]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /******************************************************************************* |
2 | ||
3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify it | |
7 | under the terms of the GNU General Public License as published by the Free | |
8 | Software Foundation; either version 2 of the License, or (at your option) | |
9 | any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | |
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License along with | |
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | |
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | ||
20 | The full GNU General Public License is included in this distribution in the | |
21 | file called LICENSE. | |
22 | ||
23 | Contact Information: | |
24 | Linux NICS <[email protected]> | |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
26 | ||
27 | *******************************************************************************/ | |
28 | ||
29 | /* | |
30 | * e100.c: Intel(R) PRO/100 ethernet driver | |
31 | * | |
32 | * (Re)written 2003 by [email protected]. Based loosely on | |
33 | * original e100 driver, but better described as a munging of | |
34 | * e100, e1000, eepro100, tg3, 8139cp, and other drivers. | |
35 | * | |
36 | * References: | |
37 | * Intel 8255x 10/100 Mbps Ethernet Controller Family, | |
38 | * Open Source Software Developers Manual, | |
39 | * http://sourceforge.net/projects/e1000 | |
40 | * | |
41 | * | |
42 | * Theory of Operation | |
43 | * | |
44 | * I. General | |
45 | * | |
46 | * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet | |
47 | * controller family, which includes the 82557, 82558, 82559, 82550, | |
48 | * 82551, and 82562 devices. 82558 and greater controllers | |
49 | * integrate the Intel 82555 PHY. The controllers are used in | |
50 | * server and client network interface cards, as well as in | |
51 | * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx | |
52 | * configurations. 8255x supports a 32-bit linear addressing | |
53 | * mode and operates at 33Mhz PCI clock rate. | |
54 | * | |
55 | * II. Driver Operation | |
56 | * | |
57 | * Memory-mapped mode is used exclusively to access the device's | |
58 | * shared-memory structure, the Control/Status Registers (CSR). All | |
59 | * setup, configuration, and control of the device, including queuing | |
60 | * of Tx, Rx, and configuration commands is through the CSR. | |
61 | * cmd_lock serializes accesses to the CSR command register. cb_lock | |
62 | * protects the shared Command Block List (CBL). | |
63 | * | |
64 | * 8255x is highly MII-compliant and all access to the PHY go | |
65 | * through the Management Data Interface (MDI). Consequently, the | |
66 | * driver leverages the mii.c library shared with other MII-compliant | |
67 | * devices. | |
68 | * | |
69 | * Big- and Little-Endian byte order as well as 32- and 64-bit | |
70 | * archs are supported. Weak-ordered memory and non-cache-coherent | |
71 | * archs are supported. | |
72 | * | |
73 | * III. Transmit | |
74 | * | |
75 | * A Tx skb is mapped and hangs off of a TCB. TCBs are linked | |
76 | * together in a fixed-size ring (CBL) thus forming the flexible mode | |
77 | * memory structure. A TCB marked with the suspend-bit indicates | |
78 | * the end of the ring. The last TCB processed suspends the | |
79 | * controller, and the controller can be restarted by issue a CU | |
80 | * resume command to continue from the suspend point, or a CU start | |
81 | * command to start at a given position in the ring. | |
82 | * | |
83 | * Non-Tx commands (config, multicast setup, etc) are linked | |
84 | * into the CBL ring along with Tx commands. The common structure | |
85 | * used for both Tx and non-Tx commands is the Command Block (CB). | |
86 | * | |
87 | * cb_to_use is the next CB to use for queuing a command; cb_to_clean | |
88 | * is the next CB to check for completion; cb_to_send is the first | |
89 | * CB to start on in case of a previous failure to resume. CB clean | |
90 | * up happens in interrupt context in response to a CU interrupt. | |
91 | * cbs_avail keeps track of number of free CB resources available. | |
92 | * | |
93 | * Hardware padding of short packets to minimum packet size is | |
94 | * enabled. 82557 pads with 7Eh, while the later controllers pad | |
95 | * with 00h. | |
96 | * | |
97 | * IV. Recieve | |
98 | * | |
99 | * The Receive Frame Area (RFA) comprises a ring of Receive Frame | |
100 | * Descriptors (RFD) + data buffer, thus forming the simplified mode | |
101 | * memory structure. Rx skbs are allocated to contain both the RFD | |
102 | * and the data buffer, but the RFD is pulled off before the skb is | |
103 | * indicated. The data buffer is aligned such that encapsulated | |
104 | * protocol headers are u32-aligned. Since the RFD is part of the | |
105 | * mapped shared memory, and completion status is contained within | |
106 | * the RFD, the RFD must be dma_sync'ed to maintain a consistent | |
107 | * view from software and hardware. | |
108 | * | |
109 | * Under typical operation, the receive unit (RU) is start once, | |
110 | * and the controller happily fills RFDs as frames arrive. If | |
111 | * replacement RFDs cannot be allocated, or the RU goes non-active, | |
112 | * the RU must be restarted. Frame arrival generates an interrupt, | |
113 | * and Rx indication and re-allocation happen in the same context, | |
114 | * therefore no locking is required. A software-generated interrupt | |
115 | * is generated from the watchdog to recover from a failed allocation | |
116 | * senario where all Rx resources have been indicated and none re- | |
117 | * placed. | |
118 | * | |
119 | * V. Miscellaneous | |
120 | * | |
121 | * VLAN offloading of tagging, stripping and filtering is not | |
122 | * supported, but driver will accommodate the extra 4-byte VLAN tag | |
123 | * for processing by upper layers. Tx/Rx Checksum offloading is not | |
124 | * supported. Tx Scatter/Gather is not supported. Jumbo Frames is | |
125 | * not supported (hardware limitation). | |
126 | * | |
127 | * MagicPacket(tm) WoL support is enabled/disabled via ethtool. | |
128 | * | |
129 | * Thanks to JC ([email protected]) for helping with | |
130 | * testing/troubleshooting the development driver. | |
131 | * | |
132 | * TODO: | |
133 | * o several entry points race with dev->close | |
134 | * o check for tx-no-resources/stop Q races with tx clean/wake Q | |
135 | */ | |
136 | ||
137 | #include <linux/config.h> | |
138 | #include <linux/module.h> | |
139 | #include <linux/moduleparam.h> | |
140 | #include <linux/kernel.h> | |
141 | #include <linux/types.h> | |
142 | #include <linux/slab.h> | |
143 | #include <linux/delay.h> | |
144 | #include <linux/init.h> | |
145 | #include <linux/pci.h> | |
146 | #include <linux/netdevice.h> | |
147 | #include <linux/etherdevice.h> | |
148 | #include <linux/mii.h> | |
149 | #include <linux/if_vlan.h> | |
150 | #include <linux/skbuff.h> | |
151 | #include <linux/ethtool.h> | |
152 | #include <linux/string.h> | |
153 | #include <asm/unaligned.h> | |
154 | ||
155 | ||
156 | #define DRV_NAME "e100" | |
157 | #define DRV_EXT "-NAPI" | |
158 | #define DRV_VERSION "3.3.6-k2"DRV_EXT | |
159 | #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" | |
160 | #define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation" | |
161 | #define PFX DRV_NAME ": " | |
162 | ||
163 | #define E100_WATCHDOG_PERIOD (2 * HZ) | |
164 | #define E100_NAPI_WEIGHT 16 | |
165 | ||
166 | MODULE_DESCRIPTION(DRV_DESCRIPTION); | |
167 | MODULE_AUTHOR(DRV_COPYRIGHT); | |
168 | MODULE_LICENSE("GPL"); | |
169 | MODULE_VERSION(DRV_VERSION); | |
170 | ||
171 | static int debug = 3; | |
172 | module_param(debug, int, 0); | |
173 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | |
174 | #define DPRINTK(nlevel, klevel, fmt, args...) \ | |
175 | (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ | |
176 | printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ | |
177 | __FUNCTION__ , ## args)) | |
178 | ||
179 | #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ | |
180 | PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ | |
181 | PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } | |
182 | static struct pci_device_id e100_id_table[] = { | |
183 | INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), | |
184 | INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), | |
185 | INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), | |
186 | INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), | |
187 | INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), | |
188 | INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), | |
189 | INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), | |
190 | INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), | |
191 | INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), | |
192 | INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), | |
193 | INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), | |
194 | INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), | |
195 | INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), | |
196 | INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), | |
197 | INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), | |
198 | INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), | |
199 | INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), | |
200 | INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), | |
201 | INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), | |
202 | INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), | |
203 | INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), | |
204 | INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), | |
205 | INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), | |
206 | INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), | |
207 | INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), | |
208 | INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), | |
209 | INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), | |
210 | INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), | |
211 | INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), | |
212 | INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), | |
213 | INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), | |
214 | INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), | |
215 | INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), | |
216 | INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), | |
217 | INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), | |
218 | { 0, } | |
219 | }; | |
220 | MODULE_DEVICE_TABLE(pci, e100_id_table); | |
221 | ||
222 | enum mac { | |
223 | mac_82557_D100_A = 0, | |
224 | mac_82557_D100_B = 1, | |
225 | mac_82557_D100_C = 2, | |
226 | mac_82558_D101_A4 = 4, | |
227 | mac_82558_D101_B0 = 5, | |
228 | mac_82559_D101M = 8, | |
229 | mac_82559_D101S = 9, | |
230 | mac_82550_D102 = 12, | |
231 | mac_82550_D102_C = 13, | |
232 | mac_82551_E = 14, | |
233 | mac_82551_F = 15, | |
234 | mac_82551_10 = 16, | |
235 | mac_unknown = 0xFF, | |
236 | }; | |
237 | ||
238 | enum phy { | |
239 | phy_100a = 0x000003E0, | |
240 | phy_100c = 0x035002A8, | |
241 | phy_82555_tx = 0x015002A8, | |
242 | phy_nsc_tx = 0x5C002000, | |
243 | phy_82562_et = 0x033002A8, | |
244 | phy_82562_em = 0x032002A8, | |
245 | phy_82562_ek = 0x031002A8, | |
246 | phy_82562_eh = 0x017002A8, | |
247 | phy_unknown = 0xFFFFFFFF, | |
248 | }; | |
249 | ||
250 | /* CSR (Control/Status Registers) */ | |
251 | struct csr { | |
252 | struct { | |
253 | u8 status; | |
254 | u8 stat_ack; | |
255 | u8 cmd_lo; | |
256 | u8 cmd_hi; | |
257 | u32 gen_ptr; | |
258 | } scb; | |
259 | u32 port; | |
260 | u16 flash_ctrl; | |
261 | u8 eeprom_ctrl_lo; | |
262 | u8 eeprom_ctrl_hi; | |
263 | u32 mdi_ctrl; | |
264 | u32 rx_dma_count; | |
265 | }; | |
266 | ||
267 | enum scb_status { | |
268 | rus_ready = 0x10, | |
269 | rus_mask = 0x3C, | |
270 | }; | |
271 | ||
1f53367d MC |
272 | enum ru_state { |
273 | RU_SUSPENDED = 0, | |
274 | RU_RUNNING = 1, | |
275 | RU_UNINITIALIZED = -1, | |
276 | }; | |
277 | ||
1da177e4 LT |
278 | enum scb_stat_ack { |
279 | stat_ack_not_ours = 0x00, | |
280 | stat_ack_sw_gen = 0x04, | |
281 | stat_ack_rnr = 0x10, | |
282 | stat_ack_cu_idle = 0x20, | |
283 | stat_ack_frame_rx = 0x40, | |
284 | stat_ack_cu_cmd_done = 0x80, | |
285 | stat_ack_not_present = 0xFF, | |
286 | stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), | |
287 | stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), | |
288 | }; | |
289 | ||
290 | enum scb_cmd_hi { | |
291 | irq_mask_none = 0x00, | |
292 | irq_mask_all = 0x01, | |
293 | irq_sw_gen = 0x02, | |
294 | }; | |
295 | ||
296 | enum scb_cmd_lo { | |
297 | cuc_nop = 0x00, | |
298 | ruc_start = 0x01, | |
299 | ruc_load_base = 0x06, | |
300 | cuc_start = 0x10, | |
301 | cuc_resume = 0x20, | |
302 | cuc_dump_addr = 0x40, | |
303 | cuc_dump_stats = 0x50, | |
304 | cuc_load_base = 0x60, | |
305 | cuc_dump_reset = 0x70, | |
306 | }; | |
307 | ||
308 | enum cuc_dump { | |
309 | cuc_dump_complete = 0x0000A005, | |
310 | cuc_dump_reset_complete = 0x0000A007, | |
311 | }; | |
312 | ||
313 | enum port { | |
314 | software_reset = 0x0000, | |
315 | selftest = 0x0001, | |
316 | selective_reset = 0x0002, | |
317 | }; | |
318 | ||
319 | enum eeprom_ctrl_lo { | |
320 | eesk = 0x01, | |
321 | eecs = 0x02, | |
322 | eedi = 0x04, | |
323 | eedo = 0x08, | |
324 | }; | |
325 | ||
326 | enum mdi_ctrl { | |
327 | mdi_write = 0x04000000, | |
328 | mdi_read = 0x08000000, | |
329 | mdi_ready = 0x10000000, | |
330 | }; | |
331 | ||
332 | enum eeprom_op { | |
333 | op_write = 0x05, | |
334 | op_read = 0x06, | |
335 | op_ewds = 0x10, | |
336 | op_ewen = 0x13, | |
337 | }; | |
338 | ||
339 | enum eeprom_offsets { | |
340 | eeprom_cnfg_mdix = 0x03, | |
341 | eeprom_id = 0x0A, | |
342 | eeprom_config_asf = 0x0D, | |
343 | eeprom_smbus_addr = 0x90, | |
344 | }; | |
345 | ||
346 | enum eeprom_cnfg_mdix { | |
347 | eeprom_mdix_enabled = 0x0080, | |
348 | }; | |
349 | ||
350 | enum eeprom_id { | |
351 | eeprom_id_wol = 0x0020, | |
352 | }; | |
353 | ||
354 | enum eeprom_config_asf { | |
355 | eeprom_asf = 0x8000, | |
356 | eeprom_gcl = 0x4000, | |
357 | }; | |
358 | ||
359 | enum cb_status { | |
360 | cb_complete = 0x8000, | |
361 | cb_ok = 0x2000, | |
362 | }; | |
363 | ||
364 | enum cb_command { | |
365 | cb_nop = 0x0000, | |
366 | cb_iaaddr = 0x0001, | |
367 | cb_config = 0x0002, | |
368 | cb_multi = 0x0003, | |
369 | cb_tx = 0x0004, | |
370 | cb_ucode = 0x0005, | |
371 | cb_dump = 0x0006, | |
372 | cb_tx_sf = 0x0008, | |
373 | cb_cid = 0x1f00, | |
374 | cb_i = 0x2000, | |
375 | cb_s = 0x4000, | |
376 | cb_el = 0x8000, | |
377 | }; | |
378 | ||
379 | struct rfd { | |
380 | u16 status; | |
381 | u16 command; | |
382 | u32 link; | |
383 | u32 rbd; | |
384 | u16 actual_size; | |
385 | u16 size; | |
386 | }; | |
387 | ||
388 | struct rx { | |
389 | struct rx *next, *prev; | |
390 | struct sk_buff *skb; | |
391 | dma_addr_t dma_addr; | |
392 | }; | |
393 | ||
394 | #if defined(__BIG_ENDIAN_BITFIELD) | |
395 | #define X(a,b) b,a | |
396 | #else | |
397 | #define X(a,b) a,b | |
398 | #endif | |
399 | struct config { | |
400 | /*0*/ u8 X(byte_count:6, pad0:2); | |
401 | /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); | |
402 | /*2*/ u8 adaptive_ifs; | |
403 | /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), | |
404 | term_write_cache_line:1), pad3:4); | |
405 | /*4*/ u8 X(rx_dma_max_count:7, pad4:1); | |
406 | /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); | |
407 | /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), | |
408 | tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), | |
409 | rx_discard_overruns:1), rx_save_bad_frames:1); | |
410 | /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), | |
411 | pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), | |
412 | tx_dynamic_tbd:1); | |
413 | /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); | |
414 | /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), | |
415 | link_status_wake:1), arp_wake:1), mcmatch_wake:1); | |
416 | /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), | |
417 | loopback:2); | |
418 | /*11*/ u8 X(linear_priority:3, pad11:5); | |
419 | /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); | |
420 | /*13*/ u8 ip_addr_lo; | |
421 | /*14*/ u8 ip_addr_hi; | |
422 | /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), | |
423 | wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), | |
424 | pad15_2:1), crs_or_cdt:1); | |
425 | /*16*/ u8 fc_delay_lo; | |
426 | /*17*/ u8 fc_delay_hi; | |
427 | /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), | |
428 | rx_long_ok:1), fc_priority_threshold:3), pad18:1); | |
429 | /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), | |
430 | fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), | |
431 | full_duplex_force:1), full_duplex_pin:1); | |
432 | /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); | |
433 | /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); | |
434 | /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); | |
435 | u8 pad_d102[9]; | |
436 | }; | |
437 | ||
438 | #define E100_MAX_MULTICAST_ADDRS 64 | |
439 | struct multi { | |
440 | u16 count; | |
441 | u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; | |
442 | }; | |
443 | ||
444 | /* Important: keep total struct u32-aligned */ | |
445 | #define UCODE_SIZE 134 | |
446 | struct cb { | |
447 | u16 status; | |
448 | u16 command; | |
449 | u32 link; | |
450 | union { | |
451 | u8 iaaddr[ETH_ALEN]; | |
452 | u32 ucode[UCODE_SIZE]; | |
453 | struct config config; | |
454 | struct multi multi; | |
455 | struct { | |
456 | u32 tbd_array; | |
457 | u16 tcb_byte_count; | |
458 | u8 threshold; | |
459 | u8 tbd_count; | |
460 | struct { | |
461 | u32 buf_addr; | |
462 | u16 size; | |
463 | u16 eol; | |
464 | } tbd; | |
465 | } tcb; | |
466 | u32 dump_buffer_addr; | |
467 | } u; | |
468 | struct cb *next, *prev; | |
469 | dma_addr_t dma_addr; | |
470 | struct sk_buff *skb; | |
471 | }; | |
472 | ||
473 | enum loopback { | |
474 | lb_none = 0, lb_mac = 1, lb_phy = 3, | |
475 | }; | |
476 | ||
477 | struct stats { | |
478 | u32 tx_good_frames, tx_max_collisions, tx_late_collisions, | |
479 | tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, | |
480 | tx_multiple_collisions, tx_total_collisions; | |
481 | u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, | |
482 | rx_resource_errors, rx_overrun_errors, rx_cdt_errors, | |
483 | rx_short_frame_errors; | |
484 | u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; | |
485 | u16 xmt_tco_frames, rcv_tco_frames; | |
486 | u32 complete; | |
487 | }; | |
488 | ||
489 | struct mem { | |
490 | struct { | |
491 | u32 signature; | |
492 | u32 result; | |
493 | } selftest; | |
494 | struct stats stats; | |
495 | u8 dump_buf[596]; | |
496 | }; | |
497 | ||
498 | struct param_range { | |
499 | u32 min; | |
500 | u32 max; | |
501 | u32 count; | |
502 | }; | |
503 | ||
504 | struct params { | |
505 | struct param_range rfds; | |
506 | struct param_range cbs; | |
507 | }; | |
508 | ||
509 | struct nic { | |
510 | /* Begin: frequently used values: keep adjacent for cache effect */ | |
511 | u32 msg_enable ____cacheline_aligned; | |
512 | struct net_device *netdev; | |
513 | struct pci_dev *pdev; | |
514 | ||
515 | struct rx *rxs ____cacheline_aligned; | |
516 | struct rx *rx_to_use; | |
517 | struct rx *rx_to_clean; | |
518 | struct rfd blank_rfd; | |
1f53367d | 519 | enum ru_state ru_running; |
1da177e4 LT |
520 | |
521 | spinlock_t cb_lock ____cacheline_aligned; | |
522 | spinlock_t cmd_lock; | |
523 | struct csr __iomem *csr; | |
524 | enum scb_cmd_lo cuc_cmd; | |
525 | unsigned int cbs_avail; | |
526 | struct cb *cbs; | |
527 | struct cb *cb_to_use; | |
528 | struct cb *cb_to_send; | |
529 | struct cb *cb_to_clean; | |
530 | u16 tx_command; | |
531 | /* End: frequently used values: keep adjacent for cache effect */ | |
532 | ||
533 | enum { | |
534 | ich = (1 << 0), | |
535 | promiscuous = (1 << 1), | |
536 | multicast_all = (1 << 2), | |
537 | wol_magic = (1 << 3), | |
538 | ich_10h_workaround = (1 << 4), | |
539 | } flags ____cacheline_aligned; | |
540 | ||
541 | enum mac mac; | |
542 | enum phy phy; | |
543 | struct params params; | |
544 | struct net_device_stats net_stats; | |
545 | struct timer_list watchdog; | |
546 | struct timer_list blink_timer; | |
547 | struct mii_if_info mii; | |
2acdb1e0 | 548 | struct work_struct tx_timeout_task; |
1da177e4 LT |
549 | enum loopback loopback; |
550 | ||
551 | struct mem *mem; | |
552 | dma_addr_t dma_addr; | |
553 | ||
554 | dma_addr_t cbs_dma_addr; | |
555 | u8 adaptive_ifs; | |
556 | u8 tx_threshold; | |
557 | u32 tx_frames; | |
558 | u32 tx_collisions; | |
559 | u32 tx_deferred; | |
560 | u32 tx_single_collisions; | |
561 | u32 tx_multiple_collisions; | |
562 | u32 tx_fc_pause; | |
563 | u32 tx_tco_frames; | |
564 | ||
565 | u32 rx_fc_pause; | |
566 | u32 rx_fc_unsupported; | |
567 | u32 rx_tco_frames; | |
568 | u32 rx_over_length_errors; | |
569 | ||
570 | u8 rev_id; | |
571 | u16 leds; | |
572 | u16 eeprom_wc; | |
573 | u16 eeprom[256]; | |
574 | }; | |
575 | ||
576 | static inline void e100_write_flush(struct nic *nic) | |
577 | { | |
578 | /* Flush previous PCI writes through intermediate bridges | |
579 | * by doing a benign read */ | |
580 | (void)readb(&nic->csr->scb.status); | |
581 | } | |
582 | ||
583 | static inline void e100_enable_irq(struct nic *nic) | |
584 | { | |
585 | unsigned long flags; | |
586 | ||
587 | spin_lock_irqsave(&nic->cmd_lock, flags); | |
588 | writeb(irq_mask_none, &nic->csr->scb.cmd_hi); | |
589 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | |
590 | e100_write_flush(nic); | |
591 | } | |
592 | ||
593 | static inline void e100_disable_irq(struct nic *nic) | |
594 | { | |
595 | unsigned long flags; | |
596 | ||
597 | spin_lock_irqsave(&nic->cmd_lock, flags); | |
598 | writeb(irq_mask_all, &nic->csr->scb.cmd_hi); | |
599 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | |
600 | e100_write_flush(nic); | |
601 | } | |
602 | ||
603 | static void e100_hw_reset(struct nic *nic) | |
604 | { | |
605 | /* Put CU and RU into idle with a selective reset to get | |
606 | * device off of PCI bus */ | |
607 | writel(selective_reset, &nic->csr->port); | |
608 | e100_write_flush(nic); udelay(20); | |
609 | ||
610 | /* Now fully reset device */ | |
611 | writel(software_reset, &nic->csr->port); | |
612 | e100_write_flush(nic); udelay(20); | |
613 | ||
614 | /* Mask off our interrupt line - it's unmasked after reset */ | |
615 | e100_disable_irq(nic); | |
616 | } | |
617 | ||
618 | static int e100_self_test(struct nic *nic) | |
619 | { | |
620 | u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); | |
621 | ||
622 | /* Passing the self-test is a pretty good indication | |
623 | * that the device can DMA to/from host memory */ | |
624 | ||
625 | nic->mem->selftest.signature = 0; | |
626 | nic->mem->selftest.result = 0xFFFFFFFF; | |
627 | ||
628 | writel(selftest | dma_addr, &nic->csr->port); | |
629 | e100_write_flush(nic); | |
630 | /* Wait 10 msec for self-test to complete */ | |
631 | msleep(10); | |
632 | ||
633 | /* Interrupts are enabled after self-test */ | |
634 | e100_disable_irq(nic); | |
635 | ||
636 | /* Check results of self-test */ | |
637 | if(nic->mem->selftest.result != 0) { | |
638 | DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", | |
639 | nic->mem->selftest.result); | |
640 | return -ETIMEDOUT; | |
641 | } | |
642 | if(nic->mem->selftest.signature == 0) { | |
643 | DPRINTK(HW, ERR, "Self-test failed: timed out\n"); | |
644 | return -ETIMEDOUT; | |
645 | } | |
646 | ||
647 | return 0; | |
648 | } | |
649 | ||
650 | static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) | |
651 | { | |
652 | u32 cmd_addr_data[3]; | |
653 | u8 ctrl; | |
654 | int i, j; | |
655 | ||
656 | /* Three cmds: write/erase enable, write data, write/erase disable */ | |
657 | cmd_addr_data[0] = op_ewen << (addr_len - 2); | |
658 | cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | | |
659 | cpu_to_le16(data); | |
660 | cmd_addr_data[2] = op_ewds << (addr_len - 2); | |
661 | ||
662 | /* Bit-bang cmds to write word to eeprom */ | |
663 | for(j = 0; j < 3; j++) { | |
664 | ||
665 | /* Chip select */ | |
666 | writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | |
667 | e100_write_flush(nic); udelay(4); | |
668 | ||
669 | for(i = 31; i >= 0; i--) { | |
670 | ctrl = (cmd_addr_data[j] & (1 << i)) ? | |
671 | eecs | eedi : eecs; | |
672 | writeb(ctrl, &nic->csr->eeprom_ctrl_lo); | |
673 | e100_write_flush(nic); udelay(4); | |
674 | ||
675 | writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | |
676 | e100_write_flush(nic); udelay(4); | |
677 | } | |
678 | /* Wait 10 msec for cmd to complete */ | |
679 | msleep(10); | |
680 | ||
681 | /* Chip deselect */ | |
682 | writeb(0, &nic->csr->eeprom_ctrl_lo); | |
683 | e100_write_flush(nic); udelay(4); | |
684 | } | |
685 | }; | |
686 | ||
687 | /* General technique stolen from the eepro100 driver - very clever */ | |
688 | static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) | |
689 | { | |
690 | u32 cmd_addr_data; | |
691 | u16 data = 0; | |
692 | u8 ctrl; | |
693 | int i; | |
694 | ||
695 | cmd_addr_data = ((op_read << *addr_len) | addr) << 16; | |
696 | ||
697 | /* Chip select */ | |
698 | writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | |
699 | e100_write_flush(nic); udelay(4); | |
700 | ||
701 | /* Bit-bang to read word from eeprom */ | |
702 | for(i = 31; i >= 0; i--) { | |
703 | ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; | |
704 | writeb(ctrl, &nic->csr->eeprom_ctrl_lo); | |
705 | e100_write_flush(nic); udelay(4); | |
706 | ||
707 | writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | |
708 | e100_write_flush(nic); udelay(4); | |
709 | ||
710 | /* Eeprom drives a dummy zero to EEDO after receiving | |
711 | * complete address. Use this to adjust addr_len. */ | |
712 | ctrl = readb(&nic->csr->eeprom_ctrl_lo); | |
713 | if(!(ctrl & eedo) && i > 16) { | |
714 | *addr_len -= (i - 16); | |
715 | i = 17; | |
716 | } | |
717 | ||
718 | data = (data << 1) | (ctrl & eedo ? 1 : 0); | |
719 | } | |
720 | ||
721 | /* Chip deselect */ | |
722 | writeb(0, &nic->csr->eeprom_ctrl_lo); | |
723 | e100_write_flush(nic); udelay(4); | |
724 | ||
725 | return le16_to_cpu(data); | |
726 | }; | |
727 | ||
728 | /* Load entire EEPROM image into driver cache and validate checksum */ | |
729 | static int e100_eeprom_load(struct nic *nic) | |
730 | { | |
731 | u16 addr, addr_len = 8, checksum = 0; | |
732 | ||
733 | /* Try reading with an 8-bit addr len to discover actual addr len */ | |
734 | e100_eeprom_read(nic, &addr_len, 0); | |
735 | nic->eeprom_wc = 1 << addr_len; | |
736 | ||
737 | for(addr = 0; addr < nic->eeprom_wc; addr++) { | |
738 | nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); | |
739 | if(addr < nic->eeprom_wc - 1) | |
740 | checksum += cpu_to_le16(nic->eeprom[addr]); | |
741 | } | |
742 | ||
743 | /* The checksum, stored in the last word, is calculated such that | |
744 | * the sum of words should be 0xBABA */ | |
745 | checksum = le16_to_cpu(0xBABA - checksum); | |
746 | if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { | |
747 | DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); | |
748 | return -EAGAIN; | |
749 | } | |
750 | ||
751 | return 0; | |
752 | } | |
753 | ||
754 | /* Save (portion of) driver EEPROM cache to device and update checksum */ | |
755 | static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) | |
756 | { | |
757 | u16 addr, addr_len = 8, checksum = 0; | |
758 | ||
759 | /* Try reading with an 8-bit addr len to discover actual addr len */ | |
760 | e100_eeprom_read(nic, &addr_len, 0); | |
761 | nic->eeprom_wc = 1 << addr_len; | |
762 | ||
763 | if(start + count >= nic->eeprom_wc) | |
764 | return -EINVAL; | |
765 | ||
766 | for(addr = start; addr < start + count; addr++) | |
767 | e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); | |
768 | ||
769 | /* The checksum, stored in the last word, is calculated such that | |
770 | * the sum of words should be 0xBABA */ | |
771 | for(addr = 0; addr < nic->eeprom_wc - 1; addr++) | |
772 | checksum += cpu_to_le16(nic->eeprom[addr]); | |
773 | nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); | |
774 | e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, | |
775 | nic->eeprom[nic->eeprom_wc - 1]); | |
776 | ||
777 | return 0; | |
778 | } | |
779 | ||
780 | #define E100_WAIT_SCB_TIMEOUT 40 | |
781 | static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) | |
782 | { | |
783 | unsigned long flags; | |
784 | unsigned int i; | |
785 | int err = 0; | |
786 | ||
787 | spin_lock_irqsave(&nic->cmd_lock, flags); | |
788 | ||
789 | /* Previous command is accepted when SCB clears */ | |
790 | for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { | |
791 | if(likely(!readb(&nic->csr->scb.cmd_lo))) | |
792 | break; | |
793 | cpu_relax(); | |
794 | if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1))) | |
795 | udelay(5); | |
796 | } | |
797 | if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { | |
798 | err = -EAGAIN; | |
799 | goto err_unlock; | |
800 | } | |
801 | ||
802 | if(unlikely(cmd != cuc_resume)) | |
803 | writel(dma_addr, &nic->csr->scb.gen_ptr); | |
804 | writeb(cmd, &nic->csr->scb.cmd_lo); | |
805 | ||
806 | err_unlock: | |
807 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | |
808 | ||
809 | return err; | |
810 | } | |
811 | ||
812 | static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, | |
813 | void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) | |
814 | { | |
815 | struct cb *cb; | |
816 | unsigned long flags; | |
817 | int err = 0; | |
818 | ||
819 | spin_lock_irqsave(&nic->cb_lock, flags); | |
820 | ||
821 | if(unlikely(!nic->cbs_avail)) { | |
822 | err = -ENOMEM; | |
823 | goto err_unlock; | |
824 | } | |
825 | ||
826 | cb = nic->cb_to_use; | |
827 | nic->cb_to_use = cb->next; | |
828 | nic->cbs_avail--; | |
829 | cb->skb = skb; | |
830 | ||
831 | if(unlikely(!nic->cbs_avail)) | |
832 | err = -ENOSPC; | |
833 | ||
834 | cb_prepare(nic, cb, skb); | |
835 | ||
836 | /* Order is important otherwise we'll be in a race with h/w: | |
837 | * set S-bit in current first, then clear S-bit in previous. */ | |
838 | cb->command |= cpu_to_le16(cb_s); | |
839 | wmb(); | |
840 | cb->prev->command &= cpu_to_le16(~cb_s); | |
841 | ||
842 | while(nic->cb_to_send != nic->cb_to_use) { | |
843 | if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, | |
844 | nic->cb_to_send->dma_addr))) { | |
845 | /* Ok, here's where things get sticky. It's | |
846 | * possible that we can't schedule the command | |
847 | * because the controller is too busy, so | |
848 | * let's just queue the command and try again | |
849 | * when another command is scheduled. */ | |
850 | break; | |
851 | } else { | |
852 | nic->cuc_cmd = cuc_resume; | |
853 | nic->cb_to_send = nic->cb_to_send->next; | |
854 | } | |
855 | } | |
856 | ||
857 | err_unlock: | |
858 | spin_unlock_irqrestore(&nic->cb_lock, flags); | |
859 | ||
860 | return err; | |
861 | } | |
862 | ||
863 | static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) | |
864 | { | |
865 | u32 data_out = 0; | |
866 | unsigned int i; | |
867 | ||
868 | writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); | |
869 | ||
870 | for(i = 0; i < 100; i++) { | |
871 | udelay(20); | |
872 | if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) | |
873 | break; | |
874 | } | |
875 | ||
876 | DPRINTK(HW, DEBUG, | |
877 | "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", | |
878 | dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); | |
879 | return (u16)data_out; | |
880 | } | |
881 | ||
882 | static int mdio_read(struct net_device *netdev, int addr, int reg) | |
883 | { | |
884 | return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); | |
885 | } | |
886 | ||
887 | static void mdio_write(struct net_device *netdev, int addr, int reg, int data) | |
888 | { | |
889 | mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); | |
890 | } | |
891 | ||
892 | static void e100_get_defaults(struct nic *nic) | |
893 | { | |
894 | struct param_range rfds = { .min = 64, .max = 256, .count = 64 }; | |
895 | struct param_range cbs = { .min = 64, .max = 256, .count = 64 }; | |
896 | ||
897 | pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); | |
898 | /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ | |
899 | nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; | |
900 | if(nic->mac == mac_unknown) | |
901 | nic->mac = mac_82557_D100_A; | |
902 | ||
903 | nic->params.rfds = rfds; | |
904 | nic->params.cbs = cbs; | |
905 | ||
906 | /* Quadwords to DMA into FIFO before starting frame transmit */ | |
907 | nic->tx_threshold = 0xE0; | |
908 | ||
909 | nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf | | |
910 | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0)); | |
911 | ||
912 | /* Template for a freshly allocated RFD */ | |
913 | nic->blank_rfd.command = cpu_to_le16(cb_el); | |
914 | nic->blank_rfd.rbd = 0xFFFFFFFF; | |
915 | nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); | |
916 | ||
917 | /* MII setup */ | |
918 | nic->mii.phy_id_mask = 0x1F; | |
919 | nic->mii.reg_num_mask = 0x1F; | |
920 | nic->mii.dev = nic->netdev; | |
921 | nic->mii.mdio_read = mdio_read; | |
922 | nic->mii.mdio_write = mdio_write; | |
923 | } | |
924 | ||
925 | static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) | |
926 | { | |
927 | struct config *config = &cb->u.config; | |
928 | u8 *c = (u8 *)config; | |
929 | ||
930 | cb->command = cpu_to_le16(cb_config); | |
931 | ||
932 | memset(config, 0, sizeof(struct config)); | |
933 | ||
934 | config->byte_count = 0x16; /* bytes in this struct */ | |
935 | config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ | |
936 | config->direct_rx_dma = 0x1; /* reserved */ | |
937 | config->standard_tcb = 0x1; /* 1=standard, 0=extended */ | |
938 | config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ | |
939 | config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ | |
940 | config->tx_underrun_retry = 0x3; /* # of underrun retries */ | |
941 | config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ | |
942 | config->pad10 = 0x6; | |
943 | config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ | |
944 | config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ | |
945 | config->ifs = 0x6; /* x16 = inter frame spacing */ | |
946 | config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ | |
947 | config->pad15_1 = 0x1; | |
948 | config->pad15_2 = 0x1; | |
949 | config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ | |
950 | config->fc_delay_hi = 0x40; /* time delay for fc frame */ | |
951 | config->tx_padding = 0x1; /* 1=pad short frames */ | |
952 | config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ | |
953 | config->pad18 = 0x1; | |
954 | config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ | |
955 | config->pad20_1 = 0x1F; | |
956 | config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ | |
957 | config->pad21_1 = 0x5; | |
958 | ||
959 | config->adaptive_ifs = nic->adaptive_ifs; | |
960 | config->loopback = nic->loopback; | |
961 | ||
962 | if(nic->mii.force_media && nic->mii.full_duplex) | |
963 | config->full_duplex_force = 0x1; /* 1=force, 0=auto */ | |
964 | ||
965 | if(nic->flags & promiscuous || nic->loopback) { | |
966 | config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ | |
967 | config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ | |
968 | config->promiscuous_mode = 0x1; /* 1=on, 0=off */ | |
969 | } | |
970 | ||
971 | if(nic->flags & multicast_all) | |
972 | config->multicast_all = 0x1; /* 1=accept, 0=no */ | |
973 | ||
974 | if(!(nic->flags & wol_magic)) | |
975 | config->magic_packet_disable = 0x1; /* 1=off, 0=on */ | |
976 | ||
977 | if(nic->mac >= mac_82558_D101_A4) { | |
978 | config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ | |
979 | config->mwi_enable = 0x1; /* 1=enable, 0=disable */ | |
980 | config->standard_tcb = 0x0; /* 1=standard, 0=extended */ | |
981 | config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ | |
982 | if(nic->mac >= mac_82559_D101M) | |
983 | config->tno_intr = 0x1; /* TCO stats enable */ | |
984 | else | |
985 | config->standard_stat_counter = 0x0; | |
986 | } | |
987 | ||
988 | DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | |
989 | c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); | |
990 | DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | |
991 | c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); | |
992 | DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | |
993 | c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); | |
994 | } | |
995 | ||
996 | static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) | |
997 | { | |
998 | int i; | |
999 | static const u32 ucode[UCODE_SIZE] = { | |
1000 | /* NFS packets are misinterpreted as TCO packets and | |
1001 | * incorrectly routed to the BMC over SMBus. This | |
1002 | * microcode patch checks the fragmented IP bit in the | |
1003 | * NFS/UDP header to distinguish between NFS and TCO. */ | |
1004 | 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, | |
1005 | 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, | |
1006 | 0x00906EFD, 0x00900EFD, 0x00E00EF8, | |
1007 | }; | |
1008 | ||
1009 | if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) { | |
1010 | for(i = 0; i < UCODE_SIZE; i++) | |
1011 | cb->u.ucode[i] = cpu_to_le32(ucode[i]); | |
1012 | cb->command = cpu_to_le16(cb_ucode); | |
1013 | } else | |
1014 | cb->command = cpu_to_le16(cb_nop); | |
1015 | } | |
1016 | ||
1017 | static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, | |
1018 | struct sk_buff *skb) | |
1019 | { | |
1020 | cb->command = cpu_to_le16(cb_iaaddr); | |
1021 | memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); | |
1022 | } | |
1023 | ||
1024 | static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) | |
1025 | { | |
1026 | cb->command = cpu_to_le16(cb_dump); | |
1027 | cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + | |
1028 | offsetof(struct mem, dump_buf)); | |
1029 | } | |
1030 | ||
1031 | #define NCONFIG_AUTO_SWITCH 0x0080 | |
1032 | #define MII_NSC_CONG MII_RESV1 | |
1033 | #define NSC_CONG_ENABLE 0x0100 | |
1034 | #define NSC_CONG_TXREADY 0x0400 | |
1035 | #define ADVERTISE_FC_SUPPORTED 0x0400 | |
1036 | static int e100_phy_init(struct nic *nic) | |
1037 | { | |
1038 | struct net_device *netdev = nic->netdev; | |
1039 | u32 addr; | |
1040 | u16 bmcr, stat, id_lo, id_hi, cong; | |
1041 | ||
1042 | /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ | |
1043 | for(addr = 0; addr < 32; addr++) { | |
1044 | nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; | |
1045 | bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); | |
1046 | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | |
1047 | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | |
1048 | if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) | |
1049 | break; | |
1050 | } | |
1051 | DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); | |
1052 | if(addr == 32) | |
1053 | return -EAGAIN; | |
1054 | ||
1055 | /* Selected the phy and isolate the rest */ | |
1056 | for(addr = 0; addr < 32; addr++) { | |
1057 | if(addr != nic->mii.phy_id) { | |
1058 | mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); | |
1059 | } else { | |
1060 | bmcr = mdio_read(netdev, addr, MII_BMCR); | |
1061 | mdio_write(netdev, addr, MII_BMCR, | |
1062 | bmcr & ~BMCR_ISOLATE); | |
1063 | } | |
1064 | } | |
1065 | ||
1066 | /* Get phy ID */ | |
1067 | id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); | |
1068 | id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); | |
1069 | nic->phy = (u32)id_hi << 16 | (u32)id_lo; | |
1070 | DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); | |
1071 | ||
1072 | /* Handle National tx phys */ | |
1073 | #define NCS_PHY_MODEL_MASK 0xFFF0FFFF | |
1074 | if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { | |
1075 | /* Disable congestion control */ | |
1076 | cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); | |
1077 | cong |= NSC_CONG_TXREADY; | |
1078 | cong &= ~NSC_CONG_ENABLE; | |
1079 | mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); | |
1080 | } | |
1081 | ||
1082 | if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && | |
1083 | (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && | |
1084 | (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) | |
1085 | /* enable/disable MDI/MDI-X auto-switching */ | |
1086 | mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, | |
1087 | nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); | |
1088 | ||
1089 | return 0; | |
1090 | } | |
1091 | ||
1092 | static int e100_hw_init(struct nic *nic) | |
1093 | { | |
1094 | int err; | |
1095 | ||
1096 | e100_hw_reset(nic); | |
1097 | ||
1098 | DPRINTK(HW, ERR, "e100_hw_init\n"); | |
1099 | if(!in_interrupt() && (err = e100_self_test(nic))) | |
1100 | return err; | |
1101 | ||
1102 | if((err = e100_phy_init(nic))) | |
1103 | return err; | |
1104 | if((err = e100_exec_cmd(nic, cuc_load_base, 0))) | |
1105 | return err; | |
1106 | if((err = e100_exec_cmd(nic, ruc_load_base, 0))) | |
1107 | return err; | |
1108 | if((err = e100_exec_cb(nic, NULL, e100_load_ucode))) | |
1109 | return err; | |
1110 | if((err = e100_exec_cb(nic, NULL, e100_configure))) | |
1111 | return err; | |
1112 | if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) | |
1113 | return err; | |
1114 | if((err = e100_exec_cmd(nic, cuc_dump_addr, | |
1115 | nic->dma_addr + offsetof(struct mem, stats)))) | |
1116 | return err; | |
1117 | if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) | |
1118 | return err; | |
1119 | ||
1120 | e100_disable_irq(nic); | |
1121 | ||
1122 | return 0; | |
1123 | } | |
1124 | ||
1125 | static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) | |
1126 | { | |
1127 | struct net_device *netdev = nic->netdev; | |
1128 | struct dev_mc_list *list = netdev->mc_list; | |
1129 | u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); | |
1130 | ||
1131 | cb->command = cpu_to_le16(cb_multi); | |
1132 | cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); | |
1133 | for(i = 0; list && i < count; i++, list = list->next) | |
1134 | memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, | |
1135 | ETH_ALEN); | |
1136 | } | |
1137 | ||
1138 | static void e100_set_multicast_list(struct net_device *netdev) | |
1139 | { | |
1140 | struct nic *nic = netdev_priv(netdev); | |
1141 | ||
1142 | DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", | |
1143 | netdev->mc_count, netdev->flags); | |
1144 | ||
1145 | if(netdev->flags & IFF_PROMISC) | |
1146 | nic->flags |= promiscuous; | |
1147 | else | |
1148 | nic->flags &= ~promiscuous; | |
1149 | ||
1150 | if(netdev->flags & IFF_ALLMULTI || | |
1151 | netdev->mc_count > E100_MAX_MULTICAST_ADDRS) | |
1152 | nic->flags |= multicast_all; | |
1153 | else | |
1154 | nic->flags &= ~multicast_all; | |
1155 | ||
1156 | e100_exec_cb(nic, NULL, e100_configure); | |
1157 | e100_exec_cb(nic, NULL, e100_multi); | |
1158 | } | |
1159 | ||
1160 | static void e100_update_stats(struct nic *nic) | |
1161 | { | |
1162 | struct net_device_stats *ns = &nic->net_stats; | |
1163 | struct stats *s = &nic->mem->stats; | |
1164 | u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : | |
1165 | (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : | |
1166 | &s->complete; | |
1167 | ||
1168 | /* Device's stats reporting may take several microseconds to | |
1169 | * complete, so where always waiting for results of the | |
1170 | * previous command. */ | |
1171 | ||
1172 | if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { | |
1173 | *complete = 0; | |
1174 | nic->tx_frames = le32_to_cpu(s->tx_good_frames); | |
1175 | nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); | |
1176 | ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); | |
1177 | ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); | |
1178 | ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); | |
1179 | ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); | |
1180 | ns->collisions += nic->tx_collisions; | |
1181 | ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + | |
1182 | le32_to_cpu(s->tx_lost_crs); | |
1183 | ns->rx_dropped += le32_to_cpu(s->rx_resource_errors); | |
1184 | ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + | |
1185 | nic->rx_over_length_errors; | |
1186 | ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); | |
1187 | ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); | |
1188 | ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); | |
1189 | ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); | |
1190 | ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + | |
1191 | le32_to_cpu(s->rx_alignment_errors) + | |
1192 | le32_to_cpu(s->rx_short_frame_errors) + | |
1193 | le32_to_cpu(s->rx_cdt_errors); | |
1194 | nic->tx_deferred += le32_to_cpu(s->tx_deferred); | |
1195 | nic->tx_single_collisions += | |
1196 | le32_to_cpu(s->tx_single_collisions); | |
1197 | nic->tx_multiple_collisions += | |
1198 | le32_to_cpu(s->tx_multiple_collisions); | |
1199 | if(nic->mac >= mac_82558_D101_A4) { | |
1200 | nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); | |
1201 | nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); | |
1202 | nic->rx_fc_unsupported += | |
1203 | le32_to_cpu(s->fc_rcv_unsupported); | |
1204 | if(nic->mac >= mac_82559_D101M) { | |
1205 | nic->tx_tco_frames += | |
1206 | le16_to_cpu(s->xmt_tco_frames); | |
1207 | nic->rx_tco_frames += | |
1208 | le16_to_cpu(s->rcv_tco_frames); | |
1209 | } | |
1210 | } | |
1211 | } | |
1212 | ||
1f53367d MC |
1213 | |
1214 | if(e100_exec_cmd(nic, cuc_dump_reset, 0)) | |
1215 | DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); | |
1da177e4 LT |
1216 | } |
1217 | ||
1218 | static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) | |
1219 | { | |
1220 | /* Adjust inter-frame-spacing (IFS) between two transmits if | |
1221 | * we're getting collisions on a half-duplex connection. */ | |
1222 | ||
1223 | if(duplex == DUPLEX_HALF) { | |
1224 | u32 prev = nic->adaptive_ifs; | |
1225 | u32 min_frames = (speed == SPEED_100) ? 1000 : 100; | |
1226 | ||
1227 | if((nic->tx_frames / 32 < nic->tx_collisions) && | |
1228 | (nic->tx_frames > min_frames)) { | |
1229 | if(nic->adaptive_ifs < 60) | |
1230 | nic->adaptive_ifs += 5; | |
1231 | } else if (nic->tx_frames < min_frames) { | |
1232 | if(nic->adaptive_ifs >= 5) | |
1233 | nic->adaptive_ifs -= 5; | |
1234 | } | |
1235 | if(nic->adaptive_ifs != prev) | |
1236 | e100_exec_cb(nic, NULL, e100_configure); | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | static void e100_watchdog(unsigned long data) | |
1241 | { | |
1242 | struct nic *nic = (struct nic *)data; | |
1243 | struct ethtool_cmd cmd; | |
1244 | ||
1245 | DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); | |
1246 | ||
1247 | /* mii library handles link maintenance tasks */ | |
1248 | ||
1249 | mii_ethtool_gset(&nic->mii, &cmd); | |
1250 | ||
1251 | if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { | |
1252 | DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", | |
1253 | cmd.speed == SPEED_100 ? "100" : "10", | |
1254 | cmd.duplex == DUPLEX_FULL ? "full" : "half"); | |
1255 | } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { | |
1256 | DPRINTK(LINK, INFO, "link down\n"); | |
1257 | } | |
1258 | ||
1259 | mii_check_link(&nic->mii); | |
1260 | ||
1261 | /* Software generated interrupt to recover from (rare) Rx | |
1262 | * allocation failure. | |
1263 | * Unfortunately have to use a spinlock to not re-enable interrupts | |
1264 | * accidentally, due to hardware that shares a register between the | |
1265 | * interrupt mask bit and the SW Interrupt generation bit */ | |
1266 | spin_lock_irq(&nic->cmd_lock); | |
1267 | writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); | |
1268 | spin_unlock_irq(&nic->cmd_lock); | |
1269 | e100_write_flush(nic); | |
1270 | ||
1271 | e100_update_stats(nic); | |
1272 | e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); | |
1273 | ||
1274 | if(nic->mac <= mac_82557_D100_C) | |
1275 | /* Issue a multicast command to workaround a 557 lock up */ | |
1276 | e100_set_multicast_list(nic->netdev); | |
1277 | ||
1278 | if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) | |
1279 | /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ | |
1280 | nic->flags |= ich_10h_workaround; | |
1281 | else | |
1282 | nic->flags &= ~ich_10h_workaround; | |
1283 | ||
1284 | mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); | |
1285 | } | |
1286 | ||
1287 | static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, | |
1288 | struct sk_buff *skb) | |
1289 | { | |
1290 | cb->command = nic->tx_command; | |
1291 | cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); | |
1292 | cb->u.tcb.tcb_byte_count = 0; | |
1293 | cb->u.tcb.threshold = nic->tx_threshold; | |
1294 | cb->u.tcb.tbd_count = 1; | |
1295 | cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, | |
1296 | skb->data, skb->len, PCI_DMA_TODEVICE)); | |
1297 | cb->u.tcb.tbd.size = cpu_to_le16(skb->len); | |
1298 | } | |
1299 | ||
1300 | static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |
1301 | { | |
1302 | struct nic *nic = netdev_priv(netdev); | |
1303 | int err; | |
1304 | ||
1305 | if(nic->flags & ich_10h_workaround) { | |
1306 | /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. | |
1307 | Issue a NOP command followed by a 1us delay before | |
1308 | issuing the Tx command. */ | |
1f53367d MC |
1309 | if(e100_exec_cmd(nic, cuc_nop, 0)) |
1310 | DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); | |
1da177e4 LT |
1311 | udelay(1); |
1312 | } | |
1313 | ||
1314 | err = e100_exec_cb(nic, skb, e100_xmit_prepare); | |
1315 | ||
1316 | switch(err) { | |
1317 | case -ENOSPC: | |
1318 | /* We queued the skb, but now we're out of space. */ | |
1319 | DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); | |
1320 | netif_stop_queue(netdev); | |
1321 | break; | |
1322 | case -ENOMEM: | |
1323 | /* This is a hard error - log it. */ | |
1324 | DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); | |
1325 | netif_stop_queue(netdev); | |
1326 | return 1; | |
1327 | } | |
1328 | ||
1329 | netdev->trans_start = jiffies; | |
1330 | return 0; | |
1331 | } | |
1332 | ||
1333 | static inline int e100_tx_clean(struct nic *nic) | |
1334 | { | |
1335 | struct cb *cb; | |
1336 | int tx_cleaned = 0; | |
1337 | ||
1338 | spin_lock(&nic->cb_lock); | |
1339 | ||
1340 | DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", | |
1341 | nic->cb_to_clean->status); | |
1342 | ||
1343 | /* Clean CBs marked complete */ | |
1344 | for(cb = nic->cb_to_clean; | |
1345 | cb->status & cpu_to_le16(cb_complete); | |
1346 | cb = nic->cb_to_clean = cb->next) { | |
1347 | if(likely(cb->skb != NULL)) { | |
1348 | nic->net_stats.tx_packets++; | |
1349 | nic->net_stats.tx_bytes += cb->skb->len; | |
1350 | ||
1351 | pci_unmap_single(nic->pdev, | |
1352 | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | |
1353 | le16_to_cpu(cb->u.tcb.tbd.size), | |
1354 | PCI_DMA_TODEVICE); | |
1355 | dev_kfree_skb_any(cb->skb); | |
1356 | cb->skb = NULL; | |
1357 | tx_cleaned = 1; | |
1358 | } | |
1359 | cb->status = 0; | |
1360 | nic->cbs_avail++; | |
1361 | } | |
1362 | ||
1363 | spin_unlock(&nic->cb_lock); | |
1364 | ||
1365 | /* Recover from running out of Tx resources in xmit_frame */ | |
1366 | if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) | |
1367 | netif_wake_queue(nic->netdev); | |
1368 | ||
1369 | return tx_cleaned; | |
1370 | } | |
1371 | ||
1372 | static void e100_clean_cbs(struct nic *nic) | |
1373 | { | |
1374 | if(nic->cbs) { | |
1375 | while(nic->cbs_avail != nic->params.cbs.count) { | |
1376 | struct cb *cb = nic->cb_to_clean; | |
1377 | if(cb->skb) { | |
1378 | pci_unmap_single(nic->pdev, | |
1379 | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | |
1380 | le16_to_cpu(cb->u.tcb.tbd.size), | |
1381 | PCI_DMA_TODEVICE); | |
1382 | dev_kfree_skb(cb->skb); | |
1383 | } | |
1384 | nic->cb_to_clean = nic->cb_to_clean->next; | |
1385 | nic->cbs_avail++; | |
1386 | } | |
1387 | pci_free_consistent(nic->pdev, | |
1388 | sizeof(struct cb) * nic->params.cbs.count, | |
1389 | nic->cbs, nic->cbs_dma_addr); | |
1390 | nic->cbs = NULL; | |
1391 | nic->cbs_avail = 0; | |
1392 | } | |
1393 | nic->cuc_cmd = cuc_start; | |
1394 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = | |
1395 | nic->cbs; | |
1396 | } | |
1397 | ||
1398 | static int e100_alloc_cbs(struct nic *nic) | |
1399 | { | |
1400 | struct cb *cb; | |
1401 | unsigned int i, count = nic->params.cbs.count; | |
1402 | ||
1403 | nic->cuc_cmd = cuc_start; | |
1404 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; | |
1405 | nic->cbs_avail = 0; | |
1406 | ||
1407 | nic->cbs = pci_alloc_consistent(nic->pdev, | |
1408 | sizeof(struct cb) * count, &nic->cbs_dma_addr); | |
1409 | if(!nic->cbs) | |
1410 | return -ENOMEM; | |
1411 | ||
1412 | for(cb = nic->cbs, i = 0; i < count; cb++, i++) { | |
1413 | cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; | |
1414 | cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; | |
1415 | ||
1416 | cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); | |
1417 | cb->link = cpu_to_le32(nic->cbs_dma_addr + | |
1418 | ((i+1) % count) * sizeof(struct cb)); | |
1419 | cb->skb = NULL; | |
1420 | } | |
1421 | ||
1422 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; | |
1423 | nic->cbs_avail = count; | |
1424 | ||
1425 | return 0; | |
1426 | } | |
1427 | ||
1f53367d | 1428 | static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
1da177e4 | 1429 | { |
1f53367d MC |
1430 | if(!nic->rxs) return; |
1431 | if(RU_SUSPENDED != nic->ru_running) return; | |
1432 | ||
1433 | /* handle init time starts */ | |
1434 | if(!rx) rx = nic->rxs; | |
1435 | ||
1da177e4 | 1436 | /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
1f53367d MC |
1437 | if(rx->skb) { |
1438 | e100_exec_cmd(nic, ruc_start, rx->dma_addr); | |
1439 | nic->ru_running = RU_RUNNING; | |
1da177e4 LT |
1440 | } |
1441 | } | |
1442 | ||
1443 | #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) | |
1444 | static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) | |
1445 | { | |
1446 | if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) | |
1447 | return -ENOMEM; | |
1448 | ||
1449 | /* Align, init, and map the RFD. */ | |
1450 | rx->skb->dev = nic->netdev; | |
1451 | skb_reserve(rx->skb, NET_IP_ALIGN); | |
1452 | memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); | |
1453 | rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, | |
1454 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | |
1455 | ||
1f53367d MC |
1456 | if(pci_dma_mapping_error(rx->dma_addr)) { |
1457 | dev_kfree_skb_any(rx->skb); | |
1458 | rx->skb = 0; | |
1459 | rx->dma_addr = 0; | |
1460 | return -ENOMEM; | |
1461 | } | |
1462 | ||
1da177e4 LT |
1463 | /* Link the RFD to end of RFA by linking previous RFD to |
1464 | * this one, and clearing EL bit of previous. */ | |
1465 | if(rx->prev->skb) { | |
1466 | struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; | |
1467 | put_unaligned(cpu_to_le32(rx->dma_addr), | |
1468 | (u32 *)&prev_rfd->link); | |
1469 | wmb(); | |
1470 | prev_rfd->command &= ~cpu_to_le16(cb_el); | |
1471 | pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, | |
1472 | sizeof(struct rfd), PCI_DMA_TODEVICE); | |
1473 | } | |
1474 | ||
1475 | return 0; | |
1476 | } | |
1477 | ||
1478 | static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, | |
1479 | unsigned int *work_done, unsigned int work_to_do) | |
1480 | { | |
1481 | struct sk_buff *skb = rx->skb; | |
1482 | struct rfd *rfd = (struct rfd *)skb->data; | |
1483 | u16 rfd_status, actual_size; | |
1484 | ||
1485 | if(unlikely(work_done && *work_done >= work_to_do)) | |
1486 | return -EAGAIN; | |
1487 | ||
1488 | /* Need to sync before taking a peek at cb_complete bit */ | |
1489 | pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, | |
1490 | sizeof(struct rfd), PCI_DMA_FROMDEVICE); | |
1491 | rfd_status = le16_to_cpu(rfd->status); | |
1492 | ||
1493 | DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); | |
1494 | ||
1495 | /* If data isn't ready, nothing to indicate */ | |
1496 | if(unlikely(!(rfd_status & cb_complete))) | |
1f53367d | 1497 | return -ENODATA; |
1da177e4 LT |
1498 | |
1499 | /* Get actual data size */ | |
1500 | actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; | |
1501 | if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) | |
1502 | actual_size = RFD_BUF_LEN - sizeof(struct rfd); | |
1503 | ||
1504 | /* Get data */ | |
1505 | pci_unmap_single(nic->pdev, rx->dma_addr, | |
1506 | RFD_BUF_LEN, PCI_DMA_FROMDEVICE); | |
1507 | ||
1f53367d MC |
1508 | /* this allows for a fast restart without re-enabling interrupts */ |
1509 | if(le16_to_cpu(rfd->command) & cb_el) | |
1510 | nic->ru_running = RU_SUSPENDED; | |
1511 | ||
1da177e4 LT |
1512 | /* Pull off the RFD and put the actual data (minus eth hdr) */ |
1513 | skb_reserve(skb, sizeof(struct rfd)); | |
1514 | skb_put(skb, actual_size); | |
1515 | skb->protocol = eth_type_trans(skb, nic->netdev); | |
1516 | ||
1517 | if(unlikely(!(rfd_status & cb_ok))) { | |
1518 | /* Don't indicate if hardware indicates errors */ | |
1519 | nic->net_stats.rx_dropped++; | |
1520 | dev_kfree_skb_any(skb); | |
1521 | } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) { | |
1522 | /* Don't indicate oversized frames */ | |
1523 | nic->rx_over_length_errors++; | |
1524 | nic->net_stats.rx_dropped++; | |
1525 | dev_kfree_skb_any(skb); | |
1526 | } else { | |
1527 | nic->net_stats.rx_packets++; | |
1528 | nic->net_stats.rx_bytes += actual_size; | |
1529 | nic->netdev->last_rx = jiffies; | |
1530 | netif_receive_skb(skb); | |
1531 | if(work_done) | |
1532 | (*work_done)++; | |
1533 | } | |
1534 | ||
1535 | rx->skb = NULL; | |
1536 | ||
1537 | return 0; | |
1538 | } | |
1539 | ||
1540 | static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, | |
1541 | unsigned int work_to_do) | |
1542 | { | |
1543 | struct rx *rx; | |
1f53367d MC |
1544 | int restart_required = 0; |
1545 | struct rx *rx_to_start = NULL; | |
1546 | ||
1547 | /* are we already rnr? then pay attention!!! this ensures that | |
1548 | * the state machine progression never allows a start with a | |
1549 | * partially cleaned list, avoiding a race between hardware | |
1550 | * and rx_to_clean when in NAPI mode */ | |
1551 | if(RU_SUSPENDED == nic->ru_running) | |
1552 | restart_required = 1; | |
1da177e4 LT |
1553 | |
1554 | /* Indicate newly arrived packets */ | |
1555 | for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { | |
1f53367d MC |
1556 | int err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
1557 | if(-EAGAIN == err) { | |
1558 | /* hit quota so have more work to do, restart once | |
1559 | * cleanup is complete */ | |
1560 | restart_required = 0; | |
1561 | break; | |
1562 | } else if(-ENODATA == err) | |
1da177e4 LT |
1563 | break; /* No more to clean */ |
1564 | } | |
1565 | ||
1f53367d MC |
1566 | /* save our starting point as the place we'll restart the receiver */ |
1567 | if(restart_required) | |
1568 | rx_to_start = nic->rx_to_clean; | |
1569 | ||
1da177e4 LT |
1570 | /* Alloc new skbs to refill list */ |
1571 | for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { | |
1572 | if(unlikely(e100_rx_alloc_skb(nic, rx))) | |
1573 | break; /* Better luck next time (see watchdog) */ | |
1574 | } | |
1575 | ||
1f53367d MC |
1576 | if(restart_required) { |
1577 | // ack the rnr? | |
1578 | writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); | |
1579 | e100_start_receiver(nic, rx_to_start); | |
1580 | if(work_done) | |
1581 | (*work_done)++; | |
1582 | } | |
1da177e4 LT |
1583 | } |
1584 | ||
1585 | static void e100_rx_clean_list(struct nic *nic) | |
1586 | { | |
1587 | struct rx *rx; | |
1588 | unsigned int i, count = nic->params.rfds.count; | |
1589 | ||
1f53367d MC |
1590 | nic->ru_running = RU_UNINITIALIZED; |
1591 | ||
1da177e4 LT |
1592 | if(nic->rxs) { |
1593 | for(rx = nic->rxs, i = 0; i < count; rx++, i++) { | |
1594 | if(rx->skb) { | |
1595 | pci_unmap_single(nic->pdev, rx->dma_addr, | |
1596 | RFD_BUF_LEN, PCI_DMA_FROMDEVICE); | |
1597 | dev_kfree_skb(rx->skb); | |
1598 | } | |
1599 | } | |
1600 | kfree(nic->rxs); | |
1601 | nic->rxs = NULL; | |
1602 | } | |
1603 | ||
1604 | nic->rx_to_use = nic->rx_to_clean = NULL; | |
1da177e4 LT |
1605 | } |
1606 | ||
1607 | static int e100_rx_alloc_list(struct nic *nic) | |
1608 | { | |
1609 | struct rx *rx; | |
1610 | unsigned int i, count = nic->params.rfds.count; | |
1611 | ||
1612 | nic->rx_to_use = nic->rx_to_clean = NULL; | |
1f53367d | 1613 | nic->ru_running = RU_UNINITIALIZED; |
1da177e4 LT |
1614 | |
1615 | if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) | |
1616 | return -ENOMEM; | |
1617 | memset(nic->rxs, 0, sizeof(struct rx) * count); | |
1618 | ||
1619 | for(rx = nic->rxs, i = 0; i < count; rx++, i++) { | |
1620 | rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; | |
1621 | rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; | |
1622 | if(e100_rx_alloc_skb(nic, rx)) { | |
1623 | e100_rx_clean_list(nic); | |
1624 | return -ENOMEM; | |
1625 | } | |
1626 | } | |
1627 | ||
1628 | nic->rx_to_use = nic->rx_to_clean = nic->rxs; | |
1f53367d | 1629 | nic->ru_running = RU_SUSPENDED; |
1da177e4 LT |
1630 | |
1631 | return 0; | |
1632 | } | |
1633 | ||
1634 | static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) | |
1635 | { | |
1636 | struct net_device *netdev = dev_id; | |
1637 | struct nic *nic = netdev_priv(netdev); | |
1638 | u8 stat_ack = readb(&nic->csr->scb.stat_ack); | |
1639 | ||
1640 | DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); | |
1641 | ||
1642 | if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ | |
1643 | stat_ack == stat_ack_not_present) /* Hardware is ejected */ | |
1644 | return IRQ_NONE; | |
1645 | ||
1646 | /* Ack interrupt(s) */ | |
1647 | writeb(stat_ack, &nic->csr->scb.stat_ack); | |
1648 | ||
1649 | /* We hit Receive No Resource (RNR); restart RU after cleaning */ | |
1650 | if(stat_ack & stat_ack_rnr) | |
1f53367d | 1651 | nic->ru_running = RU_SUSPENDED; |
1da177e4 LT |
1652 | |
1653 | e100_disable_irq(nic); | |
1654 | netif_rx_schedule(netdev); | |
1655 | ||
1656 | return IRQ_HANDLED; | |
1657 | } | |
1658 | ||
1659 | static int e100_poll(struct net_device *netdev, int *budget) | |
1660 | { | |
1661 | struct nic *nic = netdev_priv(netdev); | |
1662 | unsigned int work_to_do = min(netdev->quota, *budget); | |
1663 | unsigned int work_done = 0; | |
1664 | int tx_cleaned; | |
1665 | ||
1666 | e100_rx_clean(nic, &work_done, work_to_do); | |
1667 | tx_cleaned = e100_tx_clean(nic); | |
1668 | ||
1669 | /* If no Rx and Tx cleanup work was done, exit polling mode. */ | |
1670 | if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { | |
1671 | netif_rx_complete(netdev); | |
1672 | e100_enable_irq(nic); | |
1673 | return 0; | |
1674 | } | |
1675 | ||
1676 | *budget -= work_done; | |
1677 | netdev->quota -= work_done; | |
1678 | ||
1679 | return 1; | |
1680 | } | |
1681 | ||
1682 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
1683 | static void e100_netpoll(struct net_device *netdev) | |
1684 | { | |
1685 | struct nic *nic = netdev_priv(netdev); | |
1686 | e100_disable_irq(nic); | |
1687 | e100_intr(nic->pdev->irq, netdev, NULL); | |
1688 | e100_tx_clean(nic); | |
1689 | e100_enable_irq(nic); | |
1690 | } | |
1691 | #endif | |
1692 | ||
1693 | static struct net_device_stats *e100_get_stats(struct net_device *netdev) | |
1694 | { | |
1695 | struct nic *nic = netdev_priv(netdev); | |
1696 | return &nic->net_stats; | |
1697 | } | |
1698 | ||
1699 | static int e100_set_mac_address(struct net_device *netdev, void *p) | |
1700 | { | |
1701 | struct nic *nic = netdev_priv(netdev); | |
1702 | struct sockaddr *addr = p; | |
1703 | ||
1704 | if (!is_valid_ether_addr(addr->sa_data)) | |
1705 | return -EADDRNOTAVAIL; | |
1706 | ||
1707 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | |
1708 | e100_exec_cb(nic, NULL, e100_setup_iaaddr); | |
1709 | ||
1710 | return 0; | |
1711 | } | |
1712 | ||
1713 | static int e100_change_mtu(struct net_device *netdev, int new_mtu) | |
1714 | { | |
1715 | if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) | |
1716 | return -EINVAL; | |
1717 | netdev->mtu = new_mtu; | |
1718 | return 0; | |
1719 | } | |
1720 | ||
1721 | static int e100_asf(struct nic *nic) | |
1722 | { | |
1723 | /* ASF can be enabled from eeprom */ | |
1724 | return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && | |
1725 | (nic->eeprom[eeprom_config_asf] & eeprom_asf) && | |
1726 | !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && | |
1727 | ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); | |
1728 | } | |
1729 | ||
1730 | static int e100_up(struct nic *nic) | |
1731 | { | |
1732 | int err; | |
1733 | ||
1734 | if((err = e100_rx_alloc_list(nic))) | |
1735 | return err; | |
1736 | if((err = e100_alloc_cbs(nic))) | |
1737 | goto err_rx_clean_list; | |
1738 | if((err = e100_hw_init(nic))) | |
1739 | goto err_clean_cbs; | |
1740 | e100_set_multicast_list(nic->netdev); | |
1f53367d | 1741 | e100_start_receiver(nic, 0); |
1da177e4 LT |
1742 | mod_timer(&nic->watchdog, jiffies); |
1743 | if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, | |
1744 | nic->netdev->name, nic->netdev))) | |
1745 | goto err_no_irq; | |
1da177e4 | 1746 | netif_wake_queue(nic->netdev); |
0236ebb7 MC |
1747 | netif_poll_enable(nic->netdev); |
1748 | /* enable ints _after_ enabling poll, preventing a race between | |
1749 | * disable ints+schedule */ | |
1750 | e100_enable_irq(nic); | |
1da177e4 LT |
1751 | return 0; |
1752 | ||
1753 | err_no_irq: | |
1754 | del_timer_sync(&nic->watchdog); | |
1755 | err_clean_cbs: | |
1756 | e100_clean_cbs(nic); | |
1757 | err_rx_clean_list: | |
1758 | e100_rx_clean_list(nic); | |
1759 | return err; | |
1760 | } | |
1761 | ||
1762 | static void e100_down(struct nic *nic) | |
1763 | { | |
0236ebb7 MC |
1764 | /* wait here for poll to complete */ |
1765 | netif_poll_disable(nic->netdev); | |
1766 | netif_stop_queue(nic->netdev); | |
1da177e4 LT |
1767 | e100_hw_reset(nic); |
1768 | free_irq(nic->pdev->irq, nic->netdev); | |
1769 | del_timer_sync(&nic->watchdog); | |
1770 | netif_carrier_off(nic->netdev); | |
1da177e4 LT |
1771 | e100_clean_cbs(nic); |
1772 | e100_rx_clean_list(nic); | |
1773 | } | |
1774 | ||
1775 | static void e100_tx_timeout(struct net_device *netdev) | |
1776 | { | |
1777 | struct nic *nic = netdev_priv(netdev); | |
1778 | ||
2acdb1e0 MC |
1779 | /* Reset outside of interrupt context, to avoid request_irq |
1780 | * in interrupt context */ | |
1781 | schedule_work(&nic->tx_timeout_task); | |
1782 | } | |
1783 | ||
1784 | static void e100_tx_timeout_task(struct net_device *netdev) | |
1785 | { | |
1786 | struct nic *nic = netdev_priv(netdev); | |
1787 | ||
1da177e4 LT |
1788 | DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", |
1789 | readb(&nic->csr->scb.status)); | |
1790 | e100_down(netdev_priv(netdev)); | |
1791 | e100_up(netdev_priv(netdev)); | |
1792 | } | |
1793 | ||
1794 | static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) | |
1795 | { | |
1796 | int err; | |
1797 | struct sk_buff *skb; | |
1798 | ||
1799 | /* Use driver resources to perform internal MAC or PHY | |
1800 | * loopback test. A single packet is prepared and transmitted | |
1801 | * in loopback mode, and the test passes if the received | |
1802 | * packet compares byte-for-byte to the transmitted packet. */ | |
1803 | ||
1804 | if((err = e100_rx_alloc_list(nic))) | |
1805 | return err; | |
1806 | if((err = e100_alloc_cbs(nic))) | |
1807 | goto err_clean_rx; | |
1808 | ||
1809 | /* ICH PHY loopback is broken so do MAC loopback instead */ | |
1810 | if(nic->flags & ich && loopback_mode == lb_phy) | |
1811 | loopback_mode = lb_mac; | |
1812 | ||
1813 | nic->loopback = loopback_mode; | |
1814 | if((err = e100_hw_init(nic))) | |
1815 | goto err_loopback_none; | |
1816 | ||
1817 | if(loopback_mode == lb_phy) | |
1818 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, | |
1819 | BMCR_LOOPBACK); | |
1820 | ||
1f53367d | 1821 | e100_start_receiver(nic, 0); |
1da177e4 LT |
1822 | |
1823 | if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { | |
1824 | err = -ENOMEM; | |
1825 | goto err_loopback_none; | |
1826 | } | |
1827 | skb_put(skb, ETH_DATA_LEN); | |
1828 | memset(skb->data, 0xFF, ETH_DATA_LEN); | |
1829 | e100_xmit_frame(skb, nic->netdev); | |
1830 | ||
1831 | msleep(10); | |
1832 | ||
1833 | if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), | |
1834 | skb->data, ETH_DATA_LEN)) | |
1835 | err = -EAGAIN; | |
1836 | ||
1837 | err_loopback_none: | |
1838 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); | |
1839 | nic->loopback = lb_none; | |
1840 | e100_hw_init(nic); | |
1841 | e100_clean_cbs(nic); | |
1842 | err_clean_rx: | |
1843 | e100_rx_clean_list(nic); | |
1844 | return err; | |
1845 | } | |
1846 | ||
1847 | #define MII_LED_CONTROL 0x1B | |
1848 | static void e100_blink_led(unsigned long data) | |
1849 | { | |
1850 | struct nic *nic = (struct nic *)data; | |
1851 | enum led_state { | |
1852 | led_on = 0x01, | |
1853 | led_off = 0x04, | |
1854 | led_on_559 = 0x05, | |
1855 | led_on_557 = 0x07, | |
1856 | }; | |
1857 | ||
1858 | nic->leds = (nic->leds & led_on) ? led_off : | |
1859 | (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; | |
1860 | mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); | |
1861 | mod_timer(&nic->blink_timer, jiffies + HZ / 4); | |
1862 | } | |
1863 | ||
1864 | static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | |
1865 | { | |
1866 | struct nic *nic = netdev_priv(netdev); | |
1867 | return mii_ethtool_gset(&nic->mii, cmd); | |
1868 | } | |
1869 | ||
1870 | static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | |
1871 | { | |
1872 | struct nic *nic = netdev_priv(netdev); | |
1873 | int err; | |
1874 | ||
1875 | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); | |
1876 | err = mii_ethtool_sset(&nic->mii, cmd); | |
1877 | e100_exec_cb(nic, NULL, e100_configure); | |
1878 | ||
1879 | return err; | |
1880 | } | |
1881 | ||
1882 | static void e100_get_drvinfo(struct net_device *netdev, | |
1883 | struct ethtool_drvinfo *info) | |
1884 | { | |
1885 | struct nic *nic = netdev_priv(netdev); | |
1886 | strcpy(info->driver, DRV_NAME); | |
1887 | strcpy(info->version, DRV_VERSION); | |
1888 | strcpy(info->fw_version, "N/A"); | |
1889 | strcpy(info->bus_info, pci_name(nic->pdev)); | |
1890 | } | |
1891 | ||
1892 | static int e100_get_regs_len(struct net_device *netdev) | |
1893 | { | |
1894 | struct nic *nic = netdev_priv(netdev); | |
1895 | #define E100_PHY_REGS 0x1C | |
1896 | #define E100_REGS_LEN 1 + E100_PHY_REGS + \ | |
1897 | sizeof(nic->mem->dump_buf) / sizeof(u32) | |
1898 | return E100_REGS_LEN * sizeof(u32); | |
1899 | } | |
1900 | ||
1901 | static void e100_get_regs(struct net_device *netdev, | |
1902 | struct ethtool_regs *regs, void *p) | |
1903 | { | |
1904 | struct nic *nic = netdev_priv(netdev); | |
1905 | u32 *buff = p; | |
1906 | int i; | |
1907 | ||
1908 | regs->version = (1 << 24) | nic->rev_id; | |
1909 | buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | | |
1910 | readb(&nic->csr->scb.cmd_lo) << 16 | | |
1911 | readw(&nic->csr->scb.status); | |
1912 | for(i = E100_PHY_REGS; i >= 0; i--) | |
1913 | buff[1 + E100_PHY_REGS - i] = | |
1914 | mdio_read(netdev, nic->mii.phy_id, i); | |
1915 | memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); | |
1916 | e100_exec_cb(nic, NULL, e100_dump); | |
1917 | msleep(10); | |
1918 | memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, | |
1919 | sizeof(nic->mem->dump_buf)); | |
1920 | } | |
1921 | ||
1922 | static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | |
1923 | { | |
1924 | struct nic *nic = netdev_priv(netdev); | |
1925 | wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; | |
1926 | wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; | |
1927 | } | |
1928 | ||
1929 | static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | |
1930 | { | |
1931 | struct nic *nic = netdev_priv(netdev); | |
1932 | ||
1933 | if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) | |
1934 | return -EOPNOTSUPP; | |
1935 | ||
1936 | if(wol->wolopts) | |
1937 | nic->flags |= wol_magic; | |
1938 | else | |
1939 | nic->flags &= ~wol_magic; | |
1940 | ||
1941 | pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); | |
1942 | e100_exec_cb(nic, NULL, e100_configure); | |
1943 | ||
1944 | return 0; | |
1945 | } | |
1946 | ||
1947 | static u32 e100_get_msglevel(struct net_device *netdev) | |
1948 | { | |
1949 | struct nic *nic = netdev_priv(netdev); | |
1950 | return nic->msg_enable; | |
1951 | } | |
1952 | ||
1953 | static void e100_set_msglevel(struct net_device *netdev, u32 value) | |
1954 | { | |
1955 | struct nic *nic = netdev_priv(netdev); | |
1956 | nic->msg_enable = value; | |
1957 | } | |
1958 | ||
1959 | static int e100_nway_reset(struct net_device *netdev) | |
1960 | { | |
1961 | struct nic *nic = netdev_priv(netdev); | |
1962 | return mii_nway_restart(&nic->mii); | |
1963 | } | |
1964 | ||
1965 | static u32 e100_get_link(struct net_device *netdev) | |
1966 | { | |
1967 | struct nic *nic = netdev_priv(netdev); | |
1968 | return mii_link_ok(&nic->mii); | |
1969 | } | |
1970 | ||
1971 | static int e100_get_eeprom_len(struct net_device *netdev) | |
1972 | { | |
1973 | struct nic *nic = netdev_priv(netdev); | |
1974 | return nic->eeprom_wc << 1; | |
1975 | } | |
1976 | ||
1977 | #define E100_EEPROM_MAGIC 0x1234 | |
1978 | static int e100_get_eeprom(struct net_device *netdev, | |
1979 | struct ethtool_eeprom *eeprom, u8 *bytes) | |
1980 | { | |
1981 | struct nic *nic = netdev_priv(netdev); | |
1982 | ||
1983 | eeprom->magic = E100_EEPROM_MAGIC; | |
1984 | memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); | |
1985 | ||
1986 | return 0; | |
1987 | } | |
1988 | ||
1989 | static int e100_set_eeprom(struct net_device *netdev, | |
1990 | struct ethtool_eeprom *eeprom, u8 *bytes) | |
1991 | { | |
1992 | struct nic *nic = netdev_priv(netdev); | |
1993 | ||
1994 | if(eeprom->magic != E100_EEPROM_MAGIC) | |
1995 | return -EINVAL; | |
1996 | ||
1997 | memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); | |
1998 | ||
1999 | return e100_eeprom_save(nic, eeprom->offset >> 1, | |
2000 | (eeprom->len >> 1) + 1); | |
2001 | } | |
2002 | ||
2003 | static void e100_get_ringparam(struct net_device *netdev, | |
2004 | struct ethtool_ringparam *ring) | |
2005 | { | |
2006 | struct nic *nic = netdev_priv(netdev); | |
2007 | struct param_range *rfds = &nic->params.rfds; | |
2008 | struct param_range *cbs = &nic->params.cbs; | |
2009 | ||
2010 | ring->rx_max_pending = rfds->max; | |
2011 | ring->tx_max_pending = cbs->max; | |
2012 | ring->rx_mini_max_pending = 0; | |
2013 | ring->rx_jumbo_max_pending = 0; | |
2014 | ring->rx_pending = rfds->count; | |
2015 | ring->tx_pending = cbs->count; | |
2016 | ring->rx_mini_pending = 0; | |
2017 | ring->rx_jumbo_pending = 0; | |
2018 | } | |
2019 | ||
2020 | static int e100_set_ringparam(struct net_device *netdev, | |
2021 | struct ethtool_ringparam *ring) | |
2022 | { | |
2023 | struct nic *nic = netdev_priv(netdev); | |
2024 | struct param_range *rfds = &nic->params.rfds; | |
2025 | struct param_range *cbs = &nic->params.cbs; | |
2026 | ||
2027 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | |
2028 | return -EINVAL; | |
2029 | ||
2030 | if(netif_running(netdev)) | |
2031 | e100_down(nic); | |
2032 | rfds->count = max(ring->rx_pending, rfds->min); | |
2033 | rfds->count = min(rfds->count, rfds->max); | |
2034 | cbs->count = max(ring->tx_pending, cbs->min); | |
2035 | cbs->count = min(cbs->count, cbs->max); | |
2036 | DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", | |
2037 | rfds->count, cbs->count); | |
2038 | if(netif_running(netdev)) | |
2039 | e100_up(nic); | |
2040 | ||
2041 | return 0; | |
2042 | } | |
2043 | ||
2044 | static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { | |
2045 | "Link test (on/offline)", | |
2046 | "Eeprom test (on/offline)", | |
2047 | "Self test (offline)", | |
2048 | "Mac loopback (offline)", | |
2049 | "Phy loopback (offline)", | |
2050 | }; | |
2051 | #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN | |
2052 | ||
2053 | static int e100_diag_test_count(struct net_device *netdev) | |
2054 | { | |
2055 | return E100_TEST_LEN; | |
2056 | } | |
2057 | ||
2058 | static void e100_diag_test(struct net_device *netdev, | |
2059 | struct ethtool_test *test, u64 *data) | |
2060 | { | |
2061 | struct ethtool_cmd cmd; | |
2062 | struct nic *nic = netdev_priv(netdev); | |
2063 | int i, err; | |
2064 | ||
2065 | memset(data, 0, E100_TEST_LEN * sizeof(u64)); | |
2066 | data[0] = !mii_link_ok(&nic->mii); | |
2067 | data[1] = e100_eeprom_load(nic); | |
2068 | if(test->flags & ETH_TEST_FL_OFFLINE) { | |
2069 | ||
2070 | /* save speed, duplex & autoneg settings */ | |
2071 | err = mii_ethtool_gset(&nic->mii, &cmd); | |
2072 | ||
2073 | if(netif_running(netdev)) | |
2074 | e100_down(nic); | |
2075 | data[2] = e100_self_test(nic); | |
2076 | data[3] = e100_loopback_test(nic, lb_mac); | |
2077 | data[4] = e100_loopback_test(nic, lb_phy); | |
2078 | ||
2079 | /* restore speed, duplex & autoneg settings */ | |
2080 | err = mii_ethtool_sset(&nic->mii, &cmd); | |
2081 | ||
2082 | if(netif_running(netdev)) | |
2083 | e100_up(nic); | |
2084 | } | |
2085 | for(i = 0; i < E100_TEST_LEN; i++) | |
2086 | test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; | |
2087 | } | |
2088 | ||
2089 | static int e100_phys_id(struct net_device *netdev, u32 data) | |
2090 | { | |
2091 | struct nic *nic = netdev_priv(netdev); | |
2092 | ||
2093 | if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | |
2094 | data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); | |
2095 | mod_timer(&nic->blink_timer, jiffies); | |
2096 | msleep_interruptible(data * 1000); | |
2097 | del_timer_sync(&nic->blink_timer); | |
2098 | mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); | |
2099 | ||
2100 | return 0; | |
2101 | } | |
2102 | ||
2103 | static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { | |
2104 | "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", | |
2105 | "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", | |
2106 | "rx_length_errors", "rx_over_errors", "rx_crc_errors", | |
2107 | "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", | |
2108 | "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", | |
2109 | "tx_heartbeat_errors", "tx_window_errors", | |
2110 | /* device-specific stats */ | |
2111 | "tx_deferred", "tx_single_collisions", "tx_multi_collisions", | |
2112 | "tx_flow_control_pause", "rx_flow_control_pause", | |
2113 | "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", | |
2114 | }; | |
2115 | #define E100_NET_STATS_LEN 21 | |
2116 | #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN | |
2117 | ||
2118 | static int e100_get_stats_count(struct net_device *netdev) | |
2119 | { | |
2120 | return E100_STATS_LEN; | |
2121 | } | |
2122 | ||
2123 | static void e100_get_ethtool_stats(struct net_device *netdev, | |
2124 | struct ethtool_stats *stats, u64 *data) | |
2125 | { | |
2126 | struct nic *nic = netdev_priv(netdev); | |
2127 | int i; | |
2128 | ||
2129 | for(i = 0; i < E100_NET_STATS_LEN; i++) | |
2130 | data[i] = ((unsigned long *)&nic->net_stats)[i]; | |
2131 | ||
2132 | data[i++] = nic->tx_deferred; | |
2133 | data[i++] = nic->tx_single_collisions; | |
2134 | data[i++] = nic->tx_multiple_collisions; | |
2135 | data[i++] = nic->tx_fc_pause; | |
2136 | data[i++] = nic->rx_fc_pause; | |
2137 | data[i++] = nic->rx_fc_unsupported; | |
2138 | data[i++] = nic->tx_tco_frames; | |
2139 | data[i++] = nic->rx_tco_frames; | |
2140 | } | |
2141 | ||
2142 | static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) | |
2143 | { | |
2144 | switch(stringset) { | |
2145 | case ETH_SS_TEST: | |
2146 | memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); | |
2147 | break; | |
2148 | case ETH_SS_STATS: | |
2149 | memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); | |
2150 | break; | |
2151 | } | |
2152 | } | |
2153 | ||
2154 | static struct ethtool_ops e100_ethtool_ops = { | |
2155 | .get_settings = e100_get_settings, | |
2156 | .set_settings = e100_set_settings, | |
2157 | .get_drvinfo = e100_get_drvinfo, | |
2158 | .get_regs_len = e100_get_regs_len, | |
2159 | .get_regs = e100_get_regs, | |
2160 | .get_wol = e100_get_wol, | |
2161 | .set_wol = e100_set_wol, | |
2162 | .get_msglevel = e100_get_msglevel, | |
2163 | .set_msglevel = e100_set_msglevel, | |
2164 | .nway_reset = e100_nway_reset, | |
2165 | .get_link = e100_get_link, | |
2166 | .get_eeprom_len = e100_get_eeprom_len, | |
2167 | .get_eeprom = e100_get_eeprom, | |
2168 | .set_eeprom = e100_set_eeprom, | |
2169 | .get_ringparam = e100_get_ringparam, | |
2170 | .set_ringparam = e100_set_ringparam, | |
2171 | .self_test_count = e100_diag_test_count, | |
2172 | .self_test = e100_diag_test, | |
2173 | .get_strings = e100_get_strings, | |
2174 | .phys_id = e100_phys_id, | |
2175 | .get_stats_count = e100_get_stats_count, | |
2176 | .get_ethtool_stats = e100_get_ethtool_stats, | |
2177 | }; | |
2178 | ||
2179 | static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |
2180 | { | |
2181 | struct nic *nic = netdev_priv(netdev); | |
2182 | ||
2183 | return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); | |
2184 | } | |
2185 | ||
2186 | static int e100_alloc(struct nic *nic) | |
2187 | { | |
2188 | nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), | |
2189 | &nic->dma_addr); | |
2190 | return nic->mem ? 0 : -ENOMEM; | |
2191 | } | |
2192 | ||
2193 | static void e100_free(struct nic *nic) | |
2194 | { | |
2195 | if(nic->mem) { | |
2196 | pci_free_consistent(nic->pdev, sizeof(struct mem), | |
2197 | nic->mem, nic->dma_addr); | |
2198 | nic->mem = NULL; | |
2199 | } | |
2200 | } | |
2201 | ||
2202 | static int e100_open(struct net_device *netdev) | |
2203 | { | |
2204 | struct nic *nic = netdev_priv(netdev); | |
2205 | int err = 0; | |
2206 | ||
2207 | netif_carrier_off(netdev); | |
2208 | if((err = e100_up(nic))) | |
2209 | DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); | |
2210 | return err; | |
2211 | } | |
2212 | ||
2213 | static int e100_close(struct net_device *netdev) | |
2214 | { | |
2215 | e100_down(netdev_priv(netdev)); | |
2216 | return 0; | |
2217 | } | |
2218 | ||
2219 | static int __devinit e100_probe(struct pci_dev *pdev, | |
2220 | const struct pci_device_id *ent) | |
2221 | { | |
2222 | struct net_device *netdev; | |
2223 | struct nic *nic; | |
2224 | int err; | |
2225 | ||
2226 | if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { | |
2227 | if(((1 << debug) - 1) & NETIF_MSG_PROBE) | |
2228 | printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); | |
2229 | return -ENOMEM; | |
2230 | } | |
2231 | ||
2232 | netdev->open = e100_open; | |
2233 | netdev->stop = e100_close; | |
2234 | netdev->hard_start_xmit = e100_xmit_frame; | |
2235 | netdev->get_stats = e100_get_stats; | |
2236 | netdev->set_multicast_list = e100_set_multicast_list; | |
2237 | netdev->set_mac_address = e100_set_mac_address; | |
2238 | netdev->change_mtu = e100_change_mtu; | |
2239 | netdev->do_ioctl = e100_do_ioctl; | |
2240 | SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); | |
2241 | netdev->tx_timeout = e100_tx_timeout; | |
2242 | netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; | |
2243 | netdev->poll = e100_poll; | |
2244 | netdev->weight = E100_NAPI_WEIGHT; | |
2245 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
2246 | netdev->poll_controller = e100_netpoll; | |
2247 | #endif | |
2248 | strcpy(netdev->name, pci_name(pdev)); | |
2249 | ||
2250 | nic = netdev_priv(netdev); | |
2251 | nic->netdev = netdev; | |
2252 | nic->pdev = pdev; | |
2253 | nic->msg_enable = (1 << debug) - 1; | |
2254 | pci_set_drvdata(pdev, netdev); | |
2255 | ||
2256 | if((err = pci_enable_device(pdev))) { | |
2257 | DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); | |
2258 | goto err_out_free_dev; | |
2259 | } | |
2260 | ||
2261 | if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | |
2262 | DPRINTK(PROBE, ERR, "Cannot find proper PCI device " | |
2263 | "base address, aborting.\n"); | |
2264 | err = -ENODEV; | |
2265 | goto err_out_disable_pdev; | |
2266 | } | |
2267 | ||
2268 | if((err = pci_request_regions(pdev, DRV_NAME))) { | |
2269 | DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); | |
2270 | goto err_out_disable_pdev; | |
2271 | } | |
2272 | ||
2273 | if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) { | |
2274 | DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); | |
2275 | goto err_out_free_res; | |
2276 | } | |
2277 | ||
2278 | SET_MODULE_OWNER(netdev); | |
2279 | SET_NETDEV_DEV(netdev, &pdev->dev); | |
2280 | ||
2281 | nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); | |
2282 | if(!nic->csr) { | |
2283 | DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); | |
2284 | err = -ENOMEM; | |
2285 | goto err_out_free_res; | |
2286 | } | |
2287 | ||
2288 | if(ent->driver_data) | |
2289 | nic->flags |= ich; | |
2290 | else | |
2291 | nic->flags &= ~ich; | |
2292 | ||
2293 | e100_get_defaults(nic); | |
2294 | ||
1f53367d | 2295 | /* locks must be initialized before calling hw_reset */ |
1da177e4 LT |
2296 | spin_lock_init(&nic->cb_lock); |
2297 | spin_lock_init(&nic->cmd_lock); | |
2298 | ||
2299 | /* Reset the device before pci_set_master() in case device is in some | |
2300 | * funky state and has an interrupt pending - hint: we don't have the | |
2301 | * interrupt handler registered yet. */ | |
2302 | e100_hw_reset(nic); | |
2303 | ||
2304 | pci_set_master(pdev); | |
2305 | ||
2306 | init_timer(&nic->watchdog); | |
2307 | nic->watchdog.function = e100_watchdog; | |
2308 | nic->watchdog.data = (unsigned long)nic; | |
2309 | init_timer(&nic->blink_timer); | |
2310 | nic->blink_timer.function = e100_blink_led; | |
2311 | nic->blink_timer.data = (unsigned long)nic; | |
2312 | ||
2acdb1e0 MC |
2313 | INIT_WORK(&nic->tx_timeout_task, |
2314 | (void (*)(void *))e100_tx_timeout_task, netdev); | |
2315 | ||
1da177e4 LT |
2316 | if((err = e100_alloc(nic))) { |
2317 | DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); | |
2318 | goto err_out_iounmap; | |
2319 | } | |
2320 | ||
2321 | e100_phy_init(nic); | |
2322 | ||
2323 | if((err = e100_eeprom_load(nic))) | |
2324 | goto err_out_free; | |
2325 | ||
2326 | memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); | |
2327 | if(!is_valid_ether_addr(netdev->dev_addr)) { | |
2328 | DPRINTK(PROBE, ERR, "Invalid MAC address from " | |
2329 | "EEPROM, aborting.\n"); | |
2330 | err = -EAGAIN; | |
2331 | goto err_out_free; | |
2332 | } | |
2333 | ||
2334 | /* Wol magic packet can be enabled from eeprom */ | |
2335 | if((nic->mac >= mac_82558_D101_A4) && | |
2336 | (nic->eeprom[eeprom_id] & eeprom_id_wol)) | |
2337 | nic->flags |= wol_magic; | |
2338 | ||
2339 | pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); | |
2340 | ||
2341 | strcpy(netdev->name, "eth%d"); | |
2342 | if((err = register_netdev(netdev))) { | |
2343 | DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); | |
2344 | goto err_out_free; | |
2345 | } | |
2346 | ||
2347 | DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " | |
2348 | "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", | |
2349 | pci_resource_start(pdev, 0), pdev->irq, | |
2350 | netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], | |
2351 | netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); | |
2352 | ||
2353 | return 0; | |
2354 | ||
2355 | err_out_free: | |
2356 | e100_free(nic); | |
2357 | err_out_iounmap: | |
2358 | iounmap(nic->csr); | |
2359 | err_out_free_res: | |
2360 | pci_release_regions(pdev); | |
2361 | err_out_disable_pdev: | |
2362 | pci_disable_device(pdev); | |
2363 | err_out_free_dev: | |
2364 | pci_set_drvdata(pdev, NULL); | |
2365 | free_netdev(netdev); | |
2366 | return err; | |
2367 | } | |
2368 | ||
2369 | static void __devexit e100_remove(struct pci_dev *pdev) | |
2370 | { | |
2371 | struct net_device *netdev = pci_get_drvdata(pdev); | |
2372 | ||
2373 | if(netdev) { | |
2374 | struct nic *nic = netdev_priv(netdev); | |
2375 | unregister_netdev(netdev); | |
2376 | e100_free(nic); | |
2377 | iounmap(nic->csr); | |
2378 | free_netdev(netdev); | |
2379 | pci_release_regions(pdev); | |
2380 | pci_disable_device(pdev); | |
2381 | pci_set_drvdata(pdev, NULL); | |
2382 | } | |
2383 | } | |
2384 | ||
2385 | #ifdef CONFIG_PM | |
2386 | static int e100_suspend(struct pci_dev *pdev, pm_message_t state) | |
2387 | { | |
2388 | struct net_device *netdev = pci_get_drvdata(pdev); | |
2389 | struct nic *nic = netdev_priv(netdev); | |
2390 | ||
2391 | if(netif_running(netdev)) | |
2392 | e100_down(nic); | |
2393 | e100_hw_reset(nic); | |
2394 | netif_device_detach(netdev); | |
2395 | ||
2396 | pci_save_state(pdev); | |
2397 | pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic))); | |
2398 | pci_disable_device(pdev); | |
2399 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | |
2400 | ||
2401 | return 0; | |
2402 | } | |
2403 | ||
2404 | static int e100_resume(struct pci_dev *pdev) | |
2405 | { | |
2406 | struct net_device *netdev = pci_get_drvdata(pdev); | |
2407 | struct nic *nic = netdev_priv(netdev); | |
2408 | ||
2409 | pci_set_power_state(pdev, PCI_D0); | |
2410 | pci_restore_state(pdev); | |
1f53367d MC |
2411 | if(e100_hw_init(nic)) |
2412 | DPRINTK(HW, ERR, "e100_hw_init failed\n"); | |
1da177e4 LT |
2413 | |
2414 | netif_device_attach(netdev); | |
2415 | if(netif_running(netdev)) | |
2416 | e100_up(nic); | |
2417 | ||
2418 | return 0; | |
2419 | } | |
2420 | #endif | |
2421 | ||
2422 | static struct pci_driver e100_driver = { | |
2423 | .name = DRV_NAME, | |
2424 | .id_table = e100_id_table, | |
2425 | .probe = e100_probe, | |
2426 | .remove = __devexit_p(e100_remove), | |
2427 | #ifdef CONFIG_PM | |
2428 | .suspend = e100_suspend, | |
2429 | .resume = e100_resume, | |
2430 | #endif | |
2431 | }; | |
2432 | ||
2433 | static int __init e100_init_module(void) | |
2434 | { | |
2435 | if(((1 << debug) - 1) & NETIF_MSG_DRV) { | |
2436 | printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); | |
2437 | printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); | |
2438 | } | |
2439 | return pci_module_init(&e100_driver); | |
2440 | } | |
2441 | ||
2442 | static void __exit e100_cleanup_module(void) | |
2443 | { | |
2444 | pci_unregister_driver(&e100_driver); | |
2445 | } | |
2446 | ||
2447 | module_init(e100_init_module); | |
2448 | module_exit(e100_cleanup_module); |