]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | // ------------------------------------------------------------------------- |
2 | // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. | |
3 | // All rights reserved. | |
4 | // | |
5 | // LICENSE TERMS | |
6 | // | |
7 | // The free distribution and use of this software in both source and binary | |
8 | // form is allowed (with or without changes) provided that: | |
9 | // | |
10 | // 1. distributions of this source code include the above copyright | |
11 | // notice, this list of conditions and the following disclaimer// | |
12 | // | |
13 | // 2. distributions in binary form include the above copyright | |
14 | // notice, this list of conditions and the following disclaimer | |
15 | // in the documentation and/or other associated materials// | |
16 | // | |
17 | // 3. the copyright holder's name is not used to endorse products | |
18 | // built using this software without specific written permission. | |
19 | // | |
20 | // | |
21 | // ALTERNATIVELY, provided that this notice is retained in full, this product | |
22 | // may be distributed under the terms of the GNU General Public License (GPL), | |
23 | // in which case the provisions of the GPL apply INSTEAD OF those given above. | |
24 | // | |
25 | // Copyright (c) 2004 Linus Torvalds <[email protected]> | |
26 | // Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]> | |
27 | ||
28 | // DISCLAIMER | |
29 | // | |
30 | // This software is provided 'as is' with no explicit or implied warranties | |
31 | // in respect of its properties including, but not limited to, correctness | |
32 | // and fitness for purpose. | |
33 | // ------------------------------------------------------------------------- | |
34 | // Issue Date: 29/07/2002 | |
35 | ||
36 | .file "aes-i586-asm.S" | |
37 | .text | |
38 | ||
39 | // aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | |
40 | // aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// | |
41 | ||
42 | #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) | |
43 | ||
44 | // offsets to parameters with one register pushed onto stack | |
45 | ||
46 | #define in_blk 8 // input byte array address parameter | |
47 | #define out_blk 12 // output byte array address parameter | |
48 | #define ctx 16 // AES context structure | |
49 | ||
50 | // offsets in context structure | |
51 | ||
52 | #define ekey 0 // encryption key schedule base address | |
53 | #define nrnd 256 // number of rounds | |
54 | #define dkey 260 // decryption key schedule base address | |
55 | ||
56 | // register mapping for encrypt and decrypt subroutines | |
57 | ||
58 | #define r0 eax | |
59 | #define r1 ebx | |
60 | #define r2 ecx | |
61 | #define r3 edx | |
62 | #define r4 esi | |
63 | #define r5 edi | |
64 | ||
65 | #define eaxl al | |
66 | #define eaxh ah | |
67 | #define ebxl bl | |
68 | #define ebxh bh | |
69 | #define ecxl cl | |
70 | #define ecxh ch | |
71 | #define edxl dl | |
72 | #define edxh dh | |
73 | ||
74 | #define _h(reg) reg##h | |
75 | #define h(reg) _h(reg) | |
76 | ||
77 | #define _l(reg) reg##l | |
78 | #define l(reg) _l(reg) | |
79 | ||
80 | // This macro takes a 32-bit word representing a column and uses | |
81 | // each of its four bytes to index into four tables of 256 32-bit | |
82 | // words to obtain values that are then xored into the appropriate | |
83 | // output registers r0, r1, r4 or r5. | |
84 | ||
85 | // Parameters: | |
86 | // table table base address | |
87 | // %1 out_state[0] | |
88 | // %2 out_state[1] | |
89 | // %3 out_state[2] | |
90 | // %4 out_state[3] | |
91 | // idx input register for the round (destroyed) | |
92 | // tmp scratch register for the round | |
93 | // sched key schedule | |
94 | ||
95 | #define do_col(table, a1,a2,a3,a4, idx, tmp) \ | |
96 | movzx %l(idx),%tmp; \ | |
97 | xor table(,%tmp,4),%a1; \ | |
98 | movzx %h(idx),%tmp; \ | |
99 | shr $16,%idx; \ | |
100 | xor table+tlen(,%tmp,4),%a2; \ | |
101 | movzx %l(idx),%tmp; \ | |
102 | movzx %h(idx),%idx; \ | |
103 | xor table+2*tlen(,%tmp,4),%a3; \ | |
104 | xor table+3*tlen(,%idx,4),%a4; | |
105 | ||
106 | // initialise output registers from the key schedule | |
107 | // NB1: original value of a3 is in idx on exit | |
108 | // NB2: original values of a1,a2,a4 aren't used | |
109 | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ | |
110 | mov 0 sched,%a1; \ | |
111 | movzx %l(idx),%tmp; \ | |
112 | mov 12 sched,%a2; \ | |
113 | xor table(,%tmp,4),%a1; \ | |
114 | mov 4 sched,%a4; \ | |
115 | movzx %h(idx),%tmp; \ | |
116 | shr $16,%idx; \ | |
117 | xor table+tlen(,%tmp,4),%a2; \ | |
118 | movzx %l(idx),%tmp; \ | |
119 | movzx %h(idx),%idx; \ | |
120 | xor table+3*tlen(,%idx,4),%a4; \ | |
121 | mov %a3,%idx; \ | |
122 | mov 8 sched,%a3; \ | |
123 | xor table+2*tlen(,%tmp,4),%a3; | |
124 | ||
125 | // initialise output registers from the key schedule | |
126 | // NB1: original value of a3 is in idx on exit | |
127 | // NB2: original values of a1,a2,a4 aren't used | |
128 | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ | |
129 | mov 0 sched,%a1; \ | |
130 | movzx %l(idx),%tmp; \ | |
131 | mov 4 sched,%a2; \ | |
132 | xor table(,%tmp,4),%a1; \ | |
133 | mov 12 sched,%a4; \ | |
134 | movzx %h(idx),%tmp; \ | |
135 | shr $16,%idx; \ | |
136 | xor table+tlen(,%tmp,4),%a2; \ | |
137 | movzx %l(idx),%tmp; \ | |
138 | movzx %h(idx),%idx; \ | |
139 | xor table+3*tlen(,%idx,4),%a4; \ | |
140 | mov %a3,%idx; \ | |
141 | mov 8 sched,%a3; \ | |
142 | xor table+2*tlen(,%tmp,4),%a3; | |
143 | ||
144 | ||
145 | // original Gladman had conditional saves to MMX regs. | |
146 | #define save(a1, a2) \ | |
147 | mov %a2,4*a1(%esp) | |
148 | ||
149 | #define restore(a1, a2) \ | |
150 | mov 4*a2(%esp),%a1 | |
151 | ||
152 | // These macros perform a forward encryption cycle. They are entered with | |
153 | // the first previous round column values in r0,r1,r4,r5 and | |
154 | // exit with the final values in the same registers, using stack | |
155 | // for temporary storage. | |
156 | ||
157 | // round column values | |
158 | // on entry: r0,r1,r4,r5 | |
159 | // on exit: r2,r1,r4,r5 | |
160 | #define fwd_rnd1(arg, table) \ | |
161 | save (0,r1); \ | |
162 | save (1,r5); \ | |
163 | \ | |
164 | /* compute new column values */ \ | |
165 | do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ | |
166 | do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ | |
167 | restore(r0,0); \ | |
168 | do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ | |
169 | restore(r0,1); \ | |
170 | do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ | |
171 | ||
172 | // round column values | |
173 | // on entry: r2,r1,r4,r5 | |
174 | // on exit: r0,r1,r4,r5 | |
175 | #define fwd_rnd2(arg, table) \ | |
176 | save (0,r1); \ | |
177 | save (1,r5); \ | |
178 | \ | |
179 | /* compute new column values */ \ | |
180 | do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ | |
181 | do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ | |
182 | restore(r2,0); \ | |
183 | do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ | |
184 | restore(r2,1); \ | |
185 | do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ | |
186 | ||
187 | // These macros performs an inverse encryption cycle. They are entered with | |
188 | // the first previous round column values in r0,r1,r4,r5 and | |
189 | // exit with the final values in the same registers, using stack | |
190 | // for temporary storage | |
191 | ||
192 | // round column values | |
193 | // on entry: r0,r1,r4,r5 | |
194 | // on exit: r2,r1,r4,r5 | |
195 | #define inv_rnd1(arg, table) \ | |
196 | save (0,r1); \ | |
197 | save (1,r5); \ | |
198 | \ | |
199 | /* compute new column values */ \ | |
200 | do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ | |
201 | do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ | |
202 | restore(r0,0); \ | |
203 | do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ | |
204 | restore(r0,1); \ | |
205 | do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ | |
206 | ||
207 | // round column values | |
208 | // on entry: r2,r1,r4,r5 | |
209 | // on exit: r0,r1,r4,r5 | |
210 | #define inv_rnd2(arg, table) \ | |
211 | save (0,r1); \ | |
212 | save (1,r5); \ | |
213 | \ | |
214 | /* compute new column values */ \ | |
215 | do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ | |
216 | do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ | |
217 | restore(r2,0); \ | |
218 | do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ | |
219 | restore(r2,1); \ | |
220 | do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ | |
221 | ||
222 | // AES (Rijndael) Encryption Subroutine | |
223 | ||
224 | .global aes_enc_blk | |
225 | ||
226 | .extern ft_tab | |
227 | .extern fl_tab | |
228 | ||
229 | .align 4 | |
230 | ||
231 | aes_enc_blk: | |
232 | push %ebp | |
233 | mov ctx(%esp),%ebp // pointer to context | |
234 | ||
235 | // CAUTION: the order and the values used in these assigns | |
236 | // rely on the register mappings | |
237 | ||
238 | 1: push %ebx | |
239 | mov in_blk+4(%esp),%r2 | |
240 | push %esi | |
241 | mov nrnd(%ebp),%r3 // number of rounds | |
242 | push %edi | |
243 | #if ekey != 0 | |
244 | lea ekey(%ebp),%ebp // key pointer | |
245 | #endif | |
246 | ||
247 | // input four columns and xor in first round key | |
248 | ||
249 | mov (%r2),%r0 | |
250 | mov 4(%r2),%r1 | |
251 | mov 8(%r2),%r4 | |
252 | mov 12(%r2),%r5 | |
253 | xor (%ebp),%r0 | |
254 | xor 4(%ebp),%r1 | |
255 | xor 8(%ebp),%r4 | |
256 | xor 12(%ebp),%r5 | |
257 | ||
258 | sub $8,%esp // space for register saves on stack | |
259 | add $16,%ebp // increment to next round key | |
260 | sub $10,%r3 | |
261 | je 4f // 10 rounds for 128-bit key | |
262 | add $32,%ebp | |
263 | sub $2,%r3 | |
264 | je 3f // 12 rounds for 128-bit key | |
265 | add $32,%ebp | |
266 | ||
267 | 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key | |
268 | fwd_rnd2( -48(%ebp) ,ft_tab) | |
269 | 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key | |
270 | fwd_rnd2( -16(%ebp) ,ft_tab) | |
271 | 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key | |
272 | fwd_rnd2( +16(%ebp) ,ft_tab) | |
273 | fwd_rnd1( +32(%ebp) ,ft_tab) | |
274 | fwd_rnd2( +48(%ebp) ,ft_tab) | |
275 | fwd_rnd1( +64(%ebp) ,ft_tab) | |
276 | fwd_rnd2( +80(%ebp) ,ft_tab) | |
277 | fwd_rnd1( +96(%ebp) ,ft_tab) | |
278 | fwd_rnd2(+112(%ebp) ,ft_tab) | |
279 | fwd_rnd1(+128(%ebp) ,ft_tab) | |
280 | fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table | |
281 | ||
282 | // move final values to the output array. CAUTION: the | |
283 | // order of these assigns rely on the register mappings | |
284 | ||
285 | add $8,%esp | |
286 | mov out_blk+12(%esp),%ebp | |
287 | mov %r5,12(%ebp) | |
288 | pop %edi | |
289 | mov %r4,8(%ebp) | |
290 | pop %esi | |
291 | mov %r1,4(%ebp) | |
292 | pop %ebx | |
293 | mov %r0,(%ebp) | |
294 | pop %ebp | |
295 | mov $1,%eax | |
296 | ret | |
297 | ||
298 | // AES (Rijndael) Decryption Subroutine | |
299 | ||
300 | .global aes_dec_blk | |
301 | ||
302 | .extern it_tab | |
303 | .extern il_tab | |
304 | ||
305 | .align 4 | |
306 | ||
307 | aes_dec_blk: | |
308 | push %ebp | |
309 | mov ctx(%esp),%ebp // pointer to context | |
310 | ||
311 | // CAUTION: the order and the values used in these assigns | |
312 | // rely on the register mappings | |
313 | ||
314 | 1: push %ebx | |
315 | mov in_blk+4(%esp),%r2 | |
316 | push %esi | |
317 | mov nrnd(%ebp),%r3 // number of rounds | |
318 | push %edi | |
319 | #if dkey != 0 | |
320 | lea dkey(%ebp),%ebp // key pointer | |
321 | #endif | |
322 | mov %r3,%r0 | |
323 | shl $4,%r0 | |
324 | add %r0,%ebp | |
325 | ||
326 | // input four columns and xor in first round key | |
327 | ||
328 | mov (%r2),%r0 | |
329 | mov 4(%r2),%r1 | |
330 | mov 8(%r2),%r4 | |
331 | mov 12(%r2),%r5 | |
332 | xor (%ebp),%r0 | |
333 | xor 4(%ebp),%r1 | |
334 | xor 8(%ebp),%r4 | |
335 | xor 12(%ebp),%r5 | |
336 | ||
337 | sub $8,%esp // space for register saves on stack | |
338 | sub $16,%ebp // increment to next round key | |
339 | sub $10,%r3 | |
340 | je 4f // 10 rounds for 128-bit key | |
341 | sub $32,%ebp | |
342 | sub $2,%r3 | |
343 | je 3f // 12 rounds for 128-bit key | |
344 | sub $32,%ebp | |
345 | ||
346 | 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 128-bit key | |
347 | inv_rnd2( +48(%ebp), it_tab) | |
348 | 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 128-bit key | |
349 | inv_rnd2( +16(%ebp), it_tab) | |
350 | 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key | |
351 | inv_rnd2( -16(%ebp), it_tab) | |
352 | inv_rnd1( -32(%ebp), it_tab) | |
353 | inv_rnd2( -48(%ebp), it_tab) | |
354 | inv_rnd1( -64(%ebp), it_tab) | |
355 | inv_rnd2( -80(%ebp), it_tab) | |
356 | inv_rnd1( -96(%ebp), it_tab) | |
357 | inv_rnd2(-112(%ebp), it_tab) | |
358 | inv_rnd1(-128(%ebp), it_tab) | |
359 | inv_rnd2(-144(%ebp), il_tab) // last round uses a different table | |
360 | ||
361 | // move final values to the output array. CAUTION: the | |
362 | // order of these assigns rely on the register mappings | |
363 | ||
364 | add $8,%esp | |
365 | mov out_blk+12(%esp),%ebp | |
366 | mov %r5,12(%ebp) | |
367 | pop %edi | |
368 | mov %r4,8(%ebp) | |
369 | pop %esi | |
370 | mov %r1,4(%ebp) | |
371 | pop %ebx | |
372 | mov %r0,(%ebp) | |
373 | pop %ebp | |
374 | mov $1,%eax | |
375 | ret | |
376 |