]> Git Repo - linux.git/blame - include/linux/mm.h
mm: remove rest usage of VM_NONLINEAR and pte_file()
[linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
1da177e4 30
fccc9987 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 32extern unsigned long max_mapnr;
fccc9987
JL
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
40#endif
41
4481374c 42extern unsigned long totalram_pages;
1da177e4 43extern void * high_memory;
1da177e4
LT
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
1da177e4 55
79442ed1
TC
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
593befa6
DD
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
c9b1d098 71extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 72extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 73
49f0ce5f
JM
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
1da177e4
LT
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
27ac792c
AR
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
0fa73b86
AM
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
1da177e4
LT
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
c43692e8
CL
100extern struct kmem_cache *vm_area_cachep;
101
1da177e4 102#ifndef CONFIG_MMU
8feae131
DH
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
605d9288 110 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 111 */
cc2383ec
KK
112#define VM_NONE 0x00000000
113
1da177e4
LT
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
7e2cff42 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
1da177e4
LT
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 142#define VM_ARCH_2 0x02000000
0103bd16 143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 144
d9104d1c
CG
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY 0
149#endif
150
b379d790 151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 155
cc2383ec
KK
156#if defined(CONFIG_X86)
157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168#endif
169
4aae7e43
QR
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX VM_ARCH_2
173#endif
174
cc2383ec
KK
175#ifndef VM_GROWSUP
176# define VM_GROWSUP VM_NONE
177#endif
178
a8bef8ff
MG
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
1da177e4
LT
182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
b291f000 192/*
78f11a25
AA
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 195 */
9050d7eb 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 197
a0715cc2
AT
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
1da177e4
LT
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
d0217ac0 207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
208#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
209#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
210#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
211#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
212#define FAULT_FLAG_TRIED 0x20 /* Second try */
213#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 214
54cb8821 215/*
d0217ac0 216 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 219 *
9b4bdd2f 220 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 221 */
d0217ac0
NP
222struct vm_fault {
223 unsigned int flags; /* FAULT_FLAG_xxx flags */
224 pgoff_t pgoff; /* Logical page offset based on vma */
225 void __user *virtual_address; /* Faulting virtual address */
226
227 struct page *page; /* ->fault handlers should return a
83c54070 228 * page here, unless VM_FAULT_NOPAGE
d0217ac0 229 * is set (which is also implied by
83c54070 230 * VM_FAULT_ERROR).
d0217ac0 231 */
8c6e50b0
KS
232 /* for ->map_pages() only */
233 pgoff_t max_pgoff; /* map pages for offset from pgoff till
234 * max_pgoff inclusive */
235 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 236};
1da177e4
LT
237
238/*
239 * These are the virtual MM functions - opening of an area, closing and
240 * unmapping it (needed to keep files on disk up-to-date etc), pointer
241 * to the functions called when a no-page or a wp-page exception occurs.
242 */
243struct vm_operations_struct {
244 void (*open)(struct vm_area_struct * area);
245 void (*close)(struct vm_area_struct * area);
d0217ac0 246 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 247 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
248
249 /* notification that a previously read-only page is about to become
250 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 251 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
252
253 /* called by access_process_vm when get_user_pages() fails, typically
254 * for use by special VMAs that can switch between memory and hardware
255 */
256 int (*access)(struct vm_area_struct *vma, unsigned long addr,
257 void *buf, int len, int write);
78d683e8
AL
258
259 /* Called by the /proc/PID/maps code to ask the vma whether it
260 * has a special name. Returning non-NULL will also cause this
261 * vma to be dumped unconditionally. */
262 const char *(*name)(struct vm_area_struct *vma);
263
1da177e4 264#ifdef CONFIG_NUMA
a6020ed7
LS
265 /*
266 * set_policy() op must add a reference to any non-NULL @new mempolicy
267 * to hold the policy upon return. Caller should pass NULL @new to
268 * remove a policy and fall back to surrounding context--i.e. do not
269 * install a MPOL_DEFAULT policy, nor the task or system default
270 * mempolicy.
271 */
1da177e4 272 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
273
274 /*
275 * get_policy() op must add reference [mpol_get()] to any policy at
276 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
277 * in mm/mempolicy.c will do this automatically.
278 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
279 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
280 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
281 * must return NULL--i.e., do not "fallback" to task or system default
282 * policy.
283 */
1da177e4
LT
284 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
285 unsigned long addr);
286#endif
287};
288
289struct mmu_gather;
290struct inode;
291
349aef0b
AM
292#define page_private(page) ((page)->private)
293#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 294
b12c4ad1
MK
295/* It's valid only if the page is free path or free_list */
296static inline void set_freepage_migratetype(struct page *page, int migratetype)
297{
95e34412 298 page->index = migratetype;
b12c4ad1
MK
299}
300
301/* It's valid only if the page is free path or free_list */
302static inline int get_freepage_migratetype(struct page *page)
303{
95e34412 304 return page->index;
b12c4ad1
MK
305}
306
1da177e4
LT
307/*
308 * FIXME: take this include out, include page-flags.h in
309 * files which need it (119 of them)
310 */
311#include <linux/page-flags.h>
71e3aac0 312#include <linux/huge_mm.h>
1da177e4
LT
313
314/*
315 * Methods to modify the page usage count.
316 *
317 * What counts for a page usage:
318 * - cache mapping (page->mapping)
319 * - private data (page->private)
320 * - page mapped in a task's page tables, each mapping
321 * is counted separately
322 *
323 * Also, many kernel routines increase the page count before a critical
324 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
325 */
326
327/*
da6052f7 328 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 329 */
7c8ee9a8
NP
330static inline int put_page_testzero(struct page *page)
331{
309381fe 332 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 333 return atomic_dec_and_test(&page->_count);
7c8ee9a8 334}
1da177e4
LT
335
336/*
7c8ee9a8
NP
337 * Try to grab a ref unless the page has a refcount of zero, return false if
338 * that is the case.
8e0861fa
AK
339 * This can be called when MMU is off so it must not access
340 * any of the virtual mappings.
1da177e4 341 */
7c8ee9a8
NP
342static inline int get_page_unless_zero(struct page *page)
343{
8dc04efb 344 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 345}
1da177e4 346
8e0861fa
AK
347/*
348 * Try to drop a ref unless the page has a refcount of one, return false if
349 * that is the case.
350 * This is to make sure that the refcount won't become zero after this drop.
351 * This can be called when MMU is off so it must not access
352 * any of the virtual mappings.
353 */
354static inline int put_page_unless_one(struct page *page)
355{
356 return atomic_add_unless(&page->_count, -1, 1);
357}
358
53df8fdc 359extern int page_is_ram(unsigned long pfn);
67cf13ce 360extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 361
48667e7a 362/* Support for virtually mapped pages */
b3bdda02
CL
363struct page *vmalloc_to_page(const void *addr);
364unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 365
0738c4bb
PM
366/*
367 * Determine if an address is within the vmalloc range
368 *
369 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
370 * is no special casing required.
371 */
9e2779fa
CL
372static inline int is_vmalloc_addr(const void *x)
373{
0738c4bb 374#ifdef CONFIG_MMU
9e2779fa
CL
375 unsigned long addr = (unsigned long)x;
376
377 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
378#else
379 return 0;
8ca3ed87 380#endif
0738c4bb 381}
81ac3ad9
KH
382#ifdef CONFIG_MMU
383extern int is_vmalloc_or_module_addr(const void *x);
384#else
934831d0 385static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
386{
387 return 0;
388}
389#endif
9e2779fa 390
39f1f78d
AV
391extern void kvfree(const void *addr);
392
e9da73d6
AA
393static inline void compound_lock(struct page *page)
394{
395#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 396 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
397 bit_spin_lock(PG_compound_lock, &page->flags);
398#endif
399}
400
401static inline void compound_unlock(struct page *page)
402{
403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 404 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
405 bit_spin_unlock(PG_compound_lock, &page->flags);
406#endif
407}
408
409static inline unsigned long compound_lock_irqsave(struct page *page)
410{
411 unsigned long uninitialized_var(flags);
412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 local_irq_save(flags);
414 compound_lock(page);
415#endif
416 return flags;
417}
418
419static inline void compound_unlock_irqrestore(struct page *page,
420 unsigned long flags)
421{
422#ifdef CONFIG_TRANSPARENT_HUGEPAGE
423 compound_unlock(page);
424 local_irq_restore(flags);
425#endif
426}
427
d2ee40ea
JZ
428static inline struct page *compound_head_by_tail(struct page *tail)
429{
430 struct page *head = tail->first_page;
431
432 /*
433 * page->first_page may be a dangling pointer to an old
434 * compound page, so recheck that it is still a tail
435 * page before returning.
436 */
437 smp_rmb();
438 if (likely(PageTail(tail)))
439 return head;
440 return tail;
441}
442
ccaafd7f
JK
443/*
444 * Since either compound page could be dismantled asynchronously in THP
445 * or we access asynchronously arbitrary positioned struct page, there
446 * would be tail flag race. To handle this race, we should call
447 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
448 */
d85f3385
CL
449static inline struct page *compound_head(struct page *page)
450{
d2ee40ea
JZ
451 if (unlikely(PageTail(page)))
452 return compound_head_by_tail(page);
d85f3385
CL
453 return page;
454}
455
ccaafd7f
JK
456/*
457 * If we access compound page synchronously such as access to
458 * allocated page, there is no need to handle tail flag race, so we can
459 * check tail flag directly without any synchronization primitive.
460 */
461static inline struct page *compound_head_fast(struct page *page)
462{
463 if (unlikely(PageTail(page)))
464 return page->first_page;
465 return page;
466}
467
70b50f94
AA
468/*
469 * The atomic page->_mapcount, starts from -1: so that transitions
470 * both from it and to it can be tracked, using atomic_inc_and_test
471 * and atomic_add_negative(-1).
472 */
22b751c3 473static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
474{
475 atomic_set(&(page)->_mapcount, -1);
476}
477
478static inline int page_mapcount(struct page *page)
479{
480 return atomic_read(&(page)->_mapcount) + 1;
481}
482
4c21e2f2 483static inline int page_count(struct page *page)
1da177e4 484{
d85f3385 485 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
486}
487
44518d2b
AA
488#ifdef CONFIG_HUGETLB_PAGE
489extern int PageHeadHuge(struct page *page_head);
490#else /* CONFIG_HUGETLB_PAGE */
491static inline int PageHeadHuge(struct page *page_head)
492{
493 return 0;
494}
495#endif /* CONFIG_HUGETLB_PAGE */
496
497static inline bool __compound_tail_refcounted(struct page *page)
498{
499 return !PageSlab(page) && !PageHeadHuge(page);
500}
501
502/*
503 * This takes a head page as parameter and tells if the
504 * tail page reference counting can be skipped.
505 *
506 * For this to be safe, PageSlab and PageHeadHuge must remain true on
507 * any given page where they return true here, until all tail pins
508 * have been released.
509 */
510static inline bool compound_tail_refcounted(struct page *page)
511{
309381fe 512 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
513 return __compound_tail_refcounted(page);
514}
515
b35a35b5
AA
516static inline void get_huge_page_tail(struct page *page)
517{
518 /*
5eaf1a9e 519 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 520 */
309381fe
SL
521 VM_BUG_ON_PAGE(!PageTail(page), page);
522 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
523 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 524 if (compound_tail_refcounted(page->first_page))
44518d2b 525 atomic_inc(&page->_mapcount);
b35a35b5
AA
526}
527
70b50f94
AA
528extern bool __get_page_tail(struct page *page);
529
1da177e4
LT
530static inline void get_page(struct page *page)
531{
70b50f94
AA
532 if (unlikely(PageTail(page)))
533 if (likely(__get_page_tail(page)))
534 return;
91807063
AA
535 /*
536 * Getting a normal page or the head of a compound page
70b50f94 537 * requires to already have an elevated page->_count.
91807063 538 */
309381fe 539 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
540 atomic_inc(&page->_count);
541}
542
b49af68f
CL
543static inline struct page *virt_to_head_page(const void *x)
544{
545 struct page *page = virt_to_page(x);
ccaafd7f
JK
546
547 /*
548 * We don't need to worry about synchronization of tail flag
549 * when we call virt_to_head_page() since it is only called for
550 * already allocated page and this page won't be freed until
551 * this virt_to_head_page() is finished. So use _fast variant.
552 */
553 return compound_head_fast(page);
b49af68f
CL
554}
555
7835e98b
NP
556/*
557 * Setup the page count before being freed into the page allocator for
558 * the first time (boot or memory hotplug)
559 */
560static inline void init_page_count(struct page *page)
561{
562 atomic_set(&page->_count, 1);
563}
564
5f24ce5f
AA
565/*
566 * PageBuddy() indicate that the page is free and in the buddy system
567 * (see mm/page_alloc.c).
ef2b4b95
AA
568 *
569 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
570 * -2 so that an underflow of the page_mapcount() won't be mistaken
571 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
572 * efficiently by most CPU architectures.
5f24ce5f 573 */
ef2b4b95
AA
574#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
575
5f24ce5f
AA
576static inline int PageBuddy(struct page *page)
577{
ef2b4b95 578 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
579}
580
581static inline void __SetPageBuddy(struct page *page)
582{
309381fe 583 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 584 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
585}
586
587static inline void __ClearPageBuddy(struct page *page)
588{
309381fe 589 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
590 atomic_set(&page->_mapcount, -1);
591}
592
d6d86c0a
KK
593#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
594
595static inline int PageBalloon(struct page *page)
596{
597 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
598}
599
600static inline void __SetPageBalloon(struct page *page)
601{
602 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
603 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
604}
605
606static inline void __ClearPageBalloon(struct page *page)
607{
608 VM_BUG_ON_PAGE(!PageBalloon(page), page);
609 atomic_set(&page->_mapcount, -1);
610}
611
1da177e4 612void put_page(struct page *page);
1d7ea732 613void put_pages_list(struct list_head *pages);
1da177e4 614
8dfcc9ba 615void split_page(struct page *page, unsigned int order);
748446bb 616int split_free_page(struct page *page);
8dfcc9ba 617
33f2ef89
AW
618/*
619 * Compound pages have a destructor function. Provide a
620 * prototype for that function and accessor functions.
621 * These are _only_ valid on the head of a PG_compound page.
622 */
623typedef void compound_page_dtor(struct page *);
624
625static inline void set_compound_page_dtor(struct page *page,
626 compound_page_dtor *dtor)
627{
628 page[1].lru.next = (void *)dtor;
629}
630
631static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
632{
633 return (compound_page_dtor *)page[1].lru.next;
634}
635
d85f3385
CL
636static inline int compound_order(struct page *page)
637{
6d777953 638 if (!PageHead(page))
d85f3385
CL
639 return 0;
640 return (unsigned long)page[1].lru.prev;
641}
642
643static inline void set_compound_order(struct page *page, unsigned long order)
644{
645 page[1].lru.prev = (void *)order;
646}
647
3dece370 648#ifdef CONFIG_MMU
14fd403f
AA
649/*
650 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
651 * servicing faults for write access. In the normal case, do always want
652 * pte_mkwrite. But get_user_pages can cause write faults for mappings
653 * that do not have writing enabled, when used by access_process_vm.
654 */
655static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
656{
657 if (likely(vma->vm_flags & VM_WRITE))
658 pte = pte_mkwrite(pte);
659 return pte;
660}
8c6e50b0
KS
661
662void do_set_pte(struct vm_area_struct *vma, unsigned long address,
663 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 664#endif
14fd403f 665
1da177e4
LT
666/*
667 * Multiple processes may "see" the same page. E.g. for untouched
668 * mappings of /dev/null, all processes see the same page full of
669 * zeroes, and text pages of executables and shared libraries have
670 * only one copy in memory, at most, normally.
671 *
672 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
673 * page_count() == 0 means the page is free. page->lru is then used for
674 * freelist management in the buddy allocator.
da6052f7 675 * page_count() > 0 means the page has been allocated.
1da177e4 676 *
da6052f7
NP
677 * Pages are allocated by the slab allocator in order to provide memory
678 * to kmalloc and kmem_cache_alloc. In this case, the management of the
679 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
680 * unless a particular usage is carefully commented. (the responsibility of
681 * freeing the kmalloc memory is the caller's, of course).
1da177e4 682 *
da6052f7
NP
683 * A page may be used by anyone else who does a __get_free_page().
684 * In this case, page_count still tracks the references, and should only
685 * be used through the normal accessor functions. The top bits of page->flags
686 * and page->virtual store page management information, but all other fields
687 * are unused and could be used privately, carefully. The management of this
688 * page is the responsibility of the one who allocated it, and those who have
689 * subsequently been given references to it.
690 *
691 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
692 * managed by the Linux memory manager: I/O, buffers, swapping etc.
693 * The following discussion applies only to them.
694 *
da6052f7
NP
695 * A pagecache page contains an opaque `private' member, which belongs to the
696 * page's address_space. Usually, this is the address of a circular list of
697 * the page's disk buffers. PG_private must be set to tell the VM to call
698 * into the filesystem to release these pages.
1da177e4 699 *
da6052f7
NP
700 * A page may belong to an inode's memory mapping. In this case, page->mapping
701 * is the pointer to the inode, and page->index is the file offset of the page,
702 * in units of PAGE_CACHE_SIZE.
1da177e4 703 *
da6052f7
NP
704 * If pagecache pages are not associated with an inode, they are said to be
705 * anonymous pages. These may become associated with the swapcache, and in that
706 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 707 *
da6052f7
NP
708 * In either case (swapcache or inode backed), the pagecache itself holds one
709 * reference to the page. Setting PG_private should also increment the
710 * refcount. The each user mapping also has a reference to the page.
1da177e4 711 *
da6052f7
NP
712 * The pagecache pages are stored in a per-mapping radix tree, which is
713 * rooted at mapping->page_tree, and indexed by offset.
714 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
715 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 716 *
da6052f7 717 * All pagecache pages may be subject to I/O:
1da177e4
LT
718 * - inode pages may need to be read from disk,
719 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
720 * to be written back to the inode on disk,
721 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
722 * modified may need to be swapped out to swap space and (later) to be read
723 * back into memory.
1da177e4
LT
724 */
725
726/*
727 * The zone field is never updated after free_area_init_core()
728 * sets it, so none of the operations on it need to be atomic.
1da177e4 729 */
348f8b6c 730
90572890 731/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 732#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
733#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
734#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 735#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 736
348f8b6c 737/*
25985edc 738 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
739 * sections we define the shift as 0; that plus a 0 mask ensures
740 * the compiler will optimise away reference to them.
741 */
d41dee36
AW
742#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
743#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
744#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 745#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 746
bce54bbf
WD
747/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
748#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 749#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
750#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
751 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 752#else
89689ae7 753#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
754#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
755 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
756#endif
757
bd8029b6 758#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 759
9223b419
CL
760#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
761#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
762#endif
763
d41dee36
AW
764#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
765#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
766#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 767#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 768#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 769
33dd4e0e 770static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 771{
348f8b6c 772 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 773}
1da177e4 774
9127ab4f
CS
775#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
776#define SECTION_IN_PAGE_FLAGS
777#endif
778
89689ae7 779/*
7a8010cd
VB
780 * The identification function is mainly used by the buddy allocator for
781 * determining if two pages could be buddies. We are not really identifying
782 * the zone since we could be using the section number id if we do not have
783 * node id available in page flags.
784 * We only guarantee that it will return the same value for two combinable
785 * pages in a zone.
89689ae7 786 */
cb2b95e1
AW
787static inline int page_zone_id(struct page *page)
788{
89689ae7 789 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
790}
791
25ba77c1 792static inline int zone_to_nid(struct zone *zone)
89fa3024 793{
d5f541ed
CL
794#ifdef CONFIG_NUMA
795 return zone->node;
796#else
797 return 0;
798#endif
89fa3024
CL
799}
800
89689ae7 801#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 802extern int page_to_nid(const struct page *page);
89689ae7 803#else
33dd4e0e 804static inline int page_to_nid(const struct page *page)
d41dee36 805{
89689ae7 806 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 807}
89689ae7
CL
808#endif
809
57e0a030 810#ifdef CONFIG_NUMA_BALANCING
90572890 811static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 812{
90572890 813 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
814}
815
90572890 816static inline int cpupid_to_pid(int cpupid)
57e0a030 817{
90572890 818 return cpupid & LAST__PID_MASK;
57e0a030 819}
b795854b 820
90572890 821static inline int cpupid_to_cpu(int cpupid)
b795854b 822{
90572890 823 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
824}
825
90572890 826static inline int cpupid_to_nid(int cpupid)
b795854b 827{
90572890 828 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
829}
830
90572890 831static inline bool cpupid_pid_unset(int cpupid)
57e0a030 832{
90572890 833 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
834}
835
90572890 836static inline bool cpupid_cpu_unset(int cpupid)
b795854b 837{
90572890 838 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
839}
840
8c8a743c
PZ
841static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
842{
843 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
844}
845
846#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
847#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
848static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 849{
1ae71d03 850 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 851}
90572890
PZ
852
853static inline int page_cpupid_last(struct page *page)
854{
855 return page->_last_cpupid;
856}
857static inline void page_cpupid_reset_last(struct page *page)
b795854b 858{
1ae71d03 859 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
860}
861#else
90572890 862static inline int page_cpupid_last(struct page *page)
75980e97 863{
90572890 864 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
865}
866
90572890 867extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 868
90572890 869static inline void page_cpupid_reset_last(struct page *page)
75980e97 870{
90572890 871 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 872
90572890
PZ
873 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
874 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 875}
90572890
PZ
876#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
877#else /* !CONFIG_NUMA_BALANCING */
878static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 879{
90572890 880 return page_to_nid(page); /* XXX */
57e0a030
MG
881}
882
90572890 883static inline int page_cpupid_last(struct page *page)
57e0a030 884{
90572890 885 return page_to_nid(page); /* XXX */
57e0a030
MG
886}
887
90572890 888static inline int cpupid_to_nid(int cpupid)
b795854b
MG
889{
890 return -1;
891}
892
90572890 893static inline int cpupid_to_pid(int cpupid)
b795854b
MG
894{
895 return -1;
896}
897
90572890 898static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
899{
900 return -1;
901}
902
90572890
PZ
903static inline int cpu_pid_to_cpupid(int nid, int pid)
904{
905 return -1;
906}
907
908static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
909{
910 return 1;
911}
912
90572890 913static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
914{
915}
8c8a743c
PZ
916
917static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
918{
919 return false;
920}
90572890 921#endif /* CONFIG_NUMA_BALANCING */
57e0a030 922
33dd4e0e 923static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
924{
925 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
926}
927
9127ab4f 928#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
929static inline void set_page_section(struct page *page, unsigned long section)
930{
931 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
932 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
933}
934
aa462abe 935static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
936{
937 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
938}
308c05e3 939#endif
d41dee36 940
2f1b6248 941static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
942{
943 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
944 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
945}
2f1b6248 946
348f8b6c
DH
947static inline void set_page_node(struct page *page, unsigned long node)
948{
949 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
950 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 951}
89689ae7 952
2f1b6248 953static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 954 unsigned long node, unsigned long pfn)
1da177e4 955{
348f8b6c
DH
956 set_page_zone(page, zone);
957 set_page_node(page, node);
9127ab4f 958#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 959 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 960#endif
1da177e4
LT
961}
962
f6ac2354
CL
963/*
964 * Some inline functions in vmstat.h depend on page_zone()
965 */
966#include <linux/vmstat.h>
967
33dd4e0e 968static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 969{
aa462abe 970 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
971}
972
973#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
974#define HASHED_PAGE_VIRTUAL
975#endif
976
977#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
978static inline void *page_address(const struct page *page)
979{
980 return page->virtual;
981}
982static inline void set_page_address(struct page *page, void *address)
983{
984 page->virtual = address;
985}
1da177e4
LT
986#define page_address_init() do { } while(0)
987#endif
988
989#if defined(HASHED_PAGE_VIRTUAL)
f9918794 990void *page_address(const struct page *page);
1da177e4
LT
991void set_page_address(struct page *page, void *virtual);
992void page_address_init(void);
993#endif
994
995#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
996#define page_address(page) lowmem_page_address(page)
997#define set_page_address(page, address) do { } while(0)
998#define page_address_init() do { } while(0)
999#endif
1000
1001/*
1002 * On an anonymous page mapped into a user virtual memory area,
1003 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
1004 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1005 *
1006 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1007 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1008 * and then page->mapping points, not to an anon_vma, but to a private
1009 * structure which KSM associates with that merged page. See ksm.h.
1010 *
1011 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
1012 *
1013 * Please note that, confusingly, "page_mapping" refers to the inode
1014 * address_space which maps the page from disk; whereas "page_mapped"
1015 * refers to user virtual address space into which the page is mapped.
1016 */
1017#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
1018#define PAGE_MAPPING_KSM 2
1019#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 1020
9800339b 1021extern struct address_space *page_mapping(struct page *page);
1da177e4 1022
3ca7b3c5
HD
1023/* Neutral page->mapping pointer to address_space or anon_vma or other */
1024static inline void *page_rmapping(struct page *page)
1025{
1026 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1027}
1028
f981c595
MG
1029extern struct address_space *__page_file_mapping(struct page *);
1030
1031static inline
1032struct address_space *page_file_mapping(struct page *page)
1033{
1034 if (unlikely(PageSwapCache(page)))
1035 return __page_file_mapping(page);
1036
1037 return page->mapping;
1038}
1039
1da177e4
LT
1040static inline int PageAnon(struct page *page)
1041{
1042 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1043}
1044
1045/*
1046 * Return the pagecache index of the passed page. Regular pagecache pages
1047 * use ->index whereas swapcache pages use ->private
1048 */
1049static inline pgoff_t page_index(struct page *page)
1050{
1051 if (unlikely(PageSwapCache(page)))
4c21e2f2 1052 return page_private(page);
1da177e4
LT
1053 return page->index;
1054}
1055
f981c595
MG
1056extern pgoff_t __page_file_index(struct page *page);
1057
1058/*
1059 * Return the file index of the page. Regular pagecache pages use ->index
1060 * whereas swapcache pages use swp_offset(->private)
1061 */
1062static inline pgoff_t page_file_index(struct page *page)
1063{
1064 if (unlikely(PageSwapCache(page)))
1065 return __page_file_index(page);
1066
1067 return page->index;
1068}
1069
1da177e4
LT
1070/*
1071 * Return true if this page is mapped into pagetables.
1072 */
1073static inline int page_mapped(struct page *page)
1074{
1075 return atomic_read(&(page)->_mapcount) >= 0;
1076}
1077
1da177e4
LT
1078/*
1079 * Different kinds of faults, as returned by handle_mm_fault().
1080 * Used to decide whether a process gets delivered SIGBUS or
1081 * just gets major/minor fault counters bumped up.
1082 */
d0217ac0 1083
83c54070 1084#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1085
83c54070
NP
1086#define VM_FAULT_OOM 0x0001
1087#define VM_FAULT_SIGBUS 0x0002
1088#define VM_FAULT_MAJOR 0x0004
1089#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1090#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1091#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1092#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1093
83c54070
NP
1094#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1095#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1096#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1097#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1098
aa50d3a7
AK
1099#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1100
33692f27
LT
1101#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1102 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1103 VM_FAULT_FALLBACK)
aa50d3a7
AK
1104
1105/* Encode hstate index for a hwpoisoned large page */
1106#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1107#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1108
1c0fe6e3
NP
1109/*
1110 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1111 */
1112extern void pagefault_out_of_memory(void);
1113
1da177e4
LT
1114#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1115
ddd588b5 1116/*
7bf02ea2 1117 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1118 * various contexts.
1119 */
4b59e6c4 1120#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1121
7bf02ea2
DR
1122extern void show_free_areas(unsigned int flags);
1123extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1124
1da177e4 1125int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1126#ifdef CONFIG_SHMEM
1127bool shmem_mapping(struct address_space *mapping);
1128#else
1129static inline bool shmem_mapping(struct address_space *mapping)
1130{
1131 return false;
1132}
1133#endif
1da177e4 1134
e8edc6e0 1135extern int can_do_mlock(void);
1da177e4
LT
1136extern int user_shm_lock(size_t, struct user_struct *);
1137extern void user_shm_unlock(size_t, struct user_struct *);
1138
1139/*
1140 * Parameter block passed down to zap_pte_range in exceptional cases.
1141 */
1142struct zap_details {
1da177e4
LT
1143 struct address_space *check_mapping; /* Check page->mapping if set */
1144 pgoff_t first_index; /* Lowest page->index to unmap */
1145 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1146};
1147
7e675137
NP
1148struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1149 pte_t pte);
1150
c627f9cc
JS
1151int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1152 unsigned long size);
14f5ff5d 1153void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1154 unsigned long size, struct zap_details *);
4f74d2c8
LT
1155void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1156 unsigned long start, unsigned long end);
e6473092
MM
1157
1158/**
1159 * mm_walk - callbacks for walk_page_range
1160 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1161 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1162 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1163 * this handler is required to be able to handle
1164 * pmd_trans_huge() pmds. They may simply choose to
1165 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1166 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1167 * @pte_hole: if set, called for each hole at all levels
5dc37642 1168 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1169 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1170 * is used.
e6473092
MM
1171 *
1172 * (see walk_page_range for more details)
1173 */
1174struct mm_walk {
0f157a5b
AM
1175 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1176 unsigned long next, struct mm_walk *walk);
1177 int (*pud_entry)(pud_t *pud, unsigned long addr,
1178 unsigned long next, struct mm_walk *walk);
1179 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1180 unsigned long next, struct mm_walk *walk);
1181 int (*pte_entry)(pte_t *pte, unsigned long addr,
1182 unsigned long next, struct mm_walk *walk);
1183 int (*pte_hole)(unsigned long addr, unsigned long next,
1184 struct mm_walk *walk);
1185 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1186 unsigned long addr, unsigned long next,
1187 struct mm_walk *walk);
2165009b
DH
1188 struct mm_struct *mm;
1189 void *private;
e6473092
MM
1190};
1191
2165009b
DH
1192int walk_page_range(unsigned long addr, unsigned long end,
1193 struct mm_walk *walk);
42b77728 1194void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1195 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1196int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1197 struct vm_area_struct *vma);
1da177e4
LT
1198void unmap_mapping_range(struct address_space *mapping,
1199 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1200int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1201 unsigned long *pfn);
d87fe660 1202int follow_phys(struct vm_area_struct *vma, unsigned long address,
1203 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1204int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1205 void *buf, int len, int write);
1da177e4
LT
1206
1207static inline void unmap_shared_mapping_range(struct address_space *mapping,
1208 loff_t const holebegin, loff_t const holelen)
1209{
1210 unmap_mapping_range(mapping, holebegin, holelen, 0);
1211}
1212
7caef267 1213extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1214extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1215void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1216void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1217int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1218int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1219int invalidate_inode_page(struct page *page);
1220
7ee1dd3f 1221#ifdef CONFIG_MMU
83c54070 1222extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1223 unsigned long address, unsigned int flags);
5c723ba5
PZ
1224extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1225 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1226#else
1227static inline int handle_mm_fault(struct mm_struct *mm,
1228 struct vm_area_struct *vma, unsigned long address,
d06063cc 1229 unsigned int flags)
7ee1dd3f
DH
1230{
1231 /* should never happen if there's no MMU */
1232 BUG();
1233 return VM_FAULT_SIGBUS;
1234}
5c723ba5
PZ
1235static inline int fixup_user_fault(struct task_struct *tsk,
1236 struct mm_struct *mm, unsigned long address,
1237 unsigned int fault_flags)
1238{
1239 /* should never happen if there's no MMU */
1240 BUG();
1241 return -EFAULT;
1242}
7ee1dd3f 1243#endif
f33ea7f4 1244
1da177e4 1245extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1246extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1247 void *buf, int len, int write);
1da177e4 1248
28a35716
ML
1249long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1250 unsigned long start, unsigned long nr_pages,
1251 unsigned int foll_flags, struct page **pages,
1252 struct vm_area_struct **vmas, int *nonblocking);
1253long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1254 unsigned long start, unsigned long nr_pages,
1255 int write, int force, struct page **pages,
1256 struct vm_area_struct **vmas);
d2bf6be8
NP
1257int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1258 struct page **pages);
18022c5d
MG
1259struct kvec;
1260int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1261 struct page **pages);
1262int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1263struct page *get_dump_page(unsigned long addr);
1da177e4 1264
cf9a2ae8 1265extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1266extern void do_invalidatepage(struct page *page, unsigned int offset,
1267 unsigned int length);
cf9a2ae8 1268
1da177e4 1269int __set_page_dirty_nobuffers(struct page *page);
76719325 1270int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1271int redirty_page_for_writepage(struct writeback_control *wbc,
1272 struct page *page);
e3a7cca1 1273void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1274int set_page_dirty(struct page *page);
1da177e4
LT
1275int set_page_dirty_lock(struct page *page);
1276int clear_page_dirty_for_io(struct page *page);
a9090253 1277int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1278
39aa3cb3 1279/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1280static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1281{
1282 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1283}
1284
a09a79f6
MP
1285static inline int stack_guard_page_start(struct vm_area_struct *vma,
1286 unsigned long addr)
1287{
1288 return (vma->vm_flags & VM_GROWSDOWN) &&
1289 (vma->vm_start == addr) &&
1290 !vma_growsdown(vma->vm_prev, addr);
1291}
1292
1293/* Is the vma a continuation of the stack vma below it? */
1294static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1295{
1296 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1297}
1298
1299static inline int stack_guard_page_end(struct vm_area_struct *vma,
1300 unsigned long addr)
1301{
1302 return (vma->vm_flags & VM_GROWSUP) &&
1303 (vma->vm_end == addr) &&
1304 !vma_growsup(vma->vm_next, addr);
1305}
1306
58cb6548
ON
1307extern struct task_struct *task_of_stack(struct task_struct *task,
1308 struct vm_area_struct *vma, bool in_group);
b7643757 1309
b6a2fea3
OW
1310extern unsigned long move_page_tables(struct vm_area_struct *vma,
1311 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1312 unsigned long new_addr, unsigned long len,
1313 bool need_rmap_locks);
7da4d641
PZ
1314extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1315 unsigned long end, pgprot_t newprot,
4b10e7d5 1316 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1317extern int mprotect_fixup(struct vm_area_struct *vma,
1318 struct vm_area_struct **pprev, unsigned long start,
1319 unsigned long end, unsigned long newflags);
1da177e4 1320
465a454f
PZ
1321/*
1322 * doesn't attempt to fault and will return short.
1323 */
1324int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1325 struct page **pages);
d559db08
KH
1326/*
1327 * per-process(per-mm_struct) statistics.
1328 */
d559db08
KH
1329static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1330{
69c97823
KK
1331 long val = atomic_long_read(&mm->rss_stat.count[member]);
1332
1333#ifdef SPLIT_RSS_COUNTING
1334 /*
1335 * counter is updated in asynchronous manner and may go to minus.
1336 * But it's never be expected number for users.
1337 */
1338 if (val < 0)
1339 val = 0;
172703b0 1340#endif
69c97823
KK
1341 return (unsigned long)val;
1342}
d559db08
KH
1343
1344static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1345{
172703b0 1346 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1347}
1348
1349static inline void inc_mm_counter(struct mm_struct *mm, int member)
1350{
172703b0 1351 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1352}
1353
1354static inline void dec_mm_counter(struct mm_struct *mm, int member)
1355{
172703b0 1356 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1357}
1358
d559db08
KH
1359static inline unsigned long get_mm_rss(struct mm_struct *mm)
1360{
1361 return get_mm_counter(mm, MM_FILEPAGES) +
1362 get_mm_counter(mm, MM_ANONPAGES);
1363}
1364
1365static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1366{
1367 return max(mm->hiwater_rss, get_mm_rss(mm));
1368}
1369
1370static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1371{
1372 return max(mm->hiwater_vm, mm->total_vm);
1373}
1374
1375static inline void update_hiwater_rss(struct mm_struct *mm)
1376{
1377 unsigned long _rss = get_mm_rss(mm);
1378
1379 if ((mm)->hiwater_rss < _rss)
1380 (mm)->hiwater_rss = _rss;
1381}
1382
1383static inline void update_hiwater_vm(struct mm_struct *mm)
1384{
1385 if (mm->hiwater_vm < mm->total_vm)
1386 mm->hiwater_vm = mm->total_vm;
1387}
1388
1389static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1390 struct mm_struct *mm)
1391{
1392 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1393
1394 if (*maxrss < hiwater_rss)
1395 *maxrss = hiwater_rss;
1396}
1397
53bddb4e 1398#if defined(SPLIT_RSS_COUNTING)
05af2e10 1399void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1400#else
05af2e10 1401static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1402{
1403}
1404#endif
465a454f 1405
4e950f6f 1406int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1407
25ca1d6c
NK
1408extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1409 spinlock_t **ptl);
1410static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411 spinlock_t **ptl)
1412{
1413 pte_t *ptep;
1414 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1415 return ptep;
1416}
c9cfcddf 1417
5f22df00
NP
1418#ifdef __PAGETABLE_PUD_FOLDED
1419static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1420 unsigned long address)
1421{
1422 return 0;
1423}
1424#else
1bb3630e 1425int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1426#endif
1427
1428#ifdef __PAGETABLE_PMD_FOLDED
1429static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1430 unsigned long address)
1431{
1432 return 0;
1433}
1434#else
1bb3630e 1435int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1436#endif
1437
8ac1f832
AA
1438int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1439 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1440int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1441
1da177e4
LT
1442/*
1443 * The following ifdef needed to get the 4level-fixup.h header to work.
1444 * Remove it when 4level-fixup.h has been removed.
1445 */
1bb3630e 1446#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1447static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1448{
1bb3630e
HD
1449 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1450 NULL: pud_offset(pgd, address);
1da177e4
LT
1451}
1452
1453static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1454{
1bb3630e
HD
1455 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1456 NULL: pmd_offset(pud, address);
1da177e4 1457}
1bb3630e
HD
1458#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1459
57c1ffce 1460#if USE_SPLIT_PTE_PTLOCKS
597d795a 1461#if ALLOC_SPLIT_PTLOCKS
b35f1819 1462void __init ptlock_cache_init(void);
539edb58
PZ
1463extern bool ptlock_alloc(struct page *page);
1464extern void ptlock_free(struct page *page);
1465
1466static inline spinlock_t *ptlock_ptr(struct page *page)
1467{
1468 return page->ptl;
1469}
597d795a 1470#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1471static inline void ptlock_cache_init(void)
1472{
1473}
1474
49076ec2
KS
1475static inline bool ptlock_alloc(struct page *page)
1476{
49076ec2
KS
1477 return true;
1478}
539edb58 1479
49076ec2
KS
1480static inline void ptlock_free(struct page *page)
1481{
49076ec2
KS
1482}
1483
1484static inline spinlock_t *ptlock_ptr(struct page *page)
1485{
539edb58 1486 return &page->ptl;
49076ec2 1487}
597d795a 1488#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1489
1490static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1491{
1492 return ptlock_ptr(pmd_page(*pmd));
1493}
1494
1495static inline bool ptlock_init(struct page *page)
1496{
1497 /*
1498 * prep_new_page() initialize page->private (and therefore page->ptl)
1499 * with 0. Make sure nobody took it in use in between.
1500 *
1501 * It can happen if arch try to use slab for page table allocation:
1502 * slab code uses page->slab_cache and page->first_page (for tail
1503 * pages), which share storage with page->ptl.
1504 */
309381fe 1505 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1506 if (!ptlock_alloc(page))
1507 return false;
1508 spin_lock_init(ptlock_ptr(page));
1509 return true;
1510}
1511
1512/* Reset page->mapping so free_pages_check won't complain. */
1513static inline void pte_lock_deinit(struct page *page)
1514{
1515 page->mapping = NULL;
1516 ptlock_free(page);
1517}
1518
57c1ffce 1519#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1520/*
1521 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1522 */
49076ec2
KS
1523static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1524{
1525 return &mm->page_table_lock;
1526}
b35f1819 1527static inline void ptlock_cache_init(void) {}
49076ec2
KS
1528static inline bool ptlock_init(struct page *page) { return true; }
1529static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1530#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1531
b35f1819
KS
1532static inline void pgtable_init(void)
1533{
1534 ptlock_cache_init();
1535 pgtable_cache_init();
1536}
1537
390f44e2 1538static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1539{
2f569afd 1540 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1541 return ptlock_init(page);
2f569afd
MS
1542}
1543
1544static inline void pgtable_page_dtor(struct page *page)
1545{
1546 pte_lock_deinit(page);
1547 dec_zone_page_state(page, NR_PAGETABLE);
1548}
1549
c74df32c
HD
1550#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1551({ \
4c21e2f2 1552 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1553 pte_t *__pte = pte_offset_map(pmd, address); \
1554 *(ptlp) = __ptl; \
1555 spin_lock(__ptl); \
1556 __pte; \
1557})
1558
1559#define pte_unmap_unlock(pte, ptl) do { \
1560 spin_unlock(ptl); \
1561 pte_unmap(pte); \
1562} while (0)
1563
8ac1f832
AA
1564#define pte_alloc_map(mm, vma, pmd, address) \
1565 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1566 pmd, address))? \
1567 NULL: pte_offset_map(pmd, address))
1bb3630e 1568
c74df32c 1569#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1570 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1571 pmd, address))? \
c74df32c
HD
1572 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1573
1bb3630e 1574#define pte_alloc_kernel(pmd, address) \
8ac1f832 1575 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1576 NULL: pte_offset_kernel(pmd, address))
1da177e4 1577
e009bb30
KS
1578#if USE_SPLIT_PMD_PTLOCKS
1579
634391ac
MS
1580static struct page *pmd_to_page(pmd_t *pmd)
1581{
1582 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1583 return virt_to_page((void *)((unsigned long) pmd & mask));
1584}
1585
e009bb30
KS
1586static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587{
634391ac 1588 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1589}
1590
1591static inline bool pgtable_pmd_page_ctor(struct page *page)
1592{
e009bb30
KS
1593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1594 page->pmd_huge_pte = NULL;
1595#endif
49076ec2 1596 return ptlock_init(page);
e009bb30
KS
1597}
1598
1599static inline void pgtable_pmd_page_dtor(struct page *page)
1600{
1601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1602 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1603#endif
49076ec2 1604 ptlock_free(page);
e009bb30
KS
1605}
1606
634391ac 1607#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1608
1609#else
1610
9a86cb7b
KS
1611static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1612{
1613 return &mm->page_table_lock;
1614}
1615
e009bb30
KS
1616static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1617static inline void pgtable_pmd_page_dtor(struct page *page) {}
1618
c389a250 1619#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1620
e009bb30
KS
1621#endif
1622
9a86cb7b
KS
1623static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1624{
1625 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1626 spin_lock(ptl);
1627 return ptl;
1628}
1629
1da177e4 1630extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1631extern void free_area_init_node(int nid, unsigned long * zones_size,
1632 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1633extern void free_initmem(void);
1634
69afade7
JL
1635/*
1636 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1637 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1638 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1639 * Return pages freed into the buddy system.
1640 */
11199692 1641extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1642 int poison, char *s);
c3d5f5f0 1643
cfa11e08
JL
1644#ifdef CONFIG_HIGHMEM
1645/*
1646 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1647 * and totalram_pages.
1648 */
1649extern void free_highmem_page(struct page *page);
1650#endif
69afade7 1651
c3d5f5f0 1652extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1653extern void mem_init_print_info(const char *str);
69afade7
JL
1654
1655/* Free the reserved page into the buddy system, so it gets managed. */
1656static inline void __free_reserved_page(struct page *page)
1657{
1658 ClearPageReserved(page);
1659 init_page_count(page);
1660 __free_page(page);
1661}
1662
1663static inline void free_reserved_page(struct page *page)
1664{
1665 __free_reserved_page(page);
1666 adjust_managed_page_count(page, 1);
1667}
1668
1669static inline void mark_page_reserved(struct page *page)
1670{
1671 SetPageReserved(page);
1672 adjust_managed_page_count(page, -1);
1673}
1674
1675/*
1676 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1677 * The freed pages will be poisoned with pattern "poison" if it's within
1678 * range [0, UCHAR_MAX].
1679 * Return pages freed into the buddy system.
69afade7
JL
1680 */
1681static inline unsigned long free_initmem_default(int poison)
1682{
1683 extern char __init_begin[], __init_end[];
1684
11199692 1685 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1686 poison, "unused kernel");
1687}
1688
7ee3d4e8
JL
1689static inline unsigned long get_num_physpages(void)
1690{
1691 int nid;
1692 unsigned long phys_pages = 0;
1693
1694 for_each_online_node(nid)
1695 phys_pages += node_present_pages(nid);
1696
1697 return phys_pages;
1698}
1699
0ee332c1 1700#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1701/*
0ee332c1 1702 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1703 * zones, allocate the backing mem_map and account for memory holes in a more
1704 * architecture independent manner. This is a substitute for creating the
1705 * zone_sizes[] and zholes_size[] arrays and passing them to
1706 * free_area_init_node()
1707 *
1708 * An architecture is expected to register range of page frames backed by
0ee332c1 1709 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1710 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1711 * usage, an architecture is expected to do something like
1712 *
1713 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1714 * max_highmem_pfn};
1715 * for_each_valid_physical_page_range()
0ee332c1 1716 * memblock_add_node(base, size, nid)
c713216d
MG
1717 * free_area_init_nodes(max_zone_pfns);
1718 *
0ee332c1
TH
1719 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1720 * registered physical page range. Similarly
1721 * sparse_memory_present_with_active_regions() calls memory_present() for
1722 * each range when SPARSEMEM is enabled.
c713216d
MG
1723 *
1724 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1725 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1726 */
1727extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1728unsigned long node_map_pfn_alignment(void);
32996250
YL
1729unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1730 unsigned long end_pfn);
c713216d
MG
1731extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1732 unsigned long end_pfn);
1733extern void get_pfn_range_for_nid(unsigned int nid,
1734 unsigned long *start_pfn, unsigned long *end_pfn);
1735extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1736extern void free_bootmem_with_active_regions(int nid,
1737 unsigned long max_low_pfn);
1738extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1739
0ee332c1 1740#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1741
0ee332c1 1742#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1743 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1744static inline int __early_pfn_to_nid(unsigned long pfn)
1745{
1746 return 0;
1747}
1748#else
1749/* please see mm/page_alloc.c */
1750extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1751/* there is a per-arch backend function. */
1752extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1753#endif
1754
0e0b864e 1755extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1756extern void memmap_init_zone(unsigned long, int, unsigned long,
1757 unsigned long, enum memmap_context);
bc75d33f 1758extern void setup_per_zone_wmarks(void);
1b79acc9 1759extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1760extern void mem_init(void);
8feae131 1761extern void __init mmap_init(void);
b2b755b5 1762extern void show_mem(unsigned int flags);
1da177e4
LT
1763extern void si_meminfo(struct sysinfo * val);
1764extern void si_meminfo_node(struct sysinfo *val, int nid);
1765
3ee9a4f0
JP
1766extern __printf(3, 4)
1767void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1768
e7c8d5c9 1769extern void setup_per_cpu_pageset(void);
e7c8d5c9 1770
112067f0 1771extern void zone_pcp_update(struct zone *zone);
340175b7 1772extern void zone_pcp_reset(struct zone *zone);
112067f0 1773
75f7ad8e
PS
1774/* page_alloc.c */
1775extern int min_free_kbytes;
1776
8feae131 1777/* nommu.c */
33e5d769 1778extern atomic_long_t mmap_pages_allocated;
7e660872 1779extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1780
6b2dbba8 1781/* interval_tree.c */
6b2dbba8
ML
1782void vma_interval_tree_insert(struct vm_area_struct *node,
1783 struct rb_root *root);
9826a516
ML
1784void vma_interval_tree_insert_after(struct vm_area_struct *node,
1785 struct vm_area_struct *prev,
1786 struct rb_root *root);
6b2dbba8
ML
1787void vma_interval_tree_remove(struct vm_area_struct *node,
1788 struct rb_root *root);
1789struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1790 unsigned long start, unsigned long last);
1791struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1792 unsigned long start, unsigned long last);
1793
1794#define vma_interval_tree_foreach(vma, root, start, last) \
1795 for (vma = vma_interval_tree_iter_first(root, start, last); \
1796 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1797
bf181b9f
ML
1798void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1799 struct rb_root *root);
1800void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1801 struct rb_root *root);
1802struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1803 struct rb_root *root, unsigned long start, unsigned long last);
1804struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1805 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1806#ifdef CONFIG_DEBUG_VM_RB
1807void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1808#endif
bf181b9f
ML
1809
1810#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1811 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1812 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1813
1da177e4 1814/* mmap.c */
34b4e4aa 1815extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1816extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1817 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1818extern struct vm_area_struct *vma_merge(struct mm_struct *,
1819 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1820 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1821 struct mempolicy *);
1822extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1823extern int split_vma(struct mm_struct *,
1824 struct vm_area_struct *, unsigned long addr, int new_below);
1825extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1826extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1827 struct rb_node **, struct rb_node *);
a8fb5618 1828extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1829extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1830 unsigned long addr, unsigned long len, pgoff_t pgoff,
1831 bool *need_rmap_locks);
1da177e4 1832extern void exit_mmap(struct mm_struct *);
925d1c40 1833
9c599024
CG
1834static inline int check_data_rlimit(unsigned long rlim,
1835 unsigned long new,
1836 unsigned long start,
1837 unsigned long end_data,
1838 unsigned long start_data)
1839{
1840 if (rlim < RLIM_INFINITY) {
1841 if (((new - start) + (end_data - start_data)) > rlim)
1842 return -ENOSPC;
1843 }
1844
1845 return 0;
1846}
1847
7906d00c
AA
1848extern int mm_take_all_locks(struct mm_struct *mm);
1849extern void mm_drop_all_locks(struct mm_struct *mm);
1850
38646013
JS
1851extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1852extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1853
119f657c 1854extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1855extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1856 unsigned long addr, unsigned long len,
a62c34bd
AL
1857 unsigned long flags,
1858 const struct vm_special_mapping *spec);
1859/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1860extern int install_special_mapping(struct mm_struct *mm,
1861 unsigned long addr, unsigned long len,
1862 unsigned long flags, struct page **pages);
1da177e4
LT
1863
1864extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1865
0165ab44 1866extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1867 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1868extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1869 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1870 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1871extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1872
bebeb3d6
ML
1873#ifdef CONFIG_MMU
1874extern int __mm_populate(unsigned long addr, unsigned long len,
1875 int ignore_errors);
1876static inline void mm_populate(unsigned long addr, unsigned long len)
1877{
1878 /* Ignore errors */
1879 (void) __mm_populate(addr, len, 1);
1880}
1881#else
1882static inline void mm_populate(unsigned long addr, unsigned long len) {}
1883#endif
1884
e4eb1ff6
LT
1885/* These take the mm semaphore themselves */
1886extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1887extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1888extern unsigned long vm_mmap(struct file *, unsigned long,
1889 unsigned long, unsigned long,
1890 unsigned long, unsigned long);
1da177e4 1891
db4fbfb9
ML
1892struct vm_unmapped_area_info {
1893#define VM_UNMAPPED_AREA_TOPDOWN 1
1894 unsigned long flags;
1895 unsigned long length;
1896 unsigned long low_limit;
1897 unsigned long high_limit;
1898 unsigned long align_mask;
1899 unsigned long align_offset;
1900};
1901
1902extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1903extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1904
1905/*
1906 * Search for an unmapped address range.
1907 *
1908 * We are looking for a range that:
1909 * - does not intersect with any VMA;
1910 * - is contained within the [low_limit, high_limit) interval;
1911 * - is at least the desired size.
1912 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1913 */
1914static inline unsigned long
1915vm_unmapped_area(struct vm_unmapped_area_info *info)
1916{
1917 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1918 return unmapped_area(info);
1919 else
1920 return unmapped_area_topdown(info);
1921}
1922
85821aab 1923/* truncate.c */
1da177e4 1924extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1925extern void truncate_inode_pages_range(struct address_space *,
1926 loff_t lstart, loff_t lend);
91b0abe3 1927extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1928
1929/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1930extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1931extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1932extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1933
1934/* mm/page-writeback.c */
1935int write_one_page(struct page *page, int wait);
1cf6e7d8 1936void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1937
1938/* readahead.c */
1939#define VM_MAX_READAHEAD 128 /* kbytes */
1940#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1941
1da177e4 1942int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1943 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1944
1945void page_cache_sync_readahead(struct address_space *mapping,
1946 struct file_ra_state *ra,
1947 struct file *filp,
1948 pgoff_t offset,
1949 unsigned long size);
1950
1951void page_cache_async_readahead(struct address_space *mapping,
1952 struct file_ra_state *ra,
1953 struct file *filp,
1954 struct page *pg,
1955 pgoff_t offset,
1956 unsigned long size);
1957
1da177e4
LT
1958unsigned long max_sane_readahead(unsigned long nr);
1959
d05f3169 1960/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1961extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1962
1963/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1964extern int expand_downwards(struct vm_area_struct *vma,
1965 unsigned long address);
8ca3eb08 1966#if VM_GROWSUP
46dea3d0 1967extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1968#else
fee7e49d 1969 #define expand_upwards(vma, address) (0)
9ab88515 1970#endif
1da177e4
LT
1971
1972/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1973extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1974extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1975 struct vm_area_struct **pprev);
1976
1977/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1978 NULL if none. Assume start_addr < end_addr. */
1979static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1980{
1981 struct vm_area_struct * vma = find_vma(mm,start_addr);
1982
1983 if (vma && end_addr <= vma->vm_start)
1984 vma = NULL;
1985 return vma;
1986}
1987
1988static inline unsigned long vma_pages(struct vm_area_struct *vma)
1989{
1990 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1991}
1992
640708a2
PE
1993/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1994static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1995 unsigned long vm_start, unsigned long vm_end)
1996{
1997 struct vm_area_struct *vma = find_vma(mm, vm_start);
1998
1999 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2000 vma = NULL;
2001
2002 return vma;
2003}
2004
bad849b3 2005#ifdef CONFIG_MMU
804af2cf 2006pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2007void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2008#else
2009static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2010{
2011 return __pgprot(0);
2012}
64e45507
PF
2013static inline void vma_set_page_prot(struct vm_area_struct *vma)
2014{
2015 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2016}
bad849b3
DH
2017#endif
2018
5877231f 2019#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2020unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2021 unsigned long start, unsigned long end);
2022#endif
2023
deceb6cd 2024struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2025int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2026 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2027int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2028int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2029 unsigned long pfn);
423bad60
NP
2030int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2031 unsigned long pfn);
b4cbb197
LT
2032int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2033
deceb6cd 2034
240aadee
ML
2035struct page *follow_page_mask(struct vm_area_struct *vma,
2036 unsigned long address, unsigned int foll_flags,
2037 unsigned int *page_mask);
2038
2039static inline struct page *follow_page(struct vm_area_struct *vma,
2040 unsigned long address, unsigned int foll_flags)
2041{
2042 unsigned int unused_page_mask;
2043 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2044}
2045
deceb6cd
HD
2046#define FOLL_WRITE 0x01 /* check pte is writable */
2047#define FOLL_TOUCH 0x02 /* mark page accessed */
2048#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2049#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2050#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2051#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2052 * and return without waiting upon it */
110d74a9 2053#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2054#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2055#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2056#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2057#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2058#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2059
2f569afd 2060typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2061 void *data);
2062extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2063 unsigned long size, pte_fn_t fn, void *data);
2064
1da177e4 2065#ifdef CONFIG_PROC_FS
ab50b8ed 2066void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2067#else
ab50b8ed 2068static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2069 unsigned long flags, struct file *file, long pages)
2070{
44de9d0c 2071 mm->total_vm += pages;
1da177e4
LT
2072}
2073#endif /* CONFIG_PROC_FS */
2074
12d6f21e 2075#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2076extern bool _debug_pagealloc_enabled;
2077extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2078
2079static inline bool debug_pagealloc_enabled(void)
2080{
2081 return _debug_pagealloc_enabled;
2082}
2083
2084static inline void
2085kernel_map_pages(struct page *page, int numpages, int enable)
2086{
2087 if (!debug_pagealloc_enabled())
2088 return;
2089
2090 __kernel_map_pages(page, numpages, enable);
2091}
8a235efa
RW
2092#ifdef CONFIG_HIBERNATION
2093extern bool kernel_page_present(struct page *page);
2094#endif /* CONFIG_HIBERNATION */
12d6f21e 2095#else
1da177e4 2096static inline void
9858db50 2097kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2098#ifdef CONFIG_HIBERNATION
2099static inline bool kernel_page_present(struct page *page) { return true; }
2100#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2101#endif
2102
a6c19dfe 2103#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2104extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2105extern int in_gate_area_no_mm(unsigned long addr);
2106extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2107#else
a6c19dfe
AL
2108static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2109{
2110 return NULL;
2111}
2112static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2113static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2114{
2115 return 0;
2116}
1da177e4
LT
2117#endif /* __HAVE_ARCH_GATE_AREA */
2118
146732ce
JT
2119#ifdef CONFIG_SYSCTL
2120extern int sysctl_drop_caches;
8d65af78 2121int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2122 void __user *, size_t *, loff_t *);
146732ce
JT
2123#endif
2124
6b4f7799
JW
2125unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2126 unsigned long nr_scanned,
2127 unsigned long nr_eligible);
9d0243bc 2128
7a9166e3
LY
2129#ifndef CONFIG_MMU
2130#define randomize_va_space 0
2131#else
a62eaf15 2132extern int randomize_va_space;
7a9166e3 2133#endif
a62eaf15 2134
045e72ac 2135const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2136void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2137
9bdac914
YL
2138void sparse_mem_maps_populate_node(struct page **map_map,
2139 unsigned long pnum_begin,
2140 unsigned long pnum_end,
2141 unsigned long map_count,
2142 int nodeid);
2143
98f3cfc1 2144struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2145pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2146pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2147pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2148pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2149void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2150void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2151void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2152int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2153 int node);
2154int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2155void vmemmap_populate_print_last(void);
0197518c 2156#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2157void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2158#endif
46723bfa
YI
2159void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2160 unsigned long size);
6a46079c 2161
82ba011b
AK
2162enum mf_flags {
2163 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2164 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2165 MF_MUST_KILL = 1 << 2,
cf870c70 2166 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2167};
cd42f4a3 2168extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2169extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2170extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2171extern int sysctl_memory_failure_early_kill;
2172extern int sysctl_memory_failure_recovery;
facb6011 2173extern void shake_page(struct page *p, int access);
293c07e3 2174extern atomic_long_t num_poisoned_pages;
facb6011 2175extern int soft_offline_page(struct page *page, int flags);
6a46079c 2176
47ad8475
AA
2177#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2178extern void clear_huge_page(struct page *page,
2179 unsigned long addr,
2180 unsigned int pages_per_huge_page);
2181extern void copy_user_huge_page(struct page *dst, struct page *src,
2182 unsigned long addr, struct vm_area_struct *vma,
2183 unsigned int pages_per_huge_page);
2184#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2185
e30825f1
JK
2186extern struct page_ext_operations debug_guardpage_ops;
2187extern struct page_ext_operations page_poisoning_ops;
2188
c0a32fc5
SG
2189#ifdef CONFIG_DEBUG_PAGEALLOC
2190extern unsigned int _debug_guardpage_minorder;
e30825f1 2191extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2192
2193static inline unsigned int debug_guardpage_minorder(void)
2194{
2195 return _debug_guardpage_minorder;
2196}
2197
e30825f1
JK
2198static inline bool debug_guardpage_enabled(void)
2199{
2200 return _debug_guardpage_enabled;
2201}
2202
c0a32fc5
SG
2203static inline bool page_is_guard(struct page *page)
2204{
e30825f1
JK
2205 struct page_ext *page_ext;
2206
2207 if (!debug_guardpage_enabled())
2208 return false;
2209
2210 page_ext = lookup_page_ext(page);
2211 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2212}
2213#else
2214static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2215static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2216static inline bool page_is_guard(struct page *page) { return false; }
2217#endif /* CONFIG_DEBUG_PAGEALLOC */
2218
f9872caf
CS
2219#if MAX_NUMNODES > 1
2220void __init setup_nr_node_ids(void);
2221#else
2222static inline void setup_nr_node_ids(void) {}
2223#endif
2224
1da177e4
LT
2225#endif /* __KERNEL__ */
2226#endif /* _LINUX_MM_H */
This page took 2.396922 seconds and 4 git commands to generate.