]>
Commit | Line | Data |
---|---|---|
2e04ef76 RR |
1 | /*P:700 |
2 | * The pagetable code, on the other hand, still shows the scars of | |
f938d2c8 RR |
3 | * previous encounters. It's functional, and as neat as it can be in the |
4 | * circumstances, but be wary, for these things are subtle and break easily. | |
5 | * The Guest provides a virtual to physical mapping, but we can neither trust | |
a6bd8e13 | 6 | * it nor use it: we verify and convert it here then point the CPU to the |
2e04ef76 RR |
7 | * converted Guest pages when running the Guest. |
8 | :*/ | |
f938d2c8 | 9 | |
6d0cda93 | 10 | /* Copyright (C) Rusty Russell IBM Corporation 2013. |
d7e28ffe RR |
11 | * GPL v2 and any later version */ |
12 | #include <linux/mm.h> | |
5a0e3ad6 | 13 | #include <linux/gfp.h> |
d7e28ffe RR |
14 | #include <linux/types.h> |
15 | #include <linux/spinlock.h> | |
16 | #include <linux/random.h> | |
17 | #include <linux/percpu.h> | |
18 | #include <asm/tlbflush.h> | |
47436aa4 | 19 | #include <asm/uaccess.h> |
d7e28ffe RR |
20 | #include "lg.h" |
21 | ||
2e04ef76 RR |
22 | /*M:008 |
23 | * We hold reference to pages, which prevents them from being swapped. | |
f56a384e RR |
24 | * It'd be nice to have a callback in the "struct mm_struct" when Linux wants |
25 | * to swap out. If we had this, and a shrinker callback to trim PTE pages, we | |
2e04ef76 RR |
26 | * could probably consider launching Guests as non-root. |
27 | :*/ | |
f56a384e | 28 | |
bff672e6 RR |
29 | /*H:300 |
30 | * The Page Table Code | |
31 | * | |
a91d74a3 RR |
32 | * We use two-level page tables for the Guest, or three-level with PAE. If |
33 | * you're not entirely comfortable with virtual addresses, physical addresses | |
34 | * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page | |
35 | * Table Handling" (with diagrams!). | |
bff672e6 RR |
36 | * |
37 | * The Guest keeps page tables, but we maintain the actual ones here: these are | |
38 | * called "shadow" page tables. Which is a very Guest-centric name: these are | |
39 | * the real page tables the CPU uses, although we keep them up to date to | |
40 | * reflect the Guest's. (See what I mean about weird naming? Since when do | |
41 | * shadows reflect anything?) | |
42 | * | |
43 | * Anyway, this is the most complicated part of the Host code. There are seven | |
44 | * parts to this: | |
e1e72965 RR |
45 | * (i) Looking up a page table entry when the Guest faults, |
46 | * (ii) Making sure the Guest stack is mapped, | |
47 | * (iii) Setting up a page table entry when the Guest tells us one has changed, | |
bff672e6 | 48 | * (iv) Switching page tables, |
e1e72965 | 49 | * (v) Flushing (throwing away) page tables, |
bff672e6 RR |
50 | * (vi) Mapping the Switcher when the Guest is about to run, |
51 | * (vii) Setting up the page tables initially. | |
2e04ef76 | 52 | :*/ |
bff672e6 | 53 | |
2e04ef76 | 54 | /* |
a91d74a3 RR |
55 | * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB) |
56 | * or 512 PTE entries with PAE (2MB). | |
2e04ef76 | 57 | */ |
df29f43e | 58 | #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) |
d7e28ffe | 59 | |
2e04ef76 RR |
60 | /* |
61 | * For PAE we need the PMD index as well. We use the last 2MB, so we | |
62 | * will need the last pmd entry of the last pmd page. | |
63 | */ | |
acdd0b62 | 64 | #ifdef CONFIG_X86_PAE |
acdd0b62 MZ |
65 | #define CHECK_GPGD_MASK _PAGE_PRESENT |
66 | #else | |
acdd0b62 MZ |
67 | #define CHECK_GPGD_MASK _PAGE_TABLE |
68 | #endif | |
69 | ||
2e04ef76 RR |
70 | /*H:320 |
71 | * The page table code is curly enough to need helper functions to keep it | |
a91d74a3 | 72 | * clear and clean. The kernel itself provides many of them; one advantage |
e3d1848f | 73 | * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting. |
bff672e6 | 74 | * |
df29f43e | 75 | * There are two functions which return pointers to the shadow (aka "real") |
bff672e6 RR |
76 | * page tables. |
77 | * | |
78 | * spgd_addr() takes the virtual address and returns a pointer to the top-level | |
e1e72965 RR |
79 | * page directory entry (PGD) for that address. Since we keep track of several |
80 | * page tables, the "i" argument tells us which one we're interested in (it's | |
2e04ef76 RR |
81 | * usually the current one). |
82 | */ | |
382ac6b3 | 83 | static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) |
d7e28ffe | 84 | { |
df29f43e | 85 | unsigned int index = pgd_index(vaddr); |
d7e28ffe | 86 | |
bff672e6 | 87 | /* Return a pointer index'th pgd entry for the i'th page table. */ |
382ac6b3 | 88 | return &cpu->lg->pgdirs[i].pgdir[index]; |
d7e28ffe RR |
89 | } |
90 | ||
acdd0b62 | 91 | #ifdef CONFIG_X86_PAE |
2e04ef76 RR |
92 | /* |
93 | * This routine then takes the PGD entry given above, which contains the | |
acdd0b62 | 94 | * address of the PMD page. It then returns a pointer to the PMD entry for the |
2e04ef76 RR |
95 | * given address. |
96 | */ | |
acdd0b62 MZ |
97 | static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) |
98 | { | |
99 | unsigned int index = pmd_index(vaddr); | |
100 | pmd_t *page; | |
101 | ||
acdd0b62 MZ |
102 | /* You should never call this if the PGD entry wasn't valid */ |
103 | BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); | |
104 | page = __va(pgd_pfn(spgd) << PAGE_SHIFT); | |
105 | ||
106 | return &page[index]; | |
107 | } | |
108 | #endif | |
109 | ||
2e04ef76 RR |
110 | /* |
111 | * This routine then takes the page directory entry returned above, which | |
e1e72965 | 112 | * contains the address of the page table entry (PTE) page. It then returns a |
2e04ef76 RR |
113 | * pointer to the PTE entry for the given address. |
114 | */ | |
acdd0b62 | 115 | static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) |
d7e28ffe | 116 | { |
acdd0b62 MZ |
117 | #ifdef CONFIG_X86_PAE |
118 | pmd_t *pmd = spmd_addr(cpu, spgd, vaddr); | |
119 | pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT); | |
120 | ||
121 | /* You should never call this if the PMD entry wasn't valid */ | |
122 | BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)); | |
123 | #else | |
df29f43e | 124 | pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT); |
bff672e6 | 125 | /* You should never call this if the PGD entry wasn't valid */ |
df29f43e | 126 | BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); |
acdd0b62 MZ |
127 | #endif |
128 | ||
90603d15 | 129 | return &page[pte_index(vaddr)]; |
d7e28ffe RR |
130 | } |
131 | ||
2e04ef76 | 132 | /* |
9f54288d | 133 | * These functions are just like the above, except they access the Guest |
2e04ef76 RR |
134 | * page tables. Hence they return a Guest address. |
135 | */ | |
1713608f | 136 | static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) |
d7e28ffe | 137 | { |
df29f43e | 138 | unsigned int index = vaddr >> (PGDIR_SHIFT); |
1713608f | 139 | return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t); |
d7e28ffe RR |
140 | } |
141 | ||
acdd0b62 | 142 | #ifdef CONFIG_X86_PAE |
a91d74a3 | 143 | /* Follow the PGD to the PMD. */ |
acdd0b62 | 144 | static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) |
d7e28ffe | 145 | { |
df29f43e MZ |
146 | unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; |
147 | BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); | |
acdd0b62 MZ |
148 | return gpage + pmd_index(vaddr) * sizeof(pmd_t); |
149 | } | |
acdd0b62 | 150 | |
a91d74a3 | 151 | /* Follow the PMD to the PTE. */ |
acdd0b62 | 152 | static unsigned long gpte_addr(struct lg_cpu *cpu, |
92b4d8df | 153 | pmd_t gpmd, unsigned long vaddr) |
acdd0b62 | 154 | { |
92b4d8df | 155 | unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT; |
acdd0b62 | 156 | |
acdd0b62 | 157 | BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT)); |
92b4d8df RR |
158 | return gpage + pte_index(vaddr) * sizeof(pte_t); |
159 | } | |
acdd0b62 | 160 | #else |
a91d74a3 | 161 | /* Follow the PGD to the PTE (no mid-level for !PAE). */ |
92b4d8df RR |
162 | static unsigned long gpte_addr(struct lg_cpu *cpu, |
163 | pgd_t gpgd, unsigned long vaddr) | |
164 | { | |
165 | unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; | |
166 | ||
167 | BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); | |
90603d15 | 168 | return gpage + pte_index(vaddr) * sizeof(pte_t); |
d7e28ffe | 169 | } |
92b4d8df | 170 | #endif |
a6bd8e13 RR |
171 | /*:*/ |
172 | ||
9f54288d | 173 | /*M:007 |
2e04ef76 RR |
174 | * get_pfn is slow: we could probably try to grab batches of pages here as |
175 | * an optimization (ie. pre-faulting). | |
176 | :*/ | |
d7e28ffe | 177 | |
2e04ef76 RR |
178 | /*H:350 |
179 | * This routine takes a page number given by the Guest and converts it to | |
bff672e6 RR |
180 | * an actual, physical page number. It can fail for several reasons: the |
181 | * virtual address might not be mapped by the Launcher, the write flag is set | |
182 | * and the page is read-only, or the write flag was set and the page was | |
183 | * shared so had to be copied, but we ran out of memory. | |
184 | * | |
a6bd8e13 | 185 | * This holds a reference to the page, so release_pte() is careful to put that |
2e04ef76 RR |
186 | * back. |
187 | */ | |
d7e28ffe RR |
188 | static unsigned long get_pfn(unsigned long virtpfn, int write) |
189 | { | |
190 | struct page *page; | |
71a3f4ed RR |
191 | |
192 | /* gup me one page at this address please! */ | |
193 | if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1) | |
194 | return page_to_pfn(page); | |
195 | ||
bff672e6 | 196 | /* This value indicates failure. */ |
71a3f4ed | 197 | return -1UL; |
d7e28ffe RR |
198 | } |
199 | ||
2e04ef76 RR |
200 | /*H:340 |
201 | * Converting a Guest page table entry to a shadow (ie. real) page table | |
bff672e6 RR |
202 | * entry can be a little tricky. The flags are (almost) the same, but the |
203 | * Guest PTE contains a virtual page number: the CPU needs the real page | |
2e04ef76 RR |
204 | * number. |
205 | */ | |
382ac6b3 | 206 | static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write) |
d7e28ffe | 207 | { |
df29f43e | 208 | unsigned long pfn, base, flags; |
d7e28ffe | 209 | |
2e04ef76 RR |
210 | /* |
211 | * The Guest sets the global flag, because it thinks that it is using | |
bff672e6 RR |
212 | * PGE. We only told it to use PGE so it would tell us whether it was |
213 | * flushing a kernel mapping or a userspace mapping. We don't actually | |
2e04ef76 RR |
214 | * use the global bit, so throw it away. |
215 | */ | |
df29f43e | 216 | flags = (pte_flags(gpte) & ~_PAGE_GLOBAL); |
bff672e6 | 217 | |
3c6b5bfa | 218 | /* The Guest's pages are offset inside the Launcher. */ |
382ac6b3 | 219 | base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE; |
3c6b5bfa | 220 | |
2e04ef76 RR |
221 | /* |
222 | * We need a temporary "unsigned long" variable to hold the answer from | |
bff672e6 RR |
223 | * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't |
224 | * fit in spte.pfn. get_pfn() finds the real physical number of the | |
2e04ef76 RR |
225 | * page, given the virtual number. |
226 | */ | |
df29f43e | 227 | pfn = get_pfn(base + pte_pfn(gpte), write); |
d7e28ffe | 228 | if (pfn == -1UL) { |
382ac6b3 | 229 | kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte)); |
2e04ef76 RR |
230 | /* |
231 | * When we destroy the Guest, we'll go through the shadow page | |
bff672e6 | 232 | * tables and release_pte() them. Make sure we don't think |
2e04ef76 RR |
233 | * this one is valid! |
234 | */ | |
df29f43e | 235 | flags = 0; |
d7e28ffe | 236 | } |
df29f43e MZ |
237 | /* Now we assemble our shadow PTE from the page number and flags. */ |
238 | return pfn_pte(pfn, __pgprot(flags)); | |
d7e28ffe RR |
239 | } |
240 | ||
bff672e6 | 241 | /*H:460 And to complete the chain, release_pte() looks like this: */ |
df29f43e | 242 | static void release_pte(pte_t pte) |
d7e28ffe | 243 | { |
2e04ef76 RR |
244 | /* |
245 | * Remember that get_user_pages_fast() took a reference to the page, in | |
246 | * get_pfn()? We have to put it back now. | |
247 | */ | |
df29f43e | 248 | if (pte_flags(pte) & _PAGE_PRESENT) |
90603d15 | 249 | put_page(pte_page(pte)); |
d7e28ffe | 250 | } |
bff672e6 | 251 | /*:*/ |
d7e28ffe | 252 | |
e1d12606 | 253 | static bool check_gpte(struct lg_cpu *cpu, pte_t gpte) |
d7e28ffe | 254 | { |
31f4b46e | 255 | if ((pte_flags(gpte) & _PAGE_PSE) || |
e1d12606 | 256 | pte_pfn(gpte) >= cpu->lg->pfn_limit) { |
382ac6b3 | 257 | kill_guest(cpu, "bad page table entry"); |
e1d12606 RR |
258 | return false; |
259 | } | |
260 | return true; | |
d7e28ffe RR |
261 | } |
262 | ||
e1d12606 | 263 | static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd) |
d7e28ffe | 264 | { |
acdd0b62 | 265 | if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) || |
e1d12606 | 266 | (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) { |
382ac6b3 | 267 | kill_guest(cpu, "bad page directory entry"); |
e1d12606 RR |
268 | return false; |
269 | } | |
270 | return true; | |
d7e28ffe RR |
271 | } |
272 | ||
acdd0b62 | 273 | #ifdef CONFIG_X86_PAE |
e1d12606 | 274 | static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd) |
acdd0b62 MZ |
275 | { |
276 | if ((pmd_flags(gpmd) & ~_PAGE_TABLE) || | |
e1d12606 | 277 | (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) { |
acdd0b62 | 278 | kill_guest(cpu, "bad page middle directory entry"); |
e1d12606 RR |
279 | return false; |
280 | } | |
281 | return true; | |
acdd0b62 MZ |
282 | } |
283 | #endif | |
284 | ||
17427e08 RR |
285 | /*H:331 |
286 | * This is the core routine to walk the shadow page tables and find the page | |
287 | * table entry for a specific address. | |
bff672e6 | 288 | * |
17427e08 RR |
289 | * If allocate is set, then we allocate any missing levels, setting the flags |
290 | * on the new page directory and mid-level directories using the arguments | |
291 | * (which are copied from the Guest's page table entries). | |
2e04ef76 | 292 | */ |
17427e08 RR |
293 | static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate, |
294 | int pgd_flags, int pmd_flags) | |
d7e28ffe | 295 | { |
df29f43e | 296 | pgd_t *spgd; |
a91d74a3 | 297 | /* Mid level for PAE. */ |
acdd0b62 MZ |
298 | #ifdef CONFIG_X86_PAE |
299 | pmd_t *spmd; | |
acdd0b62 MZ |
300 | #endif |
301 | ||
17427e08 | 302 | /* Get top level entry. */ |
382ac6b3 | 303 | spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr); |
df29f43e | 304 | if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) { |
bff672e6 | 305 | /* No shadow entry: allocate a new shadow PTE page. */ |
17427e08 RR |
306 | unsigned long ptepage; |
307 | ||
308 | /* If they didn't want us to allocate anything, stop. */ | |
309 | if (!allocate) | |
310 | return NULL; | |
311 | ||
312 | ptepage = get_zeroed_page(GFP_KERNEL); | |
2e04ef76 RR |
313 | /* |
314 | * This is not really the Guest's fault, but killing it is | |
315 | * simple for this corner case. | |
316 | */ | |
d7e28ffe | 317 | if (!ptepage) { |
382ac6b3 | 318 | kill_guest(cpu, "out of memory allocating pte page"); |
17427e08 | 319 | return NULL; |
d7e28ffe | 320 | } |
2e04ef76 RR |
321 | /* |
322 | * And we copy the flags to the shadow PGD entry. The page | |
323 | * number in the shadow PGD is the page we just allocated. | |
324 | */ | |
17427e08 | 325 | set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags)); |
d7e28ffe RR |
326 | } |
327 | ||
17427e08 RR |
328 | /* |
329 | * Intel's Physical Address Extension actually uses three levels of | |
330 | * page tables, so we need to look in the mid-level. | |
331 | */ | |
acdd0b62 | 332 | #ifdef CONFIG_X86_PAE |
17427e08 | 333 | /* Now look at the mid-level shadow entry. */ |
acdd0b62 MZ |
334 | spmd = spmd_addr(cpu, *spgd, vaddr); |
335 | ||
336 | if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) { | |
337 | /* No shadow entry: allocate a new shadow PTE page. */ | |
17427e08 RR |
338 | unsigned long ptepage; |
339 | ||
340 | /* If they didn't want us to allocate anything, stop. */ | |
341 | if (!allocate) | |
342 | return NULL; | |
343 | ||
344 | ptepage = get_zeroed_page(GFP_KERNEL); | |
acdd0b62 | 345 | |
2e04ef76 RR |
346 | /* |
347 | * This is not really the Guest's fault, but killing it is | |
348 | * simple for this corner case. | |
349 | */ | |
acdd0b62 | 350 | if (!ptepage) { |
17427e08 RR |
351 | kill_guest(cpu, "out of memory allocating pmd page"); |
352 | return NULL; | |
acdd0b62 MZ |
353 | } |
354 | ||
2e04ef76 RR |
355 | /* |
356 | * And we copy the flags to the shadow PMD entry. The page | |
357 | * number in the shadow PMD is the page we just allocated. | |
358 | */ | |
17427e08 RR |
359 | set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags)); |
360 | } | |
361 | #endif | |
362 | ||
363 | /* Get the pointer to the shadow PTE entry we're going to set. */ | |
364 | return spte_addr(cpu, *spgd, vaddr); | |
365 | } | |
366 | ||
bff672e6 | 367 | /*H:330 |
e1e72965 | 368 | * (i) Looking up a page table entry when the Guest faults. |
bff672e6 RR |
369 | * |
370 | * We saw this call in run_guest(): when we see a page fault in the Guest, we | |
371 | * come here. That's because we only set up the shadow page tables lazily as | |
372 | * they're needed, so we get page faults all the time and quietly fix them up | |
373 | * and return to the Guest without it knowing. | |
374 | * | |
375 | * If we fixed up the fault (ie. we mapped the address), this routine returns | |
2e04ef76 RR |
376 | * true. Otherwise, it was a real fault and we need to tell the Guest. |
377 | */ | |
df1693ab | 378 | bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) |
d7e28ffe | 379 | { |
d7e28ffe | 380 | unsigned long gpte_ptr; |
df29f43e MZ |
381 | pte_t gpte; |
382 | pte_t *spte; | |
acdd0b62 | 383 | pmd_t gpmd; |
17427e08 | 384 | pgd_t gpgd; |
acdd0b62 | 385 | |
68a644d7 RR |
386 | /* We never demand page the Switcher, so trying is a mistake. */ |
387 | if (vaddr >= switcher_addr) | |
388 | return false; | |
389 | ||
bff672e6 | 390 | /* First step: get the top-level Guest page table entry. */ |
5dea1c88 RR |
391 | if (unlikely(cpu->linear_pages)) { |
392 | /* Faking up a linear mapping. */ | |
393 | gpgd = __pgd(CHECK_GPGD_MASK); | |
394 | } else { | |
395 | gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); | |
396 | /* Toplevel not present? We can't map it in. */ | |
397 | if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) | |
398 | return false; | |
d7e28ffe | 399 | |
17427e08 RR |
400 | /* |
401 | * This kills the Guest if it has weird flags or tries to | |
402 | * refer to a "physical" address outside the bounds. | |
2e04ef76 | 403 | */ |
e1d12606 RR |
404 | if (!check_gpgd(cpu, gpgd)) |
405 | return false; | |
d7e28ffe RR |
406 | } |
407 | ||
17427e08 RR |
408 | /* This "mid-level" entry is only used for non-linear, PAE mode. */ |
409 | gpmd = __pmd(_PAGE_TABLE); | |
410 | ||
acdd0b62 | 411 | #ifdef CONFIG_X86_PAE |
17427e08 | 412 | if (likely(!cpu->linear_pages)) { |
5dea1c88 RR |
413 | gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); |
414 | /* Middle level not present? We can't map it in. */ | |
415 | if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) | |
416 | return false; | |
acdd0b62 | 417 | |
17427e08 RR |
418 | /* |
419 | * This kills the Guest if it has weird flags or tries to | |
420 | * refer to a "physical" address outside the bounds. | |
2e04ef76 | 421 | */ |
e1d12606 RR |
422 | if (!check_gpmd(cpu, gpmd)) |
423 | return false; | |
acdd0b62 | 424 | } |
92b4d8df | 425 | |
2e04ef76 RR |
426 | /* |
427 | * OK, now we look at the lower level in the Guest page table: keep its | |
428 | * address, because we might update it later. | |
429 | */ | |
92b4d8df RR |
430 | gpte_ptr = gpte_addr(cpu, gpmd, vaddr); |
431 | #else | |
2e04ef76 RR |
432 | /* |
433 | * OK, now we look at the lower level in the Guest page table: keep its | |
434 | * address, because we might update it later. | |
435 | */ | |
acdd0b62 | 436 | gpte_ptr = gpte_addr(cpu, gpgd, vaddr); |
92b4d8df | 437 | #endif |
a91d74a3 | 438 | |
5dea1c88 RR |
439 | if (unlikely(cpu->linear_pages)) { |
440 | /* Linear? Make up a PTE which points to same page. */ | |
441 | gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT); | |
442 | } else { | |
443 | /* Read the actual PTE value. */ | |
444 | gpte = lgread(cpu, gpte_ptr, pte_t); | |
445 | } | |
d7e28ffe | 446 | |
bff672e6 | 447 | /* If this page isn't in the Guest page tables, we can't page it in. */ |
df29f43e | 448 | if (!(pte_flags(gpte) & _PAGE_PRESENT)) |
df1693ab | 449 | return false; |
d7e28ffe | 450 | |
2e04ef76 RR |
451 | /* |
452 | * Check they're not trying to write to a page the Guest wants | |
453 | * read-only (bit 2 of errcode == write). | |
454 | */ | |
df29f43e | 455 | if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW)) |
df1693ab | 456 | return false; |
d7e28ffe | 457 | |
e1e72965 | 458 | /* User access to a kernel-only page? (bit 3 == user access) */ |
df29f43e | 459 | if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER)) |
df1693ab | 460 | return false; |
d7e28ffe | 461 | |
2e04ef76 RR |
462 | /* |
463 | * Check that the Guest PTE flags are OK, and the page number is below | |
464 | * the pfn_limit (ie. not mapping the Launcher binary). | |
465 | */ | |
e1d12606 RR |
466 | if (!check_gpte(cpu, gpte)) |
467 | return false; | |
e1e72965 | 468 | |
bff672e6 | 469 | /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ |
df29f43e | 470 | gpte = pte_mkyoung(gpte); |
d7e28ffe | 471 | if (errcode & 2) |
df29f43e | 472 | gpte = pte_mkdirty(gpte); |
d7e28ffe | 473 | |
bff672e6 | 474 | /* Get the pointer to the shadow PTE entry we're going to set. */ |
17427e08 RR |
475 | spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd)); |
476 | if (!spte) | |
477 | return false; | |
2e04ef76 RR |
478 | |
479 | /* | |
480 | * If there was a valid shadow PTE entry here before, we release it. | |
481 | * This can happen with a write to a previously read-only entry. | |
482 | */ | |
d7e28ffe RR |
483 | release_pte(*spte); |
484 | ||
2e04ef76 RR |
485 | /* |
486 | * If this is a write, we insist that the Guest page is writable (the | |
487 | * final arg to gpte_to_spte()). | |
488 | */ | |
df29f43e | 489 | if (pte_dirty(gpte)) |
382ac6b3 | 490 | *spte = gpte_to_spte(cpu, gpte, 1); |
df29f43e | 491 | else |
2e04ef76 RR |
492 | /* |
493 | * If this is a read, don't set the "writable" bit in the page | |
bff672e6 | 494 | * table entry, even if the Guest says it's writable. That way |
e1e72965 | 495 | * we will come back here when a write does actually occur, so |
2e04ef76 RR |
496 | * we can update the Guest's _PAGE_DIRTY flag. |
497 | */ | |
4c1ea3dd | 498 | set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0)); |
d7e28ffe | 499 | |
2e04ef76 RR |
500 | /* |
501 | * Finally, we write the Guest PTE entry back: we've set the | |
502 | * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. | |
503 | */ | |
5dea1c88 RR |
504 | if (likely(!cpu->linear_pages)) |
505 | lgwrite(cpu, gpte_ptr, pte_t, gpte); | |
bff672e6 | 506 | |
2e04ef76 RR |
507 | /* |
508 | * The fault is fixed, the page table is populated, the mapping | |
e1e72965 RR |
509 | * manipulated, the result returned and the code complete. A small |
510 | * delay and a trace of alliteration are the only indications the Guest | |
2e04ef76 RR |
511 | * has that a page fault occurred at all. |
512 | */ | |
df1693ab | 513 | return true; |
d7e28ffe RR |
514 | } |
515 | ||
e1e72965 RR |
516 | /*H:360 |
517 | * (ii) Making sure the Guest stack is mapped. | |
bff672e6 | 518 | * |
e1e72965 RR |
519 | * Remember that direct traps into the Guest need a mapped Guest kernel stack. |
520 | * pin_stack_pages() calls us here: we could simply call demand_page(), but as | |
521 | * we've seen that logic is quite long, and usually the stack pages are already | |
522 | * mapped, so it's overkill. | |
bff672e6 RR |
523 | * |
524 | * This is a quick version which answers the question: is this virtual address | |
2e04ef76 RR |
525 | * mapped by the shadow page tables, and is it writable? |
526 | */ | |
df1693ab | 527 | static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) |
d7e28ffe | 528 | { |
17427e08 | 529 | pte_t *spte; |
d7e28ffe RR |
530 | unsigned long flags; |
531 | ||
68a644d7 RR |
532 | /* You can't put your stack in the Switcher! */ |
533 | if (vaddr >= switcher_addr) | |
df1693ab | 534 | return false; |
d7e28ffe | 535 | |
17427e08 RR |
536 | /* If there's no shadow PTE, it's not writable. */ |
537 | spte = find_spte(cpu, vaddr, false, 0, 0); | |
538 | if (!spte) | |
acdd0b62 | 539 | return false; |
acdd0b62 | 540 | |
2e04ef76 RR |
541 | /* |
542 | * Check the flags on the pte entry itself: it must be present and | |
543 | * writable. | |
544 | */ | |
17427e08 | 545 | flags = pte_flags(*spte); |
d7e28ffe RR |
546 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); |
547 | } | |
548 | ||
2e04ef76 RR |
549 | /* |
550 | * So, when pin_stack_pages() asks us to pin a page, we check if it's already | |
bff672e6 | 551 | * in the page tables, and if not, we call demand_page() with error code 2 |
2e04ef76 RR |
552 | * (meaning "write"). |
553 | */ | |
1713608f | 554 | void pin_page(struct lg_cpu *cpu, unsigned long vaddr) |
d7e28ffe | 555 | { |
1713608f | 556 | if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2)) |
382ac6b3 | 557 | kill_guest(cpu, "bad stack page %#lx", vaddr); |
d7e28ffe | 558 | } |
a91d74a3 | 559 | /*:*/ |
d7e28ffe | 560 | |
acdd0b62 MZ |
561 | #ifdef CONFIG_X86_PAE |
562 | static void release_pmd(pmd_t *spmd) | |
563 | { | |
564 | /* If the entry's not present, there's nothing to release. */ | |
565 | if (pmd_flags(*spmd) & _PAGE_PRESENT) { | |
566 | unsigned int i; | |
567 | pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT); | |
568 | /* For each entry in the page, we might need to release it. */ | |
569 | for (i = 0; i < PTRS_PER_PTE; i++) | |
570 | release_pte(ptepage[i]); | |
571 | /* Now we can free the page of PTEs */ | |
572 | free_page((long)ptepage); | |
573 | /* And zero out the PMD entry so we never release it twice. */ | |
4c1ea3dd | 574 | set_pmd(spmd, __pmd(0)); |
acdd0b62 MZ |
575 | } |
576 | } | |
577 | ||
578 | static void release_pgd(pgd_t *spgd) | |
579 | { | |
580 | /* If the entry's not present, there's nothing to release. */ | |
581 | if (pgd_flags(*spgd) & _PAGE_PRESENT) { | |
582 | unsigned int i; | |
583 | pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); | |
584 | ||
585 | for (i = 0; i < PTRS_PER_PMD; i++) | |
586 | release_pmd(&pmdpage[i]); | |
587 | ||
588 | /* Now we can free the page of PMDs */ | |
589 | free_page((long)pmdpage); | |
590 | /* And zero out the PGD entry so we never release it twice. */ | |
591 | set_pgd(spgd, __pgd(0)); | |
592 | } | |
593 | } | |
594 | ||
595 | #else /* !CONFIG_X86_PAE */ | |
a91d74a3 RR |
596 | /*H:450 |
597 | * If we chase down the release_pgd() code, the non-PAE version looks like | |
598 | * this. The PAE version is almost identical, but instead of calling | |
599 | * release_pte it calls release_pmd(), which looks much like this. | |
600 | */ | |
90603d15 | 601 | static void release_pgd(pgd_t *spgd) |
d7e28ffe | 602 | { |
bff672e6 | 603 | /* If the entry's not present, there's nothing to release. */ |
df29f43e | 604 | if (pgd_flags(*spgd) & _PAGE_PRESENT) { |
d7e28ffe | 605 | unsigned int i; |
2e04ef76 RR |
606 | /* |
607 | * Converting the pfn to find the actual PTE page is easy: turn | |
bff672e6 | 608 | * the page number into a physical address, then convert to a |
2e04ef76 RR |
609 | * virtual address (easy for kernel pages like this one). |
610 | */ | |
df29f43e | 611 | pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); |
bff672e6 | 612 | /* For each entry in the page, we might need to release it. */ |
df29f43e | 613 | for (i = 0; i < PTRS_PER_PTE; i++) |
d7e28ffe | 614 | release_pte(ptepage[i]); |
bff672e6 | 615 | /* Now we can free the page of PTEs */ |
d7e28ffe | 616 | free_page((long)ptepage); |
e1e72965 | 617 | /* And zero out the PGD entry so we never release it twice. */ |
df29f43e | 618 | *spgd = __pgd(0); |
d7e28ffe RR |
619 | } |
620 | } | |
acdd0b62 | 621 | #endif |
2e04ef76 RR |
622 | |
623 | /*H:445 | |
624 | * We saw flush_user_mappings() twice: once from the flush_user_mappings() | |
e1e72965 | 625 | * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. |
2e04ef76 RR |
626 | * It simply releases every PTE page from 0 up to the Guest's kernel address. |
627 | */ | |
d7e28ffe RR |
628 | static void flush_user_mappings(struct lguest *lg, int idx) |
629 | { | |
630 | unsigned int i; | |
bff672e6 | 631 | /* Release every pgd entry up to the kernel's address. */ |
47436aa4 | 632 | for (i = 0; i < pgd_index(lg->kernel_address); i++) |
90603d15 | 633 | release_pgd(lg->pgdirs[idx].pgdir + i); |
d7e28ffe RR |
634 | } |
635 | ||
2e04ef76 RR |
636 | /*H:440 |
637 | * (v) Flushing (throwing away) page tables, | |
e1e72965 RR |
638 | * |
639 | * The Guest has a hypercall to throw away the page tables: it's used when a | |
2e04ef76 RR |
640 | * large number of mappings have been changed. |
641 | */ | |
1713608f | 642 | void guest_pagetable_flush_user(struct lg_cpu *cpu) |
d7e28ffe | 643 | { |
bff672e6 | 644 | /* Drop the userspace part of the current page table. */ |
1713608f | 645 | flush_user_mappings(cpu->lg, cpu->cpu_pgd); |
d7e28ffe | 646 | } |
bff672e6 | 647 | /*:*/ |
d7e28ffe | 648 | |
47436aa4 | 649 | /* We walk down the guest page tables to get a guest-physical address */ |
1713608f | 650 | unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) |
47436aa4 RR |
651 | { |
652 | pgd_t gpgd; | |
653 | pte_t gpte; | |
acdd0b62 MZ |
654 | #ifdef CONFIG_X86_PAE |
655 | pmd_t gpmd; | |
656 | #endif | |
5dea1c88 RR |
657 | |
658 | /* Still not set up? Just map 1:1. */ | |
659 | if (unlikely(cpu->linear_pages)) | |
660 | return vaddr; | |
661 | ||
47436aa4 | 662 | /* First step: get the top-level Guest page table entry. */ |
382ac6b3 | 663 | gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); |
47436aa4 | 664 | /* Toplevel not present? We can't map it in. */ |
6afbdd05 | 665 | if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) { |
382ac6b3 | 666 | kill_guest(cpu, "Bad address %#lx", vaddr); |
6afbdd05 RR |
667 | return -1UL; |
668 | } | |
47436aa4 | 669 | |
acdd0b62 MZ |
670 | #ifdef CONFIG_X86_PAE |
671 | gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); | |
4623c28e | 672 | if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) { |
acdd0b62 | 673 | kill_guest(cpu, "Bad address %#lx", vaddr); |
4623c28e RR |
674 | return -1UL; |
675 | } | |
92b4d8df RR |
676 | gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t); |
677 | #else | |
acdd0b62 | 678 | gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t); |
92b4d8df | 679 | #endif |
47436aa4 | 680 | if (!(pte_flags(gpte) & _PAGE_PRESENT)) |
382ac6b3 | 681 | kill_guest(cpu, "Bad address %#lx", vaddr); |
47436aa4 RR |
682 | |
683 | return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK); | |
684 | } | |
685 | ||
2e04ef76 RR |
686 | /* |
687 | * We keep several page tables. This is a simple routine to find the page | |
bff672e6 | 688 | * table (if any) corresponding to this top-level address the Guest has given |
2e04ef76 RR |
689 | * us. |
690 | */ | |
d7e28ffe RR |
691 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) |
692 | { | |
693 | unsigned int i; | |
694 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | |
4357bd94 | 695 | if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable) |
d7e28ffe RR |
696 | break; |
697 | return i; | |
698 | } | |
699 | ||
2e04ef76 RR |
700 | /*H:435 |
701 | * And this is us, creating the new page directory. If we really do | |
bff672e6 | 702 | * allocate a new one (and so the kernel parts are not there), we set |
2e04ef76 RR |
703 | * blank_pgdir. |
704 | */ | |
1713608f | 705 | static unsigned int new_pgdir(struct lg_cpu *cpu, |
ee3db0f2 | 706 | unsigned long gpgdir, |
d7e28ffe RR |
707 | int *blank_pgdir) |
708 | { | |
709 | unsigned int next; | |
710 | ||
2e04ef76 RR |
711 | /* |
712 | * We pick one entry at random to throw out. Choosing the Least | |
713 | * Recently Used might be better, but this is easy. | |
714 | */ | |
10fdc141 | 715 | next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs); |
bff672e6 | 716 | /* If it's never been allocated at all before, try now. */ |
382ac6b3 GOC |
717 | if (!cpu->lg->pgdirs[next].pgdir) { |
718 | cpu->lg->pgdirs[next].pgdir = | |
719 | (pgd_t *)get_zeroed_page(GFP_KERNEL); | |
bff672e6 | 720 | /* If the allocation fails, just keep using the one we have */ |
382ac6b3 | 721 | if (!cpu->lg->pgdirs[next].pgdir) |
1713608f | 722 | next = cpu->cpu_pgd; |
acdd0b62 | 723 | else { |
2e04ef76 | 724 | /* |
3412b6ae RR |
725 | * This is a blank page, so there are no kernel |
726 | * mappings: caller must map the stack! | |
2e04ef76 | 727 | */ |
d7e28ffe | 728 | *blank_pgdir = 1; |
acdd0b62 | 729 | } |
d7e28ffe | 730 | } |
bff672e6 | 731 | /* Record which Guest toplevel this shadows. */ |
382ac6b3 | 732 | cpu->lg->pgdirs[next].gpgdir = gpgdir; |
d7e28ffe | 733 | /* Release all the non-kernel mappings. */ |
382ac6b3 | 734 | flush_user_mappings(cpu->lg, next); |
d7e28ffe | 735 | |
6d0cda93 RR |
736 | /* This hasn't run on any CPU at all. */ |
737 | cpu->lg->pgdirs[next].last_host_cpu = -1; | |
738 | ||
d7e28ffe RR |
739 | return next; |
740 | } | |
741 | ||
3412b6ae RR |
742 | /*H:501 |
743 | * We do need the Switcher code mapped at all times, so we allocate that | |
86935fc4 RR |
744 | * part of the Guest page table here. We map the Switcher code immediately, |
745 | * but defer mapping of the guest register page and IDT/LDT etc page until | |
746 | * just before we run the guest in map_switcher_in_guest(). | |
747 | * | |
748 | * We *could* do this setup in map_switcher_in_guest(), but at that point | |
749 | * we've interrupts disabled, and allocating pages like that is fraught: we | |
750 | * can't sleep if we need to free up some memory. | |
3412b6ae RR |
751 | */ |
752 | static bool allocate_switcher_mapping(struct lg_cpu *cpu) | |
753 | { | |
754 | int i; | |
755 | ||
756 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { | |
86935fc4 RR |
757 | pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true, |
758 | CHECK_GPGD_MASK, _PAGE_TABLE); | |
759 | if (!pte) | |
3412b6ae | 760 | return false; |
86935fc4 RR |
761 | |
762 | /* | |
763 | * Map the switcher page if not already there. It might | |
764 | * already be there because we call allocate_switcher_mapping() | |
765 | * in guest_set_pgd() just in case it did discard our Switcher | |
766 | * mapping, but it probably didn't. | |
767 | */ | |
768 | if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) { | |
769 | /* Get a reference to the Switcher page. */ | |
770 | get_page(lg_switcher_pages[0]); | |
771 | /* Create a read-only, exectuable, kernel-style PTE */ | |
772 | set_pte(pte, | |
773 | mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX)); | |
774 | } | |
3412b6ae | 775 | } |
86935fc4 | 776 | cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true; |
3412b6ae RR |
777 | return true; |
778 | } | |
779 | ||
2e04ef76 RR |
780 | /*H:470 |
781 | * Finally, a routine which throws away everything: all PGD entries in all | |
e1e72965 | 782 | * the shadow page tables, including the Guest's kernel mappings. This is used |
2e04ef76 RR |
783 | * when we destroy the Guest. |
784 | */ | |
d7e28ffe RR |
785 | static void release_all_pagetables(struct lguest *lg) |
786 | { | |
787 | unsigned int i, j; | |
788 | ||
bff672e6 | 789 | /* Every shadow pagetable this Guest has */ |
3412b6ae RR |
790 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) { |
791 | if (!lg->pgdirs[i].pgdir) | |
792 | continue; | |
acdd0b62 | 793 | |
3412b6ae RR |
794 | /* Every PGD entry. */ |
795 | for (j = 0; j < PTRS_PER_PGD; j++) | |
796 | release_pgd(lg->pgdirs[i].pgdir + j); | |
86935fc4 | 797 | lg->pgdirs[i].switcher_mapped = false; |
6d0cda93 | 798 | lg->pgdirs[i].last_host_cpu = -1; |
3412b6ae | 799 | } |
d7e28ffe RR |
800 | } |
801 | ||
2e04ef76 RR |
802 | /* |
803 | * We also throw away everything when a Guest tells us it's changed a kernel | |
bff672e6 | 804 | * mapping. Since kernel mappings are in every page table, it's easiest to |
e1e72965 | 805 | * throw them all away. This traps the Guest in amber for a while as |
2e04ef76 RR |
806 | * everything faults back in, but it's rare. |
807 | */ | |
4665ac8e | 808 | void guest_pagetable_clear_all(struct lg_cpu *cpu) |
d7e28ffe | 809 | { |
4665ac8e | 810 | release_all_pagetables(cpu->lg); |
bff672e6 | 811 | /* We need the Guest kernel stack mapped again. */ |
4665ac8e | 812 | pin_stack_pages(cpu); |
3412b6ae RR |
813 | /* And we need Switcher allocated. */ |
814 | if (!allocate_switcher_mapping(cpu)) | |
815 | kill_guest(cpu, "Cannot populate switcher mapping"); | |
d7e28ffe | 816 | } |
5dea1c88 RR |
817 | |
818 | /*H:430 | |
819 | * (iv) Switching page tables | |
820 | * | |
821 | * Now we've seen all the page table setting and manipulation, let's see | |
822 | * what happens when the Guest changes page tables (ie. changes the top-level | |
823 | * pgdir). This occurs on almost every context switch. | |
824 | */ | |
825 | void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) | |
826 | { | |
827 | int newpgdir, repin = 0; | |
828 | ||
829 | /* | |
830 | * The very first time they call this, we're actually running without | |
831 | * any page tables; we've been making it up. Throw them away now. | |
832 | */ | |
833 | if (unlikely(cpu->linear_pages)) { | |
834 | release_all_pagetables(cpu->lg); | |
835 | cpu->linear_pages = false; | |
836 | /* Force allocation of a new pgdir. */ | |
837 | newpgdir = ARRAY_SIZE(cpu->lg->pgdirs); | |
838 | } else { | |
839 | /* Look to see if we have this one already. */ | |
840 | newpgdir = find_pgdir(cpu->lg, pgtable); | |
841 | } | |
842 | ||
843 | /* | |
844 | * If not, we allocate or mug an existing one: if it's a fresh one, | |
845 | * repin gets set to 1. | |
846 | */ | |
847 | if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs)) | |
848 | newpgdir = new_pgdir(cpu, pgtable, &repin); | |
849 | /* Change the current pgd index to the new one. */ | |
850 | cpu->cpu_pgd = newpgdir; | |
3412b6ae RR |
851 | /* |
852 | * If it was completely blank, we map in the Guest kernel stack and | |
853 | * the Switcher. | |
854 | */ | |
5dea1c88 RR |
855 | if (repin) |
856 | pin_stack_pages(cpu); | |
3412b6ae | 857 | |
86935fc4 RR |
858 | if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) { |
859 | if (!allocate_switcher_mapping(cpu)) | |
860 | kill_guest(cpu, "Cannot populate switcher mapping"); | |
861 | } | |
5dea1c88 | 862 | } |
e1e72965 | 863 | /*:*/ |
2e04ef76 RR |
864 | |
865 | /*M:009 | |
866 | * Since we throw away all mappings when a kernel mapping changes, our | |
e1e72965 RR |
867 | * performance sucks for guests using highmem. In fact, a guest with |
868 | * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is | |
869 | * usually slower than a Guest with less memory. | |
870 | * | |
871 | * This, of course, cannot be fixed. It would take some kind of... well, I | |
2e04ef76 RR |
872 | * don't know, but the term "puissant code-fu" comes to mind. |
873 | :*/ | |
d7e28ffe | 874 | |
2e04ef76 RR |
875 | /*H:420 |
876 | * This is the routine which actually sets the page table entry for then | |
bff672e6 RR |
877 | * "idx"'th shadow page table. |
878 | * | |
879 | * Normally, we can just throw out the old entry and replace it with 0: if they | |
880 | * use it demand_page() will put the new entry in. We need to do this anyway: | |
881 | * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page | |
882 | * is read from, and _PAGE_DIRTY when it's written to. | |
883 | * | |
884 | * But Avi Kivity pointed out that most Operating Systems (Linux included) set | |
885 | * these bits on PTEs immediately anyway. This is done to save the CPU from | |
886 | * having to update them, but it helps us the same way: if they set | |
887 | * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if | |
888 | * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately. | |
889 | */ | |
382ac6b3 | 890 | static void do_set_pte(struct lg_cpu *cpu, int idx, |
df29f43e | 891 | unsigned long vaddr, pte_t gpte) |
d7e28ffe | 892 | { |
e1e72965 | 893 | /* Look up the matching shadow page directory entry. */ |
382ac6b3 | 894 | pgd_t *spgd = spgd_addr(cpu, idx, vaddr); |
acdd0b62 MZ |
895 | #ifdef CONFIG_X86_PAE |
896 | pmd_t *spmd; | |
897 | #endif | |
bff672e6 RR |
898 | |
899 | /* If the top level isn't present, there's no entry to update. */ | |
df29f43e | 900 | if (pgd_flags(*spgd) & _PAGE_PRESENT) { |
acdd0b62 MZ |
901 | #ifdef CONFIG_X86_PAE |
902 | spmd = spmd_addr(cpu, *spgd, vaddr); | |
903 | if (pmd_flags(*spmd) & _PAGE_PRESENT) { | |
904 | #endif | |
2e04ef76 | 905 | /* Otherwise, start by releasing the existing entry. */ |
acdd0b62 MZ |
906 | pte_t *spte = spte_addr(cpu, *spgd, vaddr); |
907 | release_pte(*spte); | |
908 | ||
2e04ef76 RR |
909 | /* |
910 | * If they're setting this entry as dirty or accessed, | |
911 | * we might as well put that entry they've given us in | |
912 | * now. This shaves 10% off a copy-on-write | |
913 | * micro-benchmark. | |
914 | */ | |
acdd0b62 | 915 | if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { |
e1d12606 RR |
916 | if (!check_gpte(cpu, gpte)) |
917 | return; | |
4c1ea3dd RR |
918 | set_pte(spte, |
919 | gpte_to_spte(cpu, gpte, | |
acdd0b62 | 920 | pte_flags(gpte) & _PAGE_DIRTY)); |
2e04ef76 RR |
921 | } else { |
922 | /* | |
923 | * Otherwise kill it and we can demand_page() | |
924 | * it in later. | |
925 | */ | |
4c1ea3dd | 926 | set_pte(spte, __pte(0)); |
2e04ef76 | 927 | } |
acdd0b62 MZ |
928 | #ifdef CONFIG_X86_PAE |
929 | } | |
930 | #endif | |
d7e28ffe RR |
931 | } |
932 | } | |
933 | ||
2e04ef76 RR |
934 | /*H:410 |
935 | * Updating a PTE entry is a little trickier. | |
bff672e6 RR |
936 | * |
937 | * We keep track of several different page tables (the Guest uses one for each | |
938 | * process, so it makes sense to cache at least a few). Each of these have | |
939 | * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for | |
940 | * all processes. So when the page table above that address changes, we update | |
941 | * all the page tables, not just the current one. This is rare. | |
942 | * | |
a6bd8e13 | 943 | * The benefit is that when we have to track a new page table, we can keep all |
2e04ef76 RR |
944 | * the kernel mappings. This speeds up context switch immensely. |
945 | */ | |
382ac6b3 | 946 | void guest_set_pte(struct lg_cpu *cpu, |
ee3db0f2 | 947 | unsigned long gpgdir, unsigned long vaddr, pte_t gpte) |
d7e28ffe | 948 | { |
68a644d7 RR |
949 | /* We don't let you remap the Switcher; we need it to get back! */ |
950 | if (vaddr >= switcher_addr) { | |
951 | kill_guest(cpu, "attempt to set pte into Switcher pages"); | |
952 | return; | |
953 | } | |
954 | ||
2e04ef76 RR |
955 | /* |
956 | * Kernel mappings must be changed on all top levels. Slow, but doesn't | |
957 | * happen often. | |
958 | */ | |
382ac6b3 | 959 | if (vaddr >= cpu->lg->kernel_address) { |
d7e28ffe | 960 | unsigned int i; |
382ac6b3 GOC |
961 | for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++) |
962 | if (cpu->lg->pgdirs[i].pgdir) | |
963 | do_set_pte(cpu, i, vaddr, gpte); | |
d7e28ffe | 964 | } else { |
bff672e6 | 965 | /* Is this page table one we have a shadow for? */ |
382ac6b3 GOC |
966 | int pgdir = find_pgdir(cpu->lg, gpgdir); |
967 | if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs)) | |
bff672e6 | 968 | /* If so, do the update. */ |
382ac6b3 | 969 | do_set_pte(cpu, pgdir, vaddr, gpte); |
d7e28ffe RR |
970 | } |
971 | } | |
972 | ||
bff672e6 | 973 | /*H:400 |
e1e72965 | 974 | * (iii) Setting up a page table entry when the Guest tells us one has changed. |
bff672e6 RR |
975 | * |
976 | * Just like we did in interrupts_and_traps.c, it makes sense for us to deal | |
977 | * with the other side of page tables while we're here: what happens when the | |
978 | * Guest asks for a page table to be updated? | |
979 | * | |
980 | * We already saw that demand_page() will fill in the shadow page tables when | |
981 | * needed, so we can simply remove shadow page table entries whenever the Guest | |
982 | * tells us they've changed. When the Guest tries to use the new entry it will | |
983 | * fault and demand_page() will fix it up. | |
984 | * | |
fd589a8f | 985 | * So with that in mind here's our code to update a (top-level) PGD entry: |
bff672e6 | 986 | */ |
ebe0ba84 | 987 | void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx) |
d7e28ffe RR |
988 | { |
989 | int pgdir; | |
990 | ||
3412b6ae RR |
991 | if (idx > PTRS_PER_PGD) { |
992 | kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u", | |
993 | idx, PTRS_PER_PGD); | |
d7e28ffe | 994 | return; |
3412b6ae | 995 | } |
d7e28ffe | 996 | |
bff672e6 | 997 | /* If they're talking about a page table we have a shadow for... */ |
ee3db0f2 | 998 | pgdir = find_pgdir(lg, gpgdir); |
3412b6ae | 999 | if (pgdir < ARRAY_SIZE(lg->pgdirs)) { |
bff672e6 | 1000 | /* ... throw it away. */ |
90603d15 | 1001 | release_pgd(lg->pgdirs[pgdir].pgdir + idx); |
3412b6ae RR |
1002 | /* That might have been the Switcher mapping, remap it. */ |
1003 | if (!allocate_switcher_mapping(&lg->cpus[0])) { | |
1004 | kill_guest(&lg->cpus[0], | |
1005 | "Cannot populate switcher mapping"); | |
1006 | } | |
f616fe4f | 1007 | lg->pgdirs[pgdir].last_host_cpu = -1; |
3412b6ae | 1008 | } |
d7e28ffe | 1009 | } |
a91d74a3 | 1010 | |
acdd0b62 | 1011 | #ifdef CONFIG_X86_PAE |
a91d74a3 | 1012 | /* For setting a mid-level, we just throw everything away. It's easy. */ |
acdd0b62 MZ |
1013 | void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) |
1014 | { | |
1015 | guest_pagetable_clear_all(&lg->cpus[0]); | |
1016 | } | |
1017 | #endif | |
d7e28ffe | 1018 | |
2e04ef76 RR |
1019 | /*H:500 |
1020 | * (vii) Setting up the page tables initially. | |
bff672e6 | 1021 | * |
5dea1c88 RR |
1022 | * When a Guest is first created, set initialize a shadow page table which |
1023 | * we will populate on future faults. The Guest doesn't have any actual | |
1024 | * pagetables yet, so we set linear_pages to tell demand_page() to fake it | |
1025 | * for the moment. | |
3412b6ae RR |
1026 | * |
1027 | * We do need the Switcher to be mapped at all times, so we allocate that | |
1028 | * part of the Guest page table here. | |
2e04ef76 | 1029 | */ |
58a24566 | 1030 | int init_guest_pagetable(struct lguest *lg) |
d7e28ffe | 1031 | { |
5dea1c88 RR |
1032 | struct lg_cpu *cpu = &lg->cpus[0]; |
1033 | int allocated = 0; | |
58a24566 | 1034 | |
5dea1c88 RR |
1035 | /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */ |
1036 | cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated); | |
1037 | if (!allocated) | |
d7e28ffe | 1038 | return -ENOMEM; |
a91d74a3 | 1039 | |
5dea1c88 RR |
1040 | /* We start with a linear mapping until the initialize. */ |
1041 | cpu->linear_pages = true; | |
3412b6ae RR |
1042 | |
1043 | /* Allocate the page tables for the Switcher. */ | |
1044 | if (!allocate_switcher_mapping(cpu)) { | |
1045 | release_all_pagetables(lg); | |
1046 | return -ENOMEM; | |
1047 | } | |
1048 | ||
d7e28ffe RR |
1049 | return 0; |
1050 | } | |
1051 | ||
a91d74a3 | 1052 | /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */ |
382ac6b3 | 1053 | void page_table_guest_data_init(struct lg_cpu *cpu) |
47436aa4 | 1054 | { |
c215a8b9 RR |
1055 | /* |
1056 | * We tell the Guest that it can't use the virtual addresses | |
1057 | * used by the Switcher. This trick is equivalent to 4GB - | |
1058 | * switcher_addr. | |
1059 | */ | |
1060 | u32 top = ~switcher_addr + 1; | |
1061 | ||
47436aa4 | 1062 | /* We get the kernel address: above this is all kernel memory. */ |
382ac6b3 | 1063 | if (get_user(cpu->lg->kernel_address, |
c215a8b9 | 1064 | &cpu->lg->lguest_data->kernel_address) |
2e04ef76 | 1065 | /* |
c215a8b9 RR |
1066 | * We tell the Guest that it can't use the top virtual |
1067 | * addresses (used by the Switcher). | |
2e04ef76 | 1068 | */ |
c215a8b9 | 1069 | || put_user(top, &cpu->lg->lguest_data->reserve_mem)) { |
382ac6b3 | 1070 | kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); |
5dea1c88 RR |
1071 | return; |
1072 | } | |
47436aa4 | 1073 | |
2e04ef76 RR |
1074 | /* |
1075 | * In flush_user_mappings() we loop from 0 to | |
47436aa4 | 1076 | * "pgd_index(lg->kernel_address)". This assumes it won't hit the |
2e04ef76 RR |
1077 | * Switcher mappings, so check that now. |
1078 | */ | |
68a644d7 | 1079 | if (cpu->lg->kernel_address >= switcher_addr) |
382ac6b3 GOC |
1080 | kill_guest(cpu, "bad kernel address %#lx", |
1081 | cpu->lg->kernel_address); | |
47436aa4 RR |
1082 | } |
1083 | ||
bff672e6 | 1084 | /* When a Guest dies, our cleanup is fairly simple. */ |
d7e28ffe RR |
1085 | void free_guest_pagetable(struct lguest *lg) |
1086 | { | |
1087 | unsigned int i; | |
1088 | ||
bff672e6 | 1089 | /* Throw away all page table pages. */ |
d7e28ffe | 1090 | release_all_pagetables(lg); |
bff672e6 | 1091 | /* Now free the top levels: free_page() can handle 0 just fine. */ |
d7e28ffe RR |
1092 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
1093 | free_page((long)lg->pgdirs[i].pgdir); | |
1094 | } | |
1095 | ||
6d0cda93 RR |
1096 | /*H:481 |
1097 | * This clears the Switcher mappings for cpu #i. | |
2e04ef76 | 1098 | */ |
6d0cda93 | 1099 | static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i) |
d7e28ffe | 1100 | { |
6d0cda93 RR |
1101 | unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2; |
1102 | pte_t *pte; | |
d7e28ffe | 1103 | |
6d0cda93 RR |
1104 | /* Clear the mappings for both pages. */ |
1105 | pte = find_spte(cpu, base, false, 0, 0); | |
1106 | release_pte(*pte); | |
1107 | set_pte(pte, __pte(0)); | |
acdd0b62 | 1108 | |
6d0cda93 RR |
1109 | pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0); |
1110 | release_pte(*pte); | |
1111 | set_pte(pte, __pte(0)); | |
d7e28ffe RR |
1112 | } |
1113 | ||
2e04ef76 RR |
1114 | /*H:480 |
1115 | * (vi) Mapping the Switcher when the Guest is about to run. | |
bff672e6 | 1116 | * |
6d0cda93 RR |
1117 | * The Switcher and the two pages for this CPU need to be visible in the Guest |
1118 | * (and not the pages for other CPUs). | |
bff672e6 | 1119 | * |
6d0cda93 RR |
1120 | * The pages for the pagetables have all been allocated before: we just need |
1121 | * to make sure the actual PTEs are up-to-date for the CPU we're about to run | |
1122 | * on. | |
2e04ef76 | 1123 | */ |
0c78441c | 1124 | void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) |
d7e28ffe | 1125 | { |
6d0cda93 | 1126 | unsigned long base; |
3412b6ae RR |
1127 | struct page *percpu_switcher_page, *regs_page; |
1128 | pte_t *pte; | |
6d0cda93 | 1129 | struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd]; |
d7e28ffe | 1130 | |
6d0cda93 RR |
1131 | /* Switcher page should always be mapped by now! */ |
1132 | BUG_ON(!pgdir->switcher_mapped); | |
df29f43e | 1133 | |
6d0cda93 RR |
1134 | /* |
1135 | * Remember that we have two pages for each Host CPU, so we can run a | |
1136 | * Guest on each CPU without them interfering. We need to make sure | |
1137 | * those pages are mapped correctly in the Guest, but since we usually | |
1138 | * run on the same CPU, we cache that, and only update the mappings | |
1139 | * when we move. | |
1140 | */ | |
1141 | if (pgdir->last_host_cpu == raw_smp_processor_id()) | |
1142 | return; | |
d7e28ffe | 1143 | |
6d0cda93 RR |
1144 | /* -1 means unknown so we remove everything. */ |
1145 | if (pgdir->last_host_cpu == -1) { | |
1146 | unsigned int i; | |
1147 | for_each_possible_cpu(i) | |
1148 | remove_switcher_percpu_map(cpu, i); | |
1149 | } else { | |
1150 | /* We know exactly what CPU mapping to remove. */ | |
1151 | remove_switcher_percpu_map(cpu, pgdir->last_host_cpu); | |
d7e28ffe RR |
1152 | } |
1153 | ||
2e04ef76 | 1154 | /* |
3412b6ae RR |
1155 | * When we're running the Guest, we want the Guest's "regs" page to |
1156 | * appear where the first Switcher page for this CPU is. This is an | |
1157 | * optimization: when the Switcher saves the Guest registers, it saves | |
1158 | * them into the first page of this CPU's "struct lguest_pages": if we | |
1159 | * make sure the Guest's register page is already mapped there, we | |
1160 | * don't have to copy them out again. | |
2e04ef76 | 1161 | */ |
3412b6ae RR |
1162 | /* Find the shadow PTE for this regs page. */ |
1163 | base = switcher_addr + PAGE_SIZE | |
1164 | + raw_smp_processor_id() * sizeof(struct lguest_pages); | |
1165 | pte = find_spte(cpu, base, false, 0, 0); | |
1166 | regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT); | |
1167 | get_page(regs_page); | |
1168 | set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL))); | |
df29f43e | 1169 | |
2e04ef76 | 1170 | /* |
3412b6ae RR |
1171 | * We map the second page of the struct lguest_pages read-only in |
1172 | * the Guest: the IDT, GDT and other things it's not supposed to | |
1173 | * change. | |
2e04ef76 | 1174 | */ |
6d0cda93 | 1175 | pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0); |
3412b6ae RR |
1176 | percpu_switcher_page |
1177 | = lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1]; | |
1178 | get_page(percpu_switcher_page); | |
1179 | set_pte(pte, mk_pte(percpu_switcher_page, | |
1180 | __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL))); | |
6d0cda93 RR |
1181 | |
1182 | pgdir->last_host_cpu = raw_smp_processor_id(); | |
d7e28ffe RR |
1183 | } |
1184 | ||
6d0cda93 | 1185 | /*H:490 |
2e04ef76 | 1186 | * We've made it through the page table code. Perhaps our tired brains are |
e1e72965 RR |
1187 | * still processing the details, or perhaps we're simply glad it's over. |
1188 | * | |
a6bd8e13 RR |
1189 | * If nothing else, note that all this complexity in juggling shadow page tables |
1190 | * in sync with the Guest's page tables is for one reason: for most Guests this | |
1191 | * page table dance determines how bad performance will be. This is why Xen | |
1192 | * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD | |
1193 | * have implemented shadow page table support directly into hardware. | |
e1e72965 | 1194 | * |
2e04ef76 RR |
1195 | * There is just one file remaining in the Host. |
1196 | */ |