]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic pidhash and scalable, time-bounded PID allocator | |
3 | * | |
6d49e352 NYC |
4 | * (C) 2002-2003 Nadia Yvette Chambers, IBM |
5 | * (C) 2004 Nadia Yvette Chambers, Oracle | |
1da177e4 LT |
6 | * (C) 2002-2004 Ingo Molnar, Red Hat |
7 | * | |
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
9 | * against. There is very little to them aside from hashing them and | |
10 | * parking tasks using given ID's on a list. | |
11 | * | |
12 | * The hash is always changed with the tasklist_lock write-acquired, | |
13 | * and the hash is only accessed with the tasklist_lock at least | |
14 | * read-acquired, so there's no additional SMP locking needed here. | |
15 | * | |
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
18 | * allocation scenario when all but one out of 1 million PIDs possible are | |
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
30e49c26 PE |
21 | * |
22 | * Pid namespaces: | |
23 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
24 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
25 | * Many thanks to Oleg Nesterov for comments and help | |
26 | * | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
9984de1a | 30 | #include <linux/export.h> |
1da177e4 LT |
31 | #include <linux/slab.h> |
32 | #include <linux/init.h> | |
82524746 | 33 | #include <linux/rculist.h> |
1da177e4 LT |
34 | #include <linux/bootmem.h> |
35 | #include <linux/hash.h> | |
61a58c6c | 36 | #include <linux/pid_namespace.h> |
820e45db | 37 | #include <linux/init_task.h> |
3eb07c8c | 38 | #include <linux/syscalls.h> |
0bb80f24 | 39 | #include <linux/proc_ns.h> |
0a01f2cc | 40 | #include <linux/proc_fs.h> |
29930025 | 41 | #include <linux/sched/task.h> |
95846ecf | 42 | #include <linux/idr.h> |
1da177e4 | 43 | |
e1e871af DH |
44 | struct pid init_struct_pid = { |
45 | .count = ATOMIC_INIT(1), | |
46 | .tasks = { | |
47 | { .first = NULL }, | |
48 | { .first = NULL }, | |
49 | { .first = NULL }, | |
50 | }, | |
51 | .level = 0, | |
52 | .numbers = { { | |
53 | .nr = 0, | |
54 | .ns = &init_pid_ns, | |
55 | }, } | |
56 | }; | |
1da177e4 LT |
57 | |
58 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
59 | |
60 | #define RESERVED_PIDS 300 | |
61 | ||
62 | int pid_max_min = RESERVED_PIDS + 1; | |
63 | int pid_max_max = PID_MAX_LIMIT; | |
64 | ||
1da177e4 LT |
65 | /* |
66 | * PID-map pages start out as NULL, they get allocated upon | |
67 | * first use and are never deallocated. This way a low pid_max | |
68 | * value does not cause lots of bitmaps to be allocated, but | |
69 | * the scheme scales to up to 4 million PIDs, runtime. | |
70 | */ | |
61a58c6c | 71 | struct pid_namespace init_pid_ns = { |
1e24edca | 72 | .kref = KREF_INIT(2), |
f6bb2a2c | 73 | .idr = IDR_INIT(init_pid_ns.idr), |
e8cfbc24 | 74 | .pid_allocated = PIDNS_ADDING, |
faacbfd3 PE |
75 | .level = 0, |
76 | .child_reaper = &init_task, | |
49f4d8b9 | 77 | .user_ns = &init_user_ns, |
435d5f4b | 78 | .ns.inum = PROC_PID_INIT_INO, |
33c42940 AV |
79 | #ifdef CONFIG_PID_NS |
80 | .ns.ops = &pidns_operations, | |
81 | #endif | |
3fbc9648 | 82 | }; |
198fe21b | 83 | EXPORT_SYMBOL_GPL(init_pid_ns); |
1da177e4 | 84 | |
92476d7f EB |
85 | /* |
86 | * Note: disable interrupts while the pidmap_lock is held as an | |
87 | * interrupt might come in and do read_lock(&tasklist_lock). | |
88 | * | |
89 | * If we don't disable interrupts there is a nasty deadlock between | |
90 | * detach_pid()->free_pid() and another cpu that does | |
91 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
92 | * read_lock(&tasklist_lock); | |
93 | * | |
94 | * After we clean up the tasklist_lock and know there are no | |
95 | * irq handlers that take it we can leave the interrupts enabled. | |
96 | * For now it is easier to be safe than to prove it can't happen. | |
97 | */ | |
3fbc9648 | 98 | |
1da177e4 LT |
99 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
100 | ||
7ad5b3a5 | 101 | void put_pid(struct pid *pid) |
92476d7f | 102 | { |
baf8f0f8 PE |
103 | struct pid_namespace *ns; |
104 | ||
92476d7f EB |
105 | if (!pid) |
106 | return; | |
baf8f0f8 | 107 | |
8ef047aa | 108 | ns = pid->numbers[pid->level].ns; |
92476d7f | 109 | if ((atomic_read(&pid->count) == 1) || |
8ef047aa | 110 | atomic_dec_and_test(&pid->count)) { |
baf8f0f8 | 111 | kmem_cache_free(ns->pid_cachep, pid); |
b461cc03 | 112 | put_pid_ns(ns); |
8ef047aa | 113 | } |
92476d7f | 114 | } |
bbf73147 | 115 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
116 | |
117 | static void delayed_put_pid(struct rcu_head *rhp) | |
118 | { | |
119 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
120 | put_pid(pid); | |
121 | } | |
122 | ||
7ad5b3a5 | 123 | void free_pid(struct pid *pid) |
92476d7f EB |
124 | { |
125 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
8ef047aa | 126 | int i; |
92476d7f EB |
127 | unsigned long flags; |
128 | ||
129 | spin_lock_irqsave(&pidmap_lock, flags); | |
0a01f2cc EB |
130 | for (i = 0; i <= pid->level; i++) { |
131 | struct upid *upid = pid->numbers + i; | |
af4b8a83 | 132 | struct pid_namespace *ns = upid->ns; |
e8cfbc24 | 133 | switch (--ns->pid_allocated) { |
a6064885 | 134 | case 2: |
af4b8a83 EB |
135 | case 1: |
136 | /* When all that is left in the pid namespace | |
137 | * is the reaper wake up the reaper. The reaper | |
138 | * may be sleeping in zap_pid_ns_processes(). | |
139 | */ | |
140 | wake_up_process(ns->child_reaper); | |
141 | break; | |
e8cfbc24 | 142 | case PIDNS_ADDING: |
314a8ad0 ON |
143 | /* Handle a fork failure of the first process */ |
144 | WARN_ON(ns->child_reaper); | |
e8cfbc24 | 145 | ns->pid_allocated = 0; |
314a8ad0 | 146 | /* fall through */ |
af4b8a83 | 147 | case 0: |
af4b8a83 EB |
148 | schedule_work(&ns->proc_work); |
149 | break; | |
5e1182de | 150 | } |
95846ecf GS |
151 | |
152 | idr_remove(&ns->idr, upid->nr); | |
0a01f2cc | 153 | } |
92476d7f EB |
154 | spin_unlock_irqrestore(&pidmap_lock, flags); |
155 | ||
92476d7f EB |
156 | call_rcu(&pid->rcu, delayed_put_pid); |
157 | } | |
158 | ||
8ef047aa | 159 | struct pid *alloc_pid(struct pid_namespace *ns) |
92476d7f EB |
160 | { |
161 | struct pid *pid; | |
162 | enum pid_type type; | |
8ef047aa PE |
163 | int i, nr; |
164 | struct pid_namespace *tmp; | |
198fe21b | 165 | struct upid *upid; |
35f71bc0 | 166 | int retval = -ENOMEM; |
92476d7f | 167 | |
baf8f0f8 | 168 | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); |
92476d7f | 169 | if (!pid) |
35f71bc0 | 170 | return ERR_PTR(retval); |
92476d7f | 171 | |
8ef047aa | 172 | tmp = ns; |
0a01f2cc | 173 | pid->level = ns->level; |
95846ecf | 174 | |
8ef047aa | 175 | for (i = ns->level; i >= 0; i--) { |
95846ecf GS |
176 | int pid_min = 1; |
177 | ||
178 | idr_preload(GFP_KERNEL); | |
179 | spin_lock_irq(&pidmap_lock); | |
180 | ||
181 | /* | |
182 | * init really needs pid 1, but after reaching the maximum | |
183 | * wrap back to RESERVED_PIDS | |
184 | */ | |
185 | if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) | |
186 | pid_min = RESERVED_PIDS; | |
187 | ||
188 | /* | |
189 | * Store a null pointer so find_pid_ns does not find | |
190 | * a partially initialized PID (see below). | |
191 | */ | |
192 | nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, | |
193 | pid_max, GFP_ATOMIC); | |
194 | spin_unlock_irq(&pidmap_lock); | |
195 | idr_preload_end(); | |
196 | ||
287980e4 | 197 | if (nr < 0) { |
35f71bc0 | 198 | retval = nr; |
8ef047aa | 199 | goto out_free; |
35f71bc0 | 200 | } |
92476d7f | 201 | |
8ef047aa PE |
202 | pid->numbers[i].nr = nr; |
203 | pid->numbers[i].ns = tmp; | |
204 | tmp = tmp->parent; | |
205 | } | |
206 | ||
0a01f2cc | 207 | if (unlikely(is_child_reaper(pid))) { |
c0ee5549 | 208 | if (pid_ns_prepare_proc(ns)) |
0a01f2cc EB |
209 | goto out_free; |
210 | } | |
211 | ||
b461cc03 | 212 | get_pid_ns(ns); |
92476d7f | 213 | atomic_set(&pid->count, 1); |
92476d7f EB |
214 | for (type = 0; type < PIDTYPE_MAX; ++type) |
215 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
216 | ||
417e3152 | 217 | upid = pid->numbers + ns->level; |
92476d7f | 218 | spin_lock_irq(&pidmap_lock); |
e8cfbc24 | 219 | if (!(ns->pid_allocated & PIDNS_ADDING)) |
5e1182de | 220 | goto out_unlock; |
0a01f2cc | 221 | for ( ; upid >= pid->numbers; --upid) { |
95846ecf GS |
222 | /* Make the PID visible to find_pid_ns. */ |
223 | idr_replace(&upid->ns->idr, pid, upid->nr); | |
e8cfbc24 | 224 | upid->ns->pid_allocated++; |
0a01f2cc | 225 | } |
92476d7f EB |
226 | spin_unlock_irq(&pidmap_lock); |
227 | ||
92476d7f EB |
228 | return pid; |
229 | ||
5e1182de | 230 | out_unlock: |
6e666884 | 231 | spin_unlock_irq(&pidmap_lock); |
24c037eb ON |
232 | put_pid_ns(ns); |
233 | ||
92476d7f | 234 | out_free: |
95846ecf | 235 | spin_lock_irq(&pidmap_lock); |
b7127aa4 | 236 | while (++i <= ns->level) |
95846ecf GS |
237 | idr_remove(&ns->idr, (pid->numbers + i)->nr); |
238 | ||
c0ee5549 EB |
239 | /* On failure to allocate the first pid, reset the state */ |
240 | if (ns->pid_allocated == PIDNS_ADDING) | |
241 | idr_set_cursor(&ns->idr, 0); | |
242 | ||
95846ecf | 243 | spin_unlock_irq(&pidmap_lock); |
8ef047aa | 244 | |
baf8f0f8 | 245 | kmem_cache_free(ns->pid_cachep, pid); |
35f71bc0 | 246 | return ERR_PTR(retval); |
92476d7f EB |
247 | } |
248 | ||
c876ad76 EB |
249 | void disable_pid_allocation(struct pid_namespace *ns) |
250 | { | |
251 | spin_lock_irq(&pidmap_lock); | |
e8cfbc24 | 252 | ns->pid_allocated &= ~PIDNS_ADDING; |
c876ad76 EB |
253 | spin_unlock_irq(&pidmap_lock); |
254 | } | |
255 | ||
7ad5b3a5 | 256 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) |
1da177e4 | 257 | { |
e8cfbc24 | 258 | return idr_find(&ns->idr, nr); |
1da177e4 | 259 | } |
198fe21b | 260 | EXPORT_SYMBOL_GPL(find_pid_ns); |
1da177e4 | 261 | |
8990571e PE |
262 | struct pid *find_vpid(int nr) |
263 | { | |
17cf22c3 | 264 | return find_pid_ns(nr, task_active_pid_ns(current)); |
8990571e PE |
265 | } |
266 | EXPORT_SYMBOL_GPL(find_vpid); | |
267 | ||
e713d0da SB |
268 | /* |
269 | * attach_pid() must be called with the tasklist_lock write-held. | |
270 | */ | |
81907739 | 271 | void attach_pid(struct task_struct *task, enum pid_type type) |
1da177e4 | 272 | { |
81907739 ON |
273 | struct pid_link *link = &task->pids[type]; |
274 | hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); | |
1da177e4 LT |
275 | } |
276 | ||
24336eae ON |
277 | static void __change_pid(struct task_struct *task, enum pid_type type, |
278 | struct pid *new) | |
1da177e4 | 279 | { |
92476d7f EB |
280 | struct pid_link *link; |
281 | struct pid *pid; | |
282 | int tmp; | |
1da177e4 | 283 | |
92476d7f EB |
284 | link = &task->pids[type]; |
285 | pid = link->pid; | |
1da177e4 | 286 | |
92476d7f | 287 | hlist_del_rcu(&link->node); |
24336eae | 288 | link->pid = new; |
1da177e4 | 289 | |
92476d7f EB |
290 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
291 | if (!hlist_empty(&pid->tasks[tmp])) | |
292 | return; | |
1da177e4 | 293 | |
92476d7f | 294 | free_pid(pid); |
1da177e4 LT |
295 | } |
296 | ||
24336eae ON |
297 | void detach_pid(struct task_struct *task, enum pid_type type) |
298 | { | |
299 | __change_pid(task, type, NULL); | |
300 | } | |
301 | ||
302 | void change_pid(struct task_struct *task, enum pid_type type, | |
303 | struct pid *pid) | |
304 | { | |
305 | __change_pid(task, type, pid); | |
81907739 | 306 | attach_pid(task, type); |
24336eae ON |
307 | } |
308 | ||
c18258c6 | 309 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
7ad5b3a5 | 310 | void transfer_pid(struct task_struct *old, struct task_struct *new, |
c18258c6 EB |
311 | enum pid_type type) |
312 | { | |
313 | new->pids[type].pid = old->pids[type].pid; | |
314 | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | |
c18258c6 EB |
315 | } |
316 | ||
7ad5b3a5 | 317 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 318 | { |
92476d7f EB |
319 | struct task_struct *result = NULL; |
320 | if (pid) { | |
321 | struct hlist_node *first; | |
67bdbffd | 322 | first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), |
db1466b3 | 323 | lockdep_tasklist_lock_is_held()); |
92476d7f EB |
324 | if (first) |
325 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | |
326 | } | |
327 | return result; | |
328 | } | |
eccba068 | 329 | EXPORT_SYMBOL(pid_task); |
1da177e4 | 330 | |
92476d7f | 331 | /* |
9728e5d6 | 332 | * Must be called under rcu_read_lock(). |
92476d7f | 333 | */ |
17f98dcf | 334 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) |
92476d7f | 335 | { |
f78f5b90 PM |
336 | RCU_LOCKDEP_WARN(!rcu_read_lock_held(), |
337 | "find_task_by_pid_ns() needs rcu_read_lock() protection"); | |
17f98dcf | 338 | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); |
92476d7f | 339 | } |
1da177e4 | 340 | |
228ebcbe PE |
341 | struct task_struct *find_task_by_vpid(pid_t vnr) |
342 | { | |
17cf22c3 | 343 | return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); |
228ebcbe | 344 | } |
228ebcbe | 345 | |
2ee08260 MR |
346 | struct task_struct *find_get_task_by_vpid(pid_t nr) |
347 | { | |
348 | struct task_struct *task; | |
349 | ||
350 | rcu_read_lock(); | |
351 | task = find_task_by_vpid(nr); | |
352 | if (task) | |
353 | get_task_struct(task); | |
354 | rcu_read_unlock(); | |
355 | ||
356 | return task; | |
357 | } | |
358 | ||
1a657f78 ON |
359 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
360 | { | |
361 | struct pid *pid; | |
362 | rcu_read_lock(); | |
2ae448ef ON |
363 | if (type != PIDTYPE_PID) |
364 | task = task->group_leader; | |
81b1a832 | 365 | pid = get_pid(rcu_dereference(task->pids[type].pid)); |
1a657f78 ON |
366 | rcu_read_unlock(); |
367 | return pid; | |
368 | } | |
77c100c8 | 369 | EXPORT_SYMBOL_GPL(get_task_pid); |
1a657f78 | 370 | |
7ad5b3a5 | 371 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) |
92476d7f EB |
372 | { |
373 | struct task_struct *result; | |
374 | rcu_read_lock(); | |
375 | result = pid_task(pid, type); | |
376 | if (result) | |
377 | get_task_struct(result); | |
378 | rcu_read_unlock(); | |
379 | return result; | |
1da177e4 | 380 | } |
77c100c8 | 381 | EXPORT_SYMBOL_GPL(get_pid_task); |
1da177e4 | 382 | |
92476d7f | 383 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
384 | { |
385 | struct pid *pid; | |
386 | ||
92476d7f | 387 | rcu_read_lock(); |
198fe21b | 388 | pid = get_pid(find_vpid(nr)); |
92476d7f | 389 | rcu_read_unlock(); |
1da177e4 | 390 | |
92476d7f | 391 | return pid; |
1da177e4 | 392 | } |
339caf2a | 393 | EXPORT_SYMBOL_GPL(find_get_pid); |
1da177e4 | 394 | |
7af57294 PE |
395 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) |
396 | { | |
397 | struct upid *upid; | |
398 | pid_t nr = 0; | |
399 | ||
400 | if (pid && ns->level <= pid->level) { | |
401 | upid = &pid->numbers[ns->level]; | |
402 | if (upid->ns == ns) | |
403 | nr = upid->nr; | |
404 | } | |
405 | return nr; | |
406 | } | |
4f82f457 | 407 | EXPORT_SYMBOL_GPL(pid_nr_ns); |
7af57294 | 408 | |
44c4e1b2 EB |
409 | pid_t pid_vnr(struct pid *pid) |
410 | { | |
17cf22c3 | 411 | return pid_nr_ns(pid, task_active_pid_ns(current)); |
44c4e1b2 EB |
412 | } |
413 | EXPORT_SYMBOL_GPL(pid_vnr); | |
414 | ||
52ee2dfd ON |
415 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
416 | struct pid_namespace *ns) | |
2f2a3a46 | 417 | { |
52ee2dfd ON |
418 | pid_t nr = 0; |
419 | ||
420 | rcu_read_lock(); | |
421 | if (!ns) | |
17cf22c3 | 422 | ns = task_active_pid_ns(current); |
52ee2dfd | 423 | if (likely(pid_alive(task))) { |
dd1c1f2f ON |
424 | if (type != PIDTYPE_PID) { |
425 | if (type == __PIDTYPE_TGID) | |
426 | type = PIDTYPE_PID; | |
e8cfbc24 | 427 | |
52ee2dfd | 428 | task = task->group_leader; |
dd1c1f2f | 429 | } |
81b1a832 | 430 | nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns); |
52ee2dfd ON |
431 | } |
432 | rcu_read_unlock(); | |
433 | ||
434 | return nr; | |
2f2a3a46 | 435 | } |
52ee2dfd | 436 | EXPORT_SYMBOL(__task_pid_nr_ns); |
2f2a3a46 | 437 | |
61bce0f1 EB |
438 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
439 | { | |
440 | return ns_of_pid(task_pid(tsk)); | |
441 | } | |
442 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | |
443 | ||
0804ef4b | 444 | /* |
025dfdaf | 445 | * Used by proc to find the first pid that is greater than or equal to nr. |
0804ef4b | 446 | * |
e49859e7 | 447 | * If there is a pid at nr this function is exactly the same as find_pid_ns. |
0804ef4b | 448 | */ |
198fe21b | 449 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) |
0804ef4b | 450 | { |
95846ecf | 451 | return idr_get_next(&ns->idr, &nr); |
0804ef4b EB |
452 | } |
453 | ||
95846ecf | 454 | void __init pid_idr_init(void) |
1da177e4 | 455 | { |
840d6fe7 | 456 | /* Verify no one has done anything silly: */ |
e8cfbc24 | 457 | BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); |
c876ad76 | 458 | |
72680a19 HB |
459 | /* bump default and minimum pid_max based on number of cpus */ |
460 | pid_max = min(pid_max_max, max_t(int, pid_max, | |
461 | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | |
462 | pid_max_min = max_t(int, pid_max_min, | |
463 | PIDS_PER_CPU_MIN * num_possible_cpus()); | |
464 | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | |
465 | ||
95846ecf | 466 | idr_init(&init_pid_ns.idr); |
92476d7f | 467 | |
74bd59bb | 468 | init_pid_ns.pid_cachep = KMEM_CACHE(pid, |
5d097056 | 469 | SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); |
1da177e4 | 470 | } |