]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
e360adbe | 40 | #include <linux/irq_work.h> |
eea08f32 | 41 | #include <linux/sched.h> |
5a0e3ad6 | 42 | #include <linux/slab.h> |
1da177e4 LT |
43 | |
44 | #include <asm/uaccess.h> | |
45 | #include <asm/unistd.h> | |
46 | #include <asm/div64.h> | |
47 | #include <asm/timex.h> | |
48 | #include <asm/io.h> | |
49 | ||
2b022e3d XG |
50 | #define CREATE_TRACE_POINTS |
51 | #include <trace/events/timer.h> | |
52 | ||
ecea8d19 TG |
53 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
54 | ||
55 | EXPORT_SYMBOL(jiffies_64); | |
56 | ||
1da177e4 LT |
57 | /* |
58 | * per-CPU timer vector definitions: | |
59 | */ | |
1da177e4 LT |
60 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
61 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
62 | #define TVN_SIZE (1 << TVN_BITS) | |
63 | #define TVR_SIZE (1 << TVR_BITS) | |
64 | #define TVN_MASK (TVN_SIZE - 1) | |
65 | #define TVR_MASK (TVR_SIZE - 1) | |
66 | ||
a6fa8e5a | 67 | struct tvec { |
1da177e4 | 68 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 69 | }; |
1da177e4 | 70 | |
a6fa8e5a | 71 | struct tvec_root { |
1da177e4 | 72 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 73 | }; |
1da177e4 | 74 | |
a6fa8e5a | 75 | struct tvec_base { |
3691c519 ON |
76 | spinlock_t lock; |
77 | struct timer_list *running_timer; | |
1da177e4 | 78 | unsigned long timer_jiffies; |
97fd9ed4 | 79 | unsigned long next_timer; |
a6fa8e5a PM |
80 | struct tvec_root tv1; |
81 | struct tvec tv2; | |
82 | struct tvec tv3; | |
83 | struct tvec tv4; | |
84 | struct tvec tv5; | |
6e453a67 | 85 | } ____cacheline_aligned; |
1da177e4 | 86 | |
a6fa8e5a | 87 | struct tvec_base boot_tvec_bases; |
3691c519 | 88 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 89 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 90 | |
6e453a67 | 91 | /* Functions below help us manage 'deferrable' flag */ |
a6fa8e5a | 92 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 93 | { |
e9910846 | 94 | return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG); |
6e453a67 VP |
95 | } |
96 | ||
a6fa8e5a | 97 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 98 | { |
a6fa8e5a | 99 | return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
100 | } |
101 | ||
102 | static inline void timer_set_deferrable(struct timer_list *timer) | |
103 | { | |
dd6414b5 | 104 | timer->base = TBASE_MAKE_DEFERRED(timer->base); |
6e453a67 VP |
105 | } |
106 | ||
107 | static inline void | |
a6fa8e5a | 108 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 109 | { |
a6fa8e5a | 110 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | |
6819457d | 111 | tbase_get_deferrable(timer->base)); |
6e453a67 VP |
112 | } |
113 | ||
9c133c46 AS |
114 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
115 | bool force_up) | |
4c36a5de AV |
116 | { |
117 | int rem; | |
118 | unsigned long original = j; | |
119 | ||
120 | /* | |
121 | * We don't want all cpus firing their timers at once hitting the | |
122 | * same lock or cachelines, so we skew each extra cpu with an extra | |
123 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
124 | * already did this. | |
125 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
126 | * extra offset again. | |
127 | */ | |
128 | j += cpu * 3; | |
129 | ||
130 | rem = j % HZ; | |
131 | ||
132 | /* | |
133 | * If the target jiffie is just after a whole second (which can happen | |
134 | * due to delays of the timer irq, long irq off times etc etc) then | |
135 | * we should round down to the whole second, not up. Use 1/4th second | |
136 | * as cutoff for this rounding as an extreme upper bound for this. | |
9c133c46 | 137 | * But never round down if @force_up is set. |
4c36a5de | 138 | */ |
9c133c46 | 139 | if (rem < HZ/4 && !force_up) /* round down */ |
4c36a5de AV |
140 | j = j - rem; |
141 | else /* round up */ | |
142 | j = j - rem + HZ; | |
143 | ||
144 | /* now that we have rounded, subtract the extra skew again */ | |
145 | j -= cpu * 3; | |
146 | ||
147 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
148 | return original; | |
149 | return j; | |
150 | } | |
9c133c46 AS |
151 | |
152 | /** | |
153 | * __round_jiffies - function to round jiffies to a full second | |
154 | * @j: the time in (absolute) jiffies that should be rounded | |
155 | * @cpu: the processor number on which the timeout will happen | |
156 | * | |
157 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | |
158 | * up or down to (approximately) full seconds. This is useful for timers | |
159 | * for which the exact time they fire does not matter too much, as long as | |
160 | * they fire approximately every X seconds. | |
161 | * | |
162 | * By rounding these timers to whole seconds, all such timers will fire | |
163 | * at the same time, rather than at various times spread out. The goal | |
164 | * of this is to have the CPU wake up less, which saves power. | |
165 | * | |
166 | * The exact rounding is skewed for each processor to avoid all | |
167 | * processors firing at the exact same time, which could lead | |
168 | * to lock contention or spurious cache line bouncing. | |
169 | * | |
170 | * The return value is the rounded version of the @j parameter. | |
171 | */ | |
172 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
173 | { | |
174 | return round_jiffies_common(j, cpu, false); | |
175 | } | |
4c36a5de AV |
176 | EXPORT_SYMBOL_GPL(__round_jiffies); |
177 | ||
178 | /** | |
179 | * __round_jiffies_relative - function to round jiffies to a full second | |
180 | * @j: the time in (relative) jiffies that should be rounded | |
181 | * @cpu: the processor number on which the timeout will happen | |
182 | * | |
72fd4a35 | 183 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
184 | * up or down to (approximately) full seconds. This is useful for timers |
185 | * for which the exact time they fire does not matter too much, as long as | |
186 | * they fire approximately every X seconds. | |
187 | * | |
188 | * By rounding these timers to whole seconds, all such timers will fire | |
189 | * at the same time, rather than at various times spread out. The goal | |
190 | * of this is to have the CPU wake up less, which saves power. | |
191 | * | |
192 | * The exact rounding is skewed for each processor to avoid all | |
193 | * processors firing at the exact same time, which could lead | |
194 | * to lock contention or spurious cache line bouncing. | |
195 | * | |
72fd4a35 | 196 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
197 | */ |
198 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
199 | { | |
9c133c46 AS |
200 | unsigned long j0 = jiffies; |
201 | ||
202 | /* Use j0 because jiffies might change while we run */ | |
203 | return round_jiffies_common(j + j0, cpu, false) - j0; | |
4c36a5de AV |
204 | } |
205 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
206 | ||
207 | /** | |
208 | * round_jiffies - function to round jiffies to a full second | |
209 | * @j: the time in (absolute) jiffies that should be rounded | |
210 | * | |
72fd4a35 | 211 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
212 | * up or down to (approximately) full seconds. This is useful for timers |
213 | * for which the exact time they fire does not matter too much, as long as | |
214 | * they fire approximately every X seconds. | |
215 | * | |
216 | * By rounding these timers to whole seconds, all such timers will fire | |
217 | * at the same time, rather than at various times spread out. The goal | |
218 | * of this is to have the CPU wake up less, which saves power. | |
219 | * | |
72fd4a35 | 220 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
221 | */ |
222 | unsigned long round_jiffies(unsigned long j) | |
223 | { | |
9c133c46 | 224 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
4c36a5de AV |
225 | } |
226 | EXPORT_SYMBOL_GPL(round_jiffies); | |
227 | ||
228 | /** | |
229 | * round_jiffies_relative - function to round jiffies to a full second | |
230 | * @j: the time in (relative) jiffies that should be rounded | |
231 | * | |
72fd4a35 | 232 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
233 | * up or down to (approximately) full seconds. This is useful for timers |
234 | * for which the exact time they fire does not matter too much, as long as | |
235 | * they fire approximately every X seconds. | |
236 | * | |
237 | * By rounding these timers to whole seconds, all such timers will fire | |
238 | * at the same time, rather than at various times spread out. The goal | |
239 | * of this is to have the CPU wake up less, which saves power. | |
240 | * | |
72fd4a35 | 241 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
242 | */ |
243 | unsigned long round_jiffies_relative(unsigned long j) | |
244 | { | |
245 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
246 | } | |
247 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
248 | ||
9c133c46 AS |
249 | /** |
250 | * __round_jiffies_up - function to round jiffies up to a full second | |
251 | * @j: the time in (absolute) jiffies that should be rounded | |
252 | * @cpu: the processor number on which the timeout will happen | |
253 | * | |
254 | * This is the same as __round_jiffies() except that it will never | |
255 | * round down. This is useful for timeouts for which the exact time | |
256 | * of firing does not matter too much, as long as they don't fire too | |
257 | * early. | |
258 | */ | |
259 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | |
260 | { | |
261 | return round_jiffies_common(j, cpu, true); | |
262 | } | |
263 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | |
264 | ||
265 | /** | |
266 | * __round_jiffies_up_relative - function to round jiffies up to a full second | |
267 | * @j: the time in (relative) jiffies that should be rounded | |
268 | * @cpu: the processor number on which the timeout will happen | |
269 | * | |
270 | * This is the same as __round_jiffies_relative() except that it will never | |
271 | * round down. This is useful for timeouts for which the exact time | |
272 | * of firing does not matter too much, as long as they don't fire too | |
273 | * early. | |
274 | */ | |
275 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | |
276 | { | |
277 | unsigned long j0 = jiffies; | |
278 | ||
279 | /* Use j0 because jiffies might change while we run */ | |
280 | return round_jiffies_common(j + j0, cpu, true) - j0; | |
281 | } | |
282 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | |
283 | ||
284 | /** | |
285 | * round_jiffies_up - function to round jiffies up to a full second | |
286 | * @j: the time in (absolute) jiffies that should be rounded | |
287 | * | |
288 | * This is the same as round_jiffies() except that it will never | |
289 | * round down. This is useful for timeouts for which the exact time | |
290 | * of firing does not matter too much, as long as they don't fire too | |
291 | * early. | |
292 | */ | |
293 | unsigned long round_jiffies_up(unsigned long j) | |
294 | { | |
295 | return round_jiffies_common(j, raw_smp_processor_id(), true); | |
296 | } | |
297 | EXPORT_SYMBOL_GPL(round_jiffies_up); | |
298 | ||
299 | /** | |
300 | * round_jiffies_up_relative - function to round jiffies up to a full second | |
301 | * @j: the time in (relative) jiffies that should be rounded | |
302 | * | |
303 | * This is the same as round_jiffies_relative() except that it will never | |
304 | * round down. This is useful for timeouts for which the exact time | |
305 | * of firing does not matter too much, as long as they don't fire too | |
306 | * early. | |
307 | */ | |
308 | unsigned long round_jiffies_up_relative(unsigned long j) | |
309 | { | |
310 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | |
311 | } | |
312 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | |
313 | ||
3bbb9ec9 AV |
314 | /** |
315 | * set_timer_slack - set the allowed slack for a timer | |
0caa6210 | 316 | * @timer: the timer to be modified |
3bbb9ec9 AV |
317 | * @slack_hz: the amount of time (in jiffies) allowed for rounding |
318 | * | |
319 | * Set the amount of time, in jiffies, that a certain timer has | |
320 | * in terms of slack. By setting this value, the timer subsystem | |
321 | * will schedule the actual timer somewhere between | |
322 | * the time mod_timer() asks for, and that time plus the slack. | |
323 | * | |
324 | * By setting the slack to -1, a percentage of the delay is used | |
325 | * instead. | |
326 | */ | |
327 | void set_timer_slack(struct timer_list *timer, int slack_hz) | |
328 | { | |
329 | timer->slack = slack_hz; | |
330 | } | |
331 | EXPORT_SYMBOL_GPL(set_timer_slack); | |
332 | ||
a6fa8e5a | 333 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
1da177e4 LT |
334 | { |
335 | unsigned long expires = timer->expires; | |
336 | unsigned long idx = expires - base->timer_jiffies; | |
337 | struct list_head *vec; | |
338 | ||
339 | if (idx < TVR_SIZE) { | |
340 | int i = expires & TVR_MASK; | |
341 | vec = base->tv1.vec + i; | |
342 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
343 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
344 | vec = base->tv2.vec + i; | |
345 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
346 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
347 | vec = base->tv3.vec + i; | |
348 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
349 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
350 | vec = base->tv4.vec + i; | |
351 | } else if ((signed long) idx < 0) { | |
352 | /* | |
353 | * Can happen if you add a timer with expires == jiffies, | |
354 | * or you set a timer to go off in the past | |
355 | */ | |
356 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
357 | } else { | |
358 | int i; | |
359 | /* If the timeout is larger than 0xffffffff on 64-bit | |
360 | * architectures then we use the maximum timeout: | |
361 | */ | |
362 | if (idx > 0xffffffffUL) { | |
363 | idx = 0xffffffffUL; | |
364 | expires = idx + base->timer_jiffies; | |
365 | } | |
366 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
367 | vec = base->tv5.vec + i; | |
368 | } | |
369 | /* | |
370 | * Timers are FIFO: | |
371 | */ | |
372 | list_add_tail(&timer->entry, vec); | |
373 | } | |
374 | ||
82f67cd9 IM |
375 | #ifdef CONFIG_TIMER_STATS |
376 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
377 | { | |
378 | if (timer->start_site) | |
379 | return; | |
380 | ||
381 | timer->start_site = addr; | |
382 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
383 | timer->start_pid = current->pid; | |
384 | } | |
c5c061b8 VP |
385 | |
386 | static void timer_stats_account_timer(struct timer_list *timer) | |
387 | { | |
388 | unsigned int flag = 0; | |
389 | ||
507e1231 HC |
390 | if (likely(!timer->start_site)) |
391 | return; | |
c5c061b8 VP |
392 | if (unlikely(tbase_get_deferrable(timer->base))) |
393 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
394 | ||
395 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
396 | timer->function, timer->start_comm, flag); | |
397 | } | |
398 | ||
399 | #else | |
400 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
401 | #endif |
402 | ||
c6f3a97f TG |
403 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
404 | ||
405 | static struct debug_obj_descr timer_debug_descr; | |
406 | ||
99777288 SG |
407 | static void *timer_debug_hint(void *addr) |
408 | { | |
409 | return ((struct timer_list *) addr)->function; | |
410 | } | |
411 | ||
c6f3a97f TG |
412 | /* |
413 | * fixup_init is called when: | |
414 | * - an active object is initialized | |
55c888d6 | 415 | */ |
c6f3a97f TG |
416 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
417 | { | |
418 | struct timer_list *timer = addr; | |
419 | ||
420 | switch (state) { | |
421 | case ODEBUG_STATE_ACTIVE: | |
422 | del_timer_sync(timer); | |
423 | debug_object_init(timer, &timer_debug_descr); | |
424 | return 1; | |
425 | default: | |
426 | return 0; | |
427 | } | |
428 | } | |
429 | ||
430 | /* | |
431 | * fixup_activate is called when: | |
432 | * - an active object is activated | |
433 | * - an unknown object is activated (might be a statically initialized object) | |
434 | */ | |
435 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
436 | { | |
437 | struct timer_list *timer = addr; | |
438 | ||
439 | switch (state) { | |
440 | ||
441 | case ODEBUG_STATE_NOTAVAILABLE: | |
442 | /* | |
443 | * This is not really a fixup. The timer was | |
444 | * statically initialized. We just make sure that it | |
445 | * is tracked in the object tracker. | |
446 | */ | |
447 | if (timer->entry.next == NULL && | |
448 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
449 | debug_object_init(timer, &timer_debug_descr); | |
450 | debug_object_activate(timer, &timer_debug_descr); | |
451 | return 0; | |
452 | } else { | |
453 | WARN_ON_ONCE(1); | |
454 | } | |
455 | return 0; | |
456 | ||
457 | case ODEBUG_STATE_ACTIVE: | |
458 | WARN_ON(1); | |
459 | ||
460 | default: | |
461 | return 0; | |
462 | } | |
463 | } | |
464 | ||
465 | /* | |
466 | * fixup_free is called when: | |
467 | * - an active object is freed | |
468 | */ | |
469 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
470 | { | |
471 | struct timer_list *timer = addr; | |
472 | ||
473 | switch (state) { | |
474 | case ODEBUG_STATE_ACTIVE: | |
475 | del_timer_sync(timer); | |
476 | debug_object_free(timer, &timer_debug_descr); | |
477 | return 1; | |
478 | default: | |
479 | return 0; | |
480 | } | |
481 | } | |
482 | ||
483 | static struct debug_obj_descr timer_debug_descr = { | |
484 | .name = "timer_list", | |
99777288 | 485 | .debug_hint = timer_debug_hint, |
c6f3a97f TG |
486 | .fixup_init = timer_fixup_init, |
487 | .fixup_activate = timer_fixup_activate, | |
488 | .fixup_free = timer_fixup_free, | |
489 | }; | |
490 | ||
491 | static inline void debug_timer_init(struct timer_list *timer) | |
492 | { | |
493 | debug_object_init(timer, &timer_debug_descr); | |
494 | } | |
495 | ||
496 | static inline void debug_timer_activate(struct timer_list *timer) | |
497 | { | |
498 | debug_object_activate(timer, &timer_debug_descr); | |
499 | } | |
500 | ||
501 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
502 | { | |
503 | debug_object_deactivate(timer, &timer_debug_descr); | |
504 | } | |
505 | ||
506 | static inline void debug_timer_free(struct timer_list *timer) | |
507 | { | |
508 | debug_object_free(timer, &timer_debug_descr); | |
509 | } | |
510 | ||
6f2b9b9a JB |
511 | static void __init_timer(struct timer_list *timer, |
512 | const char *name, | |
513 | struct lock_class_key *key); | |
c6f3a97f | 514 | |
6f2b9b9a JB |
515 | void init_timer_on_stack_key(struct timer_list *timer, |
516 | const char *name, | |
517 | struct lock_class_key *key) | |
c6f3a97f TG |
518 | { |
519 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
6f2b9b9a | 520 | __init_timer(timer, name, key); |
c6f3a97f | 521 | } |
6f2b9b9a | 522 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
c6f3a97f TG |
523 | |
524 | void destroy_timer_on_stack(struct timer_list *timer) | |
525 | { | |
526 | debug_object_free(timer, &timer_debug_descr); | |
527 | } | |
528 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
529 | ||
530 | #else | |
531 | static inline void debug_timer_init(struct timer_list *timer) { } | |
532 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
533 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
534 | #endif | |
535 | ||
2b022e3d XG |
536 | static inline void debug_init(struct timer_list *timer) |
537 | { | |
538 | debug_timer_init(timer); | |
539 | trace_timer_init(timer); | |
540 | } | |
541 | ||
542 | static inline void | |
543 | debug_activate(struct timer_list *timer, unsigned long expires) | |
544 | { | |
545 | debug_timer_activate(timer); | |
546 | trace_timer_start(timer, expires); | |
547 | } | |
548 | ||
549 | static inline void debug_deactivate(struct timer_list *timer) | |
550 | { | |
551 | debug_timer_deactivate(timer); | |
552 | trace_timer_cancel(timer); | |
553 | } | |
554 | ||
6f2b9b9a JB |
555 | static void __init_timer(struct timer_list *timer, |
556 | const char *name, | |
557 | struct lock_class_key *key) | |
55c888d6 ON |
558 | { |
559 | timer->entry.next = NULL; | |
bfe5d834 | 560 | timer->base = __raw_get_cpu_var(tvec_bases); |
3bbb9ec9 | 561 | timer->slack = -1; |
82f67cd9 IM |
562 | #ifdef CONFIG_TIMER_STATS |
563 | timer->start_site = NULL; | |
564 | timer->start_pid = -1; | |
565 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
566 | #endif | |
6f2b9b9a | 567 | lockdep_init_map(&timer->lockdep_map, name, key, 0); |
55c888d6 | 568 | } |
c6f3a97f | 569 | |
8cadd283 JB |
570 | void setup_deferrable_timer_on_stack_key(struct timer_list *timer, |
571 | const char *name, | |
572 | struct lock_class_key *key, | |
573 | void (*function)(unsigned long), | |
574 | unsigned long data) | |
575 | { | |
576 | timer->function = function; | |
577 | timer->data = data; | |
578 | init_timer_on_stack_key(timer, name, key); | |
579 | timer_set_deferrable(timer); | |
580 | } | |
581 | EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key); | |
582 | ||
c6f3a97f | 583 | /** |
633fe795 | 584 | * init_timer_key - initialize a timer |
c6f3a97f | 585 | * @timer: the timer to be initialized |
633fe795 RD |
586 | * @name: name of the timer |
587 | * @key: lockdep class key of the fake lock used for tracking timer | |
588 | * sync lock dependencies | |
c6f3a97f | 589 | * |
633fe795 | 590 | * init_timer_key() must be done to a timer prior calling *any* of the |
c6f3a97f TG |
591 | * other timer functions. |
592 | */ | |
6f2b9b9a JB |
593 | void init_timer_key(struct timer_list *timer, |
594 | const char *name, | |
595 | struct lock_class_key *key) | |
c6f3a97f | 596 | { |
2b022e3d | 597 | debug_init(timer); |
6f2b9b9a | 598 | __init_timer(timer, name, key); |
c6f3a97f | 599 | } |
6f2b9b9a | 600 | EXPORT_SYMBOL(init_timer_key); |
55c888d6 | 601 | |
6f2b9b9a JB |
602 | void init_timer_deferrable_key(struct timer_list *timer, |
603 | const char *name, | |
604 | struct lock_class_key *key) | |
6e453a67 | 605 | { |
6f2b9b9a | 606 | init_timer_key(timer, name, key); |
6e453a67 VP |
607 | timer_set_deferrable(timer); |
608 | } | |
6f2b9b9a | 609 | EXPORT_SYMBOL(init_timer_deferrable_key); |
6e453a67 | 610 | |
55c888d6 | 611 | static inline void detach_timer(struct timer_list *timer, |
82f67cd9 | 612 | int clear_pending) |
55c888d6 ON |
613 | { |
614 | struct list_head *entry = &timer->entry; | |
615 | ||
2b022e3d | 616 | debug_deactivate(timer); |
c6f3a97f | 617 | |
55c888d6 ON |
618 | __list_del(entry->prev, entry->next); |
619 | if (clear_pending) | |
620 | entry->next = NULL; | |
621 | entry->prev = LIST_POISON2; | |
622 | } | |
623 | ||
624 | /* | |
3691c519 | 625 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
626 | * means that all timers which are tied to this base via timer->base are |
627 | * locked, and the base itself is locked too. | |
628 | * | |
629 | * So __run_timers/migrate_timers can safely modify all timers which could | |
630 | * be found on ->tvX lists. | |
631 | * | |
632 | * When the timer's base is locked, and the timer removed from list, it is | |
633 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
634 | * locked. | |
635 | */ | |
a6fa8e5a | 636 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 637 | unsigned long *flags) |
89e7e374 | 638 | __acquires(timer->base->lock) |
55c888d6 | 639 | { |
a6fa8e5a | 640 | struct tvec_base *base; |
55c888d6 ON |
641 | |
642 | for (;;) { | |
a6fa8e5a | 643 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 644 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
645 | if (likely(base != NULL)) { |
646 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 647 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
648 | return base; |
649 | /* The timer has migrated to another CPU */ | |
650 | spin_unlock_irqrestore(&base->lock, *flags); | |
651 | } | |
652 | cpu_relax(); | |
653 | } | |
654 | } | |
655 | ||
74019224 | 656 | static inline int |
597d0275 AB |
657 | __mod_timer(struct timer_list *timer, unsigned long expires, |
658 | bool pending_only, int pinned) | |
1da177e4 | 659 | { |
a6fa8e5a | 660 | struct tvec_base *base, *new_base; |
1da177e4 | 661 | unsigned long flags; |
eea08f32 | 662 | int ret = 0 , cpu; |
1da177e4 | 663 | |
82f67cd9 | 664 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 665 | BUG_ON(!timer->function); |
1da177e4 | 666 | |
55c888d6 ON |
667 | base = lock_timer_base(timer, &flags); |
668 | ||
669 | if (timer_pending(timer)) { | |
670 | detach_timer(timer, 0); | |
97fd9ed4 MS |
671 | if (timer->expires == base->next_timer && |
672 | !tbase_get_deferrable(timer->base)) | |
673 | base->next_timer = base->timer_jiffies; | |
55c888d6 | 674 | ret = 1; |
74019224 IM |
675 | } else { |
676 | if (pending_only) | |
677 | goto out_unlock; | |
55c888d6 ON |
678 | } |
679 | ||
2b022e3d | 680 | debug_activate(timer, expires); |
c6f3a97f | 681 | |
eea08f32 AB |
682 | cpu = smp_processor_id(); |
683 | ||
684 | #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) | |
83cd4fe2 VP |
685 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) |
686 | cpu = get_nohz_timer_target(); | |
eea08f32 AB |
687 | #endif |
688 | new_base = per_cpu(tvec_bases, cpu); | |
689 | ||
3691c519 | 690 | if (base != new_base) { |
1da177e4 | 691 | /* |
55c888d6 ON |
692 | * We are trying to schedule the timer on the local CPU. |
693 | * However we can't change timer's base while it is running, | |
694 | * otherwise del_timer_sync() can't detect that the timer's | |
695 | * handler yet has not finished. This also guarantees that | |
696 | * the timer is serialized wrt itself. | |
1da177e4 | 697 | */ |
a2c348fe | 698 | if (likely(base->running_timer != timer)) { |
55c888d6 | 699 | /* See the comment in lock_timer_base() */ |
6e453a67 | 700 | timer_set_base(timer, NULL); |
55c888d6 | 701 | spin_unlock(&base->lock); |
a2c348fe ON |
702 | base = new_base; |
703 | spin_lock(&base->lock); | |
6e453a67 | 704 | timer_set_base(timer, base); |
1da177e4 LT |
705 | } |
706 | } | |
707 | ||
1da177e4 | 708 | timer->expires = expires; |
97fd9ed4 MS |
709 | if (time_before(timer->expires, base->next_timer) && |
710 | !tbase_get_deferrable(timer->base)) | |
711 | base->next_timer = timer->expires; | |
a2c348fe | 712 | internal_add_timer(base, timer); |
74019224 IM |
713 | |
714 | out_unlock: | |
a2c348fe | 715 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
716 | |
717 | return ret; | |
718 | } | |
719 | ||
2aae4a10 | 720 | /** |
74019224 IM |
721 | * mod_timer_pending - modify a pending timer's timeout |
722 | * @timer: the pending timer to be modified | |
723 | * @expires: new timeout in jiffies | |
1da177e4 | 724 | * |
74019224 IM |
725 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
726 | * but will not re-activate and modify already deleted timers. | |
727 | * | |
728 | * It is useful for unserialized use of timers. | |
1da177e4 | 729 | */ |
74019224 | 730 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
1da177e4 | 731 | { |
597d0275 | 732 | return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); |
1da177e4 | 733 | } |
74019224 | 734 | EXPORT_SYMBOL(mod_timer_pending); |
1da177e4 | 735 | |
3bbb9ec9 AV |
736 | /* |
737 | * Decide where to put the timer while taking the slack into account | |
738 | * | |
739 | * Algorithm: | |
740 | * 1) calculate the maximum (absolute) time | |
741 | * 2) calculate the highest bit where the expires and new max are different | |
742 | * 3) use this bit to make a mask | |
743 | * 4) use the bitmask to round down the maximum time, so that all last | |
744 | * bits are zeros | |
745 | */ | |
746 | static inline | |
747 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | |
748 | { | |
749 | unsigned long expires_limit, mask; | |
750 | int bit; | |
751 | ||
8e63d779 | 752 | if (timer->slack >= 0) { |
f00e047e | 753 | expires_limit = expires + timer->slack; |
8e63d779 | 754 | } else { |
1c3cc116 SAS |
755 | long delta = expires - jiffies; |
756 | ||
757 | if (delta < 256) | |
758 | return expires; | |
3bbb9ec9 | 759 | |
1c3cc116 | 760 | expires_limit = expires + delta / 256; |
8e63d779 | 761 | } |
3bbb9ec9 | 762 | mask = expires ^ expires_limit; |
3bbb9ec9 AV |
763 | if (mask == 0) |
764 | return expires; | |
765 | ||
766 | bit = find_last_bit(&mask, BITS_PER_LONG); | |
767 | ||
768 | mask = (1 << bit) - 1; | |
769 | ||
770 | expires_limit = expires_limit & ~(mask); | |
771 | ||
772 | return expires_limit; | |
773 | } | |
774 | ||
2aae4a10 | 775 | /** |
1da177e4 LT |
776 | * mod_timer - modify a timer's timeout |
777 | * @timer: the timer to be modified | |
2aae4a10 | 778 | * @expires: new timeout in jiffies |
1da177e4 | 779 | * |
72fd4a35 | 780 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
781 | * active timer (if the timer is inactive it will be activated) |
782 | * | |
783 | * mod_timer(timer, expires) is equivalent to: | |
784 | * | |
785 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
786 | * | |
787 | * Note that if there are multiple unserialized concurrent users of the | |
788 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
789 | * since add_timer() cannot modify an already running timer. | |
790 | * | |
791 | * The function returns whether it has modified a pending timer or not. | |
792 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
793 | * active timer returns 1.) | |
794 | */ | |
795 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
796 | { | |
1c3cc116 SAS |
797 | expires = apply_slack(timer, expires); |
798 | ||
1da177e4 LT |
799 | /* |
800 | * This is a common optimization triggered by the | |
801 | * networking code - if the timer is re-modified | |
802 | * to be the same thing then just return: | |
803 | */ | |
4841158b | 804 | if (timer_pending(timer) && timer->expires == expires) |
1da177e4 LT |
805 | return 1; |
806 | ||
597d0275 | 807 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
1da177e4 | 808 | } |
1da177e4 LT |
809 | EXPORT_SYMBOL(mod_timer); |
810 | ||
597d0275 AB |
811 | /** |
812 | * mod_timer_pinned - modify a timer's timeout | |
813 | * @timer: the timer to be modified | |
814 | * @expires: new timeout in jiffies | |
815 | * | |
816 | * mod_timer_pinned() is a way to update the expire field of an | |
817 | * active timer (if the timer is inactive it will be activated) | |
818 | * and not allow the timer to be migrated to a different CPU. | |
819 | * | |
820 | * mod_timer_pinned(timer, expires) is equivalent to: | |
821 | * | |
822 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
823 | */ | |
824 | int mod_timer_pinned(struct timer_list *timer, unsigned long expires) | |
825 | { | |
826 | if (timer->expires == expires && timer_pending(timer)) | |
827 | return 1; | |
828 | ||
829 | return __mod_timer(timer, expires, false, TIMER_PINNED); | |
830 | } | |
831 | EXPORT_SYMBOL(mod_timer_pinned); | |
832 | ||
74019224 IM |
833 | /** |
834 | * add_timer - start a timer | |
835 | * @timer: the timer to be added | |
836 | * | |
837 | * The kernel will do a ->function(->data) callback from the | |
838 | * timer interrupt at the ->expires point in the future. The | |
839 | * current time is 'jiffies'. | |
840 | * | |
841 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | |
842 | * fields must be set prior calling this function. | |
843 | * | |
844 | * Timers with an ->expires field in the past will be executed in the next | |
845 | * timer tick. | |
846 | */ | |
847 | void add_timer(struct timer_list *timer) | |
848 | { | |
849 | BUG_ON(timer_pending(timer)); | |
850 | mod_timer(timer, timer->expires); | |
851 | } | |
852 | EXPORT_SYMBOL(add_timer); | |
853 | ||
854 | /** | |
855 | * add_timer_on - start a timer on a particular CPU | |
856 | * @timer: the timer to be added | |
857 | * @cpu: the CPU to start it on | |
858 | * | |
859 | * This is not very scalable on SMP. Double adds are not possible. | |
860 | */ | |
861 | void add_timer_on(struct timer_list *timer, int cpu) | |
862 | { | |
863 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | |
864 | unsigned long flags; | |
865 | ||
866 | timer_stats_timer_set_start_info(timer); | |
867 | BUG_ON(timer_pending(timer) || !timer->function); | |
868 | spin_lock_irqsave(&base->lock, flags); | |
869 | timer_set_base(timer, base); | |
2b022e3d | 870 | debug_activate(timer, timer->expires); |
97fd9ed4 MS |
871 | if (time_before(timer->expires, base->next_timer) && |
872 | !tbase_get_deferrable(timer->base)) | |
873 | base->next_timer = timer->expires; | |
74019224 IM |
874 | internal_add_timer(base, timer); |
875 | /* | |
876 | * Check whether the other CPU is idle and needs to be | |
877 | * triggered to reevaluate the timer wheel when nohz is | |
878 | * active. We are protected against the other CPU fiddling | |
879 | * with the timer by holding the timer base lock. This also | |
880 | * makes sure that a CPU on the way to idle can not evaluate | |
881 | * the timer wheel. | |
882 | */ | |
883 | wake_up_idle_cpu(cpu); | |
884 | spin_unlock_irqrestore(&base->lock, flags); | |
885 | } | |
a9862e05 | 886 | EXPORT_SYMBOL_GPL(add_timer_on); |
74019224 | 887 | |
2aae4a10 | 888 | /** |
1da177e4 LT |
889 | * del_timer - deactive a timer. |
890 | * @timer: the timer to be deactivated | |
891 | * | |
892 | * del_timer() deactivates a timer - this works on both active and inactive | |
893 | * timers. | |
894 | * | |
895 | * The function returns whether it has deactivated a pending timer or not. | |
896 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
897 | * active timer returns 1.) | |
898 | */ | |
899 | int del_timer(struct timer_list *timer) | |
900 | { | |
a6fa8e5a | 901 | struct tvec_base *base; |
1da177e4 | 902 | unsigned long flags; |
55c888d6 | 903 | int ret = 0; |
1da177e4 | 904 | |
82f67cd9 | 905 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
906 | if (timer_pending(timer)) { |
907 | base = lock_timer_base(timer, &flags); | |
908 | if (timer_pending(timer)) { | |
909 | detach_timer(timer, 1); | |
97fd9ed4 MS |
910 | if (timer->expires == base->next_timer && |
911 | !tbase_get_deferrable(timer->base)) | |
912 | base->next_timer = base->timer_jiffies; | |
55c888d6 ON |
913 | ret = 1; |
914 | } | |
1da177e4 | 915 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 916 | } |
1da177e4 | 917 | |
55c888d6 | 918 | return ret; |
1da177e4 | 919 | } |
1da177e4 LT |
920 | EXPORT_SYMBOL(del_timer); |
921 | ||
2aae4a10 REB |
922 | /** |
923 | * try_to_del_timer_sync - Try to deactivate a timer | |
924 | * @timer: timer do del | |
925 | * | |
fd450b73 ON |
926 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
927 | * exit the timer is not queued and the handler is not running on any CPU. | |
fd450b73 ON |
928 | */ |
929 | int try_to_del_timer_sync(struct timer_list *timer) | |
930 | { | |
a6fa8e5a | 931 | struct tvec_base *base; |
fd450b73 ON |
932 | unsigned long flags; |
933 | int ret = -1; | |
934 | ||
935 | base = lock_timer_base(timer, &flags); | |
936 | ||
937 | if (base->running_timer == timer) | |
938 | goto out; | |
939 | ||
829b6c1e | 940 | timer_stats_timer_clear_start_info(timer); |
fd450b73 ON |
941 | ret = 0; |
942 | if (timer_pending(timer)) { | |
943 | detach_timer(timer, 1); | |
97fd9ed4 MS |
944 | if (timer->expires == base->next_timer && |
945 | !tbase_get_deferrable(timer->base)) | |
946 | base->next_timer = base->timer_jiffies; | |
fd450b73 ON |
947 | ret = 1; |
948 | } | |
949 | out: | |
950 | spin_unlock_irqrestore(&base->lock, flags); | |
951 | ||
952 | return ret; | |
953 | } | |
e19dff1f DH |
954 | EXPORT_SYMBOL(try_to_del_timer_sync); |
955 | ||
6f1bc451 | 956 | #ifdef CONFIG_SMP |
2aae4a10 | 957 | /** |
1da177e4 LT |
958 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
959 | * @timer: the timer to be deactivated | |
960 | * | |
961 | * This function only differs from del_timer() on SMP: besides deactivating | |
962 | * the timer it also makes sure the handler has finished executing on other | |
963 | * CPUs. | |
964 | * | |
72fd4a35 | 965 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 | 966 | * otherwise this function is meaningless. It must not be called from |
7ff20792 | 967 | * interrupt contexts. The caller must not hold locks which would prevent |
55c888d6 ON |
968 | * completion of the timer's handler. The timer's handler must not call |
969 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
970 | * not running on any CPU. | |
1da177e4 | 971 | * |
48228f7b SR |
972 | * Note: You must not hold locks that are held in interrupt context |
973 | * while calling this function. Even if the lock has nothing to do | |
974 | * with the timer in question. Here's why: | |
975 | * | |
976 | * CPU0 CPU1 | |
977 | * ---- ---- | |
978 | * <SOFTIRQ> | |
979 | * call_timer_fn(); | |
980 | * base->running_timer = mytimer; | |
981 | * spin_lock_irq(somelock); | |
982 | * <IRQ> | |
983 | * spin_lock(somelock); | |
984 | * del_timer_sync(mytimer); | |
985 | * while (base->running_timer == mytimer); | |
986 | * | |
987 | * Now del_timer_sync() will never return and never release somelock. | |
988 | * The interrupt on the other CPU is waiting to grab somelock but | |
989 | * it has interrupted the softirq that CPU0 is waiting to finish. | |
990 | * | |
1da177e4 | 991 | * The function returns whether it has deactivated a pending timer or not. |
1da177e4 LT |
992 | */ |
993 | int del_timer_sync(struct timer_list *timer) | |
994 | { | |
6f2b9b9a | 995 | #ifdef CONFIG_LOCKDEP |
f266a511 PZ |
996 | unsigned long flags; |
997 | ||
48228f7b SR |
998 | /* |
999 | * If lockdep gives a backtrace here, please reference | |
1000 | * the synchronization rules above. | |
1001 | */ | |
7ff20792 | 1002 | local_irq_save(flags); |
6f2b9b9a JB |
1003 | lock_map_acquire(&timer->lockdep_map); |
1004 | lock_map_release(&timer->lockdep_map); | |
7ff20792 | 1005 | local_irq_restore(flags); |
6f2b9b9a | 1006 | #endif |
466bd303 YZ |
1007 | /* |
1008 | * don't use it in hardirq context, because it | |
1009 | * could lead to deadlock. | |
1010 | */ | |
1011 | WARN_ON(in_irq()); | |
fd450b73 ON |
1012 | for (;;) { |
1013 | int ret = try_to_del_timer_sync(timer); | |
1014 | if (ret >= 0) | |
1015 | return ret; | |
a0009652 | 1016 | cpu_relax(); |
fd450b73 | 1017 | } |
1da177e4 | 1018 | } |
55c888d6 | 1019 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
1020 | #endif |
1021 | ||
a6fa8e5a | 1022 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
1023 | { |
1024 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
1025 | struct timer_list *timer, *tmp; |
1026 | struct list_head tv_list; | |
1027 | ||
1028 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 1029 | |
1da177e4 | 1030 | /* |
3439dd86 P |
1031 | * We are removing _all_ timers from the list, so we |
1032 | * don't have to detach them individually. | |
1da177e4 | 1033 | */ |
3439dd86 | 1034 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 1035 | BUG_ON(tbase_get_base(timer->base) != base); |
3439dd86 | 1036 | internal_add_timer(base, timer); |
1da177e4 | 1037 | } |
1da177e4 LT |
1038 | |
1039 | return index; | |
1040 | } | |
1041 | ||
576da126 TG |
1042 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), |
1043 | unsigned long data) | |
1044 | { | |
1045 | int preempt_count = preempt_count(); | |
1046 | ||
1047 | #ifdef CONFIG_LOCKDEP | |
1048 | /* | |
1049 | * It is permissible to free the timer from inside the | |
1050 | * function that is called from it, this we need to take into | |
1051 | * account for lockdep too. To avoid bogus "held lock freed" | |
1052 | * warnings as well as problems when looking into | |
1053 | * timer->lockdep_map, make a copy and use that here. | |
1054 | */ | |
1055 | struct lockdep_map lockdep_map = timer->lockdep_map; | |
1056 | #endif | |
1057 | /* | |
1058 | * Couple the lock chain with the lock chain at | |
1059 | * del_timer_sync() by acquiring the lock_map around the fn() | |
1060 | * call here and in del_timer_sync(). | |
1061 | */ | |
1062 | lock_map_acquire(&lockdep_map); | |
1063 | ||
1064 | trace_timer_expire_entry(timer); | |
1065 | fn(data); | |
1066 | trace_timer_expire_exit(timer); | |
1067 | ||
1068 | lock_map_release(&lockdep_map); | |
1069 | ||
1070 | if (preempt_count != preempt_count()) { | |
802702e0 TG |
1071 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", |
1072 | fn, preempt_count, preempt_count()); | |
1073 | /* | |
1074 | * Restore the preempt count. That gives us a decent | |
1075 | * chance to survive and extract information. If the | |
1076 | * callback kept a lock held, bad luck, but not worse | |
1077 | * than the BUG() we had. | |
1078 | */ | |
1079 | preempt_count() = preempt_count; | |
576da126 TG |
1080 | } |
1081 | } | |
1082 | ||
2aae4a10 REB |
1083 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
1084 | ||
1085 | /** | |
1da177e4 LT |
1086 | * __run_timers - run all expired timers (if any) on this CPU. |
1087 | * @base: the timer vector to be processed. | |
1088 | * | |
1089 | * This function cascades all vectors and executes all expired timer | |
1090 | * vectors. | |
1091 | */ | |
a6fa8e5a | 1092 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
1093 | { |
1094 | struct timer_list *timer; | |
1095 | ||
3691c519 | 1096 | spin_lock_irq(&base->lock); |
1da177e4 | 1097 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 1098 | struct list_head work_list; |
1da177e4 | 1099 | struct list_head *head = &work_list; |
6819457d | 1100 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 1101 | |
1da177e4 LT |
1102 | /* |
1103 | * Cascade timers: | |
1104 | */ | |
1105 | if (!index && | |
1106 | (!cascade(base, &base->tv2, INDEX(0))) && | |
1107 | (!cascade(base, &base->tv3, INDEX(1))) && | |
1108 | !cascade(base, &base->tv4, INDEX(2))) | |
1109 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
1110 | ++base->timer_jiffies; |
1111 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 1112 | while (!list_empty(head)) { |
1da177e4 LT |
1113 | void (*fn)(unsigned long); |
1114 | unsigned long data; | |
1115 | ||
b5e61818 | 1116 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
1117 | fn = timer->function; |
1118 | data = timer->data; | |
1da177e4 | 1119 | |
82f67cd9 IM |
1120 | timer_stats_account_timer(timer); |
1121 | ||
6f1bc451 | 1122 | base->running_timer = timer; |
55c888d6 | 1123 | detach_timer(timer, 1); |
6f2b9b9a | 1124 | |
3691c519 | 1125 | spin_unlock_irq(&base->lock); |
576da126 | 1126 | call_timer_fn(timer, fn, data); |
3691c519 | 1127 | spin_lock_irq(&base->lock); |
1da177e4 LT |
1128 | } |
1129 | } | |
6f1bc451 | 1130 | base->running_timer = NULL; |
3691c519 | 1131 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
1132 | } |
1133 | ||
ee9c5785 | 1134 | #ifdef CONFIG_NO_HZ |
1da177e4 LT |
1135 | /* |
1136 | * Find out when the next timer event is due to happen. This | |
90cba64a RD |
1137 | * is used on S/390 to stop all activity when a CPU is idle. |
1138 | * This function needs to be called with interrupts disabled. | |
1da177e4 | 1139 | */ |
a6fa8e5a | 1140 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 1141 | { |
1cfd6849 | 1142 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 1143 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 1144 | int index, slot, array, found = 0; |
1da177e4 | 1145 | struct timer_list *nte; |
a6fa8e5a | 1146 | struct tvec *varray[4]; |
1da177e4 LT |
1147 | |
1148 | /* Look for timer events in tv1. */ | |
1cfd6849 | 1149 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 1150 | do { |
1cfd6849 | 1151 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
1152 | if (tbase_get_deferrable(nte->base)) |
1153 | continue; | |
6e453a67 | 1154 | |
1cfd6849 | 1155 | found = 1; |
1da177e4 | 1156 | expires = nte->expires; |
1cfd6849 TG |
1157 | /* Look at the cascade bucket(s)? */ |
1158 | if (!index || slot < index) | |
1159 | goto cascade; | |
1160 | return expires; | |
1da177e4 | 1161 | } |
1cfd6849 TG |
1162 | slot = (slot + 1) & TVR_MASK; |
1163 | } while (slot != index); | |
1164 | ||
1165 | cascade: | |
1166 | /* Calculate the next cascade event */ | |
1167 | if (index) | |
1168 | timer_jiffies += TVR_SIZE - index; | |
1169 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
1170 | |
1171 | /* Check tv2-tv5. */ | |
1172 | varray[0] = &base->tv2; | |
1173 | varray[1] = &base->tv3; | |
1174 | varray[2] = &base->tv4; | |
1175 | varray[3] = &base->tv5; | |
1cfd6849 TG |
1176 | |
1177 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 1178 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
1179 | |
1180 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 1181 | do { |
1cfd6849 | 1182 | list_for_each_entry(nte, varp->vec + slot, entry) { |
a0419888 JH |
1183 | if (tbase_get_deferrable(nte->base)) |
1184 | continue; | |
1185 | ||
1cfd6849 | 1186 | found = 1; |
1da177e4 LT |
1187 | if (time_before(nte->expires, expires)) |
1188 | expires = nte->expires; | |
1cfd6849 TG |
1189 | } |
1190 | /* | |
1191 | * Do we still search for the first timer or are | |
1192 | * we looking up the cascade buckets ? | |
1193 | */ | |
1194 | if (found) { | |
1195 | /* Look at the cascade bucket(s)? */ | |
1196 | if (!index || slot < index) | |
1197 | break; | |
1198 | return expires; | |
1199 | } | |
1200 | slot = (slot + 1) & TVN_MASK; | |
1201 | } while (slot != index); | |
1202 | ||
1203 | if (index) | |
1204 | timer_jiffies += TVN_SIZE - index; | |
1205 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 1206 | } |
1cfd6849 TG |
1207 | return expires; |
1208 | } | |
69239749 | 1209 | |
1cfd6849 TG |
1210 | /* |
1211 | * Check, if the next hrtimer event is before the next timer wheel | |
1212 | * event: | |
1213 | */ | |
1214 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
1215 | unsigned long expires) | |
1216 | { | |
1217 | ktime_t hr_delta = hrtimer_get_next_event(); | |
1218 | struct timespec tsdelta; | |
9501b6cf | 1219 | unsigned long delta; |
1cfd6849 TG |
1220 | |
1221 | if (hr_delta.tv64 == KTIME_MAX) | |
1222 | return expires; | |
0662b713 | 1223 | |
9501b6cf TG |
1224 | /* |
1225 | * Expired timer available, let it expire in the next tick | |
1226 | */ | |
1227 | if (hr_delta.tv64 <= 0) | |
1228 | return now + 1; | |
69239749 | 1229 | |
1cfd6849 | 1230 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 1231 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
1232 | |
1233 | /* | |
1234 | * Limit the delta to the max value, which is checked in | |
1235 | * tick_nohz_stop_sched_tick(): | |
1236 | */ | |
1237 | if (delta > NEXT_TIMER_MAX_DELTA) | |
1238 | delta = NEXT_TIMER_MAX_DELTA; | |
1239 | ||
9501b6cf TG |
1240 | /* |
1241 | * Take rounding errors in to account and make sure, that it | |
1242 | * expires in the next tick. Otherwise we go into an endless | |
1243 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
1244 | * the timer softirq | |
1245 | */ | |
1246 | if (delta < 1) | |
1247 | delta = 1; | |
1248 | now += delta; | |
1cfd6849 TG |
1249 | if (time_before(now, expires)) |
1250 | return now; | |
1da177e4 LT |
1251 | return expires; |
1252 | } | |
1cfd6849 TG |
1253 | |
1254 | /** | |
8dce39c2 | 1255 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 1256 | * @now: current time (in jiffies) |
1cfd6849 | 1257 | */ |
fd064b9b | 1258 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 1259 | { |
7496351a | 1260 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
fd064b9b | 1261 | unsigned long expires; |
1cfd6849 | 1262 | |
dbd87b5a HC |
1263 | /* |
1264 | * Pretend that there is no timer pending if the cpu is offline. | |
1265 | * Possible pending timers will be migrated later to an active cpu. | |
1266 | */ | |
1267 | if (cpu_is_offline(smp_processor_id())) | |
1268 | return now + NEXT_TIMER_MAX_DELTA; | |
1cfd6849 | 1269 | spin_lock(&base->lock); |
97fd9ed4 MS |
1270 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
1271 | base->next_timer = __next_timer_interrupt(base); | |
1272 | expires = base->next_timer; | |
1cfd6849 TG |
1273 | spin_unlock(&base->lock); |
1274 | ||
1275 | if (time_before_eq(expires, now)) | |
1276 | return now; | |
1277 | ||
1278 | return cmp_next_hrtimer_event(now, expires); | |
1279 | } | |
1da177e4 LT |
1280 | #endif |
1281 | ||
1da177e4 | 1282 | /* |
5b4db0c2 | 1283 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
1284 | * process. user_tick is 1 if the tick is user time, 0 for system. |
1285 | */ | |
1286 | void update_process_times(int user_tick) | |
1287 | { | |
1288 | struct task_struct *p = current; | |
1289 | int cpu = smp_processor_id(); | |
1290 | ||
1291 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 1292 | account_process_tick(p, user_tick); |
1da177e4 | 1293 | run_local_timers(); |
a157229c | 1294 | rcu_check_callbacks(cpu, user_tick); |
b845b517 | 1295 | printk_tick(); |
e360adbe PZ |
1296 | #ifdef CONFIG_IRQ_WORK |
1297 | if (in_irq()) | |
1298 | irq_work_run(); | |
1299 | #endif | |
1da177e4 | 1300 | scheduler_tick(); |
6819457d | 1301 | run_posix_cpu_timers(p); |
1da177e4 LT |
1302 | } |
1303 | ||
1da177e4 LT |
1304 | /* |
1305 | * This function runs timers and the timer-tq in bottom half context. | |
1306 | */ | |
1307 | static void run_timer_softirq(struct softirq_action *h) | |
1308 | { | |
7496351a | 1309 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
1da177e4 | 1310 | |
d3d74453 | 1311 | hrtimer_run_pending(); |
82f67cd9 | 1312 | |
1da177e4 LT |
1313 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1314 | __run_timers(base); | |
1315 | } | |
1316 | ||
1317 | /* | |
1318 | * Called by the local, per-CPU timer interrupt on SMP. | |
1319 | */ | |
1320 | void run_local_timers(void) | |
1321 | { | |
d3d74453 | 1322 | hrtimer_run_queues(); |
1da177e4 LT |
1323 | raise_softirq(TIMER_SOFTIRQ); |
1324 | } | |
1325 | ||
1da177e4 LT |
1326 | #ifdef __ARCH_WANT_SYS_ALARM |
1327 | ||
1328 | /* | |
1329 | * For backwards compatibility? This can be done in libc so Alpha | |
1330 | * and all newer ports shouldn't need it. | |
1331 | */ | |
58fd3aa2 | 1332 | SYSCALL_DEFINE1(alarm, unsigned int, seconds) |
1da177e4 | 1333 | { |
c08b8a49 | 1334 | return alarm_setitimer(seconds); |
1da177e4 LT |
1335 | } |
1336 | ||
1337 | #endif | |
1338 | ||
1339 | #ifndef __alpha__ | |
1340 | ||
1341 | /* | |
1342 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1343 | * should be moved into arch/i386 instead? | |
1344 | */ | |
1345 | ||
1346 | /** | |
1347 | * sys_getpid - return the thread group id of the current process | |
1348 | * | |
1349 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1350 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1351 | * which case the tgid is the same in all threads of the same group. | |
1352 | * | |
1353 | * This is SMP safe as current->tgid does not change. | |
1354 | */ | |
58fd3aa2 | 1355 | SYSCALL_DEFINE0(getpid) |
1da177e4 | 1356 | { |
b488893a | 1357 | return task_tgid_vnr(current); |
1da177e4 LT |
1358 | } |
1359 | ||
1360 | /* | |
6997a6fa KK |
1361 | * Accessing ->real_parent is not SMP-safe, it could |
1362 | * change from under us. However, we can use a stale | |
1363 | * value of ->real_parent under rcu_read_lock(), see | |
1364 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 | 1365 | */ |
dbf040d9 | 1366 | SYSCALL_DEFINE0(getppid) |
1da177e4 LT |
1367 | { |
1368 | int pid; | |
1da177e4 | 1369 | |
6997a6fa | 1370 | rcu_read_lock(); |
6c5f3e7b | 1371 | pid = task_tgid_vnr(current->real_parent); |
6997a6fa | 1372 | rcu_read_unlock(); |
1da177e4 | 1373 | |
1da177e4 LT |
1374 | return pid; |
1375 | } | |
1376 | ||
dbf040d9 | 1377 | SYSCALL_DEFINE0(getuid) |
1da177e4 LT |
1378 | { |
1379 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1380 | return current_uid(); |
1da177e4 LT |
1381 | } |
1382 | ||
dbf040d9 | 1383 | SYSCALL_DEFINE0(geteuid) |
1da177e4 LT |
1384 | { |
1385 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1386 | return current_euid(); |
1da177e4 LT |
1387 | } |
1388 | ||
dbf040d9 | 1389 | SYSCALL_DEFINE0(getgid) |
1da177e4 LT |
1390 | { |
1391 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1392 | return current_gid(); |
1da177e4 LT |
1393 | } |
1394 | ||
dbf040d9 | 1395 | SYSCALL_DEFINE0(getegid) |
1da177e4 LT |
1396 | { |
1397 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1398 | return current_egid(); |
1da177e4 LT |
1399 | } |
1400 | ||
1401 | #endif | |
1402 | ||
1403 | static void process_timeout(unsigned long __data) | |
1404 | { | |
36c8b586 | 1405 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1406 | } |
1407 | ||
1408 | /** | |
1409 | * schedule_timeout - sleep until timeout | |
1410 | * @timeout: timeout value in jiffies | |
1411 | * | |
1412 | * Make the current task sleep until @timeout jiffies have | |
1413 | * elapsed. The routine will return immediately unless | |
1414 | * the current task state has been set (see set_current_state()). | |
1415 | * | |
1416 | * You can set the task state as follows - | |
1417 | * | |
1418 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1419 | * pass before the routine returns. The routine will return 0 | |
1420 | * | |
1421 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1422 | * delivered to the current task. In this case the remaining time | |
1423 | * in jiffies will be returned, or 0 if the timer expired in time | |
1424 | * | |
1425 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1426 | * routine returns. | |
1427 | * | |
1428 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1429 | * the CPU away without a bound on the timeout. In this case the return | |
1430 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1431 | * | |
1432 | * In all cases the return value is guaranteed to be non-negative. | |
1433 | */ | |
7ad5b3a5 | 1434 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1435 | { |
1436 | struct timer_list timer; | |
1437 | unsigned long expire; | |
1438 | ||
1439 | switch (timeout) | |
1440 | { | |
1441 | case MAX_SCHEDULE_TIMEOUT: | |
1442 | /* | |
1443 | * These two special cases are useful to be comfortable | |
1444 | * in the caller. Nothing more. We could take | |
1445 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1446 | * but I' d like to return a valid offset (>=0) to allow | |
1447 | * the caller to do everything it want with the retval. | |
1448 | */ | |
1449 | schedule(); | |
1450 | goto out; | |
1451 | default: | |
1452 | /* | |
1453 | * Another bit of PARANOID. Note that the retval will be | |
1454 | * 0 since no piece of kernel is supposed to do a check | |
1455 | * for a negative retval of schedule_timeout() (since it | |
1456 | * should never happens anyway). You just have the printk() | |
1457 | * that will tell you if something is gone wrong and where. | |
1458 | */ | |
5b149bcc | 1459 | if (timeout < 0) { |
1da177e4 | 1460 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1461 | "value %lx\n", timeout); |
1462 | dump_stack(); | |
1da177e4 LT |
1463 | current->state = TASK_RUNNING; |
1464 | goto out; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | expire = timeout + jiffies; | |
1469 | ||
c6f3a97f | 1470 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
597d0275 | 1471 | __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); |
1da177e4 LT |
1472 | schedule(); |
1473 | del_singleshot_timer_sync(&timer); | |
1474 | ||
c6f3a97f TG |
1475 | /* Remove the timer from the object tracker */ |
1476 | destroy_timer_on_stack(&timer); | |
1477 | ||
1da177e4 LT |
1478 | timeout = expire - jiffies; |
1479 | ||
1480 | out: | |
1481 | return timeout < 0 ? 0 : timeout; | |
1482 | } | |
1da177e4 LT |
1483 | EXPORT_SYMBOL(schedule_timeout); |
1484 | ||
8a1c1757 AM |
1485 | /* |
1486 | * We can use __set_current_state() here because schedule_timeout() calls | |
1487 | * schedule() unconditionally. | |
1488 | */ | |
64ed93a2 NA |
1489 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1490 | { | |
a5a0d52c AM |
1491 | __set_current_state(TASK_INTERRUPTIBLE); |
1492 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1493 | } |
1494 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1495 | ||
294d5cc2 MW |
1496 | signed long __sched schedule_timeout_killable(signed long timeout) |
1497 | { | |
1498 | __set_current_state(TASK_KILLABLE); | |
1499 | return schedule_timeout(timeout); | |
1500 | } | |
1501 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1502 | ||
64ed93a2 NA |
1503 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1504 | { | |
a5a0d52c AM |
1505 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1506 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1507 | } |
1508 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1509 | ||
1da177e4 | 1510 | /* Thread ID - the internal kernel "pid" */ |
58fd3aa2 | 1511 | SYSCALL_DEFINE0(gettid) |
1da177e4 | 1512 | { |
b488893a | 1513 | return task_pid_vnr(current); |
1da177e4 LT |
1514 | } |
1515 | ||
2aae4a10 | 1516 | /** |
d4d23add | 1517 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1518 | * @info: pointer to buffer to fill |
6819457d | 1519 | */ |
d4d23add | 1520 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1521 | { |
1da177e4 LT |
1522 | unsigned long mem_total, sav_total; |
1523 | unsigned int mem_unit, bitcount; | |
2d02494f | 1524 | struct timespec tp; |
1da177e4 | 1525 | |
d4d23add | 1526 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 | 1527 | |
2d02494f TG |
1528 | ktime_get_ts(&tp); |
1529 | monotonic_to_bootbased(&tp); | |
1530 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1da177e4 | 1531 | |
2d02494f | 1532 | get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); |
1da177e4 | 1533 | |
2d02494f | 1534 | info->procs = nr_threads; |
1da177e4 | 1535 | |
d4d23add KM |
1536 | si_meminfo(info); |
1537 | si_swapinfo(info); | |
1da177e4 LT |
1538 | |
1539 | /* | |
1540 | * If the sum of all the available memory (i.e. ram + swap) | |
1541 | * is less than can be stored in a 32 bit unsigned long then | |
1542 | * we can be binary compatible with 2.2.x kernels. If not, | |
1543 | * well, in that case 2.2.x was broken anyways... | |
1544 | * | |
1545 | * -Erik Andersen <[email protected]> | |
1546 | */ | |
1547 | ||
d4d23add KM |
1548 | mem_total = info->totalram + info->totalswap; |
1549 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1550 | goto out; |
1551 | bitcount = 0; | |
d4d23add | 1552 | mem_unit = info->mem_unit; |
1da177e4 LT |
1553 | while (mem_unit > 1) { |
1554 | bitcount++; | |
1555 | mem_unit >>= 1; | |
1556 | sav_total = mem_total; | |
1557 | mem_total <<= 1; | |
1558 | if (mem_total < sav_total) | |
1559 | goto out; | |
1560 | } | |
1561 | ||
1562 | /* | |
1563 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1564 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1565 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1566 | * kernels... | |
1567 | */ | |
1568 | ||
d4d23add KM |
1569 | info->mem_unit = 1; |
1570 | info->totalram <<= bitcount; | |
1571 | info->freeram <<= bitcount; | |
1572 | info->sharedram <<= bitcount; | |
1573 | info->bufferram <<= bitcount; | |
1574 | info->totalswap <<= bitcount; | |
1575 | info->freeswap <<= bitcount; | |
1576 | info->totalhigh <<= bitcount; | |
1577 | info->freehigh <<= bitcount; | |
1578 | ||
1579 | out: | |
1580 | return 0; | |
1581 | } | |
1582 | ||
1e7bfb21 | 1583 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) |
d4d23add KM |
1584 | { |
1585 | struct sysinfo val; | |
1586 | ||
1587 | do_sysinfo(&val); | |
1da177e4 | 1588 | |
1da177e4 LT |
1589 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1590 | return -EFAULT; | |
1591 | ||
1592 | return 0; | |
1593 | } | |
1594 | ||
b4be6258 | 1595 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1596 | { |
1597 | int j; | |
a6fa8e5a | 1598 | struct tvec_base *base; |
b4be6258 | 1599 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1600 | |
ba6edfcd | 1601 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1602 | static char boot_done; |
1603 | ||
a4a6198b | 1604 | if (boot_done) { |
ba6edfcd AM |
1605 | /* |
1606 | * The APs use this path later in boot | |
1607 | */ | |
94f6030c CL |
1608 | base = kmalloc_node(sizeof(*base), |
1609 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1610 | cpu_to_node(cpu)); |
1611 | if (!base) | |
1612 | return -ENOMEM; | |
6e453a67 VP |
1613 | |
1614 | /* Make sure that tvec_base is 2 byte aligned */ | |
1615 | if (tbase_get_deferrable(base)) { | |
1616 | WARN_ON(1); | |
1617 | kfree(base); | |
1618 | return -ENOMEM; | |
1619 | } | |
ba6edfcd | 1620 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1621 | } else { |
ba6edfcd AM |
1622 | /* |
1623 | * This is for the boot CPU - we use compile-time | |
1624 | * static initialisation because per-cpu memory isn't | |
1625 | * ready yet and because the memory allocators are not | |
1626 | * initialised either. | |
1627 | */ | |
a4a6198b | 1628 | boot_done = 1; |
ba6edfcd | 1629 | base = &boot_tvec_bases; |
a4a6198b | 1630 | } |
ba6edfcd AM |
1631 | tvec_base_done[cpu] = 1; |
1632 | } else { | |
1633 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1634 | } |
ba6edfcd | 1635 | |
3691c519 | 1636 | spin_lock_init(&base->lock); |
d730e882 | 1637 | |
1da177e4 LT |
1638 | for (j = 0; j < TVN_SIZE; j++) { |
1639 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1640 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1641 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1642 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1643 | } | |
1644 | for (j = 0; j < TVR_SIZE; j++) | |
1645 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1646 | ||
1647 | base->timer_jiffies = jiffies; | |
97fd9ed4 | 1648 | base->next_timer = base->timer_jiffies; |
a4a6198b | 1649 | return 0; |
1da177e4 LT |
1650 | } |
1651 | ||
1652 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1653 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1654 | { |
1655 | struct timer_list *timer; | |
1656 | ||
1657 | while (!list_empty(head)) { | |
b5e61818 | 1658 | timer = list_first_entry(head, struct timer_list, entry); |
55c888d6 | 1659 | detach_timer(timer, 0); |
6e453a67 | 1660 | timer_set_base(timer, new_base); |
97fd9ed4 MS |
1661 | if (time_before(timer->expires, new_base->next_timer) && |
1662 | !tbase_get_deferrable(timer->base)) | |
1663 | new_base->next_timer = timer->expires; | |
1da177e4 | 1664 | internal_add_timer(new_base, timer); |
1da177e4 | 1665 | } |
1da177e4 LT |
1666 | } |
1667 | ||
48ccf3da | 1668 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1669 | { |
a6fa8e5a PM |
1670 | struct tvec_base *old_base; |
1671 | struct tvec_base *new_base; | |
1da177e4 LT |
1672 | int i; |
1673 | ||
1674 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1675 | old_base = per_cpu(tvec_bases, cpu); |
1676 | new_base = get_cpu_var(tvec_bases); | |
d82f0b0f ON |
1677 | /* |
1678 | * The caller is globally serialized and nobody else | |
1679 | * takes two locks at once, deadlock is not possible. | |
1680 | */ | |
1681 | spin_lock_irq(&new_base->lock); | |
0d180406 | 1682 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
3691c519 ON |
1683 | |
1684 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1685 | |
1da177e4 | 1686 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1687 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1688 | for (i = 0; i < TVN_SIZE; i++) { | |
1689 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1690 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1691 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1692 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1693 | } | |
1694 | ||
0d180406 | 1695 | spin_unlock(&old_base->lock); |
d82f0b0f | 1696 | spin_unlock_irq(&new_base->lock); |
1da177e4 | 1697 | put_cpu_var(tvec_bases); |
1da177e4 LT |
1698 | } |
1699 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1700 | ||
8c78f307 | 1701 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1702 | unsigned long action, void *hcpu) |
1703 | { | |
1704 | long cpu = (long)hcpu; | |
80b5184c AM |
1705 | int err; |
1706 | ||
1da177e4 LT |
1707 | switch(action) { |
1708 | case CPU_UP_PREPARE: | |
8bb78442 | 1709 | case CPU_UP_PREPARE_FROZEN: |
80b5184c AM |
1710 | err = init_timers_cpu(cpu); |
1711 | if (err < 0) | |
1712 | return notifier_from_errno(err); | |
1da177e4 LT |
1713 | break; |
1714 | #ifdef CONFIG_HOTPLUG_CPU | |
1715 | case CPU_DEAD: | |
8bb78442 | 1716 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1717 | migrate_timers(cpu); |
1718 | break; | |
1719 | #endif | |
1720 | default: | |
1721 | break; | |
1722 | } | |
1723 | return NOTIFY_OK; | |
1724 | } | |
1725 | ||
8c78f307 | 1726 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1727 | .notifier_call = timer_cpu_notify, |
1728 | }; | |
1729 | ||
1730 | ||
1731 | void __init init_timers(void) | |
1732 | { | |
07dccf33 | 1733 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1734 | (void *)(long)smp_processor_id()); |
07dccf33 | 1735 | |
82f67cd9 IM |
1736 | init_timer_stats(); |
1737 | ||
9e506f7a | 1738 | BUG_ON(err != NOTIFY_OK); |
1da177e4 | 1739 | register_cpu_notifier(&timers_nb); |
962cf36c | 1740 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
1da177e4 LT |
1741 | } |
1742 | ||
1da177e4 LT |
1743 | /** |
1744 | * msleep - sleep safely even with waitqueue interruptions | |
1745 | * @msecs: Time in milliseconds to sleep for | |
1746 | */ | |
1747 | void msleep(unsigned int msecs) | |
1748 | { | |
1749 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1750 | ||
75bcc8c5 NA |
1751 | while (timeout) |
1752 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1753 | } |
1754 | ||
1755 | EXPORT_SYMBOL(msleep); | |
1756 | ||
1757 | /** | |
96ec3efd | 1758 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1759 | * @msecs: Time in milliseconds to sleep for |
1760 | */ | |
1761 | unsigned long msleep_interruptible(unsigned int msecs) | |
1762 | { | |
1763 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1764 | ||
75bcc8c5 NA |
1765 | while (timeout && !signal_pending(current)) |
1766 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1767 | return jiffies_to_msecs(timeout); |
1768 | } | |
1769 | ||
1770 | EXPORT_SYMBOL(msleep_interruptible); | |
5e7f5a17 PP |
1771 | |
1772 | static int __sched do_usleep_range(unsigned long min, unsigned long max) | |
1773 | { | |
1774 | ktime_t kmin; | |
1775 | unsigned long delta; | |
1776 | ||
1777 | kmin = ktime_set(0, min * NSEC_PER_USEC); | |
1778 | delta = (max - min) * NSEC_PER_USEC; | |
1779 | return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); | |
1780 | } | |
1781 | ||
1782 | /** | |
1783 | * usleep_range - Drop in replacement for udelay where wakeup is flexible | |
1784 | * @min: Minimum time in usecs to sleep | |
1785 | * @max: Maximum time in usecs to sleep | |
1786 | */ | |
1787 | void usleep_range(unsigned long min, unsigned long max) | |
1788 | { | |
1789 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
1790 | do_usleep_range(min, max); | |
1791 | } | |
1792 | EXPORT_SYMBOL(usleep_range); |