drm/tests: Remove slow tests
[linux.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
4fa512ce 51#include <linux/fsverity.h>
8a237adf 52#include <linux/sched/isolation.h>
1da177e4 53
2b211dc0
BD
54#include "internal.h"
55
1da177e4 56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
5bdf402a
RHI
57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 struct writeback_control *wbc);
1da177e4
LT
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
f0059afd
TH
62inline void touch_buffer(struct buffer_head *bh)
63{
5305cb83 64 trace_block_touch_buffer(bh);
03c5f331 65 folio_mark_accessed(bh->b_folio);
f0059afd
TH
66}
67EXPORT_SYMBOL(touch_buffer);
68
fc9b52cd 69void __lock_buffer(struct buffer_head *bh)
1da177e4 70{
74316201 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
72}
73EXPORT_SYMBOL(__lock_buffer);
74
fc9b52cd 75void unlock_buffer(struct buffer_head *bh)
1da177e4 76{
51b07fc3 77 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 78 smp_mb__after_atomic();
1da177e4
LT
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
1fe72eaa 81EXPORT_SYMBOL(unlock_buffer);
1da177e4 82
b4597226 83/*
520f301c
MWO
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
b4597226 87 */
520f301c 88void buffer_check_dirty_writeback(struct folio *folio,
b4597226
MG
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
520f301c 95 BUG_ON(!folio_test_locked(folio));
b4597226 96
520f301c
MWO
97 head = folio_buffers(folio);
98 if (!head)
b4597226
MG
99 return;
100
520f301c 101 if (folio_test_writeback(folio))
b4597226
MG
102 *writeback = true;
103
b4597226
MG
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
b4597226 115
1da177e4
LT
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
74316201 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 124}
1fe72eaa 125EXPORT_SYMBOL(__wait_on_buffer);
1da177e4 126
b744c2ac 127static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 128{
432f16e6
RE
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
a1c6f057
DM
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
133}
134
135/*
68671f35
DM
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
1da177e4 142 */
68671f35 143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
70246286 148 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
68671f35
DM
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
79f59784 156 * unlock the buffer.
68671f35
DM
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
161 put_bh(bh);
162}
1fe72eaa 163EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
1da177e4
LT
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
432f16e6 170 buffer_io_error(bh, ", lost sync page write");
87354e5d 171 mark_buffer_write_io_error(bh);
1da177e4
LT
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
1fe72eaa 177EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 178
1da177e4
LT
179/*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * private_lock.
184 *
b93b0163 185 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 186 * may be quite high. This code could TryLock the page, and if that
b93b0163 187 * succeeds, there is no need to take private_lock.
1da177e4
LT
188 */
189static struct buffer_head *
385fd4c5 190__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
191{
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
eee25182 198 struct folio *folio;
1da177e4 199 int all_mapped = 1;
43636c80 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 201
09cbfeaf 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
eee25182
MWO
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
1da177e4
LT
205 goto out;
206
207 spin_lock(&bd_mapping->private_lock);
eee25182
MWO
208 head = folio_buffers(folio);
209 if (!head)
1da177e4 210 goto out_unlock;
1da177e4
LT
211 bh = head;
212 do {
97f76d3d
NK
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
1da177e4
LT
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
1da177e4
LT
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
43636c80
TH
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
1da177e4
LT
237 }
238out_unlock:
239 spin_unlock(&bd_mapping->private_lock);
eee25182 240 folio_put(folio);
1da177e4
LT
241out:
242 return ret;
243}
244
1da177e4
LT
245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246{
1da177e4 247 unsigned long flags;
a3972203 248 struct buffer_head *first;
1da177e4 249 struct buffer_head *tmp;
2e2dba15
MWO
250 struct folio *folio;
251 int folio_uptodate = 1;
1da177e4
LT
252
253 BUG_ON(!buffer_async_read(bh));
254
2e2dba15 255 folio = bh->b_folio;
1da177e4
LT
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
432f16e6 260 buffer_io_error(bh, ", async page read");
2e2dba15 261 folio_set_error(folio);
1da177e4
LT
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
2e2dba15 269 first = folio_buffers(folio);
f1e67e35 270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
2e2dba15 276 folio_uptodate = 0;
1da177e4
LT
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
f1e67e35 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
284
285 /*
6e8e79fc
MWO
286 * If all of the buffers are uptodate then we can set the page
287 * uptodate.
1da177e4 288 */
2e2dba15
MWO
289 if (folio_uptodate)
290 folio_mark_uptodate(folio);
291 folio_unlock(folio);
1da177e4
LT
292 return;
293
294still_busy:
f1e67e35 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
296 return;
297}
298
4fa512ce 299struct postprocess_bh_ctx {
31fb992c
EB
300 struct work_struct work;
301 struct buffer_head *bh;
302};
303
4fa512ce
EB
304static void verify_bh(struct work_struct *work)
305{
306 struct postprocess_bh_ctx *ctx =
307 container_of(work, struct postprocess_bh_ctx, work);
308 struct buffer_head *bh = ctx->bh;
309 bool valid;
310
8b7d3fe9 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
4fa512ce
EB
312 end_buffer_async_read(bh, valid);
313 kfree(ctx);
314}
315
316static bool need_fsverity(struct buffer_head *bh)
317{
8b7d3fe9
EB
318 struct folio *folio = bh->b_folio;
319 struct inode *inode = folio->mapping->host;
4fa512ce
EB
320
321 return fsverity_active(inode) &&
322 /* needed by ext4 */
8b7d3fe9 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4fa512ce
EB
324}
325
31fb992c
EB
326static void decrypt_bh(struct work_struct *work)
327{
4fa512ce
EB
328 struct postprocess_bh_ctx *ctx =
329 container_of(work, struct postprocess_bh_ctx, work);
31fb992c
EB
330 struct buffer_head *bh = ctx->bh;
331 int err;
332
9c7fb7f7
EB
333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 bh_offset(bh));
4fa512ce
EB
335 if (err == 0 && need_fsverity(bh)) {
336 /*
337 * We use different work queues for decryption and for verity
338 * because verity may require reading metadata pages that need
339 * decryption, and we shouldn't recurse to the same workqueue.
340 */
341 INIT_WORK(&ctx->work, verify_bh);
342 fsverity_enqueue_verify_work(&ctx->work);
343 return;
344 }
31fb992c
EB
345 end_buffer_async_read(bh, err == 0);
346 kfree(ctx);
347}
348
349/*
2c69e205 350 * I/O completion handler for block_read_full_folio() - pages
31fb992c
EB
351 * which come unlocked at the end of I/O.
352 */
353static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354{
3822a7c4 355 struct inode *inode = bh->b_folio->mapping->host;
4fa512ce
EB
356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 bool verify = need_fsverity(bh);
358
359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 if (uptodate && (decrypt || verify)) {
361 struct postprocess_bh_ctx *ctx =
362 kmalloc(sizeof(*ctx), GFP_ATOMIC);
31fb992c
EB
363
364 if (ctx) {
31fb992c 365 ctx->bh = bh;
4fa512ce
EB
366 if (decrypt) {
367 INIT_WORK(&ctx->work, decrypt_bh);
368 fscrypt_enqueue_decrypt_work(&ctx->work);
369 } else {
370 INIT_WORK(&ctx->work, verify_bh);
371 fsverity_enqueue_verify_work(&ctx->work);
372 }
31fb992c
EB
373 return;
374 }
375 uptodate = 0;
376 }
377 end_buffer_async_read(bh, uptodate);
378}
379
1da177e4
LT
380/*
381 * Completion handler for block_write_full_page() - pages which are unlocked
382 * during I/O, and which have PageWriteback cleared upon I/O completion.
383 */
35c80d5f 384void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 385{
1da177e4 386 unsigned long flags;
a3972203 387 struct buffer_head *first;
1da177e4 388 struct buffer_head *tmp;
743ed81e 389 struct folio *folio;
1da177e4
LT
390
391 BUG_ON(!buffer_async_write(bh));
392
743ed81e 393 folio = bh->b_folio;
1da177e4
LT
394 if (uptodate) {
395 set_buffer_uptodate(bh);
396 } else {
432f16e6 397 buffer_io_error(bh, ", lost async page write");
87354e5d 398 mark_buffer_write_io_error(bh);
1da177e4 399 clear_buffer_uptodate(bh);
743ed81e 400 folio_set_error(folio);
1da177e4
LT
401 }
402
743ed81e 403 first = folio_buffers(folio);
f1e67e35 404 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 405
1da177e4
LT
406 clear_buffer_async_write(bh);
407 unlock_buffer(bh);
408 tmp = bh->b_this_page;
409 while (tmp != bh) {
410 if (buffer_async_write(tmp)) {
411 BUG_ON(!buffer_locked(tmp));
412 goto still_busy;
413 }
414 tmp = tmp->b_this_page;
415 }
f1e67e35 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
743ed81e 417 folio_end_writeback(folio);
1da177e4
LT
418 return;
419
420still_busy:
f1e67e35 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
422 return;
423}
1fe72eaa 424EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
425
426/*
427 * If a page's buffers are under async readin (end_buffer_async_read
428 * completion) then there is a possibility that another thread of
429 * control could lock one of the buffers after it has completed
430 * but while some of the other buffers have not completed. This
431 * locked buffer would confuse end_buffer_async_read() into not unlocking
432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
433 * that this buffer is not under async I/O.
434 *
435 * The page comes unlocked when it has no locked buffer_async buffers
436 * left.
437 *
438 * PageLocked prevents anyone starting new async I/O reads any of
439 * the buffers.
440 *
441 * PageWriteback is used to prevent simultaneous writeout of the same
442 * page.
443 *
444 * PageLocked prevents anyone from starting writeback of a page which is
445 * under read I/O (PageWriteback is only ever set against a locked page).
446 */
447static void mark_buffer_async_read(struct buffer_head *bh)
448{
31fb992c 449 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
450 set_buffer_async_read(bh);
451}
452
1fe72eaa
HS
453static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 bh_end_io_t *handler)
1da177e4 455{
35c80d5f 456 bh->b_end_io = handler;
1da177e4
LT
457 set_buffer_async_write(bh);
458}
35c80d5f
CM
459
460void mark_buffer_async_write(struct buffer_head *bh)
461{
462 mark_buffer_async_write_endio(bh, end_buffer_async_write);
463}
1da177e4
LT
464EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467/*
468 * fs/buffer.c contains helper functions for buffer-backed address space's
469 * fsync functions. A common requirement for buffer-based filesystems is
470 * that certain data from the backing blockdev needs to be written out for
471 * a successful fsync(). For example, ext2 indirect blocks need to be
472 * written back and waited upon before fsync() returns.
473 *
474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476 * management of a list of dependent buffers at ->i_mapping->private_list.
477 *
478 * Locking is a little subtle: try_to_free_buffers() will remove buffers
479 * from their controlling inode's queue when they are being freed. But
480 * try_to_free_buffers() will be operating against the *blockdev* mapping
481 * at the time, not against the S_ISREG file which depends on those buffers.
482 * So the locking for private_list is via the private_lock in the address_space
483 * which backs the buffers. Which is different from the address_space
484 * against which the buffers are listed. So for a particular address_space,
485 * mapping->private_lock does *not* protect mapping->private_list! In fact,
486 * mapping->private_list will always be protected by the backing blockdev's
487 * ->private_lock.
488 *
489 * Which introduces a requirement: all buffers on an address_space's
490 * ->private_list must be from the same address_space: the blockdev's.
491 *
492 * address_spaces which do not place buffers at ->private_list via these
493 * utility functions are free to use private_lock and private_list for
494 * whatever they want. The only requirement is that list_empty(private_list)
495 * be true at clear_inode() time.
496 *
497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
498 * filesystems should do that. invalidate_inode_buffers() should just go
499 * BUG_ON(!list_empty).
500 *
501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
502 * take an address_space, not an inode. And it should be called
503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504 * queued up.
505 *
506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507 * list if it is already on a list. Because if the buffer is on a list,
508 * it *must* already be on the right one. If not, the filesystem is being
509 * silly. This will save a ton of locking. But first we have to ensure
510 * that buffers are taken *off* the old inode's list when they are freed
511 * (presumably in truncate). That requires careful auditing of all
512 * filesystems (do it inside bforget()). It could also be done by bringing
513 * b_inode back.
514 */
515
516/*
517 * The buffer's backing address_space's private_lock must be held
518 */
dbacefc9 519static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
520{
521 list_del_init(&bh->b_assoc_buffers);
58ff407b 522 WARN_ON(!bh->b_assoc_map);
58ff407b 523 bh->b_assoc_map = NULL;
1da177e4
LT
524}
525
526int inode_has_buffers(struct inode *inode)
527{
528 return !list_empty(&inode->i_data.private_list);
529}
530
531/*
532 * osync is designed to support O_SYNC io. It waits synchronously for
533 * all already-submitted IO to complete, but does not queue any new
534 * writes to the disk.
535 *
79f59784
ZY
536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537 * as you dirty the buffers, and then use osync_inode_buffers to wait for
1da177e4
LT
538 * completion. Any other dirty buffers which are not yet queued for
539 * write will not be flushed to disk by the osync.
540 */
541static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542{
543 struct buffer_head *bh;
544 struct list_head *p;
545 int err = 0;
546
547 spin_lock(lock);
548repeat:
549 list_for_each_prev(p, list) {
550 bh = BH_ENTRY(p);
551 if (buffer_locked(bh)) {
552 get_bh(bh);
553 spin_unlock(lock);
554 wait_on_buffer(bh);
555 if (!buffer_uptodate(bh))
556 err = -EIO;
557 brelse(bh);
558 spin_lock(lock);
559 goto repeat;
560 }
561 }
562 spin_unlock(lock);
563 return err;
564}
565
566/**
78a4a50a 567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 568 * @mapping: the mapping which wants those buffers written
1da177e4
LT
569 *
570 * Starts I/O against the buffers at mapping->private_list, and waits upon
571 * that I/O.
572 *
67be2dd1
MW
573 * Basically, this is a convenience function for fsync().
574 * @mapping is a file or directory which needs those buffers to be written for
575 * a successful fsync().
1da177e4
LT
576 */
577int sync_mapping_buffers(struct address_space *mapping)
578{
252aa6f5 579 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
580
581 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
582 return 0;
583
584 return fsync_buffers_list(&buffer_mapping->private_lock,
585 &mapping->private_list);
586}
587EXPORT_SYMBOL(sync_mapping_buffers);
588
31b2ebc0
RHI
589/**
590 * generic_buffers_fsync_noflush - generic buffer fsync implementation
591 * for simple filesystems with no inode lock
592 *
593 * @file: file to synchronize
594 * @start: start offset in bytes
595 * @end: end offset in bytes (inclusive)
596 * @datasync: only synchronize essential metadata if true
597 *
598 * This is a generic implementation of the fsync method for simple
599 * filesystems which track all non-inode metadata in the buffers list
600 * hanging off the address_space structure.
601 */
602int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603 bool datasync)
604{
605 struct inode *inode = file->f_mapping->host;
606 int err;
607 int ret;
608
609 err = file_write_and_wait_range(file, start, end);
610 if (err)
611 return err;
612
613 ret = sync_mapping_buffers(inode->i_mapping);
614 if (!(inode->i_state & I_DIRTY_ALL))
615 goto out;
616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617 goto out;
618
619 err = sync_inode_metadata(inode, 1);
620 if (ret == 0)
621 ret = err;
622
623out:
624 /* check and advance again to catch errors after syncing out buffers */
625 err = file_check_and_advance_wb_err(file);
626 if (ret == 0)
627 ret = err;
628 return ret;
629}
630EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631
632/**
633 * generic_buffers_fsync - generic buffer fsync implementation
634 * for simple filesystems with no inode lock
635 *
636 * @file: file to synchronize
637 * @start: start offset in bytes
638 * @end: end offset in bytes (inclusive)
639 * @datasync: only synchronize essential metadata if true
640 *
641 * This is a generic implementation of the fsync method for simple
642 * filesystems which track all non-inode metadata in the buffers list
643 * hanging off the address_space structure. This also makes sure that
644 * a device cache flush operation is called at the end.
645 */
646int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647 bool datasync)
648{
649 struct inode *inode = file->f_mapping->host;
650 int ret;
651
652 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653 if (!ret)
654 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655 return ret;
656}
657EXPORT_SYMBOL(generic_buffers_fsync);
658
1da177e4
LT
659/*
660 * Called when we've recently written block `bblock', and it is known that
661 * `bblock' was for a buffer_boundary() buffer. This means that the block at
662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
663 * dirty, schedule it for IO. So that indirects merge nicely with their data.
664 */
665void write_boundary_block(struct block_device *bdev,
666 sector_t bblock, unsigned blocksize)
667{
668 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
669 if (bh) {
670 if (buffer_dirty(bh))
e7ea1129 671 write_dirty_buffer(bh, 0);
1da177e4
LT
672 put_bh(bh);
673 }
674}
675
676void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
677{
678 struct address_space *mapping = inode->i_mapping;
abc8a8a2 679 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4
LT
680
681 mark_buffer_dirty(bh);
252aa6f5
RA
682 if (!mapping->private_data) {
683 mapping->private_data = buffer_mapping;
1da177e4 684 } else {
252aa6f5 685 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 686 }
535ee2fb 687 if (!bh->b_assoc_map) {
1da177e4
LT
688 spin_lock(&buffer_mapping->private_lock);
689 list_move_tail(&bh->b_assoc_buffers,
690 &mapping->private_list);
58ff407b 691 bh->b_assoc_map = mapping;
1da177e4
LT
692 spin_unlock(&buffer_mapping->private_lock);
693 }
694}
695EXPORT_SYMBOL(mark_buffer_dirty_inode);
696
697/*
698 * Add a page to the dirty page list.
699 *
700 * It is a sad fact of life that this function is called from several places
701 * deeply under spinlocking. It may not sleep.
702 *
703 * If the page has buffers, the uptodate buffers are set dirty, to preserve
704 * dirty-state coherency between the page and the buffers. It the page does
705 * not have buffers then when they are later attached they will all be set
706 * dirty.
707 *
708 * The buffers are dirtied before the page is dirtied. There's a small race
709 * window in which a writepage caller may see the page cleanness but not the
710 * buffer dirtiness. That's fine. If this code were to set the page dirty
711 * before the buffers, a concurrent writepage caller could clear the page dirty
712 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
713 * page on the dirty page list.
714 *
715 * We use private_lock to lock against try_to_free_buffers while using the
716 * page's buffer list. Also use this to protect against clean buffers being
717 * added to the page after it was set dirty.
718 *
719 * FIXME: may need to call ->reservepage here as well. That's rather up to the
720 * address_space though.
721 */
e621900a 722bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 723{
e621900a
MWO
724 struct buffer_head *head;
725 bool newly_dirty;
1da177e4
LT
726
727 spin_lock(&mapping->private_lock);
e621900a
MWO
728 head = folio_buffers(folio);
729 if (head) {
1da177e4
LT
730 struct buffer_head *bh = head;
731
732 do {
733 set_buffer_dirty(bh);
734 bh = bh->b_this_page;
735 } while (bh != head);
736 }
c4843a75 737 /*
bcfe06bf 738 * Lock out page's memcg migration to keep PageDirty
81f8c3a4 739 * synchronized with per-memcg dirty page counters.
c4843a75 740 */
e621900a
MWO
741 folio_memcg_lock(folio);
742 newly_dirty = !folio_test_set_dirty(folio);
1da177e4
LT
743 spin_unlock(&mapping->private_lock);
744
a8e7d49a 745 if (newly_dirty)
e621900a 746 __folio_mark_dirty(folio, mapping, 1);
c4843a75 747
e621900a 748 folio_memcg_unlock(folio);
c4843a75
GT
749
750 if (newly_dirty)
751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
a8e7d49a 753 return newly_dirty;
1da177e4 754}
e621900a 755EXPORT_SYMBOL(block_dirty_folio);
1da177e4
LT
756
757/*
758 * Write out and wait upon a list of buffers.
759 *
760 * We have conflicting pressures: we want to make sure that all
761 * initially dirty buffers get waited on, but that any subsequently
762 * dirtied buffers don't. After all, we don't want fsync to last
763 * forever if somebody is actively writing to the file.
764 *
765 * Do this in two main stages: first we copy dirty buffers to a
766 * temporary inode list, queueing the writes as we go. Then we clean
767 * up, waiting for those writes to complete.
768 *
769 * During this second stage, any subsequent updates to the file may end
770 * up refiling the buffer on the original inode's dirty list again, so
771 * there is a chance we will end up with a buffer queued for write but
772 * not yet completed on that list. So, as a final cleanup we go through
773 * the osync code to catch these locked, dirty buffers without requeuing
774 * any newly dirty buffers for write.
775 */
776static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777{
778 struct buffer_head *bh;
779 struct list_head tmp;
7eaceacc 780 struct address_space *mapping;
1da177e4 781 int err = 0, err2;
4ee2491e 782 struct blk_plug plug;
1da177e4
LT
783
784 INIT_LIST_HEAD(&tmp);
4ee2491e 785 blk_start_plug(&plug);
1da177e4
LT
786
787 spin_lock(lock);
788 while (!list_empty(list)) {
789 bh = BH_ENTRY(list->next);
535ee2fb 790 mapping = bh->b_assoc_map;
58ff407b 791 __remove_assoc_queue(bh);
535ee2fb
JK
792 /* Avoid race with mark_buffer_dirty_inode() which does
793 * a lockless check and we rely on seeing the dirty bit */
794 smp_mb();
1da177e4
LT
795 if (buffer_dirty(bh) || buffer_locked(bh)) {
796 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 797 bh->b_assoc_map = mapping;
1da177e4
LT
798 if (buffer_dirty(bh)) {
799 get_bh(bh);
800 spin_unlock(lock);
801 /*
802 * Ensure any pending I/O completes so that
9cb569d6
CH
803 * write_dirty_buffer() actually writes the
804 * current contents - it is a noop if I/O is
805 * still in flight on potentially older
806 * contents.
1da177e4 807 */
70fd7614 808 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
809
810 /*
811 * Kick off IO for the previous mapping. Note
812 * that we will not run the very last mapping,
813 * wait_on_buffer() will do that for us
814 * through sync_buffer().
815 */
1da177e4
LT
816 brelse(bh);
817 spin_lock(lock);
818 }
819 }
820 }
821
4ee2491e
JA
822 spin_unlock(lock);
823 blk_finish_plug(&plug);
824 spin_lock(lock);
825
1da177e4
LT
826 while (!list_empty(&tmp)) {
827 bh = BH_ENTRY(tmp.prev);
1da177e4 828 get_bh(bh);
535ee2fb
JK
829 mapping = bh->b_assoc_map;
830 __remove_assoc_queue(bh);
831 /* Avoid race with mark_buffer_dirty_inode() which does
832 * a lockless check and we rely on seeing the dirty bit */
833 smp_mb();
834 if (buffer_dirty(bh)) {
835 list_add(&bh->b_assoc_buffers,
e3892296 836 &mapping->private_list);
535ee2fb
JK
837 bh->b_assoc_map = mapping;
838 }
1da177e4
LT
839 spin_unlock(lock);
840 wait_on_buffer(bh);
841 if (!buffer_uptodate(bh))
842 err = -EIO;
843 brelse(bh);
844 spin_lock(lock);
845 }
846
847 spin_unlock(lock);
848 err2 = osync_buffers_list(lock, list);
849 if (err)
850 return err;
851 else
852 return err2;
853}
854
855/*
856 * Invalidate any and all dirty buffers on a given inode. We are
857 * probably unmounting the fs, but that doesn't mean we have already
858 * done a sync(). Just drop the buffers from the inode list.
859 *
860 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
861 * assumes that all the buffers are against the blockdev. Not true
862 * for reiserfs.
863 */
864void invalidate_inode_buffers(struct inode *inode)
865{
866 if (inode_has_buffers(inode)) {
867 struct address_space *mapping = &inode->i_data;
868 struct list_head *list = &mapping->private_list;
252aa6f5 869 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
870
871 spin_lock(&buffer_mapping->private_lock);
872 while (!list_empty(list))
873 __remove_assoc_queue(BH_ENTRY(list->next));
874 spin_unlock(&buffer_mapping->private_lock);
875 }
876}
52b19ac9 877EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
878
879/*
880 * Remove any clean buffers from the inode's buffer list. This is called
881 * when we're trying to free the inode itself. Those buffers can pin it.
882 *
883 * Returns true if all buffers were removed.
884 */
885int remove_inode_buffers(struct inode *inode)
886{
887 int ret = 1;
888
889 if (inode_has_buffers(inode)) {
890 struct address_space *mapping = &inode->i_data;
891 struct list_head *list = &mapping->private_list;
252aa6f5 892 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
893
894 spin_lock(&buffer_mapping->private_lock);
895 while (!list_empty(list)) {
896 struct buffer_head *bh = BH_ENTRY(list->next);
897 if (buffer_dirty(bh)) {
898 ret = 0;
899 break;
900 }
901 __remove_assoc_queue(bh);
902 }
903 spin_unlock(&buffer_mapping->private_lock);
904 }
905 return ret;
906}
907
908/*
c71124a8 909 * Create the appropriate buffers when given a folio for data area and
1da177e4
LT
910 * the size of each buffer.. Use the bh->b_this_page linked list to
911 * follow the buffers created. Return NULL if unable to create more
912 * buffers.
913 *
914 * The retry flag is used to differentiate async IO (paging, swapping)
915 * which may not fail from ordinary buffer allocations.
916 */
c71124a8
PR
917struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918 bool retry)
1da177e4
LT
919{
920 struct buffer_head *bh, *head;
f745c6f5 921 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 922 long offset;
b87d8cef 923 struct mem_cgroup *memcg, *old_memcg;
1da177e4 924
640ab98f
JA
925 if (retry)
926 gfp |= __GFP_NOFAIL;
927
c71124a8
PR
928 /* The folio lock pins the memcg */
929 memcg = folio_memcg(folio);
b87d8cef 930 old_memcg = set_active_memcg(memcg);
f745c6f5 931
1da177e4 932 head = NULL;
c71124a8 933 offset = folio_size(folio);
1da177e4 934 while ((offset -= size) >= 0) {
640ab98f 935 bh = alloc_buffer_head(gfp);
1da177e4
LT
936 if (!bh)
937 goto no_grow;
938
1da177e4
LT
939 bh->b_this_page = head;
940 bh->b_blocknr = -1;
941 head = bh;
942
1da177e4
LT
943 bh->b_size = size;
944
c71124a8
PR
945 /* Link the buffer to its folio */
946 folio_set_bh(bh, folio, offset);
1da177e4 947 }
f745c6f5 948out:
b87d8cef 949 set_active_memcg(old_memcg);
1da177e4
LT
950 return head;
951/*
952 * In case anything failed, we just free everything we got.
953 */
954no_grow:
955 if (head) {
956 do {
957 bh = head;
958 head = head->b_this_page;
959 free_buffer_head(bh);
960 } while (head);
961 }
962
f745c6f5 963 goto out;
1da177e4 964}
c71124a8
PR
965EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966
967struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
968 bool retry)
969{
970 return folio_alloc_buffers(page_folio(page), size, retry);
971}
1da177e4
LT
972EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
08d84add
MWO
974static inline void link_dev_buffers(struct folio *folio,
975 struct buffer_head *head)
1da177e4
LT
976{
977 struct buffer_head *bh, *tail;
978
979 bh = head;
980 do {
981 tail = bh;
982 bh = bh->b_this_page;
983 } while (bh);
984 tail->b_this_page = head;
08d84add 985 folio_attach_private(folio, head);
1da177e4
LT
986}
987
bbec0270
LT
988static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989{
990 sector_t retval = ~((sector_t)0);
b86058f9 991 loff_t sz = bdev_nr_bytes(bdev);
bbec0270
LT
992
993 if (sz) {
994 unsigned int sizebits = blksize_bits(size);
995 retval = (sz >> sizebits);
996 }
997 return retval;
998}
999
1da177e4 1000/*
6f24ce6b 1001 * Initialise the state of a blockdev folio's buffers.
1da177e4 1002 */
6f24ce6b
MWO
1003static sector_t folio_init_buffers(struct folio *folio,
1004 struct block_device *bdev, sector_t block, int size)
1da177e4 1005{
6f24ce6b 1006 struct buffer_head *head = folio_buffers(folio);
1da177e4 1007 struct buffer_head *bh = head;
6f24ce6b 1008 bool uptodate = folio_test_uptodate(folio);
bcd1d063 1009 sector_t end_block = blkdev_max_block(bdev, size);
1da177e4
LT
1010
1011 do {
1012 if (!buffer_mapped(bh)) {
01950a34
EB
1013 bh->b_end_io = NULL;
1014 bh->b_private = NULL;
1da177e4
LT
1015 bh->b_bdev = bdev;
1016 bh->b_blocknr = block;
1017 if (uptodate)
1018 set_buffer_uptodate(bh);
080399aa
JM
1019 if (block < end_block)
1020 set_buffer_mapped(bh);
1da177e4
LT
1021 }
1022 block++;
1023 bh = bh->b_this_page;
1024 } while (bh != head);
676ce6d5
HD
1025
1026 /*
1027 * Caller needs to validate requested block against end of device.
1028 */
1029 return end_block;
1da177e4
LT
1030}
1031
1032/*
1033 * Create the page-cache page that contains the requested block.
1034 *
676ce6d5 1035 * This is used purely for blockdev mappings.
1da177e4 1036 */
676ce6d5 1037static int
1da177e4 1038grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 1039 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
1040{
1041 struct inode *inode = bdev->bd_inode;
3c98a41c 1042 struct folio *folio;
1da177e4 1043 struct buffer_head *bh;
676ce6d5 1044 sector_t end_block;
c4b4c2a7 1045 int ret = 0;
84235de3 1046 gfp_t gfp_mask;
1da177e4 1047
c62d2555 1048 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 1049
84235de3
JW
1050 /*
1051 * XXX: __getblk_slow() can not really deal with failure and
1052 * will endlessly loop on improvised global reclaim. Prefer
1053 * looping in the allocator rather than here, at least that
1054 * code knows what it's doing.
1055 */
1056 gfp_mask |= __GFP_NOFAIL;
1057
3c98a41c
MWO
1058 folio = __filemap_get_folio(inode->i_mapping, index,
1059 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1da177e4 1060
3c98a41c
MWO
1061 bh = folio_buffers(folio);
1062 if (bh) {
1da177e4 1063 if (bh->b_size == size) {
6f24ce6b
MWO
1064 end_block = folio_init_buffers(folio, bdev,
1065 (sector_t)index << sizebits, size);
676ce6d5 1066 goto done;
1da177e4 1067 }
3c98a41c 1068 if (!try_to_free_buffers(folio))
1da177e4
LT
1069 goto failed;
1070 }
1071
3c98a41c 1072 bh = folio_alloc_buffers(folio, size, true);
1da177e4
LT
1073
1074 /*
3c98a41c 1075 * Link the folio to the buffers and initialise them. Take the
1da177e4 1076 * lock to be atomic wrt __find_get_block(), which does not
3c98a41c 1077 * run under the folio lock.
1da177e4
LT
1078 */
1079 spin_lock(&inode->i_mapping->private_lock);
08d84add 1080 link_dev_buffers(folio, bh);
6f24ce6b 1081 end_block = folio_init_buffers(folio, bdev,
3c98a41c 1082 (sector_t)index << sizebits, size);
1da177e4 1083 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1084done:
1085 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1086failed:
3c98a41c
MWO
1087 folio_unlock(folio);
1088 folio_put(folio);
676ce6d5 1089 return ret;
1da177e4
LT
1090}
1091
1092/*
1093 * Create buffers for the specified block device block's page. If
1094 * that page was dirty, the buffers are set dirty also.
1da177e4 1095 */
858119e1 1096static int
3b5e6454 1097grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1098{
1da177e4
LT
1099 pgoff_t index;
1100 int sizebits;
1101
90432e60 1102 sizebits = PAGE_SHIFT - __ffs(size);
1da177e4 1103 index = block >> sizebits;
1da177e4 1104
e5657933
AM
1105 /*
1106 * Check for a block which wants to lie outside our maximum possible
1107 * pagecache index. (this comparison is done using sector_t types).
1108 */
1109 if (unlikely(index != block >> sizebits)) {
e5657933 1110 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1111 "device %pg\n",
8e24eea7 1112 __func__, (unsigned long long)block,
a1c6f057 1113 bdev);
e5657933
AM
1114 return -EIO;
1115 }
676ce6d5 1116
1da177e4 1117 /* Create a page with the proper size buffers.. */
3b5e6454 1118 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1119}
1120
0026ba40 1121static struct buffer_head *
3b5e6454
GK
1122__getblk_slow(struct block_device *bdev, sector_t block,
1123 unsigned size, gfp_t gfp)
1da177e4
LT
1124{
1125 /* Size must be multiple of hard sectorsize */
e1defc4f 1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1127 (size < 512 || size > PAGE_SIZE))) {
1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1129 size);
e1defc4f
MP
1130 printk(KERN_ERR "logical block size: %d\n",
1131 bdev_logical_block_size(bdev));
1da177e4
LT
1132
1133 dump_stack();
1134 return NULL;
1135 }
1136
676ce6d5
HD
1137 for (;;) {
1138 struct buffer_head *bh;
1139 int ret;
1da177e4
LT
1140
1141 bh = __find_get_block(bdev, block, size);
1142 if (bh)
1143 return bh;
676ce6d5 1144
3b5e6454 1145 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1146 if (ret < 0)
1147 return NULL;
1da177e4
LT
1148 }
1149}
1150
1151/*
1152 * The relationship between dirty buffers and dirty pages:
1153 *
1154 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1155 * the page is tagged dirty in the page cache.
1da177e4
LT
1156 *
1157 * At all times, the dirtiness of the buffers represents the dirtiness of
1158 * subsections of the page. If the page has buffers, the page dirty bit is
1159 * merely a hint about the true dirty state.
1160 *
1161 * When a page is set dirty in its entirety, all its buffers are marked dirty
1162 * (if the page has buffers).
1163 *
1164 * When a buffer is marked dirty, its page is dirtied, but the page's other
1165 * buffers are not.
1166 *
1167 * Also. When blockdev buffers are explicitly read with bread(), they
1168 * individually become uptodate. But their backing page remains not
1169 * uptodate - even if all of its buffers are uptodate. A subsequent
2c69e205
MWO
1170 * block_read_full_folio() against that folio will discover all the uptodate
1171 * buffers, will set the folio uptodate and will perform no I/O.
1da177e4
LT
1172 */
1173
1174/**
1175 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1176 * @bh: the buffer_head to mark dirty
1da177e4 1177 *
ec82e1c1
MW
1178 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1179 * its backing page dirty, then tag the page as dirty in the page cache
1180 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1181 * inode list.
1182 *
abc8a8a2 1183 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
b93b0163 1184 * i_pages lock and mapping->host->i_lock.
1da177e4 1185 */
fc9b52cd 1186void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1187{
787d2214 1188 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1189
5305cb83
TH
1190 trace_block_dirty_buffer(bh);
1191
1be62dc1
LT
1192 /*
1193 * Very *carefully* optimize the it-is-already-dirty case.
1194 *
1195 * Don't let the final "is it dirty" escape to before we
1196 * perhaps modified the buffer.
1197 */
1198 if (buffer_dirty(bh)) {
1199 smp_mb();
1200 if (buffer_dirty(bh))
1201 return;
1202 }
1203
a8e7d49a 1204 if (!test_set_buffer_dirty(bh)) {
cf1d3417 1205 struct folio *folio = bh->b_folio;
c4843a75 1206 struct address_space *mapping = NULL;
c4843a75 1207
cf1d3417
MWO
1208 folio_memcg_lock(folio);
1209 if (!folio_test_set_dirty(folio)) {
1210 mapping = folio->mapping;
8e9d78ed 1211 if (mapping)
cf1d3417 1212 __folio_mark_dirty(folio, mapping, 0);
8e9d78ed 1213 }
cf1d3417 1214 folio_memcg_unlock(folio);
c4843a75
GT
1215 if (mapping)
1216 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1217 }
1da177e4 1218}
1fe72eaa 1219EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1220
87354e5d
JL
1221void mark_buffer_write_io_error(struct buffer_head *bh)
1222{
1223 set_buffer_write_io_error(bh);
1224 /* FIXME: do we need to set this in both places? */
abc8a8a2
MWO
1225 if (bh->b_folio && bh->b_folio->mapping)
1226 mapping_set_error(bh->b_folio->mapping, -EIO);
4b2201da 1227 if (bh->b_assoc_map) {
87354e5d 1228 mapping_set_error(bh->b_assoc_map, -EIO);
4b2201da
CH
1229 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1230 }
87354e5d
JL
1231}
1232EXPORT_SYMBOL(mark_buffer_write_io_error);
1233
1da177e4
LT
1234/*
1235 * Decrement a buffer_head's reference count. If all buffers against a page
1236 * have zero reference count, are clean and unlocked, and if the page is clean
1237 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1238 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1239 * a page but it ends up not being freed, and buffers may later be reattached).
1240 */
1241void __brelse(struct buffer_head * buf)
1242{
1243 if (atomic_read(&buf->b_count)) {
1244 put_bh(buf);
1245 return;
1246 }
5c752ad9 1247 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1248}
1fe72eaa 1249EXPORT_SYMBOL(__brelse);
1da177e4
LT
1250
1251/*
1252 * bforget() is like brelse(), except it discards any
1253 * potentially dirty data.
1254 */
1255void __bforget(struct buffer_head *bh)
1256{
1257 clear_buffer_dirty(bh);
535ee2fb 1258 if (bh->b_assoc_map) {
abc8a8a2 1259 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4
LT
1260
1261 spin_lock(&buffer_mapping->private_lock);
1262 list_del_init(&bh->b_assoc_buffers);
58ff407b 1263 bh->b_assoc_map = NULL;
1da177e4
LT
1264 spin_unlock(&buffer_mapping->private_lock);
1265 }
1266 __brelse(bh);
1267}
1fe72eaa 1268EXPORT_SYMBOL(__bforget);
1da177e4
LT
1269
1270static struct buffer_head *__bread_slow(struct buffer_head *bh)
1271{
1272 lock_buffer(bh);
1273 if (buffer_uptodate(bh)) {
1274 unlock_buffer(bh);
1275 return bh;
1276 } else {
1277 get_bh(bh);
1278 bh->b_end_io = end_buffer_read_sync;
1420c4a5 1279 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
1280 wait_on_buffer(bh);
1281 if (buffer_uptodate(bh))
1282 return bh;
1283 }
1284 brelse(bh);
1285 return NULL;
1286}
1287
1288/*
1289 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1290 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1291 * refcount elevated by one when they're in an LRU. A buffer can only appear
1292 * once in a particular CPU's LRU. A single buffer can be present in multiple
1293 * CPU's LRUs at the same time.
1294 *
1295 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1296 * sb_find_get_block().
1297 *
1298 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1299 * a local interrupt disable for that.
1300 */
1301
86cf78d7 1302#define BH_LRU_SIZE 16
1da177e4
LT
1303
1304struct bh_lru {
1305 struct buffer_head *bhs[BH_LRU_SIZE];
1306};
1307
1308static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1309
1310#ifdef CONFIG_SMP
1311#define bh_lru_lock() local_irq_disable()
1312#define bh_lru_unlock() local_irq_enable()
1313#else
1314#define bh_lru_lock() preempt_disable()
1315#define bh_lru_unlock() preempt_enable()
1316#endif
1317
1318static inline void check_irqs_on(void)
1319{
1320#ifdef irqs_disabled
1321 BUG_ON(irqs_disabled());
1322#endif
1323}
1324
1325/*
241f01fb
EB
1326 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1327 * inserted at the front, and the buffer_head at the back if any is evicted.
1328 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1329 */
1330static void bh_lru_install(struct buffer_head *bh)
1331{
241f01fb
EB
1332 struct buffer_head *evictee = bh;
1333 struct bh_lru *b;
1334 int i;
1da177e4
LT
1335
1336 check_irqs_on();
c0226eb8
MK
1337 bh_lru_lock();
1338
8cc621d2
MK
1339 /*
1340 * the refcount of buffer_head in bh_lru prevents dropping the
1341 * attached page(i.e., try_to_free_buffers) so it could cause
1342 * failing page migration.
1343 * Skip putting upcoming bh into bh_lru until migration is done.
1344 */
8a237adf 1345 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
c0226eb8 1346 bh_lru_unlock();
8cc621d2 1347 return;
c0226eb8 1348 }
1da177e4 1349
241f01fb
EB
1350 b = this_cpu_ptr(&bh_lrus);
1351 for (i = 0; i < BH_LRU_SIZE; i++) {
1352 swap(evictee, b->bhs[i]);
1353 if (evictee == bh) {
1354 bh_lru_unlock();
1355 return;
1da177e4 1356 }
1da177e4 1357 }
1da177e4 1358
241f01fb
EB
1359 get_bh(bh);
1360 bh_lru_unlock();
1361 brelse(evictee);
1da177e4
LT
1362}
1363
1364/*
1365 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1366 */
858119e1 1367static struct buffer_head *
3991d3bd 1368lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1369{
1370 struct buffer_head *ret = NULL;
3991d3bd 1371 unsigned int i;
1da177e4
LT
1372
1373 check_irqs_on();
1374 bh_lru_lock();
8a237adf
MT
1375 if (cpu_is_isolated(smp_processor_id())) {
1376 bh_lru_unlock();
1377 return NULL;
1378 }
1da177e4 1379 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1380 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1381
9470dd5d
ZB
1382 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383 bh->b_size == size) {
1da177e4
LT
1384 if (i) {
1385 while (i) {
c7b92516
CL
1386 __this_cpu_write(bh_lrus.bhs[i],
1387 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1388 i--;
1389 }
c7b92516 1390 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1391 }
1392 get_bh(bh);
1393 ret = bh;
1394 break;
1395 }
1396 }
1397 bh_lru_unlock();
1398 return ret;
1399}
1400
1401/*
1402 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1403 * it in the LRU and mark it as accessed. If it is not present then return
1404 * NULL
1405 */
1406struct buffer_head *
3991d3bd 1407__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1408{
1409 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410
1411 if (bh == NULL) {
2457aec6 1412 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1413 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1414 if (bh)
1415 bh_lru_install(bh);
2457aec6 1416 } else
1da177e4 1417 touch_buffer(bh);
2457aec6 1418
1da177e4
LT
1419 return bh;
1420}
1421EXPORT_SYMBOL(__find_get_block);
1422
1423/*
3b5e6454 1424 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1425 * which corresponds to the passed block_device, block and size. The
1426 * returned buffer has its reference count incremented.
1427 *
3b5e6454
GK
1428 * __getblk_gfp() will lock up the machine if grow_dev_page's
1429 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1430 */
1431struct buffer_head *
3b5e6454
GK
1432__getblk_gfp(struct block_device *bdev, sector_t block,
1433 unsigned size, gfp_t gfp)
1da177e4
LT
1434{
1435 struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437 might_sleep();
1438 if (bh == NULL)
3b5e6454 1439 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1440 return bh;
1441}
3b5e6454 1442EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1443
1444/*
1445 * Do async read-ahead on a buffer..
1446 */
3991d3bd 1447void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1448{
1449 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1450 if (likely(bh)) {
e7ea1129 1451 bh_readahead(bh, REQ_RAHEAD);
a3e713b5
AM
1452 brelse(bh);
1453 }
1da177e4
LT
1454}
1455EXPORT_SYMBOL(__breadahead);
1456
1457/**
3b5e6454 1458 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1459 * @bdev: the block_device to read from
1da177e4
LT
1460 * @block: number of block
1461 * @size: size (in bytes) to read
3b5e6454
GK
1462 * @gfp: page allocation flag
1463 *
1da177e4 1464 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1465 * The page cache can be allocated from non-movable area
1466 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1467 * It returns NULL if the block was unreadable.
1468 */
1469struct buffer_head *
3b5e6454
GK
1470__bread_gfp(struct block_device *bdev, sector_t block,
1471 unsigned size, gfp_t gfp)
1da177e4 1472{
3b5e6454 1473 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1474
a3e713b5 1475 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1476 bh = __bread_slow(bh);
1477 return bh;
1478}
3b5e6454 1479EXPORT_SYMBOL(__bread_gfp);
1da177e4 1480
8cc621d2
MK
1481static void __invalidate_bh_lrus(struct bh_lru *b)
1482{
1483 int i;
1484
1485 for (i = 0; i < BH_LRU_SIZE; i++) {
1486 brelse(b->bhs[i]);
1487 b->bhs[i] = NULL;
1488 }
1489}
1da177e4
LT
1490/*
1491 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492 * This doesn't race because it runs in each cpu either in irq
1493 * or with preempt disabled.
1494 */
1495static void invalidate_bh_lru(void *arg)
1496{
1497 struct bh_lru *b = &get_cpu_var(bh_lrus);
1da177e4 1498
8cc621d2 1499 __invalidate_bh_lrus(b);
1da177e4
LT
1500 put_cpu_var(bh_lrus);
1501}
42be35d0 1502
8cc621d2 1503bool has_bh_in_lru(int cpu, void *dummy)
42be35d0
GBY
1504{
1505 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506 int i;
1da177e4 1507
42be35d0
GBY
1508 for (i = 0; i < BH_LRU_SIZE; i++) {
1509 if (b->bhs[i])
1d706679 1510 return true;
42be35d0
GBY
1511 }
1512
1d706679 1513 return false;
42be35d0
GBY
1514}
1515
f9a14399 1516void invalidate_bh_lrus(void)
1da177e4 1517{
cb923159 1518 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1519}
9db5579b 1520EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4 1521
243418e3
MK
1522/*
1523 * It's called from workqueue context so we need a bh_lru_lock to close
1524 * the race with preemption/irq.
1525 */
1526void invalidate_bh_lrus_cpu(void)
8cc621d2
MK
1527{
1528 struct bh_lru *b;
1529
1530 bh_lru_lock();
243418e3 1531 b = this_cpu_ptr(&bh_lrus);
8cc621d2
MK
1532 __invalidate_bh_lrus(b);
1533 bh_lru_unlock();
1534}
1535
465e5e6a
PR
1536void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1537 unsigned long offset)
1538{
1539 bh->b_folio = folio;
1540 BUG_ON(offset >= folio_size(folio));
1541 if (folio_test_highmem(folio))
1542 /*
1543 * This catches illegal uses and preserves the offset:
1544 */
1545 bh->b_data = (char *)(0 + offset);
1546 else
1547 bh->b_data = folio_address(folio) + offset;
1548}
1549EXPORT_SYMBOL(folio_set_bh);
1550
1da177e4
LT
1551/*
1552 * Called when truncating a buffer on a page completely.
1553 */
e7470ee8
MG
1554
1555/* Bits that are cleared during an invalidate */
1556#define BUFFER_FLAGS_DISCARD \
1557 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1558 1 << BH_Delay | 1 << BH_Unwritten)
1559
858119e1 1560static void discard_buffer(struct buffer_head * bh)
1da177e4 1561{
b0192296 1562 unsigned long b_state;
e7470ee8 1563
1da177e4
LT
1564 lock_buffer(bh);
1565 clear_buffer_dirty(bh);
1566 bh->b_bdev = NULL;
b0192296
UB
1567 b_state = READ_ONCE(bh->b_state);
1568 do {
1569 } while (!try_cmpxchg(&bh->b_state, &b_state,
1570 b_state & ~BUFFER_FLAGS_DISCARD));
1da177e4
LT
1571 unlock_buffer(bh);
1572}
1573
1da177e4 1574/**
7ba13abb
MWO
1575 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1576 * @folio: The folio which is affected.
d47992f8
LC
1577 * @offset: start of the range to invalidate
1578 * @length: length of the range to invalidate
1da177e4 1579 *
7ba13abb 1580 * block_invalidate_folio() is called when all or part of the folio has been
814e1d25 1581 * invalidated by a truncate operation.
1da177e4 1582 *
7ba13abb 1583 * block_invalidate_folio() does not have to release all buffers, but it must
1da177e4
LT
1584 * ensure that no dirty buffer is left outside @offset and that no I/O
1585 * is underway against any of the blocks which are outside the truncation
1586 * point. Because the caller is about to free (and possibly reuse) those
1587 * blocks on-disk.
1588 */
7ba13abb 1589void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1da177e4
LT
1590{
1591 struct buffer_head *head, *bh, *next;
7ba13abb
MWO
1592 size_t curr_off = 0;
1593 size_t stop = length + offset;
1da177e4 1594
7ba13abb 1595 BUG_ON(!folio_test_locked(folio));
1da177e4 1596
d47992f8
LC
1597 /*
1598 * Check for overflow
1599 */
7ba13abb
MWO
1600 BUG_ON(stop > folio_size(folio) || stop < length);
1601
1602 head = folio_buffers(folio);
1603 if (!head)
1604 return;
d47992f8 1605
1da177e4
LT
1606 bh = head;
1607 do {
7ba13abb 1608 size_t next_off = curr_off + bh->b_size;
1da177e4
LT
1609 next = bh->b_this_page;
1610
d47992f8
LC
1611 /*
1612 * Are we still fully in range ?
1613 */
1614 if (next_off > stop)
1615 goto out;
1616
1da177e4
LT
1617 /*
1618 * is this block fully invalidated?
1619 */
1620 if (offset <= curr_off)
1621 discard_buffer(bh);
1622 curr_off = next_off;
1623 bh = next;
1624 } while (bh != head);
1625
1626 /*
7ba13abb 1627 * We release buffers only if the entire folio is being invalidated.
1da177e4
LT
1628 * The get_block cached value has been unconditionally invalidated,
1629 * so real IO is not possible anymore.
1630 */
7ba13abb
MWO
1631 if (length == folio_size(folio))
1632 filemap_release_folio(folio, 0);
1da177e4 1633out:
2ff28e22 1634 return;
1da177e4 1635}
7ba13abb 1636EXPORT_SYMBOL(block_invalidate_folio);
1da177e4
LT
1637
1638/*
1639 * We attach and possibly dirty the buffers atomically wrt
e621900a 1640 * block_dirty_folio() via private_lock. try_to_free_buffers
8e2e1756 1641 * is already excluded via the folio lock.
1da177e4 1642 */
8e2e1756
PR
1643void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1644 unsigned long b_state)
1da177e4
LT
1645{
1646 struct buffer_head *bh, *head, *tail;
1647
8e2e1756 1648 head = folio_alloc_buffers(folio, blocksize, true);
1da177e4
LT
1649 bh = head;
1650 do {
1651 bh->b_state |= b_state;
1652 tail = bh;
1653 bh = bh->b_this_page;
1654 } while (bh);
1655 tail->b_this_page = head;
1656
8e2e1756
PR
1657 spin_lock(&folio->mapping->private_lock);
1658 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1da177e4
LT
1659 bh = head;
1660 do {
8e2e1756 1661 if (folio_test_dirty(folio))
1da177e4 1662 set_buffer_dirty(bh);
8e2e1756 1663 if (folio_test_uptodate(folio))
1da177e4
LT
1664 set_buffer_uptodate(bh);
1665 bh = bh->b_this_page;
1666 } while (bh != head);
1667 }
8e2e1756
PR
1668 folio_attach_private(folio, head);
1669 spin_unlock(&folio->mapping->private_lock);
1670}
1671EXPORT_SYMBOL(folio_create_empty_buffers);
1672
1673void create_empty_buffers(struct page *page,
1674 unsigned long blocksize, unsigned long b_state)
1675{
1676 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1da177e4
LT
1677}
1678EXPORT_SYMBOL(create_empty_buffers);
1679
29f3ad7d
JK
1680/**
1681 * clean_bdev_aliases: clean a range of buffers in block device
1682 * @bdev: Block device to clean buffers in
1683 * @block: Start of a range of blocks to clean
1684 * @len: Number of blocks to clean
1da177e4 1685 *
29f3ad7d
JK
1686 * We are taking a range of blocks for data and we don't want writeback of any
1687 * buffer-cache aliases starting from return from this function and until the
1688 * moment when something will explicitly mark the buffer dirty (hopefully that
1689 * will not happen until we will free that block ;-) We don't even need to mark
1690 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1691 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1692 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1693 * would confuse anyone who might pick it with bread() afterwards...
1694 *
1695 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1696 * writeout I/O going on against recently-freed buffers. We don't wait on that
1697 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1698 * need to. That happens here.
1da177e4 1699 */
29f3ad7d 1700void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1701{
29f3ad7d
JK
1702 struct inode *bd_inode = bdev->bd_inode;
1703 struct address_space *bd_mapping = bd_inode->i_mapping;
9e0b6f31 1704 struct folio_batch fbatch;
29f3ad7d
JK
1705 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1706 pgoff_t end;
c10f778d 1707 int i, count;
29f3ad7d
JK
1708 struct buffer_head *bh;
1709 struct buffer_head *head;
1da177e4 1710
29f3ad7d 1711 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
9e0b6f31
MWO
1712 folio_batch_init(&fbatch);
1713 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1714 count = folio_batch_count(&fbatch);
c10f778d 1715 for (i = 0; i < count; i++) {
9e0b6f31 1716 struct folio *folio = fbatch.folios[i];
1da177e4 1717
9e0b6f31 1718 if (!folio_buffers(folio))
29f3ad7d
JK
1719 continue;
1720 /*
9e0b6f31 1721 * We use folio lock instead of bd_mapping->private_lock
29f3ad7d
JK
1722 * to pin buffers here since we can afford to sleep and
1723 * it scales better than a global spinlock lock.
1724 */
9e0b6f31
MWO
1725 folio_lock(folio);
1726 /* Recheck when the folio is locked which pins bhs */
1727 head = folio_buffers(folio);
1728 if (!head)
29f3ad7d 1729 goto unlock_page;
29f3ad7d
JK
1730 bh = head;
1731 do {
6c006a9d 1732 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1733 goto next;
1734 if (bh->b_blocknr >= block + len)
1735 break;
1736 clear_buffer_dirty(bh);
1737 wait_on_buffer(bh);
1738 clear_buffer_req(bh);
1739next:
1740 bh = bh->b_this_page;
1741 } while (bh != head);
1742unlock_page:
9e0b6f31 1743 folio_unlock(folio);
29f3ad7d 1744 }
9e0b6f31 1745 folio_batch_release(&fbatch);
29f3ad7d 1746 cond_resched();
c10f778d
JK
1747 /* End of range already reached? */
1748 if (index > end || !index)
1749 break;
1da177e4
LT
1750 }
1751}
29f3ad7d 1752EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1753
45bce8f3
LT
1754/*
1755 * Size is a power-of-two in the range 512..PAGE_SIZE,
1756 * and the case we care about most is PAGE_SIZE.
1757 *
1758 * So this *could* possibly be written with those
1759 * constraints in mind (relevant mostly if some
1760 * architecture has a slow bit-scan instruction)
1761 */
1762static inline int block_size_bits(unsigned int blocksize)
1763{
1764 return ilog2(blocksize);
1765}
1766
c6c8c3e7
PR
1767static struct buffer_head *folio_create_buffers(struct folio *folio,
1768 struct inode *inode,
1769 unsigned int b_state)
45bce8f3 1770{
c6c8c3e7 1771 BUG_ON(!folio_test_locked(folio));
45bce8f3 1772
c6c8c3e7
PR
1773 if (!folio_buffers(folio))
1774 folio_create_empty_buffers(folio,
1775 1 << READ_ONCE(inode->i_blkbits),
1776 b_state);
1777 return folio_buffers(folio);
45bce8f3
LT
1778}
1779
1da177e4
LT
1780/*
1781 * NOTE! All mapped/uptodate combinations are valid:
1782 *
1783 * Mapped Uptodate Meaning
1784 *
1785 * No No "unknown" - must do get_block()
1786 * No Yes "hole" - zero-filled
1787 * Yes No "allocated" - allocated on disk, not read in
1788 * Yes Yes "valid" - allocated and up-to-date in memory.
1789 *
1790 * "Dirty" is valid only with the last case (mapped+uptodate).
1791 */
1792
1793/*
1794 * While block_write_full_page is writing back the dirty buffers under
1795 * the page lock, whoever dirtied the buffers may decide to clean them
1796 * again at any time. We handle that by only looking at the buffer
1797 * state inside lock_buffer().
1798 *
1799 * If block_write_full_page() is called for regular writeback
1800 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1801 * locked buffer. This only can happen if someone has written the buffer
1802 * directly, with submit_bh(). At the address_space level PageWriteback
1803 * prevents this contention from occurring.
6e34eedd
TT
1804 *
1805 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1806 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1807 * causes the writes to be flagged as synchronous writes.
1da177e4 1808 */
53418a18 1809int __block_write_full_folio(struct inode *inode, struct folio *folio,
35c80d5f
CM
1810 get_block_t *get_block, struct writeback_control *wbc,
1811 bh_end_io_t *handler)
1da177e4
LT
1812{
1813 int err;
1814 sector_t block;
1815 sector_t last_block;
f0fbd5fc 1816 struct buffer_head *bh, *head;
45bce8f3 1817 unsigned int blocksize, bbits;
1da177e4 1818 int nr_underway = 0;
3ae72869 1819 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1da177e4 1820
53418a18 1821 head = folio_create_buffers(folio, inode,
c6c8c3e7 1822 (1 << BH_Dirty) | (1 << BH_Uptodate));
1da177e4
LT
1823
1824 /*
e621900a 1825 * Be very careful. We have no exclusion from block_dirty_folio
1da177e4
LT
1826 * here, and the (potentially unmapped) buffers may become dirty at
1827 * any time. If a buffer becomes dirty here after we've inspected it
53418a18 1828 * then we just miss that fact, and the folio stays dirty.
1da177e4 1829 *
e621900a 1830 * Buffers outside i_size may be dirtied by block_dirty_folio;
1da177e4
LT
1831 * handle that here by just cleaning them.
1832 */
1833
1da177e4 1834 bh = head;
45bce8f3
LT
1835 blocksize = bh->b_size;
1836 bbits = block_size_bits(blocksize);
1837
53418a18 1838 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
45bce8f3 1839 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1840
1841 /*
1842 * Get all the dirty buffers mapped to disk addresses and
1843 * handle any aliases from the underlying blockdev's mapping.
1844 */
1845 do {
1846 if (block > last_block) {
1847 /*
1848 * mapped buffers outside i_size will occur, because
53418a18 1849 * this folio can be outside i_size when there is a
1da177e4
LT
1850 * truncate in progress.
1851 */
1852 /*
1853 * The buffer was zeroed by block_write_full_page()
1854 */
1855 clear_buffer_dirty(bh);
1856 set_buffer_uptodate(bh);
29a814d2
AT
1857 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1858 buffer_dirty(bh)) {
b0cf2321 1859 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1860 err = get_block(inode, block, bh, 1);
1861 if (err)
1862 goto recover;
29a814d2 1863 clear_buffer_delay(bh);
1da177e4
LT
1864 if (buffer_new(bh)) {
1865 /* blockdev mappings never come here */
1866 clear_buffer_new(bh);
e64855c6 1867 clean_bdev_bh_alias(bh);
1da177e4
LT
1868 }
1869 }
1870 bh = bh->b_this_page;
1871 block++;
1872 } while (bh != head);
1873
1874 do {
1da177e4
LT
1875 if (!buffer_mapped(bh))
1876 continue;
1877 /*
1878 * If it's a fully non-blocking write attempt and we cannot
53418a18 1879 * lock the buffer then redirty the folio. Note that this can
5b0830cb
JA
1880 * potentially cause a busy-wait loop from writeback threads
1881 * and kswapd activity, but those code paths have their own
1882 * higher-level throttling.
1da177e4 1883 */
1b430bee 1884 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1885 lock_buffer(bh);
ca5de404 1886 } else if (!trylock_buffer(bh)) {
53418a18 1887 folio_redirty_for_writepage(wbc, folio);
1da177e4
LT
1888 continue;
1889 }
1890 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1891 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1892 } else {
1893 unlock_buffer(bh);
1894 }
1895 } while ((bh = bh->b_this_page) != head);
1896
1897 /*
53418a18
MWO
1898 * The folio and its buffers are protected by the writeback flag,
1899 * so we can drop the bh refcounts early.
1da177e4 1900 */
53418a18
MWO
1901 BUG_ON(folio_test_writeback(folio));
1902 folio_start_writeback(folio);
1da177e4
LT
1903
1904 do {
1905 struct buffer_head *next = bh->b_this_page;
1906 if (buffer_async_write(bh)) {
1420c4a5 1907 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1da177e4
LT
1908 nr_underway++;
1909 }
1da177e4
LT
1910 bh = next;
1911 } while (bh != head);
53418a18 1912 folio_unlock(folio);
1da177e4
LT
1913
1914 err = 0;
1915done:
1916 if (nr_underway == 0) {
1917 /*
53418a18 1918 * The folio was marked dirty, but the buffers were
1da177e4 1919 * clean. Someone wrote them back by hand with
79f59784 1920 * write_dirty_buffer/submit_bh. A rare case.
1da177e4 1921 */
53418a18 1922 folio_end_writeback(folio);
3d67f2d7 1923
1da177e4 1924 /*
53418a18 1925 * The folio and buffer_heads can be released at any time from
1da177e4
LT
1926 * here on.
1927 */
1da177e4
LT
1928 }
1929 return err;
1930
1931recover:
1932 /*
1933 * ENOSPC, or some other error. We may already have added some
1934 * blocks to the file, so we need to write these out to avoid
1935 * exposing stale data.
53418a18 1936 * The folio is currently locked and not marked for writeback
1da177e4
LT
1937 */
1938 bh = head;
1939 /* Recovery: lock and submit the mapped buffers */
1940 do {
29a814d2
AT
1941 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1942 !buffer_delay(bh)) {
1da177e4 1943 lock_buffer(bh);
35c80d5f 1944 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1945 } else {
1946 /*
1947 * The buffer may have been set dirty during
53418a18 1948 * attachment to a dirty folio.
1da177e4
LT
1949 */
1950 clear_buffer_dirty(bh);
1951 }
1952 } while ((bh = bh->b_this_page) != head);
53418a18
MWO
1953 folio_set_error(folio);
1954 BUG_ON(folio_test_writeback(folio));
1955 mapping_set_error(folio->mapping, err);
1956 folio_start_writeback(folio);
1da177e4
LT
1957 do {
1958 struct buffer_head *next = bh->b_this_page;
1959 if (buffer_async_write(bh)) {
1960 clear_buffer_dirty(bh);
1420c4a5 1961 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1da177e4
LT
1962 nr_underway++;
1963 }
1da177e4
LT
1964 bh = next;
1965 } while (bh != head);
53418a18 1966 folio_unlock(folio);
1da177e4
LT
1967 goto done;
1968}
53418a18 1969EXPORT_SYMBOL(__block_write_full_folio);
1da177e4 1970
afddba49 1971/*
4a9622f2 1972 * If a folio has any new buffers, zero them out here, and mark them uptodate
afddba49
NP
1973 * and dirty so they'll be written out (in order to prevent uninitialised
1974 * block data from leaking). And clear the new bit.
1975 */
4a9622f2 1976void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
afddba49 1977{
4a9622f2 1978 size_t block_start, block_end;
afddba49
NP
1979 struct buffer_head *head, *bh;
1980
4a9622f2
MWO
1981 BUG_ON(!folio_test_locked(folio));
1982 head = folio_buffers(folio);
1983 if (!head)
afddba49
NP
1984 return;
1985
4a9622f2 1986 bh = head;
afddba49
NP
1987 block_start = 0;
1988 do {
1989 block_end = block_start + bh->b_size;
1990
1991 if (buffer_new(bh)) {
1992 if (block_end > from && block_start < to) {
4a9622f2
MWO
1993 if (!folio_test_uptodate(folio)) {
1994 size_t start, xend;
afddba49
NP
1995
1996 start = max(from, block_start);
4a9622f2 1997 xend = min(to, block_end);
afddba49 1998
4a9622f2 1999 folio_zero_segment(folio, start, xend);
afddba49
NP
2000 set_buffer_uptodate(bh);
2001 }
2002
2003 clear_buffer_new(bh);
2004 mark_buffer_dirty(bh);
2005 }
2006 }
2007
2008 block_start = block_end;
2009 bh = bh->b_this_page;
2010 } while (bh != head);
2011}
4a9622f2 2012EXPORT_SYMBOL(folio_zero_new_buffers);
afddba49 2013
ae259a9c
CH
2014static void
2015iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
6d49cc85 2016 const struct iomap *iomap)
ae259a9c
CH
2017{
2018 loff_t offset = block << inode->i_blkbits;
2019
2020 bh->b_bdev = iomap->bdev;
2021
2022 /*
2023 * Block points to offset in file we need to map, iomap contains
2024 * the offset at which the map starts. If the map ends before the
2025 * current block, then do not map the buffer and let the caller
2026 * handle it.
2027 */
2028 BUG_ON(offset >= iomap->offset + iomap->length);
2029
2030 switch (iomap->type) {
2031 case IOMAP_HOLE:
2032 /*
2033 * If the buffer is not up to date or beyond the current EOF,
2034 * we need to mark it as new to ensure sub-block zeroing is
2035 * executed if necessary.
2036 */
2037 if (!buffer_uptodate(bh) ||
2038 (offset >= i_size_read(inode)))
2039 set_buffer_new(bh);
2040 break;
2041 case IOMAP_DELALLOC:
2042 if (!buffer_uptodate(bh) ||
2043 (offset >= i_size_read(inode)))
2044 set_buffer_new(bh);
2045 set_buffer_uptodate(bh);
2046 set_buffer_mapped(bh);
2047 set_buffer_delay(bh);
2048 break;
2049 case IOMAP_UNWRITTEN:
2050 /*
3d7b6b21
AG
2051 * For unwritten regions, we always need to ensure that regions
2052 * in the block we are not writing to are zeroed. Mark the
2053 * buffer as new to ensure this.
ae259a9c
CH
2054 */
2055 set_buffer_new(bh);
2056 set_buffer_unwritten(bh);
df561f66 2057 fallthrough;
ae259a9c 2058 case IOMAP_MAPPED:
3d7b6b21
AG
2059 if ((iomap->flags & IOMAP_F_NEW) ||
2060 offset >= i_size_read(inode))
ae259a9c 2061 set_buffer_new(bh);
19fe5f64
AG
2062 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2063 inode->i_blkbits;
ae259a9c
CH
2064 set_buffer_mapped(bh);
2065 break;
2066 }
2067}
2068
d1bd0b4e 2069int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
6d49cc85 2070 get_block_t *get_block, const struct iomap *iomap)
1da177e4 2071{
09cbfeaf 2072 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 2073 unsigned to = from + len;
d1bd0b4e 2074 struct inode *inode = folio->mapping->host;
1da177e4
LT
2075 unsigned block_start, block_end;
2076 sector_t block;
2077 int err = 0;
2078 unsigned blocksize, bbits;
2079 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2080
d1bd0b4e 2081 BUG_ON(!folio_test_locked(folio));
09cbfeaf
KS
2082 BUG_ON(from > PAGE_SIZE);
2083 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2084 BUG_ON(from > to);
2085
c6c8c3e7 2086 head = folio_create_buffers(folio, inode, 0);
45bce8f3
LT
2087 blocksize = head->b_size;
2088 bbits = block_size_bits(blocksize);
1da177e4 2089
d1bd0b4e 2090 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2091
2092 for(bh = head, block_start = 0; bh != head || !block_start;
2093 block++, block_start=block_end, bh = bh->b_this_page) {
2094 block_end = block_start + blocksize;
2095 if (block_end <= from || block_start >= to) {
d1bd0b4e 2096 if (folio_test_uptodate(folio)) {
1da177e4
LT
2097 if (!buffer_uptodate(bh))
2098 set_buffer_uptodate(bh);
2099 }
2100 continue;
2101 }
2102 if (buffer_new(bh))
2103 clear_buffer_new(bh);
2104 if (!buffer_mapped(bh)) {
b0cf2321 2105 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2106 if (get_block) {
2107 err = get_block(inode, block, bh, 1);
2108 if (err)
2109 break;
2110 } else {
2111 iomap_to_bh(inode, block, bh, iomap);
2112 }
2113
1da177e4 2114 if (buffer_new(bh)) {
e64855c6 2115 clean_bdev_bh_alias(bh);
d1bd0b4e 2116 if (folio_test_uptodate(folio)) {
637aff46 2117 clear_buffer_new(bh);
1da177e4 2118 set_buffer_uptodate(bh);
637aff46 2119 mark_buffer_dirty(bh);
1da177e4
LT
2120 continue;
2121 }
eebd2aa3 2122 if (block_end > to || block_start < from)
d1bd0b4e 2123 folio_zero_segments(folio,
eebd2aa3
CL
2124 to, block_end,
2125 block_start, from);
1da177e4
LT
2126 continue;
2127 }
2128 }
d1bd0b4e 2129 if (folio_test_uptodate(folio)) {
1da177e4
LT
2130 if (!buffer_uptodate(bh))
2131 set_buffer_uptodate(bh);
2132 continue;
2133 }
2134 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2135 !buffer_unwritten(bh) &&
1da177e4 2136 (block_start < from || block_end > to)) {
e7ea1129 2137 bh_read_nowait(bh, 0);
1da177e4
LT
2138 *wait_bh++=bh;
2139 }
2140 }
2141 /*
2142 * If we issued read requests - let them complete.
2143 */
2144 while(wait_bh > wait) {
2145 wait_on_buffer(*--wait_bh);
2146 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2147 err = -EIO;
1da177e4 2148 }
f9f07b6c 2149 if (unlikely(err))
4a9622f2 2150 folio_zero_new_buffers(folio, from, to);
1da177e4
LT
2151 return err;
2152}
ae259a9c
CH
2153
2154int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2155 get_block_t *get_block)
2156{
d1bd0b4e
MWO
2157 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2158 NULL);
ae259a9c 2159}
ebdec241 2160EXPORT_SYMBOL(__block_write_begin);
1da177e4 2161
a524fcfe 2162static void __block_commit_write(struct folio *folio, size_t from, size_t to)
1da177e4 2163{
8c6cb3e3
MWO
2164 size_t block_start, block_end;
2165 bool partial = false;
1da177e4
LT
2166 unsigned blocksize;
2167 struct buffer_head *bh, *head;
2168
8c6cb3e3 2169 bh = head = folio_buffers(folio);
45bce8f3 2170 blocksize = bh->b_size;
1da177e4 2171
45bce8f3
LT
2172 block_start = 0;
2173 do {
1da177e4
LT
2174 block_end = block_start + blocksize;
2175 if (block_end <= from || block_start >= to) {
2176 if (!buffer_uptodate(bh))
8c6cb3e3 2177 partial = true;
1da177e4
LT
2178 } else {
2179 set_buffer_uptodate(bh);
2180 mark_buffer_dirty(bh);
2181 }
4ebd3aec
YG
2182 if (buffer_new(bh))
2183 clear_buffer_new(bh);
45bce8f3
LT
2184
2185 block_start = block_end;
2186 bh = bh->b_this_page;
2187 } while (bh != head);
1da177e4
LT
2188
2189 /*
2190 * If this is a partial write which happened to make all buffers
2c69e205 2191 * uptodate then we can optimize away a bogus read_folio() for
8c6cb3e3 2192 * the next read(). Here we 'discover' whether the folio went
1da177e4
LT
2193 * uptodate as a result of this (potentially partial) write.
2194 */
2195 if (!partial)
8c6cb3e3 2196 folio_mark_uptodate(folio);
1da177e4
LT
2197}
2198
afddba49 2199/*
155130a4
CH
2200 * block_write_begin takes care of the basic task of block allocation and
2201 * bringing partial write blocks uptodate first.
2202 *
7bb46a67 2203 * The filesystem needs to handle block truncation upon failure.
afddba49 2204 */
155130a4 2205int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
b3992d1e 2206 struct page **pagep, get_block_t *get_block)
afddba49 2207{
09cbfeaf 2208 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2209 struct page *page;
6e1db88d 2210 int status;
afddba49 2211
b7446e7c 2212 page = grab_cache_page_write_begin(mapping, index);
6e1db88d
CH
2213 if (!page)
2214 return -ENOMEM;
afddba49 2215
6e1db88d 2216 status = __block_write_begin(page, pos, len, get_block);
afddba49 2217 if (unlikely(status)) {
6e1db88d 2218 unlock_page(page);
09cbfeaf 2219 put_page(page);
6e1db88d 2220 page = NULL;
afddba49
NP
2221 }
2222
6e1db88d 2223 *pagep = page;
afddba49
NP
2224 return status;
2225}
2226EXPORT_SYMBOL(block_write_begin);
2227
2228int block_write_end(struct file *file, struct address_space *mapping,
2229 loff_t pos, unsigned len, unsigned copied,
2230 struct page *page, void *fsdata)
2231{
8c6cb3e3 2232 struct folio *folio = page_folio(page);
8c6cb3e3 2233 size_t start = pos - folio_pos(folio);
afddba49
NP
2234
2235 if (unlikely(copied < len)) {
2236 /*
2c69e205
MWO
2237 * The buffers that were written will now be uptodate, so
2238 * we don't have to worry about a read_folio reading them
2239 * and overwriting a partial write. However if we have
2240 * encountered a short write and only partially written
2241 * into a buffer, it will not be marked uptodate, so a
2242 * read_folio might come in and destroy our partial write.
afddba49
NP
2243 *
2244 * Do the simplest thing, and just treat any short write to a
8c6cb3e3 2245 * non uptodate folio as a zero-length write, and force the
afddba49
NP
2246 * caller to redo the whole thing.
2247 */
8c6cb3e3 2248 if (!folio_test_uptodate(folio))
afddba49
NP
2249 copied = 0;
2250
4a9622f2 2251 folio_zero_new_buffers(folio, start+copied, start+len);
afddba49 2252 }
8c6cb3e3 2253 flush_dcache_folio(folio);
afddba49
NP
2254
2255 /* This could be a short (even 0-length) commit */
489b7e72 2256 __block_commit_write(folio, start, start + copied);
afddba49
NP
2257
2258 return copied;
2259}
2260EXPORT_SYMBOL(block_write_end);
2261
2262int generic_write_end(struct file *file, struct address_space *mapping,
2263 loff_t pos, unsigned len, unsigned copied,
2264 struct page *page, void *fsdata)
2265{
8af54f29
CH
2266 struct inode *inode = mapping->host;
2267 loff_t old_size = inode->i_size;
2268 bool i_size_changed = false;
2269
afddba49 2270 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2271
2272 /*
2273 * No need to use i_size_read() here, the i_size cannot change under us
2274 * because we hold i_rwsem.
2275 *
2276 * But it's important to update i_size while still holding page lock:
2277 * page writeout could otherwise come in and zero beyond i_size.
2278 */
2279 if (pos + copied > inode->i_size) {
2280 i_size_write(inode, pos + copied);
2281 i_size_changed = true;
2282 }
2283
2284 unlock_page(page);
7a77dad7 2285 put_page(page);
8af54f29
CH
2286
2287 if (old_size < pos)
2288 pagecache_isize_extended(inode, old_size, pos);
2289 /*
2290 * Don't mark the inode dirty under page lock. First, it unnecessarily
2291 * makes the holding time of page lock longer. Second, it forces lock
2292 * ordering of page lock and transaction start for journaling
2293 * filesystems.
2294 */
2295 if (i_size_changed)
2296 mark_inode_dirty(inode);
26ddb1f4 2297 return copied;
afddba49
NP
2298}
2299EXPORT_SYMBOL(generic_write_end);
2300
8ab22b9a 2301/*
2e7e80f7 2302 * block_is_partially_uptodate checks whether buffers within a folio are
8ab22b9a
HH
2303 * uptodate or not.
2304 *
2e7e80f7
MWO
2305 * Returns true if all buffers which correspond to the specified part
2306 * of the folio are uptodate.
8ab22b9a 2307 */
2e7e80f7 2308bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
8ab22b9a 2309{
8ab22b9a
HH
2310 unsigned block_start, block_end, blocksize;
2311 unsigned to;
2312 struct buffer_head *bh, *head;
2e7e80f7 2313 bool ret = true;
8ab22b9a 2314
2e7e80f7
MWO
2315 head = folio_buffers(folio);
2316 if (!head)
2317 return false;
45bce8f3 2318 blocksize = head->b_size;
2e7e80f7 2319 to = min_t(unsigned, folio_size(folio) - from, count);
8ab22b9a 2320 to = from + to;
2e7e80f7
MWO
2321 if (from < blocksize && to > folio_size(folio) - blocksize)
2322 return false;
8ab22b9a 2323
8ab22b9a
HH
2324 bh = head;
2325 block_start = 0;
2326 do {
2327 block_end = block_start + blocksize;
2328 if (block_end > from && block_start < to) {
2329 if (!buffer_uptodate(bh)) {
2e7e80f7 2330 ret = false;
8ab22b9a
HH
2331 break;
2332 }
2333 if (block_end >= to)
2334 break;
2335 }
2336 block_start = block_end;
2337 bh = bh->b_this_page;
2338 } while (bh != head);
2339
2340 return ret;
2341}
2342EXPORT_SYMBOL(block_is_partially_uptodate);
2343
1da177e4 2344/*
2c69e205 2345 * Generic "read_folio" function for block devices that have the normal
1da177e4 2346 * get_block functionality. This is most of the block device filesystems.
2c69e205 2347 * Reads the folio asynchronously --- the unlock_buffer() and
1da177e4 2348 * set/clear_buffer_uptodate() functions propagate buffer state into the
2c69e205 2349 * folio once IO has completed.
1da177e4 2350 */
2c69e205 2351int block_read_full_folio(struct folio *folio, get_block_t *get_block)
1da177e4 2352{
2c69e205 2353 struct inode *inode = folio->mapping->host;
1da177e4
LT
2354 sector_t iblock, lblock;
2355 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2356 unsigned int blocksize, bbits;
1da177e4
LT
2357 int nr, i;
2358 int fully_mapped = 1;
b7a6eb22 2359 bool page_error = false;
4fa512ce
EB
2360 loff_t limit = i_size_read(inode);
2361
2362 /* This is needed for ext4. */
2363 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2364 limit = inode->i_sb->s_maxbytes;
1da177e4 2365
2c69e205
MWO
2366 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2367
c6c8c3e7 2368 head = folio_create_buffers(folio, inode, 0);
45bce8f3
LT
2369 blocksize = head->b_size;
2370 bbits = block_size_bits(blocksize);
1da177e4 2371
2c69e205 2372 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
4fa512ce 2373 lblock = (limit+blocksize-1) >> bbits;
1da177e4
LT
2374 bh = head;
2375 nr = 0;
2376 i = 0;
2377
2378 do {
2379 if (buffer_uptodate(bh))
2380 continue;
2381
2382 if (!buffer_mapped(bh)) {
c64610ba
AM
2383 int err = 0;
2384
1da177e4
LT
2385 fully_mapped = 0;
2386 if (iblock < lblock) {
b0cf2321 2387 WARN_ON(bh->b_size != blocksize);
c64610ba 2388 err = get_block(inode, iblock, bh, 0);
b7a6eb22 2389 if (err) {
2c69e205 2390 folio_set_error(folio);
b7a6eb22
MWO
2391 page_error = true;
2392 }
1da177e4
LT
2393 }
2394 if (!buffer_mapped(bh)) {
2c69e205
MWO
2395 folio_zero_range(folio, i * blocksize,
2396 blocksize);
c64610ba
AM
2397 if (!err)
2398 set_buffer_uptodate(bh);
1da177e4
LT
2399 continue;
2400 }
2401 /*
2402 * get_block() might have updated the buffer
2403 * synchronously
2404 */
2405 if (buffer_uptodate(bh))
2406 continue;
2407 }
2408 arr[nr++] = bh;
2409 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2410
2411 if (fully_mapped)
2c69e205 2412 folio_set_mappedtodisk(folio);
1da177e4
LT
2413
2414 if (!nr) {
2415 /*
2c69e205 2416 * All buffers are uptodate - we can set the folio uptodate
1da177e4
LT
2417 * as well. But not if get_block() returned an error.
2418 */
b7a6eb22 2419 if (!page_error)
2c69e205
MWO
2420 folio_mark_uptodate(folio);
2421 folio_unlock(folio);
1da177e4
LT
2422 return 0;
2423 }
2424
2425 /* Stage two: lock the buffers */
2426 for (i = 0; i < nr; i++) {
2427 bh = arr[i];
2428 lock_buffer(bh);
2429 mark_buffer_async_read(bh);
2430 }
2431
2432 /*
2433 * Stage 3: start the IO. Check for uptodateness
2434 * inside the buffer lock in case another process reading
2435 * the underlying blockdev brought it uptodate (the sct fix).
2436 */
2437 for (i = 0; i < nr; i++) {
2438 bh = arr[i];
2439 if (buffer_uptodate(bh))
2440 end_buffer_async_read(bh, 1);
2441 else
1420c4a5 2442 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
2443 }
2444 return 0;
2445}
2c69e205 2446EXPORT_SYMBOL(block_read_full_folio);
1da177e4
LT
2447
2448/* utility function for filesystems that need to do work on expanding
89e10787 2449 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2450 * deal with the hole.
2451 */
89e10787 2452int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2453{
2454 struct address_space *mapping = inode->i_mapping;
53b524b8 2455 const struct address_space_operations *aops = mapping->a_ops;
1da177e4 2456 struct page *page;
1468c6f4 2457 void *fsdata = NULL;
1da177e4
LT
2458 int err;
2459
c08d3b0e
NP
2460 err = inode_newsize_ok(inode, size);
2461 if (err)
1da177e4
LT
2462 goto out;
2463
53b524b8 2464 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
89e10787 2465 if (err)
05eb0b51 2466 goto out;
05eb0b51 2467
53b524b8 2468 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
89e10787 2469 BUG_ON(err > 0);
05eb0b51 2470
1da177e4
LT
2471out:
2472 return err;
2473}
1fe72eaa 2474EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2475
f1e3af72
AB
2476static int cont_expand_zero(struct file *file, struct address_space *mapping,
2477 loff_t pos, loff_t *bytes)
1da177e4 2478{
1da177e4 2479 struct inode *inode = mapping->host;
53b524b8 2480 const struct address_space_operations *aops = mapping->a_ops;
93407472 2481 unsigned int blocksize = i_blocksize(inode);
89e10787 2482 struct page *page;
1468c6f4 2483 void *fsdata = NULL;
89e10787
NP
2484 pgoff_t index, curidx;
2485 loff_t curpos;
2486 unsigned zerofrom, offset, len;
2487 int err = 0;
1da177e4 2488
09cbfeaf
KS
2489 index = pos >> PAGE_SHIFT;
2490 offset = pos & ~PAGE_MASK;
89e10787 2491
09cbfeaf
KS
2492 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2493 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2494 if (zerofrom & (blocksize-1)) {
2495 *bytes |= (blocksize-1);
2496 (*bytes)++;
2497 }
09cbfeaf 2498 len = PAGE_SIZE - zerofrom;
1da177e4 2499
53b524b8 2500 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2501 &page, &fsdata);
89e10787
NP
2502 if (err)
2503 goto out;
eebd2aa3 2504 zero_user(page, zerofrom, len);
53b524b8 2505 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2506 page, fsdata);
2507 if (err < 0)
2508 goto out;
2509 BUG_ON(err != len);
2510 err = 0;
061e9746
OH
2511
2512 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2513
08d405c8 2514 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2515 err = -EINTR;
2516 goto out;
2517 }
89e10787 2518 }
1da177e4 2519
89e10787
NP
2520 /* page covers the boundary, find the boundary offset */
2521 if (index == curidx) {
09cbfeaf 2522 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2523 /* if we will expand the thing last block will be filled */
89e10787
NP
2524 if (offset <= zerofrom) {
2525 goto out;
2526 }
2527 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2528 *bytes |= (blocksize-1);
2529 (*bytes)++;
2530 }
89e10787 2531 len = offset - zerofrom;
1da177e4 2532
53b524b8 2533 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2534 &page, &fsdata);
89e10787
NP
2535 if (err)
2536 goto out;
eebd2aa3 2537 zero_user(page, zerofrom, len);
53b524b8 2538 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2539 page, fsdata);
2540 if (err < 0)
2541 goto out;
2542 BUG_ON(err != len);
2543 err = 0;
1da177e4 2544 }
89e10787
NP
2545out:
2546 return err;
2547}
2548
2549/*
2550 * For moronic filesystems that do not allow holes in file.
2551 * We may have to extend the file.
2552 */
282dc178 2553int cont_write_begin(struct file *file, struct address_space *mapping,
be3bbbc5 2554 loff_t pos, unsigned len,
89e10787
NP
2555 struct page **pagep, void **fsdata,
2556 get_block_t *get_block, loff_t *bytes)
2557{
2558 struct inode *inode = mapping->host;
93407472
FF
2559 unsigned int blocksize = i_blocksize(inode);
2560 unsigned int zerofrom;
89e10787
NP
2561 int err;
2562
2563 err = cont_expand_zero(file, mapping, pos, bytes);
2564 if (err)
155130a4 2565 return err;
89e10787 2566
09cbfeaf 2567 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2568 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2569 *bytes |= (blocksize-1);
2570 (*bytes)++;
1da177e4 2571 }
1da177e4 2572
b3992d1e 2573 return block_write_begin(mapping, pos, len, pagep, get_block);
1da177e4 2574}
1fe72eaa 2575EXPORT_SYMBOL(cont_write_begin);
1da177e4 2576
a524fcfe 2577void block_commit_write(struct page *page, unsigned from, unsigned to)
1da177e4 2578{
8c6cb3e3 2579 struct folio *folio = page_folio(page);
489b7e72 2580 __block_commit_write(folio, from, to);
1da177e4 2581}
1fe72eaa 2582EXPORT_SYMBOL(block_commit_write);
1da177e4 2583
54171690
DC
2584/*
2585 * block_page_mkwrite() is not allowed to change the file size as it gets
2586 * called from a page fault handler when a page is first dirtied. Hence we must
2587 * be careful to check for EOF conditions here. We set the page up correctly
2588 * for a written page which means we get ENOSPC checking when writing into
2589 * holes and correct delalloc and unwritten extent mapping on filesystems that
2590 * support these features.
2591 *
2592 * We are not allowed to take the i_mutex here so we have to play games to
2593 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2594 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2595 * page lock we can determine safely if the page is beyond EOF. If it is not
2596 * beyond EOF, then the page is guaranteed safe against truncation until we
2597 * unlock the page.
ea13a864 2598 *
14da9200 2599 * Direct callers of this function should protect against filesystem freezing
5c500029 2600 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2601 */
5c500029 2602int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2603 get_block_t get_block)
54171690 2604{
fe181377 2605 struct folio *folio = page_folio(vmf->page);
496ad9aa 2606 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2607 unsigned long end;
2608 loff_t size;
24da4fab 2609 int ret;
54171690 2610
fe181377 2611 folio_lock(folio);
54171690 2612 size = i_size_read(inode);
fe181377
MWO
2613 if ((folio->mapping != inode->i_mapping) ||
2614 (folio_pos(folio) >= size)) {
24da4fab
JK
2615 /* We overload EFAULT to mean page got truncated */
2616 ret = -EFAULT;
2617 goto out_unlock;
54171690
DC
2618 }
2619
fe181377
MWO
2620 end = folio_size(folio);
2621 /* folio is wholly or partially inside EOF */
2622 if (folio_pos(folio) + end > size)
2623 end = size - folio_pos(folio);
54171690 2624
fe181377 2625 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
a524fcfe 2626 if (unlikely(ret))
24da4fab 2627 goto out_unlock;
a524fcfe
BH
2628
2629 __block_commit_write(folio, 0, end);
2630
fe181377
MWO
2631 folio_mark_dirty(folio);
2632 folio_wait_stable(folio);
24da4fab
JK
2633 return 0;
2634out_unlock:
fe181377 2635 folio_unlock(folio);
54171690 2636 return ret;
24da4fab 2637}
1fe72eaa 2638EXPORT_SYMBOL(block_page_mkwrite);
1da177e4 2639
1da177e4
LT
2640int block_truncate_page(struct address_space *mapping,
2641 loff_t from, get_block_t *get_block)
2642{
09cbfeaf 2643 pgoff_t index = from >> PAGE_SHIFT;
1da177e4 2644 unsigned blocksize;
54b21a79 2645 sector_t iblock;
6d68f644 2646 size_t offset, length, pos;
1da177e4 2647 struct inode *inode = mapping->host;
6d68f644 2648 struct folio *folio;
1da177e4 2649 struct buffer_head *bh;
dc7cb2d2 2650 int err = 0;
1da177e4 2651
93407472 2652 blocksize = i_blocksize(inode);
6d68f644 2653 length = from & (blocksize - 1);
1da177e4
LT
2654
2655 /* Block boundary? Nothing to do */
2656 if (!length)
2657 return 0;
2658
2659 length = blocksize - length;
09cbfeaf 2660 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2661
6d68f644
MWO
2662 folio = filemap_grab_folio(mapping, index);
2663 if (IS_ERR(folio))
2664 return PTR_ERR(folio);
1da177e4 2665
6d68f644
MWO
2666 bh = folio_buffers(folio);
2667 if (!bh) {
2668 folio_create_empty_buffers(folio, blocksize, 0);
2669 bh = folio_buffers(folio);
2670 }
1da177e4
LT
2671
2672 /* Find the buffer that contains "offset" */
6d68f644 2673 offset = offset_in_folio(folio, from);
1da177e4
LT
2674 pos = blocksize;
2675 while (offset >= pos) {
2676 bh = bh->b_this_page;
2677 iblock++;
2678 pos += blocksize;
2679 }
2680
1da177e4 2681 if (!buffer_mapped(bh)) {
b0cf2321 2682 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2683 err = get_block(inode, iblock, bh, 0);
2684 if (err)
2685 goto unlock;
2686 /* unmapped? It's a hole - nothing to do */
2687 if (!buffer_mapped(bh))
2688 goto unlock;
2689 }
2690
2691 /* Ok, it's mapped. Make sure it's up-to-date */
6d68f644 2692 if (folio_test_uptodate(folio))
1da177e4
LT
2693 set_buffer_uptodate(bh);
2694
33a266dd 2695 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
e7ea1129 2696 err = bh_read(bh, 0);
1da177e4 2697 /* Uhhuh. Read error. Complain and punt. */
e7ea1129 2698 if (err < 0)
1da177e4
LT
2699 goto unlock;
2700 }
2701
6d68f644 2702 folio_zero_range(folio, offset, length);
1da177e4 2703 mark_buffer_dirty(bh);
1da177e4
LT
2704
2705unlock:
6d68f644
MWO
2706 folio_unlock(folio);
2707 folio_put(folio);
dc7cb2d2 2708
1da177e4
LT
2709 return err;
2710}
1fe72eaa 2711EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2712
2713/*
2714 * The generic ->writepage function for buffer-backed address_spaces
2715 */
1b938c08
MW
2716int block_write_full_page(struct page *page, get_block_t *get_block,
2717 struct writeback_control *wbc)
1da177e4 2718{
53418a18 2719 struct folio *folio = page_folio(page);
bb0ea598 2720 struct inode * const inode = folio->mapping->host;
1da177e4 2721 loff_t i_size = i_size_read(inode);
1da177e4 2722
bb0ea598
MWO
2723 /* Is the folio fully inside i_size? */
2724 if (folio_pos(folio) + folio_size(folio) <= i_size)
53418a18 2725 return __block_write_full_folio(inode, folio, get_block, wbc,
1b938c08 2726 end_buffer_async_write);
1da177e4 2727
bb0ea598
MWO
2728 /* Is the folio fully outside i_size? (truncate in progress) */
2729 if (folio_pos(folio) >= i_size) {
53418a18 2730 folio_unlock(folio);
1da177e4
LT
2731 return 0; /* don't care */
2732 }
2733
2734 /*
bb0ea598 2735 * The folio straddles i_size. It must be zeroed out on each and every
2a61aa40 2736 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4 2737 * in multiples of the page size. For a file that is not a multiple of
bb0ea598 2738 * the page size, the remaining memory is zeroed when mapped, and
1da177e4
LT
2739 * writes to that region are not written out to the file."
2740 */
bb0ea598
MWO
2741 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2742 folio_size(folio));
53418a18 2743 return __block_write_full_folio(inode, folio, get_block, wbc,
bb0ea598 2744 end_buffer_async_write);
35c80d5f 2745}
1fe72eaa 2746EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2747
1da177e4
LT
2748sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2749 get_block_t *get_block)
2750{
1da177e4 2751 struct inode *inode = mapping->host;
2a527d68
AP
2752 struct buffer_head tmp = {
2753 .b_size = i_blocksize(inode),
2754 };
2755
1da177e4
LT
2756 get_block(inode, block, &tmp, 0);
2757 return tmp.b_blocknr;
2758}
1fe72eaa 2759EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2760
4246a0b6 2761static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2762{
2763 struct buffer_head *bh = bio->bi_private;
2764
b7c44ed9 2765 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2766 set_bit(BH_Quiet, &bh->b_state);
2767
4e4cbee9 2768 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2769 bio_put(bio);
1da177e4
LT
2770}
2771
5bdf402a
RHI
2772static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2773 struct writeback_control *wbc)
1da177e4 2774{
1420c4a5 2775 const enum req_op op = opf & REQ_OP_MASK;
1da177e4 2776 struct bio *bio;
1da177e4
LT
2777
2778 BUG_ON(!buffer_locked(bh));
2779 BUG_ON(!buffer_mapped(bh));
2780 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2781 BUG_ON(buffer_delay(bh));
2782 BUG_ON(buffer_unwritten(bh));
1da177e4 2783
1da177e4 2784 /*
48fd4f93 2785 * Only clear out a write error when rewriting
1da177e4 2786 */
2a222ca9 2787 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
2788 clear_buffer_write_io_error(bh);
2789
07888c66 2790 if (buffer_meta(bh))
1420c4a5 2791 opf |= REQ_META;
07888c66 2792 if (buffer_prio(bh))
1420c4a5 2793 opf |= REQ_PRIO;
07888c66 2794
1420c4a5 2795 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
1da177e4 2796
4f74d15f
EB
2797 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2798
4f024f37 2799 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 2800
741af75d 2801 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
1da177e4
LT
2802
2803 bio->bi_end_io = end_bio_bh_io_sync;
2804 bio->bi_private = bh;
2805
83c9c547
ML
2806 /* Take care of bh's that straddle the end of the device */
2807 guard_bio_eod(bio);
2808
fd42df30
DZ
2809 if (wbc) {
2810 wbc_init_bio(wbc, bio);
34e51a5e 2811 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
2812 }
2813
4e49ea4a 2814 submit_bio(bio);
1da177e4 2815}
bafc0dba 2816
5bdf402a 2817void submit_bh(blk_opf_t opf, struct buffer_head *bh)
bafc0dba 2818{
5bdf402a 2819 submit_bh_wbc(opf, bh, NULL);
71368511 2820}
1fe72eaa 2821EXPORT_SYMBOL(submit_bh);
1da177e4 2822
3ae72869 2823void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
9cb569d6
CH
2824{
2825 lock_buffer(bh);
2826 if (!test_clear_buffer_dirty(bh)) {
2827 unlock_buffer(bh);
2828 return;
2829 }
2830 bh->b_end_io = end_buffer_write_sync;
2831 get_bh(bh);
1420c4a5 2832 submit_bh(REQ_OP_WRITE | op_flags, bh);
9cb569d6
CH
2833}
2834EXPORT_SYMBOL(write_dirty_buffer);
2835
1da177e4
LT
2836/*
2837 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2838 * and then start new I/O and then wait upon it. The caller must have a ref on
2839 * the buffer_head.
2840 */
3ae72869 2841int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
1da177e4 2842{
1da177e4
LT
2843 WARN_ON(atomic_read(&bh->b_count) < 1);
2844 lock_buffer(bh);
2845 if (test_clear_buffer_dirty(bh)) {
377254b2
XT
2846 /*
2847 * The bh should be mapped, but it might not be if the
2848 * device was hot-removed. Not much we can do but fail the I/O.
2849 */
2850 if (!buffer_mapped(bh)) {
2851 unlock_buffer(bh);
2852 return -EIO;
2853 }
2854
1da177e4
LT
2855 get_bh(bh);
2856 bh->b_end_io = end_buffer_write_sync;
ab620620 2857 submit_bh(REQ_OP_WRITE | op_flags, bh);
1da177e4 2858 wait_on_buffer(bh);
ab620620
RHI
2859 if (!buffer_uptodate(bh))
2860 return -EIO;
1da177e4
LT
2861 } else {
2862 unlock_buffer(bh);
2863 }
ab620620 2864 return 0;
1da177e4 2865}
87e99511
CH
2866EXPORT_SYMBOL(__sync_dirty_buffer);
2867
2868int sync_dirty_buffer(struct buffer_head *bh)
2869{
70fd7614 2870 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 2871}
1fe72eaa 2872EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
2873
2874/*
68189fef 2875 * try_to_free_buffers() checks if all the buffers on this particular folio
1da177e4
LT
2876 * are unused, and releases them if so.
2877 *
2878 * Exclusion against try_to_free_buffers may be obtained by either
68189fef 2879 * locking the folio or by holding its mapping's private_lock.
1da177e4 2880 *
68189fef
MWO
2881 * If the folio is dirty but all the buffers are clean then we need to
2882 * be sure to mark the folio clean as well. This is because the folio
1da177e4 2883 * may be against a block device, and a later reattachment of buffers
68189fef 2884 * to a dirty folio will set *all* buffers dirty. Which would corrupt
1da177e4
LT
2885 * filesystem data on the same device.
2886 *
68189fef
MWO
2887 * The same applies to regular filesystem folios: if all the buffers are
2888 * clean then we set the folio clean and proceed. To do that, we require
e621900a 2889 * total exclusion from block_dirty_folio(). That is obtained with
1da177e4
LT
2890 * private_lock.
2891 *
2892 * try_to_free_buffers() is non-blocking.
2893 */
2894static inline int buffer_busy(struct buffer_head *bh)
2895{
2896 return atomic_read(&bh->b_count) |
2897 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2898}
2899
64394763
MWO
2900static bool
2901drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
1da177e4 2902{
64394763 2903 struct buffer_head *head = folio_buffers(folio);
1da177e4
LT
2904 struct buffer_head *bh;
2905
2906 bh = head;
2907 do {
1da177e4
LT
2908 if (buffer_busy(bh))
2909 goto failed;
2910 bh = bh->b_this_page;
2911 } while (bh != head);
2912
2913 do {
2914 struct buffer_head *next = bh->b_this_page;
2915
535ee2fb 2916 if (bh->b_assoc_map)
1da177e4
LT
2917 __remove_assoc_queue(bh);
2918 bh = next;
2919 } while (bh != head);
2920 *buffers_to_free = head;
64394763
MWO
2921 folio_detach_private(folio);
2922 return true;
1da177e4 2923failed:
64394763 2924 return false;
1da177e4
LT
2925}
2926
68189fef 2927bool try_to_free_buffers(struct folio *folio)
1da177e4 2928{
68189fef 2929 struct address_space * const mapping = folio->mapping;
1da177e4 2930 struct buffer_head *buffers_to_free = NULL;
68189fef 2931 bool ret = 0;
1da177e4 2932
68189fef
MWO
2933 BUG_ON(!folio_test_locked(folio));
2934 if (folio_test_writeback(folio))
2935 return false;
1da177e4
LT
2936
2937 if (mapping == NULL) { /* can this still happen? */
64394763 2938 ret = drop_buffers(folio, &buffers_to_free);
1da177e4
LT
2939 goto out;
2940 }
2941
2942 spin_lock(&mapping->private_lock);
64394763 2943 ret = drop_buffers(folio, &buffers_to_free);
ecdfc978
LT
2944
2945 /*
2946 * If the filesystem writes its buffers by hand (eg ext3)
68189fef
MWO
2947 * then we can have clean buffers against a dirty folio. We
2948 * clean the folio here; otherwise the VM will never notice
ecdfc978
LT
2949 * that the filesystem did any IO at all.
2950 *
2951 * Also, during truncate, discard_buffer will have marked all
68189fef
MWO
2952 * the folio's buffers clean. We discover that here and clean
2953 * the folio also.
87df7241
NP
2954 *
2955 * private_lock must be held over this entire operation in order
e621900a 2956 * to synchronise against block_dirty_folio and prevent the
87df7241 2957 * dirty bit from being lost.
ecdfc978 2958 */
11f81bec 2959 if (ret)
68189fef 2960 folio_cancel_dirty(folio);
87df7241 2961 spin_unlock(&mapping->private_lock);
1da177e4
LT
2962out:
2963 if (buffers_to_free) {
2964 struct buffer_head *bh = buffers_to_free;
2965
2966 do {
2967 struct buffer_head *next = bh->b_this_page;
2968 free_buffer_head(bh);
2969 bh = next;
2970 } while (bh != buffers_to_free);
2971 }
2972 return ret;
2973}
2974EXPORT_SYMBOL(try_to_free_buffers);
2975
1da177e4
LT
2976/*
2977 * Buffer-head allocation
2978 */
a0a9b043 2979static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
2980
2981/*
2982 * Once the number of bh's in the machine exceeds this level, we start
2983 * stripping them in writeback.
2984 */
43be594a 2985static unsigned long max_buffer_heads;
1da177e4
LT
2986
2987int buffer_heads_over_limit;
2988
2989struct bh_accounting {
2990 int nr; /* Number of live bh's */
2991 int ratelimit; /* Limit cacheline bouncing */
2992};
2993
2994static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2995
2996static void recalc_bh_state(void)
2997{
2998 int i;
2999 int tot = 0;
3000
ee1be862 3001 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3002 return;
c7b92516 3003 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3004 for_each_online_cpu(i)
1da177e4
LT
3005 tot += per_cpu(bh_accounting, i).nr;
3006 buffer_heads_over_limit = (tot > max_buffer_heads);
3007}
c7b92516 3008
dd0fc66f 3009struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3010{
019b4d12 3011 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3012 if (ret) {
a35afb83 3013 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 3014 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
3015 preempt_disable();
3016 __this_cpu_inc(bh_accounting.nr);
1da177e4 3017 recalc_bh_state();
c7b92516 3018 preempt_enable();
1da177e4
LT
3019 }
3020 return ret;
3021}
3022EXPORT_SYMBOL(alloc_buffer_head);
3023
3024void free_buffer_head(struct buffer_head *bh)
3025{
3026 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3027 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3028 preempt_disable();
3029 __this_cpu_dec(bh_accounting.nr);
1da177e4 3030 recalc_bh_state();
c7b92516 3031 preempt_enable();
1da177e4
LT
3032}
3033EXPORT_SYMBOL(free_buffer_head);
3034
fc4d24c9 3035static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3036{
3037 int i;
3038 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3039
3040 for (i = 0; i < BH_LRU_SIZE; i++) {
3041 brelse(b->bhs[i]);
3042 b->bhs[i] = NULL;
3043 }
c7b92516 3044 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3045 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3046 return 0;
1da177e4 3047}
1da177e4 3048
389d1b08 3049/**
a6b91919 3050 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3051 * @bh: struct buffer_head
3052 *
3053 * Return true if the buffer is up-to-date and false,
3054 * with the buffer locked, if not.
3055 */
3056int bh_uptodate_or_lock(struct buffer_head *bh)
3057{
3058 if (!buffer_uptodate(bh)) {
3059 lock_buffer(bh);
3060 if (!buffer_uptodate(bh))
3061 return 0;
3062 unlock_buffer(bh);
3063 }
3064 return 1;
3065}
3066EXPORT_SYMBOL(bh_uptodate_or_lock);
3067
3068/**
fdee117e 3069 * __bh_read - Submit read for a locked buffer
389d1b08 3070 * @bh: struct buffer_head
fdee117e
ZY
3071 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3072 * @wait: wait until reading finish
389d1b08 3073 *
fdee117e 3074 * Returns zero on success or don't wait, and -EIO on error.
389d1b08 3075 */
fdee117e 3076int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
389d1b08 3077{
fdee117e 3078 int ret = 0;
389d1b08 3079
fdee117e 3080 BUG_ON(!buffer_locked(bh));
389d1b08
AK
3081
3082 get_bh(bh);
3083 bh->b_end_io = end_buffer_read_sync;
fdee117e
ZY
3084 submit_bh(REQ_OP_READ | op_flags, bh);
3085 if (wait) {
3086 wait_on_buffer(bh);
3087 if (!buffer_uptodate(bh))
3088 ret = -EIO;
3089 }
3090 return ret;
3091}
3092EXPORT_SYMBOL(__bh_read);
3093
3094/**
3095 * __bh_read_batch - Submit read for a batch of unlocked buffers
3096 * @nr: entry number of the buffer batch
3097 * @bhs: a batch of struct buffer_head
3098 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3099 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3100 * buffer that cannot lock.
3101 *
3102 * Returns zero on success or don't wait, and -EIO on error.
3103 */
3104void __bh_read_batch(int nr, struct buffer_head *bhs[],
3105 blk_opf_t op_flags, bool force_lock)
3106{
3107 int i;
3108
3109 for (i = 0; i < nr; i++) {
3110 struct buffer_head *bh = bhs[i];
3111
3112 if (buffer_uptodate(bh))
3113 continue;
3114
3115 if (force_lock)
3116 lock_buffer(bh);
3117 else
3118 if (!trylock_buffer(bh))
3119 continue;
3120
3121 if (buffer_uptodate(bh)) {
3122 unlock_buffer(bh);
3123 continue;
3124 }
3125
3126 bh->b_end_io = end_buffer_read_sync;
3127 get_bh(bh);
3128 submit_bh(REQ_OP_READ | op_flags, bh);
3129 }
389d1b08 3130}
fdee117e 3131EXPORT_SYMBOL(__bh_read_batch);
389d1b08 3132
1da177e4
LT
3133void __init buffer_init(void)
3134{
43be594a 3135 unsigned long nrpages;
fc4d24c9 3136 int ret;
1da177e4 3137
b98938c3
CL
3138 bh_cachep = kmem_cache_create("buffer_head",
3139 sizeof(struct buffer_head), 0,
3140 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3141 SLAB_MEM_SPREAD),
019b4d12 3142 NULL);
1da177e4
LT
3143
3144 /*
3145 * Limit the bh occupancy to 10% of ZONE_NORMAL
3146 */
3147 nrpages = (nr_free_buffer_pages() * 10) / 100;
3148 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3149 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3150 NULL, buffer_exit_cpu_dead);
3151 WARN_ON(ret < 0);
1da177e4 3152}
This page took 1.974663 seconds and 4 git commands to generate.