]> Git Repo - linux.git/blame - fs/buffer.c
Merge tag 'for-6.11/block-post-20240722' of git://git.kernel.dk/linux
[linux.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
4fa512ce 51#include <linux/fsverity.h>
8a237adf 52#include <linux/sched/isolation.h>
1da177e4 53
2b211dc0
BD
54#include "internal.h"
55
1da177e4 56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
5bdf402a 57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
44981351 58 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
f0059afd
TH
62inline void touch_buffer(struct buffer_head *bh)
63{
5305cb83 64 trace_block_touch_buffer(bh);
03c5f331 65 folio_mark_accessed(bh->b_folio);
f0059afd
TH
66}
67EXPORT_SYMBOL(touch_buffer);
68
fc9b52cd 69void __lock_buffer(struct buffer_head *bh)
1da177e4 70{
74316201 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
72}
73EXPORT_SYMBOL(__lock_buffer);
74
fc9b52cd 75void unlock_buffer(struct buffer_head *bh)
1da177e4 76{
51b07fc3 77 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 78 smp_mb__after_atomic();
1da177e4
LT
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
1fe72eaa 81EXPORT_SYMBOL(unlock_buffer);
1da177e4 82
b4597226 83/*
520f301c
MWO
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
b4597226 87 */
520f301c 88void buffer_check_dirty_writeback(struct folio *folio,
b4597226
MG
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
520f301c 95 BUG_ON(!folio_test_locked(folio));
b4597226 96
520f301c
MWO
97 head = folio_buffers(folio);
98 if (!head)
b4597226
MG
99 return;
100
520f301c 101 if (folio_test_writeback(folio))
b4597226
MG
102 *writeback = true;
103
b4597226
MG
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
b4597226 115
1da177e4
LT
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
74316201 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 124}
1fe72eaa 125EXPORT_SYMBOL(__wait_on_buffer);
1da177e4 126
b744c2ac 127static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 128{
432f16e6
RE
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
a1c6f057
DM
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
133}
134
135/*
68671f35
DM
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
1da177e4 142 */
68671f35 143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
70246286 148 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
68671f35
DM
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
79f59784 156 * unlock the buffer.
68671f35
DM
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
161 put_bh(bh);
162}
1fe72eaa 163EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
1da177e4
LT
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
432f16e6 170 buffer_io_error(bh, ", lost sync page write");
87354e5d 171 mark_buffer_write_io_error(bh);
1da177e4
LT
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
1fe72eaa 177EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 178
1da177e4
LT
179/*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
600f111e 183 * i_private_lock.
1da177e4 184 *
600f111e 185 * Hack idea: for the blockdev mapping, i_private_lock contention
1da177e4 186 * may be quite high. This code could TryLock the page, and if that
600f111e 187 * succeeds, there is no need to take i_private_lock.
1da177e4
LT
188 */
189static struct buffer_head *
385fd4c5 190__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4 191{
53cd4cd3
AV
192 struct address_space *bd_mapping = bdev->bd_mapping;
193 const int blkbits = bd_mapping->host->i_blkbits;
1da177e4
LT
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
eee25182 198 struct folio *folio;
1da177e4 199 int all_mapped = 1;
43636c80 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 201
53cd4cd3 202 index = ((loff_t)block << blkbits) / PAGE_SIZE;
eee25182
MWO
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
1da177e4
LT
205 goto out;
206
600f111e 207 spin_lock(&bd_mapping->i_private_lock);
eee25182
MWO
208 head = folio_buffers(folio);
209 if (!head)
1da177e4 210 goto out_unlock;
1da177e4
LT
211 bh = head;
212 do {
97f76d3d
NK
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
1da177e4
LT
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
1da177e4
LT
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
43636c80
TH
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
53cd4cd3 236 1 << blkbits);
1da177e4
LT
237 }
238out_unlock:
600f111e 239 spin_unlock(&bd_mapping->i_private_lock);
eee25182 240 folio_put(folio);
1da177e4
LT
241out:
242 return ret;
243}
244
1da177e4
LT
245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246{
1da177e4 247 unsigned long flags;
a3972203 248 struct buffer_head *first;
1da177e4 249 struct buffer_head *tmp;
2e2dba15
MWO
250 struct folio *folio;
251 int folio_uptodate = 1;
1da177e4
LT
252
253 BUG_ON(!buffer_async_read(bh));
254
2e2dba15 255 folio = bh->b_folio;
1da177e4
LT
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
432f16e6 260 buffer_io_error(bh, ", async page read");
1da177e4
LT
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
2e2dba15 268 first = folio_buffers(folio);
f1e67e35 269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
1da177e4
LT
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
2e2dba15 275 folio_uptodate = 0;
1da177e4
LT
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
f1e67e35 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4 283
6ba924d3 284 folio_end_read(folio, folio_uptodate);
1da177e4
LT
285 return;
286
287still_busy:
f1e67e35 288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
289 return;
290}
291
4fa512ce 292struct postprocess_bh_ctx {
31fb992c
EB
293 struct work_struct work;
294 struct buffer_head *bh;
295};
296
4fa512ce
EB
297static void verify_bh(struct work_struct *work)
298{
299 struct postprocess_bh_ctx *ctx =
300 container_of(work, struct postprocess_bh_ctx, work);
301 struct buffer_head *bh = ctx->bh;
302 bool valid;
303
8b7d3fe9 304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
4fa512ce
EB
305 end_buffer_async_read(bh, valid);
306 kfree(ctx);
307}
308
309static bool need_fsverity(struct buffer_head *bh)
310{
8b7d3fe9
EB
311 struct folio *folio = bh->b_folio;
312 struct inode *inode = folio->mapping->host;
4fa512ce
EB
313
314 return fsverity_active(inode) &&
315 /* needed by ext4 */
8b7d3fe9 316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4fa512ce
EB
317}
318
31fb992c
EB
319static void decrypt_bh(struct work_struct *work)
320{
4fa512ce
EB
321 struct postprocess_bh_ctx *ctx =
322 container_of(work, struct postprocess_bh_ctx, work);
31fb992c
EB
323 struct buffer_head *bh = ctx->bh;
324 int err;
325
9c7fb7f7
EB
326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 bh_offset(bh));
4fa512ce
EB
328 if (err == 0 && need_fsverity(bh)) {
329 /*
330 * We use different work queues for decryption and for verity
331 * because verity may require reading metadata pages that need
332 * decryption, and we shouldn't recurse to the same workqueue.
333 */
334 INIT_WORK(&ctx->work, verify_bh);
335 fsverity_enqueue_verify_work(&ctx->work);
336 return;
337 }
31fb992c
EB
338 end_buffer_async_read(bh, err == 0);
339 kfree(ctx);
340}
341
342/*
2c69e205 343 * I/O completion handler for block_read_full_folio() - pages
31fb992c
EB
344 * which come unlocked at the end of I/O.
345 */
346static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347{
3822a7c4 348 struct inode *inode = bh->b_folio->mapping->host;
4fa512ce
EB
349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 bool verify = need_fsverity(bh);
351
352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 if (uptodate && (decrypt || verify)) {
354 struct postprocess_bh_ctx *ctx =
355 kmalloc(sizeof(*ctx), GFP_ATOMIC);
31fb992c
EB
356
357 if (ctx) {
31fb992c 358 ctx->bh = bh;
4fa512ce
EB
359 if (decrypt) {
360 INIT_WORK(&ctx->work, decrypt_bh);
361 fscrypt_enqueue_decrypt_work(&ctx->work);
362 } else {
363 INIT_WORK(&ctx->work, verify_bh);
364 fsverity_enqueue_verify_work(&ctx->work);
365 }
31fb992c
EB
366 return;
367 }
368 uptodate = 0;
369 }
370 end_buffer_async_read(bh, uptodate);
371}
372
1da177e4 373/*
14059f66
MWO
374 * Completion handler for block_write_full_folio() - folios which are unlocked
375 * during I/O, and which have the writeback flag cleared upon I/O completion.
1da177e4 376 */
14059f66 377static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 378{
1da177e4 379 unsigned long flags;
a3972203 380 struct buffer_head *first;
1da177e4 381 struct buffer_head *tmp;
743ed81e 382 struct folio *folio;
1da177e4
LT
383
384 BUG_ON(!buffer_async_write(bh));
385
743ed81e 386 folio = bh->b_folio;
1da177e4
LT
387 if (uptodate) {
388 set_buffer_uptodate(bh);
389 } else {
432f16e6 390 buffer_io_error(bh, ", lost async page write");
87354e5d 391 mark_buffer_write_io_error(bh);
1da177e4 392 clear_buffer_uptodate(bh);
1da177e4
LT
393 }
394
743ed81e 395 first = folio_buffers(folio);
f1e67e35 396 spin_lock_irqsave(&first->b_uptodate_lock, flags);
a3972203 397
1da177e4
LT
398 clear_buffer_async_write(bh);
399 unlock_buffer(bh);
400 tmp = bh->b_this_page;
401 while (tmp != bh) {
402 if (buffer_async_write(tmp)) {
403 BUG_ON(!buffer_locked(tmp));
404 goto still_busy;
405 }
406 tmp = tmp->b_this_page;
407 }
f1e67e35 408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
743ed81e 409 folio_end_writeback(folio);
1da177e4
LT
410 return;
411
412still_busy:
f1e67e35 413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
1da177e4
LT
414 return;
415}
416
417/*
418 * If a page's buffers are under async readin (end_buffer_async_read
419 * completion) then there is a possibility that another thread of
420 * control could lock one of the buffers after it has completed
421 * but while some of the other buffers have not completed. This
422 * locked buffer would confuse end_buffer_async_read() into not unlocking
423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
424 * that this buffer is not under async I/O.
425 *
426 * The page comes unlocked when it has no locked buffer_async buffers
427 * left.
428 *
429 * PageLocked prevents anyone starting new async I/O reads any of
430 * the buffers.
431 *
432 * PageWriteback is used to prevent simultaneous writeout of the same
433 * page.
434 *
435 * PageLocked prevents anyone from starting writeback of a page which is
436 * under read I/O (PageWriteback is only ever set against a locked page).
437 */
438static void mark_buffer_async_read(struct buffer_head *bh)
439{
31fb992c 440 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
441 set_buffer_async_read(bh);
442}
443
1fe72eaa
HS
444static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 bh_end_io_t *handler)
1da177e4 446{
35c80d5f 447 bh->b_end_io = handler;
1da177e4
LT
448 set_buffer_async_write(bh);
449}
35c80d5f
CM
450
451void mark_buffer_async_write(struct buffer_head *bh)
452{
453 mark_buffer_async_write_endio(bh, end_buffer_async_write);
454}
1da177e4
LT
455EXPORT_SYMBOL(mark_buffer_async_write);
456
457
458/*
459 * fs/buffer.c contains helper functions for buffer-backed address space's
460 * fsync functions. A common requirement for buffer-based filesystems is
461 * that certain data from the backing blockdev needs to be written out for
462 * a successful fsync(). For example, ext2 indirect blocks need to be
463 * written back and waited upon before fsync() returns.
464 *
73f65b8b 465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
1da177e4 466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
600f111e 467 * management of a list of dependent buffers at ->i_mapping->i_private_list.
1da177e4
LT
468 *
469 * Locking is a little subtle: try_to_free_buffers() will remove buffers
470 * from their controlling inode's queue when they are being freed. But
471 * try_to_free_buffers() will be operating against the *blockdev* mapping
472 * at the time, not against the S_ISREG file which depends on those buffers.
600f111e 473 * So the locking for i_private_list is via the i_private_lock in the address_space
1da177e4
LT
474 * which backs the buffers. Which is different from the address_space
475 * against which the buffers are listed. So for a particular address_space,
600f111e
MWO
476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
477 * mapping->i_private_list will always be protected by the backing blockdev's
478 * ->i_private_lock.
1da177e4
LT
479 *
480 * Which introduces a requirement: all buffers on an address_space's
600f111e 481 * ->i_private_list must be from the same address_space: the blockdev's.
1da177e4 482 *
600f111e
MWO
483 * address_spaces which do not place buffers at ->i_private_list via these
484 * utility functions are free to use i_private_lock and i_private_list for
485 * whatever they want. The only requirement is that list_empty(i_private_list)
1da177e4
LT
486 * be true at clear_inode() time.
487 *
488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
489 * filesystems should do that. invalidate_inode_buffers() should just go
490 * BUG_ON(!list_empty).
491 *
492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
493 * take an address_space, not an inode. And it should be called
494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495 * queued up.
496 *
497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498 * list if it is already on a list. Because if the buffer is on a list,
499 * it *must* already be on the right one. If not, the filesystem is being
500 * silly. This will save a ton of locking. But first we have to ensure
501 * that buffers are taken *off* the old inode's list when they are freed
502 * (presumably in truncate). That requires careful auditing of all
503 * filesystems (do it inside bforget()). It could also be done by bringing
504 * b_inode back.
505 */
506
507/*
600f111e 508 * The buffer's backing address_space's i_private_lock must be held
1da177e4 509 */
dbacefc9 510static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
511{
512 list_del_init(&bh->b_assoc_buffers);
58ff407b 513 WARN_ON(!bh->b_assoc_map);
58ff407b 514 bh->b_assoc_map = NULL;
1da177e4
LT
515}
516
517int inode_has_buffers(struct inode *inode)
518{
600f111e 519 return !list_empty(&inode->i_data.i_private_list);
1da177e4
LT
520}
521
522/*
523 * osync is designed to support O_SYNC io. It waits synchronously for
524 * all already-submitted IO to complete, but does not queue any new
525 * writes to the disk.
526 *
79f59784
ZY
527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528 * as you dirty the buffers, and then use osync_inode_buffers to wait for
1da177e4
LT
529 * completion. Any other dirty buffers which are not yet queued for
530 * write will not be flushed to disk by the osync.
531 */
532static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533{
534 struct buffer_head *bh;
535 struct list_head *p;
536 int err = 0;
537
538 spin_lock(lock);
539repeat:
540 list_for_each_prev(p, list) {
541 bh = BH_ENTRY(p);
542 if (buffer_locked(bh)) {
543 get_bh(bh);
544 spin_unlock(lock);
545 wait_on_buffer(bh);
546 if (!buffer_uptodate(bh))
547 err = -EIO;
548 brelse(bh);
549 spin_lock(lock);
550 goto repeat;
551 }
552 }
553 spin_unlock(lock);
554 return err;
555}
556
557/**
78a4a50a 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 559 * @mapping: the mapping which wants those buffers written
1da177e4 560 *
600f111e 561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
1da177e4
LT
562 * that I/O.
563 *
67be2dd1
MW
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
1da177e4
LT
567 */
568int sync_mapping_buffers(struct address_space *mapping)
569{
600f111e 570 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 571
600f111e 572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
1da177e4
LT
573 return 0;
574
600f111e
MWO
575 return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 &mapping->i_private_list);
1da177e4
LT
577}
578EXPORT_SYMBOL(sync_mapping_buffers);
579
31b2ebc0
RHI
580/**
581 * generic_buffers_fsync_noflush - generic buffer fsync implementation
582 * for simple filesystems with no inode lock
583 *
584 * @file: file to synchronize
585 * @start: start offset in bytes
586 * @end: end offset in bytes (inclusive)
587 * @datasync: only synchronize essential metadata if true
588 *
589 * This is a generic implementation of the fsync method for simple
590 * filesystems which track all non-inode metadata in the buffers list
591 * hanging off the address_space structure.
592 */
593int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 bool datasync)
595{
596 struct inode *inode = file->f_mapping->host;
597 int err;
598 int ret;
599
600 err = file_write_and_wait_range(file, start, end);
601 if (err)
602 return err;
603
604 ret = sync_mapping_buffers(inode->i_mapping);
605 if (!(inode->i_state & I_DIRTY_ALL))
606 goto out;
607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 goto out;
609
610 err = sync_inode_metadata(inode, 1);
611 if (ret == 0)
612 ret = err;
613
614out:
615 /* check and advance again to catch errors after syncing out buffers */
616 err = file_check_and_advance_wb_err(file);
617 if (ret == 0)
618 ret = err;
619 return ret;
620}
621EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622
623/**
624 * generic_buffers_fsync - generic buffer fsync implementation
625 * for simple filesystems with no inode lock
626 *
627 * @file: file to synchronize
628 * @start: start offset in bytes
629 * @end: end offset in bytes (inclusive)
630 * @datasync: only synchronize essential metadata if true
631 *
632 * This is a generic implementation of the fsync method for simple
633 * filesystems which track all non-inode metadata in the buffers list
634 * hanging off the address_space structure. This also makes sure that
635 * a device cache flush operation is called at the end.
636 */
637int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 bool datasync)
639{
640 struct inode *inode = file->f_mapping->host;
641 int ret;
642
643 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 if (!ret)
645 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 return ret;
647}
648EXPORT_SYMBOL(generic_buffers_fsync);
649
1da177e4
LT
650/*
651 * Called when we've recently written block `bblock', and it is known that
652 * `bblock' was for a buffer_boundary() buffer. This means that the block at
653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
654 * dirty, schedule it for IO. So that indirects merge nicely with their data.
655 */
656void write_boundary_block(struct block_device *bdev,
657 sector_t bblock, unsigned blocksize)
658{
659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 if (bh) {
661 if (buffer_dirty(bh))
e7ea1129 662 write_dirty_buffer(bh, 0);
1da177e4
LT
663 put_bh(bh);
664 }
665}
666
667void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668{
669 struct address_space *mapping = inode->i_mapping;
abc8a8a2 670 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4
LT
671
672 mark_buffer_dirty(bh);
600f111e
MWO
673 if (!mapping->i_private_data) {
674 mapping->i_private_data = buffer_mapping;
1da177e4 675 } else {
600f111e 676 BUG_ON(mapping->i_private_data != buffer_mapping);
1da177e4 677 }
535ee2fb 678 if (!bh->b_assoc_map) {
600f111e 679 spin_lock(&buffer_mapping->i_private_lock);
1da177e4 680 list_move_tail(&bh->b_assoc_buffers,
600f111e 681 &mapping->i_private_list);
58ff407b 682 bh->b_assoc_map = mapping;
600f111e 683 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
684 }
685}
686EXPORT_SYMBOL(mark_buffer_dirty_inode);
687
3814ec89
MWO
688/**
689 * block_dirty_folio - Mark a folio as dirty.
690 * @mapping: The address space containing this folio.
691 * @folio: The folio to mark dirty.
692 *
693 * Filesystems which use buffer_heads can use this function as their
694 * ->dirty_folio implementation. Some filesystems need to do a little
695 * work before calling this function. Filesystems which do not use
696 * buffer_heads should call filemap_dirty_folio() instead.
1da177e4 697 *
3814ec89
MWO
698 * If the folio has buffers, the uptodate buffers are set dirty, to
699 * preserve dirty-state coherency between the folio and the buffers.
700 * Buffers added to a dirty folio are created dirty.
1da177e4 701 *
3814ec89
MWO
702 * The buffers are dirtied before the folio is dirtied. There's a small
703 * race window in which writeback may see the folio cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the folio
705 * dirty before the buffers, writeback could clear the folio dirty flag,
706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * folio on the dirty folio list.
1da177e4 708 *
3814ec89
MWO
709 * We use i_private_lock to lock against try_to_free_buffers() while
710 * using the folio's buffer list. This also prevents clean buffers
711 * being added to the folio after it was set dirty.
1da177e4 712 *
3814ec89
MWO
713 * Context: May only be called from process context. Does not sleep.
714 * Caller must ensure that @folio cannot be truncated during this call,
715 * typically by holding the folio lock or having a page in the folio
716 * mapped and holding the page table lock.
1da177e4 717 *
3814ec89 718 * Return: True if the folio was dirtied; false if it was already dirtied.
1da177e4 719 */
e621900a 720bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 721{
e621900a
MWO
722 struct buffer_head *head;
723 bool newly_dirty;
1da177e4 724
600f111e 725 spin_lock(&mapping->i_private_lock);
e621900a
MWO
726 head = folio_buffers(folio);
727 if (head) {
1da177e4
LT
728 struct buffer_head *bh = head;
729
730 do {
731 set_buffer_dirty(bh);
732 bh = bh->b_this_page;
733 } while (bh != head);
734 }
c4843a75 735 /*
bcfe06bf 736 * Lock out page's memcg migration to keep PageDirty
81f8c3a4 737 * synchronized with per-memcg dirty page counters.
c4843a75 738 */
e621900a
MWO
739 folio_memcg_lock(folio);
740 newly_dirty = !folio_test_set_dirty(folio);
600f111e 741 spin_unlock(&mapping->i_private_lock);
1da177e4 742
a8e7d49a 743 if (newly_dirty)
e621900a 744 __folio_mark_dirty(folio, mapping, 1);
c4843a75 745
e621900a 746 folio_memcg_unlock(folio);
c4843a75
GT
747
748 if (newly_dirty)
749 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750
a8e7d49a 751 return newly_dirty;
1da177e4 752}
e621900a 753EXPORT_SYMBOL(block_dirty_folio);
1da177e4
LT
754
755/*
756 * Write out and wait upon a list of buffers.
757 *
758 * We have conflicting pressures: we want to make sure that all
759 * initially dirty buffers get waited on, but that any subsequently
760 * dirtied buffers don't. After all, we don't want fsync to last
761 * forever if somebody is actively writing to the file.
762 *
763 * Do this in two main stages: first we copy dirty buffers to a
764 * temporary inode list, queueing the writes as we go. Then we clean
765 * up, waiting for those writes to complete.
766 *
767 * During this second stage, any subsequent updates to the file may end
768 * up refiling the buffer on the original inode's dirty list again, so
769 * there is a chance we will end up with a buffer queued for write but
770 * not yet completed on that list. So, as a final cleanup we go through
771 * the osync code to catch these locked, dirty buffers without requeuing
772 * any newly dirty buffers for write.
773 */
774static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775{
776 struct buffer_head *bh;
777 struct list_head tmp;
7eaceacc 778 struct address_space *mapping;
1da177e4 779 int err = 0, err2;
4ee2491e 780 struct blk_plug plug;
1da177e4
LT
781
782 INIT_LIST_HEAD(&tmp);
4ee2491e 783 blk_start_plug(&plug);
1da177e4
LT
784
785 spin_lock(lock);
786 while (!list_empty(list)) {
787 bh = BH_ENTRY(list->next);
535ee2fb 788 mapping = bh->b_assoc_map;
58ff407b 789 __remove_assoc_queue(bh);
535ee2fb
JK
790 /* Avoid race with mark_buffer_dirty_inode() which does
791 * a lockless check and we rely on seeing the dirty bit */
792 smp_mb();
1da177e4
LT
793 if (buffer_dirty(bh) || buffer_locked(bh)) {
794 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 795 bh->b_assoc_map = mapping;
1da177e4
LT
796 if (buffer_dirty(bh)) {
797 get_bh(bh);
798 spin_unlock(lock);
799 /*
800 * Ensure any pending I/O completes so that
9cb569d6
CH
801 * write_dirty_buffer() actually writes the
802 * current contents - it is a noop if I/O is
803 * still in flight on potentially older
804 * contents.
1da177e4 805 */
70fd7614 806 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
807
808 /*
809 * Kick off IO for the previous mapping. Note
810 * that we will not run the very last mapping,
811 * wait_on_buffer() will do that for us
812 * through sync_buffer().
813 */
1da177e4
LT
814 brelse(bh);
815 spin_lock(lock);
816 }
817 }
818 }
819
4ee2491e
JA
820 spin_unlock(lock);
821 blk_finish_plug(&plug);
822 spin_lock(lock);
823
1da177e4
LT
824 while (!list_empty(&tmp)) {
825 bh = BH_ENTRY(tmp.prev);
1da177e4 826 get_bh(bh);
535ee2fb
JK
827 mapping = bh->b_assoc_map;
828 __remove_assoc_queue(bh);
829 /* Avoid race with mark_buffer_dirty_inode() which does
830 * a lockless check and we rely on seeing the dirty bit */
831 smp_mb();
832 if (buffer_dirty(bh)) {
833 list_add(&bh->b_assoc_buffers,
600f111e 834 &mapping->i_private_list);
535ee2fb
JK
835 bh->b_assoc_map = mapping;
836 }
1da177e4
LT
837 spin_unlock(lock);
838 wait_on_buffer(bh);
839 if (!buffer_uptodate(bh))
840 err = -EIO;
841 brelse(bh);
842 spin_lock(lock);
843 }
844
845 spin_unlock(lock);
846 err2 = osync_buffers_list(lock, list);
847 if (err)
848 return err;
849 else
850 return err2;
851}
852
853/*
854 * Invalidate any and all dirty buffers on a given inode. We are
855 * probably unmounting the fs, but that doesn't mean we have already
856 * done a sync(). Just drop the buffers from the inode list.
857 *
600f111e 858 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
1da177e4
LT
859 * assumes that all the buffers are against the blockdev. Not true
860 * for reiserfs.
861 */
862void invalidate_inode_buffers(struct inode *inode)
863{
864 if (inode_has_buffers(inode)) {
865 struct address_space *mapping = &inode->i_data;
600f111e
MWO
866 struct list_head *list = &mapping->i_private_list;
867 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 868
600f111e 869 spin_lock(&buffer_mapping->i_private_lock);
1da177e4
LT
870 while (!list_empty(list))
871 __remove_assoc_queue(BH_ENTRY(list->next));
600f111e 872 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
873 }
874}
52b19ac9 875EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
876
877/*
878 * Remove any clean buffers from the inode's buffer list. This is called
879 * when we're trying to free the inode itself. Those buffers can pin it.
880 *
881 * Returns true if all buffers were removed.
882 */
883int remove_inode_buffers(struct inode *inode)
884{
885 int ret = 1;
886
887 if (inode_has_buffers(inode)) {
888 struct address_space *mapping = &inode->i_data;
600f111e
MWO
889 struct list_head *list = &mapping->i_private_list;
890 struct address_space *buffer_mapping = mapping->i_private_data;
1da177e4 891
600f111e 892 spin_lock(&buffer_mapping->i_private_lock);
1da177e4
LT
893 while (!list_empty(list)) {
894 struct buffer_head *bh = BH_ENTRY(list->next);
895 if (buffer_dirty(bh)) {
896 ret = 0;
897 break;
898 }
899 __remove_assoc_queue(bh);
900 }
600f111e 901 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
902 }
903 return ret;
904}
905
906/*
c71124a8 907 * Create the appropriate buffers when given a folio for data area and
1da177e4
LT
908 * the size of each buffer.. Use the bh->b_this_page linked list to
909 * follow the buffers created. Return NULL if unable to create more
910 * buffers.
911 *
912 * The retry flag is used to differentiate async IO (paging, swapping)
913 * which may not fail from ordinary buffer allocations.
914 */
c71124a8 915struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
2a418157 916 gfp_t gfp)
1da177e4
LT
917{
918 struct buffer_head *bh, *head;
919 long offset;
b87d8cef 920 struct mem_cgroup *memcg, *old_memcg;
1da177e4 921
c71124a8
PR
922 /* The folio lock pins the memcg */
923 memcg = folio_memcg(folio);
b87d8cef 924 old_memcg = set_active_memcg(memcg);
f745c6f5 925
1da177e4 926 head = NULL;
c71124a8 927 offset = folio_size(folio);
1da177e4 928 while ((offset -= size) >= 0) {
640ab98f 929 bh = alloc_buffer_head(gfp);
1da177e4
LT
930 if (!bh)
931 goto no_grow;
932
1da177e4
LT
933 bh->b_this_page = head;
934 bh->b_blocknr = -1;
935 head = bh;
936
1da177e4
LT
937 bh->b_size = size;
938
c71124a8
PR
939 /* Link the buffer to its folio */
940 folio_set_bh(bh, folio, offset);
1da177e4 941 }
f745c6f5 942out:
b87d8cef 943 set_active_memcg(old_memcg);
1da177e4
LT
944 return head;
945/*
946 * In case anything failed, we just free everything we got.
947 */
948no_grow:
949 if (head) {
950 do {
951 bh = head;
952 head = head->b_this_page;
953 free_buffer_head(bh);
954 } while (head);
955 }
956
f745c6f5 957 goto out;
1da177e4 958}
c71124a8
PR
959EXPORT_SYMBOL_GPL(folio_alloc_buffers);
960
961struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
962 bool retry)
963{
2a418157
MWO
964 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
965 if (retry)
966 gfp |= __GFP_NOFAIL;
967
968 return folio_alloc_buffers(page_folio(page), size, gfp);
c71124a8 969}
1da177e4
LT
970EXPORT_SYMBOL_GPL(alloc_page_buffers);
971
08d84add
MWO
972static inline void link_dev_buffers(struct folio *folio,
973 struct buffer_head *head)
1da177e4
LT
974{
975 struct buffer_head *bh, *tail;
976
977 bh = head;
978 do {
979 tail = bh;
980 bh = bh->b_this_page;
981 } while (bh);
982 tail->b_this_page = head;
08d84add 983 folio_attach_private(folio, head);
1da177e4
LT
984}
985
bbec0270
LT
986static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
987{
988 sector_t retval = ~((sector_t)0);
b86058f9 989 loff_t sz = bdev_nr_bytes(bdev);
bbec0270
LT
990
991 if (sz) {
992 unsigned int sizebits = blksize_bits(size);
993 retval = (sz >> sizebits);
994 }
995 return retval;
996}
997
1da177e4 998/*
6f24ce6b 999 * Initialise the state of a blockdev folio's buffers.
1da177e4 1000 */
6f24ce6b 1001static sector_t folio_init_buffers(struct folio *folio,
382497ad 1002 struct block_device *bdev, unsigned size)
1da177e4 1003{
6f24ce6b 1004 struct buffer_head *head = folio_buffers(folio);
1da177e4 1005 struct buffer_head *bh = head;
6f24ce6b 1006 bool uptodate = folio_test_uptodate(folio);
382497ad 1007 sector_t block = div_u64(folio_pos(folio), size);
bcd1d063 1008 sector_t end_block = blkdev_max_block(bdev, size);
1da177e4
LT
1009
1010 do {
1011 if (!buffer_mapped(bh)) {
01950a34
EB
1012 bh->b_end_io = NULL;
1013 bh->b_private = NULL;
1da177e4
LT
1014 bh->b_bdev = bdev;
1015 bh->b_blocknr = block;
1016 if (uptodate)
1017 set_buffer_uptodate(bh);
080399aa
JM
1018 if (block < end_block)
1019 set_buffer_mapped(bh);
1da177e4
LT
1020 }
1021 block++;
1022 bh = bh->b_this_page;
1023 } while (bh != head);
676ce6d5
HD
1024
1025 /*
1026 * Caller needs to validate requested block against end of device.
1027 */
1028 return end_block;
1da177e4
LT
1029}
1030
1031/*
6d840a18 1032 * Create the page-cache folio that contains the requested block.
1da177e4 1033 *
676ce6d5 1034 * This is used purely for blockdev mappings.
6d840a18 1035 *
bcd30d4c
MWO
1036 * Returns false if we have a failure which cannot be cured by retrying
1037 * without sleeping. Returns true if we succeeded, or the caller should retry.
1da177e4 1038 */
6d840a18 1039static bool grow_dev_folio(struct block_device *bdev, sector_t block,
382497ad 1040 pgoff_t index, unsigned size, gfp_t gfp)
1da177e4 1041{
22f89a4f 1042 struct address_space *mapping = bdev->bd_mapping;
3c98a41c 1043 struct folio *folio;
1da177e4 1044 struct buffer_head *bh;
6d840a18 1045 sector_t end_block = 0;
84235de3 1046
22f89a4f 1047 folio = __filemap_get_folio(mapping, index,
3ed65f04
MWO
1048 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1049 if (IS_ERR(folio))
6d840a18 1050 return false;
1da177e4 1051
3c98a41c
MWO
1052 bh = folio_buffers(folio);
1053 if (bh) {
1da177e4 1054 if (bh->b_size == size) {
382497ad 1055 end_block = folio_init_buffers(folio, bdev, size);
6d840a18 1056 goto unlock;
1da177e4 1057 }
6d840a18 1058
bcd30d4c
MWO
1059 /*
1060 * Retrying may succeed; for example the folio may finish
1061 * writeback, or buffers may be cleaned. This should not
1062 * happen very often; maybe we have old buffers attached to
1063 * this blockdev's page cache and we're trying to change
1064 * the block size?
1065 */
1066 if (!try_to_free_buffers(folio)) {
1067 end_block = ~0ULL;
6d840a18 1068 goto unlock;
1da177e4 1069 }
1da177e4
LT
1070 }
1071
3ed65f04
MWO
1072 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1073 if (!bh)
6d840a18 1074 goto unlock;
1da177e4
LT
1075
1076 /*
3c98a41c 1077 * Link the folio to the buffers and initialise them. Take the
1da177e4 1078 * lock to be atomic wrt __find_get_block(), which does not
3c98a41c 1079 * run under the folio lock.
1da177e4 1080 */
22f89a4f 1081 spin_lock(&mapping->i_private_lock);
08d84add 1082 link_dev_buffers(folio, bh);
382497ad 1083 end_block = folio_init_buffers(folio, bdev, size);
22f89a4f 1084 spin_unlock(&mapping->i_private_lock);
6d840a18 1085unlock:
3c98a41c
MWO
1086 folio_unlock(folio);
1087 folio_put(folio);
6d840a18 1088 return block < end_block;
1da177e4
LT
1089}
1090
1091/*
6d840a18
MWO
1092 * Create buffers for the specified block device block's folio. If
1093 * that folio was dirty, the buffers are set dirty also. Returns false
1094 * if we've hit a permanent error.
1da177e4 1095 */
6d840a18
MWO
1096static bool grow_buffers(struct block_device *bdev, sector_t block,
1097 unsigned size, gfp_t gfp)
1da177e4 1098{
5f3bd90d 1099 loff_t pos;
1da177e4 1100
e5657933 1101 /*
5f3bd90d
MWO
1102 * Check for a block which lies outside our maximum possible
1103 * pagecache index.
e5657933 1104 */
5f3bd90d
MWO
1105 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
8e24eea7 1107 __func__, (unsigned long long)block,
a1c6f057 1108 bdev);
6d840a18 1109 return false;
e5657933 1110 }
676ce6d5 1111
6d840a18 1112 /* Create a folio with the proper size buffers */
5f3bd90d 1113 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1da177e4
LT
1114}
1115
0026ba40 1116static struct buffer_head *
3b5e6454
GK
1117__getblk_slow(struct block_device *bdev, sector_t block,
1118 unsigned size, gfp_t gfp)
1da177e4
LT
1119{
1120 /* Size must be multiple of hard sectorsize */
e1defc4f 1121 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1122 (size < 512 || size > PAGE_SIZE))) {
1123 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1124 size);
e1defc4f
MP
1125 printk(KERN_ERR "logical block size: %d\n",
1126 bdev_logical_block_size(bdev));
1da177e4
LT
1127
1128 dump_stack();
1129 return NULL;
1130 }
1131
676ce6d5
HD
1132 for (;;) {
1133 struct buffer_head *bh;
1da177e4
LT
1134
1135 bh = __find_get_block(bdev, block, size);
1136 if (bh)
1137 return bh;
676ce6d5 1138
6d840a18 1139 if (!grow_buffers(bdev, block, size, gfp))
676ce6d5 1140 return NULL;
1da177e4
LT
1141 }
1142}
1143
1144/*
1145 * The relationship between dirty buffers and dirty pages:
1146 *
1147 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1148 * the page is tagged dirty in the page cache.
1da177e4
LT
1149 *
1150 * At all times, the dirtiness of the buffers represents the dirtiness of
1151 * subsections of the page. If the page has buffers, the page dirty bit is
1152 * merely a hint about the true dirty state.
1153 *
1154 * When a page is set dirty in its entirety, all its buffers are marked dirty
1155 * (if the page has buffers).
1156 *
1157 * When a buffer is marked dirty, its page is dirtied, but the page's other
1158 * buffers are not.
1159 *
1160 * Also. When blockdev buffers are explicitly read with bread(), they
1161 * individually become uptodate. But their backing page remains not
1162 * uptodate - even if all of its buffers are uptodate. A subsequent
2c69e205
MWO
1163 * block_read_full_folio() against that folio will discover all the uptodate
1164 * buffers, will set the folio uptodate and will perform no I/O.
1da177e4
LT
1165 */
1166
1167/**
1168 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1169 * @bh: the buffer_head to mark dirty
1da177e4 1170 *
ec82e1c1
MW
1171 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1172 * its backing page dirty, then tag the page as dirty in the page cache
1173 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1174 * inode list.
1175 *
600f111e 1176 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
b93b0163 1177 * i_pages lock and mapping->host->i_lock.
1da177e4 1178 */
fc9b52cd 1179void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1180{
787d2214 1181 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1182
5305cb83
TH
1183 trace_block_dirty_buffer(bh);
1184
1be62dc1
LT
1185 /*
1186 * Very *carefully* optimize the it-is-already-dirty case.
1187 *
1188 * Don't let the final "is it dirty" escape to before we
1189 * perhaps modified the buffer.
1190 */
1191 if (buffer_dirty(bh)) {
1192 smp_mb();
1193 if (buffer_dirty(bh))
1194 return;
1195 }
1196
a8e7d49a 1197 if (!test_set_buffer_dirty(bh)) {
cf1d3417 1198 struct folio *folio = bh->b_folio;
c4843a75 1199 struct address_space *mapping = NULL;
c4843a75 1200
cf1d3417
MWO
1201 folio_memcg_lock(folio);
1202 if (!folio_test_set_dirty(folio)) {
1203 mapping = folio->mapping;
8e9d78ed 1204 if (mapping)
cf1d3417 1205 __folio_mark_dirty(folio, mapping, 0);
8e9d78ed 1206 }
cf1d3417 1207 folio_memcg_unlock(folio);
c4843a75
GT
1208 if (mapping)
1209 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1210 }
1da177e4 1211}
1fe72eaa 1212EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1213
87354e5d
JL
1214void mark_buffer_write_io_error(struct buffer_head *bh)
1215{
1216 set_buffer_write_io_error(bh);
1217 /* FIXME: do we need to set this in both places? */
abc8a8a2
MWO
1218 if (bh->b_folio && bh->b_folio->mapping)
1219 mapping_set_error(bh->b_folio->mapping, -EIO);
4b2201da 1220 if (bh->b_assoc_map) {
87354e5d 1221 mapping_set_error(bh->b_assoc_map, -EIO);
4b2201da
CH
1222 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1223 }
87354e5d
JL
1224}
1225EXPORT_SYMBOL(mark_buffer_write_io_error);
1226
66924fda
MWO
1227/**
1228 * __brelse - Release a buffer.
1229 * @bh: The buffer to release.
1230 *
1231 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1da177e4 1232 */
66924fda 1233void __brelse(struct buffer_head *bh)
1da177e4 1234{
66924fda
MWO
1235 if (atomic_read(&bh->b_count)) {
1236 put_bh(bh);
1da177e4
LT
1237 return;
1238 }
5c752ad9 1239 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1240}
1fe72eaa 1241EXPORT_SYMBOL(__brelse);
1da177e4 1242
b73a936f
MWO
1243/**
1244 * __bforget - Discard any dirty data in a buffer.
1245 * @bh: The buffer to forget.
1246 *
1247 * This variant of bforget() can be called if @bh is guaranteed to not
1248 * be NULL.
1da177e4
LT
1249 */
1250void __bforget(struct buffer_head *bh)
1251{
1252 clear_buffer_dirty(bh);
535ee2fb 1253 if (bh->b_assoc_map) {
abc8a8a2 1254 struct address_space *buffer_mapping = bh->b_folio->mapping;
1da177e4 1255
600f111e 1256 spin_lock(&buffer_mapping->i_private_lock);
1da177e4 1257 list_del_init(&bh->b_assoc_buffers);
58ff407b 1258 bh->b_assoc_map = NULL;
600f111e 1259 spin_unlock(&buffer_mapping->i_private_lock);
1da177e4
LT
1260 }
1261 __brelse(bh);
1262}
1fe72eaa 1263EXPORT_SYMBOL(__bforget);
1da177e4
LT
1264
1265static struct buffer_head *__bread_slow(struct buffer_head *bh)
1266{
1267 lock_buffer(bh);
1268 if (buffer_uptodate(bh)) {
1269 unlock_buffer(bh);
1270 return bh;
1271 } else {
1272 get_bh(bh);
1273 bh->b_end_io = end_buffer_read_sync;
1420c4a5 1274 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
1275 wait_on_buffer(bh);
1276 if (buffer_uptodate(bh))
1277 return bh;
1278 }
1279 brelse(bh);
1280 return NULL;
1281}
1282
1283/*
1284 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1285 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1286 * refcount elevated by one when they're in an LRU. A buffer can only appear
1287 * once in a particular CPU's LRU. A single buffer can be present in multiple
1288 * CPU's LRUs at the same time.
1289 *
1290 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1291 * sb_find_get_block().
1292 *
1293 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1294 * a local interrupt disable for that.
1295 */
1296
86cf78d7 1297#define BH_LRU_SIZE 16
1da177e4
LT
1298
1299struct bh_lru {
1300 struct buffer_head *bhs[BH_LRU_SIZE];
1301};
1302
1303static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1304
1305#ifdef CONFIG_SMP
1306#define bh_lru_lock() local_irq_disable()
1307#define bh_lru_unlock() local_irq_enable()
1308#else
1309#define bh_lru_lock() preempt_disable()
1310#define bh_lru_unlock() preempt_enable()
1311#endif
1312
1313static inline void check_irqs_on(void)
1314{
1315#ifdef irqs_disabled
1316 BUG_ON(irqs_disabled());
1317#endif
1318}
1319
1320/*
241f01fb
EB
1321 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1322 * inserted at the front, and the buffer_head at the back if any is evicted.
1323 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1324 */
1325static void bh_lru_install(struct buffer_head *bh)
1326{
241f01fb
EB
1327 struct buffer_head *evictee = bh;
1328 struct bh_lru *b;
1329 int i;
1da177e4
LT
1330
1331 check_irqs_on();
c0226eb8
MK
1332 bh_lru_lock();
1333
8cc621d2
MK
1334 /*
1335 * the refcount of buffer_head in bh_lru prevents dropping the
1336 * attached page(i.e., try_to_free_buffers) so it could cause
1337 * failing page migration.
1338 * Skip putting upcoming bh into bh_lru until migration is done.
1339 */
8a237adf 1340 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
c0226eb8 1341 bh_lru_unlock();
8cc621d2 1342 return;
c0226eb8 1343 }
1da177e4 1344
241f01fb
EB
1345 b = this_cpu_ptr(&bh_lrus);
1346 for (i = 0; i < BH_LRU_SIZE; i++) {
1347 swap(evictee, b->bhs[i]);
1348 if (evictee == bh) {
1349 bh_lru_unlock();
1350 return;
1da177e4 1351 }
1da177e4 1352 }
1da177e4 1353
241f01fb
EB
1354 get_bh(bh);
1355 bh_lru_unlock();
1356 brelse(evictee);
1da177e4
LT
1357}
1358
1359/*
1360 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1361 */
858119e1 1362static struct buffer_head *
3991d3bd 1363lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1364{
1365 struct buffer_head *ret = NULL;
3991d3bd 1366 unsigned int i;
1da177e4
LT
1367
1368 check_irqs_on();
1369 bh_lru_lock();
8a237adf
MT
1370 if (cpu_is_isolated(smp_processor_id())) {
1371 bh_lru_unlock();
1372 return NULL;
1373 }
1da177e4 1374 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1375 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1376
9470dd5d
ZB
1377 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1378 bh->b_size == size) {
1da177e4
LT
1379 if (i) {
1380 while (i) {
c7b92516
CL
1381 __this_cpu_write(bh_lrus.bhs[i],
1382 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1383 i--;
1384 }
c7b92516 1385 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1386 }
1387 get_bh(bh);
1388 ret = bh;
1389 break;
1390 }
1391 }
1392 bh_lru_unlock();
1393 return ret;
1394}
1395
1396/*
1397 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1398 * it in the LRU and mark it as accessed. If it is not present then return
1399 * NULL
1400 */
1401struct buffer_head *
3991d3bd 1402__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1403{
1404 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1405
1406 if (bh == NULL) {
2457aec6 1407 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1408 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1409 if (bh)
1410 bh_lru_install(bh);
2457aec6 1411 } else
1da177e4 1412 touch_buffer(bh);
2457aec6 1413
1da177e4
LT
1414 return bh;
1415}
1416EXPORT_SYMBOL(__find_get_block);
1417
3ed65f04
MWO
1418/**
1419 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1420 * @bdev: The block device.
1421 * @block: The block number.
1422 * @size: The size of buffer_heads for this @bdev.
1423 * @gfp: The memory allocation flags to use.
1424 *
0b116ff4
MWO
1425 * The returned buffer head has its reference count incremented, but is
1426 * not locked. The caller should call brelse() when it has finished
1427 * with the buffer. The buffer may not be uptodate. If needed, the
1428 * caller can bring it uptodate either by reading it or overwriting it.
1429 *
3ed65f04
MWO
1430 * Return: The buffer head, or NULL if memory could not be allocated.
1431 */
1432struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1433 unsigned size, gfp_t gfp)
1434{
1435 struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437 might_alloc(gfp);
1438 if (bh)
1439 return bh;
1440
1441 return __getblk_slow(bdev, block, size, gfp);
1442}
1443EXPORT_SYMBOL(bdev_getblk);
1444
1da177e4
LT
1445/*
1446 * Do async read-ahead on a buffer..
1447 */
3991d3bd 1448void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4 1449{
775d9b10
MWO
1450 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1451 GFP_NOWAIT | __GFP_MOVABLE);
1452
a3e713b5 1453 if (likely(bh)) {
e7ea1129 1454 bh_readahead(bh, REQ_RAHEAD);
a3e713b5
AM
1455 brelse(bh);
1456 }
1da177e4
LT
1457}
1458EXPORT_SYMBOL(__breadahead);
1459
1460/**
324ecaee
MWO
1461 * __bread_gfp() - Read a block.
1462 * @bdev: The block device to read from.
1463 * @block: Block number in units of block size.
1464 * @size: The block size of this device in bytes.
1465 * @gfp: Not page allocation flags; see below.
3b5e6454 1466 *
324ecaee
MWO
1467 * You are not expected to call this function. You should use one of
1468 * sb_bread(), sb_bread_unmovable() or __bread().
1469 *
1470 * Read a specified block, and return the buffer head that refers to it.
1471 * If @gfp is 0, the memory will be allocated using the block device's
1472 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1473 * allocated from a movable area. Do not pass in a complete set of
1474 * GFP flags.
1475 *
1476 * The returned buffer head has its refcount increased. The caller should
1477 * call brelse() when it has finished with the buffer.
1478 *
1479 * Context: May sleep waiting for I/O.
1480 * Return: NULL if the block was unreadable.
1da177e4 1481 */
324ecaee
MWO
1482struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1483 unsigned size, gfp_t gfp)
1da177e4 1484{
93b13eca
MWO
1485 struct buffer_head *bh;
1486
224941e8 1487 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
93b13eca
MWO
1488
1489 /*
1490 * Prefer looping in the allocator rather than here, at least that
1491 * code knows what it's doing.
1492 */
1493 gfp |= __GFP_NOFAIL;
1494
1495 bh = bdev_getblk(bdev, block, size, gfp);
1da177e4 1496
a3e713b5 1497 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1498 bh = __bread_slow(bh);
1499 return bh;
1500}
3b5e6454 1501EXPORT_SYMBOL(__bread_gfp);
1da177e4 1502
8cc621d2
MK
1503static void __invalidate_bh_lrus(struct bh_lru *b)
1504{
1505 int i;
1506
1507 for (i = 0; i < BH_LRU_SIZE; i++) {
1508 brelse(b->bhs[i]);
1509 b->bhs[i] = NULL;
1510 }
1511}
1da177e4
LT
1512/*
1513 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1514 * This doesn't race because it runs in each cpu either in irq
1515 * or with preempt disabled.
1516 */
1517static void invalidate_bh_lru(void *arg)
1518{
1519 struct bh_lru *b = &get_cpu_var(bh_lrus);
1da177e4 1520
8cc621d2 1521 __invalidate_bh_lrus(b);
1da177e4
LT
1522 put_cpu_var(bh_lrus);
1523}
42be35d0 1524
8cc621d2 1525bool has_bh_in_lru(int cpu, void *dummy)
42be35d0
GBY
1526{
1527 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1528 int i;
1da177e4 1529
42be35d0
GBY
1530 for (i = 0; i < BH_LRU_SIZE; i++) {
1531 if (b->bhs[i])
1d706679 1532 return true;
42be35d0
GBY
1533 }
1534
1d706679 1535 return false;
42be35d0
GBY
1536}
1537
f9a14399 1538void invalidate_bh_lrus(void)
1da177e4 1539{
cb923159 1540 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1da177e4 1541}
9db5579b 1542EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4 1543
243418e3
MK
1544/*
1545 * It's called from workqueue context so we need a bh_lru_lock to close
1546 * the race with preemption/irq.
1547 */
1548void invalidate_bh_lrus_cpu(void)
8cc621d2
MK
1549{
1550 struct bh_lru *b;
1551
1552 bh_lru_lock();
243418e3 1553 b = this_cpu_ptr(&bh_lrus);
8cc621d2
MK
1554 __invalidate_bh_lrus(b);
1555 bh_lru_unlock();
1556}
1557
465e5e6a
PR
1558void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1559 unsigned long offset)
1560{
1561 bh->b_folio = folio;
1562 BUG_ON(offset >= folio_size(folio));
1563 if (folio_test_highmem(folio))
1564 /*
1565 * This catches illegal uses and preserves the offset:
1566 */
1567 bh->b_data = (char *)(0 + offset);
1568 else
1569 bh->b_data = folio_address(folio) + offset;
1570}
1571EXPORT_SYMBOL(folio_set_bh);
1572
1da177e4
LT
1573/*
1574 * Called when truncating a buffer on a page completely.
1575 */
e7470ee8
MG
1576
1577/* Bits that are cleared during an invalidate */
1578#define BUFFER_FLAGS_DISCARD \
1579 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1580 1 << BH_Delay | 1 << BH_Unwritten)
1581
858119e1 1582static void discard_buffer(struct buffer_head * bh)
1da177e4 1583{
b0192296 1584 unsigned long b_state;
e7470ee8 1585
1da177e4
LT
1586 lock_buffer(bh);
1587 clear_buffer_dirty(bh);
1588 bh->b_bdev = NULL;
b0192296
UB
1589 b_state = READ_ONCE(bh->b_state);
1590 do {
1591 } while (!try_cmpxchg(&bh->b_state, &b_state,
1592 b_state & ~BUFFER_FLAGS_DISCARD));
1da177e4
LT
1593 unlock_buffer(bh);
1594}
1595
1da177e4 1596/**
7ba13abb
MWO
1597 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1598 * @folio: The folio which is affected.
d47992f8
LC
1599 * @offset: start of the range to invalidate
1600 * @length: length of the range to invalidate
1da177e4 1601 *
7ba13abb 1602 * block_invalidate_folio() is called when all or part of the folio has been
814e1d25 1603 * invalidated by a truncate operation.
1da177e4 1604 *
7ba13abb 1605 * block_invalidate_folio() does not have to release all buffers, but it must
1da177e4
LT
1606 * ensure that no dirty buffer is left outside @offset and that no I/O
1607 * is underway against any of the blocks which are outside the truncation
1608 * point. Because the caller is about to free (and possibly reuse) those
1609 * blocks on-disk.
1610 */
7ba13abb 1611void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1da177e4
LT
1612{
1613 struct buffer_head *head, *bh, *next;
7ba13abb
MWO
1614 size_t curr_off = 0;
1615 size_t stop = length + offset;
1da177e4 1616
7ba13abb 1617 BUG_ON(!folio_test_locked(folio));
1da177e4 1618
d47992f8
LC
1619 /*
1620 * Check for overflow
1621 */
7ba13abb
MWO
1622 BUG_ON(stop > folio_size(folio) || stop < length);
1623
1624 head = folio_buffers(folio);
1625 if (!head)
1626 return;
d47992f8 1627
1da177e4
LT
1628 bh = head;
1629 do {
7ba13abb 1630 size_t next_off = curr_off + bh->b_size;
1da177e4
LT
1631 next = bh->b_this_page;
1632
d47992f8
LC
1633 /*
1634 * Are we still fully in range ?
1635 */
1636 if (next_off > stop)
1637 goto out;
1638
1da177e4
LT
1639 /*
1640 * is this block fully invalidated?
1641 */
1642 if (offset <= curr_off)
1643 discard_buffer(bh);
1644 curr_off = next_off;
1645 bh = next;
1646 } while (bh != head);
1647
1648 /*
7ba13abb 1649 * We release buffers only if the entire folio is being invalidated.
1da177e4
LT
1650 * The get_block cached value has been unconditionally invalidated,
1651 * so real IO is not possible anymore.
1652 */
7ba13abb
MWO
1653 if (length == folio_size(folio))
1654 filemap_release_folio(folio, 0);
1da177e4 1655out:
2ff28e22 1656 return;
1da177e4 1657}
7ba13abb 1658EXPORT_SYMBOL(block_invalidate_folio);
1da177e4
LT
1659
1660/*
1661 * We attach and possibly dirty the buffers atomically wrt
600f111e 1662 * block_dirty_folio() via i_private_lock. try_to_free_buffers
8e2e1756 1663 * is already excluded via the folio lock.
1da177e4 1664 */
0a88810d 1665struct buffer_head *create_empty_buffers(struct folio *folio,
3decb856 1666 unsigned long blocksize, unsigned long b_state)
1da177e4
LT
1667{
1668 struct buffer_head *bh, *head, *tail;
2a418157 1669 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1da177e4 1670
2a418157 1671 head = folio_alloc_buffers(folio, blocksize, gfp);
1da177e4
LT
1672 bh = head;
1673 do {
1674 bh->b_state |= b_state;
1675 tail = bh;
1676 bh = bh->b_this_page;
1677 } while (bh);
1678 tail->b_this_page = head;
1679
600f111e 1680 spin_lock(&folio->mapping->i_private_lock);
8e2e1756 1681 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1da177e4
LT
1682 bh = head;
1683 do {
8e2e1756 1684 if (folio_test_dirty(folio))
1da177e4 1685 set_buffer_dirty(bh);
8e2e1756 1686 if (folio_test_uptodate(folio))
1da177e4
LT
1687 set_buffer_uptodate(bh);
1688 bh = bh->b_this_page;
1689 } while (bh != head);
1690 }
8e2e1756 1691 folio_attach_private(folio, head);
600f111e 1692 spin_unlock(&folio->mapping->i_private_lock);
3decb856
MWO
1693
1694 return head;
8e2e1756 1695}
1da177e4
LT
1696EXPORT_SYMBOL(create_empty_buffers);
1697
29f3ad7d
JK
1698/**
1699 * clean_bdev_aliases: clean a range of buffers in block device
1700 * @bdev: Block device to clean buffers in
1701 * @block: Start of a range of blocks to clean
1702 * @len: Number of blocks to clean
1da177e4 1703 *
29f3ad7d
JK
1704 * We are taking a range of blocks for data and we don't want writeback of any
1705 * buffer-cache aliases starting from return from this function and until the
1706 * moment when something will explicitly mark the buffer dirty (hopefully that
1707 * will not happen until we will free that block ;-) We don't even need to mark
1708 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1709 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1710 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1711 * would confuse anyone who might pick it with bread() afterwards...
1712 *
1713 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1714 * writeout I/O going on against recently-freed buffers. We don't wait on that
1715 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1716 * need to. That happens here.
1da177e4 1717 */
29f3ad7d 1718void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1719{
53cd4cd3
AV
1720 struct address_space *bd_mapping = bdev->bd_mapping;
1721 const int blkbits = bd_mapping->host->i_blkbits;
9e0b6f31 1722 struct folio_batch fbatch;
53cd4cd3 1723 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
29f3ad7d 1724 pgoff_t end;
c10f778d 1725 int i, count;
29f3ad7d
JK
1726 struct buffer_head *bh;
1727 struct buffer_head *head;
1da177e4 1728
53cd4cd3 1729 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
9e0b6f31
MWO
1730 folio_batch_init(&fbatch);
1731 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1732 count = folio_batch_count(&fbatch);
c10f778d 1733 for (i = 0; i < count; i++) {
9e0b6f31 1734 struct folio *folio = fbatch.folios[i];
1da177e4 1735
9e0b6f31 1736 if (!folio_buffers(folio))
29f3ad7d
JK
1737 continue;
1738 /*
600f111e 1739 * We use folio lock instead of bd_mapping->i_private_lock
29f3ad7d
JK
1740 * to pin buffers here since we can afford to sleep and
1741 * it scales better than a global spinlock lock.
1742 */
9e0b6f31
MWO
1743 folio_lock(folio);
1744 /* Recheck when the folio is locked which pins bhs */
1745 head = folio_buffers(folio);
1746 if (!head)
29f3ad7d 1747 goto unlock_page;
29f3ad7d
JK
1748 bh = head;
1749 do {
6c006a9d 1750 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1751 goto next;
1752 if (bh->b_blocknr >= block + len)
1753 break;
1754 clear_buffer_dirty(bh);
1755 wait_on_buffer(bh);
1756 clear_buffer_req(bh);
1757next:
1758 bh = bh->b_this_page;
1759 } while (bh != head);
1760unlock_page:
9e0b6f31 1761 folio_unlock(folio);
29f3ad7d 1762 }
9e0b6f31 1763 folio_batch_release(&fbatch);
29f3ad7d 1764 cond_resched();
c10f778d
JK
1765 /* End of range already reached? */
1766 if (index > end || !index)
1767 break;
1da177e4
LT
1768 }
1769}
29f3ad7d 1770EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1771
c6c8c3e7
PR
1772static struct buffer_head *folio_create_buffers(struct folio *folio,
1773 struct inode *inode,
1774 unsigned int b_state)
45bce8f3 1775{
3decb856
MWO
1776 struct buffer_head *bh;
1777
c6c8c3e7 1778 BUG_ON(!folio_test_locked(folio));
45bce8f3 1779
3decb856
MWO
1780 bh = folio_buffers(folio);
1781 if (!bh)
0a88810d 1782 bh = create_empty_buffers(folio,
3decb856
MWO
1783 1 << READ_ONCE(inode->i_blkbits), b_state);
1784 return bh;
45bce8f3
LT
1785}
1786
1da177e4
LT
1787/*
1788 * NOTE! All mapped/uptodate combinations are valid:
1789 *
1790 * Mapped Uptodate Meaning
1791 *
1792 * No No "unknown" - must do get_block()
1793 * No Yes "hole" - zero-filled
1794 * Yes No "allocated" - allocated on disk, not read in
1795 * Yes Yes "valid" - allocated and up-to-date in memory.
1796 *
1797 * "Dirty" is valid only with the last case (mapped+uptodate).
1798 */
1799
1800/*
17bf23a9 1801 * While block_write_full_folio is writing back the dirty buffers under
1da177e4
LT
1802 * the page lock, whoever dirtied the buffers may decide to clean them
1803 * again at any time. We handle that by only looking at the buffer
1804 * state inside lock_buffer().
1805 *
17bf23a9 1806 * If block_write_full_folio() is called for regular writeback
1da177e4
LT
1807 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1808 * locked buffer. This only can happen if someone has written the buffer
1809 * directly, with submit_bh(). At the address_space level PageWriteback
1810 * prevents this contention from occurring.
6e34eedd 1811 *
17bf23a9 1812 * If block_write_full_folio() is called with wbc->sync_mode ==
70fd7614 1813 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1814 * causes the writes to be flagged as synchronous writes.
1da177e4 1815 */
53418a18 1816int __block_write_full_folio(struct inode *inode, struct folio *folio,
14059f66 1817 get_block_t *get_block, struct writeback_control *wbc)
1da177e4
LT
1818{
1819 int err;
1820 sector_t block;
1821 sector_t last_block;
f0fbd5fc 1822 struct buffer_head *bh, *head;
fa399c31 1823 size_t blocksize;
1da177e4 1824 int nr_underway = 0;
3ae72869 1825 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1da177e4 1826
53418a18 1827 head = folio_create_buffers(folio, inode,
c6c8c3e7 1828 (1 << BH_Dirty) | (1 << BH_Uptodate));
1da177e4
LT
1829
1830 /*
e621900a 1831 * Be very careful. We have no exclusion from block_dirty_folio
1da177e4
LT
1832 * here, and the (potentially unmapped) buffers may become dirty at
1833 * any time. If a buffer becomes dirty here after we've inspected it
53418a18 1834 * then we just miss that fact, and the folio stays dirty.
1da177e4 1835 *
e621900a 1836 * Buffers outside i_size may be dirtied by block_dirty_folio;
1da177e4
LT
1837 * handle that here by just cleaning them.
1838 */
1839
1da177e4 1840 bh = head;
45bce8f3 1841 blocksize = bh->b_size;
45bce8f3 1842
fa399c31
MWO
1843 block = div_u64(folio_pos(folio), blocksize);
1844 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1da177e4
LT
1845
1846 /*
1847 * Get all the dirty buffers mapped to disk addresses and
1848 * handle any aliases from the underlying blockdev's mapping.
1849 */
1850 do {
1851 if (block > last_block) {
1852 /*
1853 * mapped buffers outside i_size will occur, because
53418a18 1854 * this folio can be outside i_size when there is a
1da177e4
LT
1855 * truncate in progress.
1856 */
1857 /*
17bf23a9 1858 * The buffer was zeroed by block_write_full_folio()
1da177e4
LT
1859 */
1860 clear_buffer_dirty(bh);
1861 set_buffer_uptodate(bh);
29a814d2
AT
1862 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1863 buffer_dirty(bh)) {
b0cf2321 1864 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1865 err = get_block(inode, block, bh, 1);
1866 if (err)
1867 goto recover;
29a814d2 1868 clear_buffer_delay(bh);
1da177e4
LT
1869 if (buffer_new(bh)) {
1870 /* blockdev mappings never come here */
1871 clear_buffer_new(bh);
e64855c6 1872 clean_bdev_bh_alias(bh);
1da177e4
LT
1873 }
1874 }
1875 bh = bh->b_this_page;
1876 block++;
1877 } while (bh != head);
1878
1879 do {
1da177e4
LT
1880 if (!buffer_mapped(bh))
1881 continue;
1882 /*
1883 * If it's a fully non-blocking write attempt and we cannot
53418a18 1884 * lock the buffer then redirty the folio. Note that this can
5b0830cb
JA
1885 * potentially cause a busy-wait loop from writeback threads
1886 * and kswapd activity, but those code paths have their own
1887 * higher-level throttling.
1da177e4 1888 */
1b430bee 1889 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1890 lock_buffer(bh);
ca5de404 1891 } else if (!trylock_buffer(bh)) {
53418a18 1892 folio_redirty_for_writepage(wbc, folio);
1da177e4
LT
1893 continue;
1894 }
1895 if (test_clear_buffer_dirty(bh)) {
14059f66
MWO
1896 mark_buffer_async_write_endio(bh,
1897 end_buffer_async_write);
1da177e4
LT
1898 } else {
1899 unlock_buffer(bh);
1900 }
1901 } while ((bh = bh->b_this_page) != head);
1902
1903 /*
53418a18
MWO
1904 * The folio and its buffers are protected by the writeback flag,
1905 * so we can drop the bh refcounts early.
1da177e4 1906 */
53418a18
MWO
1907 BUG_ON(folio_test_writeback(folio));
1908 folio_start_writeback(folio);
1da177e4
LT
1909
1910 do {
1911 struct buffer_head *next = bh->b_this_page;
1912 if (buffer_async_write(bh)) {
44981351
BVA
1913 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1914 inode->i_write_hint, wbc);
1da177e4
LT
1915 nr_underway++;
1916 }
1da177e4
LT
1917 bh = next;
1918 } while (bh != head);
53418a18 1919 folio_unlock(folio);
1da177e4
LT
1920
1921 err = 0;
1922done:
1923 if (nr_underway == 0) {
1924 /*
53418a18 1925 * The folio was marked dirty, but the buffers were
1da177e4 1926 * clean. Someone wrote them back by hand with
79f59784 1927 * write_dirty_buffer/submit_bh. A rare case.
1da177e4 1928 */
53418a18 1929 folio_end_writeback(folio);
3d67f2d7 1930
1da177e4 1931 /*
53418a18 1932 * The folio and buffer_heads can be released at any time from
1da177e4
LT
1933 * here on.
1934 */
1da177e4
LT
1935 }
1936 return err;
1937
1938recover:
1939 /*
1940 * ENOSPC, or some other error. We may already have added some
1941 * blocks to the file, so we need to write these out to avoid
1942 * exposing stale data.
53418a18 1943 * The folio is currently locked and not marked for writeback
1da177e4
LT
1944 */
1945 bh = head;
1946 /* Recovery: lock and submit the mapped buffers */
1947 do {
29a814d2
AT
1948 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1949 !buffer_delay(bh)) {
1da177e4 1950 lock_buffer(bh);
14059f66
MWO
1951 mark_buffer_async_write_endio(bh,
1952 end_buffer_async_write);
1da177e4
LT
1953 } else {
1954 /*
1955 * The buffer may have been set dirty during
53418a18 1956 * attachment to a dirty folio.
1da177e4
LT
1957 */
1958 clear_buffer_dirty(bh);
1959 }
1960 } while ((bh = bh->b_this_page) != head);
53418a18
MWO
1961 BUG_ON(folio_test_writeback(folio));
1962 mapping_set_error(folio->mapping, err);
1963 folio_start_writeback(folio);
1da177e4
LT
1964 do {
1965 struct buffer_head *next = bh->b_this_page;
1966 if (buffer_async_write(bh)) {
1967 clear_buffer_dirty(bh);
44981351
BVA
1968 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1969 inode->i_write_hint, wbc);
1da177e4
LT
1970 nr_underway++;
1971 }
1da177e4
LT
1972 bh = next;
1973 } while (bh != head);
53418a18 1974 folio_unlock(folio);
1da177e4
LT
1975 goto done;
1976}
53418a18 1977EXPORT_SYMBOL(__block_write_full_folio);
1da177e4 1978
afddba49 1979/*
4a9622f2 1980 * If a folio has any new buffers, zero them out here, and mark them uptodate
afddba49
NP
1981 * and dirty so they'll be written out (in order to prevent uninitialised
1982 * block data from leaking). And clear the new bit.
1983 */
4a9622f2 1984void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
afddba49 1985{
4a9622f2 1986 size_t block_start, block_end;
afddba49
NP
1987 struct buffer_head *head, *bh;
1988
4a9622f2
MWO
1989 BUG_ON(!folio_test_locked(folio));
1990 head = folio_buffers(folio);
1991 if (!head)
afddba49
NP
1992 return;
1993
4a9622f2 1994 bh = head;
afddba49
NP
1995 block_start = 0;
1996 do {
1997 block_end = block_start + bh->b_size;
1998
1999 if (buffer_new(bh)) {
2000 if (block_end > from && block_start < to) {
4a9622f2
MWO
2001 if (!folio_test_uptodate(folio)) {
2002 size_t start, xend;
afddba49
NP
2003
2004 start = max(from, block_start);
4a9622f2 2005 xend = min(to, block_end);
afddba49 2006
4a9622f2 2007 folio_zero_segment(folio, start, xend);
afddba49
NP
2008 set_buffer_uptodate(bh);
2009 }
2010
2011 clear_buffer_new(bh);
2012 mark_buffer_dirty(bh);
2013 }
2014 }
2015
2016 block_start = block_end;
2017 bh = bh->b_this_page;
2018 } while (bh != head);
2019}
4a9622f2 2020EXPORT_SYMBOL(folio_zero_new_buffers);
afddba49 2021
4aa8cdd5 2022static int
ae259a9c 2023iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
6d49cc85 2024 const struct iomap *iomap)
ae259a9c 2025{
80844194 2026 loff_t offset = (loff_t)block << inode->i_blkbits;
ae259a9c
CH
2027
2028 bh->b_bdev = iomap->bdev;
2029
2030 /*
2031 * Block points to offset in file we need to map, iomap contains
2032 * the offset at which the map starts. If the map ends before the
2033 * current block, then do not map the buffer and let the caller
2034 * handle it.
2035 */
4aa8cdd5
CH
2036 if (offset >= iomap->offset + iomap->length)
2037 return -EIO;
ae259a9c
CH
2038
2039 switch (iomap->type) {
2040 case IOMAP_HOLE:
2041 /*
2042 * If the buffer is not up to date or beyond the current EOF,
2043 * we need to mark it as new to ensure sub-block zeroing is
2044 * executed if necessary.
2045 */
2046 if (!buffer_uptodate(bh) ||
2047 (offset >= i_size_read(inode)))
2048 set_buffer_new(bh);
4aa8cdd5 2049 return 0;
ae259a9c
CH
2050 case IOMAP_DELALLOC:
2051 if (!buffer_uptodate(bh) ||
2052 (offset >= i_size_read(inode)))
2053 set_buffer_new(bh);
2054 set_buffer_uptodate(bh);
2055 set_buffer_mapped(bh);
2056 set_buffer_delay(bh);
4aa8cdd5 2057 return 0;
ae259a9c
CH
2058 case IOMAP_UNWRITTEN:
2059 /*
3d7b6b21
AG
2060 * For unwritten regions, we always need to ensure that regions
2061 * in the block we are not writing to are zeroed. Mark the
2062 * buffer as new to ensure this.
ae259a9c
CH
2063 */
2064 set_buffer_new(bh);
2065 set_buffer_unwritten(bh);
df561f66 2066 fallthrough;
ae259a9c 2067 case IOMAP_MAPPED:
3d7b6b21 2068 if ((iomap->flags & IOMAP_F_NEW) ||
381c0432
CH
2069 offset >= i_size_read(inode)) {
2070 /*
2071 * This can happen if truncating the block device races
2072 * with the check in the caller as i_size updates on
2073 * block devices aren't synchronized by i_rwsem for
2074 * block devices.
2075 */
2076 if (S_ISBLK(inode->i_mode))
2077 return -EIO;
ae259a9c 2078 set_buffer_new(bh);
381c0432 2079 }
19fe5f64
AG
2080 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2081 inode->i_blkbits;
ae259a9c 2082 set_buffer_mapped(bh);
4aa8cdd5
CH
2083 return 0;
2084 default:
2085 WARN_ON_ONCE(1);
2086 return -EIO;
ae259a9c
CH
2087 }
2088}
2089
d1bd0b4e 2090int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
6d49cc85 2091 get_block_t *get_block, const struct iomap *iomap)
1da177e4 2092{
b0619401
MWO
2093 size_t from = offset_in_folio(folio, pos);
2094 size_t to = from + len;
d1bd0b4e 2095 struct inode *inode = folio->mapping->host;
b0619401 2096 size_t block_start, block_end;
1da177e4
LT
2097 sector_t block;
2098 int err = 0;
b0619401 2099 size_t blocksize;
1da177e4
LT
2100 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2101
d1bd0b4e 2102 BUG_ON(!folio_test_locked(folio));
b0619401 2103 BUG_ON(to > folio_size(folio));
1da177e4
LT
2104 BUG_ON(from > to);
2105
c6c8c3e7 2106 head = folio_create_buffers(folio, inode, 0);
45bce8f3 2107 blocksize = head->b_size;
b0619401 2108 block = div_u64(folio_pos(folio), blocksize);
1da177e4 2109
b0619401 2110 for (bh = head, block_start = 0; bh != head || !block_start;
1da177e4
LT
2111 block++, block_start=block_end, bh = bh->b_this_page) {
2112 block_end = block_start + blocksize;
2113 if (block_end <= from || block_start >= to) {
d1bd0b4e 2114 if (folio_test_uptodate(folio)) {
1da177e4
LT
2115 if (!buffer_uptodate(bh))
2116 set_buffer_uptodate(bh);
2117 }
2118 continue;
2119 }
2120 if (buffer_new(bh))
2121 clear_buffer_new(bh);
2122 if (!buffer_mapped(bh)) {
b0cf2321 2123 WARN_ON(bh->b_size != blocksize);
4aa8cdd5 2124 if (get_block)
ae259a9c 2125 err = get_block(inode, block, bh, 1);
4aa8cdd5
CH
2126 else
2127 err = iomap_to_bh(inode, block, bh, iomap);
2128 if (err)
2129 break;
ae259a9c 2130
1da177e4 2131 if (buffer_new(bh)) {
e64855c6 2132 clean_bdev_bh_alias(bh);
d1bd0b4e 2133 if (folio_test_uptodate(folio)) {
637aff46 2134 clear_buffer_new(bh);
1da177e4 2135 set_buffer_uptodate(bh);
637aff46 2136 mark_buffer_dirty(bh);
1da177e4
LT
2137 continue;
2138 }
eebd2aa3 2139 if (block_end > to || block_start < from)
d1bd0b4e 2140 folio_zero_segments(folio,
eebd2aa3
CL
2141 to, block_end,
2142 block_start, from);
1da177e4
LT
2143 continue;
2144 }
2145 }
d1bd0b4e 2146 if (folio_test_uptodate(folio)) {
1da177e4
LT
2147 if (!buffer_uptodate(bh))
2148 set_buffer_uptodate(bh);
2149 continue;
2150 }
2151 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2152 !buffer_unwritten(bh) &&
1da177e4 2153 (block_start < from || block_end > to)) {
e7ea1129 2154 bh_read_nowait(bh, 0);
1da177e4
LT
2155 *wait_bh++=bh;
2156 }
2157 }
2158 /*
2159 * If we issued read requests - let them complete.
2160 */
2161 while(wait_bh > wait) {
2162 wait_on_buffer(*--wait_bh);
2163 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2164 err = -EIO;
1da177e4 2165 }
f9f07b6c 2166 if (unlikely(err))
4a9622f2 2167 folio_zero_new_buffers(folio, from, to);
1da177e4
LT
2168 return err;
2169}
ae259a9c
CH
2170
2171int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2172 get_block_t *get_block)
2173{
d1bd0b4e
MWO
2174 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2175 NULL);
ae259a9c 2176}
ebdec241 2177EXPORT_SYMBOL(__block_write_begin);
1da177e4 2178
a524fcfe 2179static void __block_commit_write(struct folio *folio, size_t from, size_t to)
1da177e4 2180{
8c6cb3e3
MWO
2181 size_t block_start, block_end;
2182 bool partial = false;
1da177e4
LT
2183 unsigned blocksize;
2184 struct buffer_head *bh, *head;
2185
8c6cb3e3 2186 bh = head = folio_buffers(folio);
83f4414b
WG
2187 if (!bh)
2188 return;
45bce8f3 2189 blocksize = bh->b_size;
1da177e4 2190
45bce8f3
LT
2191 block_start = 0;
2192 do {
1da177e4
LT
2193 block_end = block_start + blocksize;
2194 if (block_end <= from || block_start >= to) {
2195 if (!buffer_uptodate(bh))
8c6cb3e3 2196 partial = true;
1da177e4
LT
2197 } else {
2198 set_buffer_uptodate(bh);
2199 mark_buffer_dirty(bh);
2200 }
4ebd3aec
YG
2201 if (buffer_new(bh))
2202 clear_buffer_new(bh);
45bce8f3
LT
2203
2204 block_start = block_end;
2205 bh = bh->b_this_page;
2206 } while (bh != head);
1da177e4
LT
2207
2208 /*
2209 * If this is a partial write which happened to make all buffers
2c69e205 2210 * uptodate then we can optimize away a bogus read_folio() for
8c6cb3e3 2211 * the next read(). Here we 'discover' whether the folio went
1da177e4
LT
2212 * uptodate as a result of this (potentially partial) write.
2213 */
2214 if (!partial)
8c6cb3e3 2215 folio_mark_uptodate(folio);
1da177e4
LT
2216}
2217
afddba49 2218/*
155130a4
CH
2219 * block_write_begin takes care of the basic task of block allocation and
2220 * bringing partial write blocks uptodate first.
2221 *
7bb46a67 2222 * The filesystem needs to handle block truncation upon failure.
afddba49 2223 */
155130a4 2224int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
b3992d1e 2225 struct page **pagep, get_block_t *get_block)
afddba49 2226{
09cbfeaf 2227 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2228 struct page *page;
6e1db88d 2229 int status;
afddba49 2230
b7446e7c 2231 page = grab_cache_page_write_begin(mapping, index);
6e1db88d
CH
2232 if (!page)
2233 return -ENOMEM;
afddba49 2234
6e1db88d 2235 status = __block_write_begin(page, pos, len, get_block);
afddba49 2236 if (unlikely(status)) {
6e1db88d 2237 unlock_page(page);
09cbfeaf 2238 put_page(page);
6e1db88d 2239 page = NULL;
afddba49
NP
2240 }
2241
6e1db88d 2242 *pagep = page;
afddba49
NP
2243 return status;
2244}
2245EXPORT_SYMBOL(block_write_begin);
2246
2247int block_write_end(struct file *file, struct address_space *mapping,
2248 loff_t pos, unsigned len, unsigned copied,
2249 struct page *page, void *fsdata)
2250{
8c6cb3e3 2251 struct folio *folio = page_folio(page);
8c6cb3e3 2252 size_t start = pos - folio_pos(folio);
afddba49
NP
2253
2254 if (unlikely(copied < len)) {
2255 /*
2c69e205
MWO
2256 * The buffers that were written will now be uptodate, so
2257 * we don't have to worry about a read_folio reading them
2258 * and overwriting a partial write. However if we have
2259 * encountered a short write and only partially written
2260 * into a buffer, it will not be marked uptodate, so a
2261 * read_folio might come in and destroy our partial write.
afddba49
NP
2262 *
2263 * Do the simplest thing, and just treat any short write to a
8c6cb3e3 2264 * non uptodate folio as a zero-length write, and force the
afddba49
NP
2265 * caller to redo the whole thing.
2266 */
8c6cb3e3 2267 if (!folio_test_uptodate(folio))
afddba49
NP
2268 copied = 0;
2269
4a9622f2 2270 folio_zero_new_buffers(folio, start+copied, start+len);
afddba49 2271 }
8c6cb3e3 2272 flush_dcache_folio(folio);
afddba49
NP
2273
2274 /* This could be a short (even 0-length) commit */
489b7e72 2275 __block_commit_write(folio, start, start + copied);
afddba49
NP
2276
2277 return copied;
2278}
2279EXPORT_SYMBOL(block_write_end);
2280
2281int generic_write_end(struct file *file, struct address_space *mapping,
2282 loff_t pos, unsigned len, unsigned copied,
2283 struct page *page, void *fsdata)
2284{
8af54f29
CH
2285 struct inode *inode = mapping->host;
2286 loff_t old_size = inode->i_size;
2287 bool i_size_changed = false;
2288
afddba49 2289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2290
2291 /*
2292 * No need to use i_size_read() here, the i_size cannot change under us
2293 * because we hold i_rwsem.
2294 *
2295 * But it's important to update i_size while still holding page lock:
2296 * page writeout could otherwise come in and zero beyond i_size.
2297 */
2298 if (pos + copied > inode->i_size) {
2299 i_size_write(inode, pos + copied);
2300 i_size_changed = true;
2301 }
2302
2303 unlock_page(page);
7a77dad7 2304 put_page(page);
8af54f29
CH
2305
2306 if (old_size < pos)
2307 pagecache_isize_extended(inode, old_size, pos);
2308 /*
2309 * Don't mark the inode dirty under page lock. First, it unnecessarily
2310 * makes the holding time of page lock longer. Second, it forces lock
2311 * ordering of page lock and transaction start for journaling
2312 * filesystems.
2313 */
2314 if (i_size_changed)
2315 mark_inode_dirty(inode);
26ddb1f4 2316 return copied;
afddba49
NP
2317}
2318EXPORT_SYMBOL(generic_write_end);
2319
8ab22b9a 2320/*
2e7e80f7 2321 * block_is_partially_uptodate checks whether buffers within a folio are
8ab22b9a
HH
2322 * uptodate or not.
2323 *
2e7e80f7
MWO
2324 * Returns true if all buffers which correspond to the specified part
2325 * of the folio are uptodate.
8ab22b9a 2326 */
2e7e80f7 2327bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
8ab22b9a 2328{
8ab22b9a
HH
2329 unsigned block_start, block_end, blocksize;
2330 unsigned to;
2331 struct buffer_head *bh, *head;
2e7e80f7 2332 bool ret = true;
8ab22b9a 2333
2e7e80f7
MWO
2334 head = folio_buffers(folio);
2335 if (!head)
2336 return false;
45bce8f3 2337 blocksize = head->b_size;
2e7e80f7 2338 to = min_t(unsigned, folio_size(folio) - from, count);
8ab22b9a 2339 to = from + to;
2e7e80f7
MWO
2340 if (from < blocksize && to > folio_size(folio) - blocksize)
2341 return false;
8ab22b9a 2342
8ab22b9a
HH
2343 bh = head;
2344 block_start = 0;
2345 do {
2346 block_end = block_start + blocksize;
2347 if (block_end > from && block_start < to) {
2348 if (!buffer_uptodate(bh)) {
2e7e80f7 2349 ret = false;
8ab22b9a
HH
2350 break;
2351 }
2352 if (block_end >= to)
2353 break;
2354 }
2355 block_start = block_end;
2356 bh = bh->b_this_page;
2357 } while (bh != head);
2358
2359 return ret;
2360}
2361EXPORT_SYMBOL(block_is_partially_uptodate);
2362
1da177e4 2363/*
2c69e205 2364 * Generic "read_folio" function for block devices that have the normal
1da177e4 2365 * get_block functionality. This is most of the block device filesystems.
2c69e205 2366 * Reads the folio asynchronously --- the unlock_buffer() and
1da177e4 2367 * set/clear_buffer_uptodate() functions propagate buffer state into the
2c69e205 2368 * folio once IO has completed.
1da177e4 2369 */
2c69e205 2370int block_read_full_folio(struct folio *folio, get_block_t *get_block)
1da177e4 2371{
2c69e205 2372 struct inode *inode = folio->mapping->host;
1da177e4
LT
2373 sector_t iblock, lblock;
2374 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
fa399c31 2375 size_t blocksize;
1da177e4
LT
2376 int nr, i;
2377 int fully_mapped = 1;
b7a6eb22 2378 bool page_error = false;
4fa512ce
EB
2379 loff_t limit = i_size_read(inode);
2380
2381 /* This is needed for ext4. */
2382 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2383 limit = inode->i_sb->s_maxbytes;
1da177e4 2384
2c69e205
MWO
2385 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2386
c6c8c3e7 2387 head = folio_create_buffers(folio, inode, 0);
45bce8f3 2388 blocksize = head->b_size;
1da177e4 2389
fa399c31
MWO
2390 iblock = div_u64(folio_pos(folio), blocksize);
2391 lblock = div_u64(limit + blocksize - 1, blocksize);
1da177e4
LT
2392 bh = head;
2393 nr = 0;
2394 i = 0;
2395
2396 do {
2397 if (buffer_uptodate(bh))
2398 continue;
2399
2400 if (!buffer_mapped(bh)) {
c64610ba
AM
2401 int err = 0;
2402
1da177e4
LT
2403 fully_mapped = 0;
2404 if (iblock < lblock) {
b0cf2321 2405 WARN_ON(bh->b_size != blocksize);
c64610ba 2406 err = get_block(inode, iblock, bh, 0);
7ad635ea 2407 if (err)
b7a6eb22 2408 page_error = true;
1da177e4
LT
2409 }
2410 if (!buffer_mapped(bh)) {
2c69e205
MWO
2411 folio_zero_range(folio, i * blocksize,
2412 blocksize);
c64610ba
AM
2413 if (!err)
2414 set_buffer_uptodate(bh);
1da177e4
LT
2415 continue;
2416 }
2417 /*
2418 * get_block() might have updated the buffer
2419 * synchronously
2420 */
2421 if (buffer_uptodate(bh))
2422 continue;
2423 }
2424 arr[nr++] = bh;
2425 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2426
2427 if (fully_mapped)
2c69e205 2428 folio_set_mappedtodisk(folio);
1da177e4
LT
2429
2430 if (!nr) {
2431 /*
6ba924d3
MWO
2432 * All buffers are uptodate or get_block() returned an
2433 * error when trying to map them - we can finish the read.
1da177e4 2434 */
6ba924d3 2435 folio_end_read(folio, !page_error);
1da177e4
LT
2436 return 0;
2437 }
2438
2439 /* Stage two: lock the buffers */
2440 for (i = 0; i < nr; i++) {
2441 bh = arr[i];
2442 lock_buffer(bh);
2443 mark_buffer_async_read(bh);
2444 }
2445
2446 /*
2447 * Stage 3: start the IO. Check for uptodateness
2448 * inside the buffer lock in case another process reading
2449 * the underlying blockdev brought it uptodate (the sct fix).
2450 */
2451 for (i = 0; i < nr; i++) {
2452 bh = arr[i];
2453 if (buffer_uptodate(bh))
2454 end_buffer_async_read(bh, 1);
2455 else
1420c4a5 2456 submit_bh(REQ_OP_READ, bh);
1da177e4
LT
2457 }
2458 return 0;
2459}
2c69e205 2460EXPORT_SYMBOL(block_read_full_folio);
1da177e4
LT
2461
2462/* utility function for filesystems that need to do work on expanding
89e10787 2463 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2464 * deal with the hole.
2465 */
89e10787 2466int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2467{
2468 struct address_space *mapping = inode->i_mapping;
53b524b8 2469 const struct address_space_operations *aops = mapping->a_ops;
1da177e4 2470 struct page *page;
1468c6f4 2471 void *fsdata = NULL;
1da177e4
LT
2472 int err;
2473
c08d3b0e
NP
2474 err = inode_newsize_ok(inode, size);
2475 if (err)
1da177e4
LT
2476 goto out;
2477
53b524b8 2478 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
89e10787 2479 if (err)
05eb0b51 2480 goto out;
05eb0b51 2481
53b524b8 2482 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
89e10787 2483 BUG_ON(err > 0);
05eb0b51 2484
1da177e4
LT
2485out:
2486 return err;
2487}
1fe72eaa 2488EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2489
f1e3af72
AB
2490static int cont_expand_zero(struct file *file, struct address_space *mapping,
2491 loff_t pos, loff_t *bytes)
1da177e4 2492{
1da177e4 2493 struct inode *inode = mapping->host;
53b524b8 2494 const struct address_space_operations *aops = mapping->a_ops;
93407472 2495 unsigned int blocksize = i_blocksize(inode);
89e10787 2496 struct page *page;
1468c6f4 2497 void *fsdata = NULL;
89e10787
NP
2498 pgoff_t index, curidx;
2499 loff_t curpos;
2500 unsigned zerofrom, offset, len;
2501 int err = 0;
1da177e4 2502
09cbfeaf
KS
2503 index = pos >> PAGE_SHIFT;
2504 offset = pos & ~PAGE_MASK;
89e10787 2505
09cbfeaf
KS
2506 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2507 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2508 if (zerofrom & (blocksize-1)) {
2509 *bytes |= (blocksize-1);
2510 (*bytes)++;
2511 }
09cbfeaf 2512 len = PAGE_SIZE - zerofrom;
1da177e4 2513
53b524b8 2514 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2515 &page, &fsdata);
89e10787
NP
2516 if (err)
2517 goto out;
eebd2aa3 2518 zero_user(page, zerofrom, len);
53b524b8 2519 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2520 page, fsdata);
2521 if (err < 0)
2522 goto out;
2523 BUG_ON(err != len);
2524 err = 0;
061e9746
OH
2525
2526 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2527
08d405c8 2528 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2529 err = -EINTR;
2530 goto out;
2531 }
89e10787 2532 }
1da177e4 2533
89e10787
NP
2534 /* page covers the boundary, find the boundary offset */
2535 if (index == curidx) {
09cbfeaf 2536 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2537 /* if we will expand the thing last block will be filled */
89e10787
NP
2538 if (offset <= zerofrom) {
2539 goto out;
2540 }
2541 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2542 *bytes |= (blocksize-1);
2543 (*bytes)++;
2544 }
89e10787 2545 len = offset - zerofrom;
1da177e4 2546
53b524b8 2547 err = aops->write_begin(file, mapping, curpos, len,
c718a975 2548 &page, &fsdata);
89e10787
NP
2549 if (err)
2550 goto out;
eebd2aa3 2551 zero_user(page, zerofrom, len);
53b524b8 2552 err = aops->write_end(file, mapping, curpos, len, len,
89e10787
NP
2553 page, fsdata);
2554 if (err < 0)
2555 goto out;
2556 BUG_ON(err != len);
2557 err = 0;
1da177e4 2558 }
89e10787
NP
2559out:
2560 return err;
2561}
2562
2563/*
2564 * For moronic filesystems that do not allow holes in file.
2565 * We may have to extend the file.
2566 */
282dc178 2567int cont_write_begin(struct file *file, struct address_space *mapping,
be3bbbc5 2568 loff_t pos, unsigned len,
89e10787
NP
2569 struct page **pagep, void **fsdata,
2570 get_block_t *get_block, loff_t *bytes)
2571{
2572 struct inode *inode = mapping->host;
93407472
FF
2573 unsigned int blocksize = i_blocksize(inode);
2574 unsigned int zerofrom;
89e10787
NP
2575 int err;
2576
2577 err = cont_expand_zero(file, mapping, pos, bytes);
2578 if (err)
155130a4 2579 return err;
89e10787 2580
09cbfeaf 2581 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2582 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2583 *bytes |= (blocksize-1);
2584 (*bytes)++;
1da177e4 2585 }
1da177e4 2586
b3992d1e 2587 return block_write_begin(mapping, pos, len, pagep, get_block);
1da177e4 2588}
1fe72eaa 2589EXPORT_SYMBOL(cont_write_begin);
1da177e4 2590
a524fcfe 2591void block_commit_write(struct page *page, unsigned from, unsigned to)
1da177e4 2592{
8c6cb3e3 2593 struct folio *folio = page_folio(page);
489b7e72 2594 __block_commit_write(folio, from, to);
1da177e4 2595}
1fe72eaa 2596EXPORT_SYMBOL(block_commit_write);
1da177e4 2597
54171690
DC
2598/*
2599 * block_page_mkwrite() is not allowed to change the file size as it gets
2600 * called from a page fault handler when a page is first dirtied. Hence we must
2601 * be careful to check for EOF conditions here. We set the page up correctly
2602 * for a written page which means we get ENOSPC checking when writing into
2603 * holes and correct delalloc and unwritten extent mapping on filesystems that
2604 * support these features.
2605 *
2606 * We are not allowed to take the i_mutex here so we have to play games to
2607 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2608 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2609 * page lock we can determine safely if the page is beyond EOF. If it is not
2610 * beyond EOF, then the page is guaranteed safe against truncation until we
2611 * unlock the page.
ea13a864 2612 *
14da9200 2613 * Direct callers of this function should protect against filesystem freezing
5c500029 2614 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2615 */
5c500029 2616int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2617 get_block_t get_block)
54171690 2618{
fe181377 2619 struct folio *folio = page_folio(vmf->page);
496ad9aa 2620 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2621 unsigned long end;
2622 loff_t size;
24da4fab 2623 int ret;
54171690 2624
fe181377 2625 folio_lock(folio);
54171690 2626 size = i_size_read(inode);
fe181377
MWO
2627 if ((folio->mapping != inode->i_mapping) ||
2628 (folio_pos(folio) >= size)) {
24da4fab
JK
2629 /* We overload EFAULT to mean page got truncated */
2630 ret = -EFAULT;
2631 goto out_unlock;
54171690
DC
2632 }
2633
fe181377
MWO
2634 end = folio_size(folio);
2635 /* folio is wholly or partially inside EOF */
2636 if (folio_pos(folio) + end > size)
2637 end = size - folio_pos(folio);
54171690 2638
fe181377 2639 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
a524fcfe 2640 if (unlikely(ret))
24da4fab 2641 goto out_unlock;
a524fcfe
BH
2642
2643 __block_commit_write(folio, 0, end);
2644
fe181377
MWO
2645 folio_mark_dirty(folio);
2646 folio_wait_stable(folio);
24da4fab
JK
2647 return 0;
2648out_unlock:
fe181377 2649 folio_unlock(folio);
54171690 2650 return ret;
24da4fab 2651}
1fe72eaa 2652EXPORT_SYMBOL(block_page_mkwrite);
1da177e4 2653
1da177e4
LT
2654int block_truncate_page(struct address_space *mapping,
2655 loff_t from, get_block_t *get_block)
2656{
09cbfeaf 2657 pgoff_t index = from >> PAGE_SHIFT;
1da177e4 2658 unsigned blocksize;
54b21a79 2659 sector_t iblock;
6d68f644 2660 size_t offset, length, pos;
1da177e4 2661 struct inode *inode = mapping->host;
6d68f644 2662 struct folio *folio;
1da177e4 2663 struct buffer_head *bh;
dc7cb2d2 2664 int err = 0;
1da177e4 2665
93407472 2666 blocksize = i_blocksize(inode);
6d68f644 2667 length = from & (blocksize - 1);
1da177e4
LT
2668
2669 /* Block boundary? Nothing to do */
2670 if (!length)
2671 return 0;
2672
2673 length = blocksize - length;
4b04646c
MWO
2674 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2675
6d68f644
MWO
2676 folio = filemap_grab_folio(mapping, index);
2677 if (IS_ERR(folio))
2678 return PTR_ERR(folio);
1da177e4 2679
6d68f644 2680 bh = folio_buffers(folio);
3decb856 2681 if (!bh)
0a88810d 2682 bh = create_empty_buffers(folio, blocksize, 0);
1da177e4
LT
2683
2684 /* Find the buffer that contains "offset" */
6d68f644 2685 offset = offset_in_folio(folio, from);
1da177e4
LT
2686 pos = blocksize;
2687 while (offset >= pos) {
2688 bh = bh->b_this_page;
2689 iblock++;
2690 pos += blocksize;
2691 }
2692
1da177e4 2693 if (!buffer_mapped(bh)) {
b0cf2321 2694 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2695 err = get_block(inode, iblock, bh, 0);
2696 if (err)
2697 goto unlock;
2698 /* unmapped? It's a hole - nothing to do */
2699 if (!buffer_mapped(bh))
2700 goto unlock;
2701 }
2702
2703 /* Ok, it's mapped. Make sure it's up-to-date */
6d68f644 2704 if (folio_test_uptodate(folio))
1da177e4
LT
2705 set_buffer_uptodate(bh);
2706
33a266dd 2707 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
e7ea1129 2708 err = bh_read(bh, 0);
1da177e4 2709 /* Uhhuh. Read error. Complain and punt. */
e7ea1129 2710 if (err < 0)
1da177e4
LT
2711 goto unlock;
2712 }
2713
6d68f644 2714 folio_zero_range(folio, offset, length);
1da177e4 2715 mark_buffer_dirty(bh);
1da177e4
LT
2716
2717unlock:
6d68f644
MWO
2718 folio_unlock(folio);
2719 folio_put(folio);
dc7cb2d2 2720
1da177e4
LT
2721 return err;
2722}
1fe72eaa 2723EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2724
2725/*
2726 * The generic ->writepage function for buffer-backed address_spaces
2727 */
17bf23a9
MWO
2728int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2729 void *get_block)
1da177e4 2730{
bb0ea598 2731 struct inode * const inode = folio->mapping->host;
1da177e4 2732 loff_t i_size = i_size_read(inode);
1da177e4 2733
bb0ea598
MWO
2734 /* Is the folio fully inside i_size? */
2735 if (folio_pos(folio) + folio_size(folio) <= i_size)
14059f66 2736 return __block_write_full_folio(inode, folio, get_block, wbc);
1da177e4 2737
bb0ea598
MWO
2738 /* Is the folio fully outside i_size? (truncate in progress) */
2739 if (folio_pos(folio) >= i_size) {
53418a18 2740 folio_unlock(folio);
1da177e4
LT
2741 return 0; /* don't care */
2742 }
2743
2744 /*
bb0ea598 2745 * The folio straddles i_size. It must be zeroed out on each and every
2a61aa40 2746 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4 2747 * in multiples of the page size. For a file that is not a multiple of
bb0ea598 2748 * the page size, the remaining memory is zeroed when mapped, and
1da177e4
LT
2749 * writes to that region are not written out to the file."
2750 */
bb0ea598
MWO
2751 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2752 folio_size(folio));
14059f66 2753 return __block_write_full_folio(inode, folio, get_block, wbc);
35c80d5f 2754}
35c80d5f 2755
1da177e4
LT
2756sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 get_block_t *get_block)
2758{
1da177e4 2759 struct inode *inode = mapping->host;
2a527d68
AP
2760 struct buffer_head tmp = {
2761 .b_size = i_blocksize(inode),
2762 };
2763
1da177e4
LT
2764 get_block(inode, block, &tmp, 0);
2765 return tmp.b_blocknr;
2766}
1fe72eaa 2767EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2768
4246a0b6 2769static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2770{
2771 struct buffer_head *bh = bio->bi_private;
2772
b7c44ed9 2773 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2774 set_bit(BH_Quiet, &bh->b_state);
2775
4e4cbee9 2776 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2777 bio_put(bio);
1da177e4
LT
2778}
2779
5bdf402a 2780static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
44981351 2781 enum rw_hint write_hint,
5bdf402a 2782 struct writeback_control *wbc)
1da177e4 2783{
1420c4a5 2784 const enum req_op op = opf & REQ_OP_MASK;
1da177e4 2785 struct bio *bio;
1da177e4
LT
2786
2787 BUG_ON(!buffer_locked(bh));
2788 BUG_ON(!buffer_mapped(bh));
2789 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2790 BUG_ON(buffer_delay(bh));
2791 BUG_ON(buffer_unwritten(bh));
1da177e4 2792
1da177e4 2793 /*
48fd4f93 2794 * Only clear out a write error when rewriting
1da177e4 2795 */
2a222ca9 2796 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
2797 clear_buffer_write_io_error(bh);
2798
07888c66 2799 if (buffer_meta(bh))
1420c4a5 2800 opf |= REQ_META;
07888c66 2801 if (buffer_prio(bh))
1420c4a5 2802 opf |= REQ_PRIO;
07888c66 2803
1420c4a5 2804 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
1da177e4 2805
4f74d15f
EB
2806 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2807
4f024f37 2808 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
44981351 2809 bio->bi_write_hint = write_hint;
1da177e4 2810
741af75d 2811 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
1da177e4
LT
2812
2813 bio->bi_end_io = end_bio_bh_io_sync;
2814 bio->bi_private = bh;
2815
83c9c547
ML
2816 /* Take care of bh's that straddle the end of the device */
2817 guard_bio_eod(bio);
2818
fd42df30
DZ
2819 if (wbc) {
2820 wbc_init_bio(wbc, bio);
34e51a5e 2821 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
2822 }
2823
4e49ea4a 2824 submit_bio(bio);
1da177e4 2825}
bafc0dba 2826
5bdf402a 2827void submit_bh(blk_opf_t opf, struct buffer_head *bh)
bafc0dba 2828{
44981351 2829 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
71368511 2830}
1fe72eaa 2831EXPORT_SYMBOL(submit_bh);
1da177e4 2832
3ae72869 2833void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
9cb569d6
CH
2834{
2835 lock_buffer(bh);
2836 if (!test_clear_buffer_dirty(bh)) {
2837 unlock_buffer(bh);
2838 return;
2839 }
2840 bh->b_end_io = end_buffer_write_sync;
2841 get_bh(bh);
1420c4a5 2842 submit_bh(REQ_OP_WRITE | op_flags, bh);
9cb569d6
CH
2843}
2844EXPORT_SYMBOL(write_dirty_buffer);
2845
1da177e4
LT
2846/*
2847 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2848 * and then start new I/O and then wait upon it. The caller must have a ref on
2849 * the buffer_head.
2850 */
3ae72869 2851int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
1da177e4 2852{
1da177e4
LT
2853 WARN_ON(atomic_read(&bh->b_count) < 1);
2854 lock_buffer(bh);
2855 if (test_clear_buffer_dirty(bh)) {
377254b2
XT
2856 /*
2857 * The bh should be mapped, but it might not be if the
2858 * device was hot-removed. Not much we can do but fail the I/O.
2859 */
2860 if (!buffer_mapped(bh)) {
2861 unlock_buffer(bh);
2862 return -EIO;
2863 }
2864
1da177e4
LT
2865 get_bh(bh);
2866 bh->b_end_io = end_buffer_write_sync;
ab620620 2867 submit_bh(REQ_OP_WRITE | op_flags, bh);
1da177e4 2868 wait_on_buffer(bh);
ab620620
RHI
2869 if (!buffer_uptodate(bh))
2870 return -EIO;
1da177e4
LT
2871 } else {
2872 unlock_buffer(bh);
2873 }
ab620620 2874 return 0;
1da177e4 2875}
87e99511
CH
2876EXPORT_SYMBOL(__sync_dirty_buffer);
2877
2878int sync_dirty_buffer(struct buffer_head *bh)
2879{
70fd7614 2880 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 2881}
1fe72eaa 2882EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4 2883
1da177e4
LT
2884static inline int buffer_busy(struct buffer_head *bh)
2885{
2886 return atomic_read(&bh->b_count) |
2887 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888}
2889
64394763
MWO
2890static bool
2891drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
1da177e4 2892{
64394763 2893 struct buffer_head *head = folio_buffers(folio);
1da177e4
LT
2894 struct buffer_head *bh;
2895
2896 bh = head;
2897 do {
1da177e4
LT
2898 if (buffer_busy(bh))
2899 goto failed;
2900 bh = bh->b_this_page;
2901 } while (bh != head);
2902
2903 do {
2904 struct buffer_head *next = bh->b_this_page;
2905
535ee2fb 2906 if (bh->b_assoc_map)
1da177e4
LT
2907 __remove_assoc_queue(bh);
2908 bh = next;
2909 } while (bh != head);
2910 *buffers_to_free = head;
64394763
MWO
2911 folio_detach_private(folio);
2912 return true;
1da177e4 2913failed:
64394763 2914 return false;
1da177e4
LT
2915}
2916
b1888d14
MWO
2917/**
2918 * try_to_free_buffers - Release buffers attached to this folio.
2919 * @folio: The folio.
2920 *
2921 * If any buffers are in use (dirty, under writeback, elevated refcount),
2922 * no buffers will be freed.
2923 *
2924 * If the folio is dirty but all the buffers are clean then we need to
2925 * be sure to mark the folio clean as well. This is because the folio
2926 * may be against a block device, and a later reattachment of buffers
2927 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2928 * filesystem data on the same device.
2929 *
2930 * The same applies to regular filesystem folios: if all the buffers are
2931 * clean then we set the folio clean and proceed. To do that, we require
2932 * total exclusion from block_dirty_folio(). That is obtained with
2933 * i_private_lock.
2934 *
2935 * Exclusion against try_to_free_buffers may be obtained by either
2936 * locking the folio or by holding its mapping's i_private_lock.
2937 *
2938 * Context: Process context. @folio must be locked. Will not sleep.
2939 * Return: true if all buffers attached to this folio were freed.
2940 */
68189fef 2941bool try_to_free_buffers(struct folio *folio)
1da177e4 2942{
68189fef 2943 struct address_space * const mapping = folio->mapping;
1da177e4 2944 struct buffer_head *buffers_to_free = NULL;
68189fef 2945 bool ret = 0;
1da177e4 2946
68189fef
MWO
2947 BUG_ON(!folio_test_locked(folio));
2948 if (folio_test_writeback(folio))
2949 return false;
1da177e4
LT
2950
2951 if (mapping == NULL) { /* can this still happen? */
64394763 2952 ret = drop_buffers(folio, &buffers_to_free);
1da177e4
LT
2953 goto out;
2954 }
2955
600f111e 2956 spin_lock(&mapping->i_private_lock);
64394763 2957 ret = drop_buffers(folio, &buffers_to_free);
ecdfc978
LT
2958
2959 /*
2960 * If the filesystem writes its buffers by hand (eg ext3)
68189fef
MWO
2961 * then we can have clean buffers against a dirty folio. We
2962 * clean the folio here; otherwise the VM will never notice
ecdfc978
LT
2963 * that the filesystem did any IO at all.
2964 *
2965 * Also, during truncate, discard_buffer will have marked all
68189fef
MWO
2966 * the folio's buffers clean. We discover that here and clean
2967 * the folio also.
87df7241 2968 *
600f111e 2969 * i_private_lock must be held over this entire operation in order
e621900a 2970 * to synchronise against block_dirty_folio and prevent the
87df7241 2971 * dirty bit from being lost.
ecdfc978 2972 */
11f81bec 2973 if (ret)
68189fef 2974 folio_cancel_dirty(folio);
600f111e 2975 spin_unlock(&mapping->i_private_lock);
1da177e4
LT
2976out:
2977 if (buffers_to_free) {
2978 struct buffer_head *bh = buffers_to_free;
2979
2980 do {
2981 struct buffer_head *next = bh->b_this_page;
2982 free_buffer_head(bh);
2983 bh = next;
2984 } while (bh != buffers_to_free);
2985 }
2986 return ret;
2987}
2988EXPORT_SYMBOL(try_to_free_buffers);
2989
1da177e4
LT
2990/*
2991 * Buffer-head allocation
2992 */
68279f9c 2993static struct kmem_cache *bh_cachep __ro_after_init;
1da177e4
LT
2994
2995/*
2996 * Once the number of bh's in the machine exceeds this level, we start
2997 * stripping them in writeback.
2998 */
68279f9c 2999static unsigned long max_buffer_heads __ro_after_init;
1da177e4
LT
3000
3001int buffer_heads_over_limit;
3002
3003struct bh_accounting {
3004 int nr; /* Number of live bh's */
3005 int ratelimit; /* Limit cacheline bouncing */
3006};
3007
3008static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3009
3010static void recalc_bh_state(void)
3011{
3012 int i;
3013 int tot = 0;
3014
ee1be862 3015 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3016 return;
c7b92516 3017 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3018 for_each_online_cpu(i)
1da177e4
LT
3019 tot += per_cpu(bh_accounting, i).nr;
3020 buffer_heads_over_limit = (tot > max_buffer_heads);
3021}
c7b92516 3022
dd0fc66f 3023struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3024{
019b4d12 3025 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3026 if (ret) {
a35afb83 3027 INIT_LIST_HEAD(&ret->b_assoc_buffers);
f1e67e35 3028 spin_lock_init(&ret->b_uptodate_lock);
c7b92516
CL
3029 preempt_disable();
3030 __this_cpu_inc(bh_accounting.nr);
1da177e4 3031 recalc_bh_state();
c7b92516 3032 preempt_enable();
1da177e4
LT
3033 }
3034 return ret;
3035}
3036EXPORT_SYMBOL(alloc_buffer_head);
3037
3038void free_buffer_head(struct buffer_head *bh)
3039{
3040 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3042 preempt_disable();
3043 __this_cpu_dec(bh_accounting.nr);
1da177e4 3044 recalc_bh_state();
c7b92516 3045 preempt_enable();
1da177e4
LT
3046}
3047EXPORT_SYMBOL(free_buffer_head);
3048
fc4d24c9 3049static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3050{
3051 int i;
3052 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3053
3054 for (i = 0; i < BH_LRU_SIZE; i++) {
3055 brelse(b->bhs[i]);
3056 b->bhs[i] = NULL;
3057 }
c7b92516 3058 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3059 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3060 return 0;
1da177e4 3061}
1da177e4 3062
389d1b08 3063/**
a6b91919 3064 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3065 * @bh: struct buffer_head
3066 *
3067 * Return true if the buffer is up-to-date and false,
3068 * with the buffer locked, if not.
3069 */
3070int bh_uptodate_or_lock(struct buffer_head *bh)
3071{
3072 if (!buffer_uptodate(bh)) {
3073 lock_buffer(bh);
3074 if (!buffer_uptodate(bh))
3075 return 0;
3076 unlock_buffer(bh);
3077 }
3078 return 1;
3079}
3080EXPORT_SYMBOL(bh_uptodate_or_lock);
3081
3082/**
fdee117e 3083 * __bh_read - Submit read for a locked buffer
389d1b08 3084 * @bh: struct buffer_head
fdee117e
ZY
3085 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086 * @wait: wait until reading finish
389d1b08 3087 *
fdee117e 3088 * Returns zero on success or don't wait, and -EIO on error.
389d1b08 3089 */
fdee117e 3090int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
389d1b08 3091{
fdee117e 3092 int ret = 0;
389d1b08 3093
fdee117e 3094 BUG_ON(!buffer_locked(bh));
389d1b08
AK
3095
3096 get_bh(bh);
3097 bh->b_end_io = end_buffer_read_sync;
fdee117e
ZY
3098 submit_bh(REQ_OP_READ | op_flags, bh);
3099 if (wait) {
3100 wait_on_buffer(bh);
3101 if (!buffer_uptodate(bh))
3102 ret = -EIO;
3103 }
3104 return ret;
3105}
3106EXPORT_SYMBOL(__bh_read);
3107
3108/**
3109 * __bh_read_batch - Submit read for a batch of unlocked buffers
3110 * @nr: entry number of the buffer batch
3111 * @bhs: a batch of struct buffer_head
3112 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114 * buffer that cannot lock.
3115 *
3116 * Returns zero on success or don't wait, and -EIO on error.
3117 */
3118void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119 blk_opf_t op_flags, bool force_lock)
3120{
3121 int i;
3122
3123 for (i = 0; i < nr; i++) {
3124 struct buffer_head *bh = bhs[i];
3125
3126 if (buffer_uptodate(bh))
3127 continue;
3128
3129 if (force_lock)
3130 lock_buffer(bh);
3131 else
3132 if (!trylock_buffer(bh))
3133 continue;
3134
3135 if (buffer_uptodate(bh)) {
3136 unlock_buffer(bh);
3137 continue;
3138 }
3139
3140 bh->b_end_io = end_buffer_read_sync;
3141 get_bh(bh);
3142 submit_bh(REQ_OP_READ | op_flags, bh);
3143 }
389d1b08 3144}
fdee117e 3145EXPORT_SYMBOL(__bh_read_batch);
389d1b08 3146
1da177e4
LT
3147void __init buffer_init(void)
3148{
43be594a 3149 unsigned long nrpages;
fc4d24c9 3150 int ret;
1da177e4 3151
de8a3207 3152 bh_cachep = KMEM_CACHE(buffer_head,
c997d683 3153 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
1da177e4
LT
3154 /*
3155 * Limit the bh occupancy to 10% of ZONE_NORMAL
3156 */
3157 nrpages = (nr_free_buffer_pages() * 10) / 100;
3158 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3159 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160 NULL, buffer_exit_cpu_dead);
3161 WARN_ON(ret < 0);
1da177e4 3162}
This page took 2.388077 seconds and 4 git commands to generate.