]>
Commit | Line | Data |
---|---|---|
7d4e9ccb | 1 | /* |
1e51764a AB |
2 | * This file is part of UBIFS. |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms of the GNU General Public License version 2 as published by | |
8 | * the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | * Authors: Adrian Hunter | |
20 | * Artem Bityutskiy (Битюцкий Артём) | |
21 | */ | |
22 | ||
23 | /* | |
24 | * This file implements commit-related functionality of the LEB properties | |
25 | * subsystem. | |
26 | */ | |
27 | ||
28 | #include <linux/crc16.h> | |
5a0e3ad6 | 29 | #include <linux/slab.h> |
8d7819b4 | 30 | #include <linux/random.h> |
1e51764a AB |
31 | #include "ubifs.h" |
32 | ||
cdd8ad6e | 33 | static int dbg_populate_lsave(struct ubifs_info *c); |
cdd8ad6e | 34 | |
1e51764a AB |
35 | /** |
36 | * first_dirty_cnode - find first dirty cnode. | |
37 | * @c: UBIFS file-system description object | |
38 | * @nnode: nnode at which to start | |
39 | * | |
40 | * This function returns the first dirty cnode or %NULL if there is not one. | |
41 | */ | |
42 | static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) | |
43 | { | |
44 | ubifs_assert(nnode); | |
45 | while (1) { | |
46 | int i, cont = 0; | |
47 | ||
48 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
49 | struct ubifs_cnode *cnode; | |
50 | ||
51 | cnode = nnode->nbranch[i].cnode; | |
52 | if (cnode && | |
53 | test_bit(DIRTY_CNODE, &cnode->flags)) { | |
54 | if (cnode->level == 0) | |
55 | return cnode; | |
56 | nnode = (struct ubifs_nnode *)cnode; | |
57 | cont = 1; | |
58 | break; | |
59 | } | |
60 | } | |
61 | if (!cont) | |
62 | return (struct ubifs_cnode *)nnode; | |
63 | } | |
64 | } | |
65 | ||
66 | /** | |
67 | * next_dirty_cnode - find next dirty cnode. | |
68 | * @cnode: cnode from which to begin searching | |
69 | * | |
70 | * This function returns the next dirty cnode or %NULL if there is not one. | |
71 | */ | |
72 | static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) | |
73 | { | |
74 | struct ubifs_nnode *nnode; | |
75 | int i; | |
76 | ||
77 | ubifs_assert(cnode); | |
78 | nnode = cnode->parent; | |
79 | if (!nnode) | |
80 | return NULL; | |
81 | for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { | |
82 | cnode = nnode->nbranch[i].cnode; | |
83 | if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { | |
84 | if (cnode->level == 0) | |
85 | return cnode; /* cnode is a pnode */ | |
86 | /* cnode is a nnode */ | |
87 | return first_dirty_cnode((struct ubifs_nnode *)cnode); | |
88 | } | |
89 | } | |
90 | return (struct ubifs_cnode *)nnode; | |
91 | } | |
92 | ||
93 | /** | |
94 | * get_cnodes_to_commit - create list of dirty cnodes to commit. | |
95 | * @c: UBIFS file-system description object | |
96 | * | |
97 | * This function returns the number of cnodes to commit. | |
98 | */ | |
99 | static int get_cnodes_to_commit(struct ubifs_info *c) | |
100 | { | |
101 | struct ubifs_cnode *cnode, *cnext; | |
102 | int cnt = 0; | |
103 | ||
104 | if (!c->nroot) | |
105 | return 0; | |
106 | ||
107 | if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) | |
108 | return 0; | |
109 | ||
110 | c->lpt_cnext = first_dirty_cnode(c->nroot); | |
111 | cnode = c->lpt_cnext; | |
112 | if (!cnode) | |
113 | return 0; | |
114 | cnt += 1; | |
115 | while (1) { | |
37662447 AB |
116 | ubifs_assert(!test_bit(COW_CNODE, &cnode->flags)); |
117 | __set_bit(COW_CNODE, &cnode->flags); | |
1e51764a AB |
118 | cnext = next_dirty_cnode(cnode); |
119 | if (!cnext) { | |
120 | cnode->cnext = c->lpt_cnext; | |
121 | break; | |
122 | } | |
123 | cnode->cnext = cnext; | |
124 | cnode = cnext; | |
125 | cnt += 1; | |
126 | } | |
127 | dbg_cmt("committing %d cnodes", cnt); | |
128 | dbg_lp("committing %d cnodes", cnt); | |
129 | ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); | |
130 | return cnt; | |
131 | } | |
132 | ||
133 | /** | |
134 | * upd_ltab - update LPT LEB properties. | |
135 | * @c: UBIFS file-system description object | |
136 | * @lnum: LEB number | |
137 | * @free: amount of free space | |
138 | * @dirty: amount of dirty space to add | |
139 | */ | |
140 | static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) | |
141 | { | |
142 | dbg_lp("LEB %d free %d dirty %d to %d +%d", | |
143 | lnum, c->ltab[lnum - c->lpt_first].free, | |
144 | c->ltab[lnum - c->lpt_first].dirty, free, dirty); | |
145 | ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); | |
146 | c->ltab[lnum - c->lpt_first].free = free; | |
147 | c->ltab[lnum - c->lpt_first].dirty += dirty; | |
148 | } | |
149 | ||
150 | /** | |
151 | * alloc_lpt_leb - allocate an LPT LEB that is empty. | |
152 | * @c: UBIFS file-system description object | |
153 | * @lnum: LEB number is passed and returned here | |
154 | * | |
155 | * This function finds the next empty LEB in the ltab starting from @lnum. If a | |
156 | * an empty LEB is found it is returned in @lnum and the function returns %0. | |
157 | * Otherwise the function returns -ENOSPC. Note however, that LPT is designed | |
158 | * never to run out of space. | |
159 | */ | |
160 | static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) | |
161 | { | |
162 | int i, n; | |
163 | ||
164 | n = *lnum - c->lpt_first + 1; | |
165 | for (i = n; i < c->lpt_lebs; i++) { | |
166 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
167 | continue; | |
168 | if (c->ltab[i].free == c->leb_size) { | |
169 | c->ltab[i].cmt = 1; | |
170 | *lnum = i + c->lpt_first; | |
171 | return 0; | |
172 | } | |
173 | } | |
174 | ||
175 | for (i = 0; i < n; i++) { | |
176 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
177 | continue; | |
178 | if (c->ltab[i].free == c->leb_size) { | |
179 | c->ltab[i].cmt = 1; | |
180 | *lnum = i + c->lpt_first; | |
181 | return 0; | |
182 | } | |
183 | } | |
1e51764a AB |
184 | return -ENOSPC; |
185 | } | |
186 | ||
187 | /** | |
188 | * layout_cnodes - layout cnodes for commit. | |
189 | * @c: UBIFS file-system description object | |
190 | * | |
191 | * This function returns %0 on success and a negative error code on failure. | |
192 | */ | |
193 | static int layout_cnodes(struct ubifs_info *c) | |
194 | { | |
195 | int lnum, offs, len, alen, done_lsave, done_ltab, err; | |
196 | struct ubifs_cnode *cnode; | |
197 | ||
73944a6d AH |
198 | err = dbg_chk_lpt_sz(c, 0, 0); |
199 | if (err) | |
200 | return err; | |
1e51764a AB |
201 | cnode = c->lpt_cnext; |
202 | if (!cnode) | |
203 | return 0; | |
204 | lnum = c->nhead_lnum; | |
205 | offs = c->nhead_offs; | |
206 | /* Try to place lsave and ltab nicely */ | |
207 | done_lsave = !c->big_lpt; | |
208 | done_ltab = 0; | |
209 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | |
210 | done_lsave = 1; | |
211 | c->lsave_lnum = lnum; | |
212 | c->lsave_offs = offs; | |
213 | offs += c->lsave_sz; | |
73944a6d | 214 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
215 | } |
216 | ||
217 | if (offs + c->ltab_sz <= c->leb_size) { | |
218 | done_ltab = 1; | |
219 | c->ltab_lnum = lnum; | |
220 | c->ltab_offs = offs; | |
221 | offs += c->ltab_sz; | |
73944a6d | 222 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
223 | } |
224 | ||
225 | do { | |
226 | if (cnode->level) { | |
227 | len = c->nnode_sz; | |
228 | c->dirty_nn_cnt -= 1; | |
229 | } else { | |
230 | len = c->pnode_sz; | |
231 | c->dirty_pn_cnt -= 1; | |
232 | } | |
233 | while (offs + len > c->leb_size) { | |
234 | alen = ALIGN(offs, c->min_io_size); | |
235 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
2bc275e9 | 236 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
237 | err = alloc_lpt_leb(c, &lnum); |
238 | if (err) | |
73944a6d | 239 | goto no_space; |
1e51764a AB |
240 | offs = 0; |
241 | ubifs_assert(lnum >= c->lpt_first && | |
242 | lnum <= c->lpt_last); | |
243 | /* Try to place lsave and ltab nicely */ | |
244 | if (!done_lsave) { | |
245 | done_lsave = 1; | |
246 | c->lsave_lnum = lnum; | |
247 | c->lsave_offs = offs; | |
248 | offs += c->lsave_sz; | |
73944a6d | 249 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
250 | continue; |
251 | } | |
252 | if (!done_ltab) { | |
253 | done_ltab = 1; | |
254 | c->ltab_lnum = lnum; | |
255 | c->ltab_offs = offs; | |
256 | offs += c->ltab_sz; | |
73944a6d | 257 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
258 | continue; |
259 | } | |
260 | break; | |
261 | } | |
262 | if (cnode->parent) { | |
263 | cnode->parent->nbranch[cnode->iip].lnum = lnum; | |
264 | cnode->parent->nbranch[cnode->iip].offs = offs; | |
265 | } else { | |
266 | c->lpt_lnum = lnum; | |
267 | c->lpt_offs = offs; | |
268 | } | |
269 | offs += len; | |
73944a6d | 270 | dbg_chk_lpt_sz(c, 1, len); |
1e51764a AB |
271 | cnode = cnode->cnext; |
272 | } while (cnode && cnode != c->lpt_cnext); | |
273 | ||
274 | /* Make sure to place LPT's save table */ | |
275 | if (!done_lsave) { | |
276 | if (offs + c->lsave_sz > c->leb_size) { | |
277 | alen = ALIGN(offs, c->min_io_size); | |
278 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
2bc275e9 | 279 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
280 | err = alloc_lpt_leb(c, &lnum); |
281 | if (err) | |
73944a6d | 282 | goto no_space; |
1e51764a AB |
283 | offs = 0; |
284 | ubifs_assert(lnum >= c->lpt_first && | |
285 | lnum <= c->lpt_last); | |
286 | } | |
287 | done_lsave = 1; | |
288 | c->lsave_lnum = lnum; | |
289 | c->lsave_offs = offs; | |
290 | offs += c->lsave_sz; | |
73944a6d | 291 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
292 | } |
293 | ||
294 | /* Make sure to place LPT's own lprops table */ | |
295 | if (!done_ltab) { | |
296 | if (offs + c->ltab_sz > c->leb_size) { | |
297 | alen = ALIGN(offs, c->min_io_size); | |
298 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
2bc275e9 | 299 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
300 | err = alloc_lpt_leb(c, &lnum); |
301 | if (err) | |
73944a6d | 302 | goto no_space; |
1e51764a AB |
303 | offs = 0; |
304 | ubifs_assert(lnum >= c->lpt_first && | |
305 | lnum <= c->lpt_last); | |
306 | } | |
1e51764a AB |
307 | c->ltab_lnum = lnum; |
308 | c->ltab_offs = offs; | |
309 | offs += c->ltab_sz; | |
73944a6d | 310 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
311 | } |
312 | ||
313 | alen = ALIGN(offs, c->min_io_size); | |
314 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
73944a6d AH |
315 | dbg_chk_lpt_sz(c, 4, alen - offs); |
316 | err = dbg_chk_lpt_sz(c, 3, alen); | |
317 | if (err) | |
318 | return err; | |
1e51764a | 319 | return 0; |
73944a6d AH |
320 | |
321 | no_space: | |
235c362b | 322 | ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", |
79fda517 | 323 | lnum, offs, len, done_ltab, done_lsave); |
edf6be24 AB |
324 | ubifs_dump_lpt_info(c); |
325 | ubifs_dump_lpt_lebs(c); | |
787845bd | 326 | dump_stack(); |
73944a6d | 327 | return err; |
1e51764a AB |
328 | } |
329 | ||
330 | /** | |
331 | * realloc_lpt_leb - allocate an LPT LEB that is empty. | |
332 | * @c: UBIFS file-system description object | |
333 | * @lnum: LEB number is passed and returned here | |
334 | * | |
335 | * This function duplicates exactly the results of the function alloc_lpt_leb. | |
336 | * It is used during end commit to reallocate the same LEB numbers that were | |
337 | * allocated by alloc_lpt_leb during start commit. | |
338 | * | |
339 | * This function finds the next LEB that was allocated by the alloc_lpt_leb | |
340 | * function starting from @lnum. If a LEB is found it is returned in @lnum and | |
341 | * the function returns %0. Otherwise the function returns -ENOSPC. | |
342 | * Note however, that LPT is designed never to run out of space. | |
343 | */ | |
344 | static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) | |
345 | { | |
346 | int i, n; | |
347 | ||
348 | n = *lnum - c->lpt_first + 1; | |
349 | for (i = n; i < c->lpt_lebs; i++) | |
350 | if (c->ltab[i].cmt) { | |
351 | c->ltab[i].cmt = 0; | |
352 | *lnum = i + c->lpt_first; | |
353 | return 0; | |
354 | } | |
355 | ||
356 | for (i = 0; i < n; i++) | |
357 | if (c->ltab[i].cmt) { | |
358 | c->ltab[i].cmt = 0; | |
359 | *lnum = i + c->lpt_first; | |
360 | return 0; | |
361 | } | |
1e51764a AB |
362 | return -ENOSPC; |
363 | } | |
364 | ||
365 | /** | |
366 | * write_cnodes - write cnodes for commit. | |
367 | * @c: UBIFS file-system description object | |
368 | * | |
369 | * This function returns %0 on success and a negative error code on failure. | |
370 | */ | |
371 | static int write_cnodes(struct ubifs_info *c) | |
372 | { | |
373 | int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; | |
374 | struct ubifs_cnode *cnode; | |
375 | void *buf = c->lpt_buf; | |
376 | ||
377 | cnode = c->lpt_cnext; | |
378 | if (!cnode) | |
379 | return 0; | |
380 | lnum = c->nhead_lnum; | |
381 | offs = c->nhead_offs; | |
382 | from = offs; | |
383 | /* Ensure empty LEB is unmapped */ | |
384 | if (offs == 0) { | |
385 | err = ubifs_leb_unmap(c, lnum); | |
386 | if (err) | |
387 | return err; | |
388 | } | |
389 | /* Try to place lsave and ltab nicely */ | |
390 | done_lsave = !c->big_lpt; | |
391 | done_ltab = 0; | |
392 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | |
393 | done_lsave = 1; | |
394 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
395 | offs += c->lsave_sz; | |
73944a6d | 396 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
397 | } |
398 | ||
399 | if (offs + c->ltab_sz <= c->leb_size) { | |
400 | done_ltab = 1; | |
401 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | |
402 | offs += c->ltab_sz; | |
73944a6d | 403 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
404 | } |
405 | ||
406 | /* Loop for each cnode */ | |
407 | do { | |
408 | if (cnode->level) | |
409 | len = c->nnode_sz; | |
410 | else | |
411 | len = c->pnode_sz; | |
412 | while (offs + len > c->leb_size) { | |
413 | wlen = offs - from; | |
414 | if (wlen) { | |
415 | alen = ALIGN(wlen, c->min_io_size); | |
416 | memset(buf + offs, 0xff, alen - wlen); | |
417 | err = ubifs_leb_write(c, lnum, buf + from, from, | |
b36a261e | 418 | alen); |
1e51764a AB |
419 | if (err) |
420 | return err; | |
421 | } | |
2bc275e9 | 422 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
423 | err = realloc_lpt_leb(c, &lnum); |
424 | if (err) | |
73944a6d | 425 | goto no_space; |
0a6fb8d9 | 426 | offs = from = 0; |
1e51764a AB |
427 | ubifs_assert(lnum >= c->lpt_first && |
428 | lnum <= c->lpt_last); | |
429 | err = ubifs_leb_unmap(c, lnum); | |
430 | if (err) | |
431 | return err; | |
432 | /* Try to place lsave and ltab nicely */ | |
433 | if (!done_lsave) { | |
434 | done_lsave = 1; | |
435 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
436 | offs += c->lsave_sz; | |
73944a6d | 437 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
438 | continue; |
439 | } | |
440 | if (!done_ltab) { | |
441 | done_ltab = 1; | |
442 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | |
443 | offs += c->ltab_sz; | |
73944a6d | 444 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
445 | continue; |
446 | } | |
447 | break; | |
448 | } | |
449 | if (cnode->level) | |
450 | ubifs_pack_nnode(c, buf + offs, | |
451 | (struct ubifs_nnode *)cnode); | |
452 | else | |
453 | ubifs_pack_pnode(c, buf + offs, | |
454 | (struct ubifs_pnode *)cnode); | |
455 | /* | |
456 | * The reason for the barriers is the same as in case of TNC. | |
457 | * See comment in 'write_index()'. 'dirty_cow_nnode()' and | |
458 | * 'dirty_cow_pnode()' are the functions for which this is | |
459 | * important. | |
460 | */ | |
461 | clear_bit(DIRTY_CNODE, &cnode->flags); | |
4e857c58 | 462 | smp_mb__before_atomic(); |
37662447 | 463 | clear_bit(COW_CNODE, &cnode->flags); |
4e857c58 | 464 | smp_mb__after_atomic(); |
1e51764a | 465 | offs += len; |
73944a6d | 466 | dbg_chk_lpt_sz(c, 1, len); |
1e51764a AB |
467 | cnode = cnode->cnext; |
468 | } while (cnode && cnode != c->lpt_cnext); | |
469 | ||
470 | /* Make sure to place LPT's save table */ | |
471 | if (!done_lsave) { | |
472 | if (offs + c->lsave_sz > c->leb_size) { | |
473 | wlen = offs - from; | |
474 | alen = ALIGN(wlen, c->min_io_size); | |
475 | memset(buf + offs, 0xff, alen - wlen); | |
b36a261e | 476 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); |
1e51764a AB |
477 | if (err) |
478 | return err; | |
2bc275e9 | 479 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
480 | err = realloc_lpt_leb(c, &lnum); |
481 | if (err) | |
73944a6d | 482 | goto no_space; |
0a6fb8d9 | 483 | offs = from = 0; |
1e51764a AB |
484 | ubifs_assert(lnum >= c->lpt_first && |
485 | lnum <= c->lpt_last); | |
486 | err = ubifs_leb_unmap(c, lnum); | |
487 | if (err) | |
488 | return err; | |
489 | } | |
490 | done_lsave = 1; | |
491 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
492 | offs += c->lsave_sz; | |
73944a6d | 493 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); |
1e51764a AB |
494 | } |
495 | ||
496 | /* Make sure to place LPT's own lprops table */ | |
497 | if (!done_ltab) { | |
498 | if (offs + c->ltab_sz > c->leb_size) { | |
499 | wlen = offs - from; | |
500 | alen = ALIGN(wlen, c->min_io_size); | |
501 | memset(buf + offs, 0xff, alen - wlen); | |
b36a261e | 502 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); |
1e51764a AB |
503 | if (err) |
504 | return err; | |
2bc275e9 | 505 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); |
1e51764a AB |
506 | err = realloc_lpt_leb(c, &lnum); |
507 | if (err) | |
73944a6d | 508 | goto no_space; |
0a6fb8d9 | 509 | offs = from = 0; |
1e51764a AB |
510 | ubifs_assert(lnum >= c->lpt_first && |
511 | lnum <= c->lpt_last); | |
512 | err = ubifs_leb_unmap(c, lnum); | |
513 | if (err) | |
514 | return err; | |
515 | } | |
1e51764a AB |
516 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); |
517 | offs += c->ltab_sz; | |
73944a6d | 518 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); |
1e51764a AB |
519 | } |
520 | ||
521 | /* Write remaining data in buffer */ | |
522 | wlen = offs - from; | |
523 | alen = ALIGN(wlen, c->min_io_size); | |
524 | memset(buf + offs, 0xff, alen - wlen); | |
b36a261e | 525 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); |
1e51764a AB |
526 | if (err) |
527 | return err; | |
73944a6d AH |
528 | |
529 | dbg_chk_lpt_sz(c, 4, alen - wlen); | |
530 | err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); | |
531 | if (err) | |
532 | return err; | |
533 | ||
1e51764a AB |
534 | c->nhead_lnum = lnum; |
535 | c->nhead_offs = ALIGN(offs, c->min_io_size); | |
536 | ||
537 | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | |
538 | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | |
539 | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | |
540 | if (c->big_lpt) | |
541 | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | |
73944a6d | 542 | |
1e51764a | 543 | return 0; |
73944a6d AH |
544 | |
545 | no_space: | |
235c362b | 546 | ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", |
79fda517 | 547 | lnum, offs, len, done_ltab, done_lsave); |
edf6be24 AB |
548 | ubifs_dump_lpt_info(c); |
549 | ubifs_dump_lpt_lebs(c); | |
787845bd | 550 | dump_stack(); |
73944a6d | 551 | return err; |
1e51764a AB |
552 | } |
553 | ||
554 | /** | |
4a29d200 | 555 | * next_pnode_to_dirty - find next pnode to dirty. |
1e51764a AB |
556 | * @c: UBIFS file-system description object |
557 | * @pnode: pnode | |
558 | * | |
4a29d200 AH |
559 | * This function returns the next pnode to dirty or %NULL if there are no more |
560 | * pnodes. Note that pnodes that have never been written (lnum == 0) are | |
561 | * skipped. | |
1e51764a | 562 | */ |
4a29d200 AH |
563 | static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, |
564 | struct ubifs_pnode *pnode) | |
1e51764a AB |
565 | { |
566 | struct ubifs_nnode *nnode; | |
567 | int iip; | |
568 | ||
569 | /* Try to go right */ | |
570 | nnode = pnode->parent; | |
4a29d200 | 571 | for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { |
1e51764a AB |
572 | if (nnode->nbranch[iip].lnum) |
573 | return ubifs_get_pnode(c, nnode, iip); | |
1e51764a AB |
574 | } |
575 | ||
576 | /* Go up while can't go right */ | |
577 | do { | |
578 | iip = nnode->iip + 1; | |
579 | nnode = nnode->parent; | |
580 | if (!nnode) | |
581 | return NULL; | |
4a29d200 AH |
582 | for (; iip < UBIFS_LPT_FANOUT; iip++) { |
583 | if (nnode->nbranch[iip].lnum) | |
584 | break; | |
585 | } | |
c4361570 | 586 | } while (iip >= UBIFS_LPT_FANOUT); |
1e51764a AB |
587 | |
588 | /* Go right */ | |
589 | nnode = ubifs_get_nnode(c, nnode, iip); | |
590 | if (IS_ERR(nnode)) | |
591 | return (void *)nnode; | |
592 | ||
593 | /* Go down to level 1 */ | |
594 | while (nnode->level > 1) { | |
4a29d200 AH |
595 | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { |
596 | if (nnode->nbranch[iip].lnum) | |
597 | break; | |
598 | } | |
599 | if (iip >= UBIFS_LPT_FANOUT) { | |
600 | /* | |
601 | * Should not happen, but we need to keep going | |
602 | * if it does. | |
603 | */ | |
604 | iip = 0; | |
605 | } | |
606 | nnode = ubifs_get_nnode(c, nnode, iip); | |
1e51764a AB |
607 | if (IS_ERR(nnode)) |
608 | return (void *)nnode; | |
609 | } | |
610 | ||
4a29d200 AH |
611 | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) |
612 | if (nnode->nbranch[iip].lnum) | |
613 | break; | |
614 | if (iip >= UBIFS_LPT_FANOUT) | |
615 | /* Should not happen, but we need to keep going if it does */ | |
616 | iip = 0; | |
617 | return ubifs_get_pnode(c, nnode, iip); | |
1e51764a AB |
618 | } |
619 | ||
620 | /** | |
621 | * pnode_lookup - lookup a pnode in the LPT. | |
622 | * @c: UBIFS file-system description object | |
623 | * @i: pnode number (0 to main_lebs - 1) | |
624 | * | |
625 | * This function returns a pointer to the pnode on success or a negative | |
626 | * error code on failure. | |
627 | */ | |
628 | static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) | |
629 | { | |
630 | int err, h, iip, shft; | |
631 | struct ubifs_nnode *nnode; | |
632 | ||
633 | if (!c->nroot) { | |
634 | err = ubifs_read_nnode(c, NULL, 0); | |
635 | if (err) | |
636 | return ERR_PTR(err); | |
637 | } | |
638 | i <<= UBIFS_LPT_FANOUT_SHIFT; | |
639 | nnode = c->nroot; | |
640 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | |
641 | for (h = 1; h < c->lpt_hght; h++) { | |
642 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | |
643 | shft -= UBIFS_LPT_FANOUT_SHIFT; | |
644 | nnode = ubifs_get_nnode(c, nnode, iip); | |
645 | if (IS_ERR(nnode)) | |
6da5156f | 646 | return ERR_CAST(nnode); |
1e51764a AB |
647 | } |
648 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | |
649 | return ubifs_get_pnode(c, nnode, iip); | |
650 | } | |
651 | ||
652 | /** | |
653 | * add_pnode_dirt - add dirty space to LPT LEB properties. | |
654 | * @c: UBIFS file-system description object | |
655 | * @pnode: pnode for which to add dirt | |
656 | */ | |
657 | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) | |
658 | { | |
659 | ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, | |
660 | c->pnode_sz); | |
661 | } | |
662 | ||
663 | /** | |
664 | * do_make_pnode_dirty - mark a pnode dirty. | |
665 | * @c: UBIFS file-system description object | |
666 | * @pnode: pnode to mark dirty | |
667 | */ | |
668 | static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) | |
669 | { | |
670 | /* Assumes cnext list is empty i.e. not called during commit */ | |
671 | if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { | |
672 | struct ubifs_nnode *nnode; | |
673 | ||
674 | c->dirty_pn_cnt += 1; | |
675 | add_pnode_dirt(c, pnode); | |
676 | /* Mark parent and ancestors dirty too */ | |
677 | nnode = pnode->parent; | |
678 | while (nnode) { | |
679 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
680 | c->dirty_nn_cnt += 1; | |
681 | ubifs_add_nnode_dirt(c, nnode); | |
682 | nnode = nnode->parent; | |
683 | } else | |
684 | break; | |
685 | } | |
686 | } | |
687 | } | |
688 | ||
689 | /** | |
690 | * make_tree_dirty - mark the entire LEB properties tree dirty. | |
691 | * @c: UBIFS file-system description object | |
692 | * | |
693 | * This function is used by the "small" LPT model to cause the entire LEB | |
694 | * properties tree to be written. The "small" LPT model does not use LPT | |
695 | * garbage collection because it is more efficient to write the entire tree | |
696 | * (because it is small). | |
697 | * | |
698 | * This function returns %0 on success and a negative error code on failure. | |
699 | */ | |
700 | static int make_tree_dirty(struct ubifs_info *c) | |
701 | { | |
702 | struct ubifs_pnode *pnode; | |
703 | ||
704 | pnode = pnode_lookup(c, 0); | |
8c893a55 VK |
705 | if (IS_ERR(pnode)) |
706 | return PTR_ERR(pnode); | |
707 | ||
1e51764a AB |
708 | while (pnode) { |
709 | do_make_pnode_dirty(c, pnode); | |
4a29d200 | 710 | pnode = next_pnode_to_dirty(c, pnode); |
1e51764a AB |
711 | if (IS_ERR(pnode)) |
712 | return PTR_ERR(pnode); | |
713 | } | |
714 | return 0; | |
715 | } | |
716 | ||
717 | /** | |
718 | * need_write_all - determine if the LPT area is running out of free space. | |
719 | * @c: UBIFS file-system description object | |
720 | * | |
721 | * This function returns %1 if the LPT area is running out of free space and %0 | |
722 | * if it is not. | |
723 | */ | |
724 | static int need_write_all(struct ubifs_info *c) | |
725 | { | |
726 | long long free = 0; | |
727 | int i; | |
728 | ||
729 | for (i = 0; i < c->lpt_lebs; i++) { | |
730 | if (i + c->lpt_first == c->nhead_lnum) | |
731 | free += c->leb_size - c->nhead_offs; | |
732 | else if (c->ltab[i].free == c->leb_size) | |
733 | free += c->leb_size; | |
734 | else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | |
735 | free += c->leb_size; | |
736 | } | |
737 | /* Less than twice the size left */ | |
738 | if (free <= c->lpt_sz * 2) | |
739 | return 1; | |
740 | return 0; | |
741 | } | |
742 | ||
743 | /** | |
744 | * lpt_tgc_start - start trivial garbage collection of LPT LEBs. | |
745 | * @c: UBIFS file-system description object | |
746 | * | |
747 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | |
748 | * free space and so may be reused as soon as the next commit is completed. | |
749 | * This function is called during start commit to mark LPT LEBs for trivial GC. | |
750 | */ | |
751 | static void lpt_tgc_start(struct ubifs_info *c) | |
752 | { | |
753 | int i; | |
754 | ||
755 | for (i = 0; i < c->lpt_lebs; i++) { | |
756 | if (i + c->lpt_first == c->nhead_lnum) | |
757 | continue; | |
758 | if (c->ltab[i].dirty > 0 && | |
759 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { | |
760 | c->ltab[i].tgc = 1; | |
761 | c->ltab[i].free = c->leb_size; | |
762 | c->ltab[i].dirty = 0; | |
763 | dbg_lp("LEB %d", i + c->lpt_first); | |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | /** | |
769 | * lpt_tgc_end - end trivial garbage collection of LPT LEBs. | |
770 | * @c: UBIFS file-system description object | |
771 | * | |
772 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | |
773 | * free space and so may be reused as soon as the next commit is completed. | |
774 | * This function is called after the commit is completed (master node has been | |
80736d41 | 775 | * written) and un-maps LPT LEBs that were marked for trivial GC. |
1e51764a AB |
776 | */ |
777 | static int lpt_tgc_end(struct ubifs_info *c) | |
778 | { | |
779 | int i, err; | |
780 | ||
781 | for (i = 0; i < c->lpt_lebs; i++) | |
782 | if (c->ltab[i].tgc) { | |
783 | err = ubifs_leb_unmap(c, i + c->lpt_first); | |
784 | if (err) | |
785 | return err; | |
786 | c->ltab[i].tgc = 0; | |
787 | dbg_lp("LEB %d", i + c->lpt_first); | |
788 | } | |
789 | return 0; | |
790 | } | |
791 | ||
792 | /** | |
793 | * populate_lsave - fill the lsave array with important LEB numbers. | |
794 | * @c: the UBIFS file-system description object | |
795 | * | |
796 | * This function is only called for the "big" model. It records a small number | |
797 | * of LEB numbers of important LEBs. Important LEBs are ones that are (from | |
798 | * most important to least important): empty, freeable, freeable index, dirty | |
799 | * index, dirty or free. Upon mount, we read this list of LEB numbers and bring | |
800 | * their pnodes into memory. That will stop us from having to scan the LPT | |
801 | * straight away. For the "small" model we assume that scanning the LPT is no | |
802 | * big deal. | |
803 | */ | |
804 | static void populate_lsave(struct ubifs_info *c) | |
805 | { | |
806 | struct ubifs_lprops *lprops; | |
807 | struct ubifs_lpt_heap *heap; | |
808 | int i, cnt = 0; | |
809 | ||
810 | ubifs_assert(c->big_lpt); | |
811 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | |
812 | c->lpt_drty_flgs |= LSAVE_DIRTY; | |
813 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | |
814 | } | |
cdd8ad6e AB |
815 | |
816 | if (dbg_populate_lsave(c)) | |
817 | return; | |
818 | ||
1e51764a AB |
819 | list_for_each_entry(lprops, &c->empty_list, list) { |
820 | c->lsave[cnt++] = lprops->lnum; | |
821 | if (cnt >= c->lsave_cnt) | |
822 | return; | |
823 | } | |
824 | list_for_each_entry(lprops, &c->freeable_list, list) { | |
825 | c->lsave[cnt++] = lprops->lnum; | |
826 | if (cnt >= c->lsave_cnt) | |
827 | return; | |
828 | } | |
829 | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | |
830 | c->lsave[cnt++] = lprops->lnum; | |
831 | if (cnt >= c->lsave_cnt) | |
832 | return; | |
833 | } | |
834 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | |
835 | for (i = 0; i < heap->cnt; i++) { | |
836 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
837 | if (cnt >= c->lsave_cnt) | |
838 | return; | |
839 | } | |
840 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | |
841 | for (i = 0; i < heap->cnt; i++) { | |
842 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
843 | if (cnt >= c->lsave_cnt) | |
844 | return; | |
845 | } | |
846 | heap = &c->lpt_heap[LPROPS_FREE - 1]; | |
847 | for (i = 0; i < heap->cnt; i++) { | |
848 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
849 | if (cnt >= c->lsave_cnt) | |
850 | return; | |
851 | } | |
852 | /* Fill it up completely */ | |
853 | while (cnt < c->lsave_cnt) | |
854 | c->lsave[cnt++] = c->main_first; | |
855 | } | |
856 | ||
857 | /** | |
858 | * nnode_lookup - lookup a nnode in the LPT. | |
859 | * @c: UBIFS file-system description object | |
860 | * @i: nnode number | |
861 | * | |
862 | * This function returns a pointer to the nnode on success or a negative | |
863 | * error code on failure. | |
864 | */ | |
865 | static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) | |
866 | { | |
867 | int err, iip; | |
868 | struct ubifs_nnode *nnode; | |
869 | ||
870 | if (!c->nroot) { | |
871 | err = ubifs_read_nnode(c, NULL, 0); | |
872 | if (err) | |
873 | return ERR_PTR(err); | |
874 | } | |
875 | nnode = c->nroot; | |
876 | while (1) { | |
877 | iip = i & (UBIFS_LPT_FANOUT - 1); | |
878 | i >>= UBIFS_LPT_FANOUT_SHIFT; | |
879 | if (!i) | |
880 | break; | |
881 | nnode = ubifs_get_nnode(c, nnode, iip); | |
882 | if (IS_ERR(nnode)) | |
883 | return nnode; | |
884 | } | |
885 | return nnode; | |
886 | } | |
887 | ||
888 | /** | |
889 | * make_nnode_dirty - find a nnode and, if found, make it dirty. | |
890 | * @c: UBIFS file-system description object | |
891 | * @node_num: nnode number of nnode to make dirty | |
892 | * @lnum: LEB number where nnode was written | |
893 | * @offs: offset where nnode was written | |
894 | * | |
895 | * This function is used by LPT garbage collection. LPT garbage collection is | |
896 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
897 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
898 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
899 | * to be reused. | |
900 | * | |
901 | * This function returns %0 on success and a negative error code on failure. | |
902 | */ | |
903 | static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, | |
904 | int offs) | |
905 | { | |
906 | struct ubifs_nnode *nnode; | |
907 | ||
908 | nnode = nnode_lookup(c, node_num); | |
909 | if (IS_ERR(nnode)) | |
910 | return PTR_ERR(nnode); | |
911 | if (nnode->parent) { | |
912 | struct ubifs_nbranch *branch; | |
913 | ||
914 | branch = &nnode->parent->nbranch[nnode->iip]; | |
915 | if (branch->lnum != lnum || branch->offs != offs) | |
916 | return 0; /* nnode is obsolete */ | |
917 | } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) | |
918 | return 0; /* nnode is obsolete */ | |
919 | /* Assumes cnext list is empty i.e. not called during commit */ | |
920 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
921 | c->dirty_nn_cnt += 1; | |
922 | ubifs_add_nnode_dirt(c, nnode); | |
923 | /* Mark parent and ancestors dirty too */ | |
924 | nnode = nnode->parent; | |
925 | while (nnode) { | |
926 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
927 | c->dirty_nn_cnt += 1; | |
928 | ubifs_add_nnode_dirt(c, nnode); | |
929 | nnode = nnode->parent; | |
930 | } else | |
931 | break; | |
932 | } | |
933 | } | |
934 | return 0; | |
935 | } | |
936 | ||
937 | /** | |
938 | * make_pnode_dirty - find a pnode and, if found, make it dirty. | |
939 | * @c: UBIFS file-system description object | |
940 | * @node_num: pnode number of pnode to make dirty | |
941 | * @lnum: LEB number where pnode was written | |
942 | * @offs: offset where pnode was written | |
943 | * | |
944 | * This function is used by LPT garbage collection. LPT garbage collection is | |
945 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
946 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
947 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
948 | * to be reused. | |
949 | * | |
950 | * This function returns %0 on success and a negative error code on failure. | |
951 | */ | |
952 | static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, | |
953 | int offs) | |
954 | { | |
955 | struct ubifs_pnode *pnode; | |
956 | struct ubifs_nbranch *branch; | |
957 | ||
958 | pnode = pnode_lookup(c, node_num); | |
959 | if (IS_ERR(pnode)) | |
960 | return PTR_ERR(pnode); | |
961 | branch = &pnode->parent->nbranch[pnode->iip]; | |
962 | if (branch->lnum != lnum || branch->offs != offs) | |
963 | return 0; | |
964 | do_make_pnode_dirty(c, pnode); | |
965 | return 0; | |
966 | } | |
967 | ||
968 | /** | |
969 | * make_ltab_dirty - make ltab node dirty. | |
970 | * @c: UBIFS file-system description object | |
971 | * @lnum: LEB number where ltab was written | |
972 | * @offs: offset where ltab was written | |
973 | * | |
974 | * This function is used by LPT garbage collection. LPT garbage collection is | |
975 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
976 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
977 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
978 | * to be reused. | |
979 | * | |
980 | * This function returns %0 on success and a negative error code on failure. | |
981 | */ | |
982 | static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | |
983 | { | |
984 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | |
985 | return 0; /* This ltab node is obsolete */ | |
986 | if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { | |
987 | c->lpt_drty_flgs |= LTAB_DIRTY; | |
988 | ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); | |
989 | } | |
990 | return 0; | |
991 | } | |
992 | ||
993 | /** | |
994 | * make_lsave_dirty - make lsave node dirty. | |
995 | * @c: UBIFS file-system description object | |
996 | * @lnum: LEB number where lsave was written | |
997 | * @offs: offset where lsave was written | |
998 | * | |
999 | * This function is used by LPT garbage collection. LPT garbage collection is | |
1000 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
1001 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
1002 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
1003 | * to be reused. | |
1004 | * | |
1005 | * This function returns %0 on success and a negative error code on failure. | |
1006 | */ | |
1007 | static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | |
1008 | { | |
1009 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | |
1010 | return 0; /* This lsave node is obsolete */ | |
1011 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | |
1012 | c->lpt_drty_flgs |= LSAVE_DIRTY; | |
1013 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | |
1014 | } | |
1015 | return 0; | |
1016 | } | |
1017 | ||
1018 | /** | |
1019 | * make_node_dirty - make node dirty. | |
1020 | * @c: UBIFS file-system description object | |
1021 | * @node_type: LPT node type | |
1022 | * @node_num: node number | |
1023 | * @lnum: LEB number where node was written | |
1024 | * @offs: offset where node was written | |
1025 | * | |
1026 | * This function is used by LPT garbage collection. LPT garbage collection is | |
1027 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
1028 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
1029 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
1030 | * to be reused. | |
1031 | * | |
1032 | * This function returns %0 on success and a negative error code on failure. | |
1033 | */ | |
1034 | static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, | |
1035 | int lnum, int offs) | |
1036 | { | |
1037 | switch (node_type) { | |
1038 | case UBIFS_LPT_NNODE: | |
1039 | return make_nnode_dirty(c, node_num, lnum, offs); | |
1040 | case UBIFS_LPT_PNODE: | |
1041 | return make_pnode_dirty(c, node_num, lnum, offs); | |
1042 | case UBIFS_LPT_LTAB: | |
1043 | return make_ltab_dirty(c, lnum, offs); | |
1044 | case UBIFS_LPT_LSAVE: | |
1045 | return make_lsave_dirty(c, lnum, offs); | |
1046 | } | |
1047 | return -EINVAL; | |
1048 | } | |
1049 | ||
1050 | /** | |
1051 | * get_lpt_node_len - return the length of a node based on its type. | |
1052 | * @c: UBIFS file-system description object | |
1053 | * @node_type: LPT node type | |
1054 | */ | |
2ba5f7ae | 1055 | static int get_lpt_node_len(const struct ubifs_info *c, int node_type) |
1e51764a AB |
1056 | { |
1057 | switch (node_type) { | |
1058 | case UBIFS_LPT_NNODE: | |
1059 | return c->nnode_sz; | |
1060 | case UBIFS_LPT_PNODE: | |
1061 | return c->pnode_sz; | |
1062 | case UBIFS_LPT_LTAB: | |
1063 | return c->ltab_sz; | |
1064 | case UBIFS_LPT_LSAVE: | |
1065 | return c->lsave_sz; | |
1066 | } | |
1067 | return 0; | |
1068 | } | |
1069 | ||
1070 | /** | |
1071 | * get_pad_len - return the length of padding in a buffer. | |
1072 | * @c: UBIFS file-system description object | |
1073 | * @buf: buffer | |
1074 | * @len: length of buffer | |
1075 | */ | |
2ba5f7ae | 1076 | static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) |
1e51764a AB |
1077 | { |
1078 | int offs, pad_len; | |
1079 | ||
1080 | if (c->min_io_size == 1) | |
1081 | return 0; | |
1082 | offs = c->leb_size - len; | |
1083 | pad_len = ALIGN(offs, c->min_io_size) - offs; | |
1084 | return pad_len; | |
1085 | } | |
1086 | ||
1087 | /** | |
1088 | * get_lpt_node_type - return type (and node number) of a node in a buffer. | |
1089 | * @c: UBIFS file-system description object | |
1090 | * @buf: buffer | |
1091 | * @node_num: node number is returned here | |
1092 | */ | |
2ba5f7ae AB |
1093 | static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, |
1094 | int *node_num) | |
1e51764a AB |
1095 | { |
1096 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | |
1097 | int pos = 0, node_type; | |
1098 | ||
1099 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); | |
1100 | *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); | |
1101 | return node_type; | |
1102 | } | |
1103 | ||
1104 | /** | |
1105 | * is_a_node - determine if a buffer contains a node. | |
1106 | * @c: UBIFS file-system description object | |
1107 | * @buf: buffer | |
1108 | * @len: length of buffer | |
1109 | * | |
1110 | * This function returns %1 if the buffer contains a node or %0 if it does not. | |
1111 | */ | |
2ba5f7ae | 1112 | static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) |
1e51764a AB |
1113 | { |
1114 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | |
1115 | int pos = 0, node_type, node_len; | |
1116 | uint16_t crc, calc_crc; | |
1117 | ||
be2f6bd6 AH |
1118 | if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) |
1119 | return 0; | |
1e51764a AB |
1120 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); |
1121 | if (node_type == UBIFS_LPT_NOT_A_NODE) | |
1122 | return 0; | |
1123 | node_len = get_lpt_node_len(c, node_type); | |
1124 | if (!node_len || node_len > len) | |
1125 | return 0; | |
1126 | pos = 0; | |
1127 | addr = buf; | |
1128 | crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); | |
1129 | calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | |
1130 | node_len - UBIFS_LPT_CRC_BYTES); | |
1131 | if (crc != calc_crc) | |
1132 | return 0; | |
1133 | return 1; | |
1134 | } | |
1135 | ||
1e51764a AB |
1136 | /** |
1137 | * lpt_gc_lnum - garbage collect a LPT LEB. | |
1138 | * @c: UBIFS file-system description object | |
1139 | * @lnum: LEB number to garbage collect | |
1140 | * | |
1141 | * LPT garbage collection is used only for the "big" LPT model | |
1142 | * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes | |
1143 | * in the LEB being garbage-collected as dirty. The dirty nodes are written | |
1144 | * next commit, after which the LEB is free to be reused. | |
1145 | * | |
1146 | * This function returns %0 on success and a negative error code on failure. | |
1147 | */ | |
1148 | static int lpt_gc_lnum(struct ubifs_info *c, int lnum) | |
1149 | { | |
1150 | int err, len = c->leb_size, node_type, node_num, node_len, offs; | |
1151 | void *buf = c->lpt_buf; | |
1152 | ||
1153 | dbg_lp("LEB %d", lnum); | |
d304820a AB |
1154 | |
1155 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | |
1156 | if (err) | |
1e51764a | 1157 | return err; |
d304820a | 1158 | |
1e51764a AB |
1159 | while (1) { |
1160 | if (!is_a_node(c, buf, len)) { | |
1161 | int pad_len; | |
1162 | ||
1163 | pad_len = get_pad_len(c, buf, len); | |
1164 | if (pad_len) { | |
1165 | buf += pad_len; | |
1166 | len -= pad_len; | |
1167 | continue; | |
1168 | } | |
1169 | return 0; | |
1170 | } | |
1171 | node_type = get_lpt_node_type(c, buf, &node_num); | |
1172 | node_len = get_lpt_node_len(c, node_type); | |
1173 | offs = c->leb_size - len; | |
1174 | ubifs_assert(node_len != 0); | |
1175 | mutex_lock(&c->lp_mutex); | |
1176 | err = make_node_dirty(c, node_type, node_num, lnum, offs); | |
1177 | mutex_unlock(&c->lp_mutex); | |
1178 | if (err) | |
1179 | return err; | |
1180 | buf += node_len; | |
1181 | len -= node_len; | |
1182 | } | |
1183 | return 0; | |
1184 | } | |
1185 | ||
1186 | /** | |
1187 | * lpt_gc - LPT garbage collection. | |
1188 | * @c: UBIFS file-system description object | |
1189 | * | |
1190 | * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. | |
1191 | * Returns %0 on success and a negative error code on failure. | |
1192 | */ | |
1193 | static int lpt_gc(struct ubifs_info *c) | |
1194 | { | |
1195 | int i, lnum = -1, dirty = 0; | |
1196 | ||
1197 | mutex_lock(&c->lp_mutex); | |
1198 | for (i = 0; i < c->lpt_lebs; i++) { | |
1199 | ubifs_assert(!c->ltab[i].tgc); | |
1200 | if (i + c->lpt_first == c->nhead_lnum || | |
1201 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | |
1202 | continue; | |
1203 | if (c->ltab[i].dirty > dirty) { | |
1204 | dirty = c->ltab[i].dirty; | |
1205 | lnum = i + c->lpt_first; | |
1206 | } | |
1207 | } | |
1208 | mutex_unlock(&c->lp_mutex); | |
1209 | if (lnum == -1) | |
1210 | return -ENOSPC; | |
1211 | return lpt_gc_lnum(c, lnum); | |
1212 | } | |
1213 | ||
1214 | /** | |
1215 | * ubifs_lpt_start_commit - UBIFS commit starts. | |
1216 | * @c: the UBIFS file-system description object | |
1217 | * | |
1218 | * This function has to be called when UBIFS starts the commit operation. | |
1219 | * This function "freezes" all currently dirty LEB properties and does not | |
1220 | * change them anymore. Further changes are saved and tracked separately | |
1221 | * because they are not part of this commit. This function returns zero in case | |
1222 | * of success and a negative error code in case of failure. | |
1223 | */ | |
1224 | int ubifs_lpt_start_commit(struct ubifs_info *c) | |
1225 | { | |
1226 | int err, cnt; | |
1227 | ||
1228 | dbg_lp(""); | |
1229 | ||
1230 | mutex_lock(&c->lp_mutex); | |
73944a6d AH |
1231 | err = dbg_chk_lpt_free_spc(c); |
1232 | if (err) | |
1233 | goto out; | |
1e51764a AB |
1234 | err = dbg_check_ltab(c); |
1235 | if (err) | |
1236 | goto out; | |
1237 | ||
1238 | if (c->check_lpt_free) { | |
1239 | /* | |
1240 | * We ensure there is enough free space in | |
1241 | * ubifs_lpt_post_commit() by marking nodes dirty. That | |
1242 | * information is lost when we unmount, so we also need | |
1243 | * to check free space once after mounting also. | |
1244 | */ | |
1245 | c->check_lpt_free = 0; | |
1246 | while (need_write_all(c)) { | |
1247 | mutex_unlock(&c->lp_mutex); | |
1248 | err = lpt_gc(c); | |
1249 | if (err) | |
1250 | return err; | |
1251 | mutex_lock(&c->lp_mutex); | |
1252 | } | |
1253 | } | |
1254 | ||
1255 | lpt_tgc_start(c); | |
1256 | ||
1257 | if (!c->dirty_pn_cnt) { | |
1258 | dbg_cmt("no cnodes to commit"); | |
1259 | err = 0; | |
1260 | goto out; | |
1261 | } | |
1262 | ||
1263 | if (!c->big_lpt && need_write_all(c)) { | |
1264 | /* If needed, write everything */ | |
1265 | err = make_tree_dirty(c); | |
1266 | if (err) | |
1267 | goto out; | |
1268 | lpt_tgc_start(c); | |
1269 | } | |
1270 | ||
1271 | if (c->big_lpt) | |
1272 | populate_lsave(c); | |
1273 | ||
1274 | cnt = get_cnodes_to_commit(c); | |
1275 | ubifs_assert(cnt != 0); | |
1276 | ||
1277 | err = layout_cnodes(c); | |
1278 | if (err) | |
1279 | goto out; | |
1280 | ||
1281 | /* Copy the LPT's own lprops for end commit to write */ | |
1282 | memcpy(c->ltab_cmt, c->ltab, | |
1283 | sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | |
1284 | c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); | |
1285 | ||
1286 | out: | |
1287 | mutex_unlock(&c->lp_mutex); | |
1288 | return err; | |
1289 | } | |
1290 | ||
1291 | /** | |
1292 | * free_obsolete_cnodes - free obsolete cnodes for commit end. | |
1293 | * @c: UBIFS file-system description object | |
1294 | */ | |
1295 | static void free_obsolete_cnodes(struct ubifs_info *c) | |
1296 | { | |
1297 | struct ubifs_cnode *cnode, *cnext; | |
1298 | ||
1299 | cnext = c->lpt_cnext; | |
1300 | if (!cnext) | |
1301 | return; | |
1302 | do { | |
1303 | cnode = cnext; | |
1304 | cnext = cnode->cnext; | |
1305 | if (test_bit(OBSOLETE_CNODE, &cnode->flags)) | |
1306 | kfree(cnode); | |
1307 | else | |
1308 | cnode->cnext = NULL; | |
1309 | } while (cnext != c->lpt_cnext); | |
1310 | c->lpt_cnext = NULL; | |
1311 | } | |
1312 | ||
1313 | /** | |
1314 | * ubifs_lpt_end_commit - finish the commit operation. | |
1315 | * @c: the UBIFS file-system description object | |
1316 | * | |
1317 | * This function has to be called when the commit operation finishes. It | |
1318 | * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to | |
1319 | * the media. Returns zero in case of success and a negative error code in case | |
1320 | * of failure. | |
1321 | */ | |
1322 | int ubifs_lpt_end_commit(struct ubifs_info *c) | |
1323 | { | |
1324 | int err; | |
1325 | ||
1326 | dbg_lp(""); | |
1327 | ||
1328 | if (!c->lpt_cnext) | |
1329 | return 0; | |
1330 | ||
1331 | err = write_cnodes(c); | |
1332 | if (err) | |
1333 | return err; | |
1334 | ||
1335 | mutex_lock(&c->lp_mutex); | |
1336 | free_obsolete_cnodes(c); | |
1337 | mutex_unlock(&c->lp_mutex); | |
1338 | ||
1339 | return 0; | |
1340 | } | |
1341 | ||
1342 | /** | |
1343 | * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. | |
1344 | * @c: UBIFS file-system description object | |
1345 | * | |
1346 | * LPT trivial GC is completed after a commit. Also LPT GC is done after a | |
1347 | * commit for the "big" LPT model. | |
1348 | */ | |
1349 | int ubifs_lpt_post_commit(struct ubifs_info *c) | |
1350 | { | |
1351 | int err; | |
1352 | ||
1353 | mutex_lock(&c->lp_mutex); | |
1354 | err = lpt_tgc_end(c); | |
1355 | if (err) | |
1356 | goto out; | |
1357 | if (c->big_lpt) | |
1358 | while (need_write_all(c)) { | |
1359 | mutex_unlock(&c->lp_mutex); | |
1360 | err = lpt_gc(c); | |
1361 | if (err) | |
1362 | return err; | |
1363 | mutex_lock(&c->lp_mutex); | |
1364 | } | |
1365 | out: | |
1366 | mutex_unlock(&c->lp_mutex); | |
1367 | return err; | |
1368 | } | |
1369 | ||
1370 | /** | |
1371 | * first_nnode - find the first nnode in memory. | |
1372 | * @c: UBIFS file-system description object | |
1373 | * @hght: height of tree where nnode found is returned here | |
1374 | * | |
1375 | * This function returns a pointer to the nnode found or %NULL if no nnode is | |
1376 | * found. This function is a helper to 'ubifs_lpt_free()'. | |
1377 | */ | |
1378 | static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) | |
1379 | { | |
1380 | struct ubifs_nnode *nnode; | |
1381 | int h, i, found; | |
1382 | ||
1383 | nnode = c->nroot; | |
1384 | *hght = 0; | |
1385 | if (!nnode) | |
1386 | return NULL; | |
1387 | for (h = 1; h < c->lpt_hght; h++) { | |
1388 | found = 0; | |
1389 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
1390 | if (nnode->nbranch[i].nnode) { | |
1391 | found = 1; | |
1392 | nnode = nnode->nbranch[i].nnode; | |
1393 | *hght = h; | |
1394 | break; | |
1395 | } | |
1396 | } | |
1397 | if (!found) | |
1398 | break; | |
1399 | } | |
1400 | return nnode; | |
1401 | } | |
1402 | ||
1403 | /** | |
1404 | * next_nnode - find the next nnode in memory. | |
1405 | * @c: UBIFS file-system description object | |
1406 | * @nnode: nnode from which to start. | |
1407 | * @hght: height of tree where nnode is, is passed and returned here | |
1408 | * | |
1409 | * This function returns a pointer to the nnode found or %NULL if no nnode is | |
1410 | * found. This function is a helper to 'ubifs_lpt_free()'. | |
1411 | */ | |
1412 | static struct ubifs_nnode *next_nnode(struct ubifs_info *c, | |
1413 | struct ubifs_nnode *nnode, int *hght) | |
1414 | { | |
1415 | struct ubifs_nnode *parent; | |
1416 | int iip, h, i, found; | |
1417 | ||
1418 | parent = nnode->parent; | |
1419 | if (!parent) | |
1420 | return NULL; | |
1421 | if (nnode->iip == UBIFS_LPT_FANOUT - 1) { | |
1422 | *hght -= 1; | |
1423 | return parent; | |
1424 | } | |
1425 | for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | |
1426 | nnode = parent->nbranch[iip].nnode; | |
1427 | if (nnode) | |
1428 | break; | |
1429 | } | |
1430 | if (!nnode) { | |
1431 | *hght -= 1; | |
1432 | return parent; | |
1433 | } | |
1434 | for (h = *hght + 1; h < c->lpt_hght; h++) { | |
1435 | found = 0; | |
1436 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
1437 | if (nnode->nbranch[i].nnode) { | |
1438 | found = 1; | |
1439 | nnode = nnode->nbranch[i].nnode; | |
1440 | *hght = h; | |
1441 | break; | |
1442 | } | |
1443 | } | |
1444 | if (!found) | |
1445 | break; | |
1446 | } | |
1447 | return nnode; | |
1448 | } | |
1449 | ||
1450 | /** | |
1451 | * ubifs_lpt_free - free resources owned by the LPT. | |
1452 | * @c: UBIFS file-system description object | |
1453 | * @wr_only: free only resources used for writing | |
1454 | */ | |
1455 | void ubifs_lpt_free(struct ubifs_info *c, int wr_only) | |
1456 | { | |
1457 | struct ubifs_nnode *nnode; | |
1458 | int i, hght; | |
1459 | ||
1460 | /* Free write-only things first */ | |
1461 | ||
1462 | free_obsolete_cnodes(c); /* Leftover from a failed commit */ | |
1463 | ||
1464 | vfree(c->ltab_cmt); | |
1465 | c->ltab_cmt = NULL; | |
1466 | vfree(c->lpt_buf); | |
1467 | c->lpt_buf = NULL; | |
1468 | kfree(c->lsave); | |
1469 | c->lsave = NULL; | |
1470 | ||
1471 | if (wr_only) | |
1472 | return; | |
1473 | ||
1474 | /* Now free the rest */ | |
1475 | ||
1476 | nnode = first_nnode(c, &hght); | |
1477 | while (nnode) { | |
1478 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) | |
1479 | kfree(nnode->nbranch[i].nnode); | |
1480 | nnode = next_nnode(c, nnode, &hght); | |
1481 | } | |
1482 | for (i = 0; i < LPROPS_HEAP_CNT; i++) | |
1483 | kfree(c->lpt_heap[i].arr); | |
1484 | kfree(c->dirty_idx.arr); | |
1485 | kfree(c->nroot); | |
1486 | vfree(c->ltab); | |
1487 | kfree(c->lpt_nod_buf); | |
1488 | } | |
1489 | ||
f70b7e52 AB |
1490 | /* |
1491 | * Everything below is related to debugging. | |
1492 | */ | |
1e51764a AB |
1493 | |
1494 | /** | |
80736d41 | 1495 | * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. |
1e51764a AB |
1496 | * @buf: buffer |
1497 | * @len: buffer length | |
1498 | */ | |
1499 | static int dbg_is_all_ff(uint8_t *buf, int len) | |
1500 | { | |
1501 | int i; | |
1502 | ||
1503 | for (i = 0; i < len; i++) | |
1504 | if (buf[i] != 0xff) | |
1505 | return 0; | |
1506 | return 1; | |
1507 | } | |
1508 | ||
1509 | /** | |
1510 | * dbg_is_nnode_dirty - determine if a nnode is dirty. | |
1511 | * @c: the UBIFS file-system description object | |
1512 | * @lnum: LEB number where nnode was written | |
1513 | * @offs: offset where nnode was written | |
1514 | */ | |
1515 | static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) | |
1516 | { | |
1517 | struct ubifs_nnode *nnode; | |
1518 | int hght; | |
1519 | ||
80736d41 | 1520 | /* Entire tree is in memory so first_nnode / next_nnode are OK */ |
1e51764a AB |
1521 | nnode = first_nnode(c, &hght); |
1522 | for (; nnode; nnode = next_nnode(c, nnode, &hght)) { | |
1523 | struct ubifs_nbranch *branch; | |
1524 | ||
1525 | cond_resched(); | |
1526 | if (nnode->parent) { | |
1527 | branch = &nnode->parent->nbranch[nnode->iip]; | |
1528 | if (branch->lnum != lnum || branch->offs != offs) | |
1529 | continue; | |
1530 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | |
1531 | return 1; | |
1532 | return 0; | |
1533 | } else { | |
1534 | if (c->lpt_lnum != lnum || c->lpt_offs != offs) | |
1535 | continue; | |
1536 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | |
1537 | return 1; | |
1538 | return 0; | |
1539 | } | |
1540 | } | |
1541 | return 1; | |
1542 | } | |
1543 | ||
1544 | /** | |
1545 | * dbg_is_pnode_dirty - determine if a pnode is dirty. | |
1546 | * @c: the UBIFS file-system description object | |
1547 | * @lnum: LEB number where pnode was written | |
1548 | * @offs: offset where pnode was written | |
1549 | */ | |
1550 | static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) | |
1551 | { | |
1552 | int i, cnt; | |
1553 | ||
1554 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | |
1555 | for (i = 0; i < cnt; i++) { | |
1556 | struct ubifs_pnode *pnode; | |
1557 | struct ubifs_nbranch *branch; | |
1558 | ||
1559 | cond_resched(); | |
1560 | pnode = pnode_lookup(c, i); | |
1561 | if (IS_ERR(pnode)) | |
1562 | return PTR_ERR(pnode); | |
1563 | branch = &pnode->parent->nbranch[pnode->iip]; | |
1564 | if (branch->lnum != lnum || branch->offs != offs) | |
1565 | continue; | |
1566 | if (test_bit(DIRTY_CNODE, &pnode->flags)) | |
1567 | return 1; | |
1568 | return 0; | |
1569 | } | |
1570 | return 1; | |
1571 | } | |
1572 | ||
1573 | /** | |
1574 | * dbg_is_ltab_dirty - determine if a ltab node is dirty. | |
1575 | * @c: the UBIFS file-system description object | |
1576 | * @lnum: LEB number where ltab node was written | |
1577 | * @offs: offset where ltab node was written | |
1578 | */ | |
1579 | static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | |
1580 | { | |
1581 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | |
1582 | return 1; | |
1583 | return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; | |
1584 | } | |
1585 | ||
1586 | /** | |
1587 | * dbg_is_lsave_dirty - determine if a lsave node is dirty. | |
1588 | * @c: the UBIFS file-system description object | |
1589 | * @lnum: LEB number where lsave node was written | |
1590 | * @offs: offset where lsave node was written | |
1591 | */ | |
1592 | static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | |
1593 | { | |
1594 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | |
1595 | return 1; | |
1596 | return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; | |
1597 | } | |
1598 | ||
1599 | /** | |
1600 | * dbg_is_node_dirty - determine if a node is dirty. | |
1601 | * @c: the UBIFS file-system description object | |
1602 | * @node_type: node type | |
1603 | * @lnum: LEB number where node was written | |
1604 | * @offs: offset where node was written | |
1605 | */ | |
1606 | static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, | |
1607 | int offs) | |
1608 | { | |
1609 | switch (node_type) { | |
1610 | case UBIFS_LPT_NNODE: | |
1611 | return dbg_is_nnode_dirty(c, lnum, offs); | |
1612 | case UBIFS_LPT_PNODE: | |
1613 | return dbg_is_pnode_dirty(c, lnum, offs); | |
1614 | case UBIFS_LPT_LTAB: | |
1615 | return dbg_is_ltab_dirty(c, lnum, offs); | |
1616 | case UBIFS_LPT_LSAVE: | |
1617 | return dbg_is_lsave_dirty(c, lnum, offs); | |
1618 | } | |
1619 | return 1; | |
1620 | } | |
1621 | ||
1622 | /** | |
1623 | * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. | |
1624 | * @c: the UBIFS file-system description object | |
1625 | * @lnum: LEB number where node was written | |
1626 | * @offs: offset where node was written | |
1627 | * | |
1628 | * This function returns %0 on success and a negative error code on failure. | |
1629 | */ | |
1630 | static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) | |
1631 | { | |
1632 | int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; | |
1633 | int ret; | |
6fb324a4 | 1634 | void *buf, *p; |
1e51764a | 1635 | |
2b1844a8 | 1636 | if (!dbg_is_chk_lprops(c)) |
45e12d90 AB |
1637 | return 0; |
1638 | ||
fc5e58c0 | 1639 | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); |
6fb324a4 | 1640 | if (!buf) { |
235c362b | 1641 | ubifs_err(c, "cannot allocate memory for ltab checking"); |
6fb324a4 AB |
1642 | return 0; |
1643 | } | |
1644 | ||
1e51764a | 1645 | dbg_lp("LEB %d", lnum); |
d304820a AB |
1646 | |
1647 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | |
1648 | if (err) | |
6fb324a4 | 1649 | goto out; |
d304820a | 1650 | |
1e51764a | 1651 | while (1) { |
6fb324a4 | 1652 | if (!is_a_node(c, p, len)) { |
1e51764a AB |
1653 | int i, pad_len; |
1654 | ||
6fb324a4 | 1655 | pad_len = get_pad_len(c, p, len); |
1e51764a | 1656 | if (pad_len) { |
6fb324a4 | 1657 | p += pad_len; |
1e51764a AB |
1658 | len -= pad_len; |
1659 | dirty += pad_len; | |
1660 | continue; | |
1661 | } | |
6fb324a4 | 1662 | if (!dbg_is_all_ff(p, len)) { |
235c362b | 1663 | ubifs_err(c, "invalid empty space in LEB %d at %d", |
3668b70f | 1664 | lnum, c->leb_size - len); |
1e51764a AB |
1665 | err = -EINVAL; |
1666 | } | |
1667 | i = lnum - c->lpt_first; | |
1668 | if (len != c->ltab[i].free) { | |
235c362b | 1669 | ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)", |
3668b70f | 1670 | lnum, len, c->ltab[i].free); |
1e51764a AB |
1671 | err = -EINVAL; |
1672 | } | |
1673 | if (dirty != c->ltab[i].dirty) { | |
235c362b | 1674 | ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)", |
3668b70f | 1675 | lnum, dirty, c->ltab[i].dirty); |
1e51764a AB |
1676 | err = -EINVAL; |
1677 | } | |
6fb324a4 | 1678 | goto out; |
1e51764a | 1679 | } |
6fb324a4 | 1680 | node_type = get_lpt_node_type(c, p, &node_num); |
1e51764a AB |
1681 | node_len = get_lpt_node_len(c, node_type); |
1682 | ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); | |
1683 | if (ret == 1) | |
1684 | dirty += node_len; | |
6fb324a4 | 1685 | p += node_len; |
1e51764a AB |
1686 | len -= node_len; |
1687 | } | |
6fb324a4 AB |
1688 | |
1689 | err = 0; | |
1690 | out: | |
1691 | vfree(buf); | |
1692 | return err; | |
1e51764a AB |
1693 | } |
1694 | ||
1695 | /** | |
1696 | * dbg_check_ltab - check the free and dirty space in the ltab. | |
1697 | * @c: the UBIFS file-system description object | |
1698 | * | |
1699 | * This function returns %0 on success and a negative error code on failure. | |
1700 | */ | |
1701 | int dbg_check_ltab(struct ubifs_info *c) | |
1702 | { | |
1703 | int lnum, err, i, cnt; | |
1704 | ||
2b1844a8 | 1705 | if (!dbg_is_chk_lprops(c)) |
1e51764a AB |
1706 | return 0; |
1707 | ||
1708 | /* Bring the entire tree into memory */ | |
1709 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | |
1710 | for (i = 0; i < cnt; i++) { | |
1711 | struct ubifs_pnode *pnode; | |
1712 | ||
1713 | pnode = pnode_lookup(c, i); | |
1714 | if (IS_ERR(pnode)) | |
1715 | return PTR_ERR(pnode); | |
1716 | cond_resched(); | |
1717 | } | |
1718 | ||
1719 | /* Check nodes */ | |
1720 | err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); | |
1721 | if (err) | |
1722 | return err; | |
1723 | ||
1724 | /* Check each LEB */ | |
1725 | for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | |
1726 | err = dbg_check_ltab_lnum(c, lnum); | |
1727 | if (err) { | |
235c362b | 1728 | ubifs_err(c, "failed at LEB %d", lnum); |
1e51764a AB |
1729 | return err; |
1730 | } | |
1731 | } | |
1732 | ||
1733 | dbg_lp("succeeded"); | |
1734 | return 0; | |
1735 | } | |
1736 | ||
73944a6d AH |
1737 | /** |
1738 | * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. | |
1739 | * @c: the UBIFS file-system description object | |
1740 | * | |
1741 | * This function returns %0 on success and a negative error code on failure. | |
1742 | */ | |
1743 | int dbg_chk_lpt_free_spc(struct ubifs_info *c) | |
1744 | { | |
1745 | long long free = 0; | |
1746 | int i; | |
1747 | ||
2b1844a8 | 1748 | if (!dbg_is_chk_lprops(c)) |
45e12d90 AB |
1749 | return 0; |
1750 | ||
73944a6d AH |
1751 | for (i = 0; i < c->lpt_lebs; i++) { |
1752 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
1753 | continue; | |
1754 | if (i + c->lpt_first == c->nhead_lnum) | |
1755 | free += c->leb_size - c->nhead_offs; | |
1756 | else if (c->ltab[i].free == c->leb_size) | |
1757 | free += c->leb_size; | |
1758 | } | |
1759 | if (free < c->lpt_sz) { | |
235c362b | 1760 | ubifs_err(c, "LPT space error: free %lld lpt_sz %lld", |
a6aae4dd | 1761 | free, c->lpt_sz); |
edf6be24 AB |
1762 | ubifs_dump_lpt_info(c); |
1763 | ubifs_dump_lpt_lebs(c); | |
787845bd | 1764 | dump_stack(); |
73944a6d AH |
1765 | return -EINVAL; |
1766 | } | |
1767 | return 0; | |
1768 | } | |
1769 | ||
1770 | /** | |
1771 | * dbg_chk_lpt_sz - check LPT does not write more than LPT size. | |
1772 | * @c: the UBIFS file-system description object | |
2bc275e9 | 1773 | * @action: what to do |
73944a6d AH |
1774 | * @len: length written |
1775 | * | |
1776 | * This function returns %0 on success and a negative error code on failure. | |
2bc275e9 AH |
1777 | * The @action argument may be one of: |
1778 | * o %0 - LPT debugging checking starts, initialize debugging variables; | |
1779 | * o %1 - wrote an LPT node, increase LPT size by @len bytes; | |
1780 | * o %2 - switched to a different LEB and wasted @len bytes; | |
1781 | * o %3 - check that we've written the right number of bytes. | |
1782 | * o %4 - wasted @len bytes; | |
73944a6d AH |
1783 | */ |
1784 | int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) | |
1785 | { | |
17c2f9f8 | 1786 | struct ubifs_debug_info *d = c->dbg; |
73944a6d AH |
1787 | long long chk_lpt_sz, lpt_sz; |
1788 | int err = 0; | |
1789 | ||
2b1844a8 | 1790 | if (!dbg_is_chk_lprops(c)) |
45e12d90 AB |
1791 | return 0; |
1792 | ||
73944a6d AH |
1793 | switch (action) { |
1794 | case 0: | |
17c2f9f8 AB |
1795 | d->chk_lpt_sz = 0; |
1796 | d->chk_lpt_sz2 = 0; | |
1797 | d->chk_lpt_lebs = 0; | |
1798 | d->chk_lpt_wastage = 0; | |
73944a6d | 1799 | if (c->dirty_pn_cnt > c->pnode_cnt) { |
235c362b | 1800 | ubifs_err(c, "dirty pnodes %d exceed max %d", |
a6aae4dd | 1801 | c->dirty_pn_cnt, c->pnode_cnt); |
73944a6d AH |
1802 | err = -EINVAL; |
1803 | } | |
1804 | if (c->dirty_nn_cnt > c->nnode_cnt) { | |
235c362b | 1805 | ubifs_err(c, "dirty nnodes %d exceed max %d", |
a6aae4dd | 1806 | c->dirty_nn_cnt, c->nnode_cnt); |
73944a6d AH |
1807 | err = -EINVAL; |
1808 | } | |
1809 | return err; | |
1810 | case 1: | |
17c2f9f8 | 1811 | d->chk_lpt_sz += len; |
73944a6d AH |
1812 | return 0; |
1813 | case 2: | |
17c2f9f8 AB |
1814 | d->chk_lpt_sz += len; |
1815 | d->chk_lpt_wastage += len; | |
1816 | d->chk_lpt_lebs += 1; | |
73944a6d AH |
1817 | return 0; |
1818 | case 3: | |
1819 | chk_lpt_sz = c->leb_size; | |
17c2f9f8 | 1820 | chk_lpt_sz *= d->chk_lpt_lebs; |
73944a6d | 1821 | chk_lpt_sz += len - c->nhead_offs; |
17c2f9f8 | 1822 | if (d->chk_lpt_sz != chk_lpt_sz) { |
235c362b | 1823 | ubifs_err(c, "LPT wrote %lld but space used was %lld", |
a6aae4dd | 1824 | d->chk_lpt_sz, chk_lpt_sz); |
73944a6d AH |
1825 | err = -EINVAL; |
1826 | } | |
17c2f9f8 | 1827 | if (d->chk_lpt_sz > c->lpt_sz) { |
235c362b | 1828 | ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld", |
a6aae4dd | 1829 | d->chk_lpt_sz, c->lpt_sz); |
73944a6d AH |
1830 | err = -EINVAL; |
1831 | } | |
17c2f9f8 | 1832 | if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { |
235c362b | 1833 | ubifs_err(c, "LPT layout size %lld but wrote %lld", |
a6aae4dd | 1834 | d->chk_lpt_sz, d->chk_lpt_sz2); |
73944a6d AH |
1835 | err = -EINVAL; |
1836 | } | |
17c2f9f8 | 1837 | if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { |
235c362b | 1838 | ubifs_err(c, "LPT new nhead offs: expected %d was %d", |
a6aae4dd | 1839 | d->new_nhead_offs, len); |
73944a6d AH |
1840 | err = -EINVAL; |
1841 | } | |
1842 | lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; | |
1843 | lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; | |
1844 | lpt_sz += c->ltab_sz; | |
1845 | if (c->big_lpt) | |
1846 | lpt_sz += c->lsave_sz; | |
17c2f9f8 | 1847 | if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { |
235c362b | 1848 | ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld", |
a6aae4dd | 1849 | d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); |
73944a6d AH |
1850 | err = -EINVAL; |
1851 | } | |
787845bd | 1852 | if (err) { |
edf6be24 AB |
1853 | ubifs_dump_lpt_info(c); |
1854 | ubifs_dump_lpt_lebs(c); | |
787845bd AB |
1855 | dump_stack(); |
1856 | } | |
17c2f9f8 AB |
1857 | d->chk_lpt_sz2 = d->chk_lpt_sz; |
1858 | d->chk_lpt_sz = 0; | |
1859 | d->chk_lpt_wastage = 0; | |
1860 | d->chk_lpt_lebs = 0; | |
1861 | d->new_nhead_offs = len; | |
73944a6d AH |
1862 | return err; |
1863 | case 4: | |
17c2f9f8 AB |
1864 | d->chk_lpt_sz += len; |
1865 | d->chk_lpt_wastage += len; | |
73944a6d AH |
1866 | return 0; |
1867 | default: | |
1868 | return -EINVAL; | |
1869 | } | |
1870 | } | |
1871 | ||
2ba5f7ae | 1872 | /** |
edf6be24 | 1873 | * ubifs_dump_lpt_leb - dump an LPT LEB. |
2ba5f7ae AB |
1874 | * @c: UBIFS file-system description object |
1875 | * @lnum: LEB number to dump | |
1876 | * | |
1877 | * This function dumps an LEB from LPT area. Nodes in this area are very | |
1878 | * different to nodes in the main area (e.g., they do not have common headers, | |
1879 | * they do not have 8-byte alignments, etc), so we have a separate function to | |
80736d41 | 1880 | * dump LPT area LEBs. Note, LPT has to be locked by the caller. |
2ba5f7ae AB |
1881 | */ |
1882 | static void dump_lpt_leb(const struct ubifs_info *c, int lnum) | |
1883 | { | |
1884 | int err, len = c->leb_size, node_type, node_num, node_len, offs; | |
cab95d44 | 1885 | void *buf, *p; |
2ba5f7ae | 1886 | |
6b38d03f | 1887 | pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); |
fc5e58c0 | 1888 | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); |
cab95d44 | 1889 | if (!buf) { |
235c362b | 1890 | ubifs_err(c, "cannot allocate memory to dump LPT"); |
cab95d44 AB |
1891 | return; |
1892 | } | |
1893 | ||
d304820a AB |
1894 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); |
1895 | if (err) | |
cab95d44 | 1896 | goto out; |
d304820a | 1897 | |
2ba5f7ae AB |
1898 | while (1) { |
1899 | offs = c->leb_size - len; | |
cab95d44 | 1900 | if (!is_a_node(c, p, len)) { |
2ba5f7ae AB |
1901 | int pad_len; |
1902 | ||
cab95d44 | 1903 | pad_len = get_pad_len(c, p, len); |
2ba5f7ae | 1904 | if (pad_len) { |
6b38d03f | 1905 | pr_err("LEB %d:%d, pad %d bytes\n", |
2ba5f7ae | 1906 | lnum, offs, pad_len); |
cab95d44 | 1907 | p += pad_len; |
2ba5f7ae AB |
1908 | len -= pad_len; |
1909 | continue; | |
1910 | } | |
1911 | if (len) | |
6b38d03f | 1912 | pr_err("LEB %d:%d, free %d bytes\n", |
2ba5f7ae AB |
1913 | lnum, offs, len); |
1914 | break; | |
1915 | } | |
1916 | ||
cab95d44 | 1917 | node_type = get_lpt_node_type(c, p, &node_num); |
2ba5f7ae AB |
1918 | switch (node_type) { |
1919 | case UBIFS_LPT_PNODE: | |
1920 | { | |
1921 | node_len = c->pnode_sz; | |
1922 | if (c->big_lpt) | |
6b38d03f | 1923 | pr_err("LEB %d:%d, pnode num %d\n", |
2ba5f7ae AB |
1924 | lnum, offs, node_num); |
1925 | else | |
6b38d03f | 1926 | pr_err("LEB %d:%d, pnode\n", lnum, offs); |
2ba5f7ae AB |
1927 | break; |
1928 | } | |
1929 | case UBIFS_LPT_NNODE: | |
1930 | { | |
1931 | int i; | |
1932 | struct ubifs_nnode nnode; | |
1933 | ||
1934 | node_len = c->nnode_sz; | |
1935 | if (c->big_lpt) | |
6b38d03f | 1936 | pr_err("LEB %d:%d, nnode num %d, ", |
2ba5f7ae AB |
1937 | lnum, offs, node_num); |
1938 | else | |
6b38d03f | 1939 | pr_err("LEB %d:%d, nnode, ", |
2ba5f7ae | 1940 | lnum, offs); |
cab95d44 | 1941 | err = ubifs_unpack_nnode(c, p, &nnode); |
5a95741a | 1942 | if (err) { |
1943 | pr_err("failed to unpack_node, error %d\n", | |
1944 | err); | |
1945 | break; | |
1946 | } | |
2ba5f7ae | 1947 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
6b38d03f | 1948 | pr_cont("%d:%d", nnode.nbranch[i].lnum, |
2ba5f7ae AB |
1949 | nnode.nbranch[i].offs); |
1950 | if (i != UBIFS_LPT_FANOUT - 1) | |
6b38d03f | 1951 | pr_cont(", "); |
2ba5f7ae | 1952 | } |
6b38d03f | 1953 | pr_cont("\n"); |
2ba5f7ae AB |
1954 | break; |
1955 | } | |
1956 | case UBIFS_LPT_LTAB: | |
1957 | node_len = c->ltab_sz; | |
6b38d03f | 1958 | pr_err("LEB %d:%d, ltab\n", lnum, offs); |
2ba5f7ae AB |
1959 | break; |
1960 | case UBIFS_LPT_LSAVE: | |
1961 | node_len = c->lsave_sz; | |
6b38d03f | 1962 | pr_err("LEB %d:%d, lsave len\n", lnum, offs); |
2ba5f7ae AB |
1963 | break; |
1964 | default: | |
235c362b | 1965 | ubifs_err(c, "LPT node type %d not recognized", node_type); |
cab95d44 | 1966 | goto out; |
2ba5f7ae AB |
1967 | } |
1968 | ||
cab95d44 | 1969 | p += node_len; |
2ba5f7ae AB |
1970 | len -= node_len; |
1971 | } | |
1972 | ||
6b38d03f | 1973 | pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); |
cab95d44 AB |
1974 | out: |
1975 | vfree(buf); | |
1976 | return; | |
2ba5f7ae AB |
1977 | } |
1978 | ||
1979 | /** | |
edf6be24 | 1980 | * ubifs_dump_lpt_lebs - dump LPT lebs. |
2ba5f7ae AB |
1981 | * @c: UBIFS file-system description object |
1982 | * | |
1983 | * This function dumps all LPT LEBs. The caller has to make sure the LPT is | |
1984 | * locked. | |
1985 | */ | |
edf6be24 | 1986 | void ubifs_dump_lpt_lebs(const struct ubifs_info *c) |
2ba5f7ae AB |
1987 | { |
1988 | int i; | |
1989 | ||
6b38d03f | 1990 | pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid); |
2ba5f7ae AB |
1991 | for (i = 0; i < c->lpt_lebs; i++) |
1992 | dump_lpt_leb(c, i + c->lpt_first); | |
6b38d03f | 1993 | pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid); |
2ba5f7ae AB |
1994 | } |
1995 | ||
cdd8ad6e AB |
1996 | /** |
1997 | * dbg_populate_lsave - debugging version of 'populate_lsave()' | |
1998 | * @c: UBIFS file-system description object | |
1999 | * | |
2000 | * This is a debugging version for 'populate_lsave()' which populates lsave | |
2001 | * with random LEBs instead of useful LEBs, which is good for test coverage. | |
2002 | * Returns zero if lsave has not been populated (this debugging feature is | |
2003 | * disabled) an non-zero if lsave has been populated. | |
2004 | */ | |
2005 | static int dbg_populate_lsave(struct ubifs_info *c) | |
2006 | { | |
2007 | struct ubifs_lprops *lprops; | |
2008 | struct ubifs_lpt_heap *heap; | |
2009 | int i; | |
2010 | ||
2b1844a8 | 2011 | if (!dbg_is_chk_gen(c)) |
cdd8ad6e | 2012 | return 0; |
3d251a5b | 2013 | if (prandom_u32() & 3) |
cdd8ad6e AB |
2014 | return 0; |
2015 | ||
2016 | for (i = 0; i < c->lsave_cnt; i++) | |
2017 | c->lsave[i] = c->main_first; | |
2018 | ||
2019 | list_for_each_entry(lprops, &c->empty_list, list) | |
3d251a5b | 2020 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; |
cdd8ad6e | 2021 | list_for_each_entry(lprops, &c->freeable_list, list) |
3d251a5b | 2022 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; |
cdd8ad6e | 2023 | list_for_each_entry(lprops, &c->frdi_idx_list, list) |
3d251a5b | 2024 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; |
cdd8ad6e AB |
2025 | |
2026 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | |
2027 | for (i = 0; i < heap->cnt; i++) | |
3d251a5b | 2028 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; |
cdd8ad6e AB |
2029 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; |
2030 | for (i = 0; i < heap->cnt; i++) | |
3d251a5b | 2031 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; |
cdd8ad6e AB |
2032 | heap = &c->lpt_heap[LPROPS_FREE - 1]; |
2033 | for (i = 0; i < heap->cnt; i++) | |
3d251a5b | 2034 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; |
cdd8ad6e AB |
2035 | |
2036 | return 1; | |
2037 | } |