]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/profile.c | |
3 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
4 | * with configurable resolution, support for restricting the cpus on | |
5 | * which profiling is done, and switching between cpu time and | |
6 | * schedule() calls via kernel command line parameters passed at boot. | |
7 | * | |
8 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
9 | * Red Hat, July 2004 | |
10 | * Consolidation of architecture support code for profiling, | |
11 | * William Irwin, Oracle, July 2004 | |
12 | * Amortized hit count accounting via per-cpu open-addressed hashtables | |
13 | * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 | |
14 | */ | |
15 | ||
1da177e4 LT |
16 | #include <linux/module.h> |
17 | #include <linux/profile.h> | |
18 | #include <linux/bootmem.h> | |
19 | #include <linux/notifier.h> | |
20 | #include <linux/mm.h> | |
21 | #include <linux/cpumask.h> | |
22 | #include <linux/cpu.h> | |
1da177e4 | 23 | #include <linux/highmem.h> |
97d1f15b | 24 | #include <linux/mutex.h> |
22b8ce94 DH |
25 | #include <linux/slab.h> |
26 | #include <linux/vmalloc.h> | |
1da177e4 | 27 | #include <asm/sections.h> |
7d12e780 | 28 | #include <asm/irq_regs.h> |
e8edc6e0 | 29 | #include <asm/ptrace.h> |
1da177e4 LT |
30 | |
31 | struct profile_hit { | |
32 | u32 pc, hits; | |
33 | }; | |
34 | #define PROFILE_GRPSHIFT 3 | |
35 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
36 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
37 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
38 | ||
39 | /* Oprofile timer tick hook */ | |
b012d346 | 40 | static int (*timer_hook)(struct pt_regs *) __read_mostly; |
1da177e4 LT |
41 | |
42 | static atomic_t *prof_buffer; | |
43 | static unsigned long prof_len, prof_shift; | |
07031e14 | 44 | |
ece8a684 | 45 | int prof_on __read_mostly; |
07031e14 IM |
46 | EXPORT_SYMBOL_GPL(prof_on); |
47 | ||
c309b917 | 48 | static cpumask_var_t prof_cpu_mask; |
1da177e4 LT |
49 | #ifdef CONFIG_SMP |
50 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | |
51 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 52 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
53 | #endif /* CONFIG_SMP */ |
54 | ||
22b8ce94 | 55 | int profile_setup(char *str) |
1da177e4 | 56 | { |
22b8ce94 DH |
57 | static char schedstr[] = "schedule"; |
58 | static char sleepstr[] = "sleep"; | |
59 | static char kvmstr[] = "kvm"; | |
1da177e4 LT |
60 | int par; |
61 | ||
ece8a684 | 62 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 63 | #ifdef CONFIG_SCHEDSTATS |
ece8a684 IM |
64 | prof_on = SLEEP_PROFILING; |
65 | if (str[strlen(sleepstr)] == ',') | |
66 | str += strlen(sleepstr) + 1; | |
67 | if (get_option(&str, &par)) | |
68 | prof_shift = par; | |
69 | printk(KERN_INFO | |
70 | "kernel sleep profiling enabled (shift: %ld)\n", | |
71 | prof_shift); | |
b3da2a73 MG |
72 | #else |
73 | printk(KERN_WARNING | |
74 | "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); | |
75 | #endif /* CONFIG_SCHEDSTATS */ | |
a75acf85 | 76 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 77 | prof_on = SCHED_PROFILING; |
dfaa9c94 NYC |
78 | if (str[strlen(schedstr)] == ',') |
79 | str += strlen(schedstr) + 1; | |
80 | if (get_option(&str, &par)) | |
81 | prof_shift = par; | |
82 | printk(KERN_INFO | |
83 | "kernel schedule profiling enabled (shift: %ld)\n", | |
84 | prof_shift); | |
07031e14 IM |
85 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
86 | prof_on = KVM_PROFILING; | |
87 | if (str[strlen(kvmstr)] == ',') | |
88 | str += strlen(kvmstr) + 1; | |
89 | if (get_option(&str, &par)) | |
90 | prof_shift = par; | |
91 | printk(KERN_INFO | |
92 | "kernel KVM profiling enabled (shift: %ld)\n", | |
93 | prof_shift); | |
dfaa9c94 | 94 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
95 | prof_shift = par; |
96 | prof_on = CPU_PROFILING; | |
97 | printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", | |
98 | prof_shift); | |
99 | } | |
100 | return 1; | |
101 | } | |
102 | __setup("profile=", profile_setup); | |
103 | ||
104 | ||
ce05fcc3 | 105 | int __ref profile_init(void) |
1da177e4 | 106 | { |
22b8ce94 | 107 | int buffer_bytes; |
1ad82fd5 | 108 | if (!prof_on) |
22b8ce94 | 109 | return 0; |
1ad82fd5 | 110 | |
1da177e4 LT |
111 | /* only text is profiled */ |
112 | prof_len = (_etext - _stext) >> prof_shift; | |
22b8ce94 DH |
113 | buffer_bytes = prof_len*sizeof(atomic_t); |
114 | if (!slab_is_available()) { | |
115 | prof_buffer = alloc_bootmem(buffer_bytes); | |
c309b917 | 116 | alloc_bootmem_cpumask_var(&prof_cpu_mask); |
acd89579 | 117 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
22b8ce94 DH |
118 | return 0; |
119 | } | |
120 | ||
c309b917 RR |
121 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
122 | return -ENOMEM; | |
123 | ||
acd89579 HD |
124 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
125 | ||
22b8ce94 DH |
126 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL); |
127 | if (prof_buffer) | |
128 | return 0; | |
129 | ||
130 | prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO); | |
131 | if (prof_buffer) | |
132 | return 0; | |
133 | ||
134 | prof_buffer = vmalloc(buffer_bytes); | |
135 | if (prof_buffer) | |
136 | return 0; | |
137 | ||
c309b917 | 138 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 139 | return -ENOMEM; |
1da177e4 LT |
140 | } |
141 | ||
142 | /* Profile event notifications */ | |
1ad82fd5 | 143 | |
e041c683 AS |
144 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
145 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
146 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1ad82fd5 PC |
147 | |
148 | void profile_task_exit(struct task_struct *task) | |
1da177e4 | 149 | { |
e041c683 | 150 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 | 151 | } |
1ad82fd5 PC |
152 | |
153 | int profile_handoff_task(struct task_struct *task) | |
1da177e4 LT |
154 | { |
155 | int ret; | |
e041c683 | 156 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
157 | return (ret == NOTIFY_OK) ? 1 : 0; |
158 | } | |
159 | ||
160 | void profile_munmap(unsigned long addr) | |
161 | { | |
e041c683 | 162 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
163 | } |
164 | ||
1ad82fd5 | 165 | int task_handoff_register(struct notifier_block *n) |
1da177e4 | 166 | { |
e041c683 | 167 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 | 168 | } |
1ad82fd5 | 169 | EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4 | 170 | |
1ad82fd5 | 171 | int task_handoff_unregister(struct notifier_block *n) |
1da177e4 | 172 | { |
e041c683 | 173 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 | 174 | } |
1ad82fd5 | 175 | EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4 | 176 | |
1ad82fd5 | 177 | int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
178 | { |
179 | int err = -EINVAL; | |
1ad82fd5 | 180 | |
1da177e4 | 181 | switch (type) { |
1ad82fd5 PC |
182 | case PROFILE_TASK_EXIT: |
183 | err = blocking_notifier_chain_register( | |
184 | &task_exit_notifier, n); | |
185 | break; | |
186 | case PROFILE_MUNMAP: | |
187 | err = blocking_notifier_chain_register( | |
188 | &munmap_notifier, n); | |
189 | break; | |
1da177e4 | 190 | } |
1ad82fd5 | 191 | |
1da177e4 LT |
192 | return err; |
193 | } | |
1ad82fd5 | 194 | EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4 | 195 | |
1ad82fd5 | 196 | int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
197 | { |
198 | int err = -EINVAL; | |
1ad82fd5 | 199 | |
1da177e4 | 200 | switch (type) { |
1ad82fd5 PC |
201 | case PROFILE_TASK_EXIT: |
202 | err = blocking_notifier_chain_unregister( | |
203 | &task_exit_notifier, n); | |
204 | break; | |
205 | case PROFILE_MUNMAP: | |
206 | err = blocking_notifier_chain_unregister( | |
207 | &munmap_notifier, n); | |
208 | break; | |
1da177e4 LT |
209 | } |
210 | ||
1da177e4 LT |
211 | return err; |
212 | } | |
1ad82fd5 | 213 | EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4 LT |
214 | |
215 | int register_timer_hook(int (*hook)(struct pt_regs *)) | |
216 | { | |
217 | if (timer_hook) | |
218 | return -EBUSY; | |
219 | timer_hook = hook; | |
220 | return 0; | |
221 | } | |
1ad82fd5 | 222 | EXPORT_SYMBOL_GPL(register_timer_hook); |
1da177e4 LT |
223 | |
224 | void unregister_timer_hook(int (*hook)(struct pt_regs *)) | |
225 | { | |
226 | WARN_ON(hook != timer_hook); | |
227 | timer_hook = NULL; | |
228 | /* make sure all CPUs see the NULL hook */ | |
fbd568a3 | 229 | synchronize_sched(); /* Allow ongoing interrupts to complete. */ |
1da177e4 | 230 | } |
1da177e4 | 231 | EXPORT_SYMBOL_GPL(unregister_timer_hook); |
1da177e4 | 232 | |
1da177e4 LT |
233 | |
234 | #ifdef CONFIG_SMP | |
235 | /* | |
236 | * Each cpu has a pair of open-addressed hashtables for pending | |
237 | * profile hits. read_profile() IPI's all cpus to request them | |
238 | * to flip buffers and flushes their contents to prof_buffer itself. | |
239 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
240 | * use of having a second hashtable is for avoiding cacheline | |
241 | * contention that would otherwise happen during flushes of pending | |
242 | * profile hits required for the accuracy of reported profile hits | |
243 | * and so resurrect the interrupt livelock issue. | |
244 | * | |
245 | * The open-addressed hashtables are indexed by profile buffer slot | |
246 | * and hold the number of pending hits to that profile buffer slot on | |
247 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
248 | * are accounted to their corresponding profile buffer slots with | |
249 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
250 | * may be accounted to a profile buffer slot in a hashtable entry, | |
251 | * this amortizes a number of atomic profile buffer increments likely | |
252 | * to be far larger than the number of entries in the hashtable, | |
253 | * particularly given that the number of distinct profile buffer | |
254 | * positions to which hits are accounted during short intervals (e.g. | |
255 | * several seconds) is usually very small. Exclusion from buffer | |
256 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
257 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
258 | * process context). | |
1da177e4 LT |
259 | * The hash function is meant to be lightweight as opposed to strong, |
260 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
261 | * pagetable hash functions, but uses a full hashtable full of finite | |
262 | * collision chains, not just pairs of them. | |
263 | * | |
264 | * -- wli | |
265 | */ | |
266 | static void __profile_flip_buffers(void *unused) | |
267 | { | |
268 | int cpu = smp_processor_id(); | |
269 | ||
270 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
271 | } | |
272 | ||
273 | static void profile_flip_buffers(void) | |
274 | { | |
275 | int i, j, cpu; | |
276 | ||
97d1f15b | 277 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
278 | j = per_cpu(cpu_profile_flip, get_cpu()); |
279 | put_cpu(); | |
15c8b6c1 | 280 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
281 | for_each_online_cpu(cpu) { |
282 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
283 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
284 | if (!hits[i].hits) { | |
285 | if (hits[i].pc) | |
286 | hits[i].pc = 0; | |
287 | continue; | |
288 | } | |
289 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
290 | hits[i].hits = hits[i].pc = 0; | |
291 | } | |
292 | } | |
97d1f15b | 293 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
294 | } |
295 | ||
296 | static void profile_discard_flip_buffers(void) | |
297 | { | |
298 | int i, cpu; | |
299 | ||
97d1f15b | 300 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
301 | i = per_cpu(cpu_profile_flip, get_cpu()); |
302 | put_cpu(); | |
15c8b6c1 | 303 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
304 | for_each_online_cpu(cpu) { |
305 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
306 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
307 | } | |
97d1f15b | 308 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
309 | } |
310 | ||
ece8a684 | 311 | void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
312 | { |
313 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
314 | int i, j, cpu; | |
315 | struct profile_hit *hits; | |
316 | ||
317 | if (prof_on != type || !prof_buffer) | |
318 | return; | |
319 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); | |
320 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
321 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
322 | cpu = get_cpu(); | |
323 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
324 | if (!hits) { | |
325 | put_cpu(); | |
326 | return; | |
327 | } | |
ece8a684 IM |
328 | /* |
329 | * We buffer the global profiler buffer into a per-CPU | |
330 | * queue and thus reduce the number of global (and possibly | |
331 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
332 | */ | |
1da177e4 LT |
333 | local_irq_save(flags); |
334 | do { | |
335 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
336 | if (hits[i + j].pc == pc) { | |
ece8a684 | 337 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
338 | goto out; |
339 | } else if (!hits[i + j].hits) { | |
340 | hits[i + j].pc = pc; | |
ece8a684 | 341 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
342 | goto out; |
343 | } | |
344 | } | |
345 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
346 | } while (i != primary); | |
ece8a684 IM |
347 | |
348 | /* | |
349 | * Add the current hit(s) and flush the write-queue out | |
350 | * to the global buffer: | |
351 | */ | |
352 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
353 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
354 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
355 | hits[i].pc = hits[i].hits = 0; | |
356 | } | |
357 | out: | |
358 | local_irq_restore(flags); | |
359 | put_cpu(); | |
360 | } | |
361 | ||
84196414 | 362 | static int __cpuinit profile_cpu_callback(struct notifier_block *info, |
1da177e4 LT |
363 | unsigned long action, void *__cpu) |
364 | { | |
365 | int node, cpu = (unsigned long)__cpu; | |
366 | struct page *page; | |
367 | ||
368 | switch (action) { | |
369 | case CPU_UP_PREPARE: | |
8bb78442 | 370 | case CPU_UP_PREPARE_FROZEN: |
1da177e4 LT |
371 | node = cpu_to_node(cpu); |
372 | per_cpu(cpu_profile_flip, cpu) = 0; | |
373 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | |
fbd98167 | 374 | page = alloc_pages_node(node, |
4199cfa0 | 375 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 376 | 0); |
1da177e4 LT |
377 | if (!page) |
378 | return NOTIFY_BAD; | |
379 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); | |
380 | } | |
381 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | |
fbd98167 | 382 | page = alloc_pages_node(node, |
4199cfa0 | 383 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 384 | 0); |
1da177e4 LT |
385 | if (!page) |
386 | goto out_free; | |
387 | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | |
388 | } | |
389 | break; | |
1ad82fd5 | 390 | out_free: |
1da177e4 LT |
391 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
392 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
393 | __free_page(page); | |
394 | return NOTIFY_BAD; | |
395 | case CPU_ONLINE: | |
8bb78442 | 396 | case CPU_ONLINE_FROZEN: |
c309b917 RR |
397 | if (prof_cpu_mask != NULL) |
398 | cpumask_set_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
399 | break; |
400 | case CPU_UP_CANCELED: | |
8bb78442 | 401 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 402 | case CPU_DEAD: |
8bb78442 | 403 | case CPU_DEAD_FROZEN: |
c309b917 RR |
404 | if (prof_cpu_mask != NULL) |
405 | cpumask_clear_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
406 | if (per_cpu(cpu_profile_hits, cpu)[0]) { |
407 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
408 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
409 | __free_page(page); | |
410 | } | |
411 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
412 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
413 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
414 | __free_page(page); | |
415 | } | |
416 | break; | |
417 | } | |
418 | return NOTIFY_OK; | |
419 | } | |
1da177e4 LT |
420 | #else /* !CONFIG_SMP */ |
421 | #define profile_flip_buffers() do { } while (0) | |
422 | #define profile_discard_flip_buffers() do { } while (0) | |
02316067 | 423 | #define profile_cpu_callback NULL |
1da177e4 | 424 | |
ece8a684 | 425 | void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
426 | { |
427 | unsigned long pc; | |
428 | ||
429 | if (prof_on != type || !prof_buffer) | |
430 | return; | |
431 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; | |
ece8a684 | 432 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
433 | } |
434 | #endif /* !CONFIG_SMP */ | |
bbe1a59b AM |
435 | EXPORT_SYMBOL_GPL(profile_hits); |
436 | ||
7d12e780 | 437 | void profile_tick(int type) |
1da177e4 | 438 | { |
7d12e780 DH |
439 | struct pt_regs *regs = get_irq_regs(); |
440 | ||
1da177e4 LT |
441 | if (type == CPU_PROFILING && timer_hook) |
442 | timer_hook(regs); | |
c309b917 RR |
443 | if (!user_mode(regs) && prof_cpu_mask != NULL && |
444 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) | |
1da177e4 LT |
445 | profile_hit(type, (void *)profile_pc(regs)); |
446 | } | |
447 | ||
448 | #ifdef CONFIG_PROC_FS | |
449 | #include <linux/proc_fs.h> | |
450 | #include <asm/uaccess.h> | |
1da177e4 | 451 | |
1ad82fd5 | 452 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, |
1da177e4 LT |
453 | int count, int *eof, void *data) |
454 | { | |
c309b917 | 455 | int len = cpumask_scnprintf(page, count, data); |
1da177e4 LT |
456 | if (count - len < 2) |
457 | return -EINVAL; | |
458 | len += sprintf(page + len, "\n"); | |
459 | return len; | |
460 | } | |
461 | ||
1ad82fd5 PC |
462 | static int prof_cpu_mask_write_proc(struct file *file, |
463 | const char __user *buffer, unsigned long count, void *data) | |
1da177e4 | 464 | { |
c309b917 | 465 | struct cpumask *mask = data; |
1da177e4 | 466 | unsigned long full_count = count, err; |
c309b917 | 467 | cpumask_var_t new_value; |
1da177e4 | 468 | |
c309b917 RR |
469 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
470 | return -ENOMEM; | |
1da177e4 | 471 | |
c309b917 RR |
472 | err = cpumask_parse_user(buffer, count, new_value); |
473 | if (!err) { | |
474 | cpumask_copy(mask, new_value); | |
475 | err = full_count; | |
476 | } | |
477 | free_cpumask_var(new_value); | |
478 | return err; | |
1da177e4 LT |
479 | } |
480 | ||
481 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | |
482 | { | |
483 | struct proc_dir_entry *entry; | |
484 | ||
485 | /* create /proc/irq/prof_cpu_mask */ | |
1ad82fd5 PC |
486 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); |
487 | if (!entry) | |
1da177e4 | 488 | return; |
c309b917 | 489 | entry->data = prof_cpu_mask; |
1da177e4 LT |
490 | entry->read_proc = prof_cpu_mask_read_proc; |
491 | entry->write_proc = prof_cpu_mask_write_proc; | |
492 | } | |
493 | ||
494 | /* | |
495 | * This function accesses profiling information. The returned data is | |
496 | * binary: the sampling step and the actual contents of the profile | |
497 | * buffer. Use of the program readprofile is recommended in order to | |
498 | * get meaningful info out of these data. | |
499 | */ | |
500 | static ssize_t | |
501 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
502 | { | |
503 | unsigned long p = *ppos; | |
504 | ssize_t read; | |
1ad82fd5 | 505 | char *pnt; |
1da177e4 LT |
506 | unsigned int sample_step = 1 << prof_shift; |
507 | ||
508 | profile_flip_buffers(); | |
509 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
510 | return 0; | |
511 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
512 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
513 | read = 0; | |
514 | ||
515 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 516 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 517 | return -EFAULT; |
1da177e4 LT |
518 | buf++; p++; count--; read++; |
519 | } | |
520 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 521 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
522 | return -EFAULT; |
523 | read += count; | |
524 | *ppos += read; | |
525 | return read; | |
526 | } | |
527 | ||
528 | /* | |
529 | * Writing to /proc/profile resets the counters | |
530 | * | |
531 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
532 | * interrupt frequency, on architectures that support this. | |
533 | */ | |
534 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
535 | size_t count, loff_t *ppos) | |
536 | { | |
537 | #ifdef CONFIG_SMP | |
1ad82fd5 | 538 | extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4 LT |
539 | |
540 | if (count == sizeof(int)) { | |
541 | unsigned int multiplier; | |
542 | ||
543 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
544 | return -EFAULT; | |
545 | ||
546 | if (setup_profiling_timer(multiplier)) | |
547 | return -EINVAL; | |
548 | } | |
549 | #endif | |
550 | profile_discard_flip_buffers(); | |
551 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
552 | return count; | |
553 | } | |
554 | ||
15ad7cdc | 555 | static const struct file_operations proc_profile_operations = { |
1da177e4 LT |
556 | .read = read_profile, |
557 | .write = write_profile, | |
558 | }; | |
559 | ||
560 | #ifdef CONFIG_SMP | |
60a51513 | 561 | static void profile_nop(void *unused) |
1da177e4 LT |
562 | { |
563 | } | |
564 | ||
22b8ce94 | 565 | static int create_hash_tables(void) |
1da177e4 LT |
566 | { |
567 | int cpu; | |
568 | ||
569 | for_each_online_cpu(cpu) { | |
570 | int node = cpu_to_node(cpu); | |
571 | struct page *page; | |
572 | ||
fbd98167 CL |
573 | page = alloc_pages_node(node, |
574 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
575 | 0); | |
1da177e4 LT |
576 | if (!page) |
577 | goto out_cleanup; | |
578 | per_cpu(cpu_profile_hits, cpu)[1] | |
579 | = (struct profile_hit *)page_address(page); | |
fbd98167 CL |
580 | page = alloc_pages_node(node, |
581 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
582 | 0); | |
1da177e4 LT |
583 | if (!page) |
584 | goto out_cleanup; | |
585 | per_cpu(cpu_profile_hits, cpu)[0] | |
586 | = (struct profile_hit *)page_address(page); | |
587 | } | |
588 | return 0; | |
589 | out_cleanup: | |
590 | prof_on = 0; | |
d59dd462 | 591 | smp_mb(); |
15c8b6c1 | 592 | on_each_cpu(profile_nop, NULL, 1); |
1da177e4 LT |
593 | for_each_online_cpu(cpu) { |
594 | struct page *page; | |
595 | ||
596 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | |
597 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
598 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
599 | __free_page(page); | |
600 | } | |
601 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
602 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
603 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
604 | __free_page(page); | |
605 | } | |
606 | } | |
607 | return -1; | |
608 | } | |
609 | #else | |
610 | #define create_hash_tables() ({ 0; }) | |
611 | #endif | |
612 | ||
84196414 | 613 | int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ |
1da177e4 LT |
614 | { |
615 | struct proc_dir_entry *entry; | |
616 | ||
617 | if (!prof_on) | |
618 | return 0; | |
619 | if (create_hash_tables()) | |
22b8ce94 | 620 | return -ENOMEM; |
c33fff0a DL |
621 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
622 | NULL, &proc_profile_operations); | |
1ad82fd5 | 623 | if (!entry) |
1da177e4 | 624 | return 0; |
1da177e4 LT |
625 | entry->size = (1+prof_len) * sizeof(atomic_t); |
626 | hotcpu_notifier(profile_cpu_callback, 0); | |
627 | return 0; | |
628 | } | |
629 | module_init(create_proc_profile); | |
630 | #endif /* CONFIG_PROC_FS */ |