
351 | up_read(&mm->mmap_sem); | |
352 | ||
353 | if (likely(must_wait && !ACCESS_ONCE(ctx->released) && | |
dfa37dc3 AA |
354 | (return_to_userland ? !signal_pending(current) : |
355 | !fatal_signal_pending(current)))) { | |
86039bd3 AA |
356 | wake_up_poll(&ctx->fd_wqh, POLLIN); |
357 | schedule(); | |
ba85c702 AA |
358 | ret |= VM_FAULT_MAJOR; |
359 | } | |
86039bd3 | 360 | |
ba85c702 | 361 | __set_current_state(TASK_RUNNING); |
15b726ef | 362 | |
dfa37dc3 AA |
363 | if (return_to_userland) { |
364 | if (signal_pending(current) && | |
365 | !fatal_signal_pending(current)) { | |
366 | /* | |
367 | * If we got a SIGSTOP or SIGCONT and this is | |
368 | * a normal userland page fault, just let | |
369 | * userland return so the signal will be | |
370 | * handled and gdb debugging works. The page | |
371 | * fault code immediately after we return from | |
372 | * this function is going to release the | |
373 | * mmap_sem and it's not depending on it | |
374 | * (unlike gup would if we were not to return | |
375 | * VM_FAULT_RETRY). | |
376 | * | |
377 | * If a fatal signal is pending we still take | |
378 | * the streamlined VM_FAULT_RETRY failure path | |
379 | * and there's no need to retake the mmap_sem | |
380 | * in such case. | |
381 | */ | |
382 | down_read(&mm->mmap_sem); | |
383 | ret = 0; | |
384 | } | |
385 | } | |
386 | ||
15b726ef AA |
387 | /* |
388 | * Here we race with the list_del; list_add in | |
389 | * userfaultfd_ctx_read(), however because we don't ever run | |
390 | * list_del_init() to refile across the two lists, the prev | |
391 | * and next pointers will never point to self. list_add also | |
392 | * would never let any of the two pointers to point to | |
393 | * self. So list_empty_careful won't risk to see both pointers | |
394 | * pointing to self at any time during the list refile. The | |
395 | * only case where list_del_init() is called is the full | |
396 | * removal in the wake function and there we don't re-list_add | |
397 | * and it's fine not to block on the spinlock. The uwq on this | |
398 | * kernel stack can be released after the list_del_init. | |
399 | */ | |
ba85c702 | 400 | if (!list_empty_careful(&uwq.wq.task_list)) { |
15b726ef AA |
401 | spin_lock(&ctx->fault_pending_wqh.lock); |
402 | /* | |
403 | * No need of list_del_init(), the uwq on the stack | |
404 | * will be freed shortly anyway. | |
405 | */ | |
406 | list_del(&uwq.wq.task_list); | |
407 | spin_unlock(&ctx->fault_pending_wqh.lock); | |
86039bd3 | 408 | } |
86039bd3 AA |
409 | |
410 | /* | |
411 | * ctx may go away after this if the userfault pseudo fd is | |
412 | * already released. | |
413 | */ | |
414 | userfaultfd_ctx_put(ctx); | |
415 | ||
ba85c702 AA |
416 | out: |
417 | return ret; | |
86039bd3 AA |
418 | } |
419 | ||
420 | static int userfaultfd_release(struct inode *inode, struct file *file) | |
421 | { | |
422 | struct userfaultfd_ctx *ctx = file->private_data; | |
423 | struct mm_struct *mm = ctx->mm; | |
424 | struct vm_area_struct *vma, *prev; | |
425 | /* len == 0 means wake all */ | |
426 | struct userfaultfd_wake_range range = { .len = 0, }; | |
427 | unsigned long new_flags; | |
428 | ||
429 | ACCESS_ONCE(ctx->released) = true; | |
430 | ||
431 | /* | |
432 | * Flush page faults out of all CPUs. NOTE: all page faults | |
433 | * must be retried without returning VM_FAULT_SIGBUS if | |
434 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
435 | * changes while handle_userfault released the mmap_sem. So | |
436 | * it's critical that released is set to true (above), before | |
437 | * taking the mmap_sem for writing. | |
438 | */ | |
439 | down_write(&mm->mmap_sem); | |
440 | prev = NULL; | |
441 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
442 | cond_resched(); | |
443 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
444 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
445 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
446 | prev = vma; | |
447 | continue; | |
448 | } | |
449 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
450 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
451 | new_flags, vma->anon_vma, | |
452 | vma->vm_file, vma->vm_pgoff, | |
453 | vma_policy(vma), | |
454 | NULL_VM_UFFD_CTX); | |
455 | if (prev) | |
456 | vma = prev; | |
457 | else | |
458 | prev = vma; | |
459 | vma->vm_flags = new_flags; | |
460 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
461 | } | |
462 | up_write(&mm->mmap_sem); | |
463 | ||
464 | /* | |
15b726ef | 465 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 466 | * the last page faults that may have been already waiting on |
15b726ef | 467 | * the fault_*wqh. |
86039bd3 | 468 | */ |
15b726ef | 469 | spin_lock(&ctx->fault_pending_wqh.lock); |
ac5be6b4 AA |
470 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
471 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); | |
15b726ef | 472 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
473 | |
474 | wake_up_poll(&ctx->fd_wqh, POLLHUP); | |
475 | userfaultfd_ctx_put(ctx); | |
476 | return 0; | |
477 | } | |
478 | ||
15b726ef AA |
479 | /* fault_pending_wqh.lock must be hold by the caller */ |
480 | static inline struct userfaultfd_wait_queue *find_userfault( | |
481 | struct userfaultfd_ctx *ctx) | |
86039bd3 AA |
482 | { |
483 | wait_queue_t *wq; | |
15b726ef | 484 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 485 | |
15b726ef | 486 | VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock)); |
86039bd3 | 487 | |
15b726ef AA |
488 | uwq = NULL; |
489 | if (!waitqueue_active(&ctx->fault_pending_wqh)) | |
490 | goto out; | |
491 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
492 | wq = list_last_entry(&ctx->fault_pending_wqh.task_list, | |
493 | typeof(*wq), task_list); | |
494 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
495 | out: | |
496 | return uwq; | |
86039bd3 AA |
497 | } |
498 | ||
499 | static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) | |
500 | { | |
501 | struct userfaultfd_ctx *ctx = file->private_data; | |
502 | unsigned int ret; | |
503 | ||
504 | poll_wait(file, &ctx->fd_wqh, wait); | |
505 | ||
506 | switch (ctx->state) { | |
507 | case UFFD_STATE_WAIT_API: | |
508 | return POLLERR; | |
509 | case UFFD_STATE_RUNNING: | |
ba85c702 AA |
510 | /* |
511 | * poll() never guarantees that read won't block. | |
512 | * userfaults can be waken before they're read(). | |
513 | */ | |
514 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
515 | return POLLERR; | |
15b726ef AA |
516 | /* |
517 | * lockless access to see if there are pending faults | |
518 | * __pollwait last action is the add_wait_queue but | |
519 | * the spin_unlock would allow the waitqueue_active to | |
520 | * pass above the actual list_add inside | |
521 | * add_wait_queue critical section. So use a full | |
522 | * memory barrier to serialize the list_add write of | |
523 | * add_wait_queue() with the waitqueue_active read | |
524 | * below. | |
525 | */ | |
526 | ret = 0; | |
527 | smp_mb(); | |
528 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
529 | ret = POLLIN; | |
86039bd3 AA |
530 | return ret; |
531 | default: | |
532 | BUG(); | |
533 | } | |
534 | } | |
535 | ||
536 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, | |
a9b85f94 | 537 | struct uffd_msg *msg) |
86039bd3 AA |
538 | { |
539 | ssize_t ret; | |
540 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 541 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 542 | |
15b726ef | 543 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
86039bd3 AA |
544 | spin_lock(&ctx->fd_wqh.lock); |
545 | __add_wait_queue(&ctx->fd_wqh, &wait); | |
546 | for (;;) { | |
547 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
548 | spin_lock(&ctx->fault_pending_wqh.lock); |
549 | uwq = find_userfault(ctx); | |
550 | if (uwq) { | |
2c5b7e1b AA |
551 | /* |
552 | * Use a seqcount to repeat the lockless check | |
553 | * in wake_userfault() to avoid missing | |
554 | * wakeups because during the refile both | |
555 | * waitqueue could become empty if this is the | |
556 | * only userfault. | |
557 | */ | |
558 | write_seqcount_begin(&ctx->refile_seq); | |
559 | ||
86039bd3 | 560 | /* |
15b726ef AA |
561 | * The fault_pending_wqh.lock prevents the uwq |
562 | * to disappear from under us. | |
563 | * | |
564 | * Refile this userfault from | |
565 | * fault_pending_wqh to fault_wqh, it's not | |
566 | * pending anymore after we read it. | |
567 | * | |
568 | * Use list_del() by hand (as | |
569 | * userfaultfd_wake_function also uses | |
570 | * list_del_init() by hand) to be sure nobody | |
571 | * changes __remove_wait_queue() to use | |
572 | * list_del_init() in turn breaking the | |
573 | * !list_empty_careful() check in | |
574 | * handle_userfault(). The uwq->wq.task_list | |
575 | * must never be empty at any time during the | |
576 | * refile, or the waitqueue could disappear | |
577 | * from under us. The "wait_queue_head_t" | |
578 | * parameter of __remove_wait_queue() is unused | |
579 | * anyway. | |
86039bd3 | 580 | */ |
15b726ef AA |
581 | list_del(&uwq->wq.task_list); |
582 | __add_wait_queue(&ctx->fault_wqh, &uwq->wq); | |
583 | ||
2c5b7e1b AA |
584 | write_seqcount_end(&ctx->refile_seq); |
585 | ||
a9b85f94 AA |
586 | /* careful to always initialize msg if ret == 0 */ |
587 | *msg = uwq->msg; | |
15b726ef | 588 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
589 | ret = 0; |
590 | break; | |
591 | } | |
15b726ef | 592 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
593 | if (signal_pending(current)) { |
594 | ret = -ERESTARTSYS; | |
595 | break; | |
596 | } | |
597 | if (no_wait) { | |
598 | ret = -EAGAIN; | |
599 | break; | |
600 | } | |
601 | spin_unlock(&ctx->fd_wqh.lock); | |
602 | schedule(); | |
603 | spin_lock(&ctx->fd_wqh.lock); | |
604 | } | |
605 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
606 | __set_current_state(TASK_RUNNING); | |
607 | spin_unlock(&ctx->fd_wqh.lock); | |
608 | ||
609 | return ret; | |
610 | } | |
611 | ||
612 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
613 | size_t count, loff_t *ppos) | |
614 | { | |
615 | struct userfaultfd_ctx *ctx = file->private_data; | |
616 | ssize_t _ret, ret = 0; | |
a9b85f94 | 617 | struct uffd_msg msg; |
86039bd3 AA |
618 | int no_wait = file->f_flags & O_NONBLOCK; |
619 | ||
620 | if (ctx->state == UFFD_STATE_WAIT_API) | |
621 | return -EINVAL; | |
86039bd3 AA |
622 | |
623 | for (;;) { | |
a9b85f94 | 624 | if (count < sizeof(msg)) |
86039bd3 | 625 | return ret ? ret : -EINVAL; |
a9b85f94 | 626 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
627 | if (_ret < 0) |
628 | return ret ? ret : _ret; | |
a9b85f94 | 629 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 630 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
631 | ret += sizeof(msg); |
632 | buf += sizeof(msg); | |
633 | count -= sizeof(msg); | |
86039bd3 AA |
634 | /* |
635 | * Allow to read more than one fault at time but only | |
636 | * block if waiting for the very first one. | |
637 | */ | |
638 | no_wait = O_NONBLOCK; | |
639 | } | |
640 | } | |
641 | ||
642 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
643 | struct userfaultfd_wake_range *range) | |
644 | { | |
645 | unsigned long start, end; | |
646 | ||
647 | start = range->start; | |
648 | end = range->start + range->len; | |
649 | ||
15b726ef | 650 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 651 | /* wake all in the range and autoremove */ |
15b726ef | 652 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 653 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
654 | range); |
655 | if (waitqueue_active(&ctx->fault_wqh)) | |
ac5be6b4 | 656 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); |
15b726ef | 657 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
658 | } |
659 | ||
660 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
661 | struct userfaultfd_wake_range *range) | |
662 | { | |
2c5b7e1b AA |
663 | unsigned seq; |
664 | bool need_wakeup; | |
665 | ||
86039bd3 AA |
666 | /* |
667 | * To be sure waitqueue_active() is not reordered by the CPU | |
668 | * before the pagetable update, use an explicit SMP memory | |
669 | * barrier here. PT lock release or up_read(mmap_sem) still | |
670 | * have release semantics that can allow the | |
671 | * waitqueue_active() to be reordered before the pte update. | |
672 | */ | |
673 | smp_mb(); | |
674 | ||
675 | /* | |
676 | * Use waitqueue_active because it's very frequent to | |
677 | * change the address space atomically even if there are no | |
678 | * userfaults yet. So we take the spinlock only when we're | |
679 | * sure we've userfaults to wake. | |
680 | */ | |
2c5b7e1b AA |
681 | do { |
682 | seq = read_seqcount_begin(&ctx->refile_seq); | |
683 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
684 | waitqueue_active(&ctx->fault_wqh); | |
685 | cond_resched(); | |
686 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
687 | if (need_wakeup) | |
86039bd3 AA |
688 | __wake_userfault(ctx, range); |
689 | } | |
690 | ||
691 | static __always_inline int validate_range(struct mm_struct *mm, | |
692 | __u64 start, __u64 len) | |
693 | { | |
694 | __u64 task_size = mm->task_size; | |
695 | ||
696 | if (start & ~PAGE_MASK) | |
697 | return -EINVAL; | |
698 | if (len & ~PAGE_MASK) | |
699 | return -EINVAL; | |
700 | if (!len) | |
701 | return -EINVAL; | |
702 | if (start < mmap_min_addr) | |
703 | return -EINVAL; | |
704 | if (start >= task_size) | |
705 | return -EINVAL; | |
706 | if (len > task_size - start) | |
707 | return -EINVAL; | |
708 | return 0; | |
709 | } | |
710 | ||
711 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, | |
712 | unsigned long arg) | |
713 | { | |
714 | struct mm_struct *mm = ctx->mm; | |
715 | struct vm_area_struct *vma, *prev, *cur; | |
716 | int ret; | |
717 | struct uffdio_register uffdio_register; | |
718 | struct uffdio_register __user *user_uffdio_register; | |
719 | unsigned long vm_flags, new_flags; | |
720 | bool found; | |
721 | unsigned long start, end, vma_end; | |
722 | ||
723 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
724 | ||
725 | ret = -EFAULT; | |
726 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
727 | sizeof(uffdio_register)-sizeof(__u64))) | |
728 | goto out; | |
729 | ||
730 | ret = -EINVAL; | |
731 | if (!uffdio_register.mode) | |
732 | goto out; | |
733 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
734 | UFFDIO_REGISTER_MODE_WP)) | |
735 | goto out; | |
736 | vm_flags = 0; | |
737 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
738 | vm_flags |= VM_UFFD_MISSING; | |
739 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | |
740 | vm_flags |= VM_UFFD_WP; | |
741 | /* | |
742 | * FIXME: remove the below error constraint by | |
743 | * implementing the wprotect tracking mode. | |
744 | */ | |
745 | ret = -EINVAL; | |
746 | goto out; | |
747 | } | |
748 | ||
749 | ret = validate_range(mm, uffdio_register.range.start, | |
750 | uffdio_register.range.len); | |
751 | if (ret) | |
752 | goto out; | |
753 | ||
754 | start = uffdio_register.range.start; | |
755 | end = start + uffdio_register.range.len; | |
756 | ||
757 | down_write(&mm->mmap_sem); | |
758 | vma = find_vma_prev(mm, start, &prev); | |
759 | ||
760 | ret = -ENOMEM; | |
761 | if (!vma) | |
762 | goto out_unlock; | |
763 | ||
764 | /* check that there's at least one vma in the range */ | |
765 | ret = -EINVAL; | |
766 | if (vma->vm_start >= end) | |
767 | goto out_unlock; | |
768 | ||
769 | /* | |
770 | * Search for not compatible vmas. | |
771 | * | |
772 | * FIXME: this shall be relaxed later so that it doesn't fail | |
773 | * on tmpfs backed vmas (in addition to the current allowance | |
774 | * on anonymous vmas). | |
775 | */ | |
776 | found = false; | |
777 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
778 | cond_resched(); | |
779 | ||
780 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
781 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
782 | ||
783 | /* check not compatible vmas */ | |
784 | ret = -EINVAL; | |
785 | if (cur->vm_ops) | |
786 | goto out_unlock; | |
787 | ||
788 | /* | |
789 | * Check that this vma isn't already owned by a | |
790 | * different userfaultfd. We can't allow more than one | |
791 | * userfaultfd to own a single vma simultaneously or we | |
792 | * wouldn't know which one to deliver the userfaults to. | |
793 | */ | |
794 | ret = -EBUSY; | |
795 | if (cur->vm_userfaultfd_ctx.ctx && | |
796 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
797 | goto out_unlock; | |
798 | ||
799 | found = true; | |
800 | } | |
801 | BUG_ON(!found); | |
802 | ||
803 | if (vma->vm_start < start) | |
804 | prev = vma; | |
805 | ||
806 | ret = 0; | |
807 | do { | |
808 | cond_resched(); | |
809 | ||
810 | BUG_ON(vma->vm_ops); | |
811 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && | |
812 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
813 | ||
814 | /* | |
815 | * Nothing to do: this vma is already registered into this | |
816 | * userfaultfd and with the right tracking mode too. | |
817 | */ | |
818 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
819 | (vma->vm_flags & vm_flags) == vm_flags) | |
820 | goto skip; | |
821 | ||
822 | if (vma->vm_start > start) | |
823 | start = vma->vm_start; | |
824 | vma_end = min(end, vma->vm_end); | |
825 | ||
826 | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | |
827 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
828 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
829 | vma_policy(vma), | |
830 | ((struct vm_userfaultfd_ctx){ ctx })); | |
831 | if (prev) { | |
832 | vma = prev; | |
833 | goto next; | |
834 | } | |
835 | if (vma->vm_start < start) { | |
836 | ret = split_vma(mm, vma, start, 1); | |
837 | if (ret) | |
838 | break; | |
839 | } | |
840 | if (vma->vm_end > end) { | |
841 | ret = split_vma(mm, vma, end, 0); | |
842 | if (ret) | |
843 | break; | |
844 | } | |
845 | next: | |
846 | /* | |
847 | * In the vma_merge() successful mprotect-like case 8: | |
848 | * the next vma was merged into the current one and | |
849 | * the current one has not been updated yet. | |
850 | */ | |
851 | vma->vm_flags = new_flags; | |
852 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
853 | ||
854 | skip: | |
855 | prev = vma; | |
856 | start = vma->vm_end; | |
857 | vma = vma->vm_next; | |
858 | } while (vma && vma->vm_start < end); | |
859 | out_unlock: | |
860 | up_write(&mm->mmap_sem); | |
861 | if (!ret) { | |
862 | /* | |
863 | * Now that we scanned all vmas we can already tell | |
864 | * userland which ioctls methods are guaranteed to | |
865 | * succeed on this range. | |
866 | */ | |
867 | if (put_user(UFFD_API_RANGE_IOCTLS, | |
868 | &user_uffdio_register->ioctls)) | |
869 | ret = -EFAULT; | |
870 | } | |
871 | out: | |
872 | return ret; | |
873 | } | |
874 | ||
875 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
876 | unsigned long arg) | |
877 | { | |
878 | struct mm_struct *mm = ctx->mm; | |
879 | struct vm_area_struct *vma, *prev, *cur; | |
880 | int ret; | |
881 | struct uffdio_range uffdio_unregister; | |
882 | unsigned long new_flags; | |
883 | bool found; | |
884 | unsigned long start, end, vma_end; | |
885 | const void __user *buf = (void __user *)arg; | |
886 | ||
887 | ret = -EFAULT; | |
888 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
889 | goto out; | |
890 | ||
891 | ret = validate_range(mm, uffdio_unregister.start, | |
892 | uffdio_unregister.len); | |
893 | if (ret) | |
894 | goto out; | |
895 | ||
896 | start = uffdio_unregister.start; | |
897 | end = start + uffdio_unregister.len; | |
898 | ||
899 | down_write(&mm->mmap_sem); | |
900 | vma = find_vma_prev(mm, start, &prev); | |
901 | ||
902 | ret = -ENOMEM; | |
903 | if (!vma) | |
904 | goto out_unlock; | |
905 | ||
906 | /* check that there's at least one vma in the range */ | |
907 | ret = -EINVAL; | |
908 | if (vma->vm_start >= end) | |
909 | goto out_unlock; | |
910 | ||
911 | /* | |
912 | * Search for not compatible vmas. | |
913 | * | |
914 | * FIXME: this shall be relaxed later so that it doesn't fail | |
915 | * on tmpfs backed vmas (in addition to the current allowance | |
916 | * on anonymous vmas). | |
917 | */ | |
918 | found = false; | |
919 | ret = -EINVAL; | |
920 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
921 | cond_resched(); | |
922 | ||
923 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
924 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
925 | ||
926 | /* | |
927 | * Check not compatible vmas, not strictly required | |
928 | * here as not compatible vmas cannot have an | |
929 | * userfaultfd_ctx registered on them, but this | |
930 | * provides for more strict behavior to notice | |
931 | * unregistration errors. | |
932 | */ | |
933 | if (cur->vm_ops) | |
934 | goto out_unlock; | |
935 | ||
936 | found = true; | |
937 | } | |
938 | BUG_ON(!found); | |
939 | ||
940 | if (vma->vm_start < start) | |
941 | prev = vma; | |
942 | ||
943 | ret = 0; | |
944 | do { | |
945 | cond_resched(); | |
946 | ||
947 | BUG_ON(vma->vm_ops); | |
948 | ||
949 | /* | |
950 | * Nothing to do: this vma is already registered into this | |
951 | * userfaultfd and with the right tracking mode too. | |
952 | */ | |
953 | if (!vma->vm_userfaultfd_ctx.ctx) | |
954 | goto skip; | |
955 | ||
956 | if (vma->vm_start > start) | |
957 | start = vma->vm_start; | |
958 | vma_end = min(end, vma->vm_end); | |
959 | ||
960 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
961 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
962 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
963 | vma_policy(vma), | |
964 | NULL_VM_UFFD_CTX); | |
965 | if (prev) { | |
966 | vma = prev; | |
967 | goto next; | |
968 | } | |
969 | if (vma->vm_start < start) { | |
970 | ret = split_vma(mm, vma, start, 1); | |
971 | if (ret) | |
972 | break; | |
973 | } | |
974 | if (vma->vm_end > end) { | |
975 | ret = split_vma(mm, vma, end, 0); | |
976 | if (ret) | |
977 | break; | |
978 | } | |
979 | next: | |
980 | /* | |
981 | * In the vma_merge() successful mprotect-like case 8: | |
982 | * the next vma was merged into the current one and | |
983 | * the current one has not been updated yet. | |
984 | */ | |
985 | vma->vm_flags = new_flags; | |
986 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
987 | ||
988 | skip: | |
989 | prev = vma; | |
990 | start = vma->vm_end; | |
991 | vma = vma->vm_next; | |
992 | } while (vma && vma->vm_start < end); | |
993 | out_unlock: | |
994 | up_write(&mm->mmap_sem); | |
995 | out: | |
996 | return ret; | |
997 | } | |
998 | ||
999 | /* | |
ba85c702 AA |
1000 | * userfaultfd_wake may be used in combination with the |
1001 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1002 | */ |
1003 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1004 | unsigned long arg) | |
1005 | { | |
1006 | int ret; | |
1007 | struct uffdio_range uffdio_wake; | |
1008 | struct userfaultfd_wake_range range; | |
1009 | const void __user *buf = (void __user *)arg; | |
1010 | ||
1011 | ret = -EFAULT; | |
1012 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1013 | goto out; | |
1014 | ||
1015 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | |
1016 | if (ret) | |
1017 | goto out; | |
1018 | ||
1019 | range.start = uffdio_wake.start; | |
1020 | range.len = uffdio_wake.len; | |
1021 | ||
1022 | /* | |
1023 | * len == 0 means wake all and we don't want to wake all here, | |
1024 | * so check it again to be sure. | |
1025 | */ | |
1026 | VM_BUG_ON(!range.len); | |
1027 | ||
1028 | wake_userfault(ctx, &range); | |
1029 | ret = 0; | |
1030 | ||
1031 | out: | |
1032 | return ret; | |
1033 | } | |
1034 | ||
ad465cae AA |
1035 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1036 | unsigned long arg) | |
1037 | { | |
1038 | __s64 ret; | |
1039 | struct uffdio_copy uffdio_copy; | |
1040 | struct uffdio_copy __user *user_uffdio_copy; | |
1041 | struct userfaultfd_wake_range range; | |
1042 | ||
1043 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1044 | ||
1045 | ret = -EFAULT; | |
1046 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1047 | /* don't copy "copy" last field */ | |
1048 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1049 | goto out; | |
1050 | ||
1051 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | |
1052 | if (ret) | |
1053 | goto out; | |
1054 | /* | |
1055 | * double check for wraparound just in case. copy_from_user() | |
1056 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1057 | * in the userland range. | |
1058 | */ | |
1059 | ret = -EINVAL; | |
1060 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1061 | goto out; | |
1062 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | |
1063 | goto out; | |
1064 | ||
1065 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
1066 | uffdio_copy.len); | |
1067 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) | |
1068 | return -EFAULT; | |
1069 | if (ret < 0) | |
1070 | goto out; | |
1071 | BUG_ON(!ret); | |
1072 | /* len == 0 would wake all */ | |
1073 | range.len = ret; | |
1074 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1075 | range.start = uffdio_copy.dst; | |
1076 | wake_userfault(ctx, &range); | |
1077 | } | |
1078 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1079 | out: | |
1080 | return ret; | |
1081 | } | |
1082 | ||
1083 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1084 | unsigned long arg) | |
1085 | { | |
1086 | __s64 ret; | |
1087 | struct uffdio_zeropage uffdio_zeropage; | |
1088 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1089 | struct userfaultfd_wake_range range; | |
1090 | ||
1091 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1092 | ||
1093 | ret = -EFAULT; | |
1094 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1095 | /* don't copy "zeropage" last field */ | |
1096 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1097 | goto out; | |
1098 | ||
1099 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | |
1100 | uffdio_zeropage.range.len); | |
1101 | if (ret) | |
1102 | goto out; | |
1103 | ret = -EINVAL; | |
1104 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1105 | goto out; | |
1106 | ||
1107 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
1108 | uffdio_zeropage.range.len); | |
1109 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) | |
1110 | return -EFAULT; | |
1111 | if (ret < 0) | |
1112 | goto out; | |
1113 | /* len == 0 would wake all */ | |
1114 | BUG_ON(!ret); | |
1115 | range.len = ret; | |
1116 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1117 | range.start = uffdio_zeropage.range.start; | |
1118 | wake_userfault(ctx, &range); | |
1119 | } | |
1120 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1121 | out: | |
1122 | return ret; | |
1123 | } | |
1124 | ||
86039bd3 AA |
1125 | /* |
1126 | * userland asks for a certain API version and we return which bits | |
1127 | * and ioctl commands are implemented in this kernel for such API | |
1128 | * version or -EINVAL if unknown. | |
1129 | */ | |
1130 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1131 | unsigned long arg) | |
1132 | { | |
1133 | struct uffdio_api uffdio_api; | |
1134 | void __user *buf = (void __user *)arg; | |
1135 | int ret; | |
1136 | ||
1137 | ret = -EINVAL; | |
1138 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1139 | goto out; | |
1140 | ret = -EFAULT; | |
a9b85f94 | 1141 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1142 | goto out; |
a9b85f94 | 1143 | if (uffdio_api.api != UFFD_API || uffdio_api.features) { |
86039bd3 AA |
1144 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
1145 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1146 | goto out; | |
1147 | ret = -EINVAL; | |
1148 | goto out; | |
1149 | } | |
3f602d27 | 1150 | uffdio_api.features = UFFD_API_FEATURES; |
86039bd3 AA |
1151 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1152 | ret = -EFAULT; | |
1153 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1154 | goto out; | |
1155 | ctx->state = UFFD_STATE_RUNNING; | |
1156 | ret = 0; | |
1157 | out: | |
1158 | return ret; | |
1159 | } | |
1160 | ||
1161 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1162 | unsigned long arg) | |
1163 | { | |
1164 | int ret = -EINVAL; | |
1165 | struct userfaultfd_ctx *ctx = file->private_data; | |
1166 | ||
e6485a47 AA |
1167 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1168 | return -EINVAL; | |
1169 | ||
86039bd3 AA |
1170 | switch(cmd) { |
1171 | case UFFDIO_API: | |
1172 | ret = userfaultfd_api(ctx, arg); | |
1173 | break; | |
1174 | case UFFDIO_REGISTER: | |
1175 | ret = userfaultfd_register(ctx, arg); | |
1176 | break; | |
1177 | case UFFDIO_UNREGISTER: | |
1178 | ret = userfaultfd_unregister(ctx, arg); | |
1179 | break; | |
1180 | case UFFDIO_WAKE: | |
1181 | ret = userfaultfd_wake(ctx, arg); | |
1182 | break; | |
ad465cae AA |
1183 | case UFFDIO_COPY: |
1184 | ret = userfaultfd_copy(ctx, arg); | |
1185 | break; | |
1186 | case UFFDIO_ZEROPAGE: | |
1187 | ret = userfaultfd_zeropage(ctx, arg); | |
1188 | break; | |
86039bd3 AA |
1189 | } |
1190 | return ret; | |
1191 | } | |
1192 | ||
1193 | #ifdef CONFIG_PROC_FS | |
1194 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1195 | { | |
1196 | struct userfaultfd_ctx *ctx = f->private_data; | |
1197 | wait_queue_t *wq; | |
1198 | struct userfaultfd_wait_queue *uwq; | |
1199 | unsigned long pending = 0, total = 0; | |
1200 | ||
15b726ef AA |
1201 | spin_lock(&ctx->fault_pending_wqh.lock); |
1202 | list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { | |
1203 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
1204 | pending++; | |
1205 | total++; | |
1206 | } | |
86039bd3 AA |
1207 | list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { |
1208 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
86039bd3 AA |
1209 | total++; |
1210 | } | |
15b726ef | 1211 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1212 | |
1213 | /* | |
1214 | * If more protocols will be added, there will be all shown | |
1215 | * separated by a space. Like this: | |
1216 | * protocols: aa:... bb:... | |
1217 | */ | |
1218 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
3f602d27 | 1219 | pending, total, UFFD_API, UFFD_API_FEATURES, |
86039bd3 AA |
1220 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1221 | } | |
1222 | #endif | |
1223 | ||
1224 | static const struct file_operations userfaultfd_fops = { | |
1225 | #ifdef CONFIG_PROC_FS | |
1226 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1227 | #endif | |
1228 | .release = userfaultfd_release, | |
1229 | .poll = userfaultfd_poll, | |
1230 | .read = userfaultfd_read, | |
1231 | .unlocked_ioctl = userfaultfd_ioctl, | |
1232 | .compat_ioctl = userfaultfd_ioctl, | |
1233 | .llseek = noop_llseek, | |
1234 | }; | |
1235 | ||
3004ec9c AA |
1236 | static void init_once_userfaultfd_ctx(void *mem) |
1237 | { | |
1238 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1239 | ||
1240 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1241 | init_waitqueue_head(&ctx->fault_wqh); | |
1242 | init_waitqueue_head(&ctx->fd_wqh); | |
2c5b7e1b | 1243 | seqcount_init(&ctx->refile_seq); |
3004ec9c AA |
1244 | } |
1245 | ||
86039bd3 AA |
1246 | /** |
1247 | * userfaultfd_file_create - Creates an userfaultfd file pointer. | |
1248 | * @flags: Flags for the userfaultfd file. | |
1249 | * | |
1250 | * This function creates an userfaultfd file pointer, w/out installing | |
1251 | * it into the fd table. This is useful when the userfaultfd file is | |
1252 | * used during the initialization of data structures that require | |
1253 | * extra setup after the userfaultfd creation. So the userfaultfd | |
1254 | * creation is split into the file pointer creation phase, and the | |
1255 | * file descriptor installation phase. In this way races with | |
1256 | * userspace closing the newly installed file descriptor can be | |
1257 | * avoided. Returns an userfaultfd file pointer, or a proper error | |
1258 | * pointer. | |
1259 | */ | |
1260 | static struct file *userfaultfd_file_create(int flags) | |
1261 | { | |
1262 | struct file *file; | |
1263 | struct userfaultfd_ctx *ctx; | |
1264 | ||
1265 | BUG_ON(!current->mm); | |
1266 | ||
1267 | /* Check the UFFD_* constants for consistency. */ | |
1268 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1269 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1270 | ||
1271 | file = ERR_PTR(-EINVAL); | |
1272 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) | |
1273 | goto out; | |
1274 | ||
1275 | file = ERR_PTR(-ENOMEM); | |
3004ec9c | 1276 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 AA |
1277 | if (!ctx) |
1278 | goto out; | |
1279 | ||
1280 | atomic_set(&ctx->refcount, 1); | |
86039bd3 AA |
1281 | ctx->flags = flags; |
1282 | ctx->state = UFFD_STATE_WAIT_API; | |
1283 | ctx->released = false; | |
1284 | ctx->mm = current->mm; | |
1285 | /* prevent the mm struct to be freed */ | |
1286 | atomic_inc(&ctx->mm->mm_users); | |
1287 | ||
1288 | file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, | |
1289 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
c03e946f EB |
1290 | if (IS_ERR(file)) { |
1291 | mmput(ctx->mm); | |
3004ec9c | 1292 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 1293 | } |
86039bd3 AA |
1294 | out: |
1295 | return file; | |
1296 | } | |
1297 | ||
1298 | SYSCALL_DEFINE1(userfaultfd, int, flags) | |
1299 | { | |
1300 | int fd, error; | |
1301 | struct file *file; | |
1302 | ||
1303 | error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); | |
1304 | if (error < 0) | |
1305 | return error; | |
1306 | fd = error; | |
1307 | ||
1308 | file = userfaultfd_file_create(flags); | |
1309 | if (IS_ERR(file)) { | |
1310 | error = PTR_ERR(file); | |
1311 | goto err_put_unused_fd; | |
1312 | } | |
1313 | fd_install(fd, file); | |
1314 | ||
1315 | return fd; | |
1316 | ||
1317 | err_put_unused_fd: | |
1318 | put_unused_fd(fd); | |
1319 | ||
1320 | return error; | |
1321 | } | |
3004ec9c AA |
1322 | |
1323 | static int __init userfaultfd_init(void) | |
1324 | { | |
1325 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
1326 | sizeof(struct userfaultfd_ctx), | |
1327 | 0, | |
1328 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
1329 | init_once_userfaultfd_ctx); | |
1330 | return 0; | |
1331 | } | |
1332 | __initcall(userfaultfd_init); |