]>
Commit | Line | Data |
---|---|---|
ddbcc7e8 | 1 | /* |
ddbcc7e8 PM |
2 | * Generic process-grouping system. |
3 | * | |
4 | * Based originally on the cpuset system, extracted by Paul Menage | |
5 | * Copyright (C) 2006 Google, Inc | |
6 | * | |
0dea1168 KS |
7 | * Notifications support |
8 | * Copyright (C) 2009 Nokia Corporation | |
9 | * Author: Kirill A. Shutemov | |
10 | * | |
ddbcc7e8 PM |
11 | * Copyright notices from the original cpuset code: |
12 | * -------------------------------------------------- | |
13 | * Copyright (C) 2003 BULL SA. | |
14 | * Copyright (C) 2004-2006 Silicon Graphics, Inc. | |
15 | * | |
16 | * Portions derived from Patrick Mochel's sysfs code. | |
17 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
18 | * | |
19 | * 2003-10-10 Written by Simon Derr. | |
20 | * 2003-10-22 Updates by Stephen Hemminger. | |
21 | * 2004 May-July Rework by Paul Jackson. | |
22 | * --------------------------------------------------- | |
23 | * | |
24 | * This file is subject to the terms and conditions of the GNU General Public | |
25 | * License. See the file COPYING in the main directory of the Linux | |
26 | * distribution for more details. | |
27 | */ | |
28 | ||
29 | #include <linux/cgroup.h> | |
2ce9738b | 30 | #include <linux/cred.h> |
c6d57f33 | 31 | #include <linux/ctype.h> |
ddbcc7e8 PM |
32 | #include <linux/errno.h> |
33 | #include <linux/fs.h> | |
2ce9738b | 34 | #include <linux/init_task.h> |
ddbcc7e8 PM |
35 | #include <linux/kernel.h> |
36 | #include <linux/list.h> | |
37 | #include <linux/mm.h> | |
38 | #include <linux/mutex.h> | |
39 | #include <linux/mount.h> | |
40 | #include <linux/pagemap.h> | |
a424316c | 41 | #include <linux/proc_fs.h> |
ddbcc7e8 PM |
42 | #include <linux/rcupdate.h> |
43 | #include <linux/sched.h> | |
817929ec | 44 | #include <linux/backing-dev.h> |
ddbcc7e8 PM |
45 | #include <linux/seq_file.h> |
46 | #include <linux/slab.h> | |
47 | #include <linux/magic.h> | |
48 | #include <linux/spinlock.h> | |
49 | #include <linux/string.h> | |
bbcb81d0 | 50 | #include <linux/sort.h> |
81a6a5cd | 51 | #include <linux/kmod.h> |
e6a1105b | 52 | #include <linux/module.h> |
846c7bb0 BS |
53 | #include <linux/delayacct.h> |
54 | #include <linux/cgroupstats.h> | |
472b1053 | 55 | #include <linux/hash.h> |
3f8206d4 | 56 | #include <linux/namei.h> |
096b7fe0 | 57 | #include <linux/pid_namespace.h> |
2c6ab6d2 | 58 | #include <linux/idr.h> |
d1d9fd33 | 59 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ |
0dea1168 KS |
60 | #include <linux/eventfd.h> |
61 | #include <linux/poll.h> | |
d846687d | 62 | #include <linux/flex_array.h> /* used in cgroup_attach_proc */ |
846c7bb0 | 63 | |
60063497 | 64 | #include <linux/atomic.h> |
ddbcc7e8 | 65 | |
81a6a5cd PM |
66 | static DEFINE_MUTEX(cgroup_mutex); |
67 | ||
aae8aab4 BB |
68 | /* |
69 | * Generate an array of cgroup subsystem pointers. At boot time, this is | |
70 | * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are | |
71 | * registered after that. The mutable section of this array is protected by | |
72 | * cgroup_mutex. | |
73 | */ | |
ddbcc7e8 | 74 | #define SUBSYS(_x) &_x ## _subsys, |
aae8aab4 | 75 | static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { |
ddbcc7e8 PM |
76 | #include <linux/cgroup_subsys.h> |
77 | }; | |
78 | ||
c6d57f33 PM |
79 | #define MAX_CGROUP_ROOT_NAMELEN 64 |
80 | ||
ddbcc7e8 PM |
81 | /* |
82 | * A cgroupfs_root represents the root of a cgroup hierarchy, | |
83 | * and may be associated with a superblock to form an active | |
84 | * hierarchy | |
85 | */ | |
86 | struct cgroupfs_root { | |
87 | struct super_block *sb; | |
88 | ||
89 | /* | |
90 | * The bitmask of subsystems intended to be attached to this | |
91 | * hierarchy | |
92 | */ | |
93 | unsigned long subsys_bits; | |
94 | ||
2c6ab6d2 PM |
95 | /* Unique id for this hierarchy. */ |
96 | int hierarchy_id; | |
97 | ||
ddbcc7e8 PM |
98 | /* The bitmask of subsystems currently attached to this hierarchy */ |
99 | unsigned long actual_subsys_bits; | |
100 | ||
101 | /* A list running through the attached subsystems */ | |
102 | struct list_head subsys_list; | |
103 | ||
104 | /* The root cgroup for this hierarchy */ | |
105 | struct cgroup top_cgroup; | |
106 | ||
107 | /* Tracks how many cgroups are currently defined in hierarchy.*/ | |
108 | int number_of_cgroups; | |
109 | ||
e5f6a860 | 110 | /* A list running through the active hierarchies */ |
ddbcc7e8 PM |
111 | struct list_head root_list; |
112 | ||
113 | /* Hierarchy-specific flags */ | |
114 | unsigned long flags; | |
81a6a5cd | 115 | |
e788e066 | 116 | /* The path to use for release notifications. */ |
81a6a5cd | 117 | char release_agent_path[PATH_MAX]; |
c6d57f33 PM |
118 | |
119 | /* The name for this hierarchy - may be empty */ | |
120 | char name[MAX_CGROUP_ROOT_NAMELEN]; | |
ddbcc7e8 PM |
121 | }; |
122 | ||
ddbcc7e8 PM |
123 | /* |
124 | * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the | |
125 | * subsystems that are otherwise unattached - it never has more than a | |
126 | * single cgroup, and all tasks are part of that cgroup. | |
127 | */ | |
128 | static struct cgroupfs_root rootnode; | |
129 | ||
38460b48 KH |
130 | /* |
131 | * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when | |
132 | * cgroup_subsys->use_id != 0. | |
133 | */ | |
134 | #define CSS_ID_MAX (65535) | |
135 | struct css_id { | |
136 | /* | |
137 | * The css to which this ID points. This pointer is set to valid value | |
138 | * after cgroup is populated. If cgroup is removed, this will be NULL. | |
139 | * This pointer is expected to be RCU-safe because destroy() | |
140 | * is called after synchronize_rcu(). But for safe use, css_is_removed() | |
141 | * css_tryget() should be used for avoiding race. | |
142 | */ | |
2c392b8c | 143 | struct cgroup_subsys_state __rcu *css; |
38460b48 KH |
144 | /* |
145 | * ID of this css. | |
146 | */ | |
147 | unsigned short id; | |
148 | /* | |
149 | * Depth in hierarchy which this ID belongs to. | |
150 | */ | |
151 | unsigned short depth; | |
152 | /* | |
153 | * ID is freed by RCU. (and lookup routine is RCU safe.) | |
154 | */ | |
155 | struct rcu_head rcu_head; | |
156 | /* | |
157 | * Hierarchy of CSS ID belongs to. | |
158 | */ | |
159 | unsigned short stack[0]; /* Array of Length (depth+1) */ | |
160 | }; | |
161 | ||
0dea1168 | 162 | /* |
25985edc | 163 | * cgroup_event represents events which userspace want to receive. |
0dea1168 KS |
164 | */ |
165 | struct cgroup_event { | |
166 | /* | |
167 | * Cgroup which the event belongs to. | |
168 | */ | |
169 | struct cgroup *cgrp; | |
170 | /* | |
171 | * Control file which the event associated. | |
172 | */ | |
173 | struct cftype *cft; | |
174 | /* | |
175 | * eventfd to signal userspace about the event. | |
176 | */ | |
177 | struct eventfd_ctx *eventfd; | |
178 | /* | |
179 | * Each of these stored in a list by the cgroup. | |
180 | */ | |
181 | struct list_head list; | |
182 | /* | |
183 | * All fields below needed to unregister event when | |
184 | * userspace closes eventfd. | |
185 | */ | |
186 | poll_table pt; | |
187 | wait_queue_head_t *wqh; | |
188 | wait_queue_t wait; | |
189 | struct work_struct remove; | |
190 | }; | |
38460b48 | 191 | |
ddbcc7e8 PM |
192 | /* The list of hierarchy roots */ |
193 | ||
194 | static LIST_HEAD(roots); | |
817929ec | 195 | static int root_count; |
ddbcc7e8 | 196 | |
2c6ab6d2 PM |
197 | static DEFINE_IDA(hierarchy_ida); |
198 | static int next_hierarchy_id; | |
199 | static DEFINE_SPINLOCK(hierarchy_id_lock); | |
200 | ||
ddbcc7e8 PM |
201 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
202 | #define dummytop (&rootnode.top_cgroup) | |
203 | ||
204 | /* This flag indicates whether tasks in the fork and exit paths should | |
a043e3b2 LZ |
205 | * check for fork/exit handlers to call. This avoids us having to do |
206 | * extra work in the fork/exit path if none of the subsystems need to | |
207 | * be called. | |
ddbcc7e8 | 208 | */ |
8947f9d5 | 209 | static int need_forkexit_callback __read_mostly; |
ddbcc7e8 | 210 | |
d11c563d PM |
211 | #ifdef CONFIG_PROVE_LOCKING |
212 | int cgroup_lock_is_held(void) | |
213 | { | |
214 | return lockdep_is_held(&cgroup_mutex); | |
215 | } | |
216 | #else /* #ifdef CONFIG_PROVE_LOCKING */ | |
217 | int cgroup_lock_is_held(void) | |
218 | { | |
219 | return mutex_is_locked(&cgroup_mutex); | |
220 | } | |
221 | #endif /* #else #ifdef CONFIG_PROVE_LOCKING */ | |
222 | ||
223 | EXPORT_SYMBOL_GPL(cgroup_lock_is_held); | |
224 | ||
ddbcc7e8 | 225 | /* convenient tests for these bits */ |
bd89aabc | 226 | inline int cgroup_is_removed(const struct cgroup *cgrp) |
ddbcc7e8 | 227 | { |
bd89aabc | 228 | return test_bit(CGRP_REMOVED, &cgrp->flags); |
ddbcc7e8 PM |
229 | } |
230 | ||
231 | /* bits in struct cgroupfs_root flags field */ | |
232 | enum { | |
233 | ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ | |
234 | }; | |
235 | ||
e9685a03 | 236 | static int cgroup_is_releasable(const struct cgroup *cgrp) |
81a6a5cd PM |
237 | { |
238 | const int bits = | |
bd89aabc PM |
239 | (1 << CGRP_RELEASABLE) | |
240 | (1 << CGRP_NOTIFY_ON_RELEASE); | |
241 | return (cgrp->flags & bits) == bits; | |
81a6a5cd PM |
242 | } |
243 | ||
e9685a03 | 244 | static int notify_on_release(const struct cgroup *cgrp) |
81a6a5cd | 245 | { |
bd89aabc | 246 | return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
81a6a5cd PM |
247 | } |
248 | ||
97978e6d DL |
249 | static int clone_children(const struct cgroup *cgrp) |
250 | { | |
251 | return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | |
252 | } | |
253 | ||
ddbcc7e8 PM |
254 | /* |
255 | * for_each_subsys() allows you to iterate on each subsystem attached to | |
256 | * an active hierarchy | |
257 | */ | |
258 | #define for_each_subsys(_root, _ss) \ | |
259 | list_for_each_entry(_ss, &_root->subsys_list, sibling) | |
260 | ||
e5f6a860 LZ |
261 | /* for_each_active_root() allows you to iterate across the active hierarchies */ |
262 | #define for_each_active_root(_root) \ | |
ddbcc7e8 PM |
263 | list_for_each_entry(_root, &roots, root_list) |
264 | ||
81a6a5cd PM |
265 | /* the list of cgroups eligible for automatic release. Protected by |
266 | * release_list_lock */ | |
267 | static LIST_HEAD(release_list); | |
cdcc136f | 268 | static DEFINE_RAW_SPINLOCK(release_list_lock); |
81a6a5cd PM |
269 | static void cgroup_release_agent(struct work_struct *work); |
270 | static DECLARE_WORK(release_agent_work, cgroup_release_agent); | |
bd89aabc | 271 | static void check_for_release(struct cgroup *cgrp); |
81a6a5cd | 272 | |
817929ec PM |
273 | /* Link structure for associating css_set objects with cgroups */ |
274 | struct cg_cgroup_link { | |
275 | /* | |
276 | * List running through cg_cgroup_links associated with a | |
277 | * cgroup, anchored on cgroup->css_sets | |
278 | */ | |
bd89aabc | 279 | struct list_head cgrp_link_list; |
7717f7ba | 280 | struct cgroup *cgrp; |
817929ec PM |
281 | /* |
282 | * List running through cg_cgroup_links pointing at a | |
283 | * single css_set object, anchored on css_set->cg_links | |
284 | */ | |
285 | struct list_head cg_link_list; | |
286 | struct css_set *cg; | |
287 | }; | |
288 | ||
289 | /* The default css_set - used by init and its children prior to any | |
290 | * hierarchies being mounted. It contains a pointer to the root state | |
291 | * for each subsystem. Also used to anchor the list of css_sets. Not | |
292 | * reference-counted, to improve performance when child cgroups | |
293 | * haven't been created. | |
294 | */ | |
295 | ||
296 | static struct css_set init_css_set; | |
297 | static struct cg_cgroup_link init_css_set_link; | |
298 | ||
e6a1105b BB |
299 | static int cgroup_init_idr(struct cgroup_subsys *ss, |
300 | struct cgroup_subsys_state *css); | |
38460b48 | 301 | |
817929ec PM |
302 | /* css_set_lock protects the list of css_set objects, and the |
303 | * chain of tasks off each css_set. Nests outside task->alloc_lock | |
304 | * due to cgroup_iter_start() */ | |
305 | static DEFINE_RWLOCK(css_set_lock); | |
306 | static int css_set_count; | |
307 | ||
7717f7ba PM |
308 | /* |
309 | * hash table for cgroup groups. This improves the performance to find | |
310 | * an existing css_set. This hash doesn't (currently) take into | |
311 | * account cgroups in empty hierarchies. | |
312 | */ | |
472b1053 LZ |
313 | #define CSS_SET_HASH_BITS 7 |
314 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | |
315 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | |
316 | ||
317 | static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |
318 | { | |
319 | int i; | |
320 | int index; | |
321 | unsigned long tmp = 0UL; | |
322 | ||
323 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) | |
324 | tmp += (unsigned long)css[i]; | |
325 | tmp = (tmp >> 16) ^ tmp; | |
326 | ||
327 | index = hash_long(tmp, CSS_SET_HASH_BITS); | |
328 | ||
329 | return &css_set_table[index]; | |
330 | } | |
331 | ||
817929ec PM |
332 | /* We don't maintain the lists running through each css_set to its |
333 | * task until after the first call to cgroup_iter_start(). This | |
334 | * reduces the fork()/exit() overhead for people who have cgroups | |
335 | * compiled into their kernel but not actually in use */ | |
8947f9d5 | 336 | static int use_task_css_set_links __read_mostly; |
817929ec | 337 | |
2c6ab6d2 | 338 | static void __put_css_set(struct css_set *cg, int taskexit) |
b4f48b63 | 339 | { |
71cbb949 KM |
340 | struct cg_cgroup_link *link; |
341 | struct cg_cgroup_link *saved_link; | |
146aa1bd LJ |
342 | /* |
343 | * Ensure that the refcount doesn't hit zero while any readers | |
344 | * can see it. Similar to atomic_dec_and_lock(), but for an | |
345 | * rwlock | |
346 | */ | |
347 | if (atomic_add_unless(&cg->refcount, -1, 1)) | |
348 | return; | |
349 | write_lock(&css_set_lock); | |
350 | if (!atomic_dec_and_test(&cg->refcount)) { | |
351 | write_unlock(&css_set_lock); | |
352 | return; | |
353 | } | |
81a6a5cd | 354 | |
2c6ab6d2 PM |
355 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
356 | hlist_del(&cg->hlist); | |
357 | css_set_count--; | |
358 | ||
359 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | |
360 | cg_link_list) { | |
361 | struct cgroup *cgrp = link->cgrp; | |
362 | list_del(&link->cg_link_list); | |
363 | list_del(&link->cgrp_link_list); | |
bd89aabc PM |
364 | if (atomic_dec_and_test(&cgrp->count) && |
365 | notify_on_release(cgrp)) { | |
81a6a5cd | 366 | if (taskexit) |
bd89aabc PM |
367 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
368 | check_for_release(cgrp); | |
81a6a5cd | 369 | } |
2c6ab6d2 PM |
370 | |
371 | kfree(link); | |
81a6a5cd | 372 | } |
2c6ab6d2 PM |
373 | |
374 | write_unlock(&css_set_lock); | |
30088ad8 | 375 | kfree_rcu(cg, rcu_head); |
b4f48b63 PM |
376 | } |
377 | ||
817929ec PM |
378 | /* |
379 | * refcounted get/put for css_set objects | |
380 | */ | |
381 | static inline void get_css_set(struct css_set *cg) | |
382 | { | |
146aa1bd | 383 | atomic_inc(&cg->refcount); |
817929ec PM |
384 | } |
385 | ||
386 | static inline void put_css_set(struct css_set *cg) | |
387 | { | |
146aa1bd | 388 | __put_css_set(cg, 0); |
817929ec PM |
389 | } |
390 | ||
81a6a5cd PM |
391 | static inline void put_css_set_taskexit(struct css_set *cg) |
392 | { | |
146aa1bd | 393 | __put_css_set(cg, 1); |
81a6a5cd PM |
394 | } |
395 | ||
7717f7ba PM |
396 | /* |
397 | * compare_css_sets - helper function for find_existing_css_set(). | |
398 | * @cg: candidate css_set being tested | |
399 | * @old_cg: existing css_set for a task | |
400 | * @new_cgrp: cgroup that's being entered by the task | |
401 | * @template: desired set of css pointers in css_set (pre-calculated) | |
402 | * | |
403 | * Returns true if "cg" matches "old_cg" except for the hierarchy | |
404 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | |
405 | */ | |
406 | static bool compare_css_sets(struct css_set *cg, | |
407 | struct css_set *old_cg, | |
408 | struct cgroup *new_cgrp, | |
409 | struct cgroup_subsys_state *template[]) | |
410 | { | |
411 | struct list_head *l1, *l2; | |
412 | ||
413 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | |
414 | /* Not all subsystems matched */ | |
415 | return false; | |
416 | } | |
417 | ||
418 | /* | |
419 | * Compare cgroup pointers in order to distinguish between | |
420 | * different cgroups in heirarchies with no subsystems. We | |
421 | * could get by with just this check alone (and skip the | |
422 | * memcmp above) but on most setups the memcmp check will | |
423 | * avoid the need for this more expensive check on almost all | |
424 | * candidates. | |
425 | */ | |
426 | ||
427 | l1 = &cg->cg_links; | |
428 | l2 = &old_cg->cg_links; | |
429 | while (1) { | |
430 | struct cg_cgroup_link *cgl1, *cgl2; | |
431 | struct cgroup *cg1, *cg2; | |
432 | ||
433 | l1 = l1->next; | |
434 | l2 = l2->next; | |
435 | /* See if we reached the end - both lists are equal length. */ | |
436 | if (l1 == &cg->cg_links) { | |
437 | BUG_ON(l2 != &old_cg->cg_links); | |
438 | break; | |
439 | } else { | |
440 | BUG_ON(l2 == &old_cg->cg_links); | |
441 | } | |
442 | /* Locate the cgroups associated with these links. */ | |
443 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | |
444 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | |
445 | cg1 = cgl1->cgrp; | |
446 | cg2 = cgl2->cgrp; | |
447 | /* Hierarchies should be linked in the same order. */ | |
448 | BUG_ON(cg1->root != cg2->root); | |
449 | ||
450 | /* | |
451 | * If this hierarchy is the hierarchy of the cgroup | |
452 | * that's changing, then we need to check that this | |
453 | * css_set points to the new cgroup; if it's any other | |
454 | * hierarchy, then this css_set should point to the | |
455 | * same cgroup as the old css_set. | |
456 | */ | |
457 | if (cg1->root == new_cgrp->root) { | |
458 | if (cg1 != new_cgrp) | |
459 | return false; | |
460 | } else { | |
461 | if (cg1 != cg2) | |
462 | return false; | |
463 | } | |
464 | } | |
465 | return true; | |
466 | } | |
467 | ||
817929ec PM |
468 | /* |
469 | * find_existing_css_set() is a helper for | |
470 | * find_css_set(), and checks to see whether an existing | |
472b1053 | 471 | * css_set is suitable. |
817929ec PM |
472 | * |
473 | * oldcg: the cgroup group that we're using before the cgroup | |
474 | * transition | |
475 | * | |
bd89aabc | 476 | * cgrp: the cgroup that we're moving into |
817929ec PM |
477 | * |
478 | * template: location in which to build the desired set of subsystem | |
479 | * state objects for the new cgroup group | |
480 | */ | |
817929ec PM |
481 | static struct css_set *find_existing_css_set( |
482 | struct css_set *oldcg, | |
bd89aabc | 483 | struct cgroup *cgrp, |
817929ec | 484 | struct cgroup_subsys_state *template[]) |
b4f48b63 PM |
485 | { |
486 | int i; | |
bd89aabc | 487 | struct cgroupfs_root *root = cgrp->root; |
472b1053 LZ |
488 | struct hlist_head *hhead; |
489 | struct hlist_node *node; | |
490 | struct css_set *cg; | |
817929ec | 491 | |
aae8aab4 BB |
492 | /* |
493 | * Build the set of subsystem state objects that we want to see in the | |
494 | * new css_set. while subsystems can change globally, the entries here | |
495 | * won't change, so no need for locking. | |
496 | */ | |
817929ec | 497 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
8d53d55d | 498 | if (root->subsys_bits & (1UL << i)) { |
817929ec PM |
499 | /* Subsystem is in this hierarchy. So we want |
500 | * the subsystem state from the new | |
501 | * cgroup */ | |
bd89aabc | 502 | template[i] = cgrp->subsys[i]; |
817929ec PM |
503 | } else { |
504 | /* Subsystem is not in this hierarchy, so we | |
505 | * don't want to change the subsystem state */ | |
506 | template[i] = oldcg->subsys[i]; | |
507 | } | |
508 | } | |
509 | ||
472b1053 LZ |
510 | hhead = css_set_hash(template); |
511 | hlist_for_each_entry(cg, node, hhead, hlist) { | |
7717f7ba PM |
512 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
513 | continue; | |
514 | ||
515 | /* This css_set matches what we need */ | |
516 | return cg; | |
472b1053 | 517 | } |
817929ec PM |
518 | |
519 | /* No existing cgroup group matched */ | |
520 | return NULL; | |
521 | } | |
522 | ||
36553434 LZ |
523 | static void free_cg_links(struct list_head *tmp) |
524 | { | |
525 | struct cg_cgroup_link *link; | |
526 | struct cg_cgroup_link *saved_link; | |
527 | ||
528 | list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { | |
529 | list_del(&link->cgrp_link_list); | |
530 | kfree(link); | |
531 | } | |
532 | } | |
533 | ||
817929ec PM |
534 | /* |
535 | * allocate_cg_links() allocates "count" cg_cgroup_link structures | |
bd89aabc | 536 | * and chains them on tmp through their cgrp_link_list fields. Returns 0 on |
817929ec PM |
537 | * success or a negative error |
538 | */ | |
817929ec PM |
539 | static int allocate_cg_links(int count, struct list_head *tmp) |
540 | { | |
541 | struct cg_cgroup_link *link; | |
542 | int i; | |
543 | INIT_LIST_HEAD(tmp); | |
544 | for (i = 0; i < count; i++) { | |
545 | link = kmalloc(sizeof(*link), GFP_KERNEL); | |
546 | if (!link) { | |
36553434 | 547 | free_cg_links(tmp); |
817929ec PM |
548 | return -ENOMEM; |
549 | } | |
bd89aabc | 550 | list_add(&link->cgrp_link_list, tmp); |
817929ec PM |
551 | } |
552 | return 0; | |
553 | } | |
554 | ||
c12f65d4 LZ |
555 | /** |
556 | * link_css_set - a helper function to link a css_set to a cgroup | |
557 | * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() | |
558 | * @cg: the css_set to be linked | |
559 | * @cgrp: the destination cgroup | |
560 | */ | |
561 | static void link_css_set(struct list_head *tmp_cg_links, | |
562 | struct css_set *cg, struct cgroup *cgrp) | |
563 | { | |
564 | struct cg_cgroup_link *link; | |
565 | ||
566 | BUG_ON(list_empty(tmp_cg_links)); | |
567 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | |
568 | cgrp_link_list); | |
569 | link->cg = cg; | |
7717f7ba | 570 | link->cgrp = cgrp; |
2c6ab6d2 | 571 | atomic_inc(&cgrp->count); |
c12f65d4 | 572 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
7717f7ba PM |
573 | /* |
574 | * Always add links to the tail of the list so that the list | |
575 | * is sorted by order of hierarchy creation | |
576 | */ | |
577 | list_add_tail(&link->cg_link_list, &cg->cg_links); | |
c12f65d4 LZ |
578 | } |
579 | ||
817929ec PM |
580 | /* |
581 | * find_css_set() takes an existing cgroup group and a | |
582 | * cgroup object, and returns a css_set object that's | |
583 | * equivalent to the old group, but with the given cgroup | |
584 | * substituted into the appropriate hierarchy. Must be called with | |
585 | * cgroup_mutex held | |
586 | */ | |
817929ec | 587 | static struct css_set *find_css_set( |
bd89aabc | 588 | struct css_set *oldcg, struct cgroup *cgrp) |
817929ec PM |
589 | { |
590 | struct css_set *res; | |
591 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | |
817929ec PM |
592 | |
593 | struct list_head tmp_cg_links; | |
817929ec | 594 | |
472b1053 | 595 | struct hlist_head *hhead; |
7717f7ba | 596 | struct cg_cgroup_link *link; |
472b1053 | 597 | |
817929ec PM |
598 | /* First see if we already have a cgroup group that matches |
599 | * the desired set */ | |
7e9abd89 | 600 | read_lock(&css_set_lock); |
bd89aabc | 601 | res = find_existing_css_set(oldcg, cgrp, template); |
817929ec PM |
602 | if (res) |
603 | get_css_set(res); | |
7e9abd89 | 604 | read_unlock(&css_set_lock); |
817929ec PM |
605 | |
606 | if (res) | |
607 | return res; | |
608 | ||
609 | res = kmalloc(sizeof(*res), GFP_KERNEL); | |
610 | if (!res) | |
611 | return NULL; | |
612 | ||
613 | /* Allocate all the cg_cgroup_link objects that we'll need */ | |
614 | if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { | |
615 | kfree(res); | |
616 | return NULL; | |
617 | } | |
618 | ||
146aa1bd | 619 | atomic_set(&res->refcount, 1); |
817929ec PM |
620 | INIT_LIST_HEAD(&res->cg_links); |
621 | INIT_LIST_HEAD(&res->tasks); | |
472b1053 | 622 | INIT_HLIST_NODE(&res->hlist); |
817929ec PM |
623 | |
624 | /* Copy the set of subsystem state objects generated in | |
625 | * find_existing_css_set() */ | |
626 | memcpy(res->subsys, template, sizeof(res->subsys)); | |
627 | ||
628 | write_lock(&css_set_lock); | |
629 | /* Add reference counts and links from the new css_set. */ | |
7717f7ba PM |
630 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
631 | struct cgroup *c = link->cgrp; | |
632 | if (c->root == cgrp->root) | |
633 | c = cgrp; | |
634 | link_css_set(&tmp_cg_links, res, c); | |
635 | } | |
817929ec PM |
636 | |
637 | BUG_ON(!list_empty(&tmp_cg_links)); | |
638 | ||
817929ec | 639 | css_set_count++; |
472b1053 LZ |
640 | |
641 | /* Add this cgroup group to the hash table */ | |
642 | hhead = css_set_hash(res->subsys); | |
643 | hlist_add_head(&res->hlist, hhead); | |
644 | ||
817929ec PM |
645 | write_unlock(&css_set_lock); |
646 | ||
647 | return res; | |
b4f48b63 PM |
648 | } |
649 | ||
7717f7ba PM |
650 | /* |
651 | * Return the cgroup for "task" from the given hierarchy. Must be | |
652 | * called with cgroup_mutex held. | |
653 | */ | |
654 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | |
655 | struct cgroupfs_root *root) | |
656 | { | |
657 | struct css_set *css; | |
658 | struct cgroup *res = NULL; | |
659 | ||
660 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | |
661 | read_lock(&css_set_lock); | |
662 | /* | |
663 | * No need to lock the task - since we hold cgroup_mutex the | |
664 | * task can't change groups, so the only thing that can happen | |
665 | * is that it exits and its css is set back to init_css_set. | |
666 | */ | |
667 | css = task->cgroups; | |
668 | if (css == &init_css_set) { | |
669 | res = &root->top_cgroup; | |
670 | } else { | |
671 | struct cg_cgroup_link *link; | |
672 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | |
673 | struct cgroup *c = link->cgrp; | |
674 | if (c->root == root) { | |
675 | res = c; | |
676 | break; | |
677 | } | |
678 | } | |
679 | } | |
680 | read_unlock(&css_set_lock); | |
681 | BUG_ON(!res); | |
682 | return res; | |
683 | } | |
684 | ||
ddbcc7e8 PM |
685 | /* |
686 | * There is one global cgroup mutex. We also require taking | |
687 | * task_lock() when dereferencing a task's cgroup subsys pointers. | |
688 | * See "The task_lock() exception", at the end of this comment. | |
689 | * | |
690 | * A task must hold cgroup_mutex to modify cgroups. | |
691 | * | |
692 | * Any task can increment and decrement the count field without lock. | |
693 | * So in general, code holding cgroup_mutex can't rely on the count | |
694 | * field not changing. However, if the count goes to zero, then only | |
956db3ca | 695 | * cgroup_attach_task() can increment it again. Because a count of zero |
ddbcc7e8 PM |
696 | * means that no tasks are currently attached, therefore there is no |
697 | * way a task attached to that cgroup can fork (the other way to | |
698 | * increment the count). So code holding cgroup_mutex can safely | |
699 | * assume that if the count is zero, it will stay zero. Similarly, if | |
700 | * a task holds cgroup_mutex on a cgroup with zero count, it | |
701 | * knows that the cgroup won't be removed, as cgroup_rmdir() | |
702 | * needs that mutex. | |
703 | * | |
ddbcc7e8 PM |
704 | * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't |
705 | * (usually) take cgroup_mutex. These are the two most performance | |
706 | * critical pieces of code here. The exception occurs on cgroup_exit(), | |
707 | * when a task in a notify_on_release cgroup exits. Then cgroup_mutex | |
708 | * is taken, and if the cgroup count is zero, a usermode call made | |
a043e3b2 LZ |
709 | * to the release agent with the name of the cgroup (path relative to |
710 | * the root of cgroup file system) as the argument. | |
ddbcc7e8 PM |
711 | * |
712 | * A cgroup can only be deleted if both its 'count' of using tasks | |
713 | * is zero, and its list of 'children' cgroups is empty. Since all | |
714 | * tasks in the system use _some_ cgroup, and since there is always at | |
715 | * least one task in the system (init, pid == 1), therefore, top_cgroup | |
716 | * always has either children cgroups and/or using tasks. So we don't | |
717 | * need a special hack to ensure that top_cgroup cannot be deleted. | |
718 | * | |
719 | * The task_lock() exception | |
720 | * | |
721 | * The need for this exception arises from the action of | |
956db3ca | 722 | * cgroup_attach_task(), which overwrites one tasks cgroup pointer with |
a043e3b2 | 723 | * another. It does so using cgroup_mutex, however there are |
ddbcc7e8 PM |
724 | * several performance critical places that need to reference |
725 | * task->cgroup without the expense of grabbing a system global | |
726 | * mutex. Therefore except as noted below, when dereferencing or, as | |
956db3ca | 727 | * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use |
ddbcc7e8 PM |
728 | * task_lock(), which acts on a spinlock (task->alloc_lock) already in |
729 | * the task_struct routinely used for such matters. | |
730 | * | |
731 | * P.S. One more locking exception. RCU is used to guard the | |
956db3ca | 732 | * update of a tasks cgroup pointer by cgroup_attach_task() |
ddbcc7e8 PM |
733 | */ |
734 | ||
ddbcc7e8 PM |
735 | /** |
736 | * cgroup_lock - lock out any changes to cgroup structures | |
737 | * | |
738 | */ | |
ddbcc7e8 PM |
739 | void cgroup_lock(void) |
740 | { | |
741 | mutex_lock(&cgroup_mutex); | |
742 | } | |
67523c48 | 743 | EXPORT_SYMBOL_GPL(cgroup_lock); |
ddbcc7e8 PM |
744 | |
745 | /** | |
746 | * cgroup_unlock - release lock on cgroup changes | |
747 | * | |
748 | * Undo the lock taken in a previous cgroup_lock() call. | |
749 | */ | |
ddbcc7e8 PM |
750 | void cgroup_unlock(void) |
751 | { | |
752 | mutex_unlock(&cgroup_mutex); | |
753 | } | |
67523c48 | 754 | EXPORT_SYMBOL_GPL(cgroup_unlock); |
ddbcc7e8 PM |
755 | |
756 | /* | |
757 | * A couple of forward declarations required, due to cyclic reference loop: | |
758 | * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> | |
759 | * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations | |
760 | * -> cgroup_mkdir. | |
761 | */ | |
762 | ||
763 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | |
c72a04e3 | 764 | static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *); |
ddbcc7e8 | 765 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
bd89aabc | 766 | static int cgroup_populate_dir(struct cgroup *cgrp); |
6e1d5dcc | 767 | static const struct inode_operations cgroup_dir_inode_operations; |
828c0950 | 768 | static const struct file_operations proc_cgroupstats_operations; |
a424316c PM |
769 | |
770 | static struct backing_dev_info cgroup_backing_dev_info = { | |
d993831f | 771 | .name = "cgroup", |
e4ad08fe | 772 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, |
a424316c | 773 | }; |
ddbcc7e8 | 774 | |
38460b48 KH |
775 | static int alloc_css_id(struct cgroup_subsys *ss, |
776 | struct cgroup *parent, struct cgroup *child); | |
777 | ||
ddbcc7e8 PM |
778 | static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) |
779 | { | |
780 | struct inode *inode = new_inode(sb); | |
ddbcc7e8 PM |
781 | |
782 | if (inode) { | |
85fe4025 | 783 | inode->i_ino = get_next_ino(); |
ddbcc7e8 | 784 | inode->i_mode = mode; |
76aac0e9 DH |
785 | inode->i_uid = current_fsuid(); |
786 | inode->i_gid = current_fsgid(); | |
ddbcc7e8 PM |
787 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
788 | inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; | |
789 | } | |
790 | return inode; | |
791 | } | |
792 | ||
4fca88c8 KH |
793 | /* |
794 | * Call subsys's pre_destroy handler. | |
795 | * This is called before css refcnt check. | |
796 | */ | |
ec64f515 | 797 | static int cgroup_call_pre_destroy(struct cgroup *cgrp) |
4fca88c8 KH |
798 | { |
799 | struct cgroup_subsys *ss; | |
ec64f515 KH |
800 | int ret = 0; |
801 | ||
4fca88c8 | 802 | for_each_subsys(cgrp->root, ss) |
ec64f515 KH |
803 | if (ss->pre_destroy) { |
804 | ret = ss->pre_destroy(ss, cgrp); | |
805 | if (ret) | |
4ab78683 | 806 | break; |
ec64f515 | 807 | } |
0dea1168 | 808 | |
ec64f515 | 809 | return ret; |
4fca88c8 KH |
810 | } |
811 | ||
ddbcc7e8 PM |
812 | static void cgroup_diput(struct dentry *dentry, struct inode *inode) |
813 | { | |
814 | /* is dentry a directory ? if so, kfree() associated cgroup */ | |
815 | if (S_ISDIR(inode->i_mode)) { | |
bd89aabc | 816 | struct cgroup *cgrp = dentry->d_fsdata; |
8dc4f3e1 | 817 | struct cgroup_subsys *ss; |
bd89aabc | 818 | BUG_ON(!(cgroup_is_removed(cgrp))); |
81a6a5cd PM |
819 | /* It's possible for external users to be holding css |
820 | * reference counts on a cgroup; css_put() needs to | |
821 | * be able to access the cgroup after decrementing | |
822 | * the reference count in order to know if it needs to | |
823 | * queue the cgroup to be handled by the release | |
824 | * agent */ | |
825 | synchronize_rcu(); | |
8dc4f3e1 PM |
826 | |
827 | mutex_lock(&cgroup_mutex); | |
828 | /* | |
829 | * Release the subsystem state objects. | |
830 | */ | |
75139b82 LZ |
831 | for_each_subsys(cgrp->root, ss) |
832 | ss->destroy(ss, cgrp); | |
8dc4f3e1 PM |
833 | |
834 | cgrp->root->number_of_cgroups--; | |
835 | mutex_unlock(&cgroup_mutex); | |
836 | ||
a47295e6 PM |
837 | /* |
838 | * Drop the active superblock reference that we took when we | |
839 | * created the cgroup | |
840 | */ | |
8dc4f3e1 PM |
841 | deactivate_super(cgrp->root->sb); |
842 | ||
72a8cb30 BB |
843 | /* |
844 | * if we're getting rid of the cgroup, refcount should ensure | |
845 | * that there are no pidlists left. | |
846 | */ | |
847 | BUG_ON(!list_empty(&cgrp->pidlists)); | |
848 | ||
f2da1c40 | 849 | kfree_rcu(cgrp, rcu_head); |
ddbcc7e8 PM |
850 | } |
851 | iput(inode); | |
852 | } | |
853 | ||
c72a04e3 AV |
854 | static int cgroup_delete(const struct dentry *d) |
855 | { | |
856 | return 1; | |
857 | } | |
858 | ||
ddbcc7e8 PM |
859 | static void remove_dir(struct dentry *d) |
860 | { | |
861 | struct dentry *parent = dget(d->d_parent); | |
862 | ||
863 | d_delete(d); | |
864 | simple_rmdir(parent->d_inode, d); | |
865 | dput(parent); | |
866 | } | |
867 | ||
868 | static void cgroup_clear_directory(struct dentry *dentry) | |
869 | { | |
870 | struct list_head *node; | |
871 | ||
872 | BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); | |
2fd6b7f5 | 873 | spin_lock(&dentry->d_lock); |
ddbcc7e8 PM |
874 | node = dentry->d_subdirs.next; |
875 | while (node != &dentry->d_subdirs) { | |
876 | struct dentry *d = list_entry(node, struct dentry, d_u.d_child); | |
2fd6b7f5 NP |
877 | |
878 | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); | |
ddbcc7e8 PM |
879 | list_del_init(node); |
880 | if (d->d_inode) { | |
881 | /* This should never be called on a cgroup | |
882 | * directory with child cgroups */ | |
883 | BUG_ON(d->d_inode->i_mode & S_IFDIR); | |
dc0474be | 884 | dget_dlock(d); |
2fd6b7f5 NP |
885 | spin_unlock(&d->d_lock); |
886 | spin_unlock(&dentry->d_lock); | |
ddbcc7e8 PM |
887 | d_delete(d); |
888 | simple_unlink(dentry->d_inode, d); | |
889 | dput(d); | |
2fd6b7f5 NP |
890 | spin_lock(&dentry->d_lock); |
891 | } else | |
892 | spin_unlock(&d->d_lock); | |
ddbcc7e8 PM |
893 | node = dentry->d_subdirs.next; |
894 | } | |
2fd6b7f5 | 895 | spin_unlock(&dentry->d_lock); |
ddbcc7e8 PM |
896 | } |
897 | ||
898 | /* | |
899 | * NOTE : the dentry must have been dget()'ed | |
900 | */ | |
901 | static void cgroup_d_remove_dir(struct dentry *dentry) | |
902 | { | |
2fd6b7f5 NP |
903 | struct dentry *parent; |
904 | ||
ddbcc7e8 PM |
905 | cgroup_clear_directory(dentry); |
906 | ||
2fd6b7f5 NP |
907 | parent = dentry->d_parent; |
908 | spin_lock(&parent->d_lock); | |
3ec762ad | 909 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); |
ddbcc7e8 | 910 | list_del_init(&dentry->d_u.d_child); |
2fd6b7f5 NP |
911 | spin_unlock(&dentry->d_lock); |
912 | spin_unlock(&parent->d_lock); | |
ddbcc7e8 PM |
913 | remove_dir(dentry); |
914 | } | |
915 | ||
ec64f515 KH |
916 | /* |
917 | * A queue for waiters to do rmdir() cgroup. A tasks will sleep when | |
918 | * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some | |
919 | * reference to css->refcnt. In general, this refcnt is expected to goes down | |
920 | * to zero, soon. | |
921 | * | |
88703267 | 922 | * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; |
ec64f515 KH |
923 | */ |
924 | DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); | |
925 | ||
88703267 | 926 | static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) |
ec64f515 | 927 | { |
88703267 | 928 | if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) |
ec64f515 KH |
929 | wake_up_all(&cgroup_rmdir_waitq); |
930 | } | |
931 | ||
88703267 KH |
932 | void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) |
933 | { | |
934 | css_get(css); | |
935 | } | |
936 | ||
937 | void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) | |
938 | { | |
939 | cgroup_wakeup_rmdir_waiter(css->cgroup); | |
940 | css_put(css); | |
941 | } | |
942 | ||
aae8aab4 | 943 | /* |
cf5d5941 BB |
944 | * Call with cgroup_mutex held. Drops reference counts on modules, including |
945 | * any duplicate ones that parse_cgroupfs_options took. If this function | |
946 | * returns an error, no reference counts are touched. | |
aae8aab4 | 947 | */ |
ddbcc7e8 PM |
948 | static int rebind_subsystems(struct cgroupfs_root *root, |
949 | unsigned long final_bits) | |
950 | { | |
951 | unsigned long added_bits, removed_bits; | |
bd89aabc | 952 | struct cgroup *cgrp = &root->top_cgroup; |
ddbcc7e8 PM |
953 | int i; |
954 | ||
aae8aab4 BB |
955 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); |
956 | ||
ddbcc7e8 PM |
957 | removed_bits = root->actual_subsys_bits & ~final_bits; |
958 | added_bits = final_bits & ~root->actual_subsys_bits; | |
959 | /* Check that any added subsystems are currently free */ | |
960 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | |
8d53d55d | 961 | unsigned long bit = 1UL << i; |
ddbcc7e8 PM |
962 | struct cgroup_subsys *ss = subsys[i]; |
963 | if (!(bit & added_bits)) | |
964 | continue; | |
aae8aab4 BB |
965 | /* |
966 | * Nobody should tell us to do a subsys that doesn't exist: | |
967 | * parse_cgroupfs_options should catch that case and refcounts | |
968 | * ensure that subsystems won't disappear once selected. | |
969 | */ | |
970 | BUG_ON(ss == NULL); | |
ddbcc7e8 PM |
971 | if (ss->root != &rootnode) { |
972 | /* Subsystem isn't free */ | |
973 | return -EBUSY; | |
974 | } | |
975 | } | |
976 | ||
977 | /* Currently we don't handle adding/removing subsystems when | |
978 | * any child cgroups exist. This is theoretically supportable | |
979 | * but involves complex error handling, so it's being left until | |
980 | * later */ | |
307257cf | 981 | if (root->number_of_cgroups > 1) |
ddbcc7e8 PM |
982 | return -EBUSY; |
983 | ||
984 | /* Process each subsystem */ | |
985 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | |
986 | struct cgroup_subsys *ss = subsys[i]; | |
987 | unsigned long bit = 1UL << i; | |
988 | if (bit & added_bits) { | |
989 | /* We're binding this subsystem to this hierarchy */ | |
aae8aab4 | 990 | BUG_ON(ss == NULL); |
bd89aabc | 991 | BUG_ON(cgrp->subsys[i]); |
ddbcc7e8 PM |
992 | BUG_ON(!dummytop->subsys[i]); |
993 | BUG_ON(dummytop->subsys[i]->cgroup != dummytop); | |
999cd8a4 | 994 | mutex_lock(&ss->hierarchy_mutex); |
bd89aabc PM |
995 | cgrp->subsys[i] = dummytop->subsys[i]; |
996 | cgrp->subsys[i]->cgroup = cgrp; | |
33a68ac1 | 997 | list_move(&ss->sibling, &root->subsys_list); |
b2aa30f7 | 998 | ss->root = root; |
ddbcc7e8 | 999 | if (ss->bind) |
bd89aabc | 1000 | ss->bind(ss, cgrp); |
999cd8a4 | 1001 | mutex_unlock(&ss->hierarchy_mutex); |
cf5d5941 | 1002 | /* refcount was already taken, and we're keeping it */ |
ddbcc7e8 PM |
1003 | } else if (bit & removed_bits) { |
1004 | /* We're removing this subsystem */ | |
aae8aab4 | 1005 | BUG_ON(ss == NULL); |
bd89aabc PM |
1006 | BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); |
1007 | BUG_ON(cgrp->subsys[i]->cgroup != cgrp); | |
999cd8a4 | 1008 | mutex_lock(&ss->hierarchy_mutex); |
ddbcc7e8 PM |
1009 | if (ss->bind) |
1010 | ss->bind(ss, dummytop); | |
1011 | dummytop->subsys[i]->cgroup = dummytop; | |
bd89aabc | 1012 | cgrp->subsys[i] = NULL; |
b2aa30f7 | 1013 | subsys[i]->root = &rootnode; |
33a68ac1 | 1014 | list_move(&ss->sibling, &rootnode.subsys_list); |
999cd8a4 | 1015 | mutex_unlock(&ss->hierarchy_mutex); |
cf5d5941 BB |
1016 | /* subsystem is now free - drop reference on module */ |
1017 | module_put(ss->module); | |
ddbcc7e8 PM |
1018 | } else if (bit & final_bits) { |
1019 | /* Subsystem state should already exist */ | |
aae8aab4 | 1020 | BUG_ON(ss == NULL); |
bd89aabc | 1021 | BUG_ON(!cgrp->subsys[i]); |
cf5d5941 BB |
1022 | /* |
1023 | * a refcount was taken, but we already had one, so | |
1024 | * drop the extra reference. | |
1025 | */ | |
1026 | module_put(ss->module); | |
1027 | #ifdef CONFIG_MODULE_UNLOAD | |
1028 | BUG_ON(ss->module && !module_refcount(ss->module)); | |
1029 | #endif | |
ddbcc7e8 PM |
1030 | } else { |
1031 | /* Subsystem state shouldn't exist */ | |
bd89aabc | 1032 | BUG_ON(cgrp->subsys[i]); |
ddbcc7e8 PM |
1033 | } |
1034 | } | |
1035 | root->subsys_bits = root->actual_subsys_bits = final_bits; | |
1036 | synchronize_rcu(); | |
1037 | ||
1038 | return 0; | |
1039 | } | |
1040 | ||
1041 | static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |
1042 | { | |
1043 | struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info; | |
1044 | struct cgroup_subsys *ss; | |
1045 | ||
1046 | mutex_lock(&cgroup_mutex); | |
1047 | for_each_subsys(root, ss) | |
1048 | seq_printf(seq, ",%s", ss->name); | |
1049 | if (test_bit(ROOT_NOPREFIX, &root->flags)) | |
1050 | seq_puts(seq, ",noprefix"); | |
81a6a5cd PM |
1051 | if (strlen(root->release_agent_path)) |
1052 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | |
97978e6d DL |
1053 | if (clone_children(&root->top_cgroup)) |
1054 | seq_puts(seq, ",clone_children"); | |
c6d57f33 PM |
1055 | if (strlen(root->name)) |
1056 | seq_printf(seq, ",name=%s", root->name); | |
ddbcc7e8 PM |
1057 | mutex_unlock(&cgroup_mutex); |
1058 | return 0; | |
1059 | } | |
1060 | ||
1061 | struct cgroup_sb_opts { | |
1062 | unsigned long subsys_bits; | |
1063 | unsigned long flags; | |
81a6a5cd | 1064 | char *release_agent; |
97978e6d | 1065 | bool clone_children; |
c6d57f33 | 1066 | char *name; |
2c6ab6d2 PM |
1067 | /* User explicitly requested empty subsystem */ |
1068 | bool none; | |
c6d57f33 PM |
1069 | |
1070 | struct cgroupfs_root *new_root; | |
2c6ab6d2 | 1071 | |
ddbcc7e8 PM |
1072 | }; |
1073 | ||
aae8aab4 BB |
1074 | /* |
1075 | * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call | |
cf5d5941 BB |
1076 | * with cgroup_mutex held to protect the subsys[] array. This function takes |
1077 | * refcounts on subsystems to be used, unless it returns error, in which case | |
1078 | * no refcounts are taken. | |
aae8aab4 | 1079 | */ |
cf5d5941 | 1080 | static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) |
ddbcc7e8 | 1081 | { |
32a8cf23 DL |
1082 | char *token, *o = data; |
1083 | bool all_ss = false, one_ss = false; | |
f9ab5b5b | 1084 | unsigned long mask = (unsigned long)-1; |
cf5d5941 BB |
1085 | int i; |
1086 | bool module_pin_failed = false; | |
f9ab5b5b | 1087 | |
aae8aab4 BB |
1088 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); |
1089 | ||
f9ab5b5b LZ |
1090 | #ifdef CONFIG_CPUSETS |
1091 | mask = ~(1UL << cpuset_subsys_id); | |
1092 | #endif | |
ddbcc7e8 | 1093 | |
c6d57f33 | 1094 | memset(opts, 0, sizeof(*opts)); |
ddbcc7e8 PM |
1095 | |
1096 | while ((token = strsep(&o, ",")) != NULL) { | |
1097 | if (!*token) | |
1098 | return -EINVAL; | |
32a8cf23 | 1099 | if (!strcmp(token, "none")) { |
2c6ab6d2 PM |
1100 | /* Explicitly have no subsystems */ |
1101 | opts->none = true; | |
32a8cf23 DL |
1102 | continue; |
1103 | } | |
1104 | if (!strcmp(token, "all")) { | |
1105 | /* Mutually exclusive option 'all' + subsystem name */ | |
1106 | if (one_ss) | |
1107 | return -EINVAL; | |
1108 | all_ss = true; | |
1109 | continue; | |
1110 | } | |
1111 | if (!strcmp(token, "noprefix")) { | |
ddbcc7e8 | 1112 | set_bit(ROOT_NOPREFIX, &opts->flags); |
32a8cf23 DL |
1113 | continue; |
1114 | } | |
1115 | if (!strcmp(token, "clone_children")) { | |
97978e6d | 1116 | opts->clone_children = true; |
32a8cf23 DL |
1117 | continue; |
1118 | } | |
1119 | if (!strncmp(token, "release_agent=", 14)) { | |
81a6a5cd PM |
1120 | /* Specifying two release agents is forbidden */ |
1121 | if (opts->release_agent) | |
1122 | return -EINVAL; | |
c6d57f33 | 1123 | opts->release_agent = |
e400c285 | 1124 | kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); |
81a6a5cd PM |
1125 | if (!opts->release_agent) |
1126 | return -ENOMEM; | |
32a8cf23 DL |
1127 | continue; |
1128 | } | |
1129 | if (!strncmp(token, "name=", 5)) { | |
c6d57f33 PM |
1130 | const char *name = token + 5; |
1131 | /* Can't specify an empty name */ | |
1132 | if (!strlen(name)) | |
1133 | return -EINVAL; | |
1134 | /* Must match [\w.-]+ */ | |
1135 | for (i = 0; i < strlen(name); i++) { | |
1136 | char c = name[i]; | |
1137 | if (isalnum(c)) | |
1138 | continue; | |
1139 | if ((c == '.') || (c == '-') || (c == '_')) | |
1140 | continue; | |
1141 | return -EINVAL; | |
1142 | } | |
1143 | /* Specifying two names is forbidden */ | |
1144 | if (opts->name) | |
1145 | return -EINVAL; | |
1146 | opts->name = kstrndup(name, | |
e400c285 | 1147 | MAX_CGROUP_ROOT_NAMELEN - 1, |
c6d57f33 PM |
1148 | GFP_KERNEL); |
1149 | if (!opts->name) | |
1150 | return -ENOMEM; | |
32a8cf23 DL |
1151 | |
1152 | continue; | |
1153 | } | |
1154 | ||
1155 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | |
1156 | struct cgroup_subsys *ss = subsys[i]; | |
1157 | if (ss == NULL) | |
1158 | continue; | |
1159 | if (strcmp(token, ss->name)) | |
1160 | continue; | |
1161 | if (ss->disabled) | |
1162 | continue; | |
1163 | ||
1164 | /* Mutually exclusive option 'all' + subsystem name */ | |
1165 | if (all_ss) | |
1166 | return -EINVAL; | |
1167 | set_bit(i, &opts->subsys_bits); | |
1168 | one_ss = true; | |
1169 | ||
1170 | break; | |
1171 | } | |
1172 | if (i == CGROUP_SUBSYS_COUNT) | |
1173 | return -ENOENT; | |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * If the 'all' option was specified select all the subsystems, | |
1178 | * otherwise 'all, 'none' and a subsystem name options were not | |
1179 | * specified, let's default to 'all' | |
1180 | */ | |
1181 | if (all_ss || (!all_ss && !one_ss && !opts->none)) { | |
1182 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | |
1183 | struct cgroup_subsys *ss = subsys[i]; | |
1184 | if (ss == NULL) | |
1185 | continue; | |
1186 | if (ss->disabled) | |
1187 | continue; | |
1188 | set_bit(i, &opts->subsys_bits); | |
ddbcc7e8 PM |
1189 | } |
1190 | } | |
1191 | ||
2c6ab6d2 PM |
1192 | /* Consistency checks */ |
1193 | ||
f9ab5b5b LZ |
1194 | /* |
1195 | * Option noprefix was introduced just for backward compatibility | |
1196 | * with the old cpuset, so we allow noprefix only if mounting just | |
1197 | * the cpuset subsystem. | |
1198 | */ | |
1199 | if (test_bit(ROOT_NOPREFIX, &opts->flags) && | |
1200 | (opts->subsys_bits & mask)) | |
1201 | return -EINVAL; | |
1202 | ||
2c6ab6d2 PM |
1203 | |
1204 | /* Can't specify "none" and some subsystems */ | |
1205 | if (opts->subsys_bits && opts->none) | |
1206 | return -EINVAL; | |
1207 | ||
1208 | /* | |
1209 | * We either have to specify by name or by subsystems. (So all | |
1210 | * empty hierarchies must have a name). | |
1211 | */ | |
c6d57f33 | 1212 | if (!opts->subsys_bits && !opts->name) |
ddbcc7e8 PM |
1213 | return -EINVAL; |
1214 | ||
cf5d5941 BB |
1215 | /* |
1216 | * Grab references on all the modules we'll need, so the subsystems | |
1217 | * don't dance around before rebind_subsystems attaches them. This may | |
1218 | * take duplicate reference counts on a subsystem that's already used, | |
1219 | * but rebind_subsystems handles this case. | |
1220 | */ | |
1221 | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | |
1222 | unsigned long bit = 1UL << i; | |
1223 | ||
1224 | if (!(bit & opts->subsys_bits)) | |
1225 | continue; | |
1226 | if (!try_module_get(subsys[i]->module)) { | |
1227 | module_pin_failed = true; | |
1228 | break; | |
1229 | } | |
1230 | } | |
1231 | if (module_pin_failed) { | |
1232 | /* | |
1233 | * oops, one of the modules was going away. this means that we | |
1234 | * raced with a module_delete call, and to the user this is | |
1235 | * essentially a "subsystem doesn't exist" case. | |
1236 | */ | |
1237 | for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) { | |
1238 | /* drop refcounts only on the ones we took */ | |
1239 | unsigned long bit = 1UL << i; | |
1240 | ||
1241 | if (!(bit & opts->subsys_bits)) | |
1242 | continue; | |
1243 | module_put(subsys[i]->module); | |
1244 | } | |
1245 | return -ENOENT; | |
1246 | } | |
1247 | ||
ddbcc7e8 PM |
1248 | return 0; |
1249 | } | |
1250 | ||
cf5d5941 BB |
1251 | static void drop_parsed_module_refcounts(unsigned long subsys_bits) |
1252 | { | |
1253 | int i; | |
1254 | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | |
1255 | unsigned long bit = 1UL << i; | |
1256 | ||
1257 | if (!(bit & subsys_bits)) | |
1258 | continue; | |
1259 | module_put(subsys[i]->module); | |
1260 | } | |
1261 | } | |
1262 | ||
ddbcc7e8 PM |
1263 | static int cgroup_remount(struct super_block *sb, int *flags, char *data) |
1264 | { | |
1265 | int ret = 0; | |
1266 | struct cgroupfs_root *root = sb->s_fs_info; | |
bd89aabc | 1267 | struct cgroup *cgrp = &root->top_cgroup; |
ddbcc7e8 PM |
1268 | struct cgroup_sb_opts opts; |
1269 | ||
bd89aabc | 1270 | mutex_lock(&cgrp->dentry->d_inode->i_mutex); |
ddbcc7e8 PM |
1271 | mutex_lock(&cgroup_mutex); |
1272 | ||
1273 | /* See what subsystems are wanted */ | |
1274 | ret = parse_cgroupfs_options(data, &opts); | |
1275 | if (ret) | |
1276 | goto out_unlock; | |
1277 | ||
cf5d5941 BB |
1278 | /* Don't allow flags or name to change at remount */ |
1279 | if (opts.flags != root->flags || | |
1280 | (opts.name && strcmp(opts.name, root->name))) { | |
c6d57f33 | 1281 | ret = -EINVAL; |
cf5d5941 | 1282 | drop_parsed_module_refcounts(opts.subsys_bits); |
c6d57f33 PM |
1283 | goto out_unlock; |
1284 | } | |
1285 | ||
ddbcc7e8 | 1286 | ret = rebind_subsystems(root, opts.subsys_bits); |
cf5d5941 BB |
1287 | if (ret) { |
1288 | drop_parsed_module_refcounts(opts.subsys_bits); | |
0670e08b | 1289 | goto out_unlock; |
cf5d5941 | 1290 | } |
ddbcc7e8 PM |
1291 | |
1292 | /* (re)populate subsystem files */ | |
0670e08b | 1293 | cgroup_populate_dir(cgrp); |
ddbcc7e8 | 1294 | |
81a6a5cd PM |
1295 | if (opts.release_agent) |
1296 | strcpy(root->release_agent_path, opts.release_agent); | |
ddbcc7e8 | 1297 | out_unlock: |
66bdc9cf | 1298 | kfree(opts.release_agent); |
c6d57f33 | 1299 | kfree(opts.name); |
ddbcc7e8 | 1300 | mutex_unlock(&cgroup_mutex); |
bd89aabc | 1301 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
ddbcc7e8 PM |
1302 | return ret; |
1303 | } | |
1304 | ||
b87221de | 1305 | static const struct super_operations cgroup_ops = { |
ddbcc7e8 PM |
1306 | .statfs = simple_statfs, |
1307 | .drop_inode = generic_delete_inode, | |
1308 | .show_options = cgroup_show_options, | |
1309 | .remount_fs = cgroup_remount, | |
1310 | }; | |
1311 | ||
cc31edce PM |
1312 | static void init_cgroup_housekeeping(struct cgroup *cgrp) |
1313 | { | |
1314 | INIT_LIST_HEAD(&cgrp->sibling); | |
1315 | INIT_LIST_HEAD(&cgrp->children); | |
1316 | INIT_LIST_HEAD(&cgrp->css_sets); | |
1317 | INIT_LIST_HEAD(&cgrp->release_list); | |
72a8cb30 BB |
1318 | INIT_LIST_HEAD(&cgrp->pidlists); |
1319 | mutex_init(&cgrp->pidlist_mutex); | |
0dea1168 KS |
1320 | INIT_LIST_HEAD(&cgrp->event_list); |
1321 | spin_lock_init(&cgrp->event_list_lock); | |
cc31edce | 1322 | } |
c6d57f33 | 1323 | |
ddbcc7e8 PM |
1324 | static void init_cgroup_root(struct cgroupfs_root *root) |
1325 | { | |
bd89aabc | 1326 | struct cgroup *cgrp = &root->top_cgroup; |
ddbcc7e8 PM |
1327 | INIT_LIST_HEAD(&root->subsys_list); |
1328 | INIT_LIST_HEAD(&root->root_list); | |
1329 | root->number_of_cgroups = 1; | |
bd89aabc PM |
1330 | cgrp->root = root; |
1331 | cgrp->top_cgroup = cgrp; | |
cc31edce | 1332 | init_cgroup_housekeeping(cgrp); |
ddbcc7e8 PM |
1333 | } |
1334 | ||
2c6ab6d2 PM |
1335 | static bool init_root_id(struct cgroupfs_root *root) |
1336 | { | |
1337 | int ret = 0; | |
1338 | ||
1339 | do { | |
1340 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | |
1341 | return false; | |
1342 | spin_lock(&hierarchy_id_lock); | |
1343 | /* Try to allocate the next unused ID */ | |
1344 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | |
1345 | &root->hierarchy_id); | |
1346 | if (ret == -ENOSPC) | |
1347 | /* Try again starting from 0 */ | |
1348 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | |
1349 | if (!ret) { | |
1350 | next_hierarchy_id = root->hierarchy_id + 1; | |
1351 | } else if (ret != -EAGAIN) { | |
1352 | /* Can only get here if the 31-bit IDR is full ... */ | |
1353 | BUG_ON(ret); | |
1354 | } | |
1355 | spin_unlock(&hierarchy_id_lock); | |
1356 | } while (ret); | |
1357 | return true; | |
1358 | } | |
1359 | ||
ddbcc7e8 PM |
1360 | static int cgroup_test_super(struct super_block *sb, void *data) |
1361 | { | |
c6d57f33 | 1362 | struct cgroup_sb_opts *opts = data; |
ddbcc7e8 PM |
1363 | struct cgroupfs_root *root = sb->s_fs_info; |
1364 | ||
c6d57f33 PM |
1365 | /* If we asked for a name then it must match */ |
1366 | if (opts->name && strcmp(opts->name, root->name)) | |
1367 | return 0; | |
ddbcc7e8 | 1368 | |
2c6ab6d2 PM |
1369 | /* |
1370 | * If we asked for subsystems (or explicitly for no | |
1371 | * subsystems) then they must match | |
1372 | */ | |
1373 | if ((opts->subsys_bits || opts->none) | |
1374 | && (opts->subsys_bits != root->subsys_bits)) | |
ddbcc7e8 PM |
1375 | return 0; |
1376 | ||
1377 | return 1; | |
1378 | } | |
1379 | ||
c6d57f33 PM |
1380 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) |
1381 | { | |
1382 | struct cgroupfs_root *root; | |
1383 | ||
2c6ab6d2 | 1384 | if (!opts->subsys_bits && !opts->none) |
c6d57f33 PM |
1385 | return NULL; |
1386 | ||
1387 | root = kzalloc(sizeof(*root), GFP_KERNEL); | |
1388 | if (!root) | |
1389 | return ERR_PTR(-ENOMEM); | |
1390 | ||
2c6ab6d2 PM |
1391 | if (!init_root_id(root)) { |
1392 | kfree(root); | |
1393 | return ERR_PTR(-ENOMEM); | |
1394 | } | |
c6d57f33 | 1395 | init_cgroup_root(root); |
2c6ab6d2 | 1396 | |
c6d57f33 PM |
1397 | root->subsys_bits = opts->subsys_bits; |
1398 | root->flags = opts->flags; | |
1399 | if (opts->release_agent) | |
1400 | strcpy(root->release_agent_path, opts->release_agent); | |
1401 | if (opts->name) | |
1402 | strcpy(root->name, opts->name); | |
97978e6d DL |
1403 | if (opts->clone_children) |
1404 | set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags); | |
c6d57f33 PM |
1405 | return root; |
1406 | } | |
1407 | ||
2c6ab6d2 PM |
1408 | static void cgroup_drop_root(struct cgroupfs_root *root) |
1409 | { | |
1410 | if (!root) | |
1411 | return; | |
1412 | ||
1413 | BUG_ON(!root->hierarchy_id); | |
1414 | spin_lock(&hierarchy_id_lock); | |
1415 | ida_remove(&hierarchy_ida, root->hierarchy_id); | |
1416 | spin_unlock(&hierarchy_id_lock); | |
1417 | kfree(root); | |
1418 | } | |
1419 | ||
ddbcc7e8 PM |
1420 | static int cgroup_set_super(struct super_block *sb, void *data) |
1421 | { | |
1422 | int ret; | |
c6d57f33 PM |
1423 | struct cgroup_sb_opts *opts = data; |
1424 | ||
1425 | /* If we don't have a new root, we can't set up a new sb */ | |
1426 | if (!opts->new_root) | |
1427 | return -EINVAL; | |
1428 | ||
2c6ab6d2 | 1429 | BUG_ON(!opts->subsys_bits && !opts->none); |
ddbcc7e8 PM |
1430 | |
1431 | ret = set_anon_super(sb, NULL); | |
1432 | if (ret) | |
1433 | return ret; | |
1434 | ||
c6d57f33 PM |
1435 | sb->s_fs_info = opts->new_root; |
1436 | opts->new_root->sb = sb; | |
ddbcc7e8 PM |
1437 | |
1438 | sb->s_blocksize = PAGE_CACHE_SIZE; | |
1439 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | |
1440 | sb->s_magic = CGROUP_SUPER_MAGIC; | |
1441 | sb->s_op = &cgroup_ops; | |
1442 | ||
1443 | return 0; | |
1444 | } | |
1445 | ||
1446 | static int cgroup_get_rootdir(struct super_block *sb) | |
1447 | { | |
0df6a63f AV |
1448 | static const struct dentry_operations cgroup_dops = { |
1449 | .d_iput = cgroup_diput, | |
c72a04e3 | 1450 | .d_delete = cgroup_delete, |
0df6a63f AV |
1451 | }; |
1452 | ||
ddbcc7e8 PM |
1453 | struct inode *inode = |
1454 | cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); | |
1455 | struct dentry *dentry; | |
1456 | ||
1457 | if (!inode) | |
1458 | return -ENOMEM; | |
1459 | ||
ddbcc7e8 PM |
1460 | inode->i_fop = &simple_dir_operations; |
1461 | inode->i_op = &cgroup_dir_inode_operations; | |
1462 | /* directories start off with i_nlink == 2 (for "." entry) */ | |
1463 | inc_nlink(inode); | |
1464 | dentry = d_alloc_root(inode); | |
1465 | if (!dentry) { | |
1466 | iput(inode); | |
1467 | return -ENOMEM; | |
1468 | } | |
1469 | sb->s_root = dentry; | |
0df6a63f AV |
1470 | /* for everything else we want ->d_op set */ |
1471 | sb->s_d_op = &cgroup_dops; | |
ddbcc7e8 PM |
1472 | return 0; |
1473 | } | |
1474 | ||
f7e83571 | 1475 | static struct dentry *cgroup_mount(struct file_system_type *fs_type, |
ddbcc7e8 | 1476 | int flags, const char *unused_dev_name, |
f7e83571 | 1477 | void *data) |
ddbcc7e8 PM |
1478 | { |
1479 | struct cgroup_sb_opts opts; | |
c6d57f33 | 1480 | struct cgroupfs_root *root; |
ddbcc7e8 PM |
1481 | int ret = 0; |
1482 | struct super_block *sb; | |
c6d57f33 | 1483 | struct cgroupfs_root *new_root; |
ddbcc7e8 PM |
1484 | |
1485 | /* First find the desired set of subsystems */ | |
aae8aab4 | 1486 | mutex_lock(&cgroup_mutex); |
ddbcc7e8 | 1487 | ret = parse_cgroupfs_options(data, &opts); |
aae8aab4 | 1488 | mutex_unlock(&cgroup_mutex); |
c6d57f33 PM |
1489 | if (ret) |
1490 | goto out_err; | |
ddbcc7e8 | 1491 | |
c6d57f33 PM |
1492 | /* |
1493 | * Allocate a new cgroup root. We may not need it if we're | |
1494 | * reusing an existing hierarchy. | |
1495 | */ | |
1496 | new_root = cgroup_root_from_opts(&opts); | |
1497 | if (IS_ERR(new_root)) { | |
1498 | ret = PTR_ERR(new_root); | |
cf5d5941 | 1499 | goto drop_modules; |
81a6a5cd | 1500 | } |
c6d57f33 | 1501 | opts.new_root = new_root; |
ddbcc7e8 | 1502 | |
c6d57f33 PM |
1503 | /* Locate an existing or new sb for this hierarchy */ |
1504 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
ddbcc7e8 | 1505 | if (IS_ERR(sb)) { |
c6d57f33 | 1506 | ret = PTR_ERR(sb); |
2c6ab6d2 | 1507 | cgroup_drop_root(opts.new_root); |
cf5d5941 | 1508 | goto drop_modules; |
ddbcc7e8 PM |
1509 | } |
1510 | ||
c6d57f33 PM |
1511 | root = sb->s_fs_info; |
1512 | BUG_ON(!root); | |
1513 | if (root == opts.new_root) { | |
1514 | /* We used the new root structure, so this is a new hierarchy */ | |
1515 | struct list_head tmp_cg_links; | |
c12f65d4 | 1516 | struct cgroup *root_cgrp = &root->top_cgroup; |
817929ec | 1517 | struct inode *inode; |
c6d57f33 | 1518 | struct cgroupfs_root *existing_root; |
2ce9738b | 1519 | const struct cred *cred; |
28fd5dfc | 1520 | int i; |
ddbcc7e8 PM |
1521 | |
1522 | BUG_ON(sb->s_root != NULL); | |
1523 | ||
1524 | ret = cgroup_get_rootdir(sb); | |
1525 | if (ret) | |
1526 | goto drop_new_super; | |
817929ec | 1527 | inode = sb->s_root->d_inode; |
ddbcc7e8 | 1528 | |
817929ec | 1529 | mutex_lock(&inode->i_mutex); |
ddbcc7e8 PM |
1530 | mutex_lock(&cgroup_mutex); |
1531 | ||
c6d57f33 PM |
1532 | if (strlen(root->name)) { |
1533 | /* Check for name clashes with existing mounts */ | |
1534 | for_each_active_root(existing_root) { | |
1535 | if (!strcmp(existing_root->name, root->name)) { | |
1536 | ret = -EBUSY; | |
1537 | mutex_unlock(&cgroup_mutex); | |
1538 | mutex_unlock(&inode->i_mutex); | |
1539 | goto drop_new_super; | |
1540 | } | |
1541 | } | |
1542 | } | |
1543 | ||
817929ec PM |
1544 | /* |
1545 | * We're accessing css_set_count without locking | |
1546 | * css_set_lock here, but that's OK - it can only be | |
1547 | * increased by someone holding cgroup_lock, and | |
1548 | * that's us. The worst that can happen is that we | |
1549 | * have some link structures left over | |
1550 | */ | |
1551 | ret = allocate_cg_links(css_set_count, &tmp_cg_links); | |
1552 | if (ret) { | |
1553 | mutex_unlock(&cgroup_mutex); | |
1554 | mutex_unlock(&inode->i_mutex); | |
1555 | goto drop_new_super; | |
1556 | } | |
1557 | ||
ddbcc7e8 PM |
1558 | ret = rebind_subsystems(root, root->subsys_bits); |
1559 | if (ret == -EBUSY) { | |
1560 | mutex_unlock(&cgroup_mutex); | |
817929ec | 1561 | mutex_unlock(&inode->i_mutex); |
c6d57f33 PM |
1562 | free_cg_links(&tmp_cg_links); |
1563 | goto drop_new_super; | |
ddbcc7e8 | 1564 | } |
cf5d5941 BB |
1565 | /* |
1566 | * There must be no failure case after here, since rebinding | |
1567 | * takes care of subsystems' refcounts, which are explicitly | |
1568 | * dropped in the failure exit path. | |
1569 | */ | |
ddbcc7e8 PM |
1570 | |
1571 | /* EBUSY should be the only error here */ | |
1572 | BUG_ON(ret); | |
1573 | ||
1574 | list_add(&root->root_list, &roots); | |
817929ec | 1575 | root_count++; |
ddbcc7e8 | 1576 | |
c12f65d4 | 1577 | sb->s_root->d_fsdata = root_cgrp; |
ddbcc7e8 PM |
1578 | root->top_cgroup.dentry = sb->s_root; |
1579 | ||
817929ec PM |
1580 | /* Link the top cgroup in this hierarchy into all |
1581 | * the css_set objects */ | |
1582 | write_lock(&css_set_lock); | |
28fd5dfc LZ |
1583 | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { |
1584 | struct hlist_head *hhead = &css_set_table[i]; | |
1585 | struct hlist_node *node; | |
817929ec | 1586 | struct css_set *cg; |
28fd5dfc | 1587 | |
c12f65d4 LZ |
1588 | hlist_for_each_entry(cg, node, hhead, hlist) |
1589 | link_css_set(&tmp_cg_links, cg, root_cgrp); | |
28fd5dfc | 1590 | } |
817929ec PM |
1591 | write_unlock(&css_set_lock); |
1592 | ||
1593 | free_cg_links(&tmp_cg_links); | |
1594 | ||
c12f65d4 LZ |
1595 | BUG_ON(!list_empty(&root_cgrp->sibling)); |
1596 | BUG_ON(!list_empty(&root_cgrp->children)); | |
ddbcc7e8 PM |
1597 | BUG_ON(root->number_of_cgroups != 1); |
1598 | ||
2ce9738b | 1599 | cred = override_creds(&init_cred); |
c12f65d4 | 1600 | cgroup_populate_dir(root_cgrp); |
2ce9738b | 1601 | revert_creds(cred); |
ddbcc7e8 | 1602 | mutex_unlock(&cgroup_mutex); |
34f77a90 | 1603 | mutex_unlock(&inode->i_mutex); |
c6d57f33 PM |
1604 | } else { |
1605 | /* | |
1606 | * We re-used an existing hierarchy - the new root (if | |
1607 | * any) is not needed | |
1608 | */ | |
2c6ab6d2 | 1609 | cgroup_drop_root(opts.new_root); |
cf5d5941 BB |
1610 | /* no subsys rebinding, so refcounts don't change */ |
1611 | drop_parsed_module_refcounts(opts.subsys_bits); | |
ddbcc7e8 PM |
1612 | } |
1613 | ||
c6d57f33 PM |
1614 | kfree(opts.release_agent); |
1615 | kfree(opts.name); | |
f7e83571 | 1616 | return dget(sb->s_root); |
ddbcc7e8 PM |
1617 | |
1618 | drop_new_super: | |
6f5bbff9 | 1619 | deactivate_locked_super(sb); |
cf5d5941 BB |
1620 | drop_modules: |
1621 | drop_parsed_module_refcounts(opts.subsys_bits); | |
c6d57f33 PM |
1622 | out_err: |
1623 | kfree(opts.release_agent); | |
1624 | kfree(opts.name); | |
f7e83571 | 1625 | return ERR_PTR(ret); |
ddbcc7e8 PM |
1626 | } |
1627 | ||
1628 | static void cgroup_kill_sb(struct super_block *sb) { | |
1629 | struct cgroupfs_root *root = sb->s_fs_info; | |
bd89aabc | 1630 | struct cgroup *cgrp = &root->top_cgroup; |
ddbcc7e8 | 1631 | int ret; |
71cbb949 KM |
1632 | struct cg_cgroup_link *link; |
1633 | struct cg_cgroup_link *saved_link; | |
ddbcc7e8 PM |
1634 | |
1635 | BUG_ON(!root); | |
1636 | ||
1637 | BUG_ON(root->number_of_cgroups != 1); | |
bd89aabc PM |
1638 | BUG_ON(!list_empty(&cgrp->children)); |
1639 | BUG_ON(!list_empty(&cgrp->sibling)); | |
ddbcc7e8 PM |
1640 | |
1641 | mutex_lock(&cgroup_mutex); | |
1642 | ||
1643 | /* Rebind all subsystems back to the default hierarchy */ | |
1644 | ret = rebind_subsystems(root, 0); | |
1645 | /* Shouldn't be able to fail ... */ | |
1646 | BUG_ON(ret); | |
1647 | ||
817929ec PM |
1648 | /* |
1649 | * Release all the links from css_sets to this hierarchy's | |
1650 | * root cgroup | |
1651 | */ | |
1652 | write_lock(&css_set_lock); | |
71cbb949 KM |
1653 | |
1654 | list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, | |
1655 | cgrp_link_list) { | |
817929ec | 1656 | list_del(&link->cg_link_list); |
bd89aabc | 1657 | list_del(&link->cgrp_link_list); |
817929ec PM |
1658 | kfree(link); |
1659 | } | |
1660 | write_unlock(&css_set_lock); | |
1661 | ||
839ec545 PM |
1662 | if (!list_empty(&root->root_list)) { |
1663 | list_del(&root->root_list); | |
1664 | root_count--; | |
1665 | } | |
e5f6a860 | 1666 | |
ddbcc7e8 PM |
1667 | mutex_unlock(&cgroup_mutex); |
1668 | ||
ddbcc7e8 | 1669 | kill_litter_super(sb); |
2c6ab6d2 | 1670 | cgroup_drop_root(root); |
ddbcc7e8 PM |
1671 | } |
1672 | ||
1673 | static struct file_system_type cgroup_fs_type = { | |
1674 | .name = "cgroup", | |
f7e83571 | 1675 | .mount = cgroup_mount, |
ddbcc7e8 PM |
1676 | .kill_sb = cgroup_kill_sb, |
1677 | }; | |
1678 | ||
676db4af GKH |
1679 | static struct kobject *cgroup_kobj; |
1680 | ||
bd89aabc | 1681 | static inline struct cgroup *__d_cgrp(struct dentry *dentry) |
ddbcc7e8 PM |
1682 | { |
1683 | return dentry->d_fsdata; | |
1684 | } | |
1685 | ||
1686 | static inline struct cftype *__d_cft(struct dentry *dentry) | |
1687 | { | |
1688 | return dentry->d_fsdata; | |
1689 | } | |
1690 | ||
a043e3b2 LZ |
1691 | /** |
1692 | * cgroup_path - generate the path of a cgroup | |
1693 | * @cgrp: the cgroup in question | |
1694 | * @buf: the buffer to write the path into | |
1695 | * @buflen: the length of the buffer | |
1696 | * | |
a47295e6 PM |
1697 | * Called with cgroup_mutex held or else with an RCU-protected cgroup |
1698 | * reference. Writes path of cgroup into buf. Returns 0 on success, | |
1699 | * -errno on error. | |
ddbcc7e8 | 1700 | */ |
bd89aabc | 1701 | int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) |
ddbcc7e8 PM |
1702 | { |
1703 | char *start; | |
9a9686b6 | 1704 | struct dentry *dentry = rcu_dereference_check(cgrp->dentry, |
9a9686b6 | 1705 | cgroup_lock_is_held()); |
ddbcc7e8 | 1706 | |
a47295e6 | 1707 | if (!dentry || cgrp == dummytop) { |
ddbcc7e8 PM |
1708 | /* |
1709 | * Inactive subsystems have no dentry for their root | |
1710 | * cgroup | |
1711 | */ | |
1712 | strcpy(buf, "/"); | |
1713 | return 0; | |
1714 | } | |
1715 | ||
1716 | start = buf + buflen; | |
1717 | ||
1718 | *--start = '\0'; | |
1719 | for (;;) { | |
a47295e6 | 1720 | int len = dentry->d_name.len; |
9a9686b6 | 1721 | |
ddbcc7e8 PM |
1722 | if ((start -= len) < buf) |
1723 | return -ENAMETOOLONG; | |
9a9686b6 | 1724 | memcpy(start, dentry->d_name.name, len); |
bd89aabc PM |
1725 | cgrp = cgrp->parent; |
1726 | if (!cgrp) | |
ddbcc7e8 | 1727 | break; |
9a9686b6 LZ |
1728 | |
1729 | dentry = rcu_dereference_check(cgrp->dentry, | |
9a9686b6 | 1730 | cgroup_lock_is_held()); |
bd89aabc | 1731 | if (!cgrp->parent) |
ddbcc7e8 PM |
1732 | continue; |
1733 | if (--start < buf) | |
1734 | return -ENAMETOOLONG; | |
1735 | *start = '/'; | |
1736 | } | |
1737 | memmove(buf, start, buf + buflen - start); | |
1738 | return 0; | |
1739 | } | |
67523c48 | 1740 | EXPORT_SYMBOL_GPL(cgroup_path); |
ddbcc7e8 | 1741 | |
74a1166d BB |
1742 | /* |
1743 | * cgroup_task_migrate - move a task from one cgroup to another. | |
1744 | * | |
1745 | * 'guarantee' is set if the caller promises that a new css_set for the task | |
1746 | * will already exist. If not set, this function might sleep, and can fail with | |
1747 | * -ENOMEM. Otherwise, it can only fail with -ESRCH. | |
1748 | */ | |
1749 | static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp, | |
1750 | struct task_struct *tsk, bool guarantee) | |
1751 | { | |
1752 | struct css_set *oldcg; | |
1753 | struct css_set *newcg; | |
1754 | ||
1755 | /* | |
1756 | * get old css_set. we need to take task_lock and refcount it, because | |
1757 | * an exiting task can change its css_set to init_css_set and drop its | |
1758 | * old one without taking cgroup_mutex. | |
1759 | */ | |
1760 | task_lock(tsk); | |
1761 | oldcg = tsk->cgroups; | |
1762 | get_css_set(oldcg); | |
1763 | task_unlock(tsk); | |
1764 | ||
1765 | /* locate or allocate a new css_set for this task. */ | |
1766 | if (guarantee) { | |
1767 | /* we know the css_set we want already exists. */ | |
1768 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | |
1769 | read_lock(&css_set_lock); | |
1770 | newcg = find_existing_css_set(oldcg, cgrp, template); | |
1771 | BUG_ON(!newcg); | |
1772 | get_css_set(newcg); | |
1773 | read_unlock(&css_set_lock); | |
1774 | } else { | |
1775 | might_sleep(); | |
1776 | /* find_css_set will give us newcg already referenced. */ | |
1777 | newcg = find_css_set(oldcg, cgrp); | |
1778 | if (!newcg) { | |
1779 | put_css_set(oldcg); | |
1780 | return -ENOMEM; | |
1781 | } | |
1782 | } | |
1783 | put_css_set(oldcg); | |
1784 | ||
1785 | /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */ | |
1786 | task_lock(tsk); | |
1787 | if (tsk->flags & PF_EXITING) { | |
1788 | task_unlock(tsk); | |
1789 | put_css_set(newcg); | |
1790 | return -ESRCH; | |
1791 | } | |
1792 | rcu_assign_pointer(tsk->cgroups, newcg); | |
1793 | task_unlock(tsk); | |
1794 | ||
1795 | /* Update the css_set linked lists if we're using them */ | |
1796 | write_lock(&css_set_lock); | |
1797 | if (!list_empty(&tsk->cg_list)) | |
1798 | list_move(&tsk->cg_list, &newcg->tasks); | |
1799 | write_unlock(&css_set_lock); | |
1800 | ||
1801 | /* | |
1802 | * We just gained a reference on oldcg by taking it from the task. As | |
1803 | * trading it for newcg is protected by cgroup_mutex, we're safe to drop | |
1804 | * it here; it will be freed under RCU. | |
1805 | */ | |
1806 | put_css_set(oldcg); | |
1807 | ||
1808 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | |
1809 | return 0; | |
1810 | } | |
1811 | ||
a043e3b2 LZ |
1812 | /** |
1813 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | |
1814 | * @cgrp: the cgroup the task is attaching to | |
1815 | * @tsk: the task to be attached | |
bbcb81d0 | 1816 | * |
a043e3b2 LZ |
1817 | * Call holding cgroup_mutex. May take task_lock of |
1818 | * the task 'tsk' during call. | |
bbcb81d0 | 1819 | */ |
956db3ca | 1820 | int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
bbcb81d0 | 1821 | { |
74a1166d | 1822 | int retval; |
2468c723 | 1823 | struct cgroup_subsys *ss, *failed_ss = NULL; |
bd89aabc | 1824 | struct cgroup *oldcgrp; |
bd89aabc | 1825 | struct cgroupfs_root *root = cgrp->root; |
bbcb81d0 PM |
1826 | |
1827 | /* Nothing to do if the task is already in that cgroup */ | |
7717f7ba | 1828 | oldcgrp = task_cgroup_from_root(tsk, root); |
bd89aabc | 1829 | if (cgrp == oldcgrp) |
bbcb81d0 PM |
1830 | return 0; |
1831 | ||
1832 | for_each_subsys(root, ss) { | |
1833 | if (ss->can_attach) { | |
f780bdb7 | 1834 | retval = ss->can_attach(ss, cgrp, tsk); |
2468c723 DN |
1835 | if (retval) { |
1836 | /* | |
1837 | * Remember on which subsystem the can_attach() | |
1838 | * failed, so that we only call cancel_attach() | |
1839 | * against the subsystems whose can_attach() | |
1840 | * succeeded. (See below) | |
1841 | */ | |
1842 | failed_ss = ss; | |
1843 | goto out; | |
1844 | } | |
bbcb81d0 | 1845 | } |
f780bdb7 BB |
1846 | if (ss->can_attach_task) { |
1847 | retval = ss->can_attach_task(cgrp, tsk); | |
1848 | if (retval) { | |
1849 | failed_ss = ss; | |
1850 | goto out; | |
1851 | } | |
1852 | } | |
bbcb81d0 PM |
1853 | } |
1854 | ||
74a1166d BB |
1855 | retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false); |
1856 | if (retval) | |
2468c723 | 1857 | goto out; |
817929ec | 1858 | |
bbcb81d0 | 1859 | for_each_subsys(root, ss) { |
f780bdb7 BB |
1860 | if (ss->pre_attach) |
1861 | ss->pre_attach(cgrp); | |
1862 | if (ss->attach_task) | |
1863 | ss->attach_task(cgrp, tsk); | |
e18f6318 | 1864 | if (ss->attach) |
f780bdb7 | 1865 | ss->attach(ss, cgrp, oldcgrp, tsk); |
bbcb81d0 | 1866 | } |
74a1166d | 1867 | |
bbcb81d0 | 1868 | synchronize_rcu(); |
ec64f515 KH |
1869 | |
1870 | /* | |
1871 | * wake up rmdir() waiter. the rmdir should fail since the cgroup | |
1872 | * is no longer empty. | |
1873 | */ | |
88703267 | 1874 | cgroup_wakeup_rmdir_waiter(cgrp); |
2468c723 DN |
1875 | out: |
1876 | if (retval) { | |
1877 | for_each_subsys(root, ss) { | |
1878 | if (ss == failed_ss) | |
1879 | /* | |
1880 | * This subsystem was the one that failed the | |
1881 | * can_attach() check earlier, so we don't need | |
1882 | * to call cancel_attach() against it or any | |
1883 | * remaining subsystems. | |
1884 | */ | |
1885 | break; | |
1886 | if (ss->cancel_attach) | |
f780bdb7 | 1887 | ss->cancel_attach(ss, cgrp, tsk); |
2468c723 DN |
1888 | } |
1889 | } | |
1890 | return retval; | |
bbcb81d0 PM |
1891 | } |
1892 | ||
d7926ee3 | 1893 | /** |
31583bb0 MT |
1894 | * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' |
1895 | * @from: attach to all cgroups of a given task | |
d7926ee3 SS |
1896 | * @tsk: the task to be attached |
1897 | */ | |
31583bb0 | 1898 | int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) |
d7926ee3 SS |
1899 | { |
1900 | struct cgroupfs_root *root; | |
d7926ee3 SS |
1901 | int retval = 0; |
1902 | ||
1903 | cgroup_lock(); | |
1904 | for_each_active_root(root) { | |
31583bb0 MT |
1905 | struct cgroup *from_cg = task_cgroup_from_root(from, root); |
1906 | ||
1907 | retval = cgroup_attach_task(from_cg, tsk); | |
d7926ee3 SS |
1908 | if (retval) |
1909 | break; | |
1910 | } | |
1911 | cgroup_unlock(); | |
1912 | ||
1913 | return retval; | |
1914 | } | |
31583bb0 | 1915 | EXPORT_SYMBOL_GPL(cgroup_attach_task_all); |
d7926ee3 | 1916 | |
bbcb81d0 | 1917 | /* |
74a1166d BB |
1918 | * cgroup_attach_proc works in two stages, the first of which prefetches all |
1919 | * new css_sets needed (to make sure we have enough memory before committing | |
1920 | * to the move) and stores them in a list of entries of the following type. | |
1921 | * TODO: possible optimization: use css_set->rcu_head for chaining instead | |
1922 | */ | |
1923 | struct cg_list_entry { | |
1924 | struct css_set *cg; | |
1925 | struct list_head links; | |
1926 | }; | |
1927 | ||
1928 | static bool css_set_check_fetched(struct cgroup *cgrp, | |
1929 | struct task_struct *tsk, struct css_set *cg, | |
1930 | struct list_head *newcg_list) | |
1931 | { | |
1932 | struct css_set *newcg; | |
1933 | struct cg_list_entry *cg_entry; | |
1934 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | |
1935 | ||
1936 | read_lock(&css_set_lock); | |
1937 | newcg = find_existing_css_set(cg, cgrp, template); | |
1938 | if (newcg) | |
1939 | get_css_set(newcg); | |
1940 | read_unlock(&css_set_lock); | |
1941 | ||
1942 | /* doesn't exist at all? */ | |
1943 | if (!newcg) | |
1944 | return false; | |
1945 | /* see if it's already in the list */ | |
1946 | list_for_each_entry(cg_entry, newcg_list, links) { | |
1947 | if (cg_entry->cg == newcg) { | |
1948 | put_css_set(newcg); | |
1949 | return true; | |
1950 | } | |
1951 | } | |
1952 | ||
1953 | /* not found */ | |
1954 | put_css_set(newcg); | |
1955 | return false; | |
1956 | } | |
1957 | ||
1958 | /* | |
1959 | * Find the new css_set and store it in the list in preparation for moving the | |
1960 | * given task to the given cgroup. Returns 0 or -ENOMEM. | |
1961 | */ | |
1962 | static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg, | |
1963 | struct list_head *newcg_list) | |
1964 | { | |
1965 | struct css_set *newcg; | |
1966 | struct cg_list_entry *cg_entry; | |
1967 | ||
1968 | /* ensure a new css_set will exist for this thread */ | |
1969 | newcg = find_css_set(cg, cgrp); | |
1970 | if (!newcg) | |
1971 | return -ENOMEM; | |
1972 | /* add it to the list */ | |
1973 | cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL); | |
1974 | if (!cg_entry) { | |
1975 | put_css_set(newcg); | |
1976 | return -ENOMEM; | |
1977 | } | |
1978 | cg_entry->cg = newcg; | |
1979 | list_add(&cg_entry->links, newcg_list); | |
1980 | return 0; | |
1981 | } | |
1982 | ||
1983 | /** | |
1984 | * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup | |
1985 | * @cgrp: the cgroup to attach to | |
1986 | * @leader: the threadgroup leader task_struct of the group to be attached | |
1987 | * | |
1988 | * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will | |
1989 | * take task_lock of each thread in leader's threadgroup individually in turn. | |
1990 | */ | |
1991 | int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader) | |
1992 | { | |
1993 | int retval, i, group_size; | |
1994 | struct cgroup_subsys *ss, *failed_ss = NULL; | |
1995 | bool cancel_failed_ss = false; | |
1996 | /* guaranteed to be initialized later, but the compiler needs this */ | |
1997 | struct cgroup *oldcgrp = NULL; | |
1998 | struct css_set *oldcg; | |
1999 | struct cgroupfs_root *root = cgrp->root; | |
2000 | /* threadgroup list cursor and array */ | |
2001 | struct task_struct *tsk; | |
d846687d | 2002 | struct flex_array *group; |
74a1166d BB |
2003 | /* |
2004 | * we need to make sure we have css_sets for all the tasks we're | |
2005 | * going to move -before- we actually start moving them, so that in | |
2006 | * case we get an ENOMEM we can bail out before making any changes. | |
2007 | */ | |
2008 | struct list_head newcg_list; | |
2009 | struct cg_list_entry *cg_entry, *temp_nobe; | |
2010 | ||
2011 | /* | |
2012 | * step 0: in order to do expensive, possibly blocking operations for | |
2013 | * every thread, we cannot iterate the thread group list, since it needs | |
2014 | * rcu or tasklist locked. instead, build an array of all threads in the | |
2015 | * group - threadgroup_fork_lock prevents new threads from appearing, | |
2016 | * and if threads exit, this will just be an over-estimate. | |
2017 | */ | |
2018 | group_size = get_nr_threads(leader); | |
d846687d BB |
2019 | /* flex_array supports very large thread-groups better than kmalloc. */ |
2020 | group = flex_array_alloc(sizeof(struct task_struct *), group_size, | |
2021 | GFP_KERNEL); | |
74a1166d BB |
2022 | if (!group) |
2023 | return -ENOMEM; | |
d846687d BB |
2024 | /* pre-allocate to guarantee space while iterating in rcu read-side. */ |
2025 | retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL); | |
2026 | if (retval) | |
2027 | goto out_free_group_list; | |
74a1166d BB |
2028 | |
2029 | /* prevent changes to the threadgroup list while we take a snapshot. */ | |
33ef6b69 | 2030 | read_lock(&tasklist_lock); |
74a1166d BB |
2031 | if (!thread_group_leader(leader)) { |
2032 | /* | |
2033 | * a race with de_thread from another thread's exec() may strip | |
2034 | * us of our leadership, making while_each_thread unsafe to use | |
2035 | * on this task. if this happens, there is no choice but to | |
2036 | * throw this task away and try again (from cgroup_procs_write); | |
2037 | * this is "double-double-toil-and-trouble-check locking". | |
2038 | */ | |
33ef6b69 | 2039 | read_unlock(&tasklist_lock); |
74a1166d BB |
2040 | retval = -EAGAIN; |
2041 | goto out_free_group_list; | |
2042 | } | |
2043 | /* take a reference on each task in the group to go in the array. */ | |
2044 | tsk = leader; | |
2045 | i = 0; | |
2046 | do { | |
2047 | /* as per above, nr_threads may decrease, but not increase. */ | |
2048 | BUG_ON(i >= group_size); | |
2049 | get_task_struct(tsk); | |
d846687d BB |
2050 | /* |
2051 | * saying GFP_ATOMIC has no effect here because we did prealloc | |
2052 | * earlier, but it's good form to communicate our expectations. | |
2053 | */ | |
2054 | retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC); | |
2055 | BUG_ON(retval != 0); | |
74a1166d BB |
2056 | i++; |
2057 | } while_each_thread(leader, tsk); | |
2058 | /* remember the number of threads in the array for later. */ | |
2059 | group_size = i; | |
33ef6b69 | 2060 | read_unlock(&tasklist_lock); |
74a1166d BB |
2061 | |
2062 | /* | |
2063 | * step 1: check that we can legitimately attach to the cgroup. | |
2064 | */ | |
2065 | for_each_subsys(root, ss) { | |
2066 | if (ss->can_attach) { | |
2067 | retval = ss->can_attach(ss, cgrp, leader); | |
2068 | if (retval) { | |
2069 | failed_ss = ss; | |
2070 | goto out_cancel_attach; | |
2071 | } | |
2072 | } | |
2073 | /* a callback to be run on every thread in the threadgroup. */ | |
2074 | if (ss->can_attach_task) { | |
2075 | /* run on each task in the threadgroup. */ | |
2076 | for (i = 0; i < group_size; i++) { | |
d846687d BB |
2077 | tsk = flex_array_get_ptr(group, i); |
2078 | retval = ss->can_attach_task(cgrp, tsk); | |
74a1166d BB |
2079 | if (retval) { |
2080 | failed_ss = ss; | |
2081 | cancel_failed_ss = true; | |
2082 | goto out_cancel_attach; | |
2083 | } | |
2084 | } | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | /* | |
2089 | * step 2: make sure css_sets exist for all threads to be migrated. | |
2090 | * we use find_css_set, which allocates a new one if necessary. | |
2091 | */ | |
2092 | INIT_LIST_HEAD(&newcg_list); | |
2093 | for (i = 0; i < group_size; i++) { | |
d846687d | 2094 | tsk = flex_array_get_ptr(group, i); |
74a1166d BB |
2095 | /* nothing to do if this task is already in the cgroup */ |
2096 | oldcgrp = task_cgroup_from_root(tsk, root); | |
2097 | if (cgrp == oldcgrp) | |
2098 | continue; | |
2099 | /* get old css_set pointer */ | |
2100 | task_lock(tsk); | |
2101 | if (tsk->flags & PF_EXITING) { | |
2102 | /* ignore this task if it's going away */ | |
2103 | task_unlock(tsk); | |
2104 | continue; | |
2105 | } | |
2106 | oldcg = tsk->cgroups; | |
2107 | get_css_set(oldcg); | |
2108 | task_unlock(tsk); | |
2109 | /* see if the new one for us is already in the list? */ | |
2110 | if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) { | |
2111 | /* was already there, nothing to do. */ | |
2112 | put_css_set(oldcg); | |
2113 | } else { | |
2114 | /* we don't already have it. get new one. */ | |
2115 | retval = css_set_prefetch(cgrp, oldcg, &newcg_list); | |
2116 | put_css_set(oldcg); | |
2117 | if (retval) | |
2118 | goto out_list_teardown; | |
2119 | } | |
2120 | } | |
2121 | ||
2122 | /* | |
2123 | * step 3: now that we're guaranteed success wrt the css_sets, proceed | |
2124 | * to move all tasks to the new cgroup, calling ss->attach_task for each | |
2125 | * one along the way. there are no failure cases after here, so this is | |
2126 | * the commit point. | |
2127 | */ | |
2128 | for_each_subsys(root, ss) { | |
2129 | if (ss->pre_attach) | |
2130 | ss->pre_attach(cgrp); | |
2131 | } | |
2132 | for (i = 0; i < group_size; i++) { | |
d846687d | 2133 | tsk = flex_array_get_ptr(group, i); |
74a1166d BB |
2134 | /* leave current thread as it is if it's already there */ |
2135 | oldcgrp = task_cgroup_from_root(tsk, root); | |
2136 | if (cgrp == oldcgrp) | |
2137 | continue; | |
74a1166d BB |
2138 | /* if the thread is PF_EXITING, it can just get skipped. */ |
2139 | retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true); | |
77ceab8e BB |
2140 | if (retval == 0) { |
2141 | /* attach each task to each subsystem */ | |
2142 | for_each_subsys(root, ss) { | |
2143 | if (ss->attach_task) | |
2144 | ss->attach_task(cgrp, tsk); | |
2145 | } | |
2146 | } else { | |
2147 | BUG_ON(retval != -ESRCH); | |
2148 | } | |
74a1166d BB |
2149 | } |
2150 | /* nothing is sensitive to fork() after this point. */ | |
2151 | ||
2152 | /* | |
2153 | * step 4: do expensive, non-thread-specific subsystem callbacks. | |
2154 | * TODO: if ever a subsystem needs to know the oldcgrp for each task | |
2155 | * being moved, this call will need to be reworked to communicate that. | |
2156 | */ | |
2157 | for_each_subsys(root, ss) { | |
2158 | if (ss->attach) | |
2159 | ss->attach(ss, cgrp, oldcgrp, leader); | |
2160 | } | |
2161 | ||
2162 | /* | |
2163 | * step 5: success! and cleanup | |
2164 | */ | |
2165 | synchronize_rcu(); | |
2166 | cgroup_wakeup_rmdir_waiter(cgrp); | |
2167 | retval = 0; | |
2168 | out_list_teardown: | |
2169 | /* clean up the list of prefetched css_sets. */ | |
2170 | list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) { | |
2171 | list_del(&cg_entry->links); | |
2172 | put_css_set(cg_entry->cg); | |
2173 | kfree(cg_entry); | |
2174 | } | |
2175 | out_cancel_attach: | |
2176 | /* same deal as in cgroup_attach_task */ | |
2177 | if (retval) { | |
2178 | for_each_subsys(root, ss) { | |
2179 | if (ss == failed_ss) { | |
2180 | if (cancel_failed_ss && ss->cancel_attach) | |
2181 | ss->cancel_attach(ss, cgrp, leader); | |
2182 | break; | |
2183 | } | |
2184 | if (ss->cancel_attach) | |
2185 | ss->cancel_attach(ss, cgrp, leader); | |
2186 | } | |
2187 | } | |
2188 | /* clean up the array of referenced threads in the group. */ | |
d846687d BB |
2189 | for (i = 0; i < group_size; i++) { |
2190 | tsk = flex_array_get_ptr(group, i); | |
2191 | put_task_struct(tsk); | |
2192 | } | |
74a1166d | 2193 | out_free_group_list: |
d846687d | 2194 | flex_array_free(group); |
74a1166d BB |
2195 | return retval; |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * Find the task_struct of the task to attach by vpid and pass it along to the | |
2200 | * function to attach either it or all tasks in its threadgroup. Will take | |
2201 | * cgroup_mutex; may take task_lock of task. | |
bbcb81d0 | 2202 | */ |
74a1166d | 2203 | static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) |
bbcb81d0 | 2204 | { |
bbcb81d0 | 2205 | struct task_struct *tsk; |
c69e8d9c | 2206 | const struct cred *cred = current_cred(), *tcred; |
bbcb81d0 PM |
2207 | int ret; |
2208 | ||
74a1166d BB |
2209 | if (!cgroup_lock_live_group(cgrp)) |
2210 | return -ENODEV; | |
2211 | ||
bbcb81d0 PM |
2212 | if (pid) { |
2213 | rcu_read_lock(); | |
73507f33 | 2214 | tsk = find_task_by_vpid(pid); |
74a1166d BB |
2215 | if (!tsk) { |
2216 | rcu_read_unlock(); | |
2217 | cgroup_unlock(); | |
2218 | return -ESRCH; | |
2219 | } | |
2220 | if (threadgroup) { | |
2221 | /* | |
2222 | * RCU protects this access, since tsk was found in the | |
2223 | * tid map. a race with de_thread may cause group_leader | |
2224 | * to stop being the leader, but cgroup_attach_proc will | |
2225 | * detect it later. | |
2226 | */ | |
2227 | tsk = tsk->group_leader; | |
2228 | } else if (tsk->flags & PF_EXITING) { | |
2229 | /* optimization for the single-task-only case */ | |
bbcb81d0 | 2230 | rcu_read_unlock(); |
74a1166d | 2231 | cgroup_unlock(); |
bbcb81d0 PM |
2232 | return -ESRCH; |
2233 | } | |
bbcb81d0 | 2234 | |
74a1166d BB |
2235 | /* |
2236 | * even if we're attaching all tasks in the thread group, we | |
2237 | * only need to check permissions on one of them. | |
2238 | */ | |
c69e8d9c DH |
2239 | tcred = __task_cred(tsk); |
2240 | if (cred->euid && | |
2241 | cred->euid != tcred->uid && | |
2242 | cred->euid != tcred->suid) { | |
2243 | rcu_read_unlock(); | |
74a1166d | 2244 | cgroup_unlock(); |
bbcb81d0 PM |
2245 | return -EACCES; |
2246 | } | |
c69e8d9c DH |
2247 | get_task_struct(tsk); |
2248 | rcu_read_unlock(); | |
bbcb81d0 | 2249 | } else { |
74a1166d BB |
2250 | if (threadgroup) |
2251 | tsk = current->group_leader; | |
2252 | else | |
2253 | tsk = current; | |
bbcb81d0 PM |
2254 | get_task_struct(tsk); |
2255 | } | |
2256 | ||
74a1166d BB |
2257 | if (threadgroup) { |
2258 | threadgroup_fork_write_lock(tsk); | |
2259 | ret = cgroup_attach_proc(cgrp, tsk); | |
2260 | threadgroup_fork_write_unlock(tsk); | |
2261 | } else { | |
2262 | ret = cgroup_attach_task(cgrp, tsk); | |
2263 | } | |
bbcb81d0 | 2264 | put_task_struct(tsk); |
74a1166d | 2265 | cgroup_unlock(); |
bbcb81d0 PM |
2266 | return ret; |
2267 | } | |
2268 | ||
af351026 | 2269 | static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) |
74a1166d BB |
2270 | { |
2271 | return attach_task_by_pid(cgrp, pid, false); | |
2272 | } | |
2273 | ||
2274 | static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) | |
af351026 PM |
2275 | { |
2276 | int ret; | |
74a1166d BB |
2277 | do { |
2278 | /* | |
2279 | * attach_proc fails with -EAGAIN if threadgroup leadership | |
2280 | * changes in the middle of the operation, in which case we need | |
2281 | * to find the task_struct for the new leader and start over. | |
2282 | */ | |
2283 | ret = attach_task_by_pid(cgrp, tgid, true); | |
2284 | } while (ret == -EAGAIN); | |
af351026 PM |
2285 | return ret; |
2286 | } | |
2287 | ||
e788e066 PM |
2288 | /** |
2289 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | |
2290 | * @cgrp: the cgroup to be checked for liveness | |
2291 | * | |
84eea842 PM |
2292 | * On success, returns true; the lock should be later released with |
2293 | * cgroup_unlock(). On failure returns false with no lock held. | |
e788e066 | 2294 | */ |
84eea842 | 2295 | bool cgroup_lock_live_group(struct cgroup *cgrp) |
e788e066 PM |
2296 | { |
2297 | mutex_lock(&cgroup_mutex); | |
2298 | if (cgroup_is_removed(cgrp)) { | |
2299 | mutex_unlock(&cgroup_mutex); | |
2300 | return false; | |
2301 | } | |
2302 | return true; | |
2303 | } | |
67523c48 | 2304 | EXPORT_SYMBOL_GPL(cgroup_lock_live_group); |
e788e066 PM |
2305 | |
2306 | static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, | |
2307 | const char *buffer) | |
2308 | { | |
2309 | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); | |
f4a2589f EK |
2310 | if (strlen(buffer) >= PATH_MAX) |
2311 | return -EINVAL; | |
e788e066 PM |
2312 | if (!cgroup_lock_live_group(cgrp)) |
2313 | return -ENODEV; | |
2314 | strcpy(cgrp->root->release_agent_path, buffer); | |
84eea842 | 2315 | cgroup_unlock(); |
e788e066 PM |
2316 | return 0; |
2317 | } | |
2318 | ||
2319 | static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, | |
2320 | struct seq_file *seq) | |
2321 | { | |
2322 | if (!cgroup_lock_live_group(cgrp)) | |
2323 | return -ENODEV; | |
2324 | seq_puts(seq, cgrp->root->release_agent_path); | |
2325 | seq_putc(seq, '\n'); | |
84eea842 | 2326 | cgroup_unlock(); |
e788e066 PM |
2327 | return 0; |
2328 | } | |
2329 | ||
84eea842 PM |
2330 | /* A buffer size big enough for numbers or short strings */ |
2331 | #define CGROUP_LOCAL_BUFFER_SIZE 64 | |
2332 | ||
e73d2c61 | 2333 | static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, |
f4c753b7 PM |
2334 | struct file *file, |
2335 | const char __user *userbuf, | |
2336 | size_t nbytes, loff_t *unused_ppos) | |
355e0c48 | 2337 | { |
84eea842 | 2338 | char buffer[CGROUP_LOCAL_BUFFER_SIZE]; |
355e0c48 | 2339 | int retval = 0; |
355e0c48 PM |
2340 | char *end; |
2341 | ||
2342 | if (!nbytes) | |
2343 | return -EINVAL; | |
2344 | if (nbytes >= sizeof(buffer)) | |
2345 | return -E2BIG; | |
2346 | if (copy_from_user(buffer, userbuf, nbytes)) | |
2347 | return -EFAULT; | |
2348 | ||
2349 | buffer[nbytes] = 0; /* nul-terminate */ | |
e73d2c61 | 2350 | if (cft->write_u64) { |
478988d3 | 2351 | u64 val = simple_strtoull(strstrip(buffer), &end, 0); |
e73d2c61 PM |
2352 | if (*end) |
2353 | return -EINVAL; | |
2354 | retval = cft->write_u64(cgrp, cft, val); | |
2355 | } else { | |
478988d3 | 2356 | s64 val = simple_strtoll(strstrip(buffer), &end, 0); |
e73d2c61 PM |
2357 | if (*end) |
2358 | return -EINVAL; | |
2359 | retval = cft->write_s64(cgrp, cft, val); | |
2360 | } | |
355e0c48 PM |
2361 | if (!retval) |
2362 | retval = nbytes; | |
2363 | return retval; | |
2364 | } | |
2365 | ||
db3b1497 PM |
2366 | static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, |
2367 | struct file *file, | |
2368 | const char __user *userbuf, | |
2369 | size_t nbytes, loff_t *unused_ppos) | |
2370 | { | |
84eea842 | 2371 | char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; |
db3b1497 PM |
2372 | int retval = 0; |
2373 | size_t max_bytes = cft->max_write_len; | |
2374 | char *buffer = local_buffer; | |
2375 | ||
2376 | if (!max_bytes) | |
2377 | max_bytes = sizeof(local_buffer) - 1; | |
2378 | if (nbytes >= max_bytes) | |
2379 | return -E2BIG; | |
2380 | /* Allocate a dynamic buffer if we need one */ | |
2381 | if (nbytes >= sizeof(local_buffer)) { | |
2382 | buffer = kmalloc(nbytes + 1, GFP_KERNEL); | |
2383 | if (buffer == NULL) | |
2384 | return -ENOMEM; | |
2385 | } | |
5a3eb9f6 LZ |
2386 | if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { |
2387 | retval = -EFAULT; | |
2388 | goto out; | |
2389 | } | |
db3b1497 PM |
2390 | |
2391 | buffer[nbytes] = 0; /* nul-terminate */ | |
478988d3 | 2392 | retval = cft->write_string(cgrp, cft, strstrip(buffer)); |
db3b1497 PM |
2393 | if (!retval) |
2394 | retval = nbytes; | |
5a3eb9f6 | 2395 | out: |
db3b1497 PM |
2396 | if (buffer != local_buffer) |
2397 | kfree(buffer); | |
2398 | return retval; | |
2399 | } | |
2400 | ||
ddbcc7e8 PM |
2401 | static ssize_t cgroup_file_write(struct file *file, const char __user *buf, |
2402 | size_t nbytes, loff_t *ppos) | |
2403 | { | |
2404 | struct cftype *cft = __d_cft(file->f_dentry); | |
bd89aabc | 2405 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
ddbcc7e8 | 2406 | |
75139b82 | 2407 | if (cgroup_is_removed(cgrp)) |
ddbcc7e8 | 2408 | return -ENODEV; |
355e0c48 | 2409 | if (cft->write) |
bd89aabc | 2410 | return cft->write(cgrp, cft, file, buf, nbytes, ppos); |
e73d2c61 PM |
2411 | if (cft->write_u64 || cft->write_s64) |
2412 | return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); | |
db3b1497 PM |
2413 | if (cft->write_string) |
2414 | return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); | |
d447ea2f PE |
2415 | if (cft->trigger) { |
2416 | int ret = cft->trigger(cgrp, (unsigned int)cft->private); | |
2417 | return ret ? ret : nbytes; | |
2418 | } | |
355e0c48 | 2419 | return -EINVAL; |
ddbcc7e8 PM |
2420 | } |
2421 | ||
f4c753b7 PM |
2422 | static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, |
2423 | struct file *file, | |
2424 | char __user *buf, size_t nbytes, | |
2425 | loff_t *ppos) | |
ddbcc7e8 | 2426 | { |
84eea842 | 2427 | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; |
f4c753b7 | 2428 | u64 val = cft->read_u64(cgrp, cft); |
ddbcc7e8 PM |
2429 | int len = sprintf(tmp, "%llu\n", (unsigned long long) val); |
2430 | ||
2431 | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | |
2432 | } | |
2433 | ||
e73d2c61 PM |
2434 | static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, |
2435 | struct file *file, | |
2436 | char __user *buf, size_t nbytes, | |
2437 | loff_t *ppos) | |
2438 | { | |
84eea842 | 2439 | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; |
e73d2c61 PM |
2440 | s64 val = cft->read_s64(cgrp, cft); |
2441 | int len = sprintf(tmp, "%lld\n", (long long) val); | |
2442 | ||
2443 | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | |
2444 | } | |
2445 | ||
ddbcc7e8 PM |
2446 | static ssize_t cgroup_file_read(struct file *file, char __user *buf, |
2447 | size_t nbytes, loff_t *ppos) | |
2448 | { | |
2449 | struct cftype *cft = __d_cft(file->f_dentry); | |
bd89aabc | 2450 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
ddbcc7e8 | 2451 | |
75139b82 | 2452 | if (cgroup_is_removed(cgrp)) |
ddbcc7e8 PM |
2453 | return -ENODEV; |
2454 | ||
2455 | if (cft->read) | |
bd89aabc | 2456 | return cft->read(cgrp, cft, file, buf, nbytes, ppos); |
f4c753b7 PM |
2457 | if (cft->read_u64) |
2458 | return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); | |
e73d2c61 PM |
2459 | if (cft->read_s64) |
2460 | return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); | |
ddbcc7e8 PM |
2461 | return -EINVAL; |
2462 | } | |
2463 | ||
91796569 PM |
2464 | /* |
2465 | * seqfile ops/methods for returning structured data. Currently just | |
2466 | * supports string->u64 maps, but can be extended in future. | |
2467 | */ | |
2468 | ||
2469 | struct cgroup_seqfile_state { | |
2470 | struct cftype *cft; | |
2471 | struct cgroup *cgroup; | |
2472 | }; | |
2473 | ||
2474 | static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) | |
2475 | { | |
2476 | struct seq_file *sf = cb->state; | |
2477 | return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); | |
2478 | } | |
2479 | ||
2480 | static int cgroup_seqfile_show(struct seq_file *m, void *arg) | |
2481 | { | |
2482 | struct cgroup_seqfile_state *state = m->private; | |
2483 | struct cftype *cft = state->cft; | |
29486df3 SH |
2484 | if (cft->read_map) { |
2485 | struct cgroup_map_cb cb = { | |
2486 | .fill = cgroup_map_add, | |
2487 | .state = m, | |
2488 | }; | |
2489 | return cft->read_map(state->cgroup, cft, &cb); | |
2490 | } | |
2491 | return cft->read_seq_string(state->cgroup, cft, m); | |
91796569 PM |
2492 | } |
2493 | ||
96930a63 | 2494 | static int cgroup_seqfile_release(struct inode *inode, struct file *file) |
91796569 PM |
2495 | { |
2496 | struct seq_file *seq = file->private_data; | |
2497 | kfree(seq->private); | |
2498 | return single_release(inode, file); | |
2499 | } | |
2500 | ||
828c0950 | 2501 | static const struct file_operations cgroup_seqfile_operations = { |
91796569 | 2502 | .read = seq_read, |
e788e066 | 2503 | .write = cgroup_file_write, |
91796569 PM |
2504 | .llseek = seq_lseek, |
2505 | .release = cgroup_seqfile_release, | |
2506 | }; | |
2507 | ||
ddbcc7e8 PM |
2508 | static int cgroup_file_open(struct inode *inode, struct file *file) |
2509 | { | |
2510 | int err; | |
2511 | struct cftype *cft; | |
2512 | ||
2513 | err = generic_file_open(inode, file); | |
2514 | if (err) | |
2515 | return err; | |
ddbcc7e8 | 2516 | cft = __d_cft(file->f_dentry); |
75139b82 | 2517 | |
29486df3 | 2518 | if (cft->read_map || cft->read_seq_string) { |
91796569 PM |
2519 | struct cgroup_seqfile_state *state = |
2520 | kzalloc(sizeof(*state), GFP_USER); | |
2521 | if (!state) | |
2522 | return -ENOMEM; | |
2523 | state->cft = cft; | |
2524 | state->cgroup = __d_cgrp(file->f_dentry->d_parent); | |
2525 | file->f_op = &cgroup_seqfile_operations; | |
2526 | err = single_open(file, cgroup_seqfile_show, state); | |
2527 | if (err < 0) | |
2528 | kfree(state); | |
2529 | } else if (cft->open) | |
ddbcc7e8 PM |
2530 | err = cft->open(inode, file); |
2531 | else | |
2532 | err = 0; | |
2533 | ||
2534 | return err; | |
2535 | } | |
2536 | ||
2537 | static int cgroup_file_release(struct inode *inode, struct file *file) | |
2538 | { | |
2539 | struct cftype *cft = __d_cft(file->f_dentry); | |
2540 | if (cft->release) | |
2541 | return cft->release(inode, file); | |
2542 | return 0; | |
2543 | } | |
2544 | ||
2545 | /* | |
2546 | * cgroup_rename - Only allow simple rename of directories in place. | |
2547 | */ | |
2548 | static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | |
2549 | struct inode *new_dir, struct dentry *new_dentry) | |
2550 | { | |
2551 | if (!S_ISDIR(old_dentry->d_inode->i_mode)) | |
2552 | return -ENOTDIR; | |
2553 | if (new_dentry->d_inode) | |
2554 | return -EEXIST; | |
2555 | if (old_dir != new_dir) | |
2556 | return -EIO; | |
2557 | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | |
2558 | } | |
2559 | ||
828c0950 | 2560 | static const struct file_operations cgroup_file_operations = { |
ddbcc7e8 PM |
2561 | .read = cgroup_file_read, |
2562 | .write = cgroup_file_write, | |
2563 | .llseek = generic_file_llseek, | |
2564 | .open = cgroup_file_open, | |
2565 | .release = cgroup_file_release, | |
2566 | }; | |
2567 | ||
6e1d5dcc | 2568 | static const struct inode_operations cgroup_dir_inode_operations = { |
c72a04e3 | 2569 | .lookup = cgroup_lookup, |
ddbcc7e8 PM |
2570 | .mkdir = cgroup_mkdir, |
2571 | .rmdir = cgroup_rmdir, | |
2572 | .rename = cgroup_rename, | |
2573 | }; | |
2574 | ||
c72a04e3 AV |
2575 | static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) |
2576 | { | |
2577 | if (dentry->d_name.len > NAME_MAX) | |
2578 | return ERR_PTR(-ENAMETOOLONG); | |
2579 | d_add(dentry, NULL); | |
2580 | return NULL; | |
2581 | } | |
2582 | ||
0dea1168 KS |
2583 | /* |
2584 | * Check if a file is a control file | |
2585 | */ | |
2586 | static inline struct cftype *__file_cft(struct file *file) | |
2587 | { | |
2588 | if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations) | |
2589 | return ERR_PTR(-EINVAL); | |
2590 | return __d_cft(file->f_dentry); | |
2591 | } | |
2592 | ||
5adcee1d NP |
2593 | static int cgroup_create_file(struct dentry *dentry, mode_t mode, |
2594 | struct super_block *sb) | |
2595 | { | |
ddbcc7e8 PM |
2596 | struct inode *inode; |
2597 | ||
2598 | if (!dentry) | |
2599 | return -ENOENT; | |
2600 | if (dentry->d_inode) | |
2601 | return -EEXIST; | |
2602 | ||
2603 | inode = cgroup_new_inode(mode, sb); | |
2604 | if (!inode) | |
2605 | return -ENOMEM; | |
2606 | ||
2607 | if (S_ISDIR(mode)) { | |
2608 | inode->i_op = &cgroup_dir_inode_operations; | |
2609 | inode->i_fop = &simple_dir_operations; | |
2610 | ||
2611 | /* start off with i_nlink == 2 (for "." entry) */ | |
2612 | inc_nlink(inode); | |
2613 | ||
2614 | /* start with the directory inode held, so that we can | |
2615 | * populate it without racing with another mkdir */ | |
817929ec | 2616 | mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); |
ddbcc7e8 PM |
2617 | } else if (S_ISREG(mode)) { |
2618 | inode->i_size = 0; | |
2619 | inode->i_fop = &cgroup_file_operations; | |
2620 | } | |
ddbcc7e8 PM |
2621 | d_instantiate(dentry, inode); |
2622 | dget(dentry); /* Extra count - pin the dentry in core */ | |
2623 | return 0; | |
2624 | } | |
2625 | ||
2626 | /* | |
a043e3b2 LZ |
2627 | * cgroup_create_dir - create a directory for an object. |
2628 | * @cgrp: the cgroup we create the directory for. It must have a valid | |
2629 | * ->parent field. And we are going to fill its ->dentry field. | |
2630 | * @dentry: dentry of the new cgroup | |
2631 | * @mode: mode to set on new directory. | |
ddbcc7e8 | 2632 | */ |
bd89aabc | 2633 | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, |
099fca32 | 2634 | mode_t mode) |
ddbcc7e8 PM |
2635 | { |
2636 | struct dentry *parent; | |
2637 | int error = 0; | |
2638 | ||
bd89aabc PM |
2639 | parent = cgrp->parent->dentry; |
2640 | error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); | |
ddbcc7e8 | 2641 | if (!error) { |
bd89aabc | 2642 | dentry->d_fsdata = cgrp; |
ddbcc7e8 | 2643 | inc_nlink(parent->d_inode); |
a47295e6 | 2644 | rcu_assign_pointer(cgrp->dentry, dentry); |
ddbcc7e8 PM |
2645 | dget(dentry); |
2646 | } | |
2647 | dput(dentry); | |
2648 | ||
2649 | return error; | |
2650 | } | |
2651 | ||
099fca32 LZ |
2652 | /** |
2653 | * cgroup_file_mode - deduce file mode of a control file | |
2654 | * @cft: the control file in question | |
2655 | * | |
2656 | * returns cft->mode if ->mode is not 0 | |
2657 | * returns S_IRUGO|S_IWUSR if it has both a read and a write handler | |
2658 | * returns S_IRUGO if it has only a read handler | |
2659 | * returns S_IWUSR if it has only a write hander | |
2660 | */ | |
2661 | static mode_t cgroup_file_mode(const struct cftype *cft) | |
2662 | { | |
2663 | mode_t mode = 0; | |
2664 | ||
2665 | if (cft->mode) | |
2666 | return cft->mode; | |
2667 | ||
2668 | if (cft->read || cft->read_u64 || cft->read_s64 || | |
2669 | cft->read_map || cft->read_seq_string) | |
2670 | mode |= S_IRUGO; | |
2671 | ||
2672 | if (cft->write || cft->write_u64 || cft->write_s64 || | |
2673 | cft->write_string || cft->trigger) | |
2674 | mode |= S_IWUSR; | |
2675 | ||
2676 | return mode; | |
2677 | } | |
2678 | ||
bd89aabc | 2679 | int cgroup_add_file(struct cgroup *cgrp, |
ddbcc7e8 PM |
2680 | struct cgroup_subsys *subsys, |
2681 | const struct cftype *cft) | |
2682 | { | |
bd89aabc | 2683 | struct dentry *dir = cgrp->dentry; |
ddbcc7e8 PM |
2684 | struct dentry *dentry; |
2685 | int error; | |
099fca32 | 2686 | mode_t mode; |
ddbcc7e8 PM |
2687 | |
2688 | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | |
bd89aabc | 2689 | if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { |
ddbcc7e8 PM |
2690 | strcpy(name, subsys->name); |
2691 | strcat(name, "."); | |
2692 | } | |
2693 | strcat(name, cft->name); | |
2694 | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | |
2695 | dentry = lookup_one_len(name, dir, strlen(name)); | |
2696 | if (!IS_ERR(dentry)) { | |
099fca32 LZ |
2697 | mode = cgroup_file_mode(cft); |
2698 | error = cgroup_create_file(dentry, mode | S_IFREG, | |
bd89aabc | 2699 | cgrp->root->sb); |
ddbcc7e8 PM |
2700 | if (!error) |
2701 | dentry->d_fsdata = (void *)cft; | |
2702 | dput(dentry); | |
2703 | } else | |
2704 | error = PTR_ERR(dentry); | |
2705 | return error; | |
2706 | } | |
e6a1105b | 2707 | EXPORT_SYMBOL_GPL(cgroup_add_file); |
ddbcc7e8 | 2708 | |
bd89aabc | 2709 | int cgroup_add_files(struct cgroup *cgrp, |
ddbcc7e8 PM |
2710 | struct cgroup_subsys *subsys, |
2711 | const struct cftype cft[], | |
2712 | int count) | |
2713 | { | |
2714 | int i, err; | |
2715 | for (i = 0; i < count; i++) { | |
bd89aabc | 2716 | err = cgroup_add_file(cgrp, subsys, &cft[i]); |
ddbcc7e8 PM |
2717 | if (err) |
2718 | return err; | |
2719 | } | |
2720 | return 0; | |
2721 | } | |
e6a1105b | 2722 | EXPORT_SYMBOL_GPL(cgroup_add_files); |
ddbcc7e8 | 2723 | |
a043e3b2 LZ |
2724 | /** |
2725 | * cgroup_task_count - count the number of tasks in a cgroup. | |
2726 | * @cgrp: the cgroup in question | |
2727 | * | |
2728 | * Return the number of tasks in the cgroup. | |
2729 | */ | |
bd89aabc | 2730 | int cgroup_task_count(const struct cgroup *cgrp) |
bbcb81d0 PM |
2731 | { |
2732 | int count = 0; | |
71cbb949 | 2733 | struct cg_cgroup_link *link; |
817929ec PM |
2734 | |
2735 | read_lock(&css_set_lock); | |
71cbb949 | 2736 | list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { |
146aa1bd | 2737 | count += atomic_read(&link->cg->refcount); |
817929ec PM |
2738 | } |
2739 | read_unlock(&css_set_lock); | |
bbcb81d0 PM |
2740 | return count; |
2741 | } | |
2742 | ||
817929ec PM |
2743 | /* |
2744 | * Advance a list_head iterator. The iterator should be positioned at | |
2745 | * the start of a css_set | |
2746 | */ | |
bd89aabc | 2747 | static void cgroup_advance_iter(struct cgroup *cgrp, |
7717f7ba | 2748 | struct cgroup_iter *it) |
817929ec PM |
2749 | { |
2750 | struct list_head *l = it->cg_link; | |
2751 | struct cg_cgroup_link *link; | |
2752 | struct css_set *cg; | |
2753 | ||
2754 | /* Advance to the next non-empty css_set */ | |
2755 | do { | |
2756 | l = l->next; | |
bd89aabc | 2757 | if (l == &cgrp->css_sets) { |
817929ec PM |
2758 | it->cg_link = NULL; |
2759 | return; | |
2760 | } | |
bd89aabc | 2761 | link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); |
817929ec PM |
2762 | cg = link->cg; |
2763 | } while (list_empty(&cg->tasks)); | |
2764 | it->cg_link = l; | |
2765 | it->task = cg->tasks.next; | |
2766 | } | |
2767 | ||
31a7df01 CW |
2768 | /* |
2769 | * To reduce the fork() overhead for systems that are not actually | |
2770 | * using their cgroups capability, we don't maintain the lists running | |
2771 | * through each css_set to its tasks until we see the list actually | |
2772 | * used - in other words after the first call to cgroup_iter_start(). | |
2773 | * | |
2774 | * The tasklist_lock is not held here, as do_each_thread() and | |
2775 | * while_each_thread() are protected by RCU. | |
2776 | */ | |
3df91fe3 | 2777 | static void cgroup_enable_task_cg_lists(void) |
31a7df01 CW |
2778 | { |
2779 | struct task_struct *p, *g; | |
2780 | write_lock(&css_set_lock); | |
2781 | use_task_css_set_links = 1; | |
2782 | do_each_thread(g, p) { | |
2783 | task_lock(p); | |
0e04388f LZ |
2784 | /* |
2785 | * We should check if the process is exiting, otherwise | |
2786 | * it will race with cgroup_exit() in that the list | |
2787 | * entry won't be deleted though the process has exited. | |
2788 | */ | |
2789 | if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) | |
31a7df01 CW |
2790 | list_add(&p->cg_list, &p->cgroups->tasks); |
2791 | task_unlock(p); | |
2792 | } while_each_thread(g, p); | |
2793 | write_unlock(&css_set_lock); | |
2794 | } | |
2795 | ||
bd89aabc | 2796 | void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) |
817929ec PM |
2797 | { |
2798 | /* | |
2799 | * The first time anyone tries to iterate across a cgroup, | |
2800 | * we need to enable the list linking each css_set to its | |
2801 | * tasks, and fix up all existing tasks. | |
2802 | */ | |
31a7df01 CW |
2803 | if (!use_task_css_set_links) |
2804 | cgroup_enable_task_cg_lists(); | |
2805 | ||
817929ec | 2806 | read_lock(&css_set_lock); |
bd89aabc PM |
2807 | it->cg_link = &cgrp->css_sets; |
2808 | cgroup_advance_iter(cgrp, it); | |
817929ec PM |
2809 | } |
2810 | ||
bd89aabc | 2811 | struct task_struct *cgroup_iter_next(struct cgroup *cgrp, |
817929ec PM |
2812 | struct cgroup_iter *it) |
2813 | { | |
2814 | struct task_struct *res; | |
2815 | struct list_head *l = it->task; | |
2019f634 | 2816 | struct cg_cgroup_link *link; |
817929ec PM |
2817 | |
2818 | /* If the iterator cg is NULL, we have no tasks */ | |
2819 | if (!it->cg_link) | |
2820 | return NULL; | |
2821 | res = list_entry(l, struct task_struct, cg_list); | |
2822 | /* Advance iterator to find next entry */ | |
2823 | l = l->next; | |
2019f634 LJ |
2824 | link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); |
2825 | if (l == &link->cg->tasks) { | |
817929ec PM |
2826 | /* We reached the end of this task list - move on to |
2827 | * the next cg_cgroup_link */ | |
bd89aabc | 2828 | cgroup_advance_iter(cgrp, it); |
817929ec PM |
2829 | } else { |
2830 | it->task = l; | |
2831 | } | |
2832 | return res; | |
2833 | } | |
2834 | ||
bd89aabc | 2835 | void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) |
817929ec PM |
2836 | { |
2837 | read_unlock(&css_set_lock); | |
2838 | } | |
2839 | ||
31a7df01 CW |
2840 | static inline int started_after_time(struct task_struct *t1, |
2841 | struct timespec *time, | |
2842 | struct task_struct *t2) | |
2843 | { | |
2844 | int start_diff = timespec_compare(&t1->start_time, time); | |
2845 | if (start_diff > 0) { | |
2846 | return 1; | |
2847 | } else if (start_diff < 0) { | |
2848 | return 0; | |
2849 | } else { | |
2850 | /* | |
2851 | * Arbitrarily, if two processes started at the same | |
2852 | * time, we'll say that the lower pointer value | |
2853 | * started first. Note that t2 may have exited by now | |
2854 | * so this may not be a valid pointer any longer, but | |
2855 | * that's fine - it still serves to distinguish | |
2856 | * between two tasks started (effectively) simultaneously. | |
2857 | */ | |
2858 | return t1 > t2; | |
2859 | } | |
2860 | } | |
2861 | ||
2862 | /* | |
2863 | * This function is a callback from heap_insert() and is used to order | |
2864 | * the heap. | |
2865 | * In this case we order the heap in descending task start time. | |
2866 | */ | |
2867 | static inline int started_after(void *p1, void *p2) | |
2868 | { | |
2869 | struct task_struct *t1 = p1; | |
2870 | struct task_struct *t2 = p2; | |
2871 | return started_after_time(t1, &t2->start_time, t2); | |
2872 | } | |
2873 | ||
2874 | /** | |
2875 | * cgroup_scan_tasks - iterate though all the tasks in a cgroup | |
2876 | * @scan: struct cgroup_scanner containing arguments for the scan | |
2877 | * | |
2878 | * Arguments include pointers to callback functions test_task() and | |
2879 | * process_task(). | |
2880 | * Iterate through all the tasks in a cgroup, calling test_task() for each, | |
2881 | * and if it returns true, call process_task() for it also. | |
2882 | * The test_task pointer may be NULL, meaning always true (select all tasks). | |
2883 | * Effectively duplicates cgroup_iter_{start,next,end}() | |
2884 | * but does not lock css_set_lock for the call to process_task(). | |
2885 | * The struct cgroup_scanner may be embedded in any structure of the caller's | |
2886 | * creation. | |
2887 | * It is guaranteed that process_task() will act on every task that | |
2888 | * is a member of the cgroup for the duration of this call. This | |
2889 | * function may or may not call process_task() for tasks that exit | |
2890 | * or move to a different cgroup during the call, or are forked or | |
2891 | * move into the cgroup during the call. | |
2892 | * | |
2893 | * Note that test_task() may be called with locks held, and may in some | |
2894 | * situations be called multiple times for the same task, so it should | |
2895 | * be cheap. | |
2896 | * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been | |
2897 | * pre-allocated and will be used for heap operations (and its "gt" member will | |
2898 | * be overwritten), else a temporary heap will be used (allocation of which | |
2899 | * may cause this function to fail). | |
2900 | */ | |
2901 | int cgroup_scan_tasks(struct cgroup_scanner *scan) | |
2902 | { | |
2903 | int retval, i; | |
2904 | struct cgroup_iter it; | |
2905 | struct task_struct *p, *dropped; | |
2906 | /* Never dereference latest_task, since it's not refcounted */ | |
2907 | struct task_struct *latest_task = NULL; | |
2908 | struct ptr_heap tmp_heap; | |
2909 | struct ptr_heap *heap; | |
2910 | struct timespec latest_time = { 0, 0 }; | |
2911 | ||
2912 | if (scan->heap) { | |
2913 | /* The caller supplied our heap and pre-allocated its memory */ | |
2914 | heap = scan->heap; | |
2915 | heap->gt = &started_after; | |
2916 | } else { | |
2917 | /* We need to allocate our own heap memory */ | |
2918 | heap = &tmp_heap; | |
2919 | retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); | |
2920 | if (retval) | |
2921 | /* cannot allocate the heap */ | |
2922 | return retval; | |
2923 | } | |
2924 | ||
2925 | again: | |
2926 | /* | |
2927 | * Scan tasks in the cgroup, using the scanner's "test_task" callback | |
2928 | * to determine which are of interest, and using the scanner's | |
2929 | * "process_task" callback to process any of them that need an update. | |
2930 | * Since we don't want to hold any locks during the task updates, | |
2931 | * gather tasks to be processed in a heap structure. | |
2932 | * The heap is sorted by descending task start time. | |
2933 | * If the statically-sized heap fills up, we overflow tasks that | |
2934 | * started later, and in future iterations only consider tasks that | |
2935 | * started after the latest task in the previous pass. This | |
2936 | * guarantees forward progress and that we don't miss any tasks. | |
2937 | */ | |
2938 | heap->size = 0; | |
2939 | cgroup_iter_start(scan->cg, &it); | |
2940 | while ((p = cgroup_iter_next(scan->cg, &it))) { | |
2941 | /* | |
2942 | * Only affect tasks that qualify per the caller's callback, | |
2943 | * if he provided one | |
2944 | */ | |
2945 | if (scan->test_task && !scan->test_task(p, scan)) | |
2946 | continue; | |
2947 | /* | |
2948 | * Only process tasks that started after the last task | |
2949 | * we processed | |
2950 | */ | |
2951 | if (!started_after_time(p, &latest_time, latest_task)) | |
2952 | continue; | |
2953 | dropped = heap_insert(heap, p); | |
2954 | if (dropped == NULL) { | |
2955 | /* | |
2956 | * The new task was inserted; the heap wasn't | |
2957 | * previously full | |
2958 | */ | |
2959 | get_task_struct(p); | |
2960 | } else if (dropped != p) { | |
2961 | /* | |
2962 | * The new task was inserted, and pushed out a | |
2963 | * different task | |
2964 | */ | |
2965 | get_task_struct(p); | |
2966 | put_task_struct(dropped); | |
2967 | } | |
2968 | /* | |
2969 | * Else the new task was newer than anything already in | |
2970 | * the heap and wasn't inserted | |
2971 | */ | |
2972 | } | |
2973 | cgroup_iter_end(scan->cg, &it); | |
2974 | ||
2975 | if (heap->size) { | |
2976 | for (i = 0; i < heap->size; i++) { | |
4fe91d51 | 2977 | struct task_struct *q = heap->ptrs[i]; |
31a7df01 | 2978 | if (i == 0) { |
4fe91d51 PJ |
2979 | latest_time = q->start_time; |
2980 | latest_task = q; | |
31a7df01 CW |
2981 | } |
2982 | /* Process the task per the caller's callback */ | |
4fe91d51 PJ |
2983 | scan->process_task(q, scan); |
2984 | put_task_struct(q); | |
31a7df01 CW |
2985 | } |
2986 | /* | |
2987 | * If we had to process any tasks at all, scan again | |
2988 | * in case some of them were in the middle of forking | |
2989 | * children that didn't get processed. | |
2990 | * Not the most efficient way to do it, but it avoids | |
2991 | * having to take callback_mutex in the fork path | |
2992 | */ | |
2993 | goto again; | |
2994 | } | |
2995 | if (heap == &tmp_heap) | |
2996 | heap_free(&tmp_heap); | |
2997 | return 0; | |
2998 | } | |
2999 | ||
bbcb81d0 | 3000 | /* |
102a775e | 3001 | * Stuff for reading the 'tasks'/'procs' files. |
bbcb81d0 PM |
3002 | * |
3003 | * Reading this file can return large amounts of data if a cgroup has | |
3004 | * *lots* of attached tasks. So it may need several calls to read(), | |
3005 | * but we cannot guarantee that the information we produce is correct | |
3006 | * unless we produce it entirely atomically. | |
3007 | * | |
bbcb81d0 | 3008 | */ |
bbcb81d0 | 3009 | |
d1d9fd33 BB |
3010 | /* |
3011 | * The following two functions "fix" the issue where there are more pids | |
3012 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. | |
3013 | * TODO: replace with a kernel-wide solution to this problem | |
3014 | */ | |
3015 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) | |
3016 | static void *pidlist_allocate(int count) | |
3017 | { | |
3018 | if (PIDLIST_TOO_LARGE(count)) | |
3019 | return vmalloc(count * sizeof(pid_t)); | |
3020 | else | |
3021 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | |
3022 | } | |
3023 | static void pidlist_free(void *p) | |
3024 | { | |
3025 | if (is_vmalloc_addr(p)) | |
3026 | vfree(p); | |
3027 | else | |
3028 | kfree(p); | |
3029 | } | |
3030 | static void *pidlist_resize(void *p, int newcount) | |
3031 | { | |
3032 | void *newlist; | |
3033 | /* note: if new alloc fails, old p will still be valid either way */ | |
3034 | if (is_vmalloc_addr(p)) { | |
3035 | newlist = vmalloc(newcount * sizeof(pid_t)); | |
3036 | if (!newlist) | |
3037 | return NULL; | |
3038 | memcpy(newlist, p, newcount * sizeof(pid_t)); | |
3039 | vfree(p); | |
3040 | } else { | |
3041 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | |
3042 | } | |
3043 | return newlist; | |
3044 | } | |
3045 | ||
bbcb81d0 | 3046 | /* |
102a775e BB |
3047 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries |
3048 | * If the new stripped list is sufficiently smaller and there's enough memory | |
3049 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | |
3050 | * number of unique elements. | |
bbcb81d0 | 3051 | */ |
102a775e BB |
3052 | /* is the size difference enough that we should re-allocate the array? */ |
3053 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | |
3054 | static int pidlist_uniq(pid_t **p, int length) | |
bbcb81d0 | 3055 | { |
102a775e BB |
3056 | int src, dest = 1; |
3057 | pid_t *list = *p; | |
3058 | pid_t *newlist; | |
3059 | ||
3060 | /* | |
3061 | * we presume the 0th element is unique, so i starts at 1. trivial | |
3062 | * edge cases first; no work needs to be done for either | |
3063 | */ | |
3064 | if (length == 0 || length == 1) | |
3065 | return length; | |
3066 | /* src and dest walk down the list; dest counts unique elements */ | |
3067 | for (src = 1; src < length; src++) { | |
3068 | /* find next unique element */ | |
3069 | while (list[src] == list[src-1]) { | |
3070 | src++; | |
3071 | if (src == length) | |
3072 | goto after; | |
3073 | } | |
3074 | /* dest always points to where the next unique element goes */ | |
3075 | list[dest] = list[src]; | |
3076 | dest++; | |
3077 | } | |
3078 | after: | |
3079 | /* | |
3080 | * if the length difference is large enough, we want to allocate a | |
3081 | * smaller buffer to save memory. if this fails due to out of memory, | |
3082 | * we'll just stay with what we've got. | |
3083 | */ | |
3084 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | |
d1d9fd33 | 3085 | newlist = pidlist_resize(list, dest); |
102a775e BB |
3086 | if (newlist) |
3087 | *p = newlist; | |
3088 | } | |
3089 | return dest; | |
3090 | } | |
3091 | ||
3092 | static int cmppid(const void *a, const void *b) | |
3093 | { | |
3094 | return *(pid_t *)a - *(pid_t *)b; | |
3095 | } | |
3096 | ||
72a8cb30 BB |
3097 | /* |
3098 | * find the appropriate pidlist for our purpose (given procs vs tasks) | |
3099 | * returns with the lock on that pidlist already held, and takes care | |
3100 | * of the use count, or returns NULL with no locks held if we're out of | |
3101 | * memory. | |
3102 | */ | |
3103 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, | |
3104 | enum cgroup_filetype type) | |
3105 | { | |
3106 | struct cgroup_pidlist *l; | |
3107 | /* don't need task_nsproxy() if we're looking at ourself */ | |
b70cc5fd LZ |
3108 | struct pid_namespace *ns = current->nsproxy->pid_ns; |
3109 | ||
72a8cb30 BB |
3110 | /* |
3111 | * We can't drop the pidlist_mutex before taking the l->mutex in case | |
3112 | * the last ref-holder is trying to remove l from the list at the same | |
3113 | * time. Holding the pidlist_mutex precludes somebody taking whichever | |
3114 | * list we find out from under us - compare release_pid_array(). | |
3115 | */ | |
3116 | mutex_lock(&cgrp->pidlist_mutex); | |
3117 | list_for_each_entry(l, &cgrp->pidlists, links) { | |
3118 | if (l->key.type == type && l->key.ns == ns) { | |
72a8cb30 BB |
3119 | /* make sure l doesn't vanish out from under us */ |
3120 | down_write(&l->mutex); | |
3121 | mutex_unlock(&cgrp->pidlist_mutex); | |
72a8cb30 BB |
3122 | return l; |
3123 | } | |
3124 | } | |
3125 | /* entry not found; create a new one */ | |
3126 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | |
3127 | if (!l) { | |
3128 | mutex_unlock(&cgrp->pidlist_mutex); | |
72a8cb30 BB |
3129 | return l; |
3130 | } | |
3131 | init_rwsem(&l->mutex); | |
3132 | down_write(&l->mutex); | |
3133 | l->key.type = type; | |
b70cc5fd | 3134 | l->key.ns = get_pid_ns(ns); |
72a8cb30 BB |
3135 | l->use_count = 0; /* don't increment here */ |
3136 | l->list = NULL; | |
3137 | l->owner = cgrp; | |
3138 | list_add(&l->links, &cgrp->pidlists); | |
3139 | mutex_unlock(&cgrp->pidlist_mutex); | |
3140 | return l; | |
3141 | } | |
3142 | ||
102a775e BB |
3143 | /* |
3144 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | |
3145 | */ | |
72a8cb30 BB |
3146 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, |
3147 | struct cgroup_pidlist **lp) | |
102a775e BB |
3148 | { |
3149 | pid_t *array; | |
3150 | int length; | |
3151 | int pid, n = 0; /* used for populating the array */ | |
817929ec PM |
3152 | struct cgroup_iter it; |
3153 | struct task_struct *tsk; | |
102a775e BB |
3154 | struct cgroup_pidlist *l; |
3155 | ||
3156 | /* | |
3157 | * If cgroup gets more users after we read count, we won't have | |
3158 | * enough space - tough. This race is indistinguishable to the | |
3159 | * caller from the case that the additional cgroup users didn't | |
3160 | * show up until sometime later on. | |
3161 | */ | |
3162 | length = cgroup_task_count(cgrp); | |
d1d9fd33 | 3163 | array = pidlist_allocate(length); |
102a775e BB |
3164 | if (!array) |
3165 | return -ENOMEM; | |
3166 | /* now, populate the array */ | |
bd89aabc PM |
3167 | cgroup_iter_start(cgrp, &it); |
3168 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | |
102a775e | 3169 | if (unlikely(n == length)) |
817929ec | 3170 | break; |
102a775e | 3171 | /* get tgid or pid for procs or tasks file respectively */ |
72a8cb30 BB |
3172 | if (type == CGROUP_FILE_PROCS) |
3173 | pid = task_tgid_vnr(tsk); | |
3174 | else | |
3175 | pid = task_pid_vnr(tsk); | |
102a775e BB |
3176 | if (pid > 0) /* make sure to only use valid results */ |
3177 | array[n++] = pid; | |
817929ec | 3178 | } |
bd89aabc | 3179 | cgroup_iter_end(cgrp, &it); |
102a775e BB |
3180 | length = n; |
3181 | /* now sort & (if procs) strip out duplicates */ | |
3182 | sort(array, length, sizeof(pid_t), cmppid, NULL); | |
72a8cb30 | 3183 | if (type == CGROUP_FILE_PROCS) |
102a775e | 3184 | length = pidlist_uniq(&array, length); |
72a8cb30 BB |
3185 | l = cgroup_pidlist_find(cgrp, type); |
3186 | if (!l) { | |
d1d9fd33 | 3187 | pidlist_free(array); |
72a8cb30 | 3188 | return -ENOMEM; |
102a775e | 3189 | } |
72a8cb30 | 3190 | /* store array, freeing old if necessary - lock already held */ |
d1d9fd33 | 3191 | pidlist_free(l->list); |
102a775e BB |
3192 | l->list = array; |
3193 | l->length = length; | |
3194 | l->use_count++; | |
3195 | up_write(&l->mutex); | |
72a8cb30 | 3196 | *lp = l; |
102a775e | 3197 | return 0; |
bbcb81d0 PM |
3198 | } |
3199 | ||
846c7bb0 | 3200 | /** |
a043e3b2 | 3201 | * cgroupstats_build - build and fill cgroupstats |
846c7bb0 BS |
3202 | * @stats: cgroupstats to fill information into |
3203 | * @dentry: A dentry entry belonging to the cgroup for which stats have | |
3204 | * been requested. | |
a043e3b2 LZ |
3205 | * |
3206 | * Build and fill cgroupstats so that taskstats can export it to user | |
3207 | * space. | |
846c7bb0 BS |
3208 | */ |
3209 | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) | |
3210 | { | |
3211 | int ret = -EINVAL; | |
bd89aabc | 3212 | struct cgroup *cgrp; |
846c7bb0 BS |
3213 | struct cgroup_iter it; |
3214 | struct task_struct *tsk; | |
33d283be | 3215 | |
846c7bb0 | 3216 | /* |
33d283be LZ |
3217 | * Validate dentry by checking the superblock operations, |
3218 | * and make sure it's a directory. | |
846c7bb0 | 3219 | */ |
33d283be LZ |
3220 | if (dentry->d_sb->s_op != &cgroup_ops || |
3221 | !S_ISDIR(dentry->d_inode->i_mode)) | |
846c7bb0 BS |
3222 | goto err; |
3223 | ||
3224 | ret = 0; | |
bd89aabc | 3225 | cgrp = dentry->d_fsdata; |
846c7bb0 | 3226 | |
bd89aabc PM |
3227 | cgroup_iter_start(cgrp, &it); |
3228 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | |
846c7bb0 BS |
3229 | switch (tsk->state) { |
3230 | case TASK_RUNNING: | |
3231 | stats->nr_running++; | |
3232 | break; | |
3233 | case TASK_INTERRUPTIBLE: | |
3234 | stats->nr_sleeping++; | |
3235 | break; | |
3236 | case TASK_UNINTERRUPTIBLE: | |
3237 | stats->nr_uninterruptible++; | |
3238 | break; | |
3239 | case TASK_STOPPED: | |
3240 | stats->nr_stopped++; | |
3241 | break; | |
3242 | default: | |
3243 | if (delayacct_is_task_waiting_on_io(tsk)) | |
3244 | stats->nr_io_wait++; | |
3245 | break; | |
3246 | } | |
3247 | } | |
bd89aabc | 3248 | cgroup_iter_end(cgrp, &it); |
846c7bb0 | 3249 | |
846c7bb0 BS |
3250 | err: |
3251 | return ret; | |
3252 | } | |
3253 | ||
8f3ff208 | 3254 | |
bbcb81d0 | 3255 | /* |
102a775e | 3256 | * seq_file methods for the tasks/procs files. The seq_file position is the |
cc31edce | 3257 | * next pid to display; the seq_file iterator is a pointer to the pid |
102a775e | 3258 | * in the cgroup->l->list array. |
bbcb81d0 | 3259 | */ |
cc31edce | 3260 | |
102a775e | 3261 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
bbcb81d0 | 3262 | { |
cc31edce PM |
3263 | /* |
3264 | * Initially we receive a position value that corresponds to | |
3265 | * one more than the last pid shown (or 0 on the first call or | |
3266 | * after a seek to the start). Use a binary-search to find the | |
3267 | * next pid to display, if any | |
3268 | */ | |
102a775e | 3269 | struct cgroup_pidlist *l = s->private; |
cc31edce PM |
3270 | int index = 0, pid = *pos; |
3271 | int *iter; | |
3272 | ||
102a775e | 3273 | down_read(&l->mutex); |
cc31edce | 3274 | if (pid) { |
102a775e | 3275 | int end = l->length; |
20777766 | 3276 | |
cc31edce PM |
3277 | while (index < end) { |
3278 | int mid = (index + end) / 2; | |
102a775e | 3279 | if (l->list[mid] == pid) { |
cc31edce PM |
3280 | index = mid; |
3281 | break; | |
102a775e | 3282 | } else if (l->list[mid] <= pid) |
cc31edce PM |
3283 | index = mid + 1; |
3284 | else | |
3285 | end = mid; | |
3286 | } | |
3287 | } | |
3288 | /* If we're off the end of the array, we're done */ | |
102a775e | 3289 | if (index >= l->length) |
cc31edce PM |
3290 | return NULL; |
3291 | /* Update the abstract position to be the actual pid that we found */ | |
102a775e | 3292 | iter = l->list + index; |
cc31edce PM |
3293 | *pos = *iter; |
3294 | return iter; | |
3295 | } | |
3296 | ||
102a775e | 3297 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
cc31edce | 3298 | { |
102a775e BB |
3299 | struct cgroup_pidlist *l = s->private; |
3300 | up_read(&l->mutex); | |
cc31edce PM |
3301 | } |
3302 | ||
102a775e | 3303 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
cc31edce | 3304 | { |
102a775e BB |
3305 | struct cgroup_pidlist *l = s->private; |
3306 | pid_t *p = v; | |
3307 | pid_t *end = l->list + l->length; | |
cc31edce PM |
3308 | /* |
3309 | * Advance to the next pid in the array. If this goes off the | |
3310 | * end, we're done | |
3311 | */ | |
3312 | p++; | |
3313 | if (p >= end) { | |
3314 | return NULL; | |
3315 | } else { | |
3316 | *pos = *p; | |
3317 | return p; | |
3318 | } | |
3319 | } | |
3320 | ||
102a775e | 3321 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
cc31edce PM |
3322 | { |
3323 | return seq_printf(s, "%d\n", *(int *)v); | |
3324 | } | |
bbcb81d0 | 3325 | |
102a775e BB |
3326 | /* |
3327 | * seq_operations functions for iterating on pidlists through seq_file - | |
3328 | * independent of whether it's tasks or procs | |
3329 | */ | |
3330 | static const struct seq_operations cgroup_pidlist_seq_operations = { | |
3331 | .start = cgroup_pidlist_start, | |
3332 | .stop = cgroup_pidlist_stop, | |
3333 | .next = cgroup_pidlist_next, | |
3334 | .show = cgroup_pidlist_show, | |
cc31edce PM |
3335 | }; |
3336 | ||
102a775e | 3337 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
cc31edce | 3338 | { |
72a8cb30 BB |
3339 | /* |
3340 | * the case where we're the last user of this particular pidlist will | |
3341 | * have us remove it from the cgroup's list, which entails taking the | |
3342 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> | |
3343 | * pidlist_mutex, we have to take pidlist_mutex first. | |
3344 | */ | |
3345 | mutex_lock(&l->owner->pidlist_mutex); | |
102a775e BB |
3346 | down_write(&l->mutex); |
3347 | BUG_ON(!l->use_count); | |
3348 | if (!--l->use_count) { | |
72a8cb30 BB |
3349 | /* we're the last user if refcount is 0; remove and free */ |
3350 | list_del(&l->links); | |
3351 | mutex_unlock(&l->owner->pidlist_mutex); | |
d1d9fd33 | 3352 | pidlist_free(l->list); |
72a8cb30 BB |
3353 | put_pid_ns(l->key.ns); |
3354 | up_write(&l->mutex); | |
3355 | kfree(l); | |
3356 | return; | |
cc31edce | 3357 | } |
72a8cb30 | 3358 | mutex_unlock(&l->owner->pidlist_mutex); |
102a775e | 3359 | up_write(&l->mutex); |
bbcb81d0 PM |
3360 | } |
3361 | ||
102a775e | 3362 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
cc31edce | 3363 | { |
102a775e | 3364 | struct cgroup_pidlist *l; |
cc31edce PM |
3365 | if (!(file->f_mode & FMODE_READ)) |
3366 | return 0; | |
102a775e BB |
3367 | /* |
3368 | * the seq_file will only be initialized if the file was opened for | |
3369 | * reading; hence we check if it's not null only in that case. | |
3370 | */ | |
3371 | l = ((struct seq_file *)file->private_data)->private; | |
3372 | cgroup_release_pid_array(l); | |
cc31edce PM |
3373 | return seq_release(inode, file); |
3374 | } | |
3375 | ||
102a775e | 3376 | static const struct file_operations cgroup_pidlist_operations = { |
cc31edce PM |
3377 | .read = seq_read, |
3378 | .llseek = seq_lseek, | |
3379 | .write = cgroup_file_write, | |
102a775e | 3380 | .release = cgroup_pidlist_release, |
cc31edce PM |
3381 | }; |
3382 | ||
bbcb81d0 | 3383 | /* |
102a775e BB |
3384 | * The following functions handle opens on a file that displays a pidlist |
3385 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's | |
3386 | * in the cgroup. | |
bbcb81d0 | 3387 | */ |
102a775e | 3388 | /* helper function for the two below it */ |
72a8cb30 | 3389 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
bbcb81d0 | 3390 | { |
bd89aabc | 3391 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
72a8cb30 | 3392 | struct cgroup_pidlist *l; |
cc31edce | 3393 | int retval; |
bbcb81d0 | 3394 | |
cc31edce | 3395 | /* Nothing to do for write-only files */ |
bbcb81d0 PM |
3396 | if (!(file->f_mode & FMODE_READ)) |
3397 | return 0; | |
3398 | ||
102a775e | 3399 | /* have the array populated */ |
72a8cb30 | 3400 | retval = pidlist_array_load(cgrp, type, &l); |
102a775e BB |
3401 | if (retval) |
3402 | return retval; | |
3403 | /* configure file information */ | |
3404 | file->f_op = &cgroup_pidlist_operations; | |
cc31edce | 3405 | |
102a775e | 3406 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
cc31edce | 3407 | if (retval) { |
102a775e | 3408 | cgroup_release_pid_array(l); |
cc31edce | 3409 | return retval; |
bbcb81d0 | 3410 | } |
102a775e | 3411 | ((struct seq_file *)file->private_data)->private = l; |
bbcb81d0 PM |
3412 | return 0; |
3413 | } | |
102a775e BB |
3414 | static int cgroup_tasks_open(struct inode *unused, struct file *file) |
3415 | { | |
72a8cb30 | 3416 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); |
102a775e BB |
3417 | } |
3418 | static int cgroup_procs_open(struct inode *unused, struct file *file) | |
3419 | { | |
72a8cb30 | 3420 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); |
102a775e | 3421 | } |
bbcb81d0 | 3422 | |
bd89aabc | 3423 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
81a6a5cd PM |
3424 | struct cftype *cft) |
3425 | { | |
bd89aabc | 3426 | return notify_on_release(cgrp); |
81a6a5cd PM |
3427 | } |
3428 | ||
6379c106 PM |
3429 | static int cgroup_write_notify_on_release(struct cgroup *cgrp, |
3430 | struct cftype *cft, | |
3431 | u64 val) | |
3432 | { | |
3433 | clear_bit(CGRP_RELEASABLE, &cgrp->flags); | |
3434 | if (val) | |
3435 | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | |
3436 | else | |
3437 | clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | |
3438 | return 0; | |
3439 | } | |
3440 | ||
0dea1168 KS |
3441 | /* |
3442 | * Unregister event and free resources. | |
3443 | * | |
3444 | * Gets called from workqueue. | |
3445 | */ | |
3446 | static void cgroup_event_remove(struct work_struct *work) | |
3447 | { | |
3448 | struct cgroup_event *event = container_of(work, struct cgroup_event, | |
3449 | remove); | |
3450 | struct cgroup *cgrp = event->cgrp; | |
3451 | ||
0dea1168 KS |
3452 | event->cft->unregister_event(cgrp, event->cft, event->eventfd); |
3453 | ||
3454 | eventfd_ctx_put(event->eventfd); | |
0dea1168 | 3455 | kfree(event); |
a0a4db54 | 3456 | dput(cgrp->dentry); |
0dea1168 KS |
3457 | } |
3458 | ||
3459 | /* | |
3460 | * Gets called on POLLHUP on eventfd when user closes it. | |
3461 | * | |
3462 | * Called with wqh->lock held and interrupts disabled. | |
3463 | */ | |
3464 | static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, | |
3465 | int sync, void *key) | |
3466 | { | |
3467 | struct cgroup_event *event = container_of(wait, | |
3468 | struct cgroup_event, wait); | |
3469 | struct cgroup *cgrp = event->cgrp; | |
3470 | unsigned long flags = (unsigned long)key; | |
3471 | ||
3472 | if (flags & POLLHUP) { | |
a93d2f17 | 3473 | __remove_wait_queue(event->wqh, &event->wait); |
0dea1168 KS |
3474 | spin_lock(&cgrp->event_list_lock); |
3475 | list_del(&event->list); | |
3476 | spin_unlock(&cgrp->event_list_lock); | |
3477 | /* | |
3478 | * We are in atomic context, but cgroup_event_remove() may | |
3479 | * sleep, so we have to call it in workqueue. | |
3480 | */ | |
3481 | schedule_work(&event->remove); | |
3482 | } | |
3483 | ||
3484 | return 0; | |
3485 | } | |
3486 | ||
3487 | static void cgroup_event_ptable_queue_proc(struct file *file, | |
3488 | wait_queue_head_t *wqh, poll_table *pt) | |
3489 | { | |
3490 | struct cgroup_event *event = container_of(pt, | |
3491 | struct cgroup_event, pt); | |
3492 | ||
3493 | event->wqh = wqh; | |
3494 | add_wait_queue(wqh, &event->wait); | |
3495 | } | |
3496 | ||
3497 | /* | |
3498 | * Parse input and register new cgroup event handler. | |
3499 | * | |
3500 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
3501 | * Interpretation of args is defined by control file implementation. | |
3502 | */ | |
3503 | static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, | |
3504 | const char *buffer) | |
3505 | { | |
3506 | struct cgroup_event *event = NULL; | |
3507 | unsigned int efd, cfd; | |
3508 | struct file *efile = NULL; | |
3509 | struct file *cfile = NULL; | |
3510 | char *endp; | |
3511 | int ret; | |
3512 | ||
3513 | efd = simple_strtoul(buffer, &endp, 10); | |
3514 | if (*endp != ' ') | |
3515 | return -EINVAL; | |
3516 | buffer = endp + 1; | |
3517 | ||
3518 | cfd = simple_strtoul(buffer, &endp, 10); | |
3519 | if ((*endp != ' ') && (*endp != '\0')) | |
3520 | return -EINVAL; | |
3521 | buffer = endp + 1; | |
3522 | ||
3523 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
3524 | if (!event) | |
3525 | return -ENOMEM; | |
3526 | event->cgrp = cgrp; | |
3527 | INIT_LIST_HEAD(&event->list); | |
3528 | init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); | |
3529 | init_waitqueue_func_entry(&event->wait, cgroup_event_wake); | |
3530 | INIT_WORK(&event->remove, cgroup_event_remove); | |
3531 | ||
3532 | efile = eventfd_fget(efd); | |
3533 | if (IS_ERR(efile)) { | |
3534 | ret = PTR_ERR(efile); | |
3535 | goto fail; | |
3536 | } | |
3537 | ||
3538 | event->eventfd = eventfd_ctx_fileget(efile); | |
3539 | if (IS_ERR(event->eventfd)) { | |
3540 | ret = PTR_ERR(event->eventfd); | |
3541 | goto fail; | |
3542 | } | |
3543 | ||
3544 | cfile = fget(cfd); | |
3545 | if (!cfile) { | |
3546 | ret = -EBADF; | |
3547 | goto fail; | |
3548 | } | |
3549 | ||
3550 | /* the process need read permission on control file */ | |
3bfa784a AV |
3551 | /* AV: shouldn't we check that it's been opened for read instead? */ |
3552 | ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ); | |
0dea1168 KS |
3553 | if (ret < 0) |
3554 | goto fail; | |
3555 | ||
3556 | event->cft = __file_cft(cfile); | |
3557 | if (IS_ERR(event->cft)) { | |
3558 | ret = PTR_ERR(event->cft); | |
3559 | goto fail; | |
3560 | } | |
3561 | ||
3562 | if (!event->cft->register_event || !event->cft->unregister_event) { | |
3563 | ret = -EINVAL; | |
3564 | goto fail; | |
3565 | } | |
3566 | ||
3567 | ret = event->cft->register_event(cgrp, event->cft, | |
3568 | event->eventfd, buffer); | |
3569 | if (ret) | |
3570 | goto fail; | |
3571 | ||
3572 | if (efile->f_op->poll(efile, &event->pt) & POLLHUP) { | |
3573 | event->cft->unregister_event(cgrp, event->cft, event->eventfd); | |
3574 | ret = 0; | |
3575 | goto fail; | |
3576 | } | |
3577 | ||
a0a4db54 KS |
3578 | /* |
3579 | * Events should be removed after rmdir of cgroup directory, but before | |
3580 | * destroying subsystem state objects. Let's take reference to cgroup | |
3581 | * directory dentry to do that. | |
3582 | */ | |
3583 | dget(cgrp->dentry); | |
3584 | ||
0dea1168 KS |
3585 | spin_lock(&cgrp->event_list_lock); |
3586 | list_add(&event->list, &cgrp->event_list); | |
3587 | spin_unlock(&cgrp->event_list_lock); | |
3588 | ||
3589 | fput(cfile); | |
3590 | fput(efile); | |
3591 | ||
3592 | return 0; | |
3593 | ||
3594 | fail: | |
3595 | if (cfile) | |
3596 | fput(cfile); | |
3597 | ||
3598 | if (event && event->eventfd && !IS_ERR(event->eventfd)) | |
3599 | eventfd_ctx_put(event->eventfd); | |
3600 | ||
3601 | if (!IS_ERR_OR_NULL(efile)) | |
3602 | fput(efile); | |
3603 | ||
3604 | kfree(event); | |
3605 | ||
3606 | return ret; | |
3607 | } | |
3608 | ||
97978e6d DL |
3609 | static u64 cgroup_clone_children_read(struct cgroup *cgrp, |
3610 | struct cftype *cft) | |
3611 | { | |
3612 | return clone_children(cgrp); | |
3613 | } | |
3614 | ||
3615 | static int cgroup_clone_children_write(struct cgroup *cgrp, | |
3616 | struct cftype *cft, | |
3617 | u64 val) | |
3618 | { | |
3619 | if (val) | |
3620 | set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | |
3621 | else | |
3622 | clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | |
3623 | return 0; | |
3624 | } | |
3625 | ||
bbcb81d0 PM |
3626 | /* |
3627 | * for the common functions, 'private' gives the type of file | |
3628 | */ | |
102a775e BB |
3629 | /* for hysterical raisins, we can't put this on the older files */ |
3630 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | |
81a6a5cd PM |
3631 | static struct cftype files[] = { |
3632 | { | |
3633 | .name = "tasks", | |
3634 | .open = cgroup_tasks_open, | |
af351026 | 3635 | .write_u64 = cgroup_tasks_write, |
102a775e | 3636 | .release = cgroup_pidlist_release, |
099fca32 | 3637 | .mode = S_IRUGO | S_IWUSR, |
81a6a5cd | 3638 | }, |
102a775e BB |
3639 | { |
3640 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | |
3641 | .open = cgroup_procs_open, | |
74a1166d | 3642 | .write_u64 = cgroup_procs_write, |
102a775e | 3643 | .release = cgroup_pidlist_release, |
74a1166d | 3644 | .mode = S_IRUGO | S_IWUSR, |
102a775e | 3645 | }, |
81a6a5cd PM |
3646 | { |
3647 | .name = "notify_on_release", | |
f4c753b7 | 3648 | .read_u64 = cgroup_read_notify_on_release, |
6379c106 | 3649 | .write_u64 = cgroup_write_notify_on_release, |
81a6a5cd | 3650 | }, |
0dea1168 KS |
3651 | { |
3652 | .name = CGROUP_FILE_GENERIC_PREFIX "event_control", | |
3653 | .write_string = cgroup_write_event_control, | |
3654 | .mode = S_IWUGO, | |
3655 | }, | |
97978e6d DL |
3656 | { |
3657 | .name = "cgroup.clone_children", | |
3658 | .read_u64 = cgroup_clone_children_read, | |
3659 | .write_u64 = cgroup_clone_children_write, | |
3660 | }, | |
81a6a5cd PM |
3661 | }; |
3662 | ||
3663 | static struct cftype cft_release_agent = { | |
3664 | .name = "release_agent", | |
e788e066 PM |
3665 | .read_seq_string = cgroup_release_agent_show, |
3666 | .write_string = cgroup_release_agent_write, | |
3667 | .max_write_len = PATH_MAX, | |
bbcb81d0 PM |
3668 | }; |
3669 | ||
bd89aabc | 3670 | static int cgroup_populate_dir(struct cgroup *cgrp) |
ddbcc7e8 PM |
3671 | { |
3672 | int err; | |
3673 | struct cgroup_subsys *ss; | |
3674 | ||
3675 | /* First clear out any existing files */ | |
bd89aabc | 3676 | cgroup_clear_directory(cgrp->dentry); |
ddbcc7e8 | 3677 | |
bd89aabc | 3678 | err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); |
bbcb81d0 PM |
3679 | if (err < 0) |
3680 | return err; | |
3681 | ||
bd89aabc PM |
3682 | if (cgrp == cgrp->top_cgroup) { |
3683 | if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) | |
81a6a5cd PM |
3684 | return err; |
3685 | } | |
3686 | ||
bd89aabc PM |
3687 | for_each_subsys(cgrp->root, ss) { |
3688 | if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) | |
ddbcc7e8 PM |
3689 | return err; |
3690 | } | |
38460b48 KH |
3691 | /* This cgroup is ready now */ |
3692 | for_each_subsys(cgrp->root, ss) { | |
3693 | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | |
3694 | /* | |
3695 | * Update id->css pointer and make this css visible from | |
3696 | * CSS ID functions. This pointer will be dereferened | |
3697 | * from RCU-read-side without locks. | |
3698 | */ | |
3699 | if (css->id) | |
3700 | rcu_assign_pointer(css->id->css, css); | |
3701 | } | |
ddbcc7e8 PM |
3702 | |
3703 | return 0; | |
3704 | } | |
3705 | ||
3706 | static void init_cgroup_css(struct cgroup_subsys_state *css, | |
3707 | struct cgroup_subsys *ss, | |
bd89aabc | 3708 | struct cgroup *cgrp) |
ddbcc7e8 | 3709 | { |
bd89aabc | 3710 | css->cgroup = cgrp; |
e7c5ec91 | 3711 | atomic_set(&css->refcnt, 1); |
ddbcc7e8 | 3712 | css->flags = 0; |
38460b48 | 3713 | css->id = NULL; |
bd89aabc | 3714 | if (cgrp == dummytop) |
ddbcc7e8 | 3715 | set_bit(CSS_ROOT, &css->flags); |
bd89aabc PM |
3716 | BUG_ON(cgrp->subsys[ss->subsys_id]); |
3717 | cgrp->subsys[ss->subsys_id] = css; | |
ddbcc7e8 PM |
3718 | } |
3719 | ||
999cd8a4 PM |
3720 | static void cgroup_lock_hierarchy(struct cgroupfs_root *root) |
3721 | { | |
3722 | /* We need to take each hierarchy_mutex in a consistent order */ | |
3723 | int i; | |
3724 | ||
aae8aab4 BB |
3725 | /* |
3726 | * No worry about a race with rebind_subsystems that might mess up the | |
3727 | * locking order, since both parties are under cgroup_mutex. | |
3728 | */ | |
999cd8a4 PM |
3729 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
3730 | struct cgroup_subsys *ss = subsys[i]; | |
aae8aab4 BB |
3731 | if (ss == NULL) |
3732 | continue; | |
999cd8a4 | 3733 | if (ss->root == root) |
cfebe563 | 3734 | mutex_lock(&ss->hierarchy_mutex); |
999cd8a4 PM |
3735 | } |
3736 | } | |
3737 | ||
3738 | static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) | |
3739 | { | |
3740 | int i; | |
3741 | ||
3742 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | |
3743 | struct cgroup_subsys *ss = subsys[i]; | |
aae8aab4 BB |
3744 | if (ss == NULL) |
3745 | continue; | |
999cd8a4 PM |
3746 | if (ss->root == root) |
3747 | mutex_unlock(&ss->hierarchy_mutex); | |
3748 | } | |
3749 | } | |
3750 | ||
ddbcc7e8 | 3751 | /* |
a043e3b2 LZ |
3752 | * cgroup_create - create a cgroup |
3753 | * @parent: cgroup that will be parent of the new cgroup | |
3754 | * @dentry: dentry of the new cgroup | |
3755 | * @mode: mode to set on new inode | |
ddbcc7e8 | 3756 | * |
a043e3b2 | 3757 | * Must be called with the mutex on the parent inode held |
ddbcc7e8 | 3758 | */ |
ddbcc7e8 | 3759 | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, |
099fca32 | 3760 | mode_t mode) |
ddbcc7e8 | 3761 | { |
bd89aabc | 3762 | struct cgroup *cgrp; |
ddbcc7e8 PM |
3763 | struct cgroupfs_root *root = parent->root; |
3764 | int err = 0; | |
3765 | struct cgroup_subsys *ss; | |
3766 | struct super_block *sb = root->sb; | |
3767 | ||
bd89aabc PM |
3768 | cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); |
3769 | if (!cgrp) | |
ddbcc7e8 PM |
3770 | return -ENOMEM; |
3771 | ||
3772 | /* Grab a reference on the superblock so the hierarchy doesn't | |
3773 | * get deleted on unmount if there are child cgroups. This | |
3774 | * can be done outside cgroup_mutex, since the sb can't | |
3775 | * disappear while someone has an open control file on the | |
3776 | * fs */ | |
3777 | atomic_inc(&sb->s_active); | |
3778 | ||
3779 | mutex_lock(&cgroup_mutex); | |
3780 | ||
cc31edce | 3781 | init_cgroup_housekeeping(cgrp); |
ddbcc7e8 | 3782 | |
bd89aabc PM |
3783 | cgrp->parent = parent; |
3784 | cgrp->root = parent->root; | |
3785 | cgrp->top_cgroup = parent->top_cgroup; | |
ddbcc7e8 | 3786 | |
b6abdb0e LZ |
3787 | if (notify_on_release(parent)) |
3788 | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | |
3789 | ||
97978e6d DL |
3790 | if (clone_children(parent)) |
3791 | set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | |
3792 | ||
ddbcc7e8 | 3793 | for_each_subsys(root, ss) { |
bd89aabc | 3794 | struct cgroup_subsys_state *css = ss->create(ss, cgrp); |
4528fd05 | 3795 | |
ddbcc7e8 PM |
3796 | if (IS_ERR(css)) { |
3797 | err = PTR_ERR(css); | |
3798 | goto err_destroy; | |
3799 | } | |
bd89aabc | 3800 | init_cgroup_css(css, ss, cgrp); |
4528fd05 LZ |
3801 | if (ss->use_id) { |
3802 | err = alloc_css_id(ss, parent, cgrp); | |
3803 | if (err) | |
38460b48 | 3804 | goto err_destroy; |
4528fd05 | 3805 | } |
38460b48 | 3806 | /* At error, ->destroy() callback has to free assigned ID. */ |
97978e6d DL |
3807 | if (clone_children(parent) && ss->post_clone) |
3808 | ss->post_clone(ss, cgrp); | |
ddbcc7e8 PM |
3809 | } |
3810 | ||
999cd8a4 | 3811 | cgroup_lock_hierarchy(root); |
bd89aabc | 3812 | list_add(&cgrp->sibling, &cgrp->parent->children); |
999cd8a4 | 3813 | cgroup_unlock_hierarchy(root); |
ddbcc7e8 PM |
3814 | root->number_of_cgroups++; |
3815 | ||
bd89aabc | 3816 | err = cgroup_create_dir(cgrp, dentry, mode); |
ddbcc7e8 PM |
3817 | if (err < 0) |
3818 | goto err_remove; | |
3819 | ||
3820 | /* The cgroup directory was pre-locked for us */ | |
bd89aabc | 3821 | BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); |
ddbcc7e8 | 3822 | |
bd89aabc | 3823 | err = cgroup_populate_dir(cgrp); |
ddbcc7e8 PM |
3824 | /* If err < 0, we have a half-filled directory - oh well ;) */ |
3825 | ||
3826 | mutex_unlock(&cgroup_mutex); | |
bd89aabc | 3827 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
ddbcc7e8 PM |
3828 | |
3829 | return 0; | |
3830 | ||
3831 | err_remove: | |
3832 | ||
baef99a0 | 3833 | cgroup_lock_hierarchy(root); |
bd89aabc | 3834 | list_del(&cgrp->sibling); |
baef99a0 | 3835 | cgroup_unlock_hierarchy(root); |
ddbcc7e8 PM |
3836 | root->number_of_cgroups--; |
3837 | ||
3838 | err_destroy: | |
3839 | ||
3840 | for_each_subsys(root, ss) { | |
bd89aabc PM |
3841 | if (cgrp->subsys[ss->subsys_id]) |
3842 | ss->destroy(ss, cgrp); | |
ddbcc7e8 PM |
3843 | } |
3844 | ||
3845 | mutex_unlock(&cgroup_mutex); | |
3846 | ||
3847 | /* Release the reference count that we took on the superblock */ | |
3848 | deactivate_super(sb); | |
3849 | ||
bd89aabc | 3850 | kfree(cgrp); |
ddbcc7e8 PM |
3851 | return err; |
3852 | } | |
3853 | ||
3854 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode) | |
3855 | { | |
3856 | struct cgroup *c_parent = dentry->d_parent->d_fsdata; | |
3857 | ||
3858 | /* the vfs holds inode->i_mutex already */ | |
3859 | return cgroup_create(c_parent, dentry, mode | S_IFDIR); | |
3860 | } | |
3861 | ||
55b6fd01 | 3862 | static int cgroup_has_css_refs(struct cgroup *cgrp) |
81a6a5cd PM |
3863 | { |
3864 | /* Check the reference count on each subsystem. Since we | |
3865 | * already established that there are no tasks in the | |
e7c5ec91 | 3866 | * cgroup, if the css refcount is also 1, then there should |
81a6a5cd PM |
3867 | * be no outstanding references, so the subsystem is safe to |
3868 | * destroy. We scan across all subsystems rather than using | |
3869 | * the per-hierarchy linked list of mounted subsystems since | |
3870 | * we can be called via check_for_release() with no | |
3871 | * synchronization other than RCU, and the subsystem linked | |
3872 | * list isn't RCU-safe */ | |
3873 | int i; | |
aae8aab4 BB |
3874 | /* |
3875 | * We won't need to lock the subsys array, because the subsystems | |
3876 | * we're concerned about aren't going anywhere since our cgroup root | |
3877 | * has a reference on them. | |
3878 | */ | |
81a6a5cd PM |
3879 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
3880 | struct cgroup_subsys *ss = subsys[i]; | |
3881 | struct cgroup_subsys_state *css; | |
aae8aab4 BB |
3882 | /* Skip subsystems not present or not in this hierarchy */ |
3883 | if (ss == NULL || ss->root != cgrp->root) | |
81a6a5cd | 3884 | continue; |
bd89aabc | 3885 | css = cgrp->subsys[ss->subsys_id]; |
81a6a5cd PM |
3886 | /* When called from check_for_release() it's possible |
3887 | * that by this point the cgroup has been removed | |
3888 | * and the css deleted. But a false-positive doesn't | |
3889 | * matter, since it can only happen if the cgroup | |
3890 | * has been deleted and hence no longer needs the | |
3891 | * release agent to be called anyway. */ | |
e7c5ec91 | 3892 | if (css && (atomic_read(&css->refcnt) > 1)) |
81a6a5cd | 3893 | return 1; |
81a6a5cd PM |
3894 | } |
3895 | return 0; | |
3896 | } | |
3897 | ||
e7c5ec91 PM |
3898 | /* |
3899 | * Atomically mark all (or else none) of the cgroup's CSS objects as | |
3900 | * CSS_REMOVED. Return true on success, or false if the cgroup has | |
3901 | * busy subsystems. Call with cgroup_mutex held | |
3902 | */ | |
3903 | ||
3904 | static int cgroup_clear_css_refs(struct cgroup *cgrp) | |
3905 | { | |
3906 | struct cgroup_subsys *ss; | |
3907 | unsigned long flags; | |
3908 | bool failed = false; | |
3909 | local_irq_save(flags); | |
3910 | for_each_subsys(cgrp->root, ss) { | |
3911 | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | |
3912 | int refcnt; | |
804b3c28 | 3913 | while (1) { |
e7c5ec91 PM |
3914 | /* We can only remove a CSS with a refcnt==1 */ |
3915 | refcnt = atomic_read(&css->refcnt); | |
3916 | if (refcnt > 1) { | |
3917 | failed = true; | |
3918 | goto done; | |
3919 | } | |
3920 | BUG_ON(!refcnt); | |
3921 | /* | |
3922 | * Drop the refcnt to 0 while we check other | |
3923 | * subsystems. This will cause any racing | |
3924 | * css_tryget() to spin until we set the | |
3925 | * CSS_REMOVED bits or abort | |
3926 | */ | |
804b3c28 PM |
3927 | if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) |
3928 | break; | |
3929 | cpu_relax(); | |
3930 | } | |
e7c5ec91 PM |
3931 | } |
3932 | done: | |
3933 | for_each_subsys(cgrp->root, ss) { | |
3934 | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | |
3935 | if (failed) { | |
3936 | /* | |
3937 | * Restore old refcnt if we previously managed | |
3938 | * to clear it from 1 to 0 | |
3939 | */ | |
3940 | if (!atomic_read(&css->refcnt)) | |
3941 | atomic_set(&css->refcnt, 1); | |
3942 | } else { | |
3943 | /* Commit the fact that the CSS is removed */ | |
3944 | set_bit(CSS_REMOVED, &css->flags); | |
3945 | } | |
3946 | } | |
3947 | local_irq_restore(flags); | |
3948 | return !failed; | |
3949 | } | |
3950 | ||
ddbcc7e8 PM |
3951 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) |
3952 | { | |
bd89aabc | 3953 | struct cgroup *cgrp = dentry->d_fsdata; |
ddbcc7e8 PM |
3954 | struct dentry *d; |
3955 | struct cgroup *parent; | |
ec64f515 | 3956 | DEFINE_WAIT(wait); |
4ab78683 | 3957 | struct cgroup_event *event, *tmp; |
ec64f515 | 3958 | int ret; |
ddbcc7e8 PM |
3959 | |
3960 | /* the vfs holds both inode->i_mutex already */ | |
ec64f515 | 3961 | again: |
ddbcc7e8 | 3962 | mutex_lock(&cgroup_mutex); |
bd89aabc | 3963 | if (atomic_read(&cgrp->count) != 0) { |
ddbcc7e8 PM |
3964 | mutex_unlock(&cgroup_mutex); |
3965 | return -EBUSY; | |
3966 | } | |
bd89aabc | 3967 | if (!list_empty(&cgrp->children)) { |
ddbcc7e8 PM |
3968 | mutex_unlock(&cgroup_mutex); |
3969 | return -EBUSY; | |
3970 | } | |
3fa59dfb | 3971 | mutex_unlock(&cgroup_mutex); |
a043e3b2 | 3972 | |
88703267 KH |
3973 | /* |
3974 | * In general, subsystem has no css->refcnt after pre_destroy(). But | |
3975 | * in racy cases, subsystem may have to get css->refcnt after | |
3976 | * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes | |
3977 | * make rmdir return -EBUSY too often. To avoid that, we use waitqueue | |
3978 | * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir | |
3979 | * and subsystem's reference count handling. Please see css_get/put | |
3980 | * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. | |
3981 | */ | |
3982 | set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | |
3983 | ||
4fca88c8 | 3984 | /* |
a043e3b2 LZ |
3985 | * Call pre_destroy handlers of subsys. Notify subsystems |
3986 | * that rmdir() request comes. | |
4fca88c8 | 3987 | */ |
ec64f515 | 3988 | ret = cgroup_call_pre_destroy(cgrp); |
88703267 KH |
3989 | if (ret) { |
3990 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | |
ec64f515 | 3991 | return ret; |
88703267 | 3992 | } |
ddbcc7e8 | 3993 | |
3fa59dfb KH |
3994 | mutex_lock(&cgroup_mutex); |
3995 | parent = cgrp->parent; | |
ec64f515 | 3996 | if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { |
88703267 | 3997 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
ddbcc7e8 PM |
3998 | mutex_unlock(&cgroup_mutex); |
3999 | return -EBUSY; | |
4000 | } | |
ec64f515 | 4001 | prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); |
ec64f515 KH |
4002 | if (!cgroup_clear_css_refs(cgrp)) { |
4003 | mutex_unlock(&cgroup_mutex); | |
88703267 KH |
4004 | /* |
4005 | * Because someone may call cgroup_wakeup_rmdir_waiter() before | |
4006 | * prepare_to_wait(), we need to check this flag. | |
4007 | */ | |
4008 | if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) | |
4009 | schedule(); | |
ec64f515 KH |
4010 | finish_wait(&cgroup_rmdir_waitq, &wait); |
4011 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | |
4012 | if (signal_pending(current)) | |
4013 | return -EINTR; | |
4014 | goto again; | |
4015 | } | |
4016 | /* NO css_tryget() can success after here. */ | |
4017 | finish_wait(&cgroup_rmdir_waitq, &wait); | |
4018 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | |
ddbcc7e8 | 4019 | |
cdcc136f | 4020 | raw_spin_lock(&release_list_lock); |
bd89aabc PM |
4021 | set_bit(CGRP_REMOVED, &cgrp->flags); |
4022 | if (!list_empty(&cgrp->release_list)) | |
8d258797 | 4023 | list_del_init(&cgrp->release_list); |
cdcc136f | 4024 | raw_spin_unlock(&release_list_lock); |
999cd8a4 PM |
4025 | |
4026 | cgroup_lock_hierarchy(cgrp->root); | |
4027 | /* delete this cgroup from parent->children */ | |
8d258797 | 4028 | list_del_init(&cgrp->sibling); |
999cd8a4 PM |
4029 | cgroup_unlock_hierarchy(cgrp->root); |
4030 | ||
bd89aabc | 4031 | d = dget(cgrp->dentry); |
ddbcc7e8 PM |
4032 | |
4033 | cgroup_d_remove_dir(d); | |
4034 | dput(d); | |
ddbcc7e8 | 4035 | |
bd89aabc | 4036 | set_bit(CGRP_RELEASABLE, &parent->flags); |
81a6a5cd PM |
4037 | check_for_release(parent); |
4038 | ||
4ab78683 KS |
4039 | /* |
4040 | * Unregister events and notify userspace. | |
4041 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
4042 | * directory to avoid race between userspace and kernelspace | |
4043 | */ | |
4044 | spin_lock(&cgrp->event_list_lock); | |
4045 | list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { | |
4046 | list_del(&event->list); | |
4047 | remove_wait_queue(event->wqh, &event->wait); | |
4048 | eventfd_signal(event->eventfd, 1); | |
4049 | schedule_work(&event->remove); | |
4050 | } | |
4051 | spin_unlock(&cgrp->event_list_lock); | |
4052 | ||
ddbcc7e8 | 4053 | mutex_unlock(&cgroup_mutex); |
ddbcc7e8 PM |
4054 | return 0; |
4055 | } | |
4056 | ||
06a11920 | 4057 | static void __init cgroup_init_subsys(struct cgroup_subsys *ss) |
ddbcc7e8 | 4058 | { |
ddbcc7e8 | 4059 | struct cgroup_subsys_state *css; |
cfe36bde DC |
4060 | |
4061 | printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); | |
ddbcc7e8 PM |
4062 | |
4063 | /* Create the top cgroup state for this subsystem */ | |
33a68ac1 | 4064 | list_add(&ss->sibling, &rootnode.subsys_list); |
ddbcc7e8 PM |
4065 | ss->root = &rootnode; |
4066 | css = ss->create(ss, dummytop); | |
4067 | /* We don't handle early failures gracefully */ | |
4068 | BUG_ON(IS_ERR(css)); | |
4069 | init_cgroup_css(css, ss, dummytop); | |
4070 | ||
e8d55fde | 4071 | /* Update the init_css_set to contain a subsys |
817929ec | 4072 | * pointer to this state - since the subsystem is |
e8d55fde LZ |
4073 | * newly registered, all tasks and hence the |
4074 | * init_css_set is in the subsystem's top cgroup. */ | |
4075 | init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; | |
ddbcc7e8 PM |
4076 | |
4077 | need_forkexit_callback |= ss->fork || ss->exit; | |
4078 | ||
e8d55fde LZ |
4079 | /* At system boot, before all subsystems have been |
4080 | * registered, no tasks have been forked, so we don't | |
4081 | * need to invoke fork callbacks here. */ | |
4082 | BUG_ON(!list_empty(&init_task.tasks)); | |
4083 | ||
999cd8a4 | 4084 | mutex_init(&ss->hierarchy_mutex); |
cfebe563 | 4085 | lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); |
ddbcc7e8 | 4086 | ss->active = 1; |
e6a1105b BB |
4087 | |
4088 | /* this function shouldn't be used with modular subsystems, since they | |
4089 | * need to register a subsys_id, among other things */ | |
4090 | BUG_ON(ss->module); | |
4091 | } | |
4092 | ||
4093 | /** | |
4094 | * cgroup_load_subsys: load and register a modular subsystem at runtime | |
4095 | * @ss: the subsystem to load | |
4096 | * | |
4097 | * This function should be called in a modular subsystem's initcall. If the | |
88393161 | 4098 | * subsystem is built as a module, it will be assigned a new subsys_id and set |
e6a1105b BB |
4099 | * up for use. If the subsystem is built-in anyway, work is delegated to the |
4100 | * simpler cgroup_init_subsys. | |
4101 | */ | |
4102 | int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) | |
4103 | { | |
4104 | int i; | |
4105 | struct cgroup_subsys_state *css; | |
4106 | ||
4107 | /* check name and function validity */ | |
4108 | if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || | |
4109 | ss->create == NULL || ss->destroy == NULL) | |
4110 | return -EINVAL; | |
4111 | ||
4112 | /* | |
4113 | * we don't support callbacks in modular subsystems. this check is | |
4114 | * before the ss->module check for consistency; a subsystem that could | |
4115 | * be a module should still have no callbacks even if the user isn't | |
4116 | * compiling it as one. | |
4117 | */ | |
4118 | if (ss->fork || ss->exit) | |
4119 | return -EINVAL; | |
4120 | ||
4121 | /* | |
4122 | * an optionally modular subsystem is built-in: we want to do nothing, | |
4123 | * since cgroup_init_subsys will have already taken care of it. | |
4124 | */ | |
4125 | if (ss->module == NULL) { | |
4126 | /* a few sanity checks */ | |
4127 | BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT); | |
4128 | BUG_ON(subsys[ss->subsys_id] != ss); | |
4129 | return 0; | |
4130 | } | |
4131 | ||
4132 | /* | |
4133 | * need to register a subsys id before anything else - for example, | |
4134 | * init_cgroup_css needs it. | |
4135 | */ | |
4136 | mutex_lock(&cgroup_mutex); | |
4137 | /* find the first empty slot in the array */ | |
4138 | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | |
4139 | if (subsys[i] == NULL) | |
4140 | break; | |
4141 | } | |
4142 | if (i == CGROUP_SUBSYS_COUNT) { | |
4143 | /* maximum number of subsystems already registered! */ | |
4144 | mutex_unlock(&cgroup_mutex); | |
4145 | return -EBUSY; | |
4146 | } | |
4147 | /* assign ourselves the subsys_id */ | |
4148 | ss->subsys_id = i; | |
4149 | subsys[i] = ss; | |
4150 | ||
4151 | /* | |
4152 | * no ss->create seems to need anything important in the ss struct, so | |
4153 | * this can happen first (i.e. before the rootnode attachment). | |
4154 | */ | |
4155 | css = ss->create(ss, dummytop); | |
4156 | if (IS_ERR(css)) { | |
4157 | /* failure case - need to deassign the subsys[] slot. */ | |
4158 | subsys[i] = NULL; | |
4159 | mutex_unlock(&cgroup_mutex); | |
4160 | return PTR_ERR(css); | |
4161 | } | |
4162 | ||
4163 | list_add(&ss->sibling, &rootnode.subsys_list); | |
4164 | ss->root = &rootnode; | |
4165 | ||
4166 | /* our new subsystem will be attached to the dummy hierarchy. */ | |
4167 | init_cgroup_css(css, ss, dummytop); | |
4168 | /* init_idr must be after init_cgroup_css because it sets css->id. */ | |
4169 | if (ss->use_id) { | |
4170 | int ret = cgroup_init_idr(ss, css); | |
4171 | if (ret) { | |
4172 | dummytop->subsys[ss->subsys_id] = NULL; | |
4173 | ss->destroy(ss, dummytop); | |
4174 | subsys[i] = NULL; | |
4175 | mutex_unlock(&cgroup_mutex); | |
4176 | return ret; | |
4177 | } | |
4178 | } | |
4179 | ||
4180 | /* | |
4181 | * Now we need to entangle the css into the existing css_sets. unlike | |
4182 | * in cgroup_init_subsys, there are now multiple css_sets, so each one | |
4183 | * will need a new pointer to it; done by iterating the css_set_table. | |
4184 | * furthermore, modifying the existing css_sets will corrupt the hash | |
4185 | * table state, so each changed css_set will need its hash recomputed. | |
4186 | * this is all done under the css_set_lock. | |
4187 | */ | |
4188 | write_lock(&css_set_lock); | |
4189 | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { | |
4190 | struct css_set *cg; | |
4191 | struct hlist_node *node, *tmp; | |
4192 | struct hlist_head *bucket = &css_set_table[i], *new_bucket; | |
4193 | ||
4194 | hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) { | |
4195 | /* skip entries that we already rehashed */ | |
4196 | if (cg->subsys[ss->subsys_id]) | |
4197 | continue; | |
4198 | /* remove existing entry */ | |
4199 | hlist_del(&cg->hlist); | |
4200 | /* set new value */ | |
4201 | cg->subsys[ss->subsys_id] = css; | |
4202 | /* recompute hash and restore entry */ | |
4203 | new_bucket = css_set_hash(cg->subsys); | |
4204 | hlist_add_head(&cg->hlist, new_bucket); | |
4205 | } | |
4206 | } | |
4207 | write_unlock(&css_set_lock); | |
4208 | ||
4209 | mutex_init(&ss->hierarchy_mutex); | |
4210 | lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); | |
4211 | ss->active = 1; | |
4212 | ||
e6a1105b BB |
4213 | /* success! */ |
4214 | mutex_unlock(&cgroup_mutex); | |
4215 | return 0; | |
ddbcc7e8 | 4216 | } |
e6a1105b | 4217 | EXPORT_SYMBOL_GPL(cgroup_load_subsys); |
ddbcc7e8 | 4218 | |
cf5d5941 BB |
4219 | /** |
4220 | * cgroup_unload_subsys: unload a modular subsystem | |
4221 | * @ss: the subsystem to unload | |
4222 | * | |
4223 | * This function should be called in a modular subsystem's exitcall. When this | |
4224 | * function is invoked, the refcount on the subsystem's module will be 0, so | |
4225 | * the subsystem will not be attached to any hierarchy. | |
4226 | */ | |
4227 | void cgroup_unload_subsys(struct cgroup_subsys *ss) | |
4228 | { | |
4229 | struct cg_cgroup_link *link; | |
4230 | struct hlist_head *hhead; | |
4231 | ||
4232 | BUG_ON(ss->module == NULL); | |
4233 | ||
4234 | /* | |
4235 | * we shouldn't be called if the subsystem is in use, and the use of | |
4236 | * try_module_get in parse_cgroupfs_options should ensure that it | |
4237 | * doesn't start being used while we're killing it off. | |
4238 | */ | |
4239 | BUG_ON(ss->root != &rootnode); | |
4240 | ||
4241 | mutex_lock(&cgroup_mutex); | |
4242 | /* deassign the subsys_id */ | |
4243 | BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT); | |
4244 | subsys[ss->subsys_id] = NULL; | |
4245 | ||
4246 | /* remove subsystem from rootnode's list of subsystems */ | |
8d258797 | 4247 | list_del_init(&ss->sibling); |
cf5d5941 BB |
4248 | |
4249 | /* | |
4250 | * disentangle the css from all css_sets attached to the dummytop. as | |
4251 | * in loading, we need to pay our respects to the hashtable gods. | |
4252 | */ | |
4253 | write_lock(&css_set_lock); | |
4254 | list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { | |
4255 | struct css_set *cg = link->cg; | |
4256 | ||
4257 | hlist_del(&cg->hlist); | |
4258 | BUG_ON(!cg->subsys[ss->subsys_id]); | |
4259 | cg->subsys[ss->subsys_id] = NULL; | |
4260 | hhead = css_set_hash(cg->subsys); | |
4261 | hlist_add_head(&cg->hlist, hhead); | |
4262 | } | |
4263 | write_unlock(&css_set_lock); | |
4264 | ||
4265 | /* | |
4266 | * remove subsystem's css from the dummytop and free it - need to free | |
4267 | * before marking as null because ss->destroy needs the cgrp->subsys | |
4268 | * pointer to find their state. note that this also takes care of | |
4269 | * freeing the css_id. | |
4270 | */ | |
4271 | ss->destroy(ss, dummytop); | |
4272 | dummytop->subsys[ss->subsys_id] = NULL; | |
4273 | ||
4274 | mutex_unlock(&cgroup_mutex); | |
4275 | } | |
4276 | EXPORT_SYMBOL_GPL(cgroup_unload_subsys); | |
4277 | ||
ddbcc7e8 | 4278 | /** |
a043e3b2 LZ |
4279 | * cgroup_init_early - cgroup initialization at system boot |
4280 | * | |
4281 | * Initialize cgroups at system boot, and initialize any | |
4282 | * subsystems that request early init. | |
ddbcc7e8 PM |
4283 | */ |
4284 | int __init cgroup_init_early(void) | |
4285 | { | |
4286 | int i; | |
146aa1bd | 4287 | atomic_set(&init_css_set.refcount, 1); |
817929ec PM |
4288 | INIT_LIST_HEAD(&init_css_set.cg_links); |
4289 | INIT_LIST_HEAD(&init_css_set.tasks); | |
472b1053 | 4290 | INIT_HLIST_NODE(&init_css_set.hlist); |
817929ec | 4291 | css_set_count = 1; |
ddbcc7e8 | 4292 | init_cgroup_root(&rootnode); |
817929ec PM |
4293 | root_count = 1; |
4294 | init_task.cgroups = &init_css_set; | |
4295 | ||
4296 | init_css_set_link.cg = &init_css_set; | |
7717f7ba | 4297 | init_css_set_link.cgrp = dummytop; |
bd89aabc | 4298 | list_add(&init_css_set_link.cgrp_link_list, |
817929ec PM |
4299 | &rootnode.top_cgroup.css_sets); |
4300 | list_add(&init_css_set_link.cg_link_list, | |
4301 | &init_css_set.cg_links); | |
ddbcc7e8 | 4302 | |
472b1053 LZ |
4303 | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) |
4304 | INIT_HLIST_HEAD(&css_set_table[i]); | |
4305 | ||
aae8aab4 BB |
4306 | /* at bootup time, we don't worry about modular subsystems */ |
4307 | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | |
ddbcc7e8 PM |
4308 | struct cgroup_subsys *ss = subsys[i]; |
4309 | ||
4310 | BUG_ON(!ss->name); | |
4311 | BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); | |
4312 | BUG_ON(!ss->create); | |
4313 | BUG_ON(!ss->destroy); | |
4314 | if (ss->subsys_id != i) { | |
cfe36bde | 4315 | printk(KERN_ERR "cgroup: Subsys %s id == %d\n", |
ddbcc7e8 PM |
4316 | ss->name, ss->subsys_id); |
4317 | BUG(); | |
4318 | } | |
4319 | ||
4320 | if (ss->early_init) | |
4321 | cgroup_init_subsys(ss); | |
4322 | } | |
4323 | return 0; | |
4324 | } | |
4325 | ||
4326 | /** | |
a043e3b2 LZ |
4327 | * cgroup_init - cgroup initialization |
4328 | * | |
4329 | * Register cgroup filesystem and /proc file, and initialize | |
4330 | * any subsystems that didn't request early init. | |
ddbcc7e8 PM |
4331 | */ |
4332 | int __init cgroup_init(void) | |
4333 | { | |
4334 | int err; | |
4335 | int i; | |
472b1053 | 4336 | struct hlist_head *hhead; |
a424316c PM |
4337 | |
4338 | err = bdi_init(&cgroup_backing_dev_info); | |
4339 | if (err) | |
4340 | return err; | |
ddbcc7e8 | 4341 | |
aae8aab4 BB |
4342 | /* at bootup time, we don't worry about modular subsystems */ |
4343 | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | |
ddbcc7e8 PM |
4344 | struct cgroup_subsys *ss = subsys[i]; |
4345 | if (!ss->early_init) | |
4346 | cgroup_init_subsys(ss); | |
38460b48 | 4347 | if (ss->use_id) |
e6a1105b | 4348 | cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); |
ddbcc7e8 PM |
4349 | } |
4350 | ||
472b1053 LZ |
4351 | /* Add init_css_set to the hash table */ |
4352 | hhead = css_set_hash(init_css_set.subsys); | |
4353 | hlist_add_head(&init_css_set.hlist, hhead); | |
2c6ab6d2 | 4354 | BUG_ON(!init_root_id(&rootnode)); |
676db4af GKH |
4355 | |
4356 | cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); | |
4357 | if (!cgroup_kobj) { | |
4358 | err = -ENOMEM; | |
4359 | goto out; | |
4360 | } | |
4361 | ||
ddbcc7e8 | 4362 | err = register_filesystem(&cgroup_fs_type); |
676db4af GKH |
4363 | if (err < 0) { |
4364 | kobject_put(cgroup_kobj); | |
ddbcc7e8 | 4365 | goto out; |
676db4af | 4366 | } |
ddbcc7e8 | 4367 | |
46ae220b | 4368 | proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); |
a424316c | 4369 | |
ddbcc7e8 | 4370 | out: |
a424316c PM |
4371 | if (err) |
4372 | bdi_destroy(&cgroup_backing_dev_info); | |
4373 | ||
ddbcc7e8 PM |
4374 | return err; |
4375 | } | |
b4f48b63 | 4376 | |
a424316c PM |
4377 | /* |
4378 | * proc_cgroup_show() | |
4379 | * - Print task's cgroup paths into seq_file, one line for each hierarchy | |
4380 | * - Used for /proc/<pid>/cgroup. | |
4381 | * - No need to task_lock(tsk) on this tsk->cgroup reference, as it | |
4382 | * doesn't really matter if tsk->cgroup changes after we read it, | |
956db3ca | 4383 | * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it |
a424316c PM |
4384 | * anyway. No need to check that tsk->cgroup != NULL, thanks to |
4385 | * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks | |
4386 | * cgroup to top_cgroup. | |
4387 | */ | |
4388 | ||
4389 | /* TODO: Use a proper seq_file iterator */ | |
4390 | static int proc_cgroup_show(struct seq_file *m, void *v) | |
4391 | { | |
4392 | struct pid *pid; | |
4393 | struct task_struct *tsk; | |
4394 | char *buf; | |
4395 | int retval; | |
4396 | struct cgroupfs_root *root; | |
4397 | ||
4398 | retval = -ENOMEM; | |
4399 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | |
4400 | if (!buf) | |
4401 | goto out; | |
4402 | ||
4403 | retval = -ESRCH; | |
4404 | pid = m->private; | |
4405 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
4406 | if (!tsk) | |
4407 | goto out_free; | |
4408 | ||
4409 | retval = 0; | |
4410 | ||
4411 | mutex_lock(&cgroup_mutex); | |
4412 | ||
e5f6a860 | 4413 | for_each_active_root(root) { |
a424316c | 4414 | struct cgroup_subsys *ss; |
bd89aabc | 4415 | struct cgroup *cgrp; |
a424316c PM |
4416 | int count = 0; |
4417 | ||
2c6ab6d2 | 4418 | seq_printf(m, "%d:", root->hierarchy_id); |
a424316c PM |
4419 | for_each_subsys(root, ss) |
4420 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | |
c6d57f33 PM |
4421 | if (strlen(root->name)) |
4422 | seq_printf(m, "%sname=%s", count ? "," : "", | |
4423 | root->name); | |
a424316c | 4424 | seq_putc(m, ':'); |
7717f7ba | 4425 | cgrp = task_cgroup_from_root(tsk, root); |
bd89aabc | 4426 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
a424316c PM |
4427 | if (retval < 0) |
4428 | goto out_unlock; | |
4429 | seq_puts(m, buf); | |
4430 | seq_putc(m, '\n'); | |
4431 | } | |
4432 | ||
4433 | out_unlock: | |
4434 | mutex_unlock(&cgroup_mutex); | |
4435 | put_task_struct(tsk); | |
4436 | out_free: | |
4437 | kfree(buf); | |
4438 | out: | |
4439 | return retval; | |
4440 | } | |
4441 | ||
4442 | static int cgroup_open(struct inode *inode, struct file *file) | |
4443 | { | |
4444 | struct pid *pid = PROC_I(inode)->pid; | |
4445 | return single_open(file, proc_cgroup_show, pid); | |
4446 | } | |
4447 | ||
828c0950 | 4448 | const struct file_operations proc_cgroup_operations = { |
a424316c PM |
4449 | .open = cgroup_open, |
4450 | .read = seq_read, | |
4451 | .llseek = seq_lseek, | |
4452 | .release = single_release, | |
4453 | }; | |
4454 | ||
4455 | /* Display information about each subsystem and each hierarchy */ | |
4456 | static int proc_cgroupstats_show(struct seq_file *m, void *v) | |
4457 | { | |
4458 | int i; | |
a424316c | 4459 | |
8bab8dde | 4460 | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); |
aae8aab4 BB |
4461 | /* |
4462 | * ideally we don't want subsystems moving around while we do this. | |
4463 | * cgroup_mutex is also necessary to guarantee an atomic snapshot of | |
4464 | * subsys/hierarchy state. | |
4465 | */ | |
a424316c | 4466 | mutex_lock(&cgroup_mutex); |
a424316c PM |
4467 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
4468 | struct cgroup_subsys *ss = subsys[i]; | |
aae8aab4 BB |
4469 | if (ss == NULL) |
4470 | continue; | |
2c6ab6d2 PM |
4471 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
4472 | ss->name, ss->root->hierarchy_id, | |
8bab8dde | 4473 | ss->root->number_of_cgroups, !ss->disabled); |
a424316c PM |
4474 | } |
4475 | mutex_unlock(&cgroup_mutex); | |
4476 | return 0; | |
4477 | } | |
4478 | ||
4479 | static int cgroupstats_open(struct inode *inode, struct file *file) | |
4480 | { | |
9dce07f1 | 4481 | return single_open(file, proc_cgroupstats_show, NULL); |
a424316c PM |
4482 | } |
4483 | ||
828c0950 | 4484 | static const struct file_operations proc_cgroupstats_operations = { |
a424316c PM |
4485 | .open = cgroupstats_open, |
4486 | .read = seq_read, | |
4487 | .llseek = seq_lseek, | |
4488 | .release = single_release, | |
4489 | }; | |
4490 | ||
b4f48b63 PM |
4491 | /** |
4492 | * cgroup_fork - attach newly forked task to its parents cgroup. | |
a043e3b2 | 4493 | * @child: pointer to task_struct of forking parent process. |
b4f48b63 PM |
4494 | * |
4495 | * Description: A task inherits its parent's cgroup at fork(). | |
4496 | * | |
4497 | * A pointer to the shared css_set was automatically copied in | |
4498 | * fork.c by dup_task_struct(). However, we ignore that copy, since | |
4499 | * it was not made under the protection of RCU or cgroup_mutex, so | |
956db3ca | 4500 | * might no longer be a valid cgroup pointer. cgroup_attach_task() might |
817929ec PM |
4501 | * have already changed current->cgroups, allowing the previously |
4502 | * referenced cgroup group to be removed and freed. | |
b4f48b63 PM |
4503 | * |
4504 | * At the point that cgroup_fork() is called, 'current' is the parent | |
4505 | * task, and the passed argument 'child' points to the child task. | |
4506 | */ | |
4507 | void cgroup_fork(struct task_struct *child) | |
4508 | { | |
817929ec PM |
4509 | task_lock(current); |
4510 | child->cgroups = current->cgroups; | |
4511 | get_css_set(child->cgroups); | |
4512 | task_unlock(current); | |
4513 | INIT_LIST_HEAD(&child->cg_list); | |
b4f48b63 PM |
4514 | } |
4515 | ||
4516 | /** | |
a043e3b2 LZ |
4517 | * cgroup_fork_callbacks - run fork callbacks |
4518 | * @child: the new task | |
4519 | * | |
4520 | * Called on a new task very soon before adding it to the | |
4521 | * tasklist. No need to take any locks since no-one can | |
4522 | * be operating on this task. | |
b4f48b63 PM |
4523 | */ |
4524 | void cgroup_fork_callbacks(struct task_struct *child) | |
4525 | { | |
4526 | if (need_forkexit_callback) { | |
4527 | int i; | |
aae8aab4 BB |
4528 | /* |
4529 | * forkexit callbacks are only supported for builtin | |
4530 | * subsystems, and the builtin section of the subsys array is | |
4531 | * immutable, so we don't need to lock the subsys array here. | |
4532 | */ | |
4533 | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | |
b4f48b63 PM |
4534 | struct cgroup_subsys *ss = subsys[i]; |
4535 | if (ss->fork) | |
4536 | ss->fork(ss, child); | |
4537 | } | |
4538 | } | |
4539 | } | |
4540 | ||
817929ec | 4541 | /** |
a043e3b2 LZ |
4542 | * cgroup_post_fork - called on a new task after adding it to the task list |
4543 | * @child: the task in question | |
4544 | * | |
4545 | * Adds the task to the list running through its css_set if necessary. | |
4546 | * Has to be after the task is visible on the task list in case we race | |
4547 | * with the first call to cgroup_iter_start() - to guarantee that the | |
4548 | * new task ends up on its list. | |
4549 | */ | |
817929ec PM |
4550 | void cgroup_post_fork(struct task_struct *child) |
4551 | { | |
4552 | if (use_task_css_set_links) { | |
4553 | write_lock(&css_set_lock); | |
b12b533f | 4554 | task_lock(child); |
817929ec PM |
4555 | if (list_empty(&child->cg_list)) |
4556 | list_add(&child->cg_list, &child->cgroups->tasks); | |
b12b533f | 4557 | task_unlock(child); |
817929ec PM |
4558 | write_unlock(&css_set_lock); |
4559 | } | |
4560 | } | |
b4f48b63 PM |
4561 | /** |
4562 | * cgroup_exit - detach cgroup from exiting task | |
4563 | * @tsk: pointer to task_struct of exiting process | |
a043e3b2 | 4564 | * @run_callback: run exit callbacks? |
b4f48b63 PM |
4565 | * |
4566 | * Description: Detach cgroup from @tsk and release it. | |
4567 | * | |
4568 | * Note that cgroups marked notify_on_release force every task in | |
4569 | * them to take the global cgroup_mutex mutex when exiting. | |
4570 | * This could impact scaling on very large systems. Be reluctant to | |
4571 | * use notify_on_release cgroups where very high task exit scaling | |
4572 | * is required on large systems. | |
4573 | * | |
4574 | * the_top_cgroup_hack: | |
4575 | * | |
4576 | * Set the exiting tasks cgroup to the root cgroup (top_cgroup). | |
4577 | * | |
4578 | * We call cgroup_exit() while the task is still competent to | |
4579 | * handle notify_on_release(), then leave the task attached to the | |
4580 | * root cgroup in each hierarchy for the remainder of its exit. | |
4581 | * | |
4582 | * To do this properly, we would increment the reference count on | |
4583 | * top_cgroup, and near the very end of the kernel/exit.c do_exit() | |
4584 | * code we would add a second cgroup function call, to drop that | |
4585 | * reference. This would just create an unnecessary hot spot on | |
4586 | * the top_cgroup reference count, to no avail. | |
4587 | * | |
4588 | * Normally, holding a reference to a cgroup without bumping its | |
4589 | * count is unsafe. The cgroup could go away, or someone could | |
4590 | * attach us to a different cgroup, decrementing the count on | |
4591 | * the first cgroup that we never incremented. But in this case, | |
4592 | * top_cgroup isn't going away, and either task has PF_EXITING set, | |
956db3ca CW |
4593 | * which wards off any cgroup_attach_task() attempts, or task is a failed |
4594 | * fork, never visible to cgroup_attach_task. | |
b4f48b63 PM |
4595 | */ |
4596 | void cgroup_exit(struct task_struct *tsk, int run_callbacks) | |
4597 | { | |
817929ec | 4598 | struct css_set *cg; |
d41d5a01 | 4599 | int i; |
817929ec PM |
4600 | |
4601 | /* | |
4602 | * Unlink from the css_set task list if necessary. | |
4603 | * Optimistically check cg_list before taking | |
4604 | * css_set_lock | |
4605 | */ | |
4606 | if (!list_empty(&tsk->cg_list)) { | |
4607 | write_lock(&css_set_lock); | |
4608 | if (!list_empty(&tsk->cg_list)) | |
8d258797 | 4609 | list_del_init(&tsk->cg_list); |
817929ec PM |
4610 | write_unlock(&css_set_lock); |
4611 | } | |
4612 | ||
b4f48b63 PM |
4613 | /* Reassign the task to the init_css_set. */ |
4614 | task_lock(tsk); | |
817929ec PM |
4615 | cg = tsk->cgroups; |
4616 | tsk->cgroups = &init_css_set; | |
d41d5a01 PZ |
4617 | |
4618 | if (run_callbacks && need_forkexit_callback) { | |
4619 | /* | |
4620 | * modular subsystems can't use callbacks, so no need to lock | |
4621 | * the subsys array | |
4622 | */ | |
4623 | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | |
4624 | struct cgroup_subsys *ss = subsys[i]; | |
4625 | if (ss->exit) { | |
4626 | struct cgroup *old_cgrp = | |
4627 | rcu_dereference_raw(cg->subsys[i])->cgroup; | |
4628 | struct cgroup *cgrp = task_cgroup(tsk, i); | |
4629 | ss->exit(ss, cgrp, old_cgrp, tsk); | |
4630 | } | |
4631 | } | |
4632 | } | |
b4f48b63 | 4633 | task_unlock(tsk); |
d41d5a01 | 4634 | |
817929ec | 4635 | if (cg) |
81a6a5cd | 4636 | put_css_set_taskexit(cg); |
b4f48b63 | 4637 | } |
697f4161 | 4638 | |
a043e3b2 | 4639 | /** |
313e924c | 4640 | * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp |
a043e3b2 | 4641 | * @cgrp: the cgroup in question |
313e924c | 4642 | * @task: the task in question |
a043e3b2 | 4643 | * |
313e924c GN |
4644 | * See if @cgrp is a descendant of @task's cgroup in the appropriate |
4645 | * hierarchy. | |
697f4161 PM |
4646 | * |
4647 | * If we are sending in dummytop, then presumably we are creating | |
4648 | * the top cgroup in the subsystem. | |
4649 | * | |
4650 | * Called only by the ns (nsproxy) cgroup. | |
4651 | */ | |
313e924c | 4652 | int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) |
697f4161 PM |
4653 | { |
4654 | int ret; | |
4655 | struct cgroup *target; | |
697f4161 | 4656 | |
bd89aabc | 4657 | if (cgrp == dummytop) |
697f4161 PM |
4658 | return 1; |
4659 | ||
7717f7ba | 4660 | target = task_cgroup_from_root(task, cgrp->root); |
bd89aabc PM |
4661 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
4662 | cgrp = cgrp->parent; | |
4663 | ret = (cgrp == target); | |
697f4161 PM |
4664 | return ret; |
4665 | } | |
81a6a5cd | 4666 | |
bd89aabc | 4667 | static void check_for_release(struct cgroup *cgrp) |
81a6a5cd PM |
4668 | { |
4669 | /* All of these checks rely on RCU to keep the cgroup | |
4670 | * structure alive */ | |
bd89aabc PM |
4671 | if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) |
4672 | && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { | |
81a6a5cd PM |
4673 | /* Control Group is currently removeable. If it's not |
4674 | * already queued for a userspace notification, queue | |
4675 | * it now */ | |
4676 | int need_schedule_work = 0; | |
cdcc136f | 4677 | raw_spin_lock(&release_list_lock); |
bd89aabc PM |
4678 | if (!cgroup_is_removed(cgrp) && |
4679 | list_empty(&cgrp->release_list)) { | |
4680 | list_add(&cgrp->release_list, &release_list); | |
81a6a5cd PM |
4681 | need_schedule_work = 1; |
4682 | } | |
cdcc136f | 4683 | raw_spin_unlock(&release_list_lock); |
81a6a5cd PM |
4684 | if (need_schedule_work) |
4685 | schedule_work(&release_agent_work); | |
4686 | } | |
4687 | } | |
4688 | ||
d7b9fff7 DN |
4689 | /* Caller must verify that the css is not for root cgroup */ |
4690 | void __css_put(struct cgroup_subsys_state *css, int count) | |
81a6a5cd | 4691 | { |
bd89aabc | 4692 | struct cgroup *cgrp = css->cgroup; |
3dece834 | 4693 | int val; |
81a6a5cd | 4694 | rcu_read_lock(); |
d7b9fff7 | 4695 | val = atomic_sub_return(count, &css->refcnt); |
3dece834 | 4696 | if (val == 1) { |
ec64f515 KH |
4697 | if (notify_on_release(cgrp)) { |
4698 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | |
4699 | check_for_release(cgrp); | |
4700 | } | |
88703267 | 4701 | cgroup_wakeup_rmdir_waiter(cgrp); |
81a6a5cd PM |
4702 | } |
4703 | rcu_read_unlock(); | |
3dece834 | 4704 | WARN_ON_ONCE(val < 1); |
81a6a5cd | 4705 | } |
67523c48 | 4706 | EXPORT_SYMBOL_GPL(__css_put); |
81a6a5cd PM |
4707 | |
4708 | /* | |
4709 | * Notify userspace when a cgroup is released, by running the | |
4710 | * configured release agent with the name of the cgroup (path | |
4711 | * relative to the root of cgroup file system) as the argument. | |
4712 | * | |
4713 | * Most likely, this user command will try to rmdir this cgroup. | |
4714 | * | |
4715 | * This races with the possibility that some other task will be | |
4716 | * attached to this cgroup before it is removed, or that some other | |
4717 | * user task will 'mkdir' a child cgroup of this cgroup. That's ok. | |
4718 | * The presumed 'rmdir' will fail quietly if this cgroup is no longer | |
4719 | * unused, and this cgroup will be reprieved from its death sentence, | |
4720 | * to continue to serve a useful existence. Next time it's released, | |
4721 | * we will get notified again, if it still has 'notify_on_release' set. | |
4722 | * | |
4723 | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which | |
4724 | * means only wait until the task is successfully execve()'d. The | |
4725 | * separate release agent task is forked by call_usermodehelper(), | |
4726 | * then control in this thread returns here, without waiting for the | |
4727 | * release agent task. We don't bother to wait because the caller of | |
4728 | * this routine has no use for the exit status of the release agent | |
4729 | * task, so no sense holding our caller up for that. | |
81a6a5cd | 4730 | */ |
81a6a5cd PM |
4731 | static void cgroup_release_agent(struct work_struct *work) |
4732 | { | |
4733 | BUG_ON(work != &release_agent_work); | |
4734 | mutex_lock(&cgroup_mutex); | |
cdcc136f | 4735 | raw_spin_lock(&release_list_lock); |
81a6a5cd PM |
4736 | while (!list_empty(&release_list)) { |
4737 | char *argv[3], *envp[3]; | |
4738 | int i; | |
e788e066 | 4739 | char *pathbuf = NULL, *agentbuf = NULL; |
bd89aabc | 4740 | struct cgroup *cgrp = list_entry(release_list.next, |
81a6a5cd PM |
4741 | struct cgroup, |
4742 | release_list); | |
bd89aabc | 4743 | list_del_init(&cgrp->release_list); |
cdcc136f | 4744 | raw_spin_unlock(&release_list_lock); |
81a6a5cd | 4745 | pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
e788e066 PM |
4746 | if (!pathbuf) |
4747 | goto continue_free; | |
4748 | if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) | |
4749 | goto continue_free; | |
4750 | agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); | |
4751 | if (!agentbuf) | |
4752 | goto continue_free; | |
81a6a5cd PM |
4753 | |
4754 | i = 0; | |
e788e066 PM |
4755 | argv[i++] = agentbuf; |
4756 | argv[i++] = pathbuf; | |
81a6a5cd PM |
4757 | argv[i] = NULL; |
4758 | ||
4759 | i = 0; | |
4760 | /* minimal command environment */ | |
4761 | envp[i++] = "HOME=/"; | |
4762 | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | |
4763 | envp[i] = NULL; | |
4764 | ||
4765 | /* Drop the lock while we invoke the usermode helper, | |
4766 | * since the exec could involve hitting disk and hence | |
4767 | * be a slow process */ | |
4768 | mutex_unlock(&cgroup_mutex); | |
4769 | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); | |
81a6a5cd | 4770 | mutex_lock(&cgroup_mutex); |
e788e066 PM |
4771 | continue_free: |
4772 | kfree(pathbuf); | |
4773 | kfree(agentbuf); | |
cdcc136f | 4774 | raw_spin_lock(&release_list_lock); |
81a6a5cd | 4775 | } |
cdcc136f | 4776 | raw_spin_unlock(&release_list_lock); |
81a6a5cd PM |
4777 | mutex_unlock(&cgroup_mutex); |
4778 | } | |
8bab8dde PM |
4779 | |
4780 | static int __init cgroup_disable(char *str) | |
4781 | { | |
4782 | int i; | |
4783 | char *token; | |
4784 | ||
4785 | while ((token = strsep(&str, ",")) != NULL) { | |
4786 | if (!*token) | |
4787 | continue; | |
aae8aab4 BB |
4788 | /* |
4789 | * cgroup_disable, being at boot time, can't know about module | |
4790 | * subsystems, so we don't worry about them. | |
4791 | */ | |
4792 | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | |
8bab8dde PM |
4793 | struct cgroup_subsys *ss = subsys[i]; |
4794 | ||
4795 | if (!strcmp(token, ss->name)) { | |
4796 | ss->disabled = 1; | |
4797 | printk(KERN_INFO "Disabling %s control group" | |
4798 | " subsystem\n", ss->name); | |
4799 | break; | |
4800 | } | |
4801 | } | |
4802 | } | |
4803 | return 1; | |
4804 | } | |
4805 | __setup("cgroup_disable=", cgroup_disable); | |
38460b48 KH |
4806 | |
4807 | /* | |
4808 | * Functons for CSS ID. | |
4809 | */ | |
4810 | ||
4811 | /* | |
4812 | *To get ID other than 0, this should be called when !cgroup_is_removed(). | |
4813 | */ | |
4814 | unsigned short css_id(struct cgroup_subsys_state *css) | |
4815 | { | |
7f0f1546 KH |
4816 | struct css_id *cssid; |
4817 | ||
4818 | /* | |
4819 | * This css_id() can return correct value when somone has refcnt | |
4820 | * on this or this is under rcu_read_lock(). Once css->id is allocated, | |
4821 | * it's unchanged until freed. | |
4822 | */ | |
d8bf4ca9 | 4823 | cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); |
38460b48 KH |
4824 | |
4825 | if (cssid) | |
4826 | return cssid->id; | |
4827 | return 0; | |
4828 | } | |
67523c48 | 4829 | EXPORT_SYMBOL_GPL(css_id); |
38460b48 KH |
4830 | |
4831 | unsigned short css_depth(struct cgroup_subsys_state *css) | |
4832 | { | |
7f0f1546 KH |
4833 | struct css_id *cssid; |
4834 | ||
d8bf4ca9 | 4835 | cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); |
38460b48 KH |
4836 | |
4837 | if (cssid) | |
4838 | return cssid->depth; | |
4839 | return 0; | |
4840 | } | |
67523c48 | 4841 | EXPORT_SYMBOL_GPL(css_depth); |
38460b48 | 4842 | |
747388d7 KH |
4843 | /** |
4844 | * css_is_ancestor - test "root" css is an ancestor of "child" | |
4845 | * @child: the css to be tested. | |
4846 | * @root: the css supporsed to be an ancestor of the child. | |
4847 | * | |
4848 | * Returns true if "root" is an ancestor of "child" in its hierarchy. Because | |
4849 | * this function reads css->id, this use rcu_dereference() and rcu_read_lock(). | |
4850 | * But, considering usual usage, the csses should be valid objects after test. | |
4851 | * Assuming that the caller will do some action to the child if this returns | |
4852 | * returns true, the caller must take "child";s reference count. | |
4853 | * If "child" is valid object and this returns true, "root" is valid, too. | |
4854 | */ | |
4855 | ||
38460b48 | 4856 | bool css_is_ancestor(struct cgroup_subsys_state *child, |
0b7f569e | 4857 | const struct cgroup_subsys_state *root) |
38460b48 | 4858 | { |
747388d7 KH |
4859 | struct css_id *child_id; |
4860 | struct css_id *root_id; | |
4861 | bool ret = true; | |
38460b48 | 4862 | |
747388d7 KH |
4863 | rcu_read_lock(); |
4864 | child_id = rcu_dereference(child->id); | |
4865 | root_id = rcu_dereference(root->id); | |
4866 | if (!child_id | |
4867 | || !root_id | |
4868 | || (child_id->depth < root_id->depth) | |
4869 | || (child_id->stack[root_id->depth] != root_id->id)) | |
4870 | ret = false; | |
4871 | rcu_read_unlock(); | |
4872 | return ret; | |
38460b48 KH |
4873 | } |
4874 | ||
38460b48 KH |
4875 | void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) |
4876 | { | |
4877 | struct css_id *id = css->id; | |
4878 | /* When this is called before css_id initialization, id can be NULL */ | |
4879 | if (!id) | |
4880 | return; | |
4881 | ||
4882 | BUG_ON(!ss->use_id); | |
4883 | ||
4884 | rcu_assign_pointer(id->css, NULL); | |
4885 | rcu_assign_pointer(css->id, NULL); | |
c1e2ee2d | 4886 | write_lock(&ss->id_lock); |
38460b48 | 4887 | idr_remove(&ss->idr, id->id); |
c1e2ee2d | 4888 | write_unlock(&ss->id_lock); |
025cea99 | 4889 | kfree_rcu(id, rcu_head); |
38460b48 | 4890 | } |
67523c48 | 4891 | EXPORT_SYMBOL_GPL(free_css_id); |
38460b48 KH |
4892 | |
4893 | /* | |
4894 | * This is called by init or create(). Then, calls to this function are | |
4895 | * always serialized (By cgroup_mutex() at create()). | |
4896 | */ | |
4897 | ||
4898 | static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) | |
4899 | { | |
4900 | struct css_id *newid; | |
4901 | int myid, error, size; | |
4902 | ||
4903 | BUG_ON(!ss->use_id); | |
4904 | ||
4905 | size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); | |
4906 | newid = kzalloc(size, GFP_KERNEL); | |
4907 | if (!newid) | |
4908 | return ERR_PTR(-ENOMEM); | |
4909 | /* get id */ | |
4910 | if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { | |
4911 | error = -ENOMEM; | |
4912 | goto err_out; | |
4913 | } | |
c1e2ee2d | 4914 | write_lock(&ss->id_lock); |
38460b48 KH |
4915 | /* Don't use 0. allocates an ID of 1-65535 */ |
4916 | error = idr_get_new_above(&ss->idr, newid, 1, &myid); | |
c1e2ee2d | 4917 | write_unlock(&ss->id_lock); |
38460b48 KH |
4918 | |
4919 | /* Returns error when there are no free spaces for new ID.*/ | |
4920 | if (error) { | |
4921 | error = -ENOSPC; | |
4922 | goto err_out; | |
4923 | } | |
4924 | if (myid > CSS_ID_MAX) | |
4925 | goto remove_idr; | |
4926 | ||
4927 | newid->id = myid; | |
4928 | newid->depth = depth; | |
4929 | return newid; | |
4930 | remove_idr: | |
4931 | error = -ENOSPC; | |
c1e2ee2d | 4932 | write_lock(&ss->id_lock); |
38460b48 | 4933 | idr_remove(&ss->idr, myid); |
c1e2ee2d | 4934 | write_unlock(&ss->id_lock); |
38460b48 KH |
4935 | err_out: |
4936 | kfree(newid); | |
4937 | return ERR_PTR(error); | |
4938 | ||
4939 | } | |
4940 | ||
e6a1105b BB |
4941 | static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, |
4942 | struct cgroup_subsys_state *rootcss) | |
38460b48 KH |
4943 | { |
4944 | struct css_id *newid; | |
38460b48 | 4945 | |
c1e2ee2d | 4946 | rwlock_init(&ss->id_lock); |
38460b48 KH |
4947 | idr_init(&ss->idr); |
4948 | ||
38460b48 KH |
4949 | newid = get_new_cssid(ss, 0); |
4950 | if (IS_ERR(newid)) | |
4951 | return PTR_ERR(newid); | |
4952 | ||
4953 | newid->stack[0] = newid->id; | |
4954 | newid->css = rootcss; | |
4955 | rootcss->id = newid; | |
4956 | return 0; | |
4957 | } | |
4958 | ||
4959 | static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, | |
4960 | struct cgroup *child) | |
4961 | { | |
4962 | int subsys_id, i, depth = 0; | |
4963 | struct cgroup_subsys_state *parent_css, *child_css; | |
fae9c791 | 4964 | struct css_id *child_id, *parent_id; |
38460b48 KH |
4965 | |
4966 | subsys_id = ss->subsys_id; | |
4967 | parent_css = parent->subsys[subsys_id]; | |
4968 | child_css = child->subsys[subsys_id]; | |
38460b48 | 4969 | parent_id = parent_css->id; |
94b3dd0f | 4970 | depth = parent_id->depth + 1; |
38460b48 KH |
4971 | |
4972 | child_id = get_new_cssid(ss, depth); | |
4973 | if (IS_ERR(child_id)) | |
4974 | return PTR_ERR(child_id); | |
4975 | ||
4976 | for (i = 0; i < depth; i++) | |
4977 | child_id->stack[i] = parent_id->stack[i]; | |
4978 | child_id->stack[depth] = child_id->id; | |
4979 | /* | |
4980 | * child_id->css pointer will be set after this cgroup is available | |
4981 | * see cgroup_populate_dir() | |
4982 | */ | |
4983 | rcu_assign_pointer(child_css->id, child_id); | |
4984 | ||
4985 | return 0; | |
4986 | } | |
4987 | ||
4988 | /** | |
4989 | * css_lookup - lookup css by id | |
4990 | * @ss: cgroup subsys to be looked into. | |
4991 | * @id: the id | |
4992 | * | |
4993 | * Returns pointer to cgroup_subsys_state if there is valid one with id. | |
4994 | * NULL if not. Should be called under rcu_read_lock() | |
4995 | */ | |
4996 | struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) | |
4997 | { | |
4998 | struct css_id *cssid = NULL; | |
4999 | ||
5000 | BUG_ON(!ss->use_id); | |
5001 | cssid = idr_find(&ss->idr, id); | |
5002 | ||
5003 | if (unlikely(!cssid)) | |
5004 | return NULL; | |
5005 | ||
5006 | return rcu_dereference(cssid->css); | |
5007 | } | |
67523c48 | 5008 | EXPORT_SYMBOL_GPL(css_lookup); |
38460b48 KH |
5009 | |
5010 | /** | |
5011 | * css_get_next - lookup next cgroup under specified hierarchy. | |
5012 | * @ss: pointer to subsystem | |
5013 | * @id: current position of iteration. | |
5014 | * @root: pointer to css. search tree under this. | |
5015 | * @foundid: position of found object. | |
5016 | * | |
5017 | * Search next css under the specified hierarchy of rootid. Calling under | |
5018 | * rcu_read_lock() is necessary. Returns NULL if it reaches the end. | |
5019 | */ | |
5020 | struct cgroup_subsys_state * | |
5021 | css_get_next(struct cgroup_subsys *ss, int id, | |
5022 | struct cgroup_subsys_state *root, int *foundid) | |
5023 | { | |
5024 | struct cgroup_subsys_state *ret = NULL; | |
5025 | struct css_id *tmp; | |
5026 | int tmpid; | |
5027 | int rootid = css_id(root); | |
5028 | int depth = css_depth(root); | |
5029 | ||
5030 | if (!rootid) | |
5031 | return NULL; | |
5032 | ||
5033 | BUG_ON(!ss->use_id); | |
5034 | /* fill start point for scan */ | |
5035 | tmpid = id; | |
5036 | while (1) { | |
5037 | /* | |
5038 | * scan next entry from bitmap(tree), tmpid is updated after | |
5039 | * idr_get_next(). | |
5040 | */ | |
c1e2ee2d | 5041 | read_lock(&ss->id_lock); |
38460b48 | 5042 | tmp = idr_get_next(&ss->idr, &tmpid); |
c1e2ee2d | 5043 | read_unlock(&ss->id_lock); |
38460b48 KH |
5044 | |
5045 | if (!tmp) | |
5046 | break; | |
5047 | if (tmp->depth >= depth && tmp->stack[depth] == rootid) { | |
5048 | ret = rcu_dereference(tmp->css); | |
5049 | if (ret) { | |
5050 | *foundid = tmpid; | |
5051 | break; | |
5052 | } | |
5053 | } | |
5054 | /* continue to scan from next id */ | |
5055 | tmpid = tmpid + 1; | |
5056 | } | |
5057 | return ret; | |
5058 | } | |
5059 | ||
e5d1367f SE |
5060 | /* |
5061 | * get corresponding css from file open on cgroupfs directory | |
5062 | */ | |
5063 | struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) | |
5064 | { | |
5065 | struct cgroup *cgrp; | |
5066 | struct inode *inode; | |
5067 | struct cgroup_subsys_state *css; | |
5068 | ||
5069 | inode = f->f_dentry->d_inode; | |
5070 | /* check in cgroup filesystem dir */ | |
5071 | if (inode->i_op != &cgroup_dir_inode_operations) | |
5072 | return ERR_PTR(-EBADF); | |
5073 | ||
5074 | if (id < 0 || id >= CGROUP_SUBSYS_COUNT) | |
5075 | return ERR_PTR(-EINVAL); | |
5076 | ||
5077 | /* get cgroup */ | |
5078 | cgrp = __d_cgrp(f->f_dentry); | |
5079 | css = cgrp->subsys[id]; | |
5080 | return css ? css : ERR_PTR(-ENOENT); | |
5081 | } | |
5082 | ||
fe693435 PM |
5083 | #ifdef CONFIG_CGROUP_DEBUG |
5084 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | |
5085 | struct cgroup *cont) | |
5086 | { | |
5087 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | |
5088 | ||
5089 | if (!css) | |
5090 | return ERR_PTR(-ENOMEM); | |
5091 | ||
5092 | return css; | |
5093 | } | |
5094 | ||
5095 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | |
5096 | { | |
5097 | kfree(cont->subsys[debug_subsys_id]); | |
5098 | } | |
5099 | ||
5100 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | |
5101 | { | |
5102 | return atomic_read(&cont->count); | |
5103 | } | |
5104 | ||
5105 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | |
5106 | { | |
5107 | return cgroup_task_count(cont); | |
5108 | } | |
5109 | ||
5110 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | |
5111 | { | |
5112 | return (u64)(unsigned long)current->cgroups; | |
5113 | } | |
5114 | ||
5115 | static u64 current_css_set_refcount_read(struct cgroup *cont, | |
5116 | struct cftype *cft) | |
5117 | { | |
5118 | u64 count; | |
5119 | ||
5120 | rcu_read_lock(); | |
5121 | count = atomic_read(¤t->cgroups->refcount); | |
5122 | rcu_read_unlock(); | |
5123 | return count; | |
5124 | } | |
5125 | ||
7717f7ba PM |
5126 | static int current_css_set_cg_links_read(struct cgroup *cont, |
5127 | struct cftype *cft, | |
5128 | struct seq_file *seq) | |
5129 | { | |
5130 | struct cg_cgroup_link *link; | |
5131 | struct css_set *cg; | |
5132 | ||
5133 | read_lock(&css_set_lock); | |
5134 | rcu_read_lock(); | |
5135 | cg = rcu_dereference(current->cgroups); | |
5136 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | |
5137 | struct cgroup *c = link->cgrp; | |
5138 | const char *name; | |
5139 | ||
5140 | if (c->dentry) | |
5141 | name = c->dentry->d_name.name; | |
5142 | else | |
5143 | name = "?"; | |
2c6ab6d2 PM |
5144 | seq_printf(seq, "Root %d group %s\n", |
5145 | c->root->hierarchy_id, name); | |
7717f7ba PM |
5146 | } |
5147 | rcu_read_unlock(); | |
5148 | read_unlock(&css_set_lock); | |
5149 | return 0; | |
5150 | } | |
5151 | ||
5152 | #define MAX_TASKS_SHOWN_PER_CSS 25 | |
5153 | static int cgroup_css_links_read(struct cgroup *cont, | |
5154 | struct cftype *cft, | |
5155 | struct seq_file *seq) | |
5156 | { | |
5157 | struct cg_cgroup_link *link; | |
5158 | ||
5159 | read_lock(&css_set_lock); | |
5160 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | |
5161 | struct css_set *cg = link->cg; | |
5162 | struct task_struct *task; | |
5163 | int count = 0; | |
5164 | seq_printf(seq, "css_set %p\n", cg); | |
5165 | list_for_each_entry(task, &cg->tasks, cg_list) { | |
5166 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | |
5167 | seq_puts(seq, " ...\n"); | |
5168 | break; | |
5169 | } else { | |
5170 | seq_printf(seq, " task %d\n", | |
5171 | task_pid_vnr(task)); | |
5172 | } | |
5173 | } | |
5174 | } | |
5175 | read_unlock(&css_set_lock); | |
5176 | return 0; | |
5177 | } | |
5178 | ||
fe693435 PM |
5179 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) |
5180 | { | |
5181 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | |
5182 | } | |
5183 | ||
5184 | static struct cftype debug_files[] = { | |
5185 | { | |
5186 | .name = "cgroup_refcount", | |
5187 | .read_u64 = cgroup_refcount_read, | |
5188 | }, | |
5189 | { | |
5190 | .name = "taskcount", | |
5191 | .read_u64 = debug_taskcount_read, | |
5192 | }, | |
5193 | ||
5194 | { | |
5195 | .name = "current_css_set", | |
5196 | .read_u64 = current_css_set_read, | |
5197 | }, | |
5198 | ||
5199 | { | |
5200 | .name = "current_css_set_refcount", | |
5201 | .read_u64 = current_css_set_refcount_read, | |
5202 | }, | |
5203 | ||
7717f7ba PM |
5204 | { |
5205 | .name = "current_css_set_cg_links", | |
5206 | .read_seq_string = current_css_set_cg_links_read, | |
5207 | }, | |
5208 | ||
5209 | { | |
5210 | .name = "cgroup_css_links", | |
5211 | .read_seq_string = cgroup_css_links_read, | |
5212 | }, | |
5213 | ||
fe693435 PM |
5214 | { |
5215 | .name = "releasable", | |
5216 | .read_u64 = releasable_read, | |
5217 | }, | |
5218 | }; | |
5219 | ||
5220 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
5221 | { | |
5222 | return cgroup_add_files(cont, ss, debug_files, | |
5223 | ARRAY_SIZE(debug_files)); | |
5224 | } | |
5225 | ||
5226 | struct cgroup_subsys debug_subsys = { | |
5227 | .name = "debug", | |
5228 | .create = debug_create, | |
5229 | .destroy = debug_destroy, | |
5230 | .populate = debug_populate, | |
5231 | .subsys_id = debug_subsys_id, | |
5232 | }; | |
5233 | #endif /* CONFIG_CGROUP_DEBUG */ |