]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
ae259a9c | 24 | #include <linux/iomap.h> |
1da177e4 LT |
25 | #include <linux/mm.h> |
26 | #include <linux/percpu.h> | |
27 | #include <linux/slab.h> | |
16f7e0fe | 28 | #include <linux/capability.h> |
1da177e4 LT |
29 | #include <linux/blkdev.h> |
30 | #include <linux/file.h> | |
31 | #include <linux/quotaops.h> | |
32 | #include <linux/highmem.h> | |
630d9c47 | 33 | #include <linux/export.h> |
bafc0dba | 34 | #include <linux/backing-dev.h> |
1da177e4 LT |
35 | #include <linux/writeback.h> |
36 | #include <linux/hash.h> | |
37 | #include <linux/suspend.h> | |
38 | #include <linux/buffer_head.h> | |
55e829af | 39 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
40 | #include <linux/bio.h> |
41 | #include <linux/notifier.h> | |
42 | #include <linux/cpu.h> | |
43 | #include <linux/bitops.h> | |
44 | #include <linux/mpage.h> | |
fb1c8f93 | 45 | #include <linux/bit_spinlock.h> |
5305cb83 | 46 | #include <trace/events/block.h> |
1da177e4 LT |
47 | |
48 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
2a222ca9 | 49 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
b16b1deb TH |
50 | unsigned long bio_flags, |
51 | struct writeback_control *wbc); | |
1da177e4 LT |
52 | |
53 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
54 | ||
a3f3c29c | 55 | void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) |
1da177e4 LT |
56 | { |
57 | bh->b_end_io = handler; | |
58 | bh->b_private = private; | |
59 | } | |
1fe72eaa | 60 | EXPORT_SYMBOL(init_buffer); |
1da177e4 | 61 | |
f0059afd TH |
62 | inline void touch_buffer(struct buffer_head *bh) |
63 | { | |
5305cb83 | 64 | trace_block_touch_buffer(bh); |
f0059afd TH |
65 | mark_page_accessed(bh->b_page); |
66 | } | |
67 | EXPORT_SYMBOL(touch_buffer); | |
68 | ||
fc9b52cd | 69 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 | 70 | { |
74316201 | 71 | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 LT |
72 | } |
73 | EXPORT_SYMBOL(__lock_buffer); | |
74 | ||
fc9b52cd | 75 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 76 | { |
51b07fc3 | 77 | clear_bit_unlock(BH_Lock, &bh->b_state); |
4e857c58 | 78 | smp_mb__after_atomic(); |
1da177e4 LT |
79 | wake_up_bit(&bh->b_state, BH_Lock); |
80 | } | |
1fe72eaa | 81 | EXPORT_SYMBOL(unlock_buffer); |
1da177e4 | 82 | |
b4597226 MG |
83 | /* |
84 | * Returns if the page has dirty or writeback buffers. If all the buffers | |
85 | * are unlocked and clean then the PageDirty information is stale. If | |
86 | * any of the pages are locked, it is assumed they are locked for IO. | |
87 | */ | |
88 | void buffer_check_dirty_writeback(struct page *page, | |
89 | bool *dirty, bool *writeback) | |
90 | { | |
91 | struct buffer_head *head, *bh; | |
92 | *dirty = false; | |
93 | *writeback = false; | |
94 | ||
95 | BUG_ON(!PageLocked(page)); | |
96 | ||
97 | if (!page_has_buffers(page)) | |
98 | return; | |
99 | ||
100 | if (PageWriteback(page)) | |
101 | *writeback = true; | |
102 | ||
103 | head = page_buffers(page); | |
104 | bh = head; | |
105 | do { | |
106 | if (buffer_locked(bh)) | |
107 | *writeback = true; | |
108 | ||
109 | if (buffer_dirty(bh)) | |
110 | *dirty = true; | |
111 | ||
112 | bh = bh->b_this_page; | |
113 | } while (bh != head); | |
114 | } | |
115 | EXPORT_SYMBOL(buffer_check_dirty_writeback); | |
116 | ||
1da177e4 LT |
117 | /* |
118 | * Block until a buffer comes unlocked. This doesn't stop it | |
119 | * from becoming locked again - you have to lock it yourself | |
120 | * if you want to preserve its state. | |
121 | */ | |
122 | void __wait_on_buffer(struct buffer_head * bh) | |
123 | { | |
74316201 | 124 | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 | 125 | } |
1fe72eaa | 126 | EXPORT_SYMBOL(__wait_on_buffer); |
1da177e4 LT |
127 | |
128 | static void | |
129 | __clear_page_buffers(struct page *page) | |
130 | { | |
131 | ClearPagePrivate(page); | |
4c21e2f2 | 132 | set_page_private(page, 0); |
09cbfeaf | 133 | put_page(page); |
1da177e4 LT |
134 | } |
135 | ||
b744c2ac | 136 | static void buffer_io_error(struct buffer_head *bh, char *msg) |
1da177e4 | 137 | { |
432f16e6 RE |
138 | if (!test_bit(BH_Quiet, &bh->b_state)) |
139 | printk_ratelimited(KERN_ERR | |
a1c6f057 DM |
140 | "Buffer I/O error on dev %pg, logical block %llu%s\n", |
141 | bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); | |
1da177e4 LT |
142 | } |
143 | ||
144 | /* | |
68671f35 DM |
145 | * End-of-IO handler helper function which does not touch the bh after |
146 | * unlocking it. | |
147 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
148 | * a race there is benign: unlock_buffer() only use the bh's address for | |
149 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
150 | * itself. | |
1da177e4 | 151 | */ |
68671f35 | 152 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
153 | { |
154 | if (uptodate) { | |
155 | set_buffer_uptodate(bh); | |
156 | } else { | |
70246286 | 157 | /* This happens, due to failed read-ahead attempts. */ |
1da177e4 LT |
158 | clear_buffer_uptodate(bh); |
159 | } | |
160 | unlock_buffer(bh); | |
68671f35 DM |
161 | } |
162 | ||
163 | /* | |
164 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
165 | * unlock the buffer. This is what ll_rw_block uses too. | |
166 | */ | |
167 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
168 | { | |
169 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
170 | put_bh(bh); |
171 | } | |
1fe72eaa | 172 | EXPORT_SYMBOL(end_buffer_read_sync); |
1da177e4 LT |
173 | |
174 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
175 | { | |
1da177e4 LT |
176 | if (uptodate) { |
177 | set_buffer_uptodate(bh); | |
178 | } else { | |
432f16e6 | 179 | buffer_io_error(bh, ", lost sync page write"); |
1da177e4 LT |
180 | set_buffer_write_io_error(bh); |
181 | clear_buffer_uptodate(bh); | |
182 | } | |
183 | unlock_buffer(bh); | |
184 | put_bh(bh); | |
185 | } | |
1fe72eaa | 186 | EXPORT_SYMBOL(end_buffer_write_sync); |
1da177e4 | 187 | |
1da177e4 LT |
188 | /* |
189 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
190 | * But it's the page lock which protects the buffers. To get around this, | |
191 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
192 | * private_lock. | |
193 | * | |
194 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
195 | * may be quite high. This code could TryLock the page, and if that | |
196 | * succeeds, there is no need to take private_lock. (But if | |
197 | * private_lock is contended then so is mapping->tree_lock). | |
198 | */ | |
199 | static struct buffer_head * | |
385fd4c5 | 200 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
201 | { |
202 | struct inode *bd_inode = bdev->bd_inode; | |
203 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
204 | struct buffer_head *ret = NULL; | |
205 | pgoff_t index; | |
206 | struct buffer_head *bh; | |
207 | struct buffer_head *head; | |
208 | struct page *page; | |
209 | int all_mapped = 1; | |
210 | ||
09cbfeaf | 211 | index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); |
2457aec6 | 212 | page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); |
1da177e4 LT |
213 | if (!page) |
214 | goto out; | |
215 | ||
216 | spin_lock(&bd_mapping->private_lock); | |
217 | if (!page_has_buffers(page)) | |
218 | goto out_unlock; | |
219 | head = page_buffers(page); | |
220 | bh = head; | |
221 | do { | |
97f76d3d NK |
222 | if (!buffer_mapped(bh)) |
223 | all_mapped = 0; | |
224 | else if (bh->b_blocknr == block) { | |
1da177e4 LT |
225 | ret = bh; |
226 | get_bh(bh); | |
227 | goto out_unlock; | |
228 | } | |
1da177e4 LT |
229 | bh = bh->b_this_page; |
230 | } while (bh != head); | |
231 | ||
232 | /* we might be here because some of the buffers on this page are | |
233 | * not mapped. This is due to various races between | |
234 | * file io on the block device and getblk. It gets dealt with | |
235 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
236 | */ | |
237 | if (all_mapped) { | |
238 | printk("__find_get_block_slow() failed. " | |
239 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
240 | (unsigned long long)block, |
241 | (unsigned long long)bh->b_blocknr); | |
242 | printk("b_state=0x%08lx, b_size=%zu\n", | |
243 | bh->b_state, bh->b_size); | |
a1c6f057 | 244 | printk("device %pg blocksize: %d\n", bdev, |
72a2ebd8 | 245 | 1 << bd_inode->i_blkbits); |
1da177e4 LT |
246 | } |
247 | out_unlock: | |
248 | spin_unlock(&bd_mapping->private_lock); | |
09cbfeaf | 249 | put_page(page); |
1da177e4 LT |
250 | out: |
251 | return ret; | |
252 | } | |
253 | ||
1da177e4 | 254 | /* |
5b0830cb | 255 | * Kick the writeback threads then try to free up some ZONE_NORMAL memory. |
1da177e4 LT |
256 | */ |
257 | static void free_more_memory(void) | |
258 | { | |
c33d6c06 | 259 | struct zoneref *z; |
0e88460d | 260 | int nid; |
1da177e4 | 261 | |
0e175a18 | 262 | wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); |
1da177e4 LT |
263 | yield(); |
264 | ||
0e88460d | 265 | for_each_online_node(nid) { |
c33d6c06 MG |
266 | |
267 | z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), | |
268 | gfp_zone(GFP_NOFS), NULL); | |
269 | if (z->zone) | |
54a6eb5c | 270 | try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, |
327c0e96 | 271 | GFP_NOFS, NULL); |
1da177e4 LT |
272 | } |
273 | } | |
274 | ||
275 | /* | |
276 | * I/O completion handler for block_read_full_page() - pages | |
277 | * which come unlocked at the end of I/O. | |
278 | */ | |
279 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
280 | { | |
1da177e4 | 281 | unsigned long flags; |
a3972203 | 282 | struct buffer_head *first; |
1da177e4 LT |
283 | struct buffer_head *tmp; |
284 | struct page *page; | |
285 | int page_uptodate = 1; | |
286 | ||
287 | BUG_ON(!buffer_async_read(bh)); | |
288 | ||
289 | page = bh->b_page; | |
290 | if (uptodate) { | |
291 | set_buffer_uptodate(bh); | |
292 | } else { | |
293 | clear_buffer_uptodate(bh); | |
432f16e6 | 294 | buffer_io_error(bh, ", async page read"); |
1da177e4 LT |
295 | SetPageError(page); |
296 | } | |
297 | ||
298 | /* | |
299 | * Be _very_ careful from here on. Bad things can happen if | |
300 | * two buffer heads end IO at almost the same time and both | |
301 | * decide that the page is now completely done. | |
302 | */ | |
a3972203 NP |
303 | first = page_buffers(page); |
304 | local_irq_save(flags); | |
305 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
306 | clear_buffer_async_read(bh); |
307 | unlock_buffer(bh); | |
308 | tmp = bh; | |
309 | do { | |
310 | if (!buffer_uptodate(tmp)) | |
311 | page_uptodate = 0; | |
312 | if (buffer_async_read(tmp)) { | |
313 | BUG_ON(!buffer_locked(tmp)); | |
314 | goto still_busy; | |
315 | } | |
316 | tmp = tmp->b_this_page; | |
317 | } while (tmp != bh); | |
a3972203 NP |
318 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
319 | local_irq_restore(flags); | |
1da177e4 LT |
320 | |
321 | /* | |
322 | * If none of the buffers had errors and they are all | |
323 | * uptodate then we can set the page uptodate. | |
324 | */ | |
325 | if (page_uptodate && !PageError(page)) | |
326 | SetPageUptodate(page); | |
327 | unlock_page(page); | |
328 | return; | |
329 | ||
330 | still_busy: | |
a3972203 NP |
331 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
332 | local_irq_restore(flags); | |
1da177e4 LT |
333 | return; |
334 | } | |
335 | ||
336 | /* | |
337 | * Completion handler for block_write_full_page() - pages which are unlocked | |
338 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
339 | */ | |
35c80d5f | 340 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 | 341 | { |
1da177e4 | 342 | unsigned long flags; |
a3972203 | 343 | struct buffer_head *first; |
1da177e4 LT |
344 | struct buffer_head *tmp; |
345 | struct page *page; | |
346 | ||
347 | BUG_ON(!buffer_async_write(bh)); | |
348 | ||
349 | page = bh->b_page; | |
350 | if (uptodate) { | |
351 | set_buffer_uptodate(bh); | |
352 | } else { | |
432f16e6 | 353 | buffer_io_error(bh, ", lost async page write"); |
1da177e4 | 354 | set_bit(AS_EIO, &page->mapping->flags); |
58ff407b | 355 | set_buffer_write_io_error(bh); |
1da177e4 LT |
356 | clear_buffer_uptodate(bh); |
357 | SetPageError(page); | |
358 | } | |
359 | ||
a3972203 NP |
360 | first = page_buffers(page); |
361 | local_irq_save(flags); | |
362 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
363 | ||
1da177e4 LT |
364 | clear_buffer_async_write(bh); |
365 | unlock_buffer(bh); | |
366 | tmp = bh->b_this_page; | |
367 | while (tmp != bh) { | |
368 | if (buffer_async_write(tmp)) { | |
369 | BUG_ON(!buffer_locked(tmp)); | |
370 | goto still_busy; | |
371 | } | |
372 | tmp = tmp->b_this_page; | |
373 | } | |
a3972203 NP |
374 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
375 | local_irq_restore(flags); | |
1da177e4 LT |
376 | end_page_writeback(page); |
377 | return; | |
378 | ||
379 | still_busy: | |
a3972203 NP |
380 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
381 | local_irq_restore(flags); | |
1da177e4 LT |
382 | return; |
383 | } | |
1fe72eaa | 384 | EXPORT_SYMBOL(end_buffer_async_write); |
1da177e4 LT |
385 | |
386 | /* | |
387 | * If a page's buffers are under async readin (end_buffer_async_read | |
388 | * completion) then there is a possibility that another thread of | |
389 | * control could lock one of the buffers after it has completed | |
390 | * but while some of the other buffers have not completed. This | |
391 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
392 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
393 | * that this buffer is not under async I/O. | |
394 | * | |
395 | * The page comes unlocked when it has no locked buffer_async buffers | |
396 | * left. | |
397 | * | |
398 | * PageLocked prevents anyone starting new async I/O reads any of | |
399 | * the buffers. | |
400 | * | |
401 | * PageWriteback is used to prevent simultaneous writeout of the same | |
402 | * page. | |
403 | * | |
404 | * PageLocked prevents anyone from starting writeback of a page which is | |
405 | * under read I/O (PageWriteback is only ever set against a locked page). | |
406 | */ | |
407 | static void mark_buffer_async_read(struct buffer_head *bh) | |
408 | { | |
409 | bh->b_end_io = end_buffer_async_read; | |
410 | set_buffer_async_read(bh); | |
411 | } | |
412 | ||
1fe72eaa HS |
413 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
414 | bh_end_io_t *handler) | |
1da177e4 | 415 | { |
35c80d5f | 416 | bh->b_end_io = handler; |
1da177e4 LT |
417 | set_buffer_async_write(bh); |
418 | } | |
35c80d5f CM |
419 | |
420 | void mark_buffer_async_write(struct buffer_head *bh) | |
421 | { | |
422 | mark_buffer_async_write_endio(bh, end_buffer_async_write); | |
423 | } | |
1da177e4 LT |
424 | EXPORT_SYMBOL(mark_buffer_async_write); |
425 | ||
426 | ||
427 | /* | |
428 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
429 | * fsync functions. A common requirement for buffer-based filesystems is | |
430 | * that certain data from the backing blockdev needs to be written out for | |
431 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
432 | * written back and waited upon before fsync() returns. | |
433 | * | |
434 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
435 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
436 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
437 | * | |
438 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
439 | * from their controlling inode's queue when they are being freed. But | |
440 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
441 | * at the time, not against the S_ISREG file which depends on those buffers. | |
442 | * So the locking for private_list is via the private_lock in the address_space | |
443 | * which backs the buffers. Which is different from the address_space | |
444 | * against which the buffers are listed. So for a particular address_space, | |
445 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
446 | * mapping->private_list will always be protected by the backing blockdev's | |
447 | * ->private_lock. | |
448 | * | |
449 | * Which introduces a requirement: all buffers on an address_space's | |
450 | * ->private_list must be from the same address_space: the blockdev's. | |
451 | * | |
452 | * address_spaces which do not place buffers at ->private_list via these | |
453 | * utility functions are free to use private_lock and private_list for | |
454 | * whatever they want. The only requirement is that list_empty(private_list) | |
455 | * be true at clear_inode() time. | |
456 | * | |
457 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
458 | * filesystems should do that. invalidate_inode_buffers() should just go | |
459 | * BUG_ON(!list_empty). | |
460 | * | |
461 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
462 | * take an address_space, not an inode. And it should be called | |
463 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
464 | * queued up. | |
465 | * | |
466 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
467 | * list if it is already on a list. Because if the buffer is on a list, | |
468 | * it *must* already be on the right one. If not, the filesystem is being | |
469 | * silly. This will save a ton of locking. But first we have to ensure | |
470 | * that buffers are taken *off* the old inode's list when they are freed | |
471 | * (presumably in truncate). That requires careful auditing of all | |
472 | * filesystems (do it inside bforget()). It could also be done by bringing | |
473 | * b_inode back. | |
474 | */ | |
475 | ||
476 | /* | |
477 | * The buffer's backing address_space's private_lock must be held | |
478 | */ | |
dbacefc9 | 479 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
480 | { |
481 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
482 | WARN_ON(!bh->b_assoc_map); |
483 | if (buffer_write_io_error(bh)) | |
484 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
485 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
486 | } |
487 | ||
488 | int inode_has_buffers(struct inode *inode) | |
489 | { | |
490 | return !list_empty(&inode->i_data.private_list); | |
491 | } | |
492 | ||
493 | /* | |
494 | * osync is designed to support O_SYNC io. It waits synchronously for | |
495 | * all already-submitted IO to complete, but does not queue any new | |
496 | * writes to the disk. | |
497 | * | |
498 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
499 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
500 | * completion. Any other dirty buffers which are not yet queued for | |
501 | * write will not be flushed to disk by the osync. | |
502 | */ | |
503 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
504 | { | |
505 | struct buffer_head *bh; | |
506 | struct list_head *p; | |
507 | int err = 0; | |
508 | ||
509 | spin_lock(lock); | |
510 | repeat: | |
511 | list_for_each_prev(p, list) { | |
512 | bh = BH_ENTRY(p); | |
513 | if (buffer_locked(bh)) { | |
514 | get_bh(bh); | |
515 | spin_unlock(lock); | |
516 | wait_on_buffer(bh); | |
517 | if (!buffer_uptodate(bh)) | |
518 | err = -EIO; | |
519 | brelse(bh); | |
520 | spin_lock(lock); | |
521 | goto repeat; | |
522 | } | |
523 | } | |
524 | spin_unlock(lock); | |
525 | return err; | |
526 | } | |
527 | ||
01a05b33 | 528 | static void do_thaw_one(struct super_block *sb, void *unused) |
c2d75438 | 529 | { |
01a05b33 | 530 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
a1c6f057 | 531 | printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); |
01a05b33 | 532 | } |
c2d75438 | 533 | |
01a05b33 AV |
534 | static void do_thaw_all(struct work_struct *work) |
535 | { | |
536 | iterate_supers(do_thaw_one, NULL); | |
053c525f | 537 | kfree(work); |
c2d75438 ES |
538 | printk(KERN_WARNING "Emergency Thaw complete\n"); |
539 | } | |
540 | ||
541 | /** | |
542 | * emergency_thaw_all -- forcibly thaw every frozen filesystem | |
543 | * | |
544 | * Used for emergency unfreeze of all filesystems via SysRq | |
545 | */ | |
546 | void emergency_thaw_all(void) | |
547 | { | |
053c525f JA |
548 | struct work_struct *work; |
549 | ||
550 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | |
551 | if (work) { | |
552 | INIT_WORK(work, do_thaw_all); | |
553 | schedule_work(work); | |
554 | } | |
c2d75438 ES |
555 | } |
556 | ||
1da177e4 | 557 | /** |
78a4a50a | 558 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 559 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
560 | * |
561 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
562 | * that I/O. | |
563 | * | |
67be2dd1 MW |
564 | * Basically, this is a convenience function for fsync(). |
565 | * @mapping is a file or directory which needs those buffers to be written for | |
566 | * a successful fsync(). | |
1da177e4 LT |
567 | */ |
568 | int sync_mapping_buffers(struct address_space *mapping) | |
569 | { | |
252aa6f5 | 570 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
571 | |
572 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
573 | return 0; | |
574 | ||
575 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
576 | &mapping->private_list); | |
577 | } | |
578 | EXPORT_SYMBOL(sync_mapping_buffers); | |
579 | ||
580 | /* | |
581 | * Called when we've recently written block `bblock', and it is known that | |
582 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
583 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
584 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
585 | */ | |
586 | void write_boundary_block(struct block_device *bdev, | |
587 | sector_t bblock, unsigned blocksize) | |
588 | { | |
589 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
590 | if (bh) { | |
591 | if (buffer_dirty(bh)) | |
dfec8a14 | 592 | ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); |
1da177e4 LT |
593 | put_bh(bh); |
594 | } | |
595 | } | |
596 | ||
597 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
598 | { | |
599 | struct address_space *mapping = inode->i_mapping; | |
600 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
601 | ||
602 | mark_buffer_dirty(bh); | |
252aa6f5 RA |
603 | if (!mapping->private_data) { |
604 | mapping->private_data = buffer_mapping; | |
1da177e4 | 605 | } else { |
252aa6f5 | 606 | BUG_ON(mapping->private_data != buffer_mapping); |
1da177e4 | 607 | } |
535ee2fb | 608 | if (!bh->b_assoc_map) { |
1da177e4 LT |
609 | spin_lock(&buffer_mapping->private_lock); |
610 | list_move_tail(&bh->b_assoc_buffers, | |
611 | &mapping->private_list); | |
58ff407b | 612 | bh->b_assoc_map = mapping; |
1da177e4 LT |
613 | spin_unlock(&buffer_mapping->private_lock); |
614 | } | |
615 | } | |
616 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
617 | ||
787d2214 NP |
618 | /* |
619 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
620 | * dirty. | |
621 | * | |
622 | * If warn is true, then emit a warning if the page is not uptodate and has | |
623 | * not been truncated. | |
c4843a75 | 624 | * |
81f8c3a4 | 625 | * The caller must hold lock_page_memcg(). |
787d2214 | 626 | */ |
c4843a75 | 627 | static void __set_page_dirty(struct page *page, struct address_space *mapping, |
62cccb8c | 628 | int warn) |
787d2214 | 629 | { |
227d53b3 KM |
630 | unsigned long flags; |
631 | ||
632 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
787d2214 NP |
633 | if (page->mapping) { /* Race with truncate? */ |
634 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
62cccb8c | 635 | account_page_dirtied(page, mapping); |
787d2214 NP |
636 | radix_tree_tag_set(&mapping->page_tree, |
637 | page_index(page), PAGECACHE_TAG_DIRTY); | |
638 | } | |
227d53b3 | 639 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
787d2214 NP |
640 | } |
641 | ||
1da177e4 LT |
642 | /* |
643 | * Add a page to the dirty page list. | |
644 | * | |
645 | * It is a sad fact of life that this function is called from several places | |
646 | * deeply under spinlocking. It may not sleep. | |
647 | * | |
648 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
649 | * dirty-state coherency between the page and the buffers. It the page does | |
650 | * not have buffers then when they are later attached they will all be set | |
651 | * dirty. | |
652 | * | |
653 | * The buffers are dirtied before the page is dirtied. There's a small race | |
654 | * window in which a writepage caller may see the page cleanness but not the | |
655 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
656 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
657 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
658 | * page on the dirty page list. | |
659 | * | |
660 | * We use private_lock to lock against try_to_free_buffers while using the | |
661 | * page's buffer list. Also use this to protect against clean buffers being | |
662 | * added to the page after it was set dirty. | |
663 | * | |
664 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
665 | * address_space though. | |
666 | */ | |
667 | int __set_page_dirty_buffers(struct page *page) | |
668 | { | |
a8e7d49a | 669 | int newly_dirty; |
787d2214 | 670 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
671 | |
672 | if (unlikely(!mapping)) | |
673 | return !TestSetPageDirty(page); | |
1da177e4 LT |
674 | |
675 | spin_lock(&mapping->private_lock); | |
676 | if (page_has_buffers(page)) { | |
677 | struct buffer_head *head = page_buffers(page); | |
678 | struct buffer_head *bh = head; | |
679 | ||
680 | do { | |
681 | set_buffer_dirty(bh); | |
682 | bh = bh->b_this_page; | |
683 | } while (bh != head); | |
684 | } | |
c4843a75 | 685 | /* |
81f8c3a4 JW |
686 | * Lock out page->mem_cgroup migration to keep PageDirty |
687 | * synchronized with per-memcg dirty page counters. | |
c4843a75 | 688 | */ |
62cccb8c | 689 | lock_page_memcg(page); |
a8e7d49a | 690 | newly_dirty = !TestSetPageDirty(page); |
1da177e4 LT |
691 | spin_unlock(&mapping->private_lock); |
692 | ||
a8e7d49a | 693 | if (newly_dirty) |
62cccb8c | 694 | __set_page_dirty(page, mapping, 1); |
c4843a75 | 695 | |
62cccb8c | 696 | unlock_page_memcg(page); |
c4843a75 GT |
697 | |
698 | if (newly_dirty) | |
699 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
700 | ||
a8e7d49a | 701 | return newly_dirty; |
1da177e4 LT |
702 | } |
703 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
704 | ||
705 | /* | |
706 | * Write out and wait upon a list of buffers. | |
707 | * | |
708 | * We have conflicting pressures: we want to make sure that all | |
709 | * initially dirty buffers get waited on, but that any subsequently | |
710 | * dirtied buffers don't. After all, we don't want fsync to last | |
711 | * forever if somebody is actively writing to the file. | |
712 | * | |
713 | * Do this in two main stages: first we copy dirty buffers to a | |
714 | * temporary inode list, queueing the writes as we go. Then we clean | |
715 | * up, waiting for those writes to complete. | |
716 | * | |
717 | * During this second stage, any subsequent updates to the file may end | |
718 | * up refiling the buffer on the original inode's dirty list again, so | |
719 | * there is a chance we will end up with a buffer queued for write but | |
720 | * not yet completed on that list. So, as a final cleanup we go through | |
721 | * the osync code to catch these locked, dirty buffers without requeuing | |
722 | * any newly dirty buffers for write. | |
723 | */ | |
724 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
725 | { | |
726 | struct buffer_head *bh; | |
727 | struct list_head tmp; | |
7eaceacc | 728 | struct address_space *mapping; |
1da177e4 | 729 | int err = 0, err2; |
4ee2491e | 730 | struct blk_plug plug; |
1da177e4 LT |
731 | |
732 | INIT_LIST_HEAD(&tmp); | |
4ee2491e | 733 | blk_start_plug(&plug); |
1da177e4 LT |
734 | |
735 | spin_lock(lock); | |
736 | while (!list_empty(list)) { | |
737 | bh = BH_ENTRY(list->next); | |
535ee2fb | 738 | mapping = bh->b_assoc_map; |
58ff407b | 739 | __remove_assoc_queue(bh); |
535ee2fb JK |
740 | /* Avoid race with mark_buffer_dirty_inode() which does |
741 | * a lockless check and we rely on seeing the dirty bit */ | |
742 | smp_mb(); | |
1da177e4 LT |
743 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
744 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 745 | bh->b_assoc_map = mapping; |
1da177e4 LT |
746 | if (buffer_dirty(bh)) { |
747 | get_bh(bh); | |
748 | spin_unlock(lock); | |
749 | /* | |
750 | * Ensure any pending I/O completes so that | |
9cb569d6 CH |
751 | * write_dirty_buffer() actually writes the |
752 | * current contents - it is a noop if I/O is | |
753 | * still in flight on potentially older | |
754 | * contents. | |
1da177e4 | 755 | */ |
721a9602 | 756 | write_dirty_buffer(bh, WRITE_SYNC); |
9cf6b720 JA |
757 | |
758 | /* | |
759 | * Kick off IO for the previous mapping. Note | |
760 | * that we will not run the very last mapping, | |
761 | * wait_on_buffer() will do that for us | |
762 | * through sync_buffer(). | |
763 | */ | |
1da177e4 LT |
764 | brelse(bh); |
765 | spin_lock(lock); | |
766 | } | |
767 | } | |
768 | } | |
769 | ||
4ee2491e JA |
770 | spin_unlock(lock); |
771 | blk_finish_plug(&plug); | |
772 | spin_lock(lock); | |
773 | ||
1da177e4 LT |
774 | while (!list_empty(&tmp)) { |
775 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 776 | get_bh(bh); |
535ee2fb JK |
777 | mapping = bh->b_assoc_map; |
778 | __remove_assoc_queue(bh); | |
779 | /* Avoid race with mark_buffer_dirty_inode() which does | |
780 | * a lockless check and we rely on seeing the dirty bit */ | |
781 | smp_mb(); | |
782 | if (buffer_dirty(bh)) { | |
783 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 784 | &mapping->private_list); |
535ee2fb JK |
785 | bh->b_assoc_map = mapping; |
786 | } | |
1da177e4 LT |
787 | spin_unlock(lock); |
788 | wait_on_buffer(bh); | |
789 | if (!buffer_uptodate(bh)) | |
790 | err = -EIO; | |
791 | brelse(bh); | |
792 | spin_lock(lock); | |
793 | } | |
794 | ||
795 | spin_unlock(lock); | |
796 | err2 = osync_buffers_list(lock, list); | |
797 | if (err) | |
798 | return err; | |
799 | else | |
800 | return err2; | |
801 | } | |
802 | ||
803 | /* | |
804 | * Invalidate any and all dirty buffers on a given inode. We are | |
805 | * probably unmounting the fs, but that doesn't mean we have already | |
806 | * done a sync(). Just drop the buffers from the inode list. | |
807 | * | |
808 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
809 | * assumes that all the buffers are against the blockdev. Not true | |
810 | * for reiserfs. | |
811 | */ | |
812 | void invalidate_inode_buffers(struct inode *inode) | |
813 | { | |
814 | if (inode_has_buffers(inode)) { | |
815 | struct address_space *mapping = &inode->i_data; | |
816 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 817 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
818 | |
819 | spin_lock(&buffer_mapping->private_lock); | |
820 | while (!list_empty(list)) | |
821 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
822 | spin_unlock(&buffer_mapping->private_lock); | |
823 | } | |
824 | } | |
52b19ac9 | 825 | EXPORT_SYMBOL(invalidate_inode_buffers); |
1da177e4 LT |
826 | |
827 | /* | |
828 | * Remove any clean buffers from the inode's buffer list. This is called | |
829 | * when we're trying to free the inode itself. Those buffers can pin it. | |
830 | * | |
831 | * Returns true if all buffers were removed. | |
832 | */ | |
833 | int remove_inode_buffers(struct inode *inode) | |
834 | { | |
835 | int ret = 1; | |
836 | ||
837 | if (inode_has_buffers(inode)) { | |
838 | struct address_space *mapping = &inode->i_data; | |
839 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 840 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
841 | |
842 | spin_lock(&buffer_mapping->private_lock); | |
843 | while (!list_empty(list)) { | |
844 | struct buffer_head *bh = BH_ENTRY(list->next); | |
845 | if (buffer_dirty(bh)) { | |
846 | ret = 0; | |
847 | break; | |
848 | } | |
849 | __remove_assoc_queue(bh); | |
850 | } | |
851 | spin_unlock(&buffer_mapping->private_lock); | |
852 | } | |
853 | return ret; | |
854 | } | |
855 | ||
856 | /* | |
857 | * Create the appropriate buffers when given a page for data area and | |
858 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
859 | * follow the buffers created. Return NULL if unable to create more | |
860 | * buffers. | |
861 | * | |
862 | * The retry flag is used to differentiate async IO (paging, swapping) | |
863 | * which may not fail from ordinary buffer allocations. | |
864 | */ | |
865 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
866 | int retry) | |
867 | { | |
868 | struct buffer_head *bh, *head; | |
869 | long offset; | |
870 | ||
871 | try_again: | |
872 | head = NULL; | |
873 | offset = PAGE_SIZE; | |
874 | while ((offset -= size) >= 0) { | |
875 | bh = alloc_buffer_head(GFP_NOFS); | |
876 | if (!bh) | |
877 | goto no_grow; | |
878 | ||
1da177e4 LT |
879 | bh->b_this_page = head; |
880 | bh->b_blocknr = -1; | |
881 | head = bh; | |
882 | ||
1da177e4 LT |
883 | bh->b_size = size; |
884 | ||
885 | /* Link the buffer to its page */ | |
886 | set_bh_page(bh, page, offset); | |
1da177e4 LT |
887 | } |
888 | return head; | |
889 | /* | |
890 | * In case anything failed, we just free everything we got. | |
891 | */ | |
892 | no_grow: | |
893 | if (head) { | |
894 | do { | |
895 | bh = head; | |
896 | head = head->b_this_page; | |
897 | free_buffer_head(bh); | |
898 | } while (head); | |
899 | } | |
900 | ||
901 | /* | |
902 | * Return failure for non-async IO requests. Async IO requests | |
903 | * are not allowed to fail, so we have to wait until buffer heads | |
904 | * become available. But we don't want tasks sleeping with | |
905 | * partially complete buffers, so all were released above. | |
906 | */ | |
907 | if (!retry) | |
908 | return NULL; | |
909 | ||
910 | /* We're _really_ low on memory. Now we just | |
911 | * wait for old buffer heads to become free due to | |
912 | * finishing IO. Since this is an async request and | |
913 | * the reserve list is empty, we're sure there are | |
914 | * async buffer heads in use. | |
915 | */ | |
916 | free_more_memory(); | |
917 | goto try_again; | |
918 | } | |
919 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
920 | ||
921 | static inline void | |
922 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
923 | { | |
924 | struct buffer_head *bh, *tail; | |
925 | ||
926 | bh = head; | |
927 | do { | |
928 | tail = bh; | |
929 | bh = bh->b_this_page; | |
930 | } while (bh); | |
931 | tail->b_this_page = head; | |
932 | attach_page_buffers(page, head); | |
933 | } | |
934 | ||
bbec0270 LT |
935 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
936 | { | |
937 | sector_t retval = ~((sector_t)0); | |
938 | loff_t sz = i_size_read(bdev->bd_inode); | |
939 | ||
940 | if (sz) { | |
941 | unsigned int sizebits = blksize_bits(size); | |
942 | retval = (sz >> sizebits); | |
943 | } | |
944 | return retval; | |
945 | } | |
946 | ||
1da177e4 LT |
947 | /* |
948 | * Initialise the state of a blockdev page's buffers. | |
949 | */ | |
676ce6d5 | 950 | static sector_t |
1da177e4 LT |
951 | init_page_buffers(struct page *page, struct block_device *bdev, |
952 | sector_t block, int size) | |
953 | { | |
954 | struct buffer_head *head = page_buffers(page); | |
955 | struct buffer_head *bh = head; | |
956 | int uptodate = PageUptodate(page); | |
bbec0270 | 957 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); |
1da177e4 LT |
958 | |
959 | do { | |
960 | if (!buffer_mapped(bh)) { | |
961 | init_buffer(bh, NULL, NULL); | |
962 | bh->b_bdev = bdev; | |
963 | bh->b_blocknr = block; | |
964 | if (uptodate) | |
965 | set_buffer_uptodate(bh); | |
080399aa JM |
966 | if (block < end_block) |
967 | set_buffer_mapped(bh); | |
1da177e4 LT |
968 | } |
969 | block++; | |
970 | bh = bh->b_this_page; | |
971 | } while (bh != head); | |
676ce6d5 HD |
972 | |
973 | /* | |
974 | * Caller needs to validate requested block against end of device. | |
975 | */ | |
976 | return end_block; | |
1da177e4 LT |
977 | } |
978 | ||
979 | /* | |
980 | * Create the page-cache page that contains the requested block. | |
981 | * | |
676ce6d5 | 982 | * This is used purely for blockdev mappings. |
1da177e4 | 983 | */ |
676ce6d5 | 984 | static int |
1da177e4 | 985 | grow_dev_page(struct block_device *bdev, sector_t block, |
3b5e6454 | 986 | pgoff_t index, int size, int sizebits, gfp_t gfp) |
1da177e4 LT |
987 | { |
988 | struct inode *inode = bdev->bd_inode; | |
989 | struct page *page; | |
990 | struct buffer_head *bh; | |
676ce6d5 HD |
991 | sector_t end_block; |
992 | int ret = 0; /* Will call free_more_memory() */ | |
84235de3 | 993 | gfp_t gfp_mask; |
1da177e4 | 994 | |
c62d2555 | 995 | gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; |
3b5e6454 | 996 | |
84235de3 JW |
997 | /* |
998 | * XXX: __getblk_slow() can not really deal with failure and | |
999 | * will endlessly loop on improvised global reclaim. Prefer | |
1000 | * looping in the allocator rather than here, at least that | |
1001 | * code knows what it's doing. | |
1002 | */ | |
1003 | gfp_mask |= __GFP_NOFAIL; | |
1004 | ||
1005 | page = find_or_create_page(inode->i_mapping, index, gfp_mask); | |
1da177e4 | 1006 | if (!page) |
676ce6d5 | 1007 | return ret; |
1da177e4 | 1008 | |
e827f923 | 1009 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1010 | |
1011 | if (page_has_buffers(page)) { | |
1012 | bh = page_buffers(page); | |
1013 | if (bh->b_size == size) { | |
676ce6d5 | 1014 | end_block = init_page_buffers(page, bdev, |
f2d5a944 AA |
1015 | (sector_t)index << sizebits, |
1016 | size); | |
676ce6d5 | 1017 | goto done; |
1da177e4 LT |
1018 | } |
1019 | if (!try_to_free_buffers(page)) | |
1020 | goto failed; | |
1021 | } | |
1022 | ||
1023 | /* | |
1024 | * Allocate some buffers for this page | |
1025 | */ | |
1026 | bh = alloc_page_buffers(page, size, 0); | |
1027 | if (!bh) | |
1028 | goto failed; | |
1029 | ||
1030 | /* | |
1031 | * Link the page to the buffers and initialise them. Take the | |
1032 | * lock to be atomic wrt __find_get_block(), which does not | |
1033 | * run under the page lock. | |
1034 | */ | |
1035 | spin_lock(&inode->i_mapping->private_lock); | |
1036 | link_dev_buffers(page, bh); | |
f2d5a944 AA |
1037 | end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, |
1038 | size); | |
1da177e4 | 1039 | spin_unlock(&inode->i_mapping->private_lock); |
676ce6d5 HD |
1040 | done: |
1041 | ret = (block < end_block) ? 1 : -ENXIO; | |
1da177e4 | 1042 | failed: |
1da177e4 | 1043 | unlock_page(page); |
09cbfeaf | 1044 | put_page(page); |
676ce6d5 | 1045 | return ret; |
1da177e4 LT |
1046 | } |
1047 | ||
1048 | /* | |
1049 | * Create buffers for the specified block device block's page. If | |
1050 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1051 | */ |
858119e1 | 1052 | static int |
3b5e6454 | 1053 | grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) |
1da177e4 | 1054 | { |
1da177e4 LT |
1055 | pgoff_t index; |
1056 | int sizebits; | |
1057 | ||
1058 | sizebits = -1; | |
1059 | do { | |
1060 | sizebits++; | |
1061 | } while ((size << sizebits) < PAGE_SIZE); | |
1062 | ||
1063 | index = block >> sizebits; | |
1da177e4 | 1064 | |
e5657933 AM |
1065 | /* |
1066 | * Check for a block which wants to lie outside our maximum possible | |
1067 | * pagecache index. (this comparison is done using sector_t types). | |
1068 | */ | |
1069 | if (unlikely(index != block >> sizebits)) { | |
e5657933 | 1070 | printk(KERN_ERR "%s: requested out-of-range block %llu for " |
a1c6f057 | 1071 | "device %pg\n", |
8e24eea7 | 1072 | __func__, (unsigned long long)block, |
a1c6f057 | 1073 | bdev); |
e5657933 AM |
1074 | return -EIO; |
1075 | } | |
676ce6d5 | 1076 | |
1da177e4 | 1077 | /* Create a page with the proper size buffers.. */ |
3b5e6454 | 1078 | return grow_dev_page(bdev, block, index, size, sizebits, gfp); |
1da177e4 LT |
1079 | } |
1080 | ||
3b5e6454 GK |
1081 | struct buffer_head * |
1082 | __getblk_slow(struct block_device *bdev, sector_t block, | |
1083 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1084 | { |
1085 | /* Size must be multiple of hard sectorsize */ | |
e1defc4f | 1086 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
1da177e4 LT |
1087 | (size < 512 || size > PAGE_SIZE))) { |
1088 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1089 | size); | |
e1defc4f MP |
1090 | printk(KERN_ERR "logical block size: %d\n", |
1091 | bdev_logical_block_size(bdev)); | |
1da177e4 LT |
1092 | |
1093 | dump_stack(); | |
1094 | return NULL; | |
1095 | } | |
1096 | ||
676ce6d5 HD |
1097 | for (;;) { |
1098 | struct buffer_head *bh; | |
1099 | int ret; | |
1da177e4 LT |
1100 | |
1101 | bh = __find_get_block(bdev, block, size); | |
1102 | if (bh) | |
1103 | return bh; | |
676ce6d5 | 1104 | |
3b5e6454 | 1105 | ret = grow_buffers(bdev, block, size, gfp); |
676ce6d5 HD |
1106 | if (ret < 0) |
1107 | return NULL; | |
1108 | if (ret == 0) | |
1109 | free_more_memory(); | |
1da177e4 LT |
1110 | } |
1111 | } | |
3b5e6454 | 1112 | EXPORT_SYMBOL(__getblk_slow); |
1da177e4 LT |
1113 | |
1114 | /* | |
1115 | * The relationship between dirty buffers and dirty pages: | |
1116 | * | |
1117 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1118 | * the page is tagged dirty in its radix tree. | |
1119 | * | |
1120 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1121 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1122 | * merely a hint about the true dirty state. | |
1123 | * | |
1124 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1125 | * (if the page has buffers). | |
1126 | * | |
1127 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1128 | * buffers are not. | |
1129 | * | |
1130 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1131 | * individually become uptodate. But their backing page remains not | |
1132 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1133 | * block_read_full_page() against that page will discover all the uptodate | |
1134 | * buffers, will set the page uptodate and will perform no I/O. | |
1135 | */ | |
1136 | ||
1137 | /** | |
1138 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1139 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1140 | * |
1141 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1142 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1143 | * tree and then attach the address_space's inode to its superblock's dirty | |
1144 | * inode list. | |
1145 | * | |
1146 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
250df6ed | 1147 | * mapping->tree_lock and mapping->host->i_lock. |
1da177e4 | 1148 | */ |
fc9b52cd | 1149 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1150 | { |
787d2214 | 1151 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 | 1152 | |
5305cb83 TH |
1153 | trace_block_dirty_buffer(bh); |
1154 | ||
1be62dc1 LT |
1155 | /* |
1156 | * Very *carefully* optimize the it-is-already-dirty case. | |
1157 | * | |
1158 | * Don't let the final "is it dirty" escape to before we | |
1159 | * perhaps modified the buffer. | |
1160 | */ | |
1161 | if (buffer_dirty(bh)) { | |
1162 | smp_mb(); | |
1163 | if (buffer_dirty(bh)) | |
1164 | return; | |
1165 | } | |
1166 | ||
a8e7d49a LT |
1167 | if (!test_set_buffer_dirty(bh)) { |
1168 | struct page *page = bh->b_page; | |
c4843a75 | 1169 | struct address_space *mapping = NULL; |
c4843a75 | 1170 | |
62cccb8c | 1171 | lock_page_memcg(page); |
8e9d78ed | 1172 | if (!TestSetPageDirty(page)) { |
c4843a75 | 1173 | mapping = page_mapping(page); |
8e9d78ed | 1174 | if (mapping) |
62cccb8c | 1175 | __set_page_dirty(page, mapping, 0); |
8e9d78ed | 1176 | } |
62cccb8c | 1177 | unlock_page_memcg(page); |
c4843a75 GT |
1178 | if (mapping) |
1179 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
a8e7d49a | 1180 | } |
1da177e4 | 1181 | } |
1fe72eaa | 1182 | EXPORT_SYMBOL(mark_buffer_dirty); |
1da177e4 LT |
1183 | |
1184 | /* | |
1185 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1186 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1187 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1188 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1189 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1190 | */ | |
1191 | void __brelse(struct buffer_head * buf) | |
1192 | { | |
1193 | if (atomic_read(&buf->b_count)) { | |
1194 | put_bh(buf); | |
1195 | return; | |
1196 | } | |
5c752ad9 | 1197 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 | 1198 | } |
1fe72eaa | 1199 | EXPORT_SYMBOL(__brelse); |
1da177e4 LT |
1200 | |
1201 | /* | |
1202 | * bforget() is like brelse(), except it discards any | |
1203 | * potentially dirty data. | |
1204 | */ | |
1205 | void __bforget(struct buffer_head *bh) | |
1206 | { | |
1207 | clear_buffer_dirty(bh); | |
535ee2fb | 1208 | if (bh->b_assoc_map) { |
1da177e4 LT |
1209 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1210 | ||
1211 | spin_lock(&buffer_mapping->private_lock); | |
1212 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1213 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1214 | spin_unlock(&buffer_mapping->private_lock); |
1215 | } | |
1216 | __brelse(bh); | |
1217 | } | |
1fe72eaa | 1218 | EXPORT_SYMBOL(__bforget); |
1da177e4 LT |
1219 | |
1220 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1221 | { | |
1222 | lock_buffer(bh); | |
1223 | if (buffer_uptodate(bh)) { | |
1224 | unlock_buffer(bh); | |
1225 | return bh; | |
1226 | } else { | |
1227 | get_bh(bh); | |
1228 | bh->b_end_io = end_buffer_read_sync; | |
2a222ca9 | 1229 | submit_bh(REQ_OP_READ, 0, bh); |
1da177e4 LT |
1230 | wait_on_buffer(bh); |
1231 | if (buffer_uptodate(bh)) | |
1232 | return bh; | |
1233 | } | |
1234 | brelse(bh); | |
1235 | return NULL; | |
1236 | } | |
1237 | ||
1238 | /* | |
1239 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1240 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1241 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1242 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1243 | * CPU's LRUs at the same time. | |
1244 | * | |
1245 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1246 | * sb_find_get_block(). | |
1247 | * | |
1248 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1249 | * a local interrupt disable for that. | |
1250 | */ | |
1251 | ||
86cf78d7 | 1252 | #define BH_LRU_SIZE 16 |
1da177e4 LT |
1253 | |
1254 | struct bh_lru { | |
1255 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1256 | }; | |
1257 | ||
1258 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1259 | ||
1260 | #ifdef CONFIG_SMP | |
1261 | #define bh_lru_lock() local_irq_disable() | |
1262 | #define bh_lru_unlock() local_irq_enable() | |
1263 | #else | |
1264 | #define bh_lru_lock() preempt_disable() | |
1265 | #define bh_lru_unlock() preempt_enable() | |
1266 | #endif | |
1267 | ||
1268 | static inline void check_irqs_on(void) | |
1269 | { | |
1270 | #ifdef irqs_disabled | |
1271 | BUG_ON(irqs_disabled()); | |
1272 | #endif | |
1273 | } | |
1274 | ||
1275 | /* | |
1276 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1277 | */ | |
1278 | static void bh_lru_install(struct buffer_head *bh) | |
1279 | { | |
1280 | struct buffer_head *evictee = NULL; | |
1da177e4 LT |
1281 | |
1282 | check_irqs_on(); | |
1283 | bh_lru_lock(); | |
c7b92516 | 1284 | if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { |
1da177e4 LT |
1285 | struct buffer_head *bhs[BH_LRU_SIZE]; |
1286 | int in; | |
1287 | int out = 0; | |
1288 | ||
1289 | get_bh(bh); | |
1290 | bhs[out++] = bh; | |
1291 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
c7b92516 CL |
1292 | struct buffer_head *bh2 = |
1293 | __this_cpu_read(bh_lrus.bhs[in]); | |
1da177e4 LT |
1294 | |
1295 | if (bh2 == bh) { | |
1296 | __brelse(bh2); | |
1297 | } else { | |
1298 | if (out >= BH_LRU_SIZE) { | |
1299 | BUG_ON(evictee != NULL); | |
1300 | evictee = bh2; | |
1301 | } else { | |
1302 | bhs[out++] = bh2; | |
1303 | } | |
1304 | } | |
1305 | } | |
1306 | while (out < BH_LRU_SIZE) | |
1307 | bhs[out++] = NULL; | |
ca6673b0 | 1308 | memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); |
1da177e4 LT |
1309 | } |
1310 | bh_lru_unlock(); | |
1311 | ||
1312 | if (evictee) | |
1313 | __brelse(evictee); | |
1314 | } | |
1315 | ||
1316 | /* | |
1317 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1318 | */ | |
858119e1 | 1319 | static struct buffer_head * |
3991d3bd | 1320 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1321 | { |
1322 | struct buffer_head *ret = NULL; | |
3991d3bd | 1323 | unsigned int i; |
1da177e4 LT |
1324 | |
1325 | check_irqs_on(); | |
1326 | bh_lru_lock(); | |
1da177e4 | 1327 | for (i = 0; i < BH_LRU_SIZE; i++) { |
c7b92516 | 1328 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
1da177e4 | 1329 | |
9470dd5d ZB |
1330 | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && |
1331 | bh->b_size == size) { | |
1da177e4 LT |
1332 | if (i) { |
1333 | while (i) { | |
c7b92516 CL |
1334 | __this_cpu_write(bh_lrus.bhs[i], |
1335 | __this_cpu_read(bh_lrus.bhs[i - 1])); | |
1da177e4 LT |
1336 | i--; |
1337 | } | |
c7b92516 | 1338 | __this_cpu_write(bh_lrus.bhs[0], bh); |
1da177e4 LT |
1339 | } |
1340 | get_bh(bh); | |
1341 | ret = bh; | |
1342 | break; | |
1343 | } | |
1344 | } | |
1345 | bh_lru_unlock(); | |
1346 | return ret; | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1351 | * it in the LRU and mark it as accessed. If it is not present then return | |
1352 | * NULL | |
1353 | */ | |
1354 | struct buffer_head * | |
3991d3bd | 1355 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1356 | { |
1357 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1358 | ||
1359 | if (bh == NULL) { | |
2457aec6 | 1360 | /* __find_get_block_slow will mark the page accessed */ |
385fd4c5 | 1361 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1362 | if (bh) |
1363 | bh_lru_install(bh); | |
2457aec6 | 1364 | } else |
1da177e4 | 1365 | touch_buffer(bh); |
2457aec6 | 1366 | |
1da177e4 LT |
1367 | return bh; |
1368 | } | |
1369 | EXPORT_SYMBOL(__find_get_block); | |
1370 | ||
1371 | /* | |
3b5e6454 | 1372 | * __getblk_gfp() will locate (and, if necessary, create) the buffer_head |
1da177e4 LT |
1373 | * which corresponds to the passed block_device, block and size. The |
1374 | * returned buffer has its reference count incremented. | |
1375 | * | |
3b5e6454 GK |
1376 | * __getblk_gfp() will lock up the machine if grow_dev_page's |
1377 | * try_to_free_buffers() attempt is failing. FIXME, perhaps? | |
1da177e4 LT |
1378 | */ |
1379 | struct buffer_head * | |
3b5e6454 GK |
1380 | __getblk_gfp(struct block_device *bdev, sector_t block, |
1381 | unsigned size, gfp_t gfp) | |
1da177e4 LT |
1382 | { |
1383 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1384 | ||
1385 | might_sleep(); | |
1386 | if (bh == NULL) | |
3b5e6454 | 1387 | bh = __getblk_slow(bdev, block, size, gfp); |
1da177e4 LT |
1388 | return bh; |
1389 | } | |
3b5e6454 | 1390 | EXPORT_SYMBOL(__getblk_gfp); |
1da177e4 LT |
1391 | |
1392 | /* | |
1393 | * Do async read-ahead on a buffer.. | |
1394 | */ | |
3991d3bd | 1395 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1396 | { |
1397 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 | 1398 | if (likely(bh)) { |
70246286 | 1399 | ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); |
a3e713b5 AM |
1400 | brelse(bh); |
1401 | } | |
1da177e4 LT |
1402 | } |
1403 | EXPORT_SYMBOL(__breadahead); | |
1404 | ||
1405 | /** | |
3b5e6454 | 1406 | * __bread_gfp() - reads a specified block and returns the bh |
67be2dd1 | 1407 | * @bdev: the block_device to read from |
1da177e4 LT |
1408 | * @block: number of block |
1409 | * @size: size (in bytes) to read | |
3b5e6454 GK |
1410 | * @gfp: page allocation flag |
1411 | * | |
1da177e4 | 1412 | * Reads a specified block, and returns buffer head that contains it. |
3b5e6454 GK |
1413 | * The page cache can be allocated from non-movable area |
1414 | * not to prevent page migration if you set gfp to zero. | |
1da177e4 LT |
1415 | * It returns NULL if the block was unreadable. |
1416 | */ | |
1417 | struct buffer_head * | |
3b5e6454 GK |
1418 | __bread_gfp(struct block_device *bdev, sector_t block, |
1419 | unsigned size, gfp_t gfp) | |
1da177e4 | 1420 | { |
3b5e6454 | 1421 | struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); |
1da177e4 | 1422 | |
a3e713b5 | 1423 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1424 | bh = __bread_slow(bh); |
1425 | return bh; | |
1426 | } | |
3b5e6454 | 1427 | EXPORT_SYMBOL(__bread_gfp); |
1da177e4 LT |
1428 | |
1429 | /* | |
1430 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1431 | * This doesn't race because it runs in each cpu either in irq | |
1432 | * or with preempt disabled. | |
1433 | */ | |
1434 | static void invalidate_bh_lru(void *arg) | |
1435 | { | |
1436 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1437 | int i; | |
1438 | ||
1439 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1440 | brelse(b->bhs[i]); | |
1441 | b->bhs[i] = NULL; | |
1442 | } | |
1443 | put_cpu_var(bh_lrus); | |
1444 | } | |
42be35d0 GBY |
1445 | |
1446 | static bool has_bh_in_lru(int cpu, void *dummy) | |
1447 | { | |
1448 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | |
1449 | int i; | |
1da177e4 | 1450 | |
42be35d0 GBY |
1451 | for (i = 0; i < BH_LRU_SIZE; i++) { |
1452 | if (b->bhs[i]) | |
1453 | return 1; | |
1454 | } | |
1455 | ||
1456 | return 0; | |
1457 | } | |
1458 | ||
f9a14399 | 1459 | void invalidate_bh_lrus(void) |
1da177e4 | 1460 | { |
42be35d0 | 1461 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
1da177e4 | 1462 | } |
9db5579b | 1463 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1464 | |
1465 | void set_bh_page(struct buffer_head *bh, | |
1466 | struct page *page, unsigned long offset) | |
1467 | { | |
1468 | bh->b_page = page; | |
e827f923 | 1469 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1470 | if (PageHighMem(page)) |
1471 | /* | |
1472 | * This catches illegal uses and preserves the offset: | |
1473 | */ | |
1474 | bh->b_data = (char *)(0 + offset); | |
1475 | else | |
1476 | bh->b_data = page_address(page) + offset; | |
1477 | } | |
1478 | EXPORT_SYMBOL(set_bh_page); | |
1479 | ||
1480 | /* | |
1481 | * Called when truncating a buffer on a page completely. | |
1482 | */ | |
e7470ee8 MG |
1483 | |
1484 | /* Bits that are cleared during an invalidate */ | |
1485 | #define BUFFER_FLAGS_DISCARD \ | |
1486 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ | |
1487 | 1 << BH_Delay | 1 << BH_Unwritten) | |
1488 | ||
858119e1 | 1489 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 | 1490 | { |
e7470ee8 MG |
1491 | unsigned long b_state, b_state_old; |
1492 | ||
1da177e4 LT |
1493 | lock_buffer(bh); |
1494 | clear_buffer_dirty(bh); | |
1495 | bh->b_bdev = NULL; | |
e7470ee8 MG |
1496 | b_state = bh->b_state; |
1497 | for (;;) { | |
1498 | b_state_old = cmpxchg(&bh->b_state, b_state, | |
1499 | (b_state & ~BUFFER_FLAGS_DISCARD)); | |
1500 | if (b_state_old == b_state) | |
1501 | break; | |
1502 | b_state = b_state_old; | |
1503 | } | |
1da177e4 LT |
1504 | unlock_buffer(bh); |
1505 | } | |
1506 | ||
1da177e4 | 1507 | /** |
814e1d25 | 1508 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
1da177e4 LT |
1509 | * |
1510 | * @page: the page which is affected | |
d47992f8 LC |
1511 | * @offset: start of the range to invalidate |
1512 | * @length: length of the range to invalidate | |
1da177e4 LT |
1513 | * |
1514 | * block_invalidatepage() is called when all or part of the page has become | |
814e1d25 | 1515 | * invalidated by a truncate operation. |
1da177e4 LT |
1516 | * |
1517 | * block_invalidatepage() does not have to release all buffers, but it must | |
1518 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1519 | * is underway against any of the blocks which are outside the truncation | |
1520 | * point. Because the caller is about to free (and possibly reuse) those | |
1521 | * blocks on-disk. | |
1522 | */ | |
d47992f8 LC |
1523 | void block_invalidatepage(struct page *page, unsigned int offset, |
1524 | unsigned int length) | |
1da177e4 LT |
1525 | { |
1526 | struct buffer_head *head, *bh, *next; | |
1527 | unsigned int curr_off = 0; | |
d47992f8 | 1528 | unsigned int stop = length + offset; |
1da177e4 LT |
1529 | |
1530 | BUG_ON(!PageLocked(page)); | |
1531 | if (!page_has_buffers(page)) | |
1532 | goto out; | |
1533 | ||
d47992f8 LC |
1534 | /* |
1535 | * Check for overflow | |
1536 | */ | |
09cbfeaf | 1537 | BUG_ON(stop > PAGE_SIZE || stop < length); |
d47992f8 | 1538 | |
1da177e4 LT |
1539 | head = page_buffers(page); |
1540 | bh = head; | |
1541 | do { | |
1542 | unsigned int next_off = curr_off + bh->b_size; | |
1543 | next = bh->b_this_page; | |
1544 | ||
d47992f8 LC |
1545 | /* |
1546 | * Are we still fully in range ? | |
1547 | */ | |
1548 | if (next_off > stop) | |
1549 | goto out; | |
1550 | ||
1da177e4 LT |
1551 | /* |
1552 | * is this block fully invalidated? | |
1553 | */ | |
1554 | if (offset <= curr_off) | |
1555 | discard_buffer(bh); | |
1556 | curr_off = next_off; | |
1557 | bh = next; | |
1558 | } while (bh != head); | |
1559 | ||
1560 | /* | |
1561 | * We release buffers only if the entire page is being invalidated. | |
1562 | * The get_block cached value has been unconditionally invalidated, | |
1563 | * so real IO is not possible anymore. | |
1564 | */ | |
1565 | if (offset == 0) | |
2ff28e22 | 1566 | try_to_release_page(page, 0); |
1da177e4 | 1567 | out: |
2ff28e22 | 1568 | return; |
1da177e4 LT |
1569 | } |
1570 | EXPORT_SYMBOL(block_invalidatepage); | |
1571 | ||
d47992f8 | 1572 | |
1da177e4 LT |
1573 | /* |
1574 | * We attach and possibly dirty the buffers atomically wrt | |
1575 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1576 | * is already excluded via the page lock. | |
1577 | */ | |
1578 | void create_empty_buffers(struct page *page, | |
1579 | unsigned long blocksize, unsigned long b_state) | |
1580 | { | |
1581 | struct buffer_head *bh, *head, *tail; | |
1582 | ||
1583 | head = alloc_page_buffers(page, blocksize, 1); | |
1584 | bh = head; | |
1585 | do { | |
1586 | bh->b_state |= b_state; | |
1587 | tail = bh; | |
1588 | bh = bh->b_this_page; | |
1589 | } while (bh); | |
1590 | tail->b_this_page = head; | |
1591 | ||
1592 | spin_lock(&page->mapping->private_lock); | |
1593 | if (PageUptodate(page) || PageDirty(page)) { | |
1594 | bh = head; | |
1595 | do { | |
1596 | if (PageDirty(page)) | |
1597 | set_buffer_dirty(bh); | |
1598 | if (PageUptodate(page)) | |
1599 | set_buffer_uptodate(bh); | |
1600 | bh = bh->b_this_page; | |
1601 | } while (bh != head); | |
1602 | } | |
1603 | attach_page_buffers(page, head); | |
1604 | spin_unlock(&page->mapping->private_lock); | |
1605 | } | |
1606 | EXPORT_SYMBOL(create_empty_buffers); | |
1607 | ||
1608 | /* | |
1609 | * We are taking a block for data and we don't want any output from any | |
1610 | * buffer-cache aliases starting from return from that function and | |
1611 | * until the moment when something will explicitly mark the buffer | |
1612 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1613 | * We don't even need to mark it not-uptodate - nobody can expect | |
1614 | * anything from a newly allocated buffer anyway. We used to used | |
1615 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1616 | * don't want to mark the alias unmapped, for example - it would confuse | |
1617 | * anyone who might pick it with bread() afterwards... | |
1618 | * | |
1619 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1620 | * be writeout I/O going on against recently-freed buffers. We don't | |
1621 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1622 | * only if we really need to. That happens here. | |
1623 | */ | |
1624 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1625 | { | |
1626 | struct buffer_head *old_bh; | |
1627 | ||
1628 | might_sleep(); | |
1629 | ||
385fd4c5 | 1630 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1631 | if (old_bh) { |
1632 | clear_buffer_dirty(old_bh); | |
1633 | wait_on_buffer(old_bh); | |
1634 | clear_buffer_req(old_bh); | |
1635 | __brelse(old_bh); | |
1636 | } | |
1637 | } | |
1638 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1639 | ||
45bce8f3 LT |
1640 | /* |
1641 | * Size is a power-of-two in the range 512..PAGE_SIZE, | |
1642 | * and the case we care about most is PAGE_SIZE. | |
1643 | * | |
1644 | * So this *could* possibly be written with those | |
1645 | * constraints in mind (relevant mostly if some | |
1646 | * architecture has a slow bit-scan instruction) | |
1647 | */ | |
1648 | static inline int block_size_bits(unsigned int blocksize) | |
1649 | { | |
1650 | return ilog2(blocksize); | |
1651 | } | |
1652 | ||
1653 | static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) | |
1654 | { | |
1655 | BUG_ON(!PageLocked(page)); | |
1656 | ||
1657 | if (!page_has_buffers(page)) | |
1658 | create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); | |
1659 | return page_buffers(page); | |
1660 | } | |
1661 | ||
1da177e4 LT |
1662 | /* |
1663 | * NOTE! All mapped/uptodate combinations are valid: | |
1664 | * | |
1665 | * Mapped Uptodate Meaning | |
1666 | * | |
1667 | * No No "unknown" - must do get_block() | |
1668 | * No Yes "hole" - zero-filled | |
1669 | * Yes No "allocated" - allocated on disk, not read in | |
1670 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1671 | * | |
1672 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1673 | */ | |
1674 | ||
1675 | /* | |
1676 | * While block_write_full_page is writing back the dirty buffers under | |
1677 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1678 | * again at any time. We handle that by only looking at the buffer | |
1679 | * state inside lock_buffer(). | |
1680 | * | |
1681 | * If block_write_full_page() is called for regular writeback | |
1682 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1683 | * locked buffer. This only can happen if someone has written the buffer | |
1684 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1685 | * prevents this contention from occurring. | |
6e34eedd TT |
1686 | * |
1687 | * If block_write_full_page() is called with wbc->sync_mode == | |
721a9602 JA |
1688 | * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this |
1689 | * causes the writes to be flagged as synchronous writes. | |
1da177e4 | 1690 | */ |
b4bba389 | 1691 | int __block_write_full_page(struct inode *inode, struct page *page, |
35c80d5f CM |
1692 | get_block_t *get_block, struct writeback_control *wbc, |
1693 | bh_end_io_t *handler) | |
1da177e4 LT |
1694 | { |
1695 | int err; | |
1696 | sector_t block; | |
1697 | sector_t last_block; | |
f0fbd5fc | 1698 | struct buffer_head *bh, *head; |
45bce8f3 | 1699 | unsigned int blocksize, bbits; |
1da177e4 | 1700 | int nr_underway = 0; |
2a222ca9 | 1701 | int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0); |
1da177e4 | 1702 | |
45bce8f3 | 1703 | head = create_page_buffers(page, inode, |
1da177e4 | 1704 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1da177e4 LT |
1705 | |
1706 | /* | |
1707 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1708 | * here, and the (potentially unmapped) buffers may become dirty at | |
1709 | * any time. If a buffer becomes dirty here after we've inspected it | |
1710 | * then we just miss that fact, and the page stays dirty. | |
1711 | * | |
1712 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1713 | * handle that here by just cleaning them. | |
1714 | */ | |
1715 | ||
1da177e4 | 1716 | bh = head; |
45bce8f3 LT |
1717 | blocksize = bh->b_size; |
1718 | bbits = block_size_bits(blocksize); | |
1719 | ||
09cbfeaf | 1720 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
45bce8f3 | 1721 | last_block = (i_size_read(inode) - 1) >> bbits; |
1da177e4 LT |
1722 | |
1723 | /* | |
1724 | * Get all the dirty buffers mapped to disk addresses and | |
1725 | * handle any aliases from the underlying blockdev's mapping. | |
1726 | */ | |
1727 | do { | |
1728 | if (block > last_block) { | |
1729 | /* | |
1730 | * mapped buffers outside i_size will occur, because | |
1731 | * this page can be outside i_size when there is a | |
1732 | * truncate in progress. | |
1733 | */ | |
1734 | /* | |
1735 | * The buffer was zeroed by block_write_full_page() | |
1736 | */ | |
1737 | clear_buffer_dirty(bh); | |
1738 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1739 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1740 | buffer_dirty(bh)) { | |
b0cf2321 | 1741 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1742 | err = get_block(inode, block, bh, 1); |
1743 | if (err) | |
1744 | goto recover; | |
29a814d2 | 1745 | clear_buffer_delay(bh); |
1da177e4 LT |
1746 | if (buffer_new(bh)) { |
1747 | /* blockdev mappings never come here */ | |
1748 | clear_buffer_new(bh); | |
1749 | unmap_underlying_metadata(bh->b_bdev, | |
1750 | bh->b_blocknr); | |
1751 | } | |
1752 | } | |
1753 | bh = bh->b_this_page; | |
1754 | block++; | |
1755 | } while (bh != head); | |
1756 | ||
1757 | do { | |
1da177e4 LT |
1758 | if (!buffer_mapped(bh)) |
1759 | continue; | |
1760 | /* | |
1761 | * If it's a fully non-blocking write attempt and we cannot | |
1762 | * lock the buffer then redirty the page. Note that this can | |
5b0830cb JA |
1763 | * potentially cause a busy-wait loop from writeback threads |
1764 | * and kswapd activity, but those code paths have their own | |
1765 | * higher-level throttling. | |
1da177e4 | 1766 | */ |
1b430bee | 1767 | if (wbc->sync_mode != WB_SYNC_NONE) { |
1da177e4 | 1768 | lock_buffer(bh); |
ca5de404 | 1769 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1770 | redirty_page_for_writepage(wbc, page); |
1771 | continue; | |
1772 | } | |
1773 | if (test_clear_buffer_dirty(bh)) { | |
35c80d5f | 1774 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1775 | } else { |
1776 | unlock_buffer(bh); | |
1777 | } | |
1778 | } while ((bh = bh->b_this_page) != head); | |
1779 | ||
1780 | /* | |
1781 | * The page and its buffers are protected by PageWriteback(), so we can | |
1782 | * drop the bh refcounts early. | |
1783 | */ | |
1784 | BUG_ON(PageWriteback(page)); | |
1785 | set_page_writeback(page); | |
1da177e4 LT |
1786 | |
1787 | do { | |
1788 | struct buffer_head *next = bh->b_this_page; | |
1789 | if (buffer_async_write(bh)) { | |
2a222ca9 | 1790 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); |
1da177e4 LT |
1791 | nr_underway++; |
1792 | } | |
1da177e4 LT |
1793 | bh = next; |
1794 | } while (bh != head); | |
05937baa | 1795 | unlock_page(page); |
1da177e4 LT |
1796 | |
1797 | err = 0; | |
1798 | done: | |
1799 | if (nr_underway == 0) { | |
1800 | /* | |
1801 | * The page was marked dirty, but the buffers were | |
1802 | * clean. Someone wrote them back by hand with | |
1803 | * ll_rw_block/submit_bh. A rare case. | |
1804 | */ | |
1da177e4 | 1805 | end_page_writeback(page); |
3d67f2d7 | 1806 | |
1da177e4 LT |
1807 | /* |
1808 | * The page and buffer_heads can be released at any time from | |
1809 | * here on. | |
1810 | */ | |
1da177e4 LT |
1811 | } |
1812 | return err; | |
1813 | ||
1814 | recover: | |
1815 | /* | |
1816 | * ENOSPC, or some other error. We may already have added some | |
1817 | * blocks to the file, so we need to write these out to avoid | |
1818 | * exposing stale data. | |
1819 | * The page is currently locked and not marked for writeback | |
1820 | */ | |
1821 | bh = head; | |
1822 | /* Recovery: lock and submit the mapped buffers */ | |
1823 | do { | |
29a814d2 AT |
1824 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1825 | !buffer_delay(bh)) { | |
1da177e4 | 1826 | lock_buffer(bh); |
35c80d5f | 1827 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1828 | } else { |
1829 | /* | |
1830 | * The buffer may have been set dirty during | |
1831 | * attachment to a dirty page. | |
1832 | */ | |
1833 | clear_buffer_dirty(bh); | |
1834 | } | |
1835 | } while ((bh = bh->b_this_page) != head); | |
1836 | SetPageError(page); | |
1837 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1838 | mapping_set_error(page->mapping, err); |
1da177e4 | 1839 | set_page_writeback(page); |
1da177e4 LT |
1840 | do { |
1841 | struct buffer_head *next = bh->b_this_page; | |
1842 | if (buffer_async_write(bh)) { | |
1843 | clear_buffer_dirty(bh); | |
2a222ca9 | 1844 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); |
1da177e4 LT |
1845 | nr_underway++; |
1846 | } | |
1da177e4 LT |
1847 | bh = next; |
1848 | } while (bh != head); | |
ffda9d30 | 1849 | unlock_page(page); |
1da177e4 LT |
1850 | goto done; |
1851 | } | |
b4bba389 | 1852 | EXPORT_SYMBOL(__block_write_full_page); |
1da177e4 | 1853 | |
afddba49 NP |
1854 | /* |
1855 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1856 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1857 | * block data from leaking). And clear the new bit. | |
1858 | */ | |
1859 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1860 | { | |
1861 | unsigned int block_start, block_end; | |
1862 | struct buffer_head *head, *bh; | |
1863 | ||
1864 | BUG_ON(!PageLocked(page)); | |
1865 | if (!page_has_buffers(page)) | |
1866 | return; | |
1867 | ||
1868 | bh = head = page_buffers(page); | |
1869 | block_start = 0; | |
1870 | do { | |
1871 | block_end = block_start + bh->b_size; | |
1872 | ||
1873 | if (buffer_new(bh)) { | |
1874 | if (block_end > from && block_start < to) { | |
1875 | if (!PageUptodate(page)) { | |
1876 | unsigned start, size; | |
1877 | ||
1878 | start = max(from, block_start); | |
1879 | size = min(to, block_end) - start; | |
1880 | ||
eebd2aa3 | 1881 | zero_user(page, start, size); |
afddba49 NP |
1882 | set_buffer_uptodate(bh); |
1883 | } | |
1884 | ||
1885 | clear_buffer_new(bh); | |
1886 | mark_buffer_dirty(bh); | |
1887 | } | |
1888 | } | |
1889 | ||
1890 | block_start = block_end; | |
1891 | bh = bh->b_this_page; | |
1892 | } while (bh != head); | |
1893 | } | |
1894 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1895 | ||
ae259a9c CH |
1896 | static void |
1897 | iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, | |
1898 | struct iomap *iomap) | |
1899 | { | |
1900 | loff_t offset = block << inode->i_blkbits; | |
1901 | ||
1902 | bh->b_bdev = iomap->bdev; | |
1903 | ||
1904 | /* | |
1905 | * Block points to offset in file we need to map, iomap contains | |
1906 | * the offset at which the map starts. If the map ends before the | |
1907 | * current block, then do not map the buffer and let the caller | |
1908 | * handle it. | |
1909 | */ | |
1910 | BUG_ON(offset >= iomap->offset + iomap->length); | |
1911 | ||
1912 | switch (iomap->type) { | |
1913 | case IOMAP_HOLE: | |
1914 | /* | |
1915 | * If the buffer is not up to date or beyond the current EOF, | |
1916 | * we need to mark it as new to ensure sub-block zeroing is | |
1917 | * executed if necessary. | |
1918 | */ | |
1919 | if (!buffer_uptodate(bh) || | |
1920 | (offset >= i_size_read(inode))) | |
1921 | set_buffer_new(bh); | |
1922 | break; | |
1923 | case IOMAP_DELALLOC: | |
1924 | if (!buffer_uptodate(bh) || | |
1925 | (offset >= i_size_read(inode))) | |
1926 | set_buffer_new(bh); | |
1927 | set_buffer_uptodate(bh); | |
1928 | set_buffer_mapped(bh); | |
1929 | set_buffer_delay(bh); | |
1930 | break; | |
1931 | case IOMAP_UNWRITTEN: | |
1932 | /* | |
1933 | * For unwritten regions, we always need to ensure that | |
1934 | * sub-block writes cause the regions in the block we are not | |
1935 | * writing to are zeroed. Set the buffer as new to ensure this. | |
1936 | */ | |
1937 | set_buffer_new(bh); | |
1938 | set_buffer_unwritten(bh); | |
1939 | /* FALLTHRU */ | |
1940 | case IOMAP_MAPPED: | |
1941 | if (offset >= i_size_read(inode)) | |
1942 | set_buffer_new(bh); | |
1943 | bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + | |
1944 | ((offset - iomap->offset) >> inode->i_blkbits); | |
1945 | set_buffer_mapped(bh); | |
1946 | break; | |
1947 | } | |
1948 | } | |
1949 | ||
1950 | int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, | |
1951 | get_block_t *get_block, struct iomap *iomap) | |
1da177e4 | 1952 | { |
09cbfeaf | 1953 | unsigned from = pos & (PAGE_SIZE - 1); |
ebdec241 | 1954 | unsigned to = from + len; |
6e1db88d | 1955 | struct inode *inode = page->mapping->host; |
1da177e4 LT |
1956 | unsigned block_start, block_end; |
1957 | sector_t block; | |
1958 | int err = 0; | |
1959 | unsigned blocksize, bbits; | |
1960 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1961 | ||
1962 | BUG_ON(!PageLocked(page)); | |
09cbfeaf KS |
1963 | BUG_ON(from > PAGE_SIZE); |
1964 | BUG_ON(to > PAGE_SIZE); | |
1da177e4 LT |
1965 | BUG_ON(from > to); |
1966 | ||
45bce8f3 LT |
1967 | head = create_page_buffers(page, inode, 0); |
1968 | blocksize = head->b_size; | |
1969 | bbits = block_size_bits(blocksize); | |
1da177e4 | 1970 | |
09cbfeaf | 1971 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
1da177e4 LT |
1972 | |
1973 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1974 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1975 | block_end = block_start + blocksize; | |
1976 | if (block_end <= from || block_start >= to) { | |
1977 | if (PageUptodate(page)) { | |
1978 | if (!buffer_uptodate(bh)) | |
1979 | set_buffer_uptodate(bh); | |
1980 | } | |
1981 | continue; | |
1982 | } | |
1983 | if (buffer_new(bh)) | |
1984 | clear_buffer_new(bh); | |
1985 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1986 | WARN_ON(bh->b_size != blocksize); |
ae259a9c CH |
1987 | if (get_block) { |
1988 | err = get_block(inode, block, bh, 1); | |
1989 | if (err) | |
1990 | break; | |
1991 | } else { | |
1992 | iomap_to_bh(inode, block, bh, iomap); | |
1993 | } | |
1994 | ||
1da177e4 | 1995 | if (buffer_new(bh)) { |
1da177e4 LT |
1996 | unmap_underlying_metadata(bh->b_bdev, |
1997 | bh->b_blocknr); | |
1998 | if (PageUptodate(page)) { | |
637aff46 | 1999 | clear_buffer_new(bh); |
1da177e4 | 2000 | set_buffer_uptodate(bh); |
637aff46 | 2001 | mark_buffer_dirty(bh); |
1da177e4 LT |
2002 | continue; |
2003 | } | |
eebd2aa3 CL |
2004 | if (block_end > to || block_start < from) |
2005 | zero_user_segments(page, | |
2006 | to, block_end, | |
2007 | block_start, from); | |
1da177e4 LT |
2008 | continue; |
2009 | } | |
2010 | } | |
2011 | if (PageUptodate(page)) { | |
2012 | if (!buffer_uptodate(bh)) | |
2013 | set_buffer_uptodate(bh); | |
2014 | continue; | |
2015 | } | |
2016 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 2017 | !buffer_unwritten(bh) && |
1da177e4 | 2018 | (block_start < from || block_end > to)) { |
dfec8a14 | 2019 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
1da177e4 LT |
2020 | *wait_bh++=bh; |
2021 | } | |
2022 | } | |
2023 | /* | |
2024 | * If we issued read requests - let them complete. | |
2025 | */ | |
2026 | while(wait_bh > wait) { | |
2027 | wait_on_buffer(*--wait_bh); | |
2028 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 2029 | err = -EIO; |
1da177e4 | 2030 | } |
f9f07b6c | 2031 | if (unlikely(err)) |
afddba49 | 2032 | page_zero_new_buffers(page, from, to); |
1da177e4 LT |
2033 | return err; |
2034 | } | |
ae259a9c CH |
2035 | |
2036 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, | |
2037 | get_block_t *get_block) | |
2038 | { | |
2039 | return __block_write_begin_int(page, pos, len, get_block, NULL); | |
2040 | } | |
ebdec241 | 2041 | EXPORT_SYMBOL(__block_write_begin); |
1da177e4 LT |
2042 | |
2043 | static int __block_commit_write(struct inode *inode, struct page *page, | |
2044 | unsigned from, unsigned to) | |
2045 | { | |
2046 | unsigned block_start, block_end; | |
2047 | int partial = 0; | |
2048 | unsigned blocksize; | |
2049 | struct buffer_head *bh, *head; | |
2050 | ||
45bce8f3 LT |
2051 | bh = head = page_buffers(page); |
2052 | blocksize = bh->b_size; | |
1da177e4 | 2053 | |
45bce8f3 LT |
2054 | block_start = 0; |
2055 | do { | |
1da177e4 LT |
2056 | block_end = block_start + blocksize; |
2057 | if (block_end <= from || block_start >= to) { | |
2058 | if (!buffer_uptodate(bh)) | |
2059 | partial = 1; | |
2060 | } else { | |
2061 | set_buffer_uptodate(bh); | |
2062 | mark_buffer_dirty(bh); | |
2063 | } | |
afddba49 | 2064 | clear_buffer_new(bh); |
45bce8f3 LT |
2065 | |
2066 | block_start = block_end; | |
2067 | bh = bh->b_this_page; | |
2068 | } while (bh != head); | |
1da177e4 LT |
2069 | |
2070 | /* | |
2071 | * If this is a partial write which happened to make all buffers | |
2072 | * uptodate then we can optimize away a bogus readpage() for | |
2073 | * the next read(). Here we 'discover' whether the page went | |
2074 | * uptodate as a result of this (potentially partial) write. | |
2075 | */ | |
2076 | if (!partial) | |
2077 | SetPageUptodate(page); | |
2078 | return 0; | |
2079 | } | |
2080 | ||
afddba49 | 2081 | /* |
155130a4 CH |
2082 | * block_write_begin takes care of the basic task of block allocation and |
2083 | * bringing partial write blocks uptodate first. | |
2084 | * | |
7bb46a67 | 2085 | * The filesystem needs to handle block truncation upon failure. |
afddba49 | 2086 | */ |
155130a4 CH |
2087 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
2088 | unsigned flags, struct page **pagep, get_block_t *get_block) | |
afddba49 | 2089 | { |
09cbfeaf | 2090 | pgoff_t index = pos >> PAGE_SHIFT; |
afddba49 | 2091 | struct page *page; |
6e1db88d | 2092 | int status; |
afddba49 | 2093 | |
6e1db88d CH |
2094 | page = grab_cache_page_write_begin(mapping, index, flags); |
2095 | if (!page) | |
2096 | return -ENOMEM; | |
afddba49 | 2097 | |
6e1db88d | 2098 | status = __block_write_begin(page, pos, len, get_block); |
afddba49 | 2099 | if (unlikely(status)) { |
6e1db88d | 2100 | unlock_page(page); |
09cbfeaf | 2101 | put_page(page); |
6e1db88d | 2102 | page = NULL; |
afddba49 NP |
2103 | } |
2104 | ||
6e1db88d | 2105 | *pagep = page; |
afddba49 NP |
2106 | return status; |
2107 | } | |
2108 | EXPORT_SYMBOL(block_write_begin); | |
2109 | ||
2110 | int block_write_end(struct file *file, struct address_space *mapping, | |
2111 | loff_t pos, unsigned len, unsigned copied, | |
2112 | struct page *page, void *fsdata) | |
2113 | { | |
2114 | struct inode *inode = mapping->host; | |
2115 | unsigned start; | |
2116 | ||
09cbfeaf | 2117 | start = pos & (PAGE_SIZE - 1); |
afddba49 NP |
2118 | |
2119 | if (unlikely(copied < len)) { | |
2120 | /* | |
2121 | * The buffers that were written will now be uptodate, so we | |
2122 | * don't have to worry about a readpage reading them and | |
2123 | * overwriting a partial write. However if we have encountered | |
2124 | * a short write and only partially written into a buffer, it | |
2125 | * will not be marked uptodate, so a readpage might come in and | |
2126 | * destroy our partial write. | |
2127 | * | |
2128 | * Do the simplest thing, and just treat any short write to a | |
2129 | * non uptodate page as a zero-length write, and force the | |
2130 | * caller to redo the whole thing. | |
2131 | */ | |
2132 | if (!PageUptodate(page)) | |
2133 | copied = 0; | |
2134 | ||
2135 | page_zero_new_buffers(page, start+copied, start+len); | |
2136 | } | |
2137 | flush_dcache_page(page); | |
2138 | ||
2139 | /* This could be a short (even 0-length) commit */ | |
2140 | __block_commit_write(inode, page, start, start+copied); | |
2141 | ||
2142 | return copied; | |
2143 | } | |
2144 | EXPORT_SYMBOL(block_write_end); | |
2145 | ||
2146 | int generic_write_end(struct file *file, struct address_space *mapping, | |
2147 | loff_t pos, unsigned len, unsigned copied, | |
2148 | struct page *page, void *fsdata) | |
2149 | { | |
2150 | struct inode *inode = mapping->host; | |
90a80202 | 2151 | loff_t old_size = inode->i_size; |
c7d206b3 | 2152 | int i_size_changed = 0; |
afddba49 NP |
2153 | |
2154 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | |
2155 | ||
2156 | /* | |
2157 | * No need to use i_size_read() here, the i_size | |
2158 | * cannot change under us because we hold i_mutex. | |
2159 | * | |
2160 | * But it's important to update i_size while still holding page lock: | |
2161 | * page writeout could otherwise come in and zero beyond i_size. | |
2162 | */ | |
2163 | if (pos+copied > inode->i_size) { | |
2164 | i_size_write(inode, pos+copied); | |
c7d206b3 | 2165 | i_size_changed = 1; |
afddba49 NP |
2166 | } |
2167 | ||
2168 | unlock_page(page); | |
09cbfeaf | 2169 | put_page(page); |
afddba49 | 2170 | |
90a80202 JK |
2171 | if (old_size < pos) |
2172 | pagecache_isize_extended(inode, old_size, pos); | |
c7d206b3 JK |
2173 | /* |
2174 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2175 | * makes the holding time of page lock longer. Second, it forces lock | |
2176 | * ordering of page lock and transaction start for journaling | |
2177 | * filesystems. | |
2178 | */ | |
2179 | if (i_size_changed) | |
2180 | mark_inode_dirty(inode); | |
2181 | ||
afddba49 NP |
2182 | return copied; |
2183 | } | |
2184 | EXPORT_SYMBOL(generic_write_end); | |
2185 | ||
8ab22b9a HH |
2186 | /* |
2187 | * block_is_partially_uptodate checks whether buffers within a page are | |
2188 | * uptodate or not. | |
2189 | * | |
2190 | * Returns true if all buffers which correspond to a file portion | |
2191 | * we want to read are uptodate. | |
2192 | */ | |
c186afb4 AV |
2193 | int block_is_partially_uptodate(struct page *page, unsigned long from, |
2194 | unsigned long count) | |
8ab22b9a | 2195 | { |
8ab22b9a HH |
2196 | unsigned block_start, block_end, blocksize; |
2197 | unsigned to; | |
2198 | struct buffer_head *bh, *head; | |
2199 | int ret = 1; | |
2200 | ||
2201 | if (!page_has_buffers(page)) | |
2202 | return 0; | |
2203 | ||
45bce8f3 LT |
2204 | head = page_buffers(page); |
2205 | blocksize = head->b_size; | |
09cbfeaf | 2206 | to = min_t(unsigned, PAGE_SIZE - from, count); |
8ab22b9a | 2207 | to = from + to; |
09cbfeaf | 2208 | if (from < blocksize && to > PAGE_SIZE - blocksize) |
8ab22b9a HH |
2209 | return 0; |
2210 | ||
8ab22b9a HH |
2211 | bh = head; |
2212 | block_start = 0; | |
2213 | do { | |
2214 | block_end = block_start + blocksize; | |
2215 | if (block_end > from && block_start < to) { | |
2216 | if (!buffer_uptodate(bh)) { | |
2217 | ret = 0; | |
2218 | break; | |
2219 | } | |
2220 | if (block_end >= to) | |
2221 | break; | |
2222 | } | |
2223 | block_start = block_end; | |
2224 | bh = bh->b_this_page; | |
2225 | } while (bh != head); | |
2226 | ||
2227 | return ret; | |
2228 | } | |
2229 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2230 | ||
1da177e4 LT |
2231 | /* |
2232 | * Generic "read page" function for block devices that have the normal | |
2233 | * get_block functionality. This is most of the block device filesystems. | |
2234 | * Reads the page asynchronously --- the unlock_buffer() and | |
2235 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2236 | * page struct once IO has completed. | |
2237 | */ | |
2238 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2239 | { | |
2240 | struct inode *inode = page->mapping->host; | |
2241 | sector_t iblock, lblock; | |
2242 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
45bce8f3 | 2243 | unsigned int blocksize, bbits; |
1da177e4 LT |
2244 | int nr, i; |
2245 | int fully_mapped = 1; | |
2246 | ||
45bce8f3 LT |
2247 | head = create_page_buffers(page, inode, 0); |
2248 | blocksize = head->b_size; | |
2249 | bbits = block_size_bits(blocksize); | |
1da177e4 | 2250 | |
09cbfeaf | 2251 | iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); |
45bce8f3 | 2252 | lblock = (i_size_read(inode)+blocksize-1) >> bbits; |
1da177e4 LT |
2253 | bh = head; |
2254 | nr = 0; | |
2255 | i = 0; | |
2256 | ||
2257 | do { | |
2258 | if (buffer_uptodate(bh)) | |
2259 | continue; | |
2260 | ||
2261 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2262 | int err = 0; |
2263 | ||
1da177e4 LT |
2264 | fully_mapped = 0; |
2265 | if (iblock < lblock) { | |
b0cf2321 | 2266 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2267 | err = get_block(inode, iblock, bh, 0); |
2268 | if (err) | |
1da177e4 LT |
2269 | SetPageError(page); |
2270 | } | |
2271 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2272 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2273 | if (!err) |
2274 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2275 | continue; |
2276 | } | |
2277 | /* | |
2278 | * get_block() might have updated the buffer | |
2279 | * synchronously | |
2280 | */ | |
2281 | if (buffer_uptodate(bh)) | |
2282 | continue; | |
2283 | } | |
2284 | arr[nr++] = bh; | |
2285 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2286 | ||
2287 | if (fully_mapped) | |
2288 | SetPageMappedToDisk(page); | |
2289 | ||
2290 | if (!nr) { | |
2291 | /* | |
2292 | * All buffers are uptodate - we can set the page uptodate | |
2293 | * as well. But not if get_block() returned an error. | |
2294 | */ | |
2295 | if (!PageError(page)) | |
2296 | SetPageUptodate(page); | |
2297 | unlock_page(page); | |
2298 | return 0; | |
2299 | } | |
2300 | ||
2301 | /* Stage two: lock the buffers */ | |
2302 | for (i = 0; i < nr; i++) { | |
2303 | bh = arr[i]; | |
2304 | lock_buffer(bh); | |
2305 | mark_buffer_async_read(bh); | |
2306 | } | |
2307 | ||
2308 | /* | |
2309 | * Stage 3: start the IO. Check for uptodateness | |
2310 | * inside the buffer lock in case another process reading | |
2311 | * the underlying blockdev brought it uptodate (the sct fix). | |
2312 | */ | |
2313 | for (i = 0; i < nr; i++) { | |
2314 | bh = arr[i]; | |
2315 | if (buffer_uptodate(bh)) | |
2316 | end_buffer_async_read(bh, 1); | |
2317 | else | |
2a222ca9 | 2318 | submit_bh(REQ_OP_READ, 0, bh); |
1da177e4 LT |
2319 | } |
2320 | return 0; | |
2321 | } | |
1fe72eaa | 2322 | EXPORT_SYMBOL(block_read_full_page); |
1da177e4 LT |
2323 | |
2324 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2325 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2326 | * deal with the hole. |
2327 | */ | |
89e10787 | 2328 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2329 | { |
2330 | struct address_space *mapping = inode->i_mapping; | |
2331 | struct page *page; | |
89e10787 | 2332 | void *fsdata; |
1da177e4 LT |
2333 | int err; |
2334 | ||
c08d3b0e NP |
2335 | err = inode_newsize_ok(inode, size); |
2336 | if (err) | |
1da177e4 LT |
2337 | goto out; |
2338 | ||
89e10787 NP |
2339 | err = pagecache_write_begin(NULL, mapping, size, 0, |
2340 | AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, | |
2341 | &page, &fsdata); | |
2342 | if (err) | |
05eb0b51 | 2343 | goto out; |
05eb0b51 | 2344 | |
89e10787 NP |
2345 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2346 | BUG_ON(err > 0); | |
05eb0b51 | 2347 | |
1da177e4 LT |
2348 | out: |
2349 | return err; | |
2350 | } | |
1fe72eaa | 2351 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 | 2352 | |
f1e3af72 AB |
2353 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2354 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2355 | { |
1da177e4 | 2356 | struct inode *inode = mapping->host; |
1da177e4 | 2357 | unsigned blocksize = 1 << inode->i_blkbits; |
89e10787 NP |
2358 | struct page *page; |
2359 | void *fsdata; | |
2360 | pgoff_t index, curidx; | |
2361 | loff_t curpos; | |
2362 | unsigned zerofrom, offset, len; | |
2363 | int err = 0; | |
1da177e4 | 2364 | |
09cbfeaf KS |
2365 | index = pos >> PAGE_SHIFT; |
2366 | offset = pos & ~PAGE_MASK; | |
89e10787 | 2367 | |
09cbfeaf KS |
2368 | while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { |
2369 | zerofrom = curpos & ~PAGE_MASK; | |
1da177e4 LT |
2370 | if (zerofrom & (blocksize-1)) { |
2371 | *bytes |= (blocksize-1); | |
2372 | (*bytes)++; | |
2373 | } | |
09cbfeaf | 2374 | len = PAGE_SIZE - zerofrom; |
1da177e4 | 2375 | |
89e10787 NP |
2376 | err = pagecache_write_begin(file, mapping, curpos, len, |
2377 | AOP_FLAG_UNINTERRUPTIBLE, | |
2378 | &page, &fsdata); | |
2379 | if (err) | |
2380 | goto out; | |
eebd2aa3 | 2381 | zero_user(page, zerofrom, len); |
89e10787 NP |
2382 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2383 | page, fsdata); | |
2384 | if (err < 0) | |
2385 | goto out; | |
2386 | BUG_ON(err != len); | |
2387 | err = 0; | |
061e9746 OH |
2388 | |
2389 | balance_dirty_pages_ratelimited(mapping); | |
c2ca0fcd MP |
2390 | |
2391 | if (unlikely(fatal_signal_pending(current))) { | |
2392 | err = -EINTR; | |
2393 | goto out; | |
2394 | } | |
89e10787 | 2395 | } |
1da177e4 | 2396 | |
89e10787 NP |
2397 | /* page covers the boundary, find the boundary offset */ |
2398 | if (index == curidx) { | |
09cbfeaf | 2399 | zerofrom = curpos & ~PAGE_MASK; |
1da177e4 | 2400 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2401 | if (offset <= zerofrom) { |
2402 | goto out; | |
2403 | } | |
2404 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2405 | *bytes |= (blocksize-1); |
2406 | (*bytes)++; | |
2407 | } | |
89e10787 | 2408 | len = offset - zerofrom; |
1da177e4 | 2409 | |
89e10787 NP |
2410 | err = pagecache_write_begin(file, mapping, curpos, len, |
2411 | AOP_FLAG_UNINTERRUPTIBLE, | |
2412 | &page, &fsdata); | |
2413 | if (err) | |
2414 | goto out; | |
eebd2aa3 | 2415 | zero_user(page, zerofrom, len); |
89e10787 NP |
2416 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2417 | page, fsdata); | |
2418 | if (err < 0) | |
2419 | goto out; | |
2420 | BUG_ON(err != len); | |
2421 | err = 0; | |
1da177e4 | 2422 | } |
89e10787 NP |
2423 | out: |
2424 | return err; | |
2425 | } | |
2426 | ||
2427 | /* | |
2428 | * For moronic filesystems that do not allow holes in file. | |
2429 | * We may have to extend the file. | |
2430 | */ | |
282dc178 | 2431 | int cont_write_begin(struct file *file, struct address_space *mapping, |
89e10787 NP |
2432 | loff_t pos, unsigned len, unsigned flags, |
2433 | struct page **pagep, void **fsdata, | |
2434 | get_block_t *get_block, loff_t *bytes) | |
2435 | { | |
2436 | struct inode *inode = mapping->host; | |
2437 | unsigned blocksize = 1 << inode->i_blkbits; | |
2438 | unsigned zerofrom; | |
2439 | int err; | |
2440 | ||
2441 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2442 | if (err) | |
155130a4 | 2443 | return err; |
89e10787 | 2444 | |
09cbfeaf | 2445 | zerofrom = *bytes & ~PAGE_MASK; |
89e10787 NP |
2446 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { |
2447 | *bytes |= (blocksize-1); | |
2448 | (*bytes)++; | |
1da177e4 | 2449 | } |
1da177e4 | 2450 | |
155130a4 | 2451 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
1da177e4 | 2452 | } |
1fe72eaa | 2453 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 | 2454 | |
1da177e4 LT |
2455 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
2456 | { | |
2457 | struct inode *inode = page->mapping->host; | |
2458 | __block_commit_write(inode,page,from,to); | |
2459 | return 0; | |
2460 | } | |
1fe72eaa | 2461 | EXPORT_SYMBOL(block_commit_write); |
1da177e4 | 2462 | |
54171690 DC |
2463 | /* |
2464 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2465 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2466 | * be careful to check for EOF conditions here. We set the page up correctly | |
2467 | * for a written page which means we get ENOSPC checking when writing into | |
2468 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2469 | * support these features. | |
2470 | * | |
2471 | * We are not allowed to take the i_mutex here so we have to play games to | |
2472 | * protect against truncate races as the page could now be beyond EOF. Because | |
7bb46a67 | 2473 | * truncate writes the inode size before removing pages, once we have the |
54171690 DC |
2474 | * page lock we can determine safely if the page is beyond EOF. If it is not |
2475 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2476 | * unlock the page. | |
ea13a864 | 2477 | * |
14da9200 | 2478 | * Direct callers of this function should protect against filesystem freezing |
5c500029 | 2479 | * using sb_start_pagefault() - sb_end_pagefault() functions. |
54171690 | 2480 | */ |
5c500029 | 2481 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
24da4fab | 2482 | get_block_t get_block) |
54171690 | 2483 | { |
c2ec175c | 2484 | struct page *page = vmf->page; |
496ad9aa | 2485 | struct inode *inode = file_inode(vma->vm_file); |
54171690 DC |
2486 | unsigned long end; |
2487 | loff_t size; | |
24da4fab | 2488 | int ret; |
54171690 DC |
2489 | |
2490 | lock_page(page); | |
2491 | size = i_size_read(inode); | |
2492 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2493 | (page_offset(page) > size)) { |
24da4fab JK |
2494 | /* We overload EFAULT to mean page got truncated */ |
2495 | ret = -EFAULT; | |
2496 | goto out_unlock; | |
54171690 DC |
2497 | } |
2498 | ||
2499 | /* page is wholly or partially inside EOF */ | |
09cbfeaf KS |
2500 | if (((page->index + 1) << PAGE_SHIFT) > size) |
2501 | end = size & ~PAGE_MASK; | |
54171690 | 2502 | else |
09cbfeaf | 2503 | end = PAGE_SIZE; |
54171690 | 2504 | |
ebdec241 | 2505 | ret = __block_write_begin(page, 0, end, get_block); |
54171690 DC |
2506 | if (!ret) |
2507 | ret = block_commit_write(page, 0, end); | |
2508 | ||
24da4fab JK |
2509 | if (unlikely(ret < 0)) |
2510 | goto out_unlock; | |
ea13a864 | 2511 | set_page_dirty(page); |
1d1d1a76 | 2512 | wait_for_stable_page(page); |
24da4fab JK |
2513 | return 0; |
2514 | out_unlock: | |
2515 | unlock_page(page); | |
54171690 | 2516 | return ret; |
24da4fab | 2517 | } |
1fe72eaa | 2518 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
2519 | |
2520 | /* | |
03158cd7 | 2521 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2522 | * immediately, while under the page lock. So it needs a special end_io |
2523 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2524 | */ |
2525 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2526 | { | |
68671f35 | 2527 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2528 | } |
2529 | ||
03158cd7 NP |
2530 | /* |
2531 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2532 | * the page (converting it to circular linked list and taking care of page | |
2533 | * dirty races). | |
2534 | */ | |
2535 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2536 | { | |
2537 | struct buffer_head *bh; | |
2538 | ||
2539 | BUG_ON(!PageLocked(page)); | |
2540 | ||
2541 | spin_lock(&page->mapping->private_lock); | |
2542 | bh = head; | |
2543 | do { | |
2544 | if (PageDirty(page)) | |
2545 | set_buffer_dirty(bh); | |
2546 | if (!bh->b_this_page) | |
2547 | bh->b_this_page = head; | |
2548 | bh = bh->b_this_page; | |
2549 | } while (bh != head); | |
2550 | attach_page_buffers(page, head); | |
2551 | spin_unlock(&page->mapping->private_lock); | |
2552 | } | |
2553 | ||
1da177e4 | 2554 | /* |
ea0f04e5 CH |
2555 | * On entry, the page is fully not uptodate. |
2556 | * On exit the page is fully uptodate in the areas outside (from,to) | |
7bb46a67 | 2557 | * The filesystem needs to handle block truncation upon failure. |
1da177e4 | 2558 | */ |
ea0f04e5 | 2559 | int nobh_write_begin(struct address_space *mapping, |
03158cd7 NP |
2560 | loff_t pos, unsigned len, unsigned flags, |
2561 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2562 | get_block_t *get_block) |
2563 | { | |
03158cd7 | 2564 | struct inode *inode = mapping->host; |
1da177e4 LT |
2565 | const unsigned blkbits = inode->i_blkbits; |
2566 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2567 | struct buffer_head *head, *bh; |
03158cd7 NP |
2568 | struct page *page; |
2569 | pgoff_t index; | |
2570 | unsigned from, to; | |
1da177e4 | 2571 | unsigned block_in_page; |
a4b0672d | 2572 | unsigned block_start, block_end; |
1da177e4 | 2573 | sector_t block_in_file; |
1da177e4 | 2574 | int nr_reads = 0; |
1da177e4 LT |
2575 | int ret = 0; |
2576 | int is_mapped_to_disk = 1; | |
1da177e4 | 2577 | |
09cbfeaf KS |
2578 | index = pos >> PAGE_SHIFT; |
2579 | from = pos & (PAGE_SIZE - 1); | |
03158cd7 NP |
2580 | to = from + len; |
2581 | ||
54566b2c | 2582 | page = grab_cache_page_write_begin(mapping, index, flags); |
03158cd7 NP |
2583 | if (!page) |
2584 | return -ENOMEM; | |
2585 | *pagep = page; | |
2586 | *fsdata = NULL; | |
2587 | ||
2588 | if (page_has_buffers(page)) { | |
309f77ad NK |
2589 | ret = __block_write_begin(page, pos, len, get_block); |
2590 | if (unlikely(ret)) | |
2591 | goto out_release; | |
2592 | return ret; | |
03158cd7 | 2593 | } |
a4b0672d | 2594 | |
1da177e4 LT |
2595 | if (PageMappedToDisk(page)) |
2596 | return 0; | |
2597 | ||
a4b0672d NP |
2598 | /* |
2599 | * Allocate buffers so that we can keep track of state, and potentially | |
2600 | * attach them to the page if an error occurs. In the common case of | |
2601 | * no error, they will just be freed again without ever being attached | |
2602 | * to the page (which is all OK, because we're under the page lock). | |
2603 | * | |
2604 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2605 | * than the circular one we're used to. | |
2606 | */ | |
2607 | head = alloc_page_buffers(page, blocksize, 0); | |
03158cd7 NP |
2608 | if (!head) { |
2609 | ret = -ENOMEM; | |
2610 | goto out_release; | |
2611 | } | |
a4b0672d | 2612 | |
09cbfeaf | 2613 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
1da177e4 LT |
2614 | |
2615 | /* | |
2616 | * We loop across all blocks in the page, whether or not they are | |
2617 | * part of the affected region. This is so we can discover if the | |
2618 | * page is fully mapped-to-disk. | |
2619 | */ | |
a4b0672d | 2620 | for (block_start = 0, block_in_page = 0, bh = head; |
09cbfeaf | 2621 | block_start < PAGE_SIZE; |
a4b0672d | 2622 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2623 | int create; |
2624 | ||
a4b0672d NP |
2625 | block_end = block_start + blocksize; |
2626 | bh->b_state = 0; | |
1da177e4 LT |
2627 | create = 1; |
2628 | if (block_start >= to) | |
2629 | create = 0; | |
2630 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2631 | bh, create); |
1da177e4 LT |
2632 | if (ret) |
2633 | goto failed; | |
a4b0672d | 2634 | if (!buffer_mapped(bh)) |
1da177e4 | 2635 | is_mapped_to_disk = 0; |
a4b0672d NP |
2636 | if (buffer_new(bh)) |
2637 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
2638 | if (PageUptodate(page)) { | |
2639 | set_buffer_uptodate(bh); | |
1da177e4 | 2640 | continue; |
a4b0672d NP |
2641 | } |
2642 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2643 | zero_user_segments(page, block_start, from, |
2644 | to, block_end); | |
1da177e4 LT |
2645 | continue; |
2646 | } | |
a4b0672d | 2647 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2648 | continue; /* reiserfs does this */ |
2649 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2650 | lock_buffer(bh); |
2651 | bh->b_end_io = end_buffer_read_nobh; | |
2a222ca9 | 2652 | submit_bh(REQ_OP_READ, 0, bh); |
a4b0672d | 2653 | nr_reads++; |
1da177e4 LT |
2654 | } |
2655 | } | |
2656 | ||
2657 | if (nr_reads) { | |
1da177e4 LT |
2658 | /* |
2659 | * The page is locked, so these buffers are protected from | |
2660 | * any VM or truncate activity. Hence we don't need to care | |
2661 | * for the buffer_head refcounts. | |
2662 | */ | |
a4b0672d | 2663 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2664 | wait_on_buffer(bh); |
2665 | if (!buffer_uptodate(bh)) | |
2666 | ret = -EIO; | |
1da177e4 LT |
2667 | } |
2668 | if (ret) | |
2669 | goto failed; | |
2670 | } | |
2671 | ||
2672 | if (is_mapped_to_disk) | |
2673 | SetPageMappedToDisk(page); | |
1da177e4 | 2674 | |
03158cd7 | 2675 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2676 | |
1da177e4 LT |
2677 | return 0; |
2678 | ||
2679 | failed: | |
03158cd7 | 2680 | BUG_ON(!ret); |
1da177e4 | 2681 | /* |
a4b0672d NP |
2682 | * Error recovery is a bit difficult. We need to zero out blocks that |
2683 | * were newly allocated, and dirty them to ensure they get written out. | |
2684 | * Buffers need to be attached to the page at this point, otherwise | |
2685 | * the handling of potential IO errors during writeout would be hard | |
2686 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2687 | */ |
03158cd7 NP |
2688 | attach_nobh_buffers(page, head); |
2689 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2690 | |
03158cd7 NP |
2691 | out_release: |
2692 | unlock_page(page); | |
09cbfeaf | 2693 | put_page(page); |
03158cd7 | 2694 | *pagep = NULL; |
a4b0672d | 2695 | |
7bb46a67 NP |
2696 | return ret; |
2697 | } | |
03158cd7 | 2698 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2699 | |
03158cd7 NP |
2700 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2701 | loff_t pos, unsigned len, unsigned copied, | |
2702 | struct page *page, void *fsdata) | |
1da177e4 LT |
2703 | { |
2704 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2705 | struct buffer_head *head = fsdata; |
03158cd7 | 2706 | struct buffer_head *bh; |
5b41e74a | 2707 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2708 | |
d4cf109f | 2709 | if (unlikely(copied < len) && head) |
5b41e74a DM |
2710 | attach_nobh_buffers(page, head); |
2711 | if (page_has_buffers(page)) | |
2712 | return generic_write_end(file, mapping, pos, len, | |
2713 | copied, page, fsdata); | |
a4b0672d | 2714 | |
22c8ca78 | 2715 | SetPageUptodate(page); |
1da177e4 | 2716 | set_page_dirty(page); |
03158cd7 NP |
2717 | if (pos+copied > inode->i_size) { |
2718 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2719 | mark_inode_dirty(inode); |
2720 | } | |
03158cd7 NP |
2721 | |
2722 | unlock_page(page); | |
09cbfeaf | 2723 | put_page(page); |
03158cd7 | 2724 | |
03158cd7 NP |
2725 | while (head) { |
2726 | bh = head; | |
2727 | head = head->b_this_page; | |
2728 | free_buffer_head(bh); | |
2729 | } | |
2730 | ||
2731 | return copied; | |
1da177e4 | 2732 | } |
03158cd7 | 2733 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2734 | |
2735 | /* | |
2736 | * nobh_writepage() - based on block_full_write_page() except | |
2737 | * that it tries to operate without attaching bufferheads to | |
2738 | * the page. | |
2739 | */ | |
2740 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2741 | struct writeback_control *wbc) | |
2742 | { | |
2743 | struct inode * const inode = page->mapping->host; | |
2744 | loff_t i_size = i_size_read(inode); | |
09cbfeaf | 2745 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
1da177e4 | 2746 | unsigned offset; |
1da177e4 LT |
2747 | int ret; |
2748 | ||
2749 | /* Is the page fully inside i_size? */ | |
2750 | if (page->index < end_index) | |
2751 | goto out; | |
2752 | ||
2753 | /* Is the page fully outside i_size? (truncate in progress) */ | |
09cbfeaf | 2754 | offset = i_size & (PAGE_SIZE-1); |
1da177e4 LT |
2755 | if (page->index >= end_index+1 || !offset) { |
2756 | /* | |
2757 | * The page may have dirty, unmapped buffers. For example, | |
2758 | * they may have been added in ext3_writepage(). Make them | |
2759 | * freeable here, so the page does not leak. | |
2760 | */ | |
2761 | #if 0 | |
2762 | /* Not really sure about this - do we need this ? */ | |
2763 | if (page->mapping->a_ops->invalidatepage) | |
2764 | page->mapping->a_ops->invalidatepage(page, offset); | |
2765 | #endif | |
2766 | unlock_page(page); | |
2767 | return 0; /* don't care */ | |
2768 | } | |
2769 | ||
2770 | /* | |
2771 | * The page straddles i_size. It must be zeroed out on each and every | |
2772 | * writepage invocation because it may be mmapped. "A file is mapped | |
2773 | * in multiples of the page size. For a file that is not a multiple of | |
2774 | * the page size, the remaining memory is zeroed when mapped, and | |
2775 | * writes to that region are not written out to the file." | |
2776 | */ | |
09cbfeaf | 2777 | zero_user_segment(page, offset, PAGE_SIZE); |
1da177e4 LT |
2778 | out: |
2779 | ret = mpage_writepage(page, get_block, wbc); | |
2780 | if (ret == -EAGAIN) | |
35c80d5f CM |
2781 | ret = __block_write_full_page(inode, page, get_block, wbc, |
2782 | end_buffer_async_write); | |
1da177e4 LT |
2783 | return ret; |
2784 | } | |
2785 | EXPORT_SYMBOL(nobh_writepage); | |
2786 | ||
03158cd7 NP |
2787 | int nobh_truncate_page(struct address_space *mapping, |
2788 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2789 | { |
09cbfeaf KS |
2790 | pgoff_t index = from >> PAGE_SHIFT; |
2791 | unsigned offset = from & (PAGE_SIZE-1); | |
03158cd7 NP |
2792 | unsigned blocksize; |
2793 | sector_t iblock; | |
2794 | unsigned length, pos; | |
2795 | struct inode *inode = mapping->host; | |
1da177e4 | 2796 | struct page *page; |
03158cd7 NP |
2797 | struct buffer_head map_bh; |
2798 | int err; | |
1da177e4 | 2799 | |
03158cd7 NP |
2800 | blocksize = 1 << inode->i_blkbits; |
2801 | length = offset & (blocksize - 1); | |
2802 | ||
2803 | /* Block boundary? Nothing to do */ | |
2804 | if (!length) | |
2805 | return 0; | |
2806 | ||
2807 | length = blocksize - length; | |
09cbfeaf | 2808 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
1da177e4 | 2809 | |
1da177e4 | 2810 | page = grab_cache_page(mapping, index); |
03158cd7 | 2811 | err = -ENOMEM; |
1da177e4 LT |
2812 | if (!page) |
2813 | goto out; | |
2814 | ||
03158cd7 NP |
2815 | if (page_has_buffers(page)) { |
2816 | has_buffers: | |
2817 | unlock_page(page); | |
09cbfeaf | 2818 | put_page(page); |
03158cd7 NP |
2819 | return block_truncate_page(mapping, from, get_block); |
2820 | } | |
2821 | ||
2822 | /* Find the buffer that contains "offset" */ | |
2823 | pos = blocksize; | |
2824 | while (offset >= pos) { | |
2825 | iblock++; | |
2826 | pos += blocksize; | |
2827 | } | |
2828 | ||
460bcf57 TT |
2829 | map_bh.b_size = blocksize; |
2830 | map_bh.b_state = 0; | |
03158cd7 NP |
2831 | err = get_block(inode, iblock, &map_bh, 0); |
2832 | if (err) | |
2833 | goto unlock; | |
2834 | /* unmapped? It's a hole - nothing to do */ | |
2835 | if (!buffer_mapped(&map_bh)) | |
2836 | goto unlock; | |
2837 | ||
2838 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2839 | if (!PageUptodate(page)) { | |
2840 | err = mapping->a_ops->readpage(NULL, page); | |
2841 | if (err) { | |
09cbfeaf | 2842 | put_page(page); |
03158cd7 NP |
2843 | goto out; |
2844 | } | |
2845 | lock_page(page); | |
2846 | if (!PageUptodate(page)) { | |
2847 | err = -EIO; | |
2848 | goto unlock; | |
2849 | } | |
2850 | if (page_has_buffers(page)) | |
2851 | goto has_buffers; | |
1da177e4 | 2852 | } |
eebd2aa3 | 2853 | zero_user(page, offset, length); |
03158cd7 NP |
2854 | set_page_dirty(page); |
2855 | err = 0; | |
2856 | ||
2857 | unlock: | |
1da177e4 | 2858 | unlock_page(page); |
09cbfeaf | 2859 | put_page(page); |
1da177e4 | 2860 | out: |
03158cd7 | 2861 | return err; |
1da177e4 LT |
2862 | } |
2863 | EXPORT_SYMBOL(nobh_truncate_page); | |
2864 | ||
2865 | int block_truncate_page(struct address_space *mapping, | |
2866 | loff_t from, get_block_t *get_block) | |
2867 | { | |
09cbfeaf KS |
2868 | pgoff_t index = from >> PAGE_SHIFT; |
2869 | unsigned offset = from & (PAGE_SIZE-1); | |
1da177e4 | 2870 | unsigned blocksize; |
54b21a79 | 2871 | sector_t iblock; |
1da177e4 LT |
2872 | unsigned length, pos; |
2873 | struct inode *inode = mapping->host; | |
2874 | struct page *page; | |
2875 | struct buffer_head *bh; | |
1da177e4 LT |
2876 | int err; |
2877 | ||
2878 | blocksize = 1 << inode->i_blkbits; | |
2879 | length = offset & (blocksize - 1); | |
2880 | ||
2881 | /* Block boundary? Nothing to do */ | |
2882 | if (!length) | |
2883 | return 0; | |
2884 | ||
2885 | length = blocksize - length; | |
09cbfeaf | 2886 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2887 | |
2888 | page = grab_cache_page(mapping, index); | |
2889 | err = -ENOMEM; | |
2890 | if (!page) | |
2891 | goto out; | |
2892 | ||
2893 | if (!page_has_buffers(page)) | |
2894 | create_empty_buffers(page, blocksize, 0); | |
2895 | ||
2896 | /* Find the buffer that contains "offset" */ | |
2897 | bh = page_buffers(page); | |
2898 | pos = blocksize; | |
2899 | while (offset >= pos) { | |
2900 | bh = bh->b_this_page; | |
2901 | iblock++; | |
2902 | pos += blocksize; | |
2903 | } | |
2904 | ||
2905 | err = 0; | |
2906 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2907 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2908 | err = get_block(inode, iblock, bh, 0); |
2909 | if (err) | |
2910 | goto unlock; | |
2911 | /* unmapped? It's a hole - nothing to do */ | |
2912 | if (!buffer_mapped(bh)) | |
2913 | goto unlock; | |
2914 | } | |
2915 | ||
2916 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2917 | if (PageUptodate(page)) | |
2918 | set_buffer_uptodate(bh); | |
2919 | ||
33a266dd | 2920 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 | 2921 | err = -EIO; |
dfec8a14 | 2922 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
1da177e4 LT |
2923 | wait_on_buffer(bh); |
2924 | /* Uhhuh. Read error. Complain and punt. */ | |
2925 | if (!buffer_uptodate(bh)) | |
2926 | goto unlock; | |
2927 | } | |
2928 | ||
eebd2aa3 | 2929 | zero_user(page, offset, length); |
1da177e4 LT |
2930 | mark_buffer_dirty(bh); |
2931 | err = 0; | |
2932 | ||
2933 | unlock: | |
2934 | unlock_page(page); | |
09cbfeaf | 2935 | put_page(page); |
1da177e4 LT |
2936 | out: |
2937 | return err; | |
2938 | } | |
1fe72eaa | 2939 | EXPORT_SYMBOL(block_truncate_page); |
1da177e4 LT |
2940 | |
2941 | /* | |
2942 | * The generic ->writepage function for buffer-backed address_spaces | |
2943 | */ | |
1b938c08 MW |
2944 | int block_write_full_page(struct page *page, get_block_t *get_block, |
2945 | struct writeback_control *wbc) | |
1da177e4 LT |
2946 | { |
2947 | struct inode * const inode = page->mapping->host; | |
2948 | loff_t i_size = i_size_read(inode); | |
09cbfeaf | 2949 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
1da177e4 | 2950 | unsigned offset; |
1da177e4 LT |
2951 | |
2952 | /* Is the page fully inside i_size? */ | |
2953 | if (page->index < end_index) | |
35c80d5f | 2954 | return __block_write_full_page(inode, page, get_block, wbc, |
1b938c08 | 2955 | end_buffer_async_write); |
1da177e4 LT |
2956 | |
2957 | /* Is the page fully outside i_size? (truncate in progress) */ | |
09cbfeaf | 2958 | offset = i_size & (PAGE_SIZE-1); |
1da177e4 LT |
2959 | if (page->index >= end_index+1 || !offset) { |
2960 | /* | |
2961 | * The page may have dirty, unmapped buffers. For example, | |
2962 | * they may have been added in ext3_writepage(). Make them | |
2963 | * freeable here, so the page does not leak. | |
2964 | */ | |
09cbfeaf | 2965 | do_invalidatepage(page, 0, PAGE_SIZE); |
1da177e4 LT |
2966 | unlock_page(page); |
2967 | return 0; /* don't care */ | |
2968 | } | |
2969 | ||
2970 | /* | |
2971 | * The page straddles i_size. It must be zeroed out on each and every | |
2a61aa40 | 2972 | * writepage invocation because it may be mmapped. "A file is mapped |
1da177e4 LT |
2973 | * in multiples of the page size. For a file that is not a multiple of |
2974 | * the page size, the remaining memory is zeroed when mapped, and | |
2975 | * writes to that region are not written out to the file." | |
2976 | */ | |
09cbfeaf | 2977 | zero_user_segment(page, offset, PAGE_SIZE); |
1b938c08 MW |
2978 | return __block_write_full_page(inode, page, get_block, wbc, |
2979 | end_buffer_async_write); | |
35c80d5f | 2980 | } |
1fe72eaa | 2981 | EXPORT_SYMBOL(block_write_full_page); |
35c80d5f | 2982 | |
1da177e4 LT |
2983 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
2984 | get_block_t *get_block) | |
2985 | { | |
2986 | struct buffer_head tmp; | |
2987 | struct inode *inode = mapping->host; | |
2988 | tmp.b_state = 0; | |
2989 | tmp.b_blocknr = 0; | |
b0cf2321 | 2990 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2991 | get_block(inode, block, &tmp, 0); |
2992 | return tmp.b_blocknr; | |
2993 | } | |
1fe72eaa | 2994 | EXPORT_SYMBOL(generic_block_bmap); |
1da177e4 | 2995 | |
4246a0b6 | 2996 | static void end_bio_bh_io_sync(struct bio *bio) |
1da177e4 LT |
2997 | { |
2998 | struct buffer_head *bh = bio->bi_private; | |
2999 | ||
b7c44ed9 | 3000 | if (unlikely(bio_flagged(bio, BIO_QUIET))) |
08bafc03 KM |
3001 | set_bit(BH_Quiet, &bh->b_state); |
3002 | ||
4246a0b6 | 3003 | bh->b_end_io(bh, !bio->bi_error); |
1da177e4 | 3004 | bio_put(bio); |
1da177e4 LT |
3005 | } |
3006 | ||
57302e0d LT |
3007 | /* |
3008 | * This allows us to do IO even on the odd last sectors | |
59d43914 | 3009 | * of a device, even if the block size is some multiple |
57302e0d LT |
3010 | * of the physical sector size. |
3011 | * | |
3012 | * We'll just truncate the bio to the size of the device, | |
3013 | * and clear the end of the buffer head manually. | |
3014 | * | |
3015 | * Truly out-of-range accesses will turn into actual IO | |
3016 | * errors, this only handles the "we need to be able to | |
3017 | * do IO at the final sector" case. | |
3018 | */ | |
2a222ca9 | 3019 | void guard_bio_eod(int op, struct bio *bio) |
57302e0d LT |
3020 | { |
3021 | sector_t maxsector; | |
59d43914 AM |
3022 | struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
3023 | unsigned truncated_bytes; | |
57302e0d LT |
3024 | |
3025 | maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; | |
3026 | if (!maxsector) | |
3027 | return; | |
3028 | ||
3029 | /* | |
3030 | * If the *whole* IO is past the end of the device, | |
3031 | * let it through, and the IO layer will turn it into | |
3032 | * an EIO. | |
3033 | */ | |
4f024f37 | 3034 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
57302e0d LT |
3035 | return; |
3036 | ||
4f024f37 | 3037 | maxsector -= bio->bi_iter.bi_sector; |
59d43914 | 3038 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) |
57302e0d LT |
3039 | return; |
3040 | ||
59d43914 AM |
3041 | /* Uhhuh. We've got a bio that straddles the device size! */ |
3042 | truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); | |
57302e0d LT |
3043 | |
3044 | /* Truncate the bio.. */ | |
59d43914 AM |
3045 | bio->bi_iter.bi_size -= truncated_bytes; |
3046 | bvec->bv_len -= truncated_bytes; | |
57302e0d LT |
3047 | |
3048 | /* ..and clear the end of the buffer for reads */ | |
2a222ca9 | 3049 | if (op == REQ_OP_READ) { |
59d43914 AM |
3050 | zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, |
3051 | truncated_bytes); | |
57302e0d LT |
3052 | } |
3053 | } | |
3054 | ||
2a222ca9 | 3055 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
b16b1deb | 3056 | unsigned long bio_flags, struct writeback_control *wbc) |
1da177e4 LT |
3057 | { |
3058 | struct bio *bio; | |
1da177e4 LT |
3059 | |
3060 | BUG_ON(!buffer_locked(bh)); | |
3061 | BUG_ON(!buffer_mapped(bh)); | |
3062 | BUG_ON(!bh->b_end_io); | |
8fb0e342 AK |
3063 | BUG_ON(buffer_delay(bh)); |
3064 | BUG_ON(buffer_unwritten(bh)); | |
1da177e4 | 3065 | |
1da177e4 | 3066 | /* |
48fd4f93 | 3067 | * Only clear out a write error when rewriting |
1da177e4 | 3068 | */ |
2a222ca9 | 3069 | if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) |
1da177e4 LT |
3070 | clear_buffer_write_io_error(bh); |
3071 | ||
3072 | /* | |
3073 | * from here on down, it's all bio -- do the initial mapping, | |
3074 | * submit_bio -> generic_make_request may further map this bio around | |
3075 | */ | |
3076 | bio = bio_alloc(GFP_NOIO, 1); | |
3077 | ||
2a814908 | 3078 | if (wbc) { |
b16b1deb | 3079 | wbc_init_bio(wbc, bio); |
2a814908 TH |
3080 | wbc_account_io(wbc, bh->b_page, bh->b_size); |
3081 | } | |
bafc0dba | 3082 | |
4f024f37 | 3083 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
1da177e4 | 3084 | bio->bi_bdev = bh->b_bdev; |
1da177e4 | 3085 | |
6cf66b4c KO |
3086 | bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); |
3087 | BUG_ON(bio->bi_iter.bi_size != bh->b_size); | |
1da177e4 LT |
3088 | |
3089 | bio->bi_end_io = end_bio_bh_io_sync; | |
3090 | bio->bi_private = bh; | |
71368511 | 3091 | bio->bi_flags |= bio_flags; |
1da177e4 | 3092 | |
57302e0d | 3093 | /* Take care of bh's that straddle the end of the device */ |
2a222ca9 | 3094 | guard_bio_eod(op, bio); |
57302e0d | 3095 | |
877f962c | 3096 | if (buffer_meta(bh)) |
2a222ca9 | 3097 | op_flags |= REQ_META; |
877f962c | 3098 | if (buffer_prio(bh)) |
2a222ca9 MC |
3099 | op_flags |= REQ_PRIO; |
3100 | bio_set_op_attrs(bio, op, op_flags); | |
877f962c | 3101 | |
4e49ea4a | 3102 | submit_bio(bio); |
f6454b04 | 3103 | return 0; |
1da177e4 | 3104 | } |
bafc0dba | 3105 | |
2a222ca9 MC |
3106 | int _submit_bh(int op, int op_flags, struct buffer_head *bh, |
3107 | unsigned long bio_flags) | |
bafc0dba | 3108 | { |
2a222ca9 | 3109 | return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL); |
bafc0dba | 3110 | } |
71368511 DW |
3111 | EXPORT_SYMBOL_GPL(_submit_bh); |
3112 | ||
2a222ca9 | 3113 | int submit_bh(int op, int op_flags, struct buffer_head *bh) |
71368511 | 3114 | { |
2a222ca9 | 3115 | return submit_bh_wbc(op, op_flags, bh, 0, NULL); |
71368511 | 3116 | } |
1fe72eaa | 3117 | EXPORT_SYMBOL(submit_bh); |
1da177e4 LT |
3118 | |
3119 | /** | |
3120 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
dfec8a14 | 3121 | * @op: whether to %READ or %WRITE |
70246286 | 3122 | * @op_flags: rq_flag_bits |
1da177e4 LT |
3123 | * @nr: number of &struct buffer_heads in the array |
3124 | * @bhs: array of pointers to &struct buffer_head | |
3125 | * | |
a7662236 | 3126 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
70246286 CH |
3127 | * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. |
3128 | * @op_flags contains flags modifying the detailed I/O behavior, most notably | |
3129 | * %REQ_RAHEAD. | |
1da177e4 LT |
3130 | * |
3131 | * This function drops any buffer that it cannot get a lock on (with the | |
9cb569d6 CH |
3132 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
3133 | * request, and any buffer that appears to be up-to-date when doing read | |
3134 | * request. Further it marks as clean buffers that are processed for | |
3135 | * writing (the buffer cache won't assume that they are actually clean | |
3136 | * until the buffer gets unlocked). | |
1da177e4 LT |
3137 | * |
3138 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
e227867f | 3139 | * the buffer up-to-date (if appropriate), unlocks the buffer and wakes |
1da177e4 LT |
3140 | * any waiters. |
3141 | * | |
3142 | * All of the buffers must be for the same device, and must also be a | |
3143 | * multiple of the current approved size for the device. | |
3144 | */ | |
dfec8a14 | 3145 | void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) |
1da177e4 LT |
3146 | { |
3147 | int i; | |
3148 | ||
3149 | for (i = 0; i < nr; i++) { | |
3150 | struct buffer_head *bh = bhs[i]; | |
3151 | ||
9cb569d6 | 3152 | if (!trylock_buffer(bh)) |
1da177e4 | 3153 | continue; |
dfec8a14 | 3154 | if (op == WRITE) { |
1da177e4 | 3155 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 3156 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 3157 | get_bh(bh); |
dfec8a14 | 3158 | submit_bh(op, op_flags, bh); |
1da177e4 LT |
3159 | continue; |
3160 | } | |
3161 | } else { | |
1da177e4 | 3162 | if (!buffer_uptodate(bh)) { |
76c3073a | 3163 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 3164 | get_bh(bh); |
dfec8a14 | 3165 | submit_bh(op, op_flags, bh); |
1da177e4 LT |
3166 | continue; |
3167 | } | |
3168 | } | |
3169 | unlock_buffer(bh); | |
1da177e4 LT |
3170 | } |
3171 | } | |
1fe72eaa | 3172 | EXPORT_SYMBOL(ll_rw_block); |
1da177e4 | 3173 | |
2a222ca9 | 3174 | void write_dirty_buffer(struct buffer_head *bh, int op_flags) |
9cb569d6 CH |
3175 | { |
3176 | lock_buffer(bh); | |
3177 | if (!test_clear_buffer_dirty(bh)) { | |
3178 | unlock_buffer(bh); | |
3179 | return; | |
3180 | } | |
3181 | bh->b_end_io = end_buffer_write_sync; | |
3182 | get_bh(bh); | |
2a222ca9 | 3183 | submit_bh(REQ_OP_WRITE, op_flags, bh); |
9cb569d6 CH |
3184 | } |
3185 | EXPORT_SYMBOL(write_dirty_buffer); | |
3186 | ||
1da177e4 LT |
3187 | /* |
3188 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
3189 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
3190 | * the buffer_head. | |
3191 | */ | |
2a222ca9 | 3192 | int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) |
1da177e4 LT |
3193 | { |
3194 | int ret = 0; | |
3195 | ||
3196 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3197 | lock_buffer(bh); | |
3198 | if (test_clear_buffer_dirty(bh)) { | |
3199 | get_bh(bh); | |
3200 | bh->b_end_io = end_buffer_write_sync; | |
2a222ca9 | 3201 | ret = submit_bh(REQ_OP_WRITE, op_flags, bh); |
1da177e4 | 3202 | wait_on_buffer(bh); |
1da177e4 LT |
3203 | if (!ret && !buffer_uptodate(bh)) |
3204 | ret = -EIO; | |
3205 | } else { | |
3206 | unlock_buffer(bh); | |
3207 | } | |
3208 | return ret; | |
3209 | } | |
87e99511 CH |
3210 | EXPORT_SYMBOL(__sync_dirty_buffer); |
3211 | ||
3212 | int sync_dirty_buffer(struct buffer_head *bh) | |
3213 | { | |
3214 | return __sync_dirty_buffer(bh, WRITE_SYNC); | |
3215 | } | |
1fe72eaa | 3216 | EXPORT_SYMBOL(sync_dirty_buffer); |
1da177e4 LT |
3217 | |
3218 | /* | |
3219 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3220 | * are unused, and releases them if so. | |
3221 | * | |
3222 | * Exclusion against try_to_free_buffers may be obtained by either | |
3223 | * locking the page or by holding its mapping's private_lock. | |
3224 | * | |
3225 | * If the page is dirty but all the buffers are clean then we need to | |
3226 | * be sure to mark the page clean as well. This is because the page | |
3227 | * may be against a block device, and a later reattachment of buffers | |
3228 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3229 | * filesystem data on the same device. | |
3230 | * | |
3231 | * The same applies to regular filesystem pages: if all the buffers are | |
3232 | * clean then we set the page clean and proceed. To do that, we require | |
3233 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3234 | * private_lock. | |
3235 | * | |
3236 | * try_to_free_buffers() is non-blocking. | |
3237 | */ | |
3238 | static inline int buffer_busy(struct buffer_head *bh) | |
3239 | { | |
3240 | return atomic_read(&bh->b_count) | | |
3241 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3242 | } | |
3243 | ||
3244 | static int | |
3245 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3246 | { | |
3247 | struct buffer_head *head = page_buffers(page); | |
3248 | struct buffer_head *bh; | |
3249 | ||
3250 | bh = head; | |
3251 | do { | |
de7d5a3b | 3252 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
3253 | set_bit(AS_EIO, &page->mapping->flags); |
3254 | if (buffer_busy(bh)) | |
3255 | goto failed; | |
3256 | bh = bh->b_this_page; | |
3257 | } while (bh != head); | |
3258 | ||
3259 | do { | |
3260 | struct buffer_head *next = bh->b_this_page; | |
3261 | ||
535ee2fb | 3262 | if (bh->b_assoc_map) |
1da177e4 LT |
3263 | __remove_assoc_queue(bh); |
3264 | bh = next; | |
3265 | } while (bh != head); | |
3266 | *buffers_to_free = head; | |
3267 | __clear_page_buffers(page); | |
3268 | return 1; | |
3269 | failed: | |
3270 | return 0; | |
3271 | } | |
3272 | ||
3273 | int try_to_free_buffers(struct page *page) | |
3274 | { | |
3275 | struct address_space * const mapping = page->mapping; | |
3276 | struct buffer_head *buffers_to_free = NULL; | |
3277 | int ret = 0; | |
3278 | ||
3279 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3280 | if (PageWriteback(page)) |
1da177e4 LT |
3281 | return 0; |
3282 | ||
3283 | if (mapping == NULL) { /* can this still happen? */ | |
3284 | ret = drop_buffers(page, &buffers_to_free); | |
3285 | goto out; | |
3286 | } | |
3287 | ||
3288 | spin_lock(&mapping->private_lock); | |
3289 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3290 | |
3291 | /* | |
3292 | * If the filesystem writes its buffers by hand (eg ext3) | |
3293 | * then we can have clean buffers against a dirty page. We | |
3294 | * clean the page here; otherwise the VM will never notice | |
3295 | * that the filesystem did any IO at all. | |
3296 | * | |
3297 | * Also, during truncate, discard_buffer will have marked all | |
3298 | * the page's buffers clean. We discover that here and clean | |
3299 | * the page also. | |
87df7241 NP |
3300 | * |
3301 | * private_lock must be held over this entire operation in order | |
3302 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3303 | * dirty bit from being lost. | |
ecdfc978 | 3304 | */ |
11f81bec TH |
3305 | if (ret) |
3306 | cancel_dirty_page(page); | |
87df7241 | 3307 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3308 | out: |
3309 | if (buffers_to_free) { | |
3310 | struct buffer_head *bh = buffers_to_free; | |
3311 | ||
3312 | do { | |
3313 | struct buffer_head *next = bh->b_this_page; | |
3314 | free_buffer_head(bh); | |
3315 | bh = next; | |
3316 | } while (bh != buffers_to_free); | |
3317 | } | |
3318 | return ret; | |
3319 | } | |
3320 | EXPORT_SYMBOL(try_to_free_buffers); | |
3321 | ||
1da177e4 LT |
3322 | /* |
3323 | * There are no bdflush tunables left. But distributions are | |
3324 | * still running obsolete flush daemons, so we terminate them here. | |
3325 | * | |
3326 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
5b0830cb | 3327 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
1da177e4 | 3328 | */ |
bdc480e3 | 3329 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
1da177e4 LT |
3330 | { |
3331 | static int msg_count; | |
3332 | ||
3333 | if (!capable(CAP_SYS_ADMIN)) | |
3334 | return -EPERM; | |
3335 | ||
3336 | if (msg_count < 5) { | |
3337 | msg_count++; | |
3338 | printk(KERN_INFO | |
3339 | "warning: process `%s' used the obsolete bdflush" | |
3340 | " system call\n", current->comm); | |
3341 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3342 | } | |
3343 | ||
3344 | if (func == 1) | |
3345 | do_exit(0); | |
3346 | return 0; | |
3347 | } | |
3348 | ||
3349 | /* | |
3350 | * Buffer-head allocation | |
3351 | */ | |
a0a9b043 | 3352 | static struct kmem_cache *bh_cachep __read_mostly; |
1da177e4 LT |
3353 | |
3354 | /* | |
3355 | * Once the number of bh's in the machine exceeds this level, we start | |
3356 | * stripping them in writeback. | |
3357 | */ | |
43be594a | 3358 | static unsigned long max_buffer_heads; |
1da177e4 LT |
3359 | |
3360 | int buffer_heads_over_limit; | |
3361 | ||
3362 | struct bh_accounting { | |
3363 | int nr; /* Number of live bh's */ | |
3364 | int ratelimit; /* Limit cacheline bouncing */ | |
3365 | }; | |
3366 | ||
3367 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3368 | ||
3369 | static void recalc_bh_state(void) | |
3370 | { | |
3371 | int i; | |
3372 | int tot = 0; | |
3373 | ||
ee1be862 | 3374 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
1da177e4 | 3375 | return; |
c7b92516 | 3376 | __this_cpu_write(bh_accounting.ratelimit, 0); |
8a143426 | 3377 | for_each_online_cpu(i) |
1da177e4 LT |
3378 | tot += per_cpu(bh_accounting, i).nr; |
3379 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3380 | } | |
c7b92516 | 3381 | |
dd0fc66f | 3382 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3383 | { |
019b4d12 | 3384 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 3385 | if (ret) { |
a35afb83 | 3386 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
c7b92516 CL |
3387 | preempt_disable(); |
3388 | __this_cpu_inc(bh_accounting.nr); | |
1da177e4 | 3389 | recalc_bh_state(); |
c7b92516 | 3390 | preempt_enable(); |
1da177e4 LT |
3391 | } |
3392 | return ret; | |
3393 | } | |
3394 | EXPORT_SYMBOL(alloc_buffer_head); | |
3395 | ||
3396 | void free_buffer_head(struct buffer_head *bh) | |
3397 | { | |
3398 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3399 | kmem_cache_free(bh_cachep, bh); | |
c7b92516 CL |
3400 | preempt_disable(); |
3401 | __this_cpu_dec(bh_accounting.nr); | |
1da177e4 | 3402 | recalc_bh_state(); |
c7b92516 | 3403 | preempt_enable(); |
1da177e4 LT |
3404 | } |
3405 | EXPORT_SYMBOL(free_buffer_head); | |
3406 | ||
1da177e4 LT |
3407 | static void buffer_exit_cpu(int cpu) |
3408 | { | |
3409 | int i; | |
3410 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3411 | ||
3412 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3413 | brelse(b->bhs[i]); | |
3414 | b->bhs[i] = NULL; | |
3415 | } | |
c7b92516 | 3416 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
8a143426 | 3417 | per_cpu(bh_accounting, cpu).nr = 0; |
1da177e4 LT |
3418 | } |
3419 | ||
3420 | static int buffer_cpu_notify(struct notifier_block *self, | |
3421 | unsigned long action, void *hcpu) | |
3422 | { | |
8bb78442 | 3423 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3424 | buffer_exit_cpu((unsigned long)hcpu); |
3425 | return NOTIFY_OK; | |
3426 | } | |
1da177e4 | 3427 | |
389d1b08 | 3428 | /** |
a6b91919 | 3429 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3430 | * @bh: struct buffer_head |
3431 | * | |
3432 | * Return true if the buffer is up-to-date and false, | |
3433 | * with the buffer locked, if not. | |
3434 | */ | |
3435 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3436 | { | |
3437 | if (!buffer_uptodate(bh)) { | |
3438 | lock_buffer(bh); | |
3439 | if (!buffer_uptodate(bh)) | |
3440 | return 0; | |
3441 | unlock_buffer(bh); | |
3442 | } | |
3443 | return 1; | |
3444 | } | |
3445 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3446 | ||
3447 | /** | |
a6b91919 | 3448 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3449 | * @bh: struct buffer_head |
3450 | * | |
3451 | * Returns zero on success and -EIO on error. | |
3452 | */ | |
3453 | int bh_submit_read(struct buffer_head *bh) | |
3454 | { | |
3455 | BUG_ON(!buffer_locked(bh)); | |
3456 | ||
3457 | if (buffer_uptodate(bh)) { | |
3458 | unlock_buffer(bh); | |
3459 | return 0; | |
3460 | } | |
3461 | ||
3462 | get_bh(bh); | |
3463 | bh->b_end_io = end_buffer_read_sync; | |
2a222ca9 | 3464 | submit_bh(REQ_OP_READ, 0, bh); |
389d1b08 AK |
3465 | wait_on_buffer(bh); |
3466 | if (buffer_uptodate(bh)) | |
3467 | return 0; | |
3468 | return -EIO; | |
3469 | } | |
3470 | EXPORT_SYMBOL(bh_submit_read); | |
3471 | ||
1da177e4 LT |
3472 | void __init buffer_init(void) |
3473 | { | |
43be594a | 3474 | unsigned long nrpages; |
1da177e4 | 3475 | |
b98938c3 CL |
3476 | bh_cachep = kmem_cache_create("buffer_head", |
3477 | sizeof(struct buffer_head), 0, | |
3478 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3479 | SLAB_MEM_SPREAD), | |
019b4d12 | 3480 | NULL); |
1da177e4 LT |
3481 | |
3482 | /* | |
3483 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3484 | */ | |
3485 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3486 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3487 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3488 | } |