]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
7ae1e1d0 GC |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
1575e68b JW |
17 | * Native page reclaim |
18 | * Charge lifetime sanitation | |
19 | * Lockless page tracking & accounting | |
20 | * Unified hierarchy configuration model | |
21 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | |
22 | * | |
8cdea7c0 BS |
23 | * This program is free software; you can redistribute it and/or modify |
24 | * it under the terms of the GNU General Public License as published by | |
25 | * the Free Software Foundation; either version 2 of the License, or | |
26 | * (at your option) any later version. | |
27 | * | |
28 | * This program is distributed in the hope that it will be useful, | |
29 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
30 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
31 | * GNU General Public License for more details. | |
32 | */ | |
33 | ||
3e32cb2e | 34 | #include <linux/page_counter.h> |
8cdea7c0 BS |
35 | #include <linux/memcontrol.h> |
36 | #include <linux/cgroup.h> | |
78fb7466 | 37 | #include <linux/mm.h> |
4ffef5fe | 38 | #include <linux/hugetlb.h> |
d13d1443 | 39 | #include <linux/pagemap.h> |
d52aa412 | 40 | #include <linux/smp.h> |
8a9f3ccd | 41 | #include <linux/page-flags.h> |
66e1707b | 42 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
43 | #include <linux/bit_spinlock.h> |
44 | #include <linux/rcupdate.h> | |
e222432b | 45 | #include <linux/limits.h> |
b9e15baf | 46 | #include <linux/export.h> |
8c7c6e34 | 47 | #include <linux/mutex.h> |
bb4cc1a8 | 48 | #include <linux/rbtree.h> |
b6ac57d5 | 49 | #include <linux/slab.h> |
66e1707b | 50 | #include <linux/swap.h> |
02491447 | 51 | #include <linux/swapops.h> |
66e1707b | 52 | #include <linux/spinlock.h> |
2e72b634 | 53 | #include <linux/eventfd.h> |
79bd9814 | 54 | #include <linux/poll.h> |
2e72b634 | 55 | #include <linux/sort.h> |
66e1707b | 56 | #include <linux/fs.h> |
d2ceb9b7 | 57 | #include <linux/seq_file.h> |
70ddf637 | 58 | #include <linux/vmpressure.h> |
b69408e8 | 59 | #include <linux/mm_inline.h> |
5d1ea48b | 60 | #include <linux/swap_cgroup.h> |
cdec2e42 | 61 | #include <linux/cpu.h> |
158e0a2d | 62 | #include <linux/oom.h> |
0056f4e6 | 63 | #include <linux/lockdep.h> |
79bd9814 | 64 | #include <linux/file.h> |
b23afb93 | 65 | #include <linux/tracehook.h> |
08e552c6 | 66 | #include "internal.h" |
d1a4c0b3 | 67 | #include <net/sock.h> |
4bd2c1ee | 68 | #include <net/ip.h> |
f35c3a8e | 69 | #include "slab.h" |
8cdea7c0 | 70 | |
8697d331 BS |
71 | #include <asm/uaccess.h> |
72 | ||
cc8e970c KM |
73 | #include <trace/events/vmscan.h> |
74 | ||
073219e9 TH |
75 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
76 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
68ae564b | 77 | |
7d828602 JW |
78 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
79 | ||
a181b0e8 | 80 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
8cdea7c0 | 81 | |
f7e1cb6e JW |
82 | /* Socket memory accounting disabled? */ |
83 | static bool cgroup_memory_nosocket; | |
84 | ||
04823c83 VD |
85 | /* Kernel memory accounting disabled? */ |
86 | static bool cgroup_memory_nokmem; | |
87 | ||
21afa38e | 88 | /* Whether the swap controller is active */ |
c255a458 | 89 | #ifdef CONFIG_MEMCG_SWAP |
c077719b | 90 | int do_swap_account __read_mostly; |
c077719b | 91 | #else |
a0db00fc | 92 | #define do_swap_account 0 |
c077719b KH |
93 | #endif |
94 | ||
7941d214 JW |
95 | /* Whether legacy memory+swap accounting is active */ |
96 | static bool do_memsw_account(void) | |
97 | { | |
98 | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | |
99 | } | |
100 | ||
af7c4b0e JW |
101 | static const char * const mem_cgroup_stat_names[] = { |
102 | "cache", | |
103 | "rss", | |
b070e65c | 104 | "rss_huge", |
af7c4b0e | 105 | "mapped_file", |
c4843a75 | 106 | "dirty", |
3ea67d06 | 107 | "writeback", |
af7c4b0e JW |
108 | "swap", |
109 | }; | |
110 | ||
af7c4b0e JW |
111 | static const char * const mem_cgroup_events_names[] = { |
112 | "pgpgin", | |
113 | "pgpgout", | |
114 | "pgfault", | |
115 | "pgmajfault", | |
116 | }; | |
117 | ||
58cf188e SZ |
118 | static const char * const mem_cgroup_lru_names[] = { |
119 | "inactive_anon", | |
120 | "active_anon", | |
121 | "inactive_file", | |
122 | "active_file", | |
123 | "unevictable", | |
124 | }; | |
125 | ||
a0db00fc KS |
126 | #define THRESHOLDS_EVENTS_TARGET 128 |
127 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
128 | #define NUMAINFO_EVENTS_TARGET 1024 | |
e9f8974f | 129 | |
bb4cc1a8 AM |
130 | /* |
131 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
132 | * their hierarchy representation | |
133 | */ | |
134 | ||
ef8f2327 | 135 | struct mem_cgroup_tree_per_node { |
bb4cc1a8 AM |
136 | struct rb_root rb_root; |
137 | spinlock_t lock; | |
138 | }; | |
139 | ||
bb4cc1a8 AM |
140 | struct mem_cgroup_tree { |
141 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
142 | }; | |
143 | ||
144 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
145 | ||
9490ff27 KH |
146 | /* for OOM */ |
147 | struct mem_cgroup_eventfd_list { | |
148 | struct list_head list; | |
149 | struct eventfd_ctx *eventfd; | |
150 | }; | |
2e72b634 | 151 | |
79bd9814 TH |
152 | /* |
153 | * cgroup_event represents events which userspace want to receive. | |
154 | */ | |
3bc942f3 | 155 | struct mem_cgroup_event { |
79bd9814 | 156 | /* |
59b6f873 | 157 | * memcg which the event belongs to. |
79bd9814 | 158 | */ |
59b6f873 | 159 | struct mem_cgroup *memcg; |
79bd9814 TH |
160 | /* |
161 | * eventfd to signal userspace about the event. | |
162 | */ | |
163 | struct eventfd_ctx *eventfd; | |
164 | /* | |
165 | * Each of these stored in a list by the cgroup. | |
166 | */ | |
167 | struct list_head list; | |
fba94807 TH |
168 | /* |
169 | * register_event() callback will be used to add new userspace | |
170 | * waiter for changes related to this event. Use eventfd_signal() | |
171 | * on eventfd to send notification to userspace. | |
172 | */ | |
59b6f873 | 173 | int (*register_event)(struct mem_cgroup *memcg, |
347c4a87 | 174 | struct eventfd_ctx *eventfd, const char *args); |
fba94807 TH |
175 | /* |
176 | * unregister_event() callback will be called when userspace closes | |
177 | * the eventfd or on cgroup removing. This callback must be set, | |
178 | * if you want provide notification functionality. | |
179 | */ | |
59b6f873 | 180 | void (*unregister_event)(struct mem_cgroup *memcg, |
fba94807 | 181 | struct eventfd_ctx *eventfd); |
79bd9814 TH |
182 | /* |
183 | * All fields below needed to unregister event when | |
184 | * userspace closes eventfd. | |
185 | */ | |
186 | poll_table pt; | |
187 | wait_queue_head_t *wqh; | |
188 | wait_queue_t wait; | |
189 | struct work_struct remove; | |
190 | }; | |
191 | ||
c0ff4b85 R |
192 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
193 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
2e72b634 | 194 | |
7dc74be0 DN |
195 | /* Stuffs for move charges at task migration. */ |
196 | /* | |
1dfab5ab | 197 | * Types of charges to be moved. |
7dc74be0 | 198 | */ |
1dfab5ab JW |
199 | #define MOVE_ANON 0x1U |
200 | #define MOVE_FILE 0x2U | |
201 | #define MOVE_MASK (MOVE_ANON | MOVE_FILE) | |
7dc74be0 | 202 | |
4ffef5fe DN |
203 | /* "mc" and its members are protected by cgroup_mutex */ |
204 | static struct move_charge_struct { | |
b1dd693e | 205 | spinlock_t lock; /* for from, to */ |
264a0ae1 | 206 | struct mm_struct *mm; |
4ffef5fe DN |
207 | struct mem_cgroup *from; |
208 | struct mem_cgroup *to; | |
1dfab5ab | 209 | unsigned long flags; |
4ffef5fe | 210 | unsigned long precharge; |
854ffa8d | 211 | unsigned long moved_charge; |
483c30b5 | 212 | unsigned long moved_swap; |
8033b97c DN |
213 | struct task_struct *moving_task; /* a task moving charges */ |
214 | wait_queue_head_t waitq; /* a waitq for other context */ | |
215 | } mc = { | |
2bd9bb20 | 216 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
217 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
218 | }; | |
4ffef5fe | 219 | |
4e416953 BS |
220 | /* |
221 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
222 | * limit reclaim to prevent infinite loops, if they ever occur. | |
223 | */ | |
a0db00fc | 224 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
bb4cc1a8 | 225 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
4e416953 | 226 | |
217bc319 KH |
227 | enum charge_type { |
228 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
41326c17 | 229 | MEM_CGROUP_CHARGE_TYPE_ANON, |
d13d1443 | 230 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 231 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
232 | NR_CHARGE_TYPE, |
233 | }; | |
234 | ||
8c7c6e34 | 235 | /* for encoding cft->private value on file */ |
86ae53e1 GC |
236 | enum res_type { |
237 | _MEM, | |
238 | _MEMSWAP, | |
239 | _OOM_TYPE, | |
510fc4e1 | 240 | _KMEM, |
d55f90bf | 241 | _TCP, |
86ae53e1 GC |
242 | }; |
243 | ||
a0db00fc KS |
244 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
245 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
8c7c6e34 | 246 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
9490ff27 KH |
247 | /* Used for OOM nofiier */ |
248 | #define OOM_CONTROL (0) | |
8c7c6e34 | 249 | |
70ddf637 AV |
250 | /* Some nice accessors for the vmpressure. */ |
251 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
252 | { | |
253 | if (!memcg) | |
254 | memcg = root_mem_cgroup; | |
255 | return &memcg->vmpressure; | |
256 | } | |
257 | ||
258 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
259 | { | |
260 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
261 | } | |
262 | ||
7ffc0edc MH |
263 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
264 | { | |
265 | return (memcg == root_mem_cgroup); | |
266 | } | |
267 | ||
127424c8 | 268 | #ifndef CONFIG_SLOB |
55007d84 | 269 | /* |
f7ce3190 | 270 | * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. |
b8627835 LZ |
271 | * The main reason for not using cgroup id for this: |
272 | * this works better in sparse environments, where we have a lot of memcgs, | |
273 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
274 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
275 | * 200 entry array for that. | |
55007d84 | 276 | * |
dbcf73e2 VD |
277 | * The current size of the caches array is stored in memcg_nr_cache_ids. It |
278 | * will double each time we have to increase it. | |
55007d84 | 279 | */ |
dbcf73e2 VD |
280 | static DEFINE_IDA(memcg_cache_ida); |
281 | int memcg_nr_cache_ids; | |
749c5415 | 282 | |
05257a1a VD |
283 | /* Protects memcg_nr_cache_ids */ |
284 | static DECLARE_RWSEM(memcg_cache_ids_sem); | |
285 | ||
286 | void memcg_get_cache_ids(void) | |
287 | { | |
288 | down_read(&memcg_cache_ids_sem); | |
289 | } | |
290 | ||
291 | void memcg_put_cache_ids(void) | |
292 | { | |
293 | up_read(&memcg_cache_ids_sem); | |
294 | } | |
295 | ||
55007d84 GC |
296 | /* |
297 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
298 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
299 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
300 | * tunable, but that is strictly not necessary. | |
301 | * | |
b8627835 | 302 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get |
55007d84 GC |
303 | * this constant directly from cgroup, but it is understandable that this is |
304 | * better kept as an internal representation in cgroup.c. In any case, the | |
b8627835 | 305 | * cgrp_id space is not getting any smaller, and we don't have to necessarily |
55007d84 GC |
306 | * increase ours as well if it increases. |
307 | */ | |
308 | #define MEMCG_CACHES_MIN_SIZE 4 | |
b8627835 | 309 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX |
55007d84 | 310 | |
d7f25f8a GC |
311 | /* |
312 | * A lot of the calls to the cache allocation functions are expected to be | |
313 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
314 | * conditional to this static branch, we'll have to allow modules that does | |
315 | * kmem_cache_alloc and the such to see this symbol as well | |
316 | */ | |
ef12947c | 317 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); |
d7f25f8a | 318 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
a8964b9b | 319 | |
127424c8 | 320 | #endif /* !CONFIG_SLOB */ |
a8964b9b | 321 | |
ad7fa852 TH |
322 | /** |
323 | * mem_cgroup_css_from_page - css of the memcg associated with a page | |
324 | * @page: page of interest | |
325 | * | |
326 | * If memcg is bound to the default hierarchy, css of the memcg associated | |
327 | * with @page is returned. The returned css remains associated with @page | |
328 | * until it is released. | |
329 | * | |
330 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | |
331 | * is returned. | |
ad7fa852 TH |
332 | */ |
333 | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | |
334 | { | |
335 | struct mem_cgroup *memcg; | |
336 | ||
ad7fa852 TH |
337 | memcg = page->mem_cgroup; |
338 | ||
9e10a130 | 339 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
ad7fa852 TH |
340 | memcg = root_mem_cgroup; |
341 | ||
ad7fa852 TH |
342 | return &memcg->css; |
343 | } | |
344 | ||
2fc04524 VD |
345 | /** |
346 | * page_cgroup_ino - return inode number of the memcg a page is charged to | |
347 | * @page: the page | |
348 | * | |
349 | * Look up the closest online ancestor of the memory cgroup @page is charged to | |
350 | * and return its inode number or 0 if @page is not charged to any cgroup. It | |
351 | * is safe to call this function without holding a reference to @page. | |
352 | * | |
353 | * Note, this function is inherently racy, because there is nothing to prevent | |
354 | * the cgroup inode from getting torn down and potentially reallocated a moment | |
355 | * after page_cgroup_ino() returns, so it only should be used by callers that | |
356 | * do not care (such as procfs interfaces). | |
357 | */ | |
358 | ino_t page_cgroup_ino(struct page *page) | |
359 | { | |
360 | struct mem_cgroup *memcg; | |
361 | unsigned long ino = 0; | |
362 | ||
363 | rcu_read_lock(); | |
364 | memcg = READ_ONCE(page->mem_cgroup); | |
365 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | |
366 | memcg = parent_mem_cgroup(memcg); | |
367 | if (memcg) | |
368 | ino = cgroup_ino(memcg->css.cgroup); | |
369 | rcu_read_unlock(); | |
370 | return ino; | |
371 | } | |
372 | ||
ef8f2327 MG |
373 | static struct mem_cgroup_per_node * |
374 | mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) | |
f64c3f54 | 375 | { |
97a6c37b | 376 | int nid = page_to_nid(page); |
f64c3f54 | 377 | |
ef8f2327 | 378 | return memcg->nodeinfo[nid]; |
f64c3f54 BS |
379 | } |
380 | ||
ef8f2327 MG |
381 | static struct mem_cgroup_tree_per_node * |
382 | soft_limit_tree_node(int nid) | |
bb4cc1a8 | 383 | { |
ef8f2327 | 384 | return soft_limit_tree.rb_tree_per_node[nid]; |
bb4cc1a8 AM |
385 | } |
386 | ||
ef8f2327 | 387 | static struct mem_cgroup_tree_per_node * |
bb4cc1a8 AM |
388 | soft_limit_tree_from_page(struct page *page) |
389 | { | |
390 | int nid = page_to_nid(page); | |
bb4cc1a8 | 391 | |
ef8f2327 | 392 | return soft_limit_tree.rb_tree_per_node[nid]; |
bb4cc1a8 AM |
393 | } |
394 | ||
ef8f2327 MG |
395 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, |
396 | struct mem_cgroup_tree_per_node *mctz, | |
3e32cb2e | 397 | unsigned long new_usage_in_excess) |
bb4cc1a8 AM |
398 | { |
399 | struct rb_node **p = &mctz->rb_root.rb_node; | |
400 | struct rb_node *parent = NULL; | |
ef8f2327 | 401 | struct mem_cgroup_per_node *mz_node; |
bb4cc1a8 AM |
402 | |
403 | if (mz->on_tree) | |
404 | return; | |
405 | ||
406 | mz->usage_in_excess = new_usage_in_excess; | |
407 | if (!mz->usage_in_excess) | |
408 | return; | |
409 | while (*p) { | |
410 | parent = *p; | |
ef8f2327 | 411 | mz_node = rb_entry(parent, struct mem_cgroup_per_node, |
bb4cc1a8 AM |
412 | tree_node); |
413 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
414 | p = &(*p)->rb_left; | |
415 | /* | |
416 | * We can't avoid mem cgroups that are over their soft | |
417 | * limit by the same amount | |
418 | */ | |
419 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
420 | p = &(*p)->rb_right; | |
421 | } | |
422 | rb_link_node(&mz->tree_node, parent, p); | |
423 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
424 | mz->on_tree = true; | |
425 | } | |
426 | ||
ef8f2327 MG |
427 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
428 | struct mem_cgroup_tree_per_node *mctz) | |
bb4cc1a8 AM |
429 | { |
430 | if (!mz->on_tree) | |
431 | return; | |
432 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
433 | mz->on_tree = false; | |
434 | } | |
435 | ||
ef8f2327 MG |
436 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
437 | struct mem_cgroup_tree_per_node *mctz) | |
bb4cc1a8 | 438 | { |
0a31bc97 JW |
439 | unsigned long flags; |
440 | ||
441 | spin_lock_irqsave(&mctz->lock, flags); | |
cf2c8127 | 442 | __mem_cgroup_remove_exceeded(mz, mctz); |
0a31bc97 | 443 | spin_unlock_irqrestore(&mctz->lock, flags); |
bb4cc1a8 AM |
444 | } |
445 | ||
3e32cb2e JW |
446 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) |
447 | { | |
448 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
4db0c3c2 | 449 | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); |
3e32cb2e JW |
450 | unsigned long excess = 0; |
451 | ||
452 | if (nr_pages > soft_limit) | |
453 | excess = nr_pages - soft_limit; | |
454 | ||
455 | return excess; | |
456 | } | |
bb4cc1a8 AM |
457 | |
458 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
459 | { | |
3e32cb2e | 460 | unsigned long excess; |
ef8f2327 MG |
461 | struct mem_cgroup_per_node *mz; |
462 | struct mem_cgroup_tree_per_node *mctz; | |
bb4cc1a8 | 463 | |
e231875b | 464 | mctz = soft_limit_tree_from_page(page); |
bb4cc1a8 AM |
465 | /* |
466 | * Necessary to update all ancestors when hierarchy is used. | |
467 | * because their event counter is not touched. | |
468 | */ | |
469 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
ef8f2327 | 470 | mz = mem_cgroup_page_nodeinfo(memcg, page); |
3e32cb2e | 471 | excess = soft_limit_excess(memcg); |
bb4cc1a8 AM |
472 | /* |
473 | * We have to update the tree if mz is on RB-tree or | |
474 | * mem is over its softlimit. | |
475 | */ | |
476 | if (excess || mz->on_tree) { | |
0a31bc97 JW |
477 | unsigned long flags; |
478 | ||
479 | spin_lock_irqsave(&mctz->lock, flags); | |
bb4cc1a8 AM |
480 | /* if on-tree, remove it */ |
481 | if (mz->on_tree) | |
cf2c8127 | 482 | __mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
483 | /* |
484 | * Insert again. mz->usage_in_excess will be updated. | |
485 | * If excess is 0, no tree ops. | |
486 | */ | |
cf2c8127 | 487 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
0a31bc97 | 488 | spin_unlock_irqrestore(&mctz->lock, flags); |
bb4cc1a8 AM |
489 | } |
490 | } | |
491 | } | |
492 | ||
493 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
494 | { | |
ef8f2327 MG |
495 | struct mem_cgroup_tree_per_node *mctz; |
496 | struct mem_cgroup_per_node *mz; | |
497 | int nid; | |
bb4cc1a8 | 498 | |
e231875b | 499 | for_each_node(nid) { |
ef8f2327 MG |
500 | mz = mem_cgroup_nodeinfo(memcg, nid); |
501 | mctz = soft_limit_tree_node(nid); | |
502 | mem_cgroup_remove_exceeded(mz, mctz); | |
bb4cc1a8 AM |
503 | } |
504 | } | |
505 | ||
ef8f2327 MG |
506 | static struct mem_cgroup_per_node * |
507 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | |
bb4cc1a8 AM |
508 | { |
509 | struct rb_node *rightmost = NULL; | |
ef8f2327 | 510 | struct mem_cgroup_per_node *mz; |
bb4cc1a8 AM |
511 | |
512 | retry: | |
513 | mz = NULL; | |
514 | rightmost = rb_last(&mctz->rb_root); | |
515 | if (!rightmost) | |
516 | goto done; /* Nothing to reclaim from */ | |
517 | ||
ef8f2327 | 518 | mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); |
bb4cc1a8 AM |
519 | /* |
520 | * Remove the node now but someone else can add it back, | |
521 | * we will to add it back at the end of reclaim to its correct | |
522 | * position in the tree. | |
523 | */ | |
cf2c8127 | 524 | __mem_cgroup_remove_exceeded(mz, mctz); |
3e32cb2e | 525 | if (!soft_limit_excess(mz->memcg) || |
ec903c0c | 526 | !css_tryget_online(&mz->memcg->css)) |
bb4cc1a8 AM |
527 | goto retry; |
528 | done: | |
529 | return mz; | |
530 | } | |
531 | ||
ef8f2327 MG |
532 | static struct mem_cgroup_per_node * |
533 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | |
bb4cc1a8 | 534 | { |
ef8f2327 | 535 | struct mem_cgroup_per_node *mz; |
bb4cc1a8 | 536 | |
0a31bc97 | 537 | spin_lock_irq(&mctz->lock); |
bb4cc1a8 | 538 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
0a31bc97 | 539 | spin_unlock_irq(&mctz->lock); |
bb4cc1a8 AM |
540 | return mz; |
541 | } | |
542 | ||
711d3d2c | 543 | /* |
484ebb3b GT |
544 | * Return page count for single (non recursive) @memcg. |
545 | * | |
711d3d2c KH |
546 | * Implementation Note: reading percpu statistics for memcg. |
547 | * | |
548 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
549 | * synchronization to implement "quick" read. There are trade-off between | |
550 | * reading cost and precision of value. Then, we may have a chance to implement | |
484ebb3b | 551 | * a periodic synchronization of counter in memcg's counter. |
711d3d2c KH |
552 | * |
553 | * But this _read() function is used for user interface now. The user accounts | |
554 | * memory usage by memory cgroup and he _always_ requires exact value because | |
555 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
556 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
557 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
558 | * | |
559 | * If there are kernel internal actions which can make use of some not-exact | |
560 | * value, and reading all cpu value can be performance bottleneck in some | |
484ebb3b | 561 | * common workload, threshold and synchronization as vmstat[] should be |
711d3d2c KH |
562 | * implemented. |
563 | */ | |
484ebb3b GT |
564 | static unsigned long |
565 | mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) | |
c62b1a3b | 566 | { |
7a159cc9 | 567 | long val = 0; |
c62b1a3b | 568 | int cpu; |
c62b1a3b | 569 | |
484ebb3b | 570 | /* Per-cpu values can be negative, use a signed accumulator */ |
733a572e | 571 | for_each_possible_cpu(cpu) |
c0ff4b85 | 572 | val += per_cpu(memcg->stat->count[idx], cpu); |
484ebb3b GT |
573 | /* |
574 | * Summing races with updates, so val may be negative. Avoid exposing | |
575 | * transient negative values. | |
576 | */ | |
577 | if (val < 0) | |
578 | val = 0; | |
c62b1a3b KH |
579 | return val; |
580 | } | |
581 | ||
c0ff4b85 | 582 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
e9f8974f JW |
583 | enum mem_cgroup_events_index idx) |
584 | { | |
585 | unsigned long val = 0; | |
586 | int cpu; | |
587 | ||
733a572e | 588 | for_each_possible_cpu(cpu) |
c0ff4b85 | 589 | val += per_cpu(memcg->stat->events[idx], cpu); |
e9f8974f JW |
590 | return val; |
591 | } | |
592 | ||
c0ff4b85 | 593 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
b070e65c | 594 | struct page *page, |
f627c2f5 | 595 | bool compound, int nr_pages) |
d52aa412 | 596 | { |
b2402857 KH |
597 | /* |
598 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
599 | * counted as CACHE even if it's on ANON LRU. | |
600 | */ | |
0a31bc97 | 601 | if (PageAnon(page)) |
b2402857 | 602 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], |
c0ff4b85 | 603 | nr_pages); |
d52aa412 | 604 | else |
b2402857 | 605 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
c0ff4b85 | 606 | nr_pages); |
55e462b0 | 607 | |
f627c2f5 KS |
608 | if (compound) { |
609 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
b070e65c DR |
610 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
611 | nr_pages); | |
f627c2f5 | 612 | } |
b070e65c | 613 | |
e401f176 KH |
614 | /* pagein of a big page is an event. So, ignore page size */ |
615 | if (nr_pages > 0) | |
c0ff4b85 | 616 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 617 | else { |
c0ff4b85 | 618 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
619 | nr_pages = -nr_pages; /* for event */ |
620 | } | |
e401f176 | 621 | |
13114716 | 622 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
6d12e2d8 KH |
623 | } |
624 | ||
0a6b76dd VD |
625 | unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
626 | int nid, unsigned int lru_mask) | |
bb2a0de9 | 627 | { |
e231875b | 628 | unsigned long nr = 0; |
ef8f2327 MG |
629 | struct mem_cgroup_per_node *mz; |
630 | enum lru_list lru; | |
889976db | 631 | |
e231875b | 632 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
bb2a0de9 | 633 | |
ef8f2327 MG |
634 | for_each_lru(lru) { |
635 | if (!(BIT(lru) & lru_mask)) | |
636 | continue; | |
637 | mz = mem_cgroup_nodeinfo(memcg, nid); | |
638 | nr += mz->lru_size[lru]; | |
e231875b JZ |
639 | } |
640 | return nr; | |
889976db | 641 | } |
bb2a0de9 | 642 | |
c0ff4b85 | 643 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 | 644 | unsigned int lru_mask) |
6d12e2d8 | 645 | { |
e231875b | 646 | unsigned long nr = 0; |
889976db | 647 | int nid; |
6d12e2d8 | 648 | |
31aaea4a | 649 | for_each_node_state(nid, N_MEMORY) |
e231875b JZ |
650 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
651 | return nr; | |
d52aa412 KH |
652 | } |
653 | ||
f53d7ce3 JW |
654 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
655 | enum mem_cgroup_events_target target) | |
7a159cc9 JW |
656 | { |
657 | unsigned long val, next; | |
658 | ||
13114716 | 659 | val = __this_cpu_read(memcg->stat->nr_page_events); |
4799401f | 660 | next = __this_cpu_read(memcg->stat->targets[target]); |
7a159cc9 | 661 | /* from time_after() in jiffies.h */ |
f53d7ce3 JW |
662 | if ((long)next - (long)val < 0) { |
663 | switch (target) { | |
664 | case MEM_CGROUP_TARGET_THRESH: | |
665 | next = val + THRESHOLDS_EVENTS_TARGET; | |
666 | break; | |
bb4cc1a8 AM |
667 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
668 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
669 | break; | |
f53d7ce3 JW |
670 | case MEM_CGROUP_TARGET_NUMAINFO: |
671 | next = val + NUMAINFO_EVENTS_TARGET; | |
672 | break; | |
673 | default: | |
674 | break; | |
675 | } | |
676 | __this_cpu_write(memcg->stat->targets[target], next); | |
677 | return true; | |
7a159cc9 | 678 | } |
f53d7ce3 | 679 | return false; |
d2265e6f KH |
680 | } |
681 | ||
682 | /* | |
683 | * Check events in order. | |
684 | * | |
685 | */ | |
c0ff4b85 | 686 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
d2265e6f KH |
687 | { |
688 | /* threshold event is triggered in finer grain than soft limit */ | |
f53d7ce3 JW |
689 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
690 | MEM_CGROUP_TARGET_THRESH))) { | |
bb4cc1a8 | 691 | bool do_softlimit; |
82b3f2a7 | 692 | bool do_numainfo __maybe_unused; |
f53d7ce3 | 693 | |
bb4cc1a8 AM |
694 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
695 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
f53d7ce3 JW |
696 | #if MAX_NUMNODES > 1 |
697 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
698 | MEM_CGROUP_TARGET_NUMAINFO); | |
699 | #endif | |
c0ff4b85 | 700 | mem_cgroup_threshold(memcg); |
bb4cc1a8 AM |
701 | if (unlikely(do_softlimit)) |
702 | mem_cgroup_update_tree(memcg, page); | |
453a9bf3 | 703 | #if MAX_NUMNODES > 1 |
f53d7ce3 | 704 | if (unlikely(do_numainfo)) |
c0ff4b85 | 705 | atomic_inc(&memcg->numainfo_events); |
453a9bf3 | 706 | #endif |
0a31bc97 | 707 | } |
d2265e6f KH |
708 | } |
709 | ||
cf475ad2 | 710 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 711 | { |
31a78f23 BS |
712 | /* |
713 | * mm_update_next_owner() may clear mm->owner to NULL | |
714 | * if it races with swapoff, page migration, etc. | |
715 | * So this can be called with p == NULL. | |
716 | */ | |
717 | if (unlikely(!p)) | |
718 | return NULL; | |
719 | ||
073219e9 | 720 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); |
78fb7466 | 721 | } |
33398cf2 | 722 | EXPORT_SYMBOL(mem_cgroup_from_task); |
78fb7466 | 723 | |
df381975 | 724 | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
54595fe2 | 725 | { |
c0ff4b85 | 726 | struct mem_cgroup *memcg = NULL; |
0b7f569e | 727 | |
54595fe2 KH |
728 | rcu_read_lock(); |
729 | do { | |
6f6acb00 MH |
730 | /* |
731 | * Page cache insertions can happen withou an | |
732 | * actual mm context, e.g. during disk probing | |
733 | * on boot, loopback IO, acct() writes etc. | |
734 | */ | |
735 | if (unlikely(!mm)) | |
df381975 | 736 | memcg = root_mem_cgroup; |
6f6acb00 MH |
737 | else { |
738 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
739 | if (unlikely(!memcg)) | |
740 | memcg = root_mem_cgroup; | |
741 | } | |
ec903c0c | 742 | } while (!css_tryget_online(&memcg->css)); |
54595fe2 | 743 | rcu_read_unlock(); |
c0ff4b85 | 744 | return memcg; |
54595fe2 KH |
745 | } |
746 | ||
5660048c JW |
747 | /** |
748 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
749 | * @root: hierarchy root | |
750 | * @prev: previously returned memcg, NULL on first invocation | |
751 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
752 | * | |
753 | * Returns references to children of the hierarchy below @root, or | |
754 | * @root itself, or %NULL after a full round-trip. | |
755 | * | |
756 | * Caller must pass the return value in @prev on subsequent | |
757 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
758 | * to cancel a hierarchy walk before the round-trip is complete. | |
759 | * | |
760 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
761 | * divide up the memcgs in the hierarchy among all concurrent | |
762 | * reclaimers operating on the same zone and priority. | |
763 | */ | |
694fbc0f | 764 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
5660048c | 765 | struct mem_cgroup *prev, |
694fbc0f | 766 | struct mem_cgroup_reclaim_cookie *reclaim) |
14067bb3 | 767 | { |
33398cf2 | 768 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
5ac8fb31 | 769 | struct cgroup_subsys_state *css = NULL; |
9f3a0d09 | 770 | struct mem_cgroup *memcg = NULL; |
5ac8fb31 | 771 | struct mem_cgroup *pos = NULL; |
711d3d2c | 772 | |
694fbc0f AM |
773 | if (mem_cgroup_disabled()) |
774 | return NULL; | |
5660048c | 775 | |
9f3a0d09 JW |
776 | if (!root) |
777 | root = root_mem_cgroup; | |
7d74b06f | 778 | |
9f3a0d09 | 779 | if (prev && !reclaim) |
5ac8fb31 | 780 | pos = prev; |
14067bb3 | 781 | |
9f3a0d09 JW |
782 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
783 | if (prev) | |
5ac8fb31 | 784 | goto out; |
694fbc0f | 785 | return root; |
9f3a0d09 | 786 | } |
14067bb3 | 787 | |
542f85f9 | 788 | rcu_read_lock(); |
5f578161 | 789 | |
5ac8fb31 | 790 | if (reclaim) { |
ef8f2327 | 791 | struct mem_cgroup_per_node *mz; |
5ac8fb31 | 792 | |
ef8f2327 | 793 | mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); |
5ac8fb31 JW |
794 | iter = &mz->iter[reclaim->priority]; |
795 | ||
796 | if (prev && reclaim->generation != iter->generation) | |
797 | goto out_unlock; | |
798 | ||
6df38689 | 799 | while (1) { |
4db0c3c2 | 800 | pos = READ_ONCE(iter->position); |
6df38689 VD |
801 | if (!pos || css_tryget(&pos->css)) |
802 | break; | |
5ac8fb31 | 803 | /* |
6df38689 VD |
804 | * css reference reached zero, so iter->position will |
805 | * be cleared by ->css_released. However, we should not | |
806 | * rely on this happening soon, because ->css_released | |
807 | * is called from a work queue, and by busy-waiting we | |
808 | * might block it. So we clear iter->position right | |
809 | * away. | |
5ac8fb31 | 810 | */ |
6df38689 VD |
811 | (void)cmpxchg(&iter->position, pos, NULL); |
812 | } | |
5ac8fb31 JW |
813 | } |
814 | ||
815 | if (pos) | |
816 | css = &pos->css; | |
817 | ||
818 | for (;;) { | |
819 | css = css_next_descendant_pre(css, &root->css); | |
820 | if (!css) { | |
821 | /* | |
822 | * Reclaimers share the hierarchy walk, and a | |
823 | * new one might jump in right at the end of | |
824 | * the hierarchy - make sure they see at least | |
825 | * one group and restart from the beginning. | |
826 | */ | |
827 | if (!prev) | |
828 | continue; | |
829 | break; | |
527a5ec9 | 830 | } |
7d74b06f | 831 | |
5ac8fb31 JW |
832 | /* |
833 | * Verify the css and acquire a reference. The root | |
834 | * is provided by the caller, so we know it's alive | |
835 | * and kicking, and don't take an extra reference. | |
836 | */ | |
837 | memcg = mem_cgroup_from_css(css); | |
14067bb3 | 838 | |
5ac8fb31 JW |
839 | if (css == &root->css) |
840 | break; | |
14067bb3 | 841 | |
0b8f73e1 JW |
842 | if (css_tryget(css)) |
843 | break; | |
9f3a0d09 | 844 | |
5ac8fb31 | 845 | memcg = NULL; |
9f3a0d09 | 846 | } |
5ac8fb31 JW |
847 | |
848 | if (reclaim) { | |
5ac8fb31 | 849 | /* |
6df38689 VD |
850 | * The position could have already been updated by a competing |
851 | * thread, so check that the value hasn't changed since we read | |
852 | * it to avoid reclaiming from the same cgroup twice. | |
5ac8fb31 | 853 | */ |
6df38689 VD |
854 | (void)cmpxchg(&iter->position, pos, memcg); |
855 | ||
5ac8fb31 JW |
856 | if (pos) |
857 | css_put(&pos->css); | |
858 | ||
859 | if (!memcg) | |
860 | iter->generation++; | |
861 | else if (!prev) | |
862 | reclaim->generation = iter->generation; | |
9f3a0d09 | 863 | } |
5ac8fb31 | 864 | |
542f85f9 MH |
865 | out_unlock: |
866 | rcu_read_unlock(); | |
5ac8fb31 | 867 | out: |
c40046f3 MH |
868 | if (prev && prev != root) |
869 | css_put(&prev->css); | |
870 | ||
9f3a0d09 | 871 | return memcg; |
14067bb3 | 872 | } |
7d74b06f | 873 | |
5660048c JW |
874 | /** |
875 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
876 | * @root: hierarchy root | |
877 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
878 | */ | |
879 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
880 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
881 | { |
882 | if (!root) | |
883 | root = root_mem_cgroup; | |
884 | if (prev && prev != root) | |
885 | css_put(&prev->css); | |
886 | } | |
7d74b06f | 887 | |
6df38689 VD |
888 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) |
889 | { | |
890 | struct mem_cgroup *memcg = dead_memcg; | |
891 | struct mem_cgroup_reclaim_iter *iter; | |
ef8f2327 MG |
892 | struct mem_cgroup_per_node *mz; |
893 | int nid; | |
6df38689 VD |
894 | int i; |
895 | ||
896 | while ((memcg = parent_mem_cgroup(memcg))) { | |
897 | for_each_node(nid) { | |
ef8f2327 MG |
898 | mz = mem_cgroup_nodeinfo(memcg, nid); |
899 | for (i = 0; i <= DEF_PRIORITY; i++) { | |
900 | iter = &mz->iter[i]; | |
901 | cmpxchg(&iter->position, | |
902 | dead_memcg, NULL); | |
6df38689 VD |
903 | } |
904 | } | |
905 | } | |
906 | } | |
907 | ||
9f3a0d09 JW |
908 | /* |
909 | * Iteration constructs for visiting all cgroups (under a tree). If | |
910 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
911 | * be used for reference counting. | |
912 | */ | |
913 | #define for_each_mem_cgroup_tree(iter, root) \ | |
527a5ec9 | 914 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
9f3a0d09 | 915 | iter != NULL; \ |
527a5ec9 | 916 | iter = mem_cgroup_iter(root, iter, NULL)) |
711d3d2c | 917 | |
9f3a0d09 | 918 | #define for_each_mem_cgroup(iter) \ |
527a5ec9 | 919 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
9f3a0d09 | 920 | iter != NULL; \ |
527a5ec9 | 921 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
14067bb3 | 922 | |
7c5f64f8 VD |
923 | /** |
924 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | |
925 | * @memcg: hierarchy root | |
926 | * @fn: function to call for each task | |
927 | * @arg: argument passed to @fn | |
928 | * | |
929 | * This function iterates over tasks attached to @memcg or to any of its | |
930 | * descendants and calls @fn for each task. If @fn returns a non-zero | |
931 | * value, the function breaks the iteration loop and returns the value. | |
932 | * Otherwise, it will iterate over all tasks and return 0. | |
933 | * | |
934 | * This function must not be called for the root memory cgroup. | |
935 | */ | |
936 | int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | |
937 | int (*fn)(struct task_struct *, void *), void *arg) | |
938 | { | |
939 | struct mem_cgroup *iter; | |
940 | int ret = 0; | |
941 | ||
942 | BUG_ON(memcg == root_mem_cgroup); | |
943 | ||
944 | for_each_mem_cgroup_tree(iter, memcg) { | |
945 | struct css_task_iter it; | |
946 | struct task_struct *task; | |
947 | ||
948 | css_task_iter_start(&iter->css, &it); | |
949 | while (!ret && (task = css_task_iter_next(&it))) | |
950 | ret = fn(task, arg); | |
951 | css_task_iter_end(&it); | |
952 | if (ret) { | |
953 | mem_cgroup_iter_break(memcg, iter); | |
954 | break; | |
955 | } | |
956 | } | |
957 | return ret; | |
958 | } | |
959 | ||
925b7673 | 960 | /** |
dfe0e773 | 961 | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page |
925b7673 | 962 | * @page: the page |
fa9add64 | 963 | * @zone: zone of the page |
dfe0e773 JW |
964 | * |
965 | * This function is only safe when following the LRU page isolation | |
966 | * and putback protocol: the LRU lock must be held, and the page must | |
967 | * either be PageLRU() or the caller must have isolated/allocated it. | |
925b7673 | 968 | */ |
599d0c95 | 969 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) |
08e552c6 | 970 | { |
ef8f2327 | 971 | struct mem_cgroup_per_node *mz; |
925b7673 | 972 | struct mem_cgroup *memcg; |
bea8c150 | 973 | struct lruvec *lruvec; |
6d12e2d8 | 974 | |
bea8c150 | 975 | if (mem_cgroup_disabled()) { |
599d0c95 | 976 | lruvec = &pgdat->lruvec; |
bea8c150 HD |
977 | goto out; |
978 | } | |
925b7673 | 979 | |
1306a85a | 980 | memcg = page->mem_cgroup; |
7512102c | 981 | /* |
dfe0e773 | 982 | * Swapcache readahead pages are added to the LRU - and |
29833315 | 983 | * possibly migrated - before they are charged. |
7512102c | 984 | */ |
29833315 JW |
985 | if (!memcg) |
986 | memcg = root_mem_cgroup; | |
7512102c | 987 | |
ef8f2327 | 988 | mz = mem_cgroup_page_nodeinfo(memcg, page); |
bea8c150 HD |
989 | lruvec = &mz->lruvec; |
990 | out: | |
991 | /* | |
992 | * Since a node can be onlined after the mem_cgroup was created, | |
993 | * we have to be prepared to initialize lruvec->zone here; | |
994 | * and if offlined then reonlined, we need to reinitialize it. | |
995 | */ | |
599d0c95 MG |
996 | if (unlikely(lruvec->pgdat != pgdat)) |
997 | lruvec->pgdat = pgdat; | |
bea8c150 | 998 | return lruvec; |
08e552c6 | 999 | } |
b69408e8 | 1000 | |
925b7673 | 1001 | /** |
fa9add64 HD |
1002 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1003 | * @lruvec: mem_cgroup per zone lru vector | |
1004 | * @lru: index of lru list the page is sitting on | |
1005 | * @nr_pages: positive when adding or negative when removing | |
925b7673 | 1006 | * |
ca707239 HD |
1007 | * This function must be called under lru_lock, just before a page is added |
1008 | * to or just after a page is removed from an lru list (that ordering being | |
1009 | * so as to allow it to check that lru_size 0 is consistent with list_empty). | |
3f58a829 | 1010 | */ |
fa9add64 | 1011 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
7ee36a14 | 1012 | int nr_pages) |
3f58a829 | 1013 | { |
ef8f2327 | 1014 | struct mem_cgroup_per_node *mz; |
fa9add64 | 1015 | unsigned long *lru_size; |
ca707239 HD |
1016 | long size; |
1017 | bool empty; | |
3f58a829 MK |
1018 | |
1019 | if (mem_cgroup_disabled()) | |
1020 | return; | |
1021 | ||
ef8f2327 | 1022 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
fa9add64 | 1023 | lru_size = mz->lru_size + lru; |
ca707239 HD |
1024 | empty = list_empty(lruvec->lists + lru); |
1025 | ||
1026 | if (nr_pages < 0) | |
1027 | *lru_size += nr_pages; | |
1028 | ||
1029 | size = *lru_size; | |
1030 | if (WARN_ONCE(size < 0 || empty != !size, | |
1031 | "%s(%p, %d, %d): lru_size %ld but %sempty\n", | |
1032 | __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { | |
1033 | VM_BUG_ON(1); | |
1034 | *lru_size = 0; | |
1035 | } | |
1036 | ||
1037 | if (nr_pages > 0) | |
1038 | *lru_size += nr_pages; | |
08e552c6 | 1039 | } |
544122e5 | 1040 | |
2314b42d | 1041 | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) |
c3ac9a8a | 1042 | { |
2314b42d | 1043 | struct mem_cgroup *task_memcg; |
158e0a2d | 1044 | struct task_struct *p; |
ffbdccf5 | 1045 | bool ret; |
4c4a2214 | 1046 | |
158e0a2d | 1047 | p = find_lock_task_mm(task); |
de077d22 | 1048 | if (p) { |
2314b42d | 1049 | task_memcg = get_mem_cgroup_from_mm(p->mm); |
de077d22 DR |
1050 | task_unlock(p); |
1051 | } else { | |
1052 | /* | |
1053 | * All threads may have already detached their mm's, but the oom | |
1054 | * killer still needs to detect if they have already been oom | |
1055 | * killed to prevent needlessly killing additional tasks. | |
1056 | */ | |
ffbdccf5 | 1057 | rcu_read_lock(); |
2314b42d JW |
1058 | task_memcg = mem_cgroup_from_task(task); |
1059 | css_get(&task_memcg->css); | |
ffbdccf5 | 1060 | rcu_read_unlock(); |
de077d22 | 1061 | } |
2314b42d JW |
1062 | ret = mem_cgroup_is_descendant(task_memcg, memcg); |
1063 | css_put(&task_memcg->css); | |
4c4a2214 DR |
1064 | return ret; |
1065 | } | |
1066 | ||
19942822 | 1067 | /** |
9d11ea9f | 1068 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1069 | * @memcg: the memory cgroup |
19942822 | 1070 | * |
9d11ea9f | 1071 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1072 | * pages. |
19942822 | 1073 | */ |
c0ff4b85 | 1074 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1075 | { |
3e32cb2e JW |
1076 | unsigned long margin = 0; |
1077 | unsigned long count; | |
1078 | unsigned long limit; | |
9d11ea9f | 1079 | |
3e32cb2e | 1080 | count = page_counter_read(&memcg->memory); |
4db0c3c2 | 1081 | limit = READ_ONCE(memcg->memory.limit); |
3e32cb2e JW |
1082 | if (count < limit) |
1083 | margin = limit - count; | |
1084 | ||
7941d214 | 1085 | if (do_memsw_account()) { |
3e32cb2e | 1086 | count = page_counter_read(&memcg->memsw); |
4db0c3c2 | 1087 | limit = READ_ONCE(memcg->memsw.limit); |
3e32cb2e JW |
1088 | if (count <= limit) |
1089 | margin = min(margin, limit - count); | |
cbedbac3 LR |
1090 | else |
1091 | margin = 0; | |
3e32cb2e JW |
1092 | } |
1093 | ||
1094 | return margin; | |
19942822 JW |
1095 | } |
1096 | ||
32047e2a | 1097 | /* |
bdcbb659 | 1098 | * A routine for checking "mem" is under move_account() or not. |
32047e2a | 1099 | * |
bdcbb659 QH |
1100 | * Checking a cgroup is mc.from or mc.to or under hierarchy of |
1101 | * moving cgroups. This is for waiting at high-memory pressure | |
1102 | * caused by "move". | |
32047e2a | 1103 | */ |
c0ff4b85 | 1104 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
4b534334 | 1105 | { |
2bd9bb20 KH |
1106 | struct mem_cgroup *from; |
1107 | struct mem_cgroup *to; | |
4b534334 | 1108 | bool ret = false; |
2bd9bb20 KH |
1109 | /* |
1110 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1111 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1112 | */ | |
1113 | spin_lock(&mc.lock); | |
1114 | from = mc.from; | |
1115 | to = mc.to; | |
1116 | if (!from) | |
1117 | goto unlock; | |
3e92041d | 1118 | |
2314b42d JW |
1119 | ret = mem_cgroup_is_descendant(from, memcg) || |
1120 | mem_cgroup_is_descendant(to, memcg); | |
2bd9bb20 KH |
1121 | unlock: |
1122 | spin_unlock(&mc.lock); | |
4b534334 KH |
1123 | return ret; |
1124 | } | |
1125 | ||
c0ff4b85 | 1126 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
4b534334 KH |
1127 | { |
1128 | if (mc.moving_task && current != mc.moving_task) { | |
c0ff4b85 | 1129 | if (mem_cgroup_under_move(memcg)) { |
4b534334 KH |
1130 | DEFINE_WAIT(wait); |
1131 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1132 | /* moving charge context might have finished. */ | |
1133 | if (mc.moving_task) | |
1134 | schedule(); | |
1135 | finish_wait(&mc.waitq, &wait); | |
1136 | return true; | |
1137 | } | |
1138 | } | |
1139 | return false; | |
1140 | } | |
1141 | ||
58cf188e | 1142 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
e222432b | 1143 | /** |
58cf188e | 1144 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
e222432b BS |
1145 | * @memcg: The memory cgroup that went over limit |
1146 | * @p: Task that is going to be killed | |
1147 | * | |
1148 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1149 | * enabled | |
1150 | */ | |
1151 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1152 | { | |
58cf188e SZ |
1153 | struct mem_cgroup *iter; |
1154 | unsigned int i; | |
e222432b | 1155 | |
e222432b BS |
1156 | rcu_read_lock(); |
1157 | ||
2415b9f5 BV |
1158 | if (p) { |
1159 | pr_info("Task in "); | |
1160 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
1161 | pr_cont(" killed as a result of limit of "); | |
1162 | } else { | |
1163 | pr_info("Memory limit reached of cgroup "); | |
1164 | } | |
1165 | ||
e61734c5 | 1166 | pr_cont_cgroup_path(memcg->css.cgroup); |
0346dadb | 1167 | pr_cont("\n"); |
e222432b | 1168 | |
e222432b BS |
1169 | rcu_read_unlock(); |
1170 | ||
3e32cb2e JW |
1171 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", |
1172 | K((u64)page_counter_read(&memcg->memory)), | |
1173 | K((u64)memcg->memory.limit), memcg->memory.failcnt); | |
1174 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1175 | K((u64)page_counter_read(&memcg->memsw)), | |
1176 | K((u64)memcg->memsw.limit), memcg->memsw.failcnt); | |
1177 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1178 | K((u64)page_counter_read(&memcg->kmem)), | |
1179 | K((u64)memcg->kmem.limit), memcg->kmem.failcnt); | |
58cf188e SZ |
1180 | |
1181 | for_each_mem_cgroup_tree(iter, memcg) { | |
e61734c5 TH |
1182 | pr_info("Memory cgroup stats for "); |
1183 | pr_cont_cgroup_path(iter->css.cgroup); | |
58cf188e SZ |
1184 | pr_cont(":"); |
1185 | ||
1186 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
37e84351 | 1187 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
58cf188e | 1188 | continue; |
484ebb3b | 1189 | pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], |
58cf188e SZ |
1190 | K(mem_cgroup_read_stat(iter, i))); |
1191 | } | |
1192 | ||
1193 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1194 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1195 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1196 | ||
1197 | pr_cont("\n"); | |
1198 | } | |
e222432b BS |
1199 | } |
1200 | ||
81d39c20 KH |
1201 | /* |
1202 | * This function returns the number of memcg under hierarchy tree. Returns | |
1203 | * 1(self count) if no children. | |
1204 | */ | |
c0ff4b85 | 1205 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
81d39c20 KH |
1206 | { |
1207 | int num = 0; | |
7d74b06f KH |
1208 | struct mem_cgroup *iter; |
1209 | ||
c0ff4b85 | 1210 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 1211 | num++; |
81d39c20 KH |
1212 | return num; |
1213 | } | |
1214 | ||
a63d83f4 DR |
1215 | /* |
1216 | * Return the memory (and swap, if configured) limit for a memcg. | |
1217 | */ | |
7c5f64f8 | 1218 | unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) |
a63d83f4 | 1219 | { |
3e32cb2e | 1220 | unsigned long limit; |
f3e8eb70 | 1221 | |
3e32cb2e | 1222 | limit = memcg->memory.limit; |
9a5a8f19 | 1223 | if (mem_cgroup_swappiness(memcg)) { |
3e32cb2e | 1224 | unsigned long memsw_limit; |
37e84351 | 1225 | unsigned long swap_limit; |
9a5a8f19 | 1226 | |
3e32cb2e | 1227 | memsw_limit = memcg->memsw.limit; |
37e84351 VD |
1228 | swap_limit = memcg->swap.limit; |
1229 | swap_limit = min(swap_limit, (unsigned long)total_swap_pages); | |
1230 | limit = min(limit + swap_limit, memsw_limit); | |
9a5a8f19 | 1231 | } |
9a5a8f19 | 1232 | return limit; |
a63d83f4 DR |
1233 | } |
1234 | ||
b6e6edcf | 1235 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
19965460 | 1236 | int order) |
9cbb78bb | 1237 | { |
6e0fc46d DR |
1238 | struct oom_control oc = { |
1239 | .zonelist = NULL, | |
1240 | .nodemask = NULL, | |
2a966b77 | 1241 | .memcg = memcg, |
6e0fc46d DR |
1242 | .gfp_mask = gfp_mask, |
1243 | .order = order, | |
6e0fc46d | 1244 | }; |
7c5f64f8 | 1245 | bool ret; |
9cbb78bb | 1246 | |
dc56401f | 1247 | mutex_lock(&oom_lock); |
7c5f64f8 | 1248 | ret = out_of_memory(&oc); |
dc56401f | 1249 | mutex_unlock(&oom_lock); |
7c5f64f8 | 1250 | return ret; |
9cbb78bb DR |
1251 | } |
1252 | ||
ae6e71d3 MC |
1253 | #if MAX_NUMNODES > 1 |
1254 | ||
4d0c066d KH |
1255 | /** |
1256 | * test_mem_cgroup_node_reclaimable | |
dad7557e | 1257 | * @memcg: the target memcg |
4d0c066d KH |
1258 | * @nid: the node ID to be checked. |
1259 | * @noswap : specify true here if the user wants flle only information. | |
1260 | * | |
1261 | * This function returns whether the specified memcg contains any | |
1262 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1263 | * pages in the node. | |
1264 | */ | |
c0ff4b85 | 1265 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
4d0c066d KH |
1266 | int nid, bool noswap) |
1267 | { | |
c0ff4b85 | 1268 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
4d0c066d KH |
1269 | return true; |
1270 | if (noswap || !total_swap_pages) | |
1271 | return false; | |
c0ff4b85 | 1272 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
4d0c066d KH |
1273 | return true; |
1274 | return false; | |
1275 | ||
1276 | } | |
889976db YH |
1277 | |
1278 | /* | |
1279 | * Always updating the nodemask is not very good - even if we have an empty | |
1280 | * list or the wrong list here, we can start from some node and traverse all | |
1281 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1282 | * | |
1283 | */ | |
c0ff4b85 | 1284 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
889976db YH |
1285 | { |
1286 | int nid; | |
453a9bf3 KH |
1287 | /* |
1288 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1289 | * pagein/pageout changes since the last update. | |
1290 | */ | |
c0ff4b85 | 1291 | if (!atomic_read(&memcg->numainfo_events)) |
453a9bf3 | 1292 | return; |
c0ff4b85 | 1293 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
889976db YH |
1294 | return; |
1295 | ||
889976db | 1296 | /* make a nodemask where this memcg uses memory from */ |
31aaea4a | 1297 | memcg->scan_nodes = node_states[N_MEMORY]; |
889976db | 1298 | |
31aaea4a | 1299 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
889976db | 1300 | |
c0ff4b85 R |
1301 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1302 | node_clear(nid, memcg->scan_nodes); | |
889976db | 1303 | } |
453a9bf3 | 1304 | |
c0ff4b85 R |
1305 | atomic_set(&memcg->numainfo_events, 0); |
1306 | atomic_set(&memcg->numainfo_updating, 0); | |
889976db YH |
1307 | } |
1308 | ||
1309 | /* | |
1310 | * Selecting a node where we start reclaim from. Because what we need is just | |
1311 | * reducing usage counter, start from anywhere is O,K. Considering | |
1312 | * memory reclaim from current node, there are pros. and cons. | |
1313 | * | |
1314 | * Freeing memory from current node means freeing memory from a node which | |
1315 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1316 | * hit limits, it will see a contention on a node. But freeing from remote | |
1317 | * node means more costs for memory reclaim because of memory latency. | |
1318 | * | |
1319 | * Now, we use round-robin. Better algorithm is welcomed. | |
1320 | */ | |
c0ff4b85 | 1321 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1322 | { |
1323 | int node; | |
1324 | ||
c0ff4b85 R |
1325 | mem_cgroup_may_update_nodemask(memcg); |
1326 | node = memcg->last_scanned_node; | |
889976db | 1327 | |
0edaf86c | 1328 | node = next_node_in(node, memcg->scan_nodes); |
889976db | 1329 | /* |
fda3d69b MH |
1330 | * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages |
1331 | * last time it really checked all the LRUs due to rate limiting. | |
1332 | * Fallback to the current node in that case for simplicity. | |
889976db YH |
1333 | */ |
1334 | if (unlikely(node == MAX_NUMNODES)) | |
1335 | node = numa_node_id(); | |
1336 | ||
c0ff4b85 | 1337 | memcg->last_scanned_node = node; |
889976db YH |
1338 | return node; |
1339 | } | |
889976db | 1340 | #else |
c0ff4b85 | 1341 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1342 | { |
1343 | return 0; | |
1344 | } | |
1345 | #endif | |
1346 | ||
0608f43d | 1347 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
ef8f2327 | 1348 | pg_data_t *pgdat, |
0608f43d AM |
1349 | gfp_t gfp_mask, |
1350 | unsigned long *total_scanned) | |
1351 | { | |
1352 | struct mem_cgroup *victim = NULL; | |
1353 | int total = 0; | |
1354 | int loop = 0; | |
1355 | unsigned long excess; | |
1356 | unsigned long nr_scanned; | |
1357 | struct mem_cgroup_reclaim_cookie reclaim = { | |
ef8f2327 | 1358 | .pgdat = pgdat, |
0608f43d AM |
1359 | .priority = 0, |
1360 | }; | |
1361 | ||
3e32cb2e | 1362 | excess = soft_limit_excess(root_memcg); |
0608f43d AM |
1363 | |
1364 | while (1) { | |
1365 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
1366 | if (!victim) { | |
1367 | loop++; | |
1368 | if (loop >= 2) { | |
1369 | /* | |
1370 | * If we have not been able to reclaim | |
1371 | * anything, it might because there are | |
1372 | * no reclaimable pages under this hierarchy | |
1373 | */ | |
1374 | if (!total) | |
1375 | break; | |
1376 | /* | |
1377 | * We want to do more targeted reclaim. | |
1378 | * excess >> 2 is not to excessive so as to | |
1379 | * reclaim too much, nor too less that we keep | |
1380 | * coming back to reclaim from this cgroup | |
1381 | */ | |
1382 | if (total >= (excess >> 2) || | |
1383 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
1384 | break; | |
1385 | } | |
1386 | continue; | |
1387 | } | |
a9dd0a83 | 1388 | total += mem_cgroup_shrink_node(victim, gfp_mask, false, |
ef8f2327 | 1389 | pgdat, &nr_scanned); |
0608f43d | 1390 | *total_scanned += nr_scanned; |
3e32cb2e | 1391 | if (!soft_limit_excess(root_memcg)) |
0608f43d | 1392 | break; |
6d61ef40 | 1393 | } |
0608f43d AM |
1394 | mem_cgroup_iter_break(root_memcg, victim); |
1395 | return total; | |
6d61ef40 BS |
1396 | } |
1397 | ||
0056f4e6 JW |
1398 | #ifdef CONFIG_LOCKDEP |
1399 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
1400 | .name = "memcg_oom_lock", | |
1401 | }; | |
1402 | #endif | |
1403 | ||
fb2a6fc5 JW |
1404 | static DEFINE_SPINLOCK(memcg_oom_lock); |
1405 | ||
867578cb KH |
1406 | /* |
1407 | * Check OOM-Killer is already running under our hierarchy. | |
1408 | * If someone is running, return false. | |
1409 | */ | |
fb2a6fc5 | 1410 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
867578cb | 1411 | { |
79dfdacc | 1412 | struct mem_cgroup *iter, *failed = NULL; |
a636b327 | 1413 | |
fb2a6fc5 JW |
1414 | spin_lock(&memcg_oom_lock); |
1415 | ||
9f3a0d09 | 1416 | for_each_mem_cgroup_tree(iter, memcg) { |
23751be0 | 1417 | if (iter->oom_lock) { |
79dfdacc MH |
1418 | /* |
1419 | * this subtree of our hierarchy is already locked | |
1420 | * so we cannot give a lock. | |
1421 | */ | |
79dfdacc | 1422 | failed = iter; |
9f3a0d09 JW |
1423 | mem_cgroup_iter_break(memcg, iter); |
1424 | break; | |
23751be0 JW |
1425 | } else |
1426 | iter->oom_lock = true; | |
7d74b06f | 1427 | } |
867578cb | 1428 | |
fb2a6fc5 JW |
1429 | if (failed) { |
1430 | /* | |
1431 | * OK, we failed to lock the whole subtree so we have | |
1432 | * to clean up what we set up to the failing subtree | |
1433 | */ | |
1434 | for_each_mem_cgroup_tree(iter, memcg) { | |
1435 | if (iter == failed) { | |
1436 | mem_cgroup_iter_break(memcg, iter); | |
1437 | break; | |
1438 | } | |
1439 | iter->oom_lock = false; | |
79dfdacc | 1440 | } |
0056f4e6 JW |
1441 | } else |
1442 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
fb2a6fc5 JW |
1443 | |
1444 | spin_unlock(&memcg_oom_lock); | |
1445 | ||
1446 | return !failed; | |
a636b327 | 1447 | } |
0b7f569e | 1448 | |
fb2a6fc5 | 1449 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
0b7f569e | 1450 | { |
7d74b06f KH |
1451 | struct mem_cgroup *iter; |
1452 | ||
fb2a6fc5 | 1453 | spin_lock(&memcg_oom_lock); |
0056f4e6 | 1454 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); |
c0ff4b85 | 1455 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 1456 | iter->oom_lock = false; |
fb2a6fc5 | 1457 | spin_unlock(&memcg_oom_lock); |
79dfdacc MH |
1458 | } |
1459 | ||
c0ff4b85 | 1460 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
1461 | { |
1462 | struct mem_cgroup *iter; | |
1463 | ||
c2b42d3c | 1464 | spin_lock(&memcg_oom_lock); |
c0ff4b85 | 1465 | for_each_mem_cgroup_tree(iter, memcg) |
c2b42d3c TH |
1466 | iter->under_oom++; |
1467 | spin_unlock(&memcg_oom_lock); | |
79dfdacc MH |
1468 | } |
1469 | ||
c0ff4b85 | 1470 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
1471 | { |
1472 | struct mem_cgroup *iter; | |
1473 | ||
867578cb KH |
1474 | /* |
1475 | * When a new child is created while the hierarchy is under oom, | |
c2b42d3c | 1476 | * mem_cgroup_oom_lock() may not be called. Watch for underflow. |
867578cb | 1477 | */ |
c2b42d3c | 1478 | spin_lock(&memcg_oom_lock); |
c0ff4b85 | 1479 | for_each_mem_cgroup_tree(iter, memcg) |
c2b42d3c TH |
1480 | if (iter->under_oom > 0) |
1481 | iter->under_oom--; | |
1482 | spin_unlock(&memcg_oom_lock); | |
0b7f569e KH |
1483 | } |
1484 | ||
867578cb KH |
1485 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
1486 | ||
dc98df5a | 1487 | struct oom_wait_info { |
d79154bb | 1488 | struct mem_cgroup *memcg; |
dc98df5a KH |
1489 | wait_queue_t wait; |
1490 | }; | |
1491 | ||
1492 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1493 | unsigned mode, int sync, void *arg) | |
1494 | { | |
d79154bb HD |
1495 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
1496 | struct mem_cgroup *oom_wait_memcg; | |
dc98df5a KH |
1497 | struct oom_wait_info *oom_wait_info; |
1498 | ||
1499 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
d79154bb | 1500 | oom_wait_memcg = oom_wait_info->memcg; |
dc98df5a | 1501 | |
2314b42d JW |
1502 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && |
1503 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | |
dc98df5a | 1504 | return 0; |
dc98df5a KH |
1505 | return autoremove_wake_function(wait, mode, sync, arg); |
1506 | } | |
1507 | ||
c0ff4b85 | 1508 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
3c11ecf4 | 1509 | { |
c2b42d3c TH |
1510 | /* |
1511 | * For the following lockless ->under_oom test, the only required | |
1512 | * guarantee is that it must see the state asserted by an OOM when | |
1513 | * this function is called as a result of userland actions | |
1514 | * triggered by the notification of the OOM. This is trivially | |
1515 | * achieved by invoking mem_cgroup_mark_under_oom() before | |
1516 | * triggering notification. | |
1517 | */ | |
1518 | if (memcg && memcg->under_oom) | |
f4b90b70 | 1519 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); |
3c11ecf4 KH |
1520 | } |
1521 | ||
3812c8c8 | 1522 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
0b7f569e | 1523 | { |
d0db7afa | 1524 | if (!current->memcg_may_oom) |
3812c8c8 | 1525 | return; |
867578cb | 1526 | /* |
49426420 JW |
1527 | * We are in the middle of the charge context here, so we |
1528 | * don't want to block when potentially sitting on a callstack | |
1529 | * that holds all kinds of filesystem and mm locks. | |
1530 | * | |
1531 | * Also, the caller may handle a failed allocation gracefully | |
1532 | * (like optional page cache readahead) and so an OOM killer | |
1533 | * invocation might not even be necessary. | |
1534 | * | |
1535 | * That's why we don't do anything here except remember the | |
1536 | * OOM context and then deal with it at the end of the page | |
1537 | * fault when the stack is unwound, the locks are released, | |
1538 | * and when we know whether the fault was overall successful. | |
867578cb | 1539 | */ |
49426420 | 1540 | css_get(&memcg->css); |
626ebc41 TH |
1541 | current->memcg_in_oom = memcg; |
1542 | current->memcg_oom_gfp_mask = mask; | |
1543 | current->memcg_oom_order = order; | |
3812c8c8 JW |
1544 | } |
1545 | ||
1546 | /** | |
1547 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
49426420 | 1548 | * @handle: actually kill/wait or just clean up the OOM state |
3812c8c8 | 1549 | * |
49426420 JW |
1550 | * This has to be called at the end of a page fault if the memcg OOM |
1551 | * handler was enabled. | |
3812c8c8 | 1552 | * |
49426420 | 1553 | * Memcg supports userspace OOM handling where failed allocations must |
3812c8c8 JW |
1554 | * sleep on a waitqueue until the userspace task resolves the |
1555 | * situation. Sleeping directly in the charge context with all kinds | |
1556 | * of locks held is not a good idea, instead we remember an OOM state | |
1557 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
49426420 | 1558 | * the end of the page fault to complete the OOM handling. |
3812c8c8 JW |
1559 | * |
1560 | * Returns %true if an ongoing memcg OOM situation was detected and | |
49426420 | 1561 | * completed, %false otherwise. |
3812c8c8 | 1562 | */ |
49426420 | 1563 | bool mem_cgroup_oom_synchronize(bool handle) |
3812c8c8 | 1564 | { |
626ebc41 | 1565 | struct mem_cgroup *memcg = current->memcg_in_oom; |
3812c8c8 | 1566 | struct oom_wait_info owait; |
49426420 | 1567 | bool locked; |
3812c8c8 JW |
1568 | |
1569 | /* OOM is global, do not handle */ | |
3812c8c8 | 1570 | if (!memcg) |
49426420 | 1571 | return false; |
3812c8c8 | 1572 | |
7c5f64f8 | 1573 | if (!handle) |
49426420 | 1574 | goto cleanup; |
3812c8c8 JW |
1575 | |
1576 | owait.memcg = memcg; | |
1577 | owait.wait.flags = 0; | |
1578 | owait.wait.func = memcg_oom_wake_function; | |
1579 | owait.wait.private = current; | |
1580 | INIT_LIST_HEAD(&owait.wait.task_list); | |
867578cb | 1581 | |
3812c8c8 | 1582 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
49426420 JW |
1583 | mem_cgroup_mark_under_oom(memcg); |
1584 | ||
1585 | locked = mem_cgroup_oom_trylock(memcg); | |
1586 | ||
1587 | if (locked) | |
1588 | mem_cgroup_oom_notify(memcg); | |
1589 | ||
1590 | if (locked && !memcg->oom_kill_disable) { | |
1591 | mem_cgroup_unmark_under_oom(memcg); | |
1592 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
626ebc41 TH |
1593 | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, |
1594 | current->memcg_oom_order); | |
49426420 | 1595 | } else { |
3812c8c8 | 1596 | schedule(); |
49426420 JW |
1597 | mem_cgroup_unmark_under_oom(memcg); |
1598 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1599 | } | |
1600 | ||
1601 | if (locked) { | |
fb2a6fc5 JW |
1602 | mem_cgroup_oom_unlock(memcg); |
1603 | /* | |
1604 | * There is no guarantee that an OOM-lock contender | |
1605 | * sees the wakeups triggered by the OOM kill | |
1606 | * uncharges. Wake any sleepers explicitely. | |
1607 | */ | |
1608 | memcg_oom_recover(memcg); | |
1609 | } | |
49426420 | 1610 | cleanup: |
626ebc41 | 1611 | current->memcg_in_oom = NULL; |
3812c8c8 | 1612 | css_put(&memcg->css); |
867578cb | 1613 | return true; |
0b7f569e KH |
1614 | } |
1615 | ||
d7365e78 | 1616 | /** |
81f8c3a4 JW |
1617 | * lock_page_memcg - lock a page->mem_cgroup binding |
1618 | * @page: the page | |
32047e2a | 1619 | * |
81f8c3a4 JW |
1620 | * This function protects unlocked LRU pages from being moved to |
1621 | * another cgroup and stabilizes their page->mem_cgroup binding. | |
d69b042f | 1622 | */ |
62cccb8c | 1623 | void lock_page_memcg(struct page *page) |
89c06bd5 KH |
1624 | { |
1625 | struct mem_cgroup *memcg; | |
6de22619 | 1626 | unsigned long flags; |
89c06bd5 | 1627 | |
6de22619 JW |
1628 | /* |
1629 | * The RCU lock is held throughout the transaction. The fast | |
1630 | * path can get away without acquiring the memcg->move_lock | |
1631 | * because page moving starts with an RCU grace period. | |
6de22619 | 1632 | */ |
d7365e78 JW |
1633 | rcu_read_lock(); |
1634 | ||
1635 | if (mem_cgroup_disabled()) | |
62cccb8c | 1636 | return; |
89c06bd5 | 1637 | again: |
1306a85a | 1638 | memcg = page->mem_cgroup; |
29833315 | 1639 | if (unlikely(!memcg)) |
62cccb8c | 1640 | return; |
d7365e78 | 1641 | |
bdcbb659 | 1642 | if (atomic_read(&memcg->moving_account) <= 0) |
62cccb8c | 1643 | return; |
89c06bd5 | 1644 | |
6de22619 | 1645 | spin_lock_irqsave(&memcg->move_lock, flags); |
1306a85a | 1646 | if (memcg != page->mem_cgroup) { |
6de22619 | 1647 | spin_unlock_irqrestore(&memcg->move_lock, flags); |
89c06bd5 KH |
1648 | goto again; |
1649 | } | |
6de22619 JW |
1650 | |
1651 | /* | |
1652 | * When charge migration first begins, we can have locked and | |
1653 | * unlocked page stat updates happening concurrently. Track | |
81f8c3a4 | 1654 | * the task who has the lock for unlock_page_memcg(). |
6de22619 JW |
1655 | */ |
1656 | memcg->move_lock_task = current; | |
1657 | memcg->move_lock_flags = flags; | |
d7365e78 | 1658 | |
62cccb8c | 1659 | return; |
89c06bd5 | 1660 | } |
81f8c3a4 | 1661 | EXPORT_SYMBOL(lock_page_memcg); |
89c06bd5 | 1662 | |
d7365e78 | 1663 | /** |
81f8c3a4 | 1664 | * unlock_page_memcg - unlock a page->mem_cgroup binding |
62cccb8c | 1665 | * @page: the page |
d7365e78 | 1666 | */ |
62cccb8c | 1667 | void unlock_page_memcg(struct page *page) |
89c06bd5 | 1668 | { |
62cccb8c JW |
1669 | struct mem_cgroup *memcg = page->mem_cgroup; |
1670 | ||
6de22619 JW |
1671 | if (memcg && memcg->move_lock_task == current) { |
1672 | unsigned long flags = memcg->move_lock_flags; | |
1673 | ||
1674 | memcg->move_lock_task = NULL; | |
1675 | memcg->move_lock_flags = 0; | |
1676 | ||
1677 | spin_unlock_irqrestore(&memcg->move_lock, flags); | |
1678 | } | |
89c06bd5 | 1679 | |
d7365e78 | 1680 | rcu_read_unlock(); |
89c06bd5 | 1681 | } |
81f8c3a4 | 1682 | EXPORT_SYMBOL(unlock_page_memcg); |
89c06bd5 | 1683 | |
cdec2e42 KH |
1684 | /* |
1685 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
1686 | * TODO: maybe necessary to use big numbers in big irons. | |
1687 | */ | |
7ec99d62 | 1688 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
1689 | struct memcg_stock_pcp { |
1690 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 1691 | unsigned int nr_pages; |
cdec2e42 | 1692 | struct work_struct work; |
26fe6168 | 1693 | unsigned long flags; |
a0db00fc | 1694 | #define FLUSHING_CACHED_CHARGE 0 |
cdec2e42 KH |
1695 | }; |
1696 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
9f50fad6 | 1697 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 1698 | |
a0956d54 SS |
1699 | /** |
1700 | * consume_stock: Try to consume stocked charge on this cpu. | |
1701 | * @memcg: memcg to consume from. | |
1702 | * @nr_pages: how many pages to charge. | |
1703 | * | |
1704 | * The charges will only happen if @memcg matches the current cpu's memcg | |
1705 | * stock, and at least @nr_pages are available in that stock. Failure to | |
1706 | * service an allocation will refill the stock. | |
1707 | * | |
1708 | * returns true if successful, false otherwise. | |
cdec2e42 | 1709 | */ |
a0956d54 | 1710 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
1711 | { |
1712 | struct memcg_stock_pcp *stock; | |
db2ba40c | 1713 | unsigned long flags; |
3e32cb2e | 1714 | bool ret = false; |
cdec2e42 | 1715 | |
a0956d54 | 1716 | if (nr_pages > CHARGE_BATCH) |
3e32cb2e | 1717 | return ret; |
a0956d54 | 1718 | |
db2ba40c JW |
1719 | local_irq_save(flags); |
1720 | ||
1721 | stock = this_cpu_ptr(&memcg_stock); | |
3e32cb2e | 1722 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { |
a0956d54 | 1723 | stock->nr_pages -= nr_pages; |
3e32cb2e JW |
1724 | ret = true; |
1725 | } | |
db2ba40c JW |
1726 | |
1727 | local_irq_restore(flags); | |
1728 | ||
cdec2e42 KH |
1729 | return ret; |
1730 | } | |
1731 | ||
1732 | /* | |
3e32cb2e | 1733 | * Returns stocks cached in percpu and reset cached information. |
cdec2e42 KH |
1734 | */ |
1735 | static void drain_stock(struct memcg_stock_pcp *stock) | |
1736 | { | |
1737 | struct mem_cgroup *old = stock->cached; | |
1738 | ||
11c9ea4e | 1739 | if (stock->nr_pages) { |
3e32cb2e | 1740 | page_counter_uncharge(&old->memory, stock->nr_pages); |
7941d214 | 1741 | if (do_memsw_account()) |
3e32cb2e | 1742 | page_counter_uncharge(&old->memsw, stock->nr_pages); |
e8ea14cc | 1743 | css_put_many(&old->css, stock->nr_pages); |
11c9ea4e | 1744 | stock->nr_pages = 0; |
cdec2e42 KH |
1745 | } |
1746 | stock->cached = NULL; | |
cdec2e42 KH |
1747 | } |
1748 | ||
cdec2e42 KH |
1749 | static void drain_local_stock(struct work_struct *dummy) |
1750 | { | |
db2ba40c JW |
1751 | struct memcg_stock_pcp *stock; |
1752 | unsigned long flags; | |
1753 | ||
1754 | local_irq_save(flags); | |
1755 | ||
1756 | stock = this_cpu_ptr(&memcg_stock); | |
cdec2e42 | 1757 | drain_stock(stock); |
26fe6168 | 1758 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
db2ba40c JW |
1759 | |
1760 | local_irq_restore(flags); | |
cdec2e42 KH |
1761 | } |
1762 | ||
1763 | /* | |
3e32cb2e | 1764 | * Cache charges(val) to local per_cpu area. |
320cc51d | 1765 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 1766 | */ |
c0ff4b85 | 1767 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 | 1768 | { |
db2ba40c JW |
1769 | struct memcg_stock_pcp *stock; |
1770 | unsigned long flags; | |
1771 | ||
1772 | local_irq_save(flags); | |
cdec2e42 | 1773 | |
db2ba40c | 1774 | stock = this_cpu_ptr(&memcg_stock); |
c0ff4b85 | 1775 | if (stock->cached != memcg) { /* reset if necessary */ |
cdec2e42 | 1776 | drain_stock(stock); |
c0ff4b85 | 1777 | stock->cached = memcg; |
cdec2e42 | 1778 | } |
11c9ea4e | 1779 | stock->nr_pages += nr_pages; |
db2ba40c JW |
1780 | |
1781 | local_irq_restore(flags); | |
cdec2e42 KH |
1782 | } |
1783 | ||
1784 | /* | |
c0ff4b85 | 1785 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
6d3d6aa2 | 1786 | * of the hierarchy under it. |
cdec2e42 | 1787 | */ |
6d3d6aa2 | 1788 | static void drain_all_stock(struct mem_cgroup *root_memcg) |
cdec2e42 | 1789 | { |
26fe6168 | 1790 | int cpu, curcpu; |
d38144b7 | 1791 | |
6d3d6aa2 JW |
1792 | /* If someone's already draining, avoid adding running more workers. */ |
1793 | if (!mutex_trylock(&percpu_charge_mutex)) | |
1794 | return; | |
cdec2e42 | 1795 | /* Notify other cpus that system-wide "drain" is running */ |
cdec2e42 | 1796 | get_online_cpus(); |
5af12d0e | 1797 | curcpu = get_cpu(); |
cdec2e42 KH |
1798 | for_each_online_cpu(cpu) { |
1799 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
c0ff4b85 | 1800 | struct mem_cgroup *memcg; |
26fe6168 | 1801 | |
c0ff4b85 R |
1802 | memcg = stock->cached; |
1803 | if (!memcg || !stock->nr_pages) | |
26fe6168 | 1804 | continue; |
2314b42d | 1805 | if (!mem_cgroup_is_descendant(memcg, root_memcg)) |
3e92041d | 1806 | continue; |
d1a05b69 MH |
1807 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
1808 | if (cpu == curcpu) | |
1809 | drain_local_stock(&stock->work); | |
1810 | else | |
1811 | schedule_work_on(cpu, &stock->work); | |
1812 | } | |
cdec2e42 | 1813 | } |
5af12d0e | 1814 | put_cpu(); |
f894ffa8 | 1815 | put_online_cpus(); |
9f50fad6 | 1816 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
1817 | } |
1818 | ||
308167fc | 1819 | static int memcg_hotplug_cpu_dead(unsigned int cpu) |
cdec2e42 | 1820 | { |
cdec2e42 KH |
1821 | struct memcg_stock_pcp *stock; |
1822 | ||
cdec2e42 KH |
1823 | stock = &per_cpu(memcg_stock, cpu); |
1824 | drain_stock(stock); | |
308167fc | 1825 | return 0; |
cdec2e42 KH |
1826 | } |
1827 | ||
f7e1cb6e JW |
1828 | static void reclaim_high(struct mem_cgroup *memcg, |
1829 | unsigned int nr_pages, | |
1830 | gfp_t gfp_mask) | |
1831 | { | |
1832 | do { | |
1833 | if (page_counter_read(&memcg->memory) <= memcg->high) | |
1834 | continue; | |
1835 | mem_cgroup_events(memcg, MEMCG_HIGH, 1); | |
1836 | try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | |
1837 | } while ((memcg = parent_mem_cgroup(memcg))); | |
1838 | } | |
1839 | ||
1840 | static void high_work_func(struct work_struct *work) | |
1841 | { | |
1842 | struct mem_cgroup *memcg; | |
1843 | ||
1844 | memcg = container_of(work, struct mem_cgroup, high_work); | |
1845 | reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); | |
1846 | } | |
1847 | ||
b23afb93 TH |
1848 | /* |
1849 | * Scheduled by try_charge() to be executed from the userland return path | |
1850 | * and reclaims memory over the high limit. | |
1851 | */ | |
1852 | void mem_cgroup_handle_over_high(void) | |
1853 | { | |
1854 | unsigned int nr_pages = current->memcg_nr_pages_over_high; | |
f7e1cb6e | 1855 | struct mem_cgroup *memcg; |
b23afb93 TH |
1856 | |
1857 | if (likely(!nr_pages)) | |
1858 | return; | |
1859 | ||
f7e1cb6e JW |
1860 | memcg = get_mem_cgroup_from_mm(current->mm); |
1861 | reclaim_high(memcg, nr_pages, GFP_KERNEL); | |
b23afb93 TH |
1862 | css_put(&memcg->css); |
1863 | current->memcg_nr_pages_over_high = 0; | |
1864 | } | |
1865 | ||
00501b53 JW |
1866 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1867 | unsigned int nr_pages) | |
8a9f3ccd | 1868 | { |
7ec99d62 | 1869 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
9b130619 | 1870 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
6539cc05 | 1871 | struct mem_cgroup *mem_over_limit; |
3e32cb2e | 1872 | struct page_counter *counter; |
6539cc05 | 1873 | unsigned long nr_reclaimed; |
b70a2a21 JW |
1874 | bool may_swap = true; |
1875 | bool drained = false; | |
a636b327 | 1876 | |
ce00a967 | 1877 | if (mem_cgroup_is_root(memcg)) |
10d53c74 | 1878 | return 0; |
6539cc05 | 1879 | retry: |
b6b6cc72 | 1880 | if (consume_stock(memcg, nr_pages)) |
10d53c74 | 1881 | return 0; |
8a9f3ccd | 1882 | |
7941d214 | 1883 | if (!do_memsw_account() || |
6071ca52 JW |
1884 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { |
1885 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | |
6539cc05 | 1886 | goto done_restock; |
7941d214 | 1887 | if (do_memsw_account()) |
3e32cb2e JW |
1888 | page_counter_uncharge(&memcg->memsw, batch); |
1889 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
3fbe7244 | 1890 | } else { |
3e32cb2e | 1891 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
b70a2a21 | 1892 | may_swap = false; |
3fbe7244 | 1893 | } |
7a81b88c | 1894 | |
6539cc05 JW |
1895 | if (batch > nr_pages) { |
1896 | batch = nr_pages; | |
1897 | goto retry; | |
1898 | } | |
6d61ef40 | 1899 | |
06b078fc JW |
1900 | /* |
1901 | * Unlike in global OOM situations, memcg is not in a physical | |
1902 | * memory shortage. Allow dying and OOM-killed tasks to | |
1903 | * bypass the last charges so that they can exit quickly and | |
1904 | * free their memory. | |
1905 | */ | |
1906 | if (unlikely(test_thread_flag(TIF_MEMDIE) || | |
1907 | fatal_signal_pending(current) || | |
1908 | current->flags & PF_EXITING)) | |
10d53c74 | 1909 | goto force; |
06b078fc | 1910 | |
89a28483 JW |
1911 | /* |
1912 | * Prevent unbounded recursion when reclaim operations need to | |
1913 | * allocate memory. This might exceed the limits temporarily, | |
1914 | * but we prefer facilitating memory reclaim and getting back | |
1915 | * under the limit over triggering OOM kills in these cases. | |
1916 | */ | |
1917 | if (unlikely(current->flags & PF_MEMALLOC)) | |
1918 | goto force; | |
1919 | ||
06b078fc JW |
1920 | if (unlikely(task_in_memcg_oom(current))) |
1921 | goto nomem; | |
1922 | ||
d0164adc | 1923 | if (!gfpflags_allow_blocking(gfp_mask)) |
6539cc05 | 1924 | goto nomem; |
4b534334 | 1925 | |
241994ed JW |
1926 | mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); |
1927 | ||
b70a2a21 JW |
1928 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, |
1929 | gfp_mask, may_swap); | |
6539cc05 | 1930 | |
61e02c74 | 1931 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
6539cc05 | 1932 | goto retry; |
28c34c29 | 1933 | |
b70a2a21 | 1934 | if (!drained) { |
6d3d6aa2 | 1935 | drain_all_stock(mem_over_limit); |
b70a2a21 JW |
1936 | drained = true; |
1937 | goto retry; | |
1938 | } | |
1939 | ||
28c34c29 JW |
1940 | if (gfp_mask & __GFP_NORETRY) |
1941 | goto nomem; | |
6539cc05 JW |
1942 | /* |
1943 | * Even though the limit is exceeded at this point, reclaim | |
1944 | * may have been able to free some pages. Retry the charge | |
1945 | * before killing the task. | |
1946 | * | |
1947 | * Only for regular pages, though: huge pages are rather | |
1948 | * unlikely to succeed so close to the limit, and we fall back | |
1949 | * to regular pages anyway in case of failure. | |
1950 | */ | |
61e02c74 | 1951 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
6539cc05 JW |
1952 | goto retry; |
1953 | /* | |
1954 | * At task move, charge accounts can be doubly counted. So, it's | |
1955 | * better to wait until the end of task_move if something is going on. | |
1956 | */ | |
1957 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
1958 | goto retry; | |
1959 | ||
9b130619 JW |
1960 | if (nr_retries--) |
1961 | goto retry; | |
1962 | ||
06b078fc | 1963 | if (gfp_mask & __GFP_NOFAIL) |
10d53c74 | 1964 | goto force; |
06b078fc | 1965 | |
6539cc05 | 1966 | if (fatal_signal_pending(current)) |
10d53c74 | 1967 | goto force; |
6539cc05 | 1968 | |
241994ed JW |
1969 | mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); |
1970 | ||
3608de07 JM |
1971 | mem_cgroup_oom(mem_over_limit, gfp_mask, |
1972 | get_order(nr_pages * PAGE_SIZE)); | |
7a81b88c | 1973 | nomem: |
6d1fdc48 | 1974 | if (!(gfp_mask & __GFP_NOFAIL)) |
3168ecbe | 1975 | return -ENOMEM; |
10d53c74 TH |
1976 | force: |
1977 | /* | |
1978 | * The allocation either can't fail or will lead to more memory | |
1979 | * being freed very soon. Allow memory usage go over the limit | |
1980 | * temporarily by force charging it. | |
1981 | */ | |
1982 | page_counter_charge(&memcg->memory, nr_pages); | |
7941d214 | 1983 | if (do_memsw_account()) |
10d53c74 TH |
1984 | page_counter_charge(&memcg->memsw, nr_pages); |
1985 | css_get_many(&memcg->css, nr_pages); | |
1986 | ||
1987 | return 0; | |
6539cc05 JW |
1988 | |
1989 | done_restock: | |
e8ea14cc | 1990 | css_get_many(&memcg->css, batch); |
6539cc05 JW |
1991 | if (batch > nr_pages) |
1992 | refill_stock(memcg, batch - nr_pages); | |
b23afb93 | 1993 | |
241994ed | 1994 | /* |
b23afb93 TH |
1995 | * If the hierarchy is above the normal consumption range, schedule |
1996 | * reclaim on returning to userland. We can perform reclaim here | |
71baba4b | 1997 | * if __GFP_RECLAIM but let's always punt for simplicity and so that |
b23afb93 TH |
1998 | * GFP_KERNEL can consistently be used during reclaim. @memcg is |
1999 | * not recorded as it most likely matches current's and won't | |
2000 | * change in the meantime. As high limit is checked again before | |
2001 | * reclaim, the cost of mismatch is negligible. | |
241994ed JW |
2002 | */ |
2003 | do { | |
b23afb93 | 2004 | if (page_counter_read(&memcg->memory) > memcg->high) { |
f7e1cb6e JW |
2005 | /* Don't bother a random interrupted task */ |
2006 | if (in_interrupt()) { | |
2007 | schedule_work(&memcg->high_work); | |
2008 | break; | |
2009 | } | |
9516a18a | 2010 | current->memcg_nr_pages_over_high += batch; |
b23afb93 TH |
2011 | set_notify_resume(current); |
2012 | break; | |
2013 | } | |
241994ed | 2014 | } while ((memcg = parent_mem_cgroup(memcg))); |
10d53c74 TH |
2015 | |
2016 | return 0; | |
7a81b88c | 2017 | } |
8a9f3ccd | 2018 | |
00501b53 | 2019 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) |
a3032a2c | 2020 | { |
ce00a967 JW |
2021 | if (mem_cgroup_is_root(memcg)) |
2022 | return; | |
2023 | ||
3e32cb2e | 2024 | page_counter_uncharge(&memcg->memory, nr_pages); |
7941d214 | 2025 | if (do_memsw_account()) |
3e32cb2e | 2026 | page_counter_uncharge(&memcg->memsw, nr_pages); |
ce00a967 | 2027 | |
e8ea14cc | 2028 | css_put_many(&memcg->css, nr_pages); |
d01dd17f KH |
2029 | } |
2030 | ||
0a31bc97 JW |
2031 | static void lock_page_lru(struct page *page, int *isolated) |
2032 | { | |
2033 | struct zone *zone = page_zone(page); | |
2034 | ||
a52633d8 | 2035 | spin_lock_irq(zone_lru_lock(zone)); |
0a31bc97 JW |
2036 | if (PageLRU(page)) { |
2037 | struct lruvec *lruvec; | |
2038 | ||
599d0c95 | 2039 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); |
0a31bc97 JW |
2040 | ClearPageLRU(page); |
2041 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
2042 | *isolated = 1; | |
2043 | } else | |
2044 | *isolated = 0; | |
2045 | } | |
2046 | ||
2047 | static void unlock_page_lru(struct page *page, int isolated) | |
2048 | { | |
2049 | struct zone *zone = page_zone(page); | |
2050 | ||
2051 | if (isolated) { | |
2052 | struct lruvec *lruvec; | |
2053 | ||
599d0c95 | 2054 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); |
0a31bc97 JW |
2055 | VM_BUG_ON_PAGE(PageLRU(page), page); |
2056 | SetPageLRU(page); | |
2057 | add_page_to_lru_list(page, lruvec, page_lru(page)); | |
2058 | } | |
a52633d8 | 2059 | spin_unlock_irq(zone_lru_lock(zone)); |
0a31bc97 JW |
2060 | } |
2061 | ||
00501b53 | 2062 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, |
6abb5a86 | 2063 | bool lrucare) |
7a81b88c | 2064 | { |
0a31bc97 | 2065 | int isolated; |
9ce70c02 | 2066 | |
1306a85a | 2067 | VM_BUG_ON_PAGE(page->mem_cgroup, page); |
9ce70c02 HD |
2068 | |
2069 | /* | |
2070 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2071 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2072 | */ | |
0a31bc97 JW |
2073 | if (lrucare) |
2074 | lock_page_lru(page, &isolated); | |
9ce70c02 | 2075 | |
0a31bc97 JW |
2076 | /* |
2077 | * Nobody should be changing or seriously looking at | |
1306a85a | 2078 | * page->mem_cgroup at this point: |
0a31bc97 JW |
2079 | * |
2080 | * - the page is uncharged | |
2081 | * | |
2082 | * - the page is off-LRU | |
2083 | * | |
2084 | * - an anonymous fault has exclusive page access, except for | |
2085 | * a locked page table | |
2086 | * | |
2087 | * - a page cache insertion, a swapin fault, or a migration | |
2088 | * have the page locked | |
2089 | */ | |
1306a85a | 2090 | page->mem_cgroup = memcg; |
9ce70c02 | 2091 | |
0a31bc97 JW |
2092 | if (lrucare) |
2093 | unlock_page_lru(page, isolated); | |
7a81b88c | 2094 | } |
66e1707b | 2095 | |
127424c8 | 2096 | #ifndef CONFIG_SLOB |
f3bb3043 | 2097 | static int memcg_alloc_cache_id(void) |
55007d84 | 2098 | { |
f3bb3043 VD |
2099 | int id, size; |
2100 | int err; | |
2101 | ||
dbcf73e2 | 2102 | id = ida_simple_get(&memcg_cache_ida, |
f3bb3043 VD |
2103 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); |
2104 | if (id < 0) | |
2105 | return id; | |
55007d84 | 2106 | |
dbcf73e2 | 2107 | if (id < memcg_nr_cache_ids) |
f3bb3043 VD |
2108 | return id; |
2109 | ||
2110 | /* | |
2111 | * There's no space for the new id in memcg_caches arrays, | |
2112 | * so we have to grow them. | |
2113 | */ | |
05257a1a | 2114 | down_write(&memcg_cache_ids_sem); |
f3bb3043 VD |
2115 | |
2116 | size = 2 * (id + 1); | |
55007d84 GC |
2117 | if (size < MEMCG_CACHES_MIN_SIZE) |
2118 | size = MEMCG_CACHES_MIN_SIZE; | |
2119 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2120 | size = MEMCG_CACHES_MAX_SIZE; | |
2121 | ||
f3bb3043 | 2122 | err = memcg_update_all_caches(size); |
60d3fd32 VD |
2123 | if (!err) |
2124 | err = memcg_update_all_list_lrus(size); | |
05257a1a VD |
2125 | if (!err) |
2126 | memcg_nr_cache_ids = size; | |
2127 | ||
2128 | up_write(&memcg_cache_ids_sem); | |
2129 | ||
f3bb3043 | 2130 | if (err) { |
dbcf73e2 | 2131 | ida_simple_remove(&memcg_cache_ida, id); |
f3bb3043 VD |
2132 | return err; |
2133 | } | |
2134 | return id; | |
2135 | } | |
2136 | ||
2137 | static void memcg_free_cache_id(int id) | |
2138 | { | |
dbcf73e2 | 2139 | ida_simple_remove(&memcg_cache_ida, id); |
55007d84 GC |
2140 | } |
2141 | ||
d5b3cf71 | 2142 | struct memcg_kmem_cache_create_work { |
5722d094 VD |
2143 | struct mem_cgroup *memcg; |
2144 | struct kmem_cache *cachep; | |
2145 | struct work_struct work; | |
2146 | }; | |
2147 | ||
13583c3d VD |
2148 | static struct workqueue_struct *memcg_kmem_cache_create_wq; |
2149 | ||
d5b3cf71 | 2150 | static void memcg_kmem_cache_create_func(struct work_struct *w) |
d7f25f8a | 2151 | { |
d5b3cf71 VD |
2152 | struct memcg_kmem_cache_create_work *cw = |
2153 | container_of(w, struct memcg_kmem_cache_create_work, work); | |
5722d094 VD |
2154 | struct mem_cgroup *memcg = cw->memcg; |
2155 | struct kmem_cache *cachep = cw->cachep; | |
d7f25f8a | 2156 | |
d5b3cf71 | 2157 | memcg_create_kmem_cache(memcg, cachep); |
bd673145 | 2158 | |
5722d094 | 2159 | css_put(&memcg->css); |
d7f25f8a GC |
2160 | kfree(cw); |
2161 | } | |
2162 | ||
2163 | /* | |
2164 | * Enqueue the creation of a per-memcg kmem_cache. | |
d7f25f8a | 2165 | */ |
d5b3cf71 VD |
2166 | static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, |
2167 | struct kmem_cache *cachep) | |
d7f25f8a | 2168 | { |
d5b3cf71 | 2169 | struct memcg_kmem_cache_create_work *cw; |
d7f25f8a | 2170 | |
776ed0f0 | 2171 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); |
8135be5a | 2172 | if (!cw) |
d7f25f8a | 2173 | return; |
8135be5a VD |
2174 | |
2175 | css_get(&memcg->css); | |
d7f25f8a GC |
2176 | |
2177 | cw->memcg = memcg; | |
2178 | cw->cachep = cachep; | |
d5b3cf71 | 2179 | INIT_WORK(&cw->work, memcg_kmem_cache_create_func); |
d7f25f8a | 2180 | |
13583c3d | 2181 | queue_work(memcg_kmem_cache_create_wq, &cw->work); |
d7f25f8a GC |
2182 | } |
2183 | ||
d5b3cf71 VD |
2184 | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, |
2185 | struct kmem_cache *cachep) | |
0e9d92f2 GC |
2186 | { |
2187 | /* | |
2188 | * We need to stop accounting when we kmalloc, because if the | |
2189 | * corresponding kmalloc cache is not yet created, the first allocation | |
d5b3cf71 | 2190 | * in __memcg_schedule_kmem_cache_create will recurse. |
0e9d92f2 GC |
2191 | * |
2192 | * However, it is better to enclose the whole function. Depending on | |
2193 | * the debugging options enabled, INIT_WORK(), for instance, can | |
2194 | * trigger an allocation. This too, will make us recurse. Because at | |
2195 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
2196 | * the safest choice is to do it like this, wrapping the whole function. | |
2197 | */ | |
6f185c29 | 2198 | current->memcg_kmem_skip_account = 1; |
d5b3cf71 | 2199 | __memcg_schedule_kmem_cache_create(memcg, cachep); |
6f185c29 | 2200 | current->memcg_kmem_skip_account = 0; |
0e9d92f2 | 2201 | } |
c67a8a68 | 2202 | |
45264778 VD |
2203 | static inline bool memcg_kmem_bypass(void) |
2204 | { | |
2205 | if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) | |
2206 | return true; | |
2207 | return false; | |
2208 | } | |
2209 | ||
2210 | /** | |
2211 | * memcg_kmem_get_cache: select the correct per-memcg cache for allocation | |
2212 | * @cachep: the original global kmem cache | |
2213 | * | |
d7f25f8a GC |
2214 | * Return the kmem_cache we're supposed to use for a slab allocation. |
2215 | * We try to use the current memcg's version of the cache. | |
2216 | * | |
45264778 VD |
2217 | * If the cache does not exist yet, if we are the first user of it, we |
2218 | * create it asynchronously in a workqueue and let the current allocation | |
2219 | * go through with the original cache. | |
d7f25f8a | 2220 | * |
45264778 VD |
2221 | * This function takes a reference to the cache it returns to assure it |
2222 | * won't get destroyed while we are working with it. Once the caller is | |
2223 | * done with it, memcg_kmem_put_cache() must be called to release the | |
2224 | * reference. | |
d7f25f8a | 2225 | */ |
45264778 | 2226 | struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) |
d7f25f8a GC |
2227 | { |
2228 | struct mem_cgroup *memcg; | |
959c8963 | 2229 | struct kmem_cache *memcg_cachep; |
2a4db7eb | 2230 | int kmemcg_id; |
d7f25f8a | 2231 | |
f7ce3190 | 2232 | VM_BUG_ON(!is_root_cache(cachep)); |
d7f25f8a | 2233 | |
45264778 | 2234 | if (memcg_kmem_bypass()) |
230e9fc2 VD |
2235 | return cachep; |
2236 | ||
9d100c5e | 2237 | if (current->memcg_kmem_skip_account) |
0e9d92f2 GC |
2238 | return cachep; |
2239 | ||
8135be5a | 2240 | memcg = get_mem_cgroup_from_mm(current->mm); |
4db0c3c2 | 2241 | kmemcg_id = READ_ONCE(memcg->kmemcg_id); |
2a4db7eb | 2242 | if (kmemcg_id < 0) |
ca0dde97 | 2243 | goto out; |
d7f25f8a | 2244 | |
2a4db7eb | 2245 | memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); |
8135be5a VD |
2246 | if (likely(memcg_cachep)) |
2247 | return memcg_cachep; | |
ca0dde97 LZ |
2248 | |
2249 | /* | |
2250 | * If we are in a safe context (can wait, and not in interrupt | |
2251 | * context), we could be be predictable and return right away. | |
2252 | * This would guarantee that the allocation being performed | |
2253 | * already belongs in the new cache. | |
2254 | * | |
2255 | * However, there are some clashes that can arrive from locking. | |
2256 | * For instance, because we acquire the slab_mutex while doing | |
776ed0f0 VD |
2257 | * memcg_create_kmem_cache, this means no further allocation |
2258 | * could happen with the slab_mutex held. So it's better to | |
2259 | * defer everything. | |
ca0dde97 | 2260 | */ |
d5b3cf71 | 2261 | memcg_schedule_kmem_cache_create(memcg, cachep); |
ca0dde97 | 2262 | out: |
8135be5a | 2263 | css_put(&memcg->css); |
ca0dde97 | 2264 | return cachep; |
d7f25f8a | 2265 | } |
d7f25f8a | 2266 | |
45264778 VD |
2267 | /** |
2268 | * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache | |
2269 | * @cachep: the cache returned by memcg_kmem_get_cache | |
2270 | */ | |
2271 | void memcg_kmem_put_cache(struct kmem_cache *cachep) | |
8135be5a VD |
2272 | { |
2273 | if (!is_root_cache(cachep)) | |
f7ce3190 | 2274 | css_put(&cachep->memcg_params.memcg->css); |
8135be5a VD |
2275 | } |
2276 | ||
45264778 VD |
2277 | /** |
2278 | * memcg_kmem_charge: charge a kmem page | |
2279 | * @page: page to charge | |
2280 | * @gfp: reclaim mode | |
2281 | * @order: allocation order | |
2282 | * @memcg: memory cgroup to charge | |
2283 | * | |
2284 | * Returns 0 on success, an error code on failure. | |
2285 | */ | |
2286 | int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | |
2287 | struct mem_cgroup *memcg) | |
7ae1e1d0 | 2288 | { |
f3ccb2c4 VD |
2289 | unsigned int nr_pages = 1 << order; |
2290 | struct page_counter *counter; | |
7ae1e1d0 GC |
2291 | int ret; |
2292 | ||
f3ccb2c4 | 2293 | ret = try_charge(memcg, gfp, nr_pages); |
52c29b04 | 2294 | if (ret) |
f3ccb2c4 | 2295 | return ret; |
52c29b04 JW |
2296 | |
2297 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | |
2298 | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | |
2299 | cancel_charge(memcg, nr_pages); | |
2300 | return -ENOMEM; | |
7ae1e1d0 GC |
2301 | } |
2302 | ||
f3ccb2c4 | 2303 | page->mem_cgroup = memcg; |
7ae1e1d0 | 2304 | |
f3ccb2c4 | 2305 | return 0; |
7ae1e1d0 GC |
2306 | } |
2307 | ||
45264778 VD |
2308 | /** |
2309 | * memcg_kmem_charge: charge a kmem page to the current memory cgroup | |
2310 | * @page: page to charge | |
2311 | * @gfp: reclaim mode | |
2312 | * @order: allocation order | |
2313 | * | |
2314 | * Returns 0 on success, an error code on failure. | |
2315 | */ | |
2316 | int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | |
7ae1e1d0 | 2317 | { |
f3ccb2c4 | 2318 | struct mem_cgroup *memcg; |
fcff7d7e | 2319 | int ret = 0; |
7ae1e1d0 | 2320 | |
45264778 VD |
2321 | if (memcg_kmem_bypass()) |
2322 | return 0; | |
2323 | ||
f3ccb2c4 | 2324 | memcg = get_mem_cgroup_from_mm(current->mm); |
c4159a75 | 2325 | if (!mem_cgroup_is_root(memcg)) { |
45264778 | 2326 | ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); |
c4159a75 VD |
2327 | if (!ret) |
2328 | __SetPageKmemcg(page); | |
2329 | } | |
7ae1e1d0 | 2330 | css_put(&memcg->css); |
d05e83a6 | 2331 | return ret; |
7ae1e1d0 | 2332 | } |
45264778 VD |
2333 | /** |
2334 | * memcg_kmem_uncharge: uncharge a kmem page | |
2335 | * @page: page to uncharge | |
2336 | * @order: allocation order | |
2337 | */ | |
2338 | void memcg_kmem_uncharge(struct page *page, int order) | |
7ae1e1d0 | 2339 | { |
1306a85a | 2340 | struct mem_cgroup *memcg = page->mem_cgroup; |
f3ccb2c4 | 2341 | unsigned int nr_pages = 1 << order; |
7ae1e1d0 | 2342 | |
7ae1e1d0 GC |
2343 | if (!memcg) |
2344 | return; | |
2345 | ||
309381fe | 2346 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); |
29833315 | 2347 | |
52c29b04 JW |
2348 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
2349 | page_counter_uncharge(&memcg->kmem, nr_pages); | |
2350 | ||
f3ccb2c4 | 2351 | page_counter_uncharge(&memcg->memory, nr_pages); |
7941d214 | 2352 | if (do_memsw_account()) |
f3ccb2c4 | 2353 | page_counter_uncharge(&memcg->memsw, nr_pages); |
60d3fd32 | 2354 | |
1306a85a | 2355 | page->mem_cgroup = NULL; |
c4159a75 VD |
2356 | |
2357 | /* slab pages do not have PageKmemcg flag set */ | |
2358 | if (PageKmemcg(page)) | |
2359 | __ClearPageKmemcg(page); | |
2360 | ||
f3ccb2c4 | 2361 | css_put_many(&memcg->css, nr_pages); |
60d3fd32 | 2362 | } |
127424c8 | 2363 | #endif /* !CONFIG_SLOB */ |
7ae1e1d0 | 2364 | |
ca3e0214 KH |
2365 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2366 | ||
ca3e0214 KH |
2367 | /* |
2368 | * Because tail pages are not marked as "used", set it. We're under | |
a52633d8 | 2369 | * zone_lru_lock and migration entries setup in all page mappings. |
ca3e0214 | 2370 | */ |
e94c8a9c | 2371 | void mem_cgroup_split_huge_fixup(struct page *head) |
ca3e0214 | 2372 | { |
e94c8a9c | 2373 | int i; |
ca3e0214 | 2374 | |
3d37c4a9 KH |
2375 | if (mem_cgroup_disabled()) |
2376 | return; | |
b070e65c | 2377 | |
29833315 | 2378 | for (i = 1; i < HPAGE_PMD_NR; i++) |
1306a85a | 2379 | head[i].mem_cgroup = head->mem_cgroup; |
b9982f8d | 2380 | |
1306a85a | 2381 | __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
b070e65c | 2382 | HPAGE_PMD_NR); |
ca3e0214 | 2383 | } |
12d27107 | 2384 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
ca3e0214 | 2385 | |
c255a458 | 2386 | #ifdef CONFIG_MEMCG_SWAP |
0a31bc97 JW |
2387 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
2388 | bool charge) | |
d13d1443 | 2389 | { |
0a31bc97 JW |
2390 | int val = (charge) ? 1 : -1; |
2391 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | |
d13d1443 | 2392 | } |
02491447 DN |
2393 | |
2394 | /** | |
2395 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
2396 | * @entry: swap entry to be moved | |
2397 | * @from: mem_cgroup which the entry is moved from | |
2398 | * @to: mem_cgroup which the entry is moved to | |
2399 | * | |
2400 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
2401 | * as the mem_cgroup's id of @from. | |
2402 | * | |
2403 | * Returns 0 on success, -EINVAL on failure. | |
2404 | * | |
3e32cb2e | 2405 | * The caller must have charged to @to, IOW, called page_counter_charge() about |
02491447 DN |
2406 | * both res and memsw, and called css_get(). |
2407 | */ | |
2408 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 2409 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
2410 | { |
2411 | unsigned short old_id, new_id; | |
2412 | ||
34c00c31 LZ |
2413 | old_id = mem_cgroup_id(from); |
2414 | new_id = mem_cgroup_id(to); | |
02491447 DN |
2415 | |
2416 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 2417 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 2418 | mem_cgroup_swap_statistics(to, true); |
02491447 DN |
2419 | return 0; |
2420 | } | |
2421 | return -EINVAL; | |
2422 | } | |
2423 | #else | |
2424 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 2425 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
2426 | { |
2427 | return -EINVAL; | |
2428 | } | |
8c7c6e34 | 2429 | #endif |
d13d1443 | 2430 | |
3e32cb2e | 2431 | static DEFINE_MUTEX(memcg_limit_mutex); |
f212ad7c | 2432 | |
d38d2a75 | 2433 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
3e32cb2e | 2434 | unsigned long limit) |
628f4235 | 2435 | { |
3e32cb2e JW |
2436 | unsigned long curusage; |
2437 | unsigned long oldusage; | |
2438 | bool enlarge = false; | |
81d39c20 | 2439 | int retry_count; |
3e32cb2e | 2440 | int ret; |
81d39c20 KH |
2441 | |
2442 | /* | |
2443 | * For keeping hierarchical_reclaim simple, how long we should retry | |
2444 | * is depends on callers. We set our retry-count to be function | |
2445 | * of # of children which we should visit in this loop. | |
2446 | */ | |
3e32cb2e JW |
2447 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * |
2448 | mem_cgroup_count_children(memcg); | |
81d39c20 | 2449 | |
3e32cb2e | 2450 | oldusage = page_counter_read(&memcg->memory); |
628f4235 | 2451 | |
3e32cb2e | 2452 | do { |
628f4235 KH |
2453 | if (signal_pending(current)) { |
2454 | ret = -EINTR; | |
2455 | break; | |
2456 | } | |
3e32cb2e JW |
2457 | |
2458 | mutex_lock(&memcg_limit_mutex); | |
2459 | if (limit > memcg->memsw.limit) { | |
2460 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 | 2461 | ret = -EINVAL; |
628f4235 KH |
2462 | break; |
2463 | } | |
3e32cb2e JW |
2464 | if (limit > memcg->memory.limit) |
2465 | enlarge = true; | |
2466 | ret = page_counter_limit(&memcg->memory, limit); | |
2467 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 KH |
2468 | |
2469 | if (!ret) | |
2470 | break; | |
2471 | ||
b70a2a21 JW |
2472 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); |
2473 | ||
3e32cb2e | 2474 | curusage = page_counter_read(&memcg->memory); |
81d39c20 | 2475 | /* Usage is reduced ? */ |
f894ffa8 | 2476 | if (curusage >= oldusage) |
81d39c20 KH |
2477 | retry_count--; |
2478 | else | |
2479 | oldusage = curusage; | |
3e32cb2e JW |
2480 | } while (retry_count); |
2481 | ||
3c11ecf4 KH |
2482 | if (!ret && enlarge) |
2483 | memcg_oom_recover(memcg); | |
14797e23 | 2484 | |
8c7c6e34 KH |
2485 | return ret; |
2486 | } | |
2487 | ||
338c8431 | 2488 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3e32cb2e | 2489 | unsigned long limit) |
8c7c6e34 | 2490 | { |
3e32cb2e JW |
2491 | unsigned long curusage; |
2492 | unsigned long oldusage; | |
2493 | bool enlarge = false; | |
81d39c20 | 2494 | int retry_count; |
3e32cb2e | 2495 | int ret; |
8c7c6e34 | 2496 | |
81d39c20 | 2497 | /* see mem_cgroup_resize_res_limit */ |
3e32cb2e JW |
2498 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * |
2499 | mem_cgroup_count_children(memcg); | |
2500 | ||
2501 | oldusage = page_counter_read(&memcg->memsw); | |
2502 | ||
2503 | do { | |
8c7c6e34 KH |
2504 | if (signal_pending(current)) { |
2505 | ret = -EINTR; | |
2506 | break; | |
2507 | } | |
3e32cb2e JW |
2508 | |
2509 | mutex_lock(&memcg_limit_mutex); | |
2510 | if (limit < memcg->memory.limit) { | |
2511 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 | 2512 | ret = -EINVAL; |
8c7c6e34 KH |
2513 | break; |
2514 | } | |
3e32cb2e JW |
2515 | if (limit > memcg->memsw.limit) |
2516 | enlarge = true; | |
2517 | ret = page_counter_limit(&memcg->memsw, limit); | |
2518 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 KH |
2519 | |
2520 | if (!ret) | |
2521 | break; | |
2522 | ||
b70a2a21 JW |
2523 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); |
2524 | ||
3e32cb2e | 2525 | curusage = page_counter_read(&memcg->memsw); |
81d39c20 | 2526 | /* Usage is reduced ? */ |
8c7c6e34 | 2527 | if (curusage >= oldusage) |
628f4235 | 2528 | retry_count--; |
81d39c20 KH |
2529 | else |
2530 | oldusage = curusage; | |
3e32cb2e JW |
2531 | } while (retry_count); |
2532 | ||
3c11ecf4 KH |
2533 | if (!ret && enlarge) |
2534 | memcg_oom_recover(memcg); | |
3e32cb2e | 2535 | |
628f4235 KH |
2536 | return ret; |
2537 | } | |
2538 | ||
ef8f2327 | 2539 | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, |
0608f43d AM |
2540 | gfp_t gfp_mask, |
2541 | unsigned long *total_scanned) | |
2542 | { | |
2543 | unsigned long nr_reclaimed = 0; | |
ef8f2327 | 2544 | struct mem_cgroup_per_node *mz, *next_mz = NULL; |
0608f43d AM |
2545 | unsigned long reclaimed; |
2546 | int loop = 0; | |
ef8f2327 | 2547 | struct mem_cgroup_tree_per_node *mctz; |
3e32cb2e | 2548 | unsigned long excess; |
0608f43d AM |
2549 | unsigned long nr_scanned; |
2550 | ||
2551 | if (order > 0) | |
2552 | return 0; | |
2553 | ||
ef8f2327 | 2554 | mctz = soft_limit_tree_node(pgdat->node_id); |
d6507ff5 MH |
2555 | |
2556 | /* | |
2557 | * Do not even bother to check the largest node if the root | |
2558 | * is empty. Do it lockless to prevent lock bouncing. Races | |
2559 | * are acceptable as soft limit is best effort anyway. | |
2560 | */ | |
2561 | if (RB_EMPTY_ROOT(&mctz->rb_root)) | |
2562 | return 0; | |
2563 | ||
0608f43d AM |
2564 | /* |
2565 | * This loop can run a while, specially if mem_cgroup's continuously | |
2566 | * keep exceeding their soft limit and putting the system under | |
2567 | * pressure | |
2568 | */ | |
2569 | do { | |
2570 | if (next_mz) | |
2571 | mz = next_mz; | |
2572 | else | |
2573 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
2574 | if (!mz) | |
2575 | break; | |
2576 | ||
2577 | nr_scanned = 0; | |
ef8f2327 | 2578 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, |
0608f43d AM |
2579 | gfp_mask, &nr_scanned); |
2580 | nr_reclaimed += reclaimed; | |
2581 | *total_scanned += nr_scanned; | |
0a31bc97 | 2582 | spin_lock_irq(&mctz->lock); |
bc2f2e7f | 2583 | __mem_cgroup_remove_exceeded(mz, mctz); |
0608f43d AM |
2584 | |
2585 | /* | |
2586 | * If we failed to reclaim anything from this memory cgroup | |
2587 | * it is time to move on to the next cgroup | |
2588 | */ | |
2589 | next_mz = NULL; | |
bc2f2e7f VD |
2590 | if (!reclaimed) |
2591 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
2592 | ||
3e32cb2e | 2593 | excess = soft_limit_excess(mz->memcg); |
0608f43d AM |
2594 | /* |
2595 | * One school of thought says that we should not add | |
2596 | * back the node to the tree if reclaim returns 0. | |
2597 | * But our reclaim could return 0, simply because due | |
2598 | * to priority we are exposing a smaller subset of | |
2599 | * memory to reclaim from. Consider this as a longer | |
2600 | * term TODO. | |
2601 | */ | |
2602 | /* If excess == 0, no tree ops */ | |
cf2c8127 | 2603 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
0a31bc97 | 2604 | spin_unlock_irq(&mctz->lock); |
0608f43d AM |
2605 | css_put(&mz->memcg->css); |
2606 | loop++; | |
2607 | /* | |
2608 | * Could not reclaim anything and there are no more | |
2609 | * mem cgroups to try or we seem to be looping without | |
2610 | * reclaiming anything. | |
2611 | */ | |
2612 | if (!nr_reclaimed && | |
2613 | (next_mz == NULL || | |
2614 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
2615 | break; | |
2616 | } while (!nr_reclaimed); | |
2617 | if (next_mz) | |
2618 | css_put(&next_mz->memcg->css); | |
2619 | return nr_reclaimed; | |
2620 | } | |
2621 | ||
ea280e7b TH |
2622 | /* |
2623 | * Test whether @memcg has children, dead or alive. Note that this | |
2624 | * function doesn't care whether @memcg has use_hierarchy enabled and | |
2625 | * returns %true if there are child csses according to the cgroup | |
2626 | * hierarchy. Testing use_hierarchy is the caller's responsiblity. | |
2627 | */ | |
b5f99b53 GC |
2628 | static inline bool memcg_has_children(struct mem_cgroup *memcg) |
2629 | { | |
ea280e7b TH |
2630 | bool ret; |
2631 | ||
ea280e7b TH |
2632 | rcu_read_lock(); |
2633 | ret = css_next_child(NULL, &memcg->css); | |
2634 | rcu_read_unlock(); | |
2635 | return ret; | |
b5f99b53 GC |
2636 | } |
2637 | ||
c26251f9 | 2638 | /* |
51038171 | 2639 | * Reclaims as many pages from the given memcg as possible. |
c26251f9 MH |
2640 | * |
2641 | * Caller is responsible for holding css reference for memcg. | |
2642 | */ | |
2643 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
2644 | { | |
2645 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c26251f9 | 2646 | |
c1e862c1 KH |
2647 | /* we call try-to-free pages for make this cgroup empty */ |
2648 | lru_add_drain_all(); | |
f817ed48 | 2649 | /* try to free all pages in this cgroup */ |
3e32cb2e | 2650 | while (nr_retries && page_counter_read(&memcg->memory)) { |
f817ed48 | 2651 | int progress; |
c1e862c1 | 2652 | |
c26251f9 MH |
2653 | if (signal_pending(current)) |
2654 | return -EINTR; | |
2655 | ||
b70a2a21 JW |
2656 | progress = try_to_free_mem_cgroup_pages(memcg, 1, |
2657 | GFP_KERNEL, true); | |
c1e862c1 | 2658 | if (!progress) { |
f817ed48 | 2659 | nr_retries--; |
c1e862c1 | 2660 | /* maybe some writeback is necessary */ |
8aa7e847 | 2661 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 2662 | } |
f817ed48 KH |
2663 | |
2664 | } | |
ab5196c2 MH |
2665 | |
2666 | return 0; | |
cc847582 KH |
2667 | } |
2668 | ||
6770c64e TH |
2669 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, |
2670 | char *buf, size_t nbytes, | |
2671 | loff_t off) | |
c1e862c1 | 2672 | { |
6770c64e | 2673 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
c26251f9 | 2674 | |
d8423011 MH |
2675 | if (mem_cgroup_is_root(memcg)) |
2676 | return -EINVAL; | |
6770c64e | 2677 | return mem_cgroup_force_empty(memcg) ?: nbytes; |
c1e862c1 KH |
2678 | } |
2679 | ||
182446d0 TH |
2680 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
2681 | struct cftype *cft) | |
18f59ea7 | 2682 | { |
182446d0 | 2683 | return mem_cgroup_from_css(css)->use_hierarchy; |
18f59ea7 BS |
2684 | } |
2685 | ||
182446d0 TH |
2686 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
2687 | struct cftype *cft, u64 val) | |
18f59ea7 BS |
2688 | { |
2689 | int retval = 0; | |
182446d0 | 2690 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5c9d535b | 2691 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); |
18f59ea7 | 2692 | |
567fb435 | 2693 | if (memcg->use_hierarchy == val) |
0b8f73e1 | 2694 | return 0; |
567fb435 | 2695 | |
18f59ea7 | 2696 | /* |
af901ca1 | 2697 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
2698 | * in the child subtrees. If it is unset, then the change can |
2699 | * occur, provided the current cgroup has no children. | |
2700 | * | |
2701 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
2702 | * set if there are no children. | |
2703 | */ | |
c0ff4b85 | 2704 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
18f59ea7 | 2705 | (val == 1 || val == 0)) { |
ea280e7b | 2706 | if (!memcg_has_children(memcg)) |
c0ff4b85 | 2707 | memcg->use_hierarchy = val; |
18f59ea7 BS |
2708 | else |
2709 | retval = -EBUSY; | |
2710 | } else | |
2711 | retval = -EINVAL; | |
567fb435 | 2712 | |
18f59ea7 BS |
2713 | return retval; |
2714 | } | |
2715 | ||
72b54e73 | 2716 | static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) |
ce00a967 JW |
2717 | { |
2718 | struct mem_cgroup *iter; | |
72b54e73 | 2719 | int i; |
ce00a967 | 2720 | |
72b54e73 | 2721 | memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); |
ce00a967 | 2722 | |
72b54e73 VD |
2723 | for_each_mem_cgroup_tree(iter, memcg) { |
2724 | for (i = 0; i < MEMCG_NR_STAT; i++) | |
2725 | stat[i] += mem_cgroup_read_stat(iter, i); | |
2726 | } | |
ce00a967 JW |
2727 | } |
2728 | ||
72b54e73 | 2729 | static void tree_events(struct mem_cgroup *memcg, unsigned long *events) |
587d9f72 JW |
2730 | { |
2731 | struct mem_cgroup *iter; | |
72b54e73 | 2732 | int i; |
587d9f72 | 2733 | |
72b54e73 | 2734 | memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); |
587d9f72 | 2735 | |
72b54e73 VD |
2736 | for_each_mem_cgroup_tree(iter, memcg) { |
2737 | for (i = 0; i < MEMCG_NR_EVENTS; i++) | |
2738 | events[i] += mem_cgroup_read_events(iter, i); | |
2739 | } | |
587d9f72 JW |
2740 | } |
2741 | ||
6f646156 | 2742 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
ce00a967 | 2743 | { |
72b54e73 | 2744 | unsigned long val = 0; |
ce00a967 | 2745 | |
3e32cb2e | 2746 | if (mem_cgroup_is_root(memcg)) { |
72b54e73 VD |
2747 | struct mem_cgroup *iter; |
2748 | ||
2749 | for_each_mem_cgroup_tree(iter, memcg) { | |
2750 | val += mem_cgroup_read_stat(iter, | |
2751 | MEM_CGROUP_STAT_CACHE); | |
2752 | val += mem_cgroup_read_stat(iter, | |
2753 | MEM_CGROUP_STAT_RSS); | |
2754 | if (swap) | |
2755 | val += mem_cgroup_read_stat(iter, | |
2756 | MEM_CGROUP_STAT_SWAP); | |
2757 | } | |
3e32cb2e | 2758 | } else { |
ce00a967 | 2759 | if (!swap) |
3e32cb2e | 2760 | val = page_counter_read(&memcg->memory); |
ce00a967 | 2761 | else |
3e32cb2e | 2762 | val = page_counter_read(&memcg->memsw); |
ce00a967 | 2763 | } |
c12176d3 | 2764 | return val; |
ce00a967 JW |
2765 | } |
2766 | ||
3e32cb2e JW |
2767 | enum { |
2768 | RES_USAGE, | |
2769 | RES_LIMIT, | |
2770 | RES_MAX_USAGE, | |
2771 | RES_FAILCNT, | |
2772 | RES_SOFT_LIMIT, | |
2773 | }; | |
ce00a967 | 2774 | |
791badbd | 2775 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, |
05b84301 | 2776 | struct cftype *cft) |
8cdea7c0 | 2777 | { |
182446d0 | 2778 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3e32cb2e | 2779 | struct page_counter *counter; |
af36f906 | 2780 | |
3e32cb2e | 2781 | switch (MEMFILE_TYPE(cft->private)) { |
8c7c6e34 | 2782 | case _MEM: |
3e32cb2e JW |
2783 | counter = &memcg->memory; |
2784 | break; | |
8c7c6e34 | 2785 | case _MEMSWAP: |
3e32cb2e JW |
2786 | counter = &memcg->memsw; |
2787 | break; | |
510fc4e1 | 2788 | case _KMEM: |
3e32cb2e | 2789 | counter = &memcg->kmem; |
510fc4e1 | 2790 | break; |
d55f90bf | 2791 | case _TCP: |
0db15298 | 2792 | counter = &memcg->tcpmem; |
d55f90bf | 2793 | break; |
8c7c6e34 KH |
2794 | default: |
2795 | BUG(); | |
8c7c6e34 | 2796 | } |
3e32cb2e JW |
2797 | |
2798 | switch (MEMFILE_ATTR(cft->private)) { | |
2799 | case RES_USAGE: | |
2800 | if (counter == &memcg->memory) | |
c12176d3 | 2801 | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; |
3e32cb2e | 2802 | if (counter == &memcg->memsw) |
c12176d3 | 2803 | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; |
3e32cb2e JW |
2804 | return (u64)page_counter_read(counter) * PAGE_SIZE; |
2805 | case RES_LIMIT: | |
2806 | return (u64)counter->limit * PAGE_SIZE; | |
2807 | case RES_MAX_USAGE: | |
2808 | return (u64)counter->watermark * PAGE_SIZE; | |
2809 | case RES_FAILCNT: | |
2810 | return counter->failcnt; | |
2811 | case RES_SOFT_LIMIT: | |
2812 | return (u64)memcg->soft_limit * PAGE_SIZE; | |
2813 | default: | |
2814 | BUG(); | |
2815 | } | |
8cdea7c0 | 2816 | } |
510fc4e1 | 2817 | |
127424c8 | 2818 | #ifndef CONFIG_SLOB |
567e9ab2 | 2819 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
d6441637 | 2820 | { |
d6441637 VD |
2821 | int memcg_id; |
2822 | ||
b313aeee VD |
2823 | if (cgroup_memory_nokmem) |
2824 | return 0; | |
2825 | ||
2a4db7eb | 2826 | BUG_ON(memcg->kmemcg_id >= 0); |
567e9ab2 | 2827 | BUG_ON(memcg->kmem_state); |
d6441637 | 2828 | |
f3bb3043 | 2829 | memcg_id = memcg_alloc_cache_id(); |
0b8f73e1 JW |
2830 | if (memcg_id < 0) |
2831 | return memcg_id; | |
d6441637 | 2832 | |
ef12947c | 2833 | static_branch_inc(&memcg_kmem_enabled_key); |
d6441637 | 2834 | /* |
567e9ab2 | 2835 | * A memory cgroup is considered kmem-online as soon as it gets |
900a38f0 | 2836 | * kmemcg_id. Setting the id after enabling static branching will |
d6441637 VD |
2837 | * guarantee no one starts accounting before all call sites are |
2838 | * patched. | |
2839 | */ | |
900a38f0 | 2840 | memcg->kmemcg_id = memcg_id; |
567e9ab2 | 2841 | memcg->kmem_state = KMEM_ONLINE; |
0b8f73e1 JW |
2842 | |
2843 | return 0; | |
d6441637 VD |
2844 | } |
2845 | ||
8e0a8912 JW |
2846 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
2847 | { | |
2848 | struct cgroup_subsys_state *css; | |
2849 | struct mem_cgroup *parent, *child; | |
2850 | int kmemcg_id; | |
2851 | ||
2852 | if (memcg->kmem_state != KMEM_ONLINE) | |
2853 | return; | |
2854 | /* | |
2855 | * Clear the online state before clearing memcg_caches array | |
2856 | * entries. The slab_mutex in memcg_deactivate_kmem_caches() | |
2857 | * guarantees that no cache will be created for this cgroup | |
2858 | * after we are done (see memcg_create_kmem_cache()). | |
2859 | */ | |
2860 | memcg->kmem_state = KMEM_ALLOCATED; | |
2861 | ||
2862 | memcg_deactivate_kmem_caches(memcg); | |
2863 | ||
2864 | kmemcg_id = memcg->kmemcg_id; | |
2865 | BUG_ON(kmemcg_id < 0); | |
2866 | ||
2867 | parent = parent_mem_cgroup(memcg); | |
2868 | if (!parent) | |
2869 | parent = root_mem_cgroup; | |
2870 | ||
2871 | /* | |
2872 | * Change kmemcg_id of this cgroup and all its descendants to the | |
2873 | * parent's id, and then move all entries from this cgroup's list_lrus | |
2874 | * to ones of the parent. After we have finished, all list_lrus | |
2875 | * corresponding to this cgroup are guaranteed to remain empty. The | |
2876 | * ordering is imposed by list_lru_node->lock taken by | |
2877 | * memcg_drain_all_list_lrus(). | |
2878 | */ | |
3a06bb78 | 2879 | rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ |
8e0a8912 JW |
2880 | css_for_each_descendant_pre(css, &memcg->css) { |
2881 | child = mem_cgroup_from_css(css); | |
2882 | BUG_ON(child->kmemcg_id != kmemcg_id); | |
2883 | child->kmemcg_id = parent->kmemcg_id; | |
2884 | if (!memcg->use_hierarchy) | |
2885 | break; | |
2886 | } | |
3a06bb78 TH |
2887 | rcu_read_unlock(); |
2888 | ||
8e0a8912 JW |
2889 | memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); |
2890 | ||
2891 | memcg_free_cache_id(kmemcg_id); | |
2892 | } | |
2893 | ||
2894 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
2895 | { | |
0b8f73e1 JW |
2896 | /* css_alloc() failed, offlining didn't happen */ |
2897 | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | |
2898 | memcg_offline_kmem(memcg); | |
2899 | ||
8e0a8912 JW |
2900 | if (memcg->kmem_state == KMEM_ALLOCATED) { |
2901 | memcg_destroy_kmem_caches(memcg); | |
2902 | static_branch_dec(&memcg_kmem_enabled_key); | |
2903 | WARN_ON(page_counter_read(&memcg->kmem)); | |
2904 | } | |
8e0a8912 | 2905 | } |
d6441637 | 2906 | #else |
0b8f73e1 | 2907 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
127424c8 JW |
2908 | { |
2909 | return 0; | |
2910 | } | |
2911 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | |
2912 | { | |
2913 | } | |
2914 | static void memcg_free_kmem(struct mem_cgroup *memcg) | |
2915 | { | |
2916 | } | |
2917 | #endif /* !CONFIG_SLOB */ | |
2918 | ||
d6441637 | 2919 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, |
3e32cb2e | 2920 | unsigned long limit) |
d6441637 | 2921 | { |
b313aeee | 2922 | int ret; |
127424c8 JW |
2923 | |
2924 | mutex_lock(&memcg_limit_mutex); | |
127424c8 | 2925 | ret = page_counter_limit(&memcg->kmem, limit); |
127424c8 JW |
2926 | mutex_unlock(&memcg_limit_mutex); |
2927 | return ret; | |
d6441637 | 2928 | } |
510fc4e1 | 2929 | |
d55f90bf VD |
2930 | static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) |
2931 | { | |
2932 | int ret; | |
2933 | ||
2934 | mutex_lock(&memcg_limit_mutex); | |
2935 | ||
0db15298 | 2936 | ret = page_counter_limit(&memcg->tcpmem, limit); |
d55f90bf VD |
2937 | if (ret) |
2938 | goto out; | |
2939 | ||
0db15298 | 2940 | if (!memcg->tcpmem_active) { |
d55f90bf VD |
2941 | /* |
2942 | * The active flag needs to be written after the static_key | |
2943 | * update. This is what guarantees that the socket activation | |
2d758073 JW |
2944 | * function is the last one to run. See mem_cgroup_sk_alloc() |
2945 | * for details, and note that we don't mark any socket as | |
2946 | * belonging to this memcg until that flag is up. | |
d55f90bf VD |
2947 | * |
2948 | * We need to do this, because static_keys will span multiple | |
2949 | * sites, but we can't control their order. If we mark a socket | |
2950 | * as accounted, but the accounting functions are not patched in | |
2951 | * yet, we'll lose accounting. | |
2952 | * | |
2d758073 | 2953 | * We never race with the readers in mem_cgroup_sk_alloc(), |
d55f90bf VD |
2954 | * because when this value change, the code to process it is not |
2955 | * patched in yet. | |
2956 | */ | |
2957 | static_branch_inc(&memcg_sockets_enabled_key); | |
0db15298 | 2958 | memcg->tcpmem_active = true; |
d55f90bf VD |
2959 | } |
2960 | out: | |
2961 | mutex_unlock(&memcg_limit_mutex); | |
2962 | return ret; | |
2963 | } | |
d55f90bf | 2964 | |
628f4235 KH |
2965 | /* |
2966 | * The user of this function is... | |
2967 | * RES_LIMIT. | |
2968 | */ | |
451af504 TH |
2969 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, |
2970 | char *buf, size_t nbytes, loff_t off) | |
8cdea7c0 | 2971 | { |
451af504 | 2972 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
3e32cb2e | 2973 | unsigned long nr_pages; |
628f4235 KH |
2974 | int ret; |
2975 | ||
451af504 | 2976 | buf = strstrip(buf); |
650c5e56 | 2977 | ret = page_counter_memparse(buf, "-1", &nr_pages); |
3e32cb2e JW |
2978 | if (ret) |
2979 | return ret; | |
af36f906 | 2980 | |
3e32cb2e | 2981 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
628f4235 | 2982 | case RES_LIMIT: |
4b3bde4c BS |
2983 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
2984 | ret = -EINVAL; | |
2985 | break; | |
2986 | } | |
3e32cb2e JW |
2987 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
2988 | case _MEM: | |
2989 | ret = mem_cgroup_resize_limit(memcg, nr_pages); | |
8c7c6e34 | 2990 | break; |
3e32cb2e JW |
2991 | case _MEMSWAP: |
2992 | ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); | |
296c81d8 | 2993 | break; |
3e32cb2e JW |
2994 | case _KMEM: |
2995 | ret = memcg_update_kmem_limit(memcg, nr_pages); | |
2996 | break; | |
d55f90bf VD |
2997 | case _TCP: |
2998 | ret = memcg_update_tcp_limit(memcg, nr_pages); | |
2999 | break; | |
3e32cb2e | 3000 | } |
296c81d8 | 3001 | break; |
3e32cb2e JW |
3002 | case RES_SOFT_LIMIT: |
3003 | memcg->soft_limit = nr_pages; | |
3004 | ret = 0; | |
628f4235 KH |
3005 | break; |
3006 | } | |
451af504 | 3007 | return ret ?: nbytes; |
8cdea7c0 BS |
3008 | } |
3009 | ||
6770c64e TH |
3010 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, |
3011 | size_t nbytes, loff_t off) | |
c84872e1 | 3012 | { |
6770c64e | 3013 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
3e32cb2e | 3014 | struct page_counter *counter; |
c84872e1 | 3015 | |
3e32cb2e JW |
3016 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
3017 | case _MEM: | |
3018 | counter = &memcg->memory; | |
3019 | break; | |
3020 | case _MEMSWAP: | |
3021 | counter = &memcg->memsw; | |
3022 | break; | |
3023 | case _KMEM: | |
3024 | counter = &memcg->kmem; | |
3025 | break; | |
d55f90bf | 3026 | case _TCP: |
0db15298 | 3027 | counter = &memcg->tcpmem; |
d55f90bf | 3028 | break; |
3e32cb2e JW |
3029 | default: |
3030 | BUG(); | |
3031 | } | |
af36f906 | 3032 | |
3e32cb2e | 3033 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
29f2a4da | 3034 | case RES_MAX_USAGE: |
3e32cb2e | 3035 | page_counter_reset_watermark(counter); |
29f2a4da PE |
3036 | break; |
3037 | case RES_FAILCNT: | |
3e32cb2e | 3038 | counter->failcnt = 0; |
29f2a4da | 3039 | break; |
3e32cb2e JW |
3040 | default: |
3041 | BUG(); | |
29f2a4da | 3042 | } |
f64c3f54 | 3043 | |
6770c64e | 3044 | return nbytes; |
c84872e1 PE |
3045 | } |
3046 | ||
182446d0 | 3047 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
7dc74be0 DN |
3048 | struct cftype *cft) |
3049 | { | |
182446d0 | 3050 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
7dc74be0 DN |
3051 | } |
3052 | ||
02491447 | 3053 | #ifdef CONFIG_MMU |
182446d0 | 3054 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
7dc74be0 DN |
3055 | struct cftype *cft, u64 val) |
3056 | { | |
182446d0 | 3057 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
7dc74be0 | 3058 | |
1dfab5ab | 3059 | if (val & ~MOVE_MASK) |
7dc74be0 | 3060 | return -EINVAL; |
ee5e8472 | 3061 | |
7dc74be0 | 3062 | /* |
ee5e8472 GC |
3063 | * No kind of locking is needed in here, because ->can_attach() will |
3064 | * check this value once in the beginning of the process, and then carry | |
3065 | * on with stale data. This means that changes to this value will only | |
3066 | * affect task migrations starting after the change. | |
7dc74be0 | 3067 | */ |
c0ff4b85 | 3068 | memcg->move_charge_at_immigrate = val; |
7dc74be0 DN |
3069 | return 0; |
3070 | } | |
02491447 | 3071 | #else |
182446d0 | 3072 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
02491447 DN |
3073 | struct cftype *cft, u64 val) |
3074 | { | |
3075 | return -ENOSYS; | |
3076 | } | |
3077 | #endif | |
7dc74be0 | 3078 | |
406eb0c9 | 3079 | #ifdef CONFIG_NUMA |
2da8ca82 | 3080 | static int memcg_numa_stat_show(struct seq_file *m, void *v) |
406eb0c9 | 3081 | { |
25485de6 GT |
3082 | struct numa_stat { |
3083 | const char *name; | |
3084 | unsigned int lru_mask; | |
3085 | }; | |
3086 | ||
3087 | static const struct numa_stat stats[] = { | |
3088 | { "total", LRU_ALL }, | |
3089 | { "file", LRU_ALL_FILE }, | |
3090 | { "anon", LRU_ALL_ANON }, | |
3091 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
3092 | }; | |
3093 | const struct numa_stat *stat; | |
406eb0c9 | 3094 | int nid; |
25485de6 | 3095 | unsigned long nr; |
2da8ca82 | 3096 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
406eb0c9 | 3097 | |
25485de6 GT |
3098 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
3099 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | |
3100 | seq_printf(m, "%s=%lu", stat->name, nr); | |
3101 | for_each_node_state(nid, N_MEMORY) { | |
3102 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3103 | stat->lru_mask); | |
3104 | seq_printf(m, " N%d=%lu", nid, nr); | |
3105 | } | |
3106 | seq_putc(m, '\n'); | |
406eb0c9 | 3107 | } |
406eb0c9 | 3108 | |
071aee13 YH |
3109 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
3110 | struct mem_cgroup *iter; | |
3111 | ||
3112 | nr = 0; | |
3113 | for_each_mem_cgroup_tree(iter, memcg) | |
3114 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | |
3115 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | |
3116 | for_each_node_state(nid, N_MEMORY) { | |
3117 | nr = 0; | |
3118 | for_each_mem_cgroup_tree(iter, memcg) | |
3119 | nr += mem_cgroup_node_nr_lru_pages( | |
3120 | iter, nid, stat->lru_mask); | |
3121 | seq_printf(m, " N%d=%lu", nid, nr); | |
3122 | } | |
3123 | seq_putc(m, '\n'); | |
406eb0c9 | 3124 | } |
406eb0c9 | 3125 | |
406eb0c9 YH |
3126 | return 0; |
3127 | } | |
3128 | #endif /* CONFIG_NUMA */ | |
3129 | ||
2da8ca82 | 3130 | static int memcg_stat_show(struct seq_file *m, void *v) |
d2ceb9b7 | 3131 | { |
2da8ca82 | 3132 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
3e32cb2e | 3133 | unsigned long memory, memsw; |
af7c4b0e JW |
3134 | struct mem_cgroup *mi; |
3135 | unsigned int i; | |
406eb0c9 | 3136 | |
0ca44b14 GT |
3137 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != |
3138 | MEM_CGROUP_STAT_NSTATS); | |
3139 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != | |
3140 | MEM_CGROUP_EVENTS_NSTATS); | |
70bc068c RS |
3141 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); |
3142 | ||
af7c4b0e | 3143 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
7941d214 | 3144 | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) |
1dd3a273 | 3145 | continue; |
484ebb3b | 3146 | seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], |
af7c4b0e | 3147 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); |
1dd3a273 | 3148 | } |
7b854121 | 3149 | |
af7c4b0e JW |
3150 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
3151 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
3152 | mem_cgroup_read_events(memcg, i)); | |
3153 | ||
3154 | for (i = 0; i < NR_LRU_LISTS; i++) | |
3155 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
3156 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
3157 | ||
14067bb3 | 3158 | /* Hierarchical information */ |
3e32cb2e JW |
3159 | memory = memsw = PAGE_COUNTER_MAX; |
3160 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | |
3161 | memory = min(memory, mi->memory.limit); | |
3162 | memsw = min(memsw, mi->memsw.limit); | |
fee7b548 | 3163 | } |
3e32cb2e JW |
3164 | seq_printf(m, "hierarchical_memory_limit %llu\n", |
3165 | (u64)memory * PAGE_SIZE); | |
7941d214 | 3166 | if (do_memsw_account()) |
3e32cb2e JW |
3167 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
3168 | (u64)memsw * PAGE_SIZE); | |
7f016ee8 | 3169 | |
af7c4b0e | 3170 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
484ebb3b | 3171 | unsigned long long val = 0; |
af7c4b0e | 3172 | |
7941d214 | 3173 | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) |
1dd3a273 | 3174 | continue; |
af7c4b0e JW |
3175 | for_each_mem_cgroup_tree(mi, memcg) |
3176 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
484ebb3b | 3177 | seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); |
af7c4b0e JW |
3178 | } |
3179 | ||
3180 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
3181 | unsigned long long val = 0; | |
3182 | ||
3183 | for_each_mem_cgroup_tree(mi, memcg) | |
3184 | val += mem_cgroup_read_events(mi, i); | |
3185 | seq_printf(m, "total_%s %llu\n", | |
3186 | mem_cgroup_events_names[i], val); | |
3187 | } | |
3188 | ||
3189 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
3190 | unsigned long long val = 0; | |
3191 | ||
3192 | for_each_mem_cgroup_tree(mi, memcg) | |
3193 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
3194 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
1dd3a273 | 3195 | } |
14067bb3 | 3196 | |
7f016ee8 | 3197 | #ifdef CONFIG_DEBUG_VM |
7f016ee8 | 3198 | { |
ef8f2327 MG |
3199 | pg_data_t *pgdat; |
3200 | struct mem_cgroup_per_node *mz; | |
89abfab1 | 3201 | struct zone_reclaim_stat *rstat; |
7f016ee8 KM |
3202 | unsigned long recent_rotated[2] = {0, 0}; |
3203 | unsigned long recent_scanned[2] = {0, 0}; | |
3204 | ||
ef8f2327 MG |
3205 | for_each_online_pgdat(pgdat) { |
3206 | mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | |
3207 | rstat = &mz->lruvec.reclaim_stat; | |
7f016ee8 | 3208 | |
ef8f2327 MG |
3209 | recent_rotated[0] += rstat->recent_rotated[0]; |
3210 | recent_rotated[1] += rstat->recent_rotated[1]; | |
3211 | recent_scanned[0] += rstat->recent_scanned[0]; | |
3212 | recent_scanned[1] += rstat->recent_scanned[1]; | |
3213 | } | |
78ccf5b5 JW |
3214 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
3215 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
3216 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
3217 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
7f016ee8 KM |
3218 | } |
3219 | #endif | |
3220 | ||
d2ceb9b7 KH |
3221 | return 0; |
3222 | } | |
3223 | ||
182446d0 TH |
3224 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
3225 | struct cftype *cft) | |
a7885eb8 | 3226 | { |
182446d0 | 3227 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 3228 | |
1f4c025b | 3229 | return mem_cgroup_swappiness(memcg); |
a7885eb8 KM |
3230 | } |
3231 | ||
182446d0 TH |
3232 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
3233 | struct cftype *cft, u64 val) | |
a7885eb8 | 3234 | { |
182446d0 | 3235 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 3236 | |
3dae7fec | 3237 | if (val > 100) |
a7885eb8 KM |
3238 | return -EINVAL; |
3239 | ||
14208b0e | 3240 | if (css->parent) |
3dae7fec JW |
3241 | memcg->swappiness = val; |
3242 | else | |
3243 | vm_swappiness = val; | |
068b38c1 | 3244 | |
a7885eb8 KM |
3245 | return 0; |
3246 | } | |
3247 | ||
2e72b634 KS |
3248 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
3249 | { | |
3250 | struct mem_cgroup_threshold_ary *t; | |
3e32cb2e | 3251 | unsigned long usage; |
2e72b634 KS |
3252 | int i; |
3253 | ||
3254 | rcu_read_lock(); | |
3255 | if (!swap) | |
2c488db2 | 3256 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 3257 | else |
2c488db2 | 3258 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
3259 | |
3260 | if (!t) | |
3261 | goto unlock; | |
3262 | ||
ce00a967 | 3263 | usage = mem_cgroup_usage(memcg, swap); |
2e72b634 KS |
3264 | |
3265 | /* | |
748dad36 | 3266 | * current_threshold points to threshold just below or equal to usage. |
2e72b634 KS |
3267 | * If it's not true, a threshold was crossed after last |
3268 | * call of __mem_cgroup_threshold(). | |
3269 | */ | |
5407a562 | 3270 | i = t->current_threshold; |
2e72b634 KS |
3271 | |
3272 | /* | |
3273 | * Iterate backward over array of thresholds starting from | |
3274 | * current_threshold and check if a threshold is crossed. | |
3275 | * If none of thresholds below usage is crossed, we read | |
3276 | * only one element of the array here. | |
3277 | */ | |
3278 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3279 | eventfd_signal(t->entries[i].eventfd, 1); | |
3280 | ||
3281 | /* i = current_threshold + 1 */ | |
3282 | i++; | |
3283 | ||
3284 | /* | |
3285 | * Iterate forward over array of thresholds starting from | |
3286 | * current_threshold+1 and check if a threshold is crossed. | |
3287 | * If none of thresholds above usage is crossed, we read | |
3288 | * only one element of the array here. | |
3289 | */ | |
3290 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3291 | eventfd_signal(t->entries[i].eventfd, 1); | |
3292 | ||
3293 | /* Update current_threshold */ | |
5407a562 | 3294 | t->current_threshold = i - 1; |
2e72b634 KS |
3295 | unlock: |
3296 | rcu_read_unlock(); | |
3297 | } | |
3298 | ||
3299 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
3300 | { | |
ad4ca5f4 KS |
3301 | while (memcg) { |
3302 | __mem_cgroup_threshold(memcg, false); | |
7941d214 | 3303 | if (do_memsw_account()) |
ad4ca5f4 KS |
3304 | __mem_cgroup_threshold(memcg, true); |
3305 | ||
3306 | memcg = parent_mem_cgroup(memcg); | |
3307 | } | |
2e72b634 KS |
3308 | } |
3309 | ||
3310 | static int compare_thresholds(const void *a, const void *b) | |
3311 | { | |
3312 | const struct mem_cgroup_threshold *_a = a; | |
3313 | const struct mem_cgroup_threshold *_b = b; | |
3314 | ||
2bff24a3 GT |
3315 | if (_a->threshold > _b->threshold) |
3316 | return 1; | |
3317 | ||
3318 | if (_a->threshold < _b->threshold) | |
3319 | return -1; | |
3320 | ||
3321 | return 0; | |
2e72b634 KS |
3322 | } |
3323 | ||
c0ff4b85 | 3324 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
9490ff27 KH |
3325 | { |
3326 | struct mem_cgroup_eventfd_list *ev; | |
3327 | ||
2bcf2e92 MH |
3328 | spin_lock(&memcg_oom_lock); |
3329 | ||
c0ff4b85 | 3330 | list_for_each_entry(ev, &memcg->oom_notify, list) |
9490ff27 | 3331 | eventfd_signal(ev->eventfd, 1); |
2bcf2e92 MH |
3332 | |
3333 | spin_unlock(&memcg_oom_lock); | |
9490ff27 KH |
3334 | return 0; |
3335 | } | |
3336 | ||
c0ff4b85 | 3337 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
9490ff27 | 3338 | { |
7d74b06f KH |
3339 | struct mem_cgroup *iter; |
3340 | ||
c0ff4b85 | 3341 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 3342 | mem_cgroup_oom_notify_cb(iter); |
9490ff27 KH |
3343 | } |
3344 | ||
59b6f873 | 3345 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 | 3346 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) |
2e72b634 | 3347 | { |
2c488db2 KS |
3348 | struct mem_cgroup_thresholds *thresholds; |
3349 | struct mem_cgroup_threshold_ary *new; | |
3e32cb2e JW |
3350 | unsigned long threshold; |
3351 | unsigned long usage; | |
2c488db2 | 3352 | int i, size, ret; |
2e72b634 | 3353 | |
650c5e56 | 3354 | ret = page_counter_memparse(args, "-1", &threshold); |
2e72b634 KS |
3355 | if (ret) |
3356 | return ret; | |
3357 | ||
3358 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 3359 | |
05b84301 | 3360 | if (type == _MEM) { |
2c488db2 | 3361 | thresholds = &memcg->thresholds; |
ce00a967 | 3362 | usage = mem_cgroup_usage(memcg, false); |
05b84301 | 3363 | } else if (type == _MEMSWAP) { |
2c488db2 | 3364 | thresholds = &memcg->memsw_thresholds; |
ce00a967 | 3365 | usage = mem_cgroup_usage(memcg, true); |
05b84301 | 3366 | } else |
2e72b634 KS |
3367 | BUG(); |
3368 | ||
2e72b634 | 3369 | /* Check if a threshold crossed before adding a new one */ |
2c488db2 | 3370 | if (thresholds->primary) |
2e72b634 KS |
3371 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
3372 | ||
2c488db2 | 3373 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
3374 | |
3375 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 3376 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 3377 | GFP_KERNEL); |
2c488db2 | 3378 | if (!new) { |
2e72b634 KS |
3379 | ret = -ENOMEM; |
3380 | goto unlock; | |
3381 | } | |
2c488db2 | 3382 | new->size = size; |
2e72b634 KS |
3383 | |
3384 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
3385 | if (thresholds->primary) { |
3386 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 3387 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
3388 | } |
3389 | ||
2e72b634 | 3390 | /* Add new threshold */ |
2c488db2 KS |
3391 | new->entries[size - 1].eventfd = eventfd; |
3392 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
3393 | |
3394 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 3395 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
3396 | compare_thresholds, NULL); |
3397 | ||
3398 | /* Find current threshold */ | |
2c488db2 | 3399 | new->current_threshold = -1; |
2e72b634 | 3400 | for (i = 0; i < size; i++) { |
748dad36 | 3401 | if (new->entries[i].threshold <= usage) { |
2e72b634 | 3402 | /* |
2c488db2 KS |
3403 | * new->current_threshold will not be used until |
3404 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
3405 | * it here. |
3406 | */ | |
2c488db2 | 3407 | ++new->current_threshold; |
748dad36 SZ |
3408 | } else |
3409 | break; | |
2e72b634 KS |
3410 | } |
3411 | ||
2c488db2 KS |
3412 | /* Free old spare buffer and save old primary buffer as spare */ |
3413 | kfree(thresholds->spare); | |
3414 | thresholds->spare = thresholds->primary; | |
3415 | ||
3416 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 3417 | |
907860ed | 3418 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
3419 | synchronize_rcu(); |
3420 | ||
2e72b634 KS |
3421 | unlock: |
3422 | mutex_unlock(&memcg->thresholds_lock); | |
3423 | ||
3424 | return ret; | |
3425 | } | |
3426 | ||
59b6f873 | 3427 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3428 | struct eventfd_ctx *eventfd, const char *args) |
3429 | { | |
59b6f873 | 3430 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); |
347c4a87 TH |
3431 | } |
3432 | ||
59b6f873 | 3433 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3434 | struct eventfd_ctx *eventfd, const char *args) |
3435 | { | |
59b6f873 | 3436 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); |
347c4a87 TH |
3437 | } |
3438 | ||
59b6f873 | 3439 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 3440 | struct eventfd_ctx *eventfd, enum res_type type) |
2e72b634 | 3441 | { |
2c488db2 KS |
3442 | struct mem_cgroup_thresholds *thresholds; |
3443 | struct mem_cgroup_threshold_ary *new; | |
3e32cb2e | 3444 | unsigned long usage; |
2c488db2 | 3445 | int i, j, size; |
2e72b634 KS |
3446 | |
3447 | mutex_lock(&memcg->thresholds_lock); | |
05b84301 JW |
3448 | |
3449 | if (type == _MEM) { | |
2c488db2 | 3450 | thresholds = &memcg->thresholds; |
ce00a967 | 3451 | usage = mem_cgroup_usage(memcg, false); |
05b84301 | 3452 | } else if (type == _MEMSWAP) { |
2c488db2 | 3453 | thresholds = &memcg->memsw_thresholds; |
ce00a967 | 3454 | usage = mem_cgroup_usage(memcg, true); |
05b84301 | 3455 | } else |
2e72b634 KS |
3456 | BUG(); |
3457 | ||
371528ca AV |
3458 | if (!thresholds->primary) |
3459 | goto unlock; | |
3460 | ||
2e72b634 KS |
3461 | /* Check if a threshold crossed before removing */ |
3462 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
3463 | ||
3464 | /* Calculate new number of threshold */ | |
2c488db2 KS |
3465 | size = 0; |
3466 | for (i = 0; i < thresholds->primary->size; i++) { | |
3467 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
3468 | size++; |
3469 | } | |
3470 | ||
2c488db2 | 3471 | new = thresholds->spare; |
907860ed | 3472 | |
2e72b634 KS |
3473 | /* Set thresholds array to NULL if we don't have thresholds */ |
3474 | if (!size) { | |
2c488db2 KS |
3475 | kfree(new); |
3476 | new = NULL; | |
907860ed | 3477 | goto swap_buffers; |
2e72b634 KS |
3478 | } |
3479 | ||
2c488db2 | 3480 | new->size = size; |
2e72b634 KS |
3481 | |
3482 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
3483 | new->current_threshold = -1; |
3484 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
3485 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
3486 | continue; |
3487 | ||
2c488db2 | 3488 | new->entries[j] = thresholds->primary->entries[i]; |
748dad36 | 3489 | if (new->entries[j].threshold <= usage) { |
2e72b634 | 3490 | /* |
2c488db2 | 3491 | * new->current_threshold will not be used |
2e72b634 KS |
3492 | * until rcu_assign_pointer(), so it's safe to increment |
3493 | * it here. | |
3494 | */ | |
2c488db2 | 3495 | ++new->current_threshold; |
2e72b634 KS |
3496 | } |
3497 | j++; | |
3498 | } | |
3499 | ||
907860ed | 3500 | swap_buffers: |
2c488db2 KS |
3501 | /* Swap primary and spare array */ |
3502 | thresholds->spare = thresholds->primary; | |
8c757763 | 3503 | |
2c488db2 | 3504 | rcu_assign_pointer(thresholds->primary, new); |
2e72b634 | 3505 | |
907860ed | 3506 | /* To be sure that nobody uses thresholds */ |
2e72b634 | 3507 | synchronize_rcu(); |
6611d8d7 MC |
3508 | |
3509 | /* If all events are unregistered, free the spare array */ | |
3510 | if (!new) { | |
3511 | kfree(thresholds->spare); | |
3512 | thresholds->spare = NULL; | |
3513 | } | |
371528ca | 3514 | unlock: |
2e72b634 | 3515 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 3516 | } |
c1e862c1 | 3517 | |
59b6f873 | 3518 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3519 | struct eventfd_ctx *eventfd) |
3520 | { | |
59b6f873 | 3521 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); |
347c4a87 TH |
3522 | } |
3523 | ||
59b6f873 | 3524 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3525 | struct eventfd_ctx *eventfd) |
3526 | { | |
59b6f873 | 3527 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); |
347c4a87 TH |
3528 | } |
3529 | ||
59b6f873 | 3530 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, |
347c4a87 | 3531 | struct eventfd_ctx *eventfd, const char *args) |
9490ff27 | 3532 | { |
9490ff27 | 3533 | struct mem_cgroup_eventfd_list *event; |
9490ff27 | 3534 | |
9490ff27 KH |
3535 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
3536 | if (!event) | |
3537 | return -ENOMEM; | |
3538 | ||
1af8efe9 | 3539 | spin_lock(&memcg_oom_lock); |
9490ff27 KH |
3540 | |
3541 | event->eventfd = eventfd; | |
3542 | list_add(&event->list, &memcg->oom_notify); | |
3543 | ||
3544 | /* already in OOM ? */ | |
c2b42d3c | 3545 | if (memcg->under_oom) |
9490ff27 | 3546 | eventfd_signal(eventfd, 1); |
1af8efe9 | 3547 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
3548 | |
3549 | return 0; | |
3550 | } | |
3551 | ||
59b6f873 | 3552 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 3553 | struct eventfd_ctx *eventfd) |
9490ff27 | 3554 | { |
9490ff27 | 3555 | struct mem_cgroup_eventfd_list *ev, *tmp; |
9490ff27 | 3556 | |
1af8efe9 | 3557 | spin_lock(&memcg_oom_lock); |
9490ff27 | 3558 | |
c0ff4b85 | 3559 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
9490ff27 KH |
3560 | if (ev->eventfd == eventfd) { |
3561 | list_del(&ev->list); | |
3562 | kfree(ev); | |
3563 | } | |
3564 | } | |
3565 | ||
1af8efe9 | 3566 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
3567 | } |
3568 | ||
2da8ca82 | 3569 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) |
3c11ecf4 | 3570 | { |
2da8ca82 | 3571 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
3c11ecf4 | 3572 | |
791badbd | 3573 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); |
c2b42d3c | 3574 | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); |
3c11ecf4 KH |
3575 | return 0; |
3576 | } | |
3577 | ||
182446d0 | 3578 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
3c11ecf4 KH |
3579 | struct cftype *cft, u64 val) |
3580 | { | |
182446d0 | 3581 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3c11ecf4 KH |
3582 | |
3583 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
14208b0e | 3584 | if (!css->parent || !((val == 0) || (val == 1))) |
3c11ecf4 KH |
3585 | return -EINVAL; |
3586 | ||
c0ff4b85 | 3587 | memcg->oom_kill_disable = val; |
4d845ebf | 3588 | if (!val) |
c0ff4b85 | 3589 | memcg_oom_recover(memcg); |
3dae7fec | 3590 | |
3c11ecf4 KH |
3591 | return 0; |
3592 | } | |
3593 | ||
52ebea74 TH |
3594 | #ifdef CONFIG_CGROUP_WRITEBACK |
3595 | ||
3596 | struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) | |
3597 | { | |
3598 | return &memcg->cgwb_list; | |
3599 | } | |
3600 | ||
841710aa TH |
3601 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
3602 | { | |
3603 | return wb_domain_init(&memcg->cgwb_domain, gfp); | |
3604 | } | |
3605 | ||
3606 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3607 | { | |
3608 | wb_domain_exit(&memcg->cgwb_domain); | |
3609 | } | |
3610 | ||
2529bb3a TH |
3611 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3612 | { | |
3613 | wb_domain_size_changed(&memcg->cgwb_domain); | |
3614 | } | |
3615 | ||
841710aa TH |
3616 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) |
3617 | { | |
3618 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3619 | ||
3620 | if (!memcg->css.parent) | |
3621 | return NULL; | |
3622 | ||
3623 | return &memcg->cgwb_domain; | |
3624 | } | |
3625 | ||
c2aa723a TH |
3626 | /** |
3627 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | |
3628 | * @wb: bdi_writeback in question | |
c5edf9cd TH |
3629 | * @pfilepages: out parameter for number of file pages |
3630 | * @pheadroom: out parameter for number of allocatable pages according to memcg | |
c2aa723a TH |
3631 | * @pdirty: out parameter for number of dirty pages |
3632 | * @pwriteback: out parameter for number of pages under writeback | |
3633 | * | |
c5edf9cd TH |
3634 | * Determine the numbers of file, headroom, dirty, and writeback pages in |
3635 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom | |
3636 | * is a bit more involved. | |
c2aa723a | 3637 | * |
c5edf9cd TH |
3638 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the |
3639 | * headroom is calculated as the lowest headroom of itself and the | |
3640 | * ancestors. Note that this doesn't consider the actual amount of | |
3641 | * available memory in the system. The caller should further cap | |
3642 | * *@pheadroom accordingly. | |
c2aa723a | 3643 | */ |
c5edf9cd TH |
3644 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, |
3645 | unsigned long *pheadroom, unsigned long *pdirty, | |
3646 | unsigned long *pwriteback) | |
c2aa723a TH |
3647 | { |
3648 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3649 | struct mem_cgroup *parent; | |
c2aa723a TH |
3650 | |
3651 | *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); | |
3652 | ||
3653 | /* this should eventually include NR_UNSTABLE_NFS */ | |
3654 | *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); | |
c5edf9cd TH |
3655 | *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | |
3656 | (1 << LRU_ACTIVE_FILE)); | |
3657 | *pheadroom = PAGE_COUNTER_MAX; | |
c2aa723a | 3658 | |
c2aa723a TH |
3659 | while ((parent = parent_mem_cgroup(memcg))) { |
3660 | unsigned long ceiling = min(memcg->memory.limit, memcg->high); | |
3661 | unsigned long used = page_counter_read(&memcg->memory); | |
3662 | ||
c5edf9cd | 3663 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); |
c2aa723a TH |
3664 | memcg = parent; |
3665 | } | |
c2aa723a TH |
3666 | } |
3667 | ||
841710aa TH |
3668 | #else /* CONFIG_CGROUP_WRITEBACK */ |
3669 | ||
3670 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
3671 | { | |
3672 | return 0; | |
3673 | } | |
3674 | ||
3675 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3676 | { | |
3677 | } | |
3678 | ||
2529bb3a TH |
3679 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3680 | { | |
3681 | } | |
3682 | ||
52ebea74 TH |
3683 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
3684 | ||
3bc942f3 TH |
3685 | /* |
3686 | * DO NOT USE IN NEW FILES. | |
3687 | * | |
3688 | * "cgroup.event_control" implementation. | |
3689 | * | |
3690 | * This is way over-engineered. It tries to support fully configurable | |
3691 | * events for each user. Such level of flexibility is completely | |
3692 | * unnecessary especially in the light of the planned unified hierarchy. | |
3693 | * | |
3694 | * Please deprecate this and replace with something simpler if at all | |
3695 | * possible. | |
3696 | */ | |
3697 | ||
79bd9814 TH |
3698 | /* |
3699 | * Unregister event and free resources. | |
3700 | * | |
3701 | * Gets called from workqueue. | |
3702 | */ | |
3bc942f3 | 3703 | static void memcg_event_remove(struct work_struct *work) |
79bd9814 | 3704 | { |
3bc942f3 TH |
3705 | struct mem_cgroup_event *event = |
3706 | container_of(work, struct mem_cgroup_event, remove); | |
59b6f873 | 3707 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
3708 | |
3709 | remove_wait_queue(event->wqh, &event->wait); | |
3710 | ||
59b6f873 | 3711 | event->unregister_event(memcg, event->eventfd); |
79bd9814 TH |
3712 | |
3713 | /* Notify userspace the event is going away. */ | |
3714 | eventfd_signal(event->eventfd, 1); | |
3715 | ||
3716 | eventfd_ctx_put(event->eventfd); | |
3717 | kfree(event); | |
59b6f873 | 3718 | css_put(&memcg->css); |
79bd9814 TH |
3719 | } |
3720 | ||
3721 | /* | |
3722 | * Gets called on POLLHUP on eventfd when user closes it. | |
3723 | * | |
3724 | * Called with wqh->lock held and interrupts disabled. | |
3725 | */ | |
3bc942f3 TH |
3726 | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, |
3727 | int sync, void *key) | |
79bd9814 | 3728 | { |
3bc942f3 TH |
3729 | struct mem_cgroup_event *event = |
3730 | container_of(wait, struct mem_cgroup_event, wait); | |
59b6f873 | 3731 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
3732 | unsigned long flags = (unsigned long)key; |
3733 | ||
3734 | if (flags & POLLHUP) { | |
3735 | /* | |
3736 | * If the event has been detached at cgroup removal, we | |
3737 | * can simply return knowing the other side will cleanup | |
3738 | * for us. | |
3739 | * | |
3740 | * We can't race against event freeing since the other | |
3741 | * side will require wqh->lock via remove_wait_queue(), | |
3742 | * which we hold. | |
3743 | */ | |
fba94807 | 3744 | spin_lock(&memcg->event_list_lock); |
79bd9814 TH |
3745 | if (!list_empty(&event->list)) { |
3746 | list_del_init(&event->list); | |
3747 | /* | |
3748 | * We are in atomic context, but cgroup_event_remove() | |
3749 | * may sleep, so we have to call it in workqueue. | |
3750 | */ | |
3751 | schedule_work(&event->remove); | |
3752 | } | |
fba94807 | 3753 | spin_unlock(&memcg->event_list_lock); |
79bd9814 TH |
3754 | } |
3755 | ||
3756 | return 0; | |
3757 | } | |
3758 | ||
3bc942f3 | 3759 | static void memcg_event_ptable_queue_proc(struct file *file, |
79bd9814 TH |
3760 | wait_queue_head_t *wqh, poll_table *pt) |
3761 | { | |
3bc942f3 TH |
3762 | struct mem_cgroup_event *event = |
3763 | container_of(pt, struct mem_cgroup_event, pt); | |
79bd9814 TH |
3764 | |
3765 | event->wqh = wqh; | |
3766 | add_wait_queue(wqh, &event->wait); | |
3767 | } | |
3768 | ||
3769 | /* | |
3bc942f3 TH |
3770 | * DO NOT USE IN NEW FILES. |
3771 | * | |
79bd9814 TH |
3772 | * Parse input and register new cgroup event handler. |
3773 | * | |
3774 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
3775 | * Interpretation of args is defined by control file implementation. | |
3776 | */ | |
451af504 TH |
3777 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, |
3778 | char *buf, size_t nbytes, loff_t off) | |
79bd9814 | 3779 | { |
451af504 | 3780 | struct cgroup_subsys_state *css = of_css(of); |
fba94807 | 3781 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 3782 | struct mem_cgroup_event *event; |
79bd9814 TH |
3783 | struct cgroup_subsys_state *cfile_css; |
3784 | unsigned int efd, cfd; | |
3785 | struct fd efile; | |
3786 | struct fd cfile; | |
fba94807 | 3787 | const char *name; |
79bd9814 TH |
3788 | char *endp; |
3789 | int ret; | |
3790 | ||
451af504 TH |
3791 | buf = strstrip(buf); |
3792 | ||
3793 | efd = simple_strtoul(buf, &endp, 10); | |
79bd9814 TH |
3794 | if (*endp != ' ') |
3795 | return -EINVAL; | |
451af504 | 3796 | buf = endp + 1; |
79bd9814 | 3797 | |
451af504 | 3798 | cfd = simple_strtoul(buf, &endp, 10); |
79bd9814 TH |
3799 | if ((*endp != ' ') && (*endp != '\0')) |
3800 | return -EINVAL; | |
451af504 | 3801 | buf = endp + 1; |
79bd9814 TH |
3802 | |
3803 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
3804 | if (!event) | |
3805 | return -ENOMEM; | |
3806 | ||
59b6f873 | 3807 | event->memcg = memcg; |
79bd9814 | 3808 | INIT_LIST_HEAD(&event->list); |
3bc942f3 TH |
3809 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); |
3810 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
3811 | INIT_WORK(&event->remove, memcg_event_remove); | |
79bd9814 TH |
3812 | |
3813 | efile = fdget(efd); | |
3814 | if (!efile.file) { | |
3815 | ret = -EBADF; | |
3816 | goto out_kfree; | |
3817 | } | |
3818 | ||
3819 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
3820 | if (IS_ERR(event->eventfd)) { | |
3821 | ret = PTR_ERR(event->eventfd); | |
3822 | goto out_put_efile; | |
3823 | } | |
3824 | ||
3825 | cfile = fdget(cfd); | |
3826 | if (!cfile.file) { | |
3827 | ret = -EBADF; | |
3828 | goto out_put_eventfd; | |
3829 | } | |
3830 | ||
3831 | /* the process need read permission on control file */ | |
3832 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
3833 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | |
3834 | if (ret < 0) | |
3835 | goto out_put_cfile; | |
3836 | ||
fba94807 TH |
3837 | /* |
3838 | * Determine the event callbacks and set them in @event. This used | |
3839 | * to be done via struct cftype but cgroup core no longer knows | |
3840 | * about these events. The following is crude but the whole thing | |
3841 | * is for compatibility anyway. | |
3bc942f3 TH |
3842 | * |
3843 | * DO NOT ADD NEW FILES. | |
fba94807 | 3844 | */ |
b583043e | 3845 | name = cfile.file->f_path.dentry->d_name.name; |
fba94807 TH |
3846 | |
3847 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
3848 | event->register_event = mem_cgroup_usage_register_event; | |
3849 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
3850 | } else if (!strcmp(name, "memory.oom_control")) { | |
3851 | event->register_event = mem_cgroup_oom_register_event; | |
3852 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
3853 | } else if (!strcmp(name, "memory.pressure_level")) { | |
3854 | event->register_event = vmpressure_register_event; | |
3855 | event->unregister_event = vmpressure_unregister_event; | |
3856 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
347c4a87 TH |
3857 | event->register_event = memsw_cgroup_usage_register_event; |
3858 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
fba94807 TH |
3859 | } else { |
3860 | ret = -EINVAL; | |
3861 | goto out_put_cfile; | |
3862 | } | |
3863 | ||
79bd9814 | 3864 | /* |
b5557c4c TH |
3865 | * Verify @cfile should belong to @css. Also, remaining events are |
3866 | * automatically removed on cgroup destruction but the removal is | |
3867 | * asynchronous, so take an extra ref on @css. | |
79bd9814 | 3868 | */ |
b583043e | 3869 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, |
ec903c0c | 3870 | &memory_cgrp_subsys); |
79bd9814 | 3871 | ret = -EINVAL; |
5a17f543 | 3872 | if (IS_ERR(cfile_css)) |
79bd9814 | 3873 | goto out_put_cfile; |
5a17f543 TH |
3874 | if (cfile_css != css) { |
3875 | css_put(cfile_css); | |
79bd9814 | 3876 | goto out_put_cfile; |
5a17f543 | 3877 | } |
79bd9814 | 3878 | |
451af504 | 3879 | ret = event->register_event(memcg, event->eventfd, buf); |
79bd9814 TH |
3880 | if (ret) |
3881 | goto out_put_css; | |
3882 | ||
3883 | efile.file->f_op->poll(efile.file, &event->pt); | |
3884 | ||
fba94807 TH |
3885 | spin_lock(&memcg->event_list_lock); |
3886 | list_add(&event->list, &memcg->event_list); | |
3887 | spin_unlock(&memcg->event_list_lock); | |
79bd9814 TH |
3888 | |
3889 | fdput(cfile); | |
3890 | fdput(efile); | |
3891 | ||
451af504 | 3892 | return nbytes; |
79bd9814 TH |
3893 | |
3894 | out_put_css: | |
b5557c4c | 3895 | css_put(css); |
79bd9814 TH |
3896 | out_put_cfile: |
3897 | fdput(cfile); | |
3898 | out_put_eventfd: | |
3899 | eventfd_ctx_put(event->eventfd); | |
3900 | out_put_efile: | |
3901 | fdput(efile); | |
3902 | out_kfree: | |
3903 | kfree(event); | |
3904 | ||
3905 | return ret; | |
3906 | } | |
3907 | ||
241994ed | 3908 | static struct cftype mem_cgroup_legacy_files[] = { |
8cdea7c0 | 3909 | { |
0eea1030 | 3910 | .name = "usage_in_bytes", |
8c7c6e34 | 3911 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
791badbd | 3912 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 3913 | }, |
c84872e1 PE |
3914 | { |
3915 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 3916 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
6770c64e | 3917 | .write = mem_cgroup_reset, |
791badbd | 3918 | .read_u64 = mem_cgroup_read_u64, |
c84872e1 | 3919 | }, |
8cdea7c0 | 3920 | { |
0eea1030 | 3921 | .name = "limit_in_bytes", |
8c7c6e34 | 3922 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
451af504 | 3923 | .write = mem_cgroup_write, |
791badbd | 3924 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 3925 | }, |
296c81d8 BS |
3926 | { |
3927 | .name = "soft_limit_in_bytes", | |
3928 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
451af504 | 3929 | .write = mem_cgroup_write, |
791badbd | 3930 | .read_u64 = mem_cgroup_read_u64, |
296c81d8 | 3931 | }, |
8cdea7c0 BS |
3932 | { |
3933 | .name = "failcnt", | |
8c7c6e34 | 3934 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
6770c64e | 3935 | .write = mem_cgroup_reset, |
791badbd | 3936 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 3937 | }, |
d2ceb9b7 KH |
3938 | { |
3939 | .name = "stat", | |
2da8ca82 | 3940 | .seq_show = memcg_stat_show, |
d2ceb9b7 | 3941 | }, |
c1e862c1 KH |
3942 | { |
3943 | .name = "force_empty", | |
6770c64e | 3944 | .write = mem_cgroup_force_empty_write, |
c1e862c1 | 3945 | }, |
18f59ea7 BS |
3946 | { |
3947 | .name = "use_hierarchy", | |
3948 | .write_u64 = mem_cgroup_hierarchy_write, | |
3949 | .read_u64 = mem_cgroup_hierarchy_read, | |
3950 | }, | |
79bd9814 | 3951 | { |
3bc942f3 | 3952 | .name = "cgroup.event_control", /* XXX: for compat */ |
451af504 | 3953 | .write = memcg_write_event_control, |
7dbdb199 | 3954 | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, |
79bd9814 | 3955 | }, |
a7885eb8 KM |
3956 | { |
3957 | .name = "swappiness", | |
3958 | .read_u64 = mem_cgroup_swappiness_read, | |
3959 | .write_u64 = mem_cgroup_swappiness_write, | |
3960 | }, | |
7dc74be0 DN |
3961 | { |
3962 | .name = "move_charge_at_immigrate", | |
3963 | .read_u64 = mem_cgroup_move_charge_read, | |
3964 | .write_u64 = mem_cgroup_move_charge_write, | |
3965 | }, | |
9490ff27 KH |
3966 | { |
3967 | .name = "oom_control", | |
2da8ca82 | 3968 | .seq_show = mem_cgroup_oom_control_read, |
3c11ecf4 | 3969 | .write_u64 = mem_cgroup_oom_control_write, |
9490ff27 KH |
3970 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), |
3971 | }, | |
70ddf637 AV |
3972 | { |
3973 | .name = "pressure_level", | |
70ddf637 | 3974 | }, |
406eb0c9 YH |
3975 | #ifdef CONFIG_NUMA |
3976 | { | |
3977 | .name = "numa_stat", | |
2da8ca82 | 3978 | .seq_show = memcg_numa_stat_show, |
406eb0c9 YH |
3979 | }, |
3980 | #endif | |
510fc4e1 GC |
3981 | { |
3982 | .name = "kmem.limit_in_bytes", | |
3983 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
451af504 | 3984 | .write = mem_cgroup_write, |
791badbd | 3985 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
3986 | }, |
3987 | { | |
3988 | .name = "kmem.usage_in_bytes", | |
3989 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
791badbd | 3990 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
3991 | }, |
3992 | { | |
3993 | .name = "kmem.failcnt", | |
3994 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
6770c64e | 3995 | .write = mem_cgroup_reset, |
791badbd | 3996 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
3997 | }, |
3998 | { | |
3999 | .name = "kmem.max_usage_in_bytes", | |
4000 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
6770c64e | 4001 | .write = mem_cgroup_reset, |
791badbd | 4002 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 | 4003 | }, |
749c5415 GC |
4004 | #ifdef CONFIG_SLABINFO |
4005 | { | |
4006 | .name = "kmem.slabinfo", | |
b047501c VD |
4007 | .seq_start = slab_start, |
4008 | .seq_next = slab_next, | |
4009 | .seq_stop = slab_stop, | |
4010 | .seq_show = memcg_slab_show, | |
749c5415 GC |
4011 | }, |
4012 | #endif | |
d55f90bf VD |
4013 | { |
4014 | .name = "kmem.tcp.limit_in_bytes", | |
4015 | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | |
4016 | .write = mem_cgroup_write, | |
4017 | .read_u64 = mem_cgroup_read_u64, | |
4018 | }, | |
4019 | { | |
4020 | .name = "kmem.tcp.usage_in_bytes", | |
4021 | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | |
4022 | .read_u64 = mem_cgroup_read_u64, | |
4023 | }, | |
4024 | { | |
4025 | .name = "kmem.tcp.failcnt", | |
4026 | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | |
4027 | .write = mem_cgroup_reset, | |
4028 | .read_u64 = mem_cgroup_read_u64, | |
4029 | }, | |
4030 | { | |
4031 | .name = "kmem.tcp.max_usage_in_bytes", | |
4032 | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | |
4033 | .write = mem_cgroup_reset, | |
4034 | .read_u64 = mem_cgroup_read_u64, | |
4035 | }, | |
6bc10349 | 4036 | { }, /* terminate */ |
af36f906 | 4037 | }; |
8c7c6e34 | 4038 | |
73f576c0 JW |
4039 | /* |
4040 | * Private memory cgroup IDR | |
4041 | * | |
4042 | * Swap-out records and page cache shadow entries need to store memcg | |
4043 | * references in constrained space, so we maintain an ID space that is | |
4044 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | |
4045 | * memory-controlled cgroups to 64k. | |
4046 | * | |
4047 | * However, there usually are many references to the oflline CSS after | |
4048 | * the cgroup has been destroyed, such as page cache or reclaimable | |
4049 | * slab objects, that don't need to hang on to the ID. We want to keep | |
4050 | * those dead CSS from occupying IDs, or we might quickly exhaust the | |
4051 | * relatively small ID space and prevent the creation of new cgroups | |
4052 | * even when there are much fewer than 64k cgroups - possibly none. | |
4053 | * | |
4054 | * Maintain a private 16-bit ID space for memcg, and allow the ID to | |
4055 | * be freed and recycled when it's no longer needed, which is usually | |
4056 | * when the CSS is offlined. | |
4057 | * | |
4058 | * The only exception to that are records of swapped out tmpfs/shmem | |
4059 | * pages that need to be attributed to live ancestors on swapin. But | |
4060 | * those references are manageable from userspace. | |
4061 | */ | |
4062 | ||
4063 | static DEFINE_IDR(mem_cgroup_idr); | |
4064 | ||
615d66c3 | 4065 | static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) |
73f576c0 | 4066 | { |
58fa2a55 | 4067 | VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); |
615d66c3 | 4068 | atomic_add(n, &memcg->id.ref); |
73f576c0 JW |
4069 | } |
4070 | ||
615d66c3 | 4071 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) |
73f576c0 | 4072 | { |
58fa2a55 | 4073 | VM_BUG_ON(atomic_read(&memcg->id.ref) < n); |
615d66c3 | 4074 | if (atomic_sub_and_test(n, &memcg->id.ref)) { |
73f576c0 JW |
4075 | idr_remove(&mem_cgroup_idr, memcg->id.id); |
4076 | memcg->id.id = 0; | |
4077 | ||
4078 | /* Memcg ID pins CSS */ | |
4079 | css_put(&memcg->css); | |
4080 | } | |
4081 | } | |
4082 | ||
615d66c3 VD |
4083 | static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) |
4084 | { | |
4085 | mem_cgroup_id_get_many(memcg, 1); | |
4086 | } | |
4087 | ||
4088 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | |
4089 | { | |
4090 | mem_cgroup_id_put_many(memcg, 1); | |
4091 | } | |
4092 | ||
73f576c0 JW |
4093 | /** |
4094 | * mem_cgroup_from_id - look up a memcg from a memcg id | |
4095 | * @id: the memcg id to look up | |
4096 | * | |
4097 | * Caller must hold rcu_read_lock(). | |
4098 | */ | |
4099 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
4100 | { | |
4101 | WARN_ON_ONCE(!rcu_read_lock_held()); | |
4102 | return idr_find(&mem_cgroup_idr, id); | |
4103 | } | |
4104 | ||
ef8f2327 | 4105 | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
4106 | { |
4107 | struct mem_cgroup_per_node *pn; | |
ef8f2327 | 4108 | int tmp = node; |
1ecaab2b KH |
4109 | /* |
4110 | * This routine is called against possible nodes. | |
4111 | * But it's BUG to call kmalloc() against offline node. | |
4112 | * | |
4113 | * TODO: this routine can waste much memory for nodes which will | |
4114 | * never be onlined. It's better to use memory hotplug callback | |
4115 | * function. | |
4116 | */ | |
41e3355d KH |
4117 | if (!node_state(node, N_NORMAL_MEMORY)) |
4118 | tmp = -1; | |
17295c88 | 4119 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
4120 | if (!pn) |
4121 | return 1; | |
1ecaab2b | 4122 | |
ef8f2327 MG |
4123 | lruvec_init(&pn->lruvec); |
4124 | pn->usage_in_excess = 0; | |
4125 | pn->on_tree = false; | |
4126 | pn->memcg = memcg; | |
4127 | ||
54f72fe0 | 4128 | memcg->nodeinfo[node] = pn; |
6d12e2d8 KH |
4129 | return 0; |
4130 | } | |
4131 | ||
ef8f2327 | 4132 | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
1ecaab2b | 4133 | { |
54f72fe0 | 4134 | kfree(memcg->nodeinfo[node]); |
1ecaab2b KH |
4135 | } |
4136 | ||
0b8f73e1 | 4137 | static void mem_cgroup_free(struct mem_cgroup *memcg) |
59927fb9 | 4138 | { |
c8b2a36f | 4139 | int node; |
59927fb9 | 4140 | |
0b8f73e1 | 4141 | memcg_wb_domain_exit(memcg); |
c8b2a36f | 4142 | for_each_node(node) |
ef8f2327 | 4143 | free_mem_cgroup_per_node_info(memcg, node); |
c8b2a36f | 4144 | free_percpu(memcg->stat); |
8ff69e2c | 4145 | kfree(memcg); |
59927fb9 | 4146 | } |
3afe36b1 | 4147 | |
0b8f73e1 | 4148 | static struct mem_cgroup *mem_cgroup_alloc(void) |
8cdea7c0 | 4149 | { |
d142e3e6 | 4150 | struct mem_cgroup *memcg; |
0b8f73e1 | 4151 | size_t size; |
6d12e2d8 | 4152 | int node; |
8cdea7c0 | 4153 | |
0b8f73e1 JW |
4154 | size = sizeof(struct mem_cgroup); |
4155 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
4156 | ||
4157 | memcg = kzalloc(size, GFP_KERNEL); | |
c0ff4b85 | 4158 | if (!memcg) |
0b8f73e1 JW |
4159 | return NULL; |
4160 | ||
73f576c0 JW |
4161 | memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, |
4162 | 1, MEM_CGROUP_ID_MAX, | |
4163 | GFP_KERNEL); | |
4164 | if (memcg->id.id < 0) | |
4165 | goto fail; | |
4166 | ||
0b8f73e1 JW |
4167 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
4168 | if (!memcg->stat) | |
4169 | goto fail; | |
78fb7466 | 4170 | |
3ed28fa1 | 4171 | for_each_node(node) |
ef8f2327 | 4172 | if (alloc_mem_cgroup_per_node_info(memcg, node)) |
0b8f73e1 | 4173 | goto fail; |
f64c3f54 | 4174 | |
0b8f73e1 JW |
4175 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) |
4176 | goto fail; | |
28dbc4b6 | 4177 | |
f7e1cb6e | 4178 | INIT_WORK(&memcg->high_work, high_work_func); |
d142e3e6 GC |
4179 | memcg->last_scanned_node = MAX_NUMNODES; |
4180 | INIT_LIST_HEAD(&memcg->oom_notify); | |
d142e3e6 GC |
4181 | mutex_init(&memcg->thresholds_lock); |
4182 | spin_lock_init(&memcg->move_lock); | |
70ddf637 | 4183 | vmpressure_init(&memcg->vmpressure); |
fba94807 TH |
4184 | INIT_LIST_HEAD(&memcg->event_list); |
4185 | spin_lock_init(&memcg->event_list_lock); | |
d886f4e4 | 4186 | memcg->socket_pressure = jiffies; |
127424c8 | 4187 | #ifndef CONFIG_SLOB |
900a38f0 | 4188 | memcg->kmemcg_id = -1; |
900a38f0 | 4189 | #endif |
52ebea74 TH |
4190 | #ifdef CONFIG_CGROUP_WRITEBACK |
4191 | INIT_LIST_HEAD(&memcg->cgwb_list); | |
4192 | #endif | |
73f576c0 | 4193 | idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); |
0b8f73e1 JW |
4194 | return memcg; |
4195 | fail: | |
73f576c0 JW |
4196 | if (memcg->id.id > 0) |
4197 | idr_remove(&mem_cgroup_idr, memcg->id.id); | |
0b8f73e1 JW |
4198 | mem_cgroup_free(memcg); |
4199 | return NULL; | |
d142e3e6 GC |
4200 | } |
4201 | ||
0b8f73e1 JW |
4202 | static struct cgroup_subsys_state * __ref |
4203 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | |
d142e3e6 | 4204 | { |
0b8f73e1 JW |
4205 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); |
4206 | struct mem_cgroup *memcg; | |
4207 | long error = -ENOMEM; | |
d142e3e6 | 4208 | |
0b8f73e1 JW |
4209 | memcg = mem_cgroup_alloc(); |
4210 | if (!memcg) | |
4211 | return ERR_PTR(error); | |
d142e3e6 | 4212 | |
0b8f73e1 JW |
4213 | memcg->high = PAGE_COUNTER_MAX; |
4214 | memcg->soft_limit = PAGE_COUNTER_MAX; | |
4215 | if (parent) { | |
4216 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
4217 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
4218 | } | |
4219 | if (parent && parent->use_hierarchy) { | |
4220 | memcg->use_hierarchy = true; | |
3e32cb2e | 4221 | page_counter_init(&memcg->memory, &parent->memory); |
37e84351 | 4222 | page_counter_init(&memcg->swap, &parent->swap); |
3e32cb2e JW |
4223 | page_counter_init(&memcg->memsw, &parent->memsw); |
4224 | page_counter_init(&memcg->kmem, &parent->kmem); | |
0db15298 | 4225 | page_counter_init(&memcg->tcpmem, &parent->tcpmem); |
18f59ea7 | 4226 | } else { |
3e32cb2e | 4227 | page_counter_init(&memcg->memory, NULL); |
37e84351 | 4228 | page_counter_init(&memcg->swap, NULL); |
3e32cb2e JW |
4229 | page_counter_init(&memcg->memsw, NULL); |
4230 | page_counter_init(&memcg->kmem, NULL); | |
0db15298 | 4231 | page_counter_init(&memcg->tcpmem, NULL); |
8c7f6edb TH |
4232 | /* |
4233 | * Deeper hierachy with use_hierarchy == false doesn't make | |
4234 | * much sense so let cgroup subsystem know about this | |
4235 | * unfortunate state in our controller. | |
4236 | */ | |
d142e3e6 | 4237 | if (parent != root_mem_cgroup) |
073219e9 | 4238 | memory_cgrp_subsys.broken_hierarchy = true; |
18f59ea7 | 4239 | } |
d6441637 | 4240 | |
0b8f73e1 JW |
4241 | /* The following stuff does not apply to the root */ |
4242 | if (!parent) { | |
4243 | root_mem_cgroup = memcg; | |
4244 | return &memcg->css; | |
4245 | } | |
4246 | ||
b313aeee | 4247 | error = memcg_online_kmem(memcg); |
0b8f73e1 JW |
4248 | if (error) |
4249 | goto fail; | |
127424c8 | 4250 | |
f7e1cb6e | 4251 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
ef12947c | 4252 | static_branch_inc(&memcg_sockets_enabled_key); |
f7e1cb6e | 4253 | |
0b8f73e1 JW |
4254 | return &memcg->css; |
4255 | fail: | |
4256 | mem_cgroup_free(memcg); | |
ea3a9645 | 4257 | return ERR_PTR(-ENOMEM); |
0b8f73e1 JW |
4258 | } |
4259 | ||
73f576c0 | 4260 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) |
0b8f73e1 | 4261 | { |
58fa2a55 VD |
4262 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4263 | ||
73f576c0 | 4264 | /* Online state pins memcg ID, memcg ID pins CSS */ |
58fa2a55 | 4265 | atomic_set(&memcg->id.ref, 1); |
73f576c0 | 4266 | css_get(css); |
2f7dd7a4 | 4267 | return 0; |
8cdea7c0 BS |
4268 | } |
4269 | ||
eb95419b | 4270 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
df878fb0 | 4271 | { |
eb95419b | 4272 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 4273 | struct mem_cgroup_event *event, *tmp; |
79bd9814 TH |
4274 | |
4275 | /* | |
4276 | * Unregister events and notify userspace. | |
4277 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
4278 | * directory to avoid race between userspace and kernelspace. | |
4279 | */ | |
fba94807 TH |
4280 | spin_lock(&memcg->event_list_lock); |
4281 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
79bd9814 TH |
4282 | list_del_init(&event->list); |
4283 | schedule_work(&event->remove); | |
4284 | } | |
fba94807 | 4285 | spin_unlock(&memcg->event_list_lock); |
ec64f515 | 4286 | |
567e9ab2 | 4287 | memcg_offline_kmem(memcg); |
52ebea74 | 4288 | wb_memcg_offline(memcg); |
73f576c0 JW |
4289 | |
4290 | mem_cgroup_id_put(memcg); | |
df878fb0 KH |
4291 | } |
4292 | ||
6df38689 VD |
4293 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) |
4294 | { | |
4295 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4296 | ||
4297 | invalidate_reclaim_iterators(memcg); | |
4298 | } | |
4299 | ||
eb95419b | 4300 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
8cdea7c0 | 4301 | { |
eb95419b | 4302 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
c268e994 | 4303 | |
f7e1cb6e | 4304 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
ef12947c | 4305 | static_branch_dec(&memcg_sockets_enabled_key); |
127424c8 | 4306 | |
0db15298 | 4307 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) |
d55f90bf | 4308 | static_branch_dec(&memcg_sockets_enabled_key); |
3893e302 | 4309 | |
0b8f73e1 JW |
4310 | vmpressure_cleanup(&memcg->vmpressure); |
4311 | cancel_work_sync(&memcg->high_work); | |
4312 | mem_cgroup_remove_from_trees(memcg); | |
d886f4e4 | 4313 | memcg_free_kmem(memcg); |
0b8f73e1 | 4314 | mem_cgroup_free(memcg); |
8cdea7c0 BS |
4315 | } |
4316 | ||
1ced953b TH |
4317 | /** |
4318 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
4319 | * @css: the target css | |
4320 | * | |
4321 | * Reset the states of the mem_cgroup associated with @css. This is | |
4322 | * invoked when the userland requests disabling on the default hierarchy | |
4323 | * but the memcg is pinned through dependency. The memcg should stop | |
4324 | * applying policies and should revert to the vanilla state as it may be | |
4325 | * made visible again. | |
4326 | * | |
4327 | * The current implementation only resets the essential configurations. | |
4328 | * This needs to be expanded to cover all the visible parts. | |
4329 | */ | |
4330 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
4331 | { | |
4332 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4333 | ||
d334c9bc VD |
4334 | page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); |
4335 | page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); | |
4336 | page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); | |
4337 | page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); | |
4338 | page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); | |
241994ed JW |
4339 | memcg->low = 0; |
4340 | memcg->high = PAGE_COUNTER_MAX; | |
24d404dc | 4341 | memcg->soft_limit = PAGE_COUNTER_MAX; |
2529bb3a | 4342 | memcg_wb_domain_size_changed(memcg); |
1ced953b TH |
4343 | } |
4344 | ||
02491447 | 4345 | #ifdef CONFIG_MMU |
7dc74be0 | 4346 | /* Handlers for move charge at task migration. */ |
854ffa8d | 4347 | static int mem_cgroup_do_precharge(unsigned long count) |
7dc74be0 | 4348 | { |
05b84301 | 4349 | int ret; |
9476db97 | 4350 | |
d0164adc MG |
4351 | /* Try a single bulk charge without reclaim first, kswapd may wake */ |
4352 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | |
9476db97 | 4353 | if (!ret) { |
854ffa8d | 4354 | mc.precharge += count; |
854ffa8d DN |
4355 | return ret; |
4356 | } | |
9476db97 JW |
4357 | |
4358 | /* Try charges one by one with reclaim */ | |
854ffa8d | 4359 | while (count--) { |
00501b53 | 4360 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); |
38c5d72f | 4361 | if (ret) |
38c5d72f | 4362 | return ret; |
854ffa8d | 4363 | mc.precharge++; |
9476db97 | 4364 | cond_resched(); |
854ffa8d | 4365 | } |
9476db97 | 4366 | return 0; |
4ffef5fe DN |
4367 | } |
4368 | ||
4ffef5fe DN |
4369 | union mc_target { |
4370 | struct page *page; | |
02491447 | 4371 | swp_entry_t ent; |
4ffef5fe DN |
4372 | }; |
4373 | ||
4ffef5fe | 4374 | enum mc_target_type { |
8d32ff84 | 4375 | MC_TARGET_NONE = 0, |
4ffef5fe | 4376 | MC_TARGET_PAGE, |
02491447 | 4377 | MC_TARGET_SWAP, |
4ffef5fe DN |
4378 | }; |
4379 | ||
90254a65 DN |
4380 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
4381 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 4382 | { |
90254a65 | 4383 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 4384 | |
90254a65 DN |
4385 | if (!page || !page_mapped(page)) |
4386 | return NULL; | |
4387 | if (PageAnon(page)) { | |
1dfab5ab | 4388 | if (!(mc.flags & MOVE_ANON)) |
90254a65 | 4389 | return NULL; |
1dfab5ab JW |
4390 | } else { |
4391 | if (!(mc.flags & MOVE_FILE)) | |
4392 | return NULL; | |
4393 | } | |
90254a65 DN |
4394 | if (!get_page_unless_zero(page)) |
4395 | return NULL; | |
4396 | ||
4397 | return page; | |
4398 | } | |
4399 | ||
4b91355e | 4400 | #ifdef CONFIG_SWAP |
90254a65 | 4401 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
48406ef8 | 4402 | pte_t ptent, swp_entry_t *entry) |
90254a65 | 4403 | { |
90254a65 DN |
4404 | struct page *page = NULL; |
4405 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4406 | ||
1dfab5ab | 4407 | if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) |
90254a65 | 4408 | return NULL; |
4b91355e KH |
4409 | /* |
4410 | * Because lookup_swap_cache() updates some statistics counter, | |
4411 | * we call find_get_page() with swapper_space directly. | |
4412 | */ | |
f6ab1f7f | 4413 | page = find_get_page(swap_address_space(ent), swp_offset(ent)); |
7941d214 | 4414 | if (do_memsw_account()) |
90254a65 DN |
4415 | entry->val = ent.val; |
4416 | ||
4417 | return page; | |
4418 | } | |
4b91355e KH |
4419 | #else |
4420 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
48406ef8 | 4421 | pte_t ptent, swp_entry_t *entry) |
4b91355e KH |
4422 | { |
4423 | return NULL; | |
4424 | } | |
4425 | #endif | |
90254a65 | 4426 | |
87946a72 DN |
4427 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
4428 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4429 | { | |
4430 | struct page *page = NULL; | |
87946a72 DN |
4431 | struct address_space *mapping; |
4432 | pgoff_t pgoff; | |
4433 | ||
4434 | if (!vma->vm_file) /* anonymous vma */ | |
4435 | return NULL; | |
1dfab5ab | 4436 | if (!(mc.flags & MOVE_FILE)) |
87946a72 DN |
4437 | return NULL; |
4438 | ||
87946a72 | 4439 | mapping = vma->vm_file->f_mapping; |
0661a336 | 4440 | pgoff = linear_page_index(vma, addr); |
87946a72 DN |
4441 | |
4442 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
aa3b1895 HD |
4443 | #ifdef CONFIG_SWAP |
4444 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
139b6a6f JW |
4445 | if (shmem_mapping(mapping)) { |
4446 | page = find_get_entry(mapping, pgoff); | |
4447 | if (radix_tree_exceptional_entry(page)) { | |
4448 | swp_entry_t swp = radix_to_swp_entry(page); | |
7941d214 | 4449 | if (do_memsw_account()) |
139b6a6f | 4450 | *entry = swp; |
f6ab1f7f YH |
4451 | page = find_get_page(swap_address_space(swp), |
4452 | swp_offset(swp)); | |
139b6a6f JW |
4453 | } |
4454 | } else | |
4455 | page = find_get_page(mapping, pgoff); | |
4456 | #else | |
4457 | page = find_get_page(mapping, pgoff); | |
aa3b1895 | 4458 | #endif |
87946a72 DN |
4459 | return page; |
4460 | } | |
4461 | ||
b1b0deab CG |
4462 | /** |
4463 | * mem_cgroup_move_account - move account of the page | |
4464 | * @page: the page | |
25843c2b | 4465 | * @compound: charge the page as compound or small page |
b1b0deab CG |
4466 | * @from: mem_cgroup which the page is moved from. |
4467 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
4468 | * | |
3ac808fd | 4469 | * The caller must make sure the page is not on LRU (isolate_page() is useful.) |
b1b0deab CG |
4470 | * |
4471 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | |
4472 | * from old cgroup. | |
4473 | */ | |
4474 | static int mem_cgroup_move_account(struct page *page, | |
f627c2f5 | 4475 | bool compound, |
b1b0deab CG |
4476 | struct mem_cgroup *from, |
4477 | struct mem_cgroup *to) | |
4478 | { | |
4479 | unsigned long flags; | |
f627c2f5 | 4480 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; |
b1b0deab | 4481 | int ret; |
c4843a75 | 4482 | bool anon; |
b1b0deab CG |
4483 | |
4484 | VM_BUG_ON(from == to); | |
4485 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
f627c2f5 | 4486 | VM_BUG_ON(compound && !PageTransHuge(page)); |
b1b0deab CG |
4487 | |
4488 | /* | |
6a93ca8f | 4489 | * Prevent mem_cgroup_migrate() from looking at |
45637bab | 4490 | * page->mem_cgroup of its source page while we change it. |
b1b0deab | 4491 | */ |
f627c2f5 | 4492 | ret = -EBUSY; |
b1b0deab CG |
4493 | if (!trylock_page(page)) |
4494 | goto out; | |
4495 | ||
4496 | ret = -EINVAL; | |
4497 | if (page->mem_cgroup != from) | |
4498 | goto out_unlock; | |
4499 | ||
c4843a75 GT |
4500 | anon = PageAnon(page); |
4501 | ||
b1b0deab CG |
4502 | spin_lock_irqsave(&from->move_lock, flags); |
4503 | ||
c4843a75 | 4504 | if (!anon && page_mapped(page)) { |
b1b0deab CG |
4505 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], |
4506 | nr_pages); | |
4507 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
4508 | nr_pages); | |
4509 | } | |
4510 | ||
c4843a75 GT |
4511 | /* |
4512 | * move_lock grabbed above and caller set from->moving_account, so | |
4513 | * mem_cgroup_update_page_stat() will serialize updates to PageDirty. | |
4514 | * So mapping should be stable for dirty pages. | |
4515 | */ | |
4516 | if (!anon && PageDirty(page)) { | |
4517 | struct address_space *mapping = page_mapping(page); | |
4518 | ||
4519 | if (mapping_cap_account_dirty(mapping)) { | |
4520 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], | |
4521 | nr_pages); | |
4522 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], | |
4523 | nr_pages); | |
4524 | } | |
4525 | } | |
4526 | ||
b1b0deab CG |
4527 | if (PageWriteback(page)) { |
4528 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
4529 | nr_pages); | |
4530 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
4531 | nr_pages); | |
4532 | } | |
4533 | ||
4534 | /* | |
4535 | * It is safe to change page->mem_cgroup here because the page | |
4536 | * is referenced, charged, and isolated - we can't race with | |
4537 | * uncharging, charging, migration, or LRU putback. | |
4538 | */ | |
4539 | ||
4540 | /* caller should have done css_get */ | |
4541 | page->mem_cgroup = to; | |
4542 | spin_unlock_irqrestore(&from->move_lock, flags); | |
4543 | ||
4544 | ret = 0; | |
4545 | ||
4546 | local_irq_disable(); | |
f627c2f5 | 4547 | mem_cgroup_charge_statistics(to, page, compound, nr_pages); |
b1b0deab | 4548 | memcg_check_events(to, page); |
f627c2f5 | 4549 | mem_cgroup_charge_statistics(from, page, compound, -nr_pages); |
b1b0deab CG |
4550 | memcg_check_events(from, page); |
4551 | local_irq_enable(); | |
4552 | out_unlock: | |
4553 | unlock_page(page); | |
4554 | out: | |
4555 | return ret; | |
4556 | } | |
4557 | ||
7cf7806c LR |
4558 | /** |
4559 | * get_mctgt_type - get target type of moving charge | |
4560 | * @vma: the vma the pte to be checked belongs | |
4561 | * @addr: the address corresponding to the pte to be checked | |
4562 | * @ptent: the pte to be checked | |
4563 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | |
4564 | * | |
4565 | * Returns | |
4566 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4567 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4568 | * move charge. if @target is not NULL, the page is stored in target->page | |
4569 | * with extra refcnt got(Callers should handle it). | |
4570 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | |
4571 | * target for charge migration. if @target is not NULL, the entry is stored | |
4572 | * in target->ent. | |
4573 | * | |
4574 | * Called with pte lock held. | |
4575 | */ | |
4576 | ||
8d32ff84 | 4577 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
90254a65 DN |
4578 | unsigned long addr, pte_t ptent, union mc_target *target) |
4579 | { | |
4580 | struct page *page = NULL; | |
8d32ff84 | 4581 | enum mc_target_type ret = MC_TARGET_NONE; |
90254a65 DN |
4582 | swp_entry_t ent = { .val = 0 }; |
4583 | ||
4584 | if (pte_present(ptent)) | |
4585 | page = mc_handle_present_pte(vma, addr, ptent); | |
4586 | else if (is_swap_pte(ptent)) | |
48406ef8 | 4587 | page = mc_handle_swap_pte(vma, ptent, &ent); |
0661a336 | 4588 | else if (pte_none(ptent)) |
87946a72 | 4589 | page = mc_handle_file_pte(vma, addr, ptent, &ent); |
90254a65 DN |
4590 | |
4591 | if (!page && !ent.val) | |
8d32ff84 | 4592 | return ret; |
02491447 | 4593 | if (page) { |
02491447 | 4594 | /* |
0a31bc97 | 4595 | * Do only loose check w/o serialization. |
1306a85a | 4596 | * mem_cgroup_move_account() checks the page is valid or |
0a31bc97 | 4597 | * not under LRU exclusion. |
02491447 | 4598 | */ |
1306a85a | 4599 | if (page->mem_cgroup == mc.from) { |
02491447 DN |
4600 | ret = MC_TARGET_PAGE; |
4601 | if (target) | |
4602 | target->page = page; | |
4603 | } | |
4604 | if (!ret || !target) | |
4605 | put_page(page); | |
4606 | } | |
90254a65 DN |
4607 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
4608 | if (ent.val && !ret && | |
34c00c31 | 4609 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { |
7f0f1546 KH |
4610 | ret = MC_TARGET_SWAP; |
4611 | if (target) | |
4612 | target->ent = ent; | |
4ffef5fe | 4613 | } |
4ffef5fe DN |
4614 | return ret; |
4615 | } | |
4616 | ||
12724850 NH |
4617 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
4618 | /* | |
4619 | * We don't consider swapping or file mapped pages because THP does not | |
4620 | * support them for now. | |
4621 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
4622 | */ | |
4623 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
4624 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
4625 | { | |
4626 | struct page *page = NULL; | |
12724850 NH |
4627 | enum mc_target_type ret = MC_TARGET_NONE; |
4628 | ||
4629 | page = pmd_page(pmd); | |
309381fe | 4630 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); |
1dfab5ab | 4631 | if (!(mc.flags & MOVE_ANON)) |
12724850 | 4632 | return ret; |
1306a85a | 4633 | if (page->mem_cgroup == mc.from) { |
12724850 NH |
4634 | ret = MC_TARGET_PAGE; |
4635 | if (target) { | |
4636 | get_page(page); | |
4637 | target->page = page; | |
4638 | } | |
4639 | } | |
4640 | return ret; | |
4641 | } | |
4642 | #else | |
4643 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
4644 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
4645 | { | |
4646 | return MC_TARGET_NONE; | |
4647 | } | |
4648 | #endif | |
4649 | ||
4ffef5fe DN |
4650 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
4651 | unsigned long addr, unsigned long end, | |
4652 | struct mm_walk *walk) | |
4653 | { | |
26bcd64a | 4654 | struct vm_area_struct *vma = walk->vma; |
4ffef5fe DN |
4655 | pte_t *pte; |
4656 | spinlock_t *ptl; | |
4657 | ||
b6ec57f4 KS |
4658 | ptl = pmd_trans_huge_lock(pmd, vma); |
4659 | if (ptl) { | |
12724850 NH |
4660 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
4661 | mc.precharge += HPAGE_PMD_NR; | |
bf929152 | 4662 | spin_unlock(ptl); |
1a5a9906 | 4663 | return 0; |
12724850 | 4664 | } |
03319327 | 4665 | |
45f83cef AA |
4666 | if (pmd_trans_unstable(pmd)) |
4667 | return 0; | |
4ffef5fe DN |
4668 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
4669 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
8d32ff84 | 4670 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
4ffef5fe DN |
4671 | mc.precharge++; /* increment precharge temporarily */ |
4672 | pte_unmap_unlock(pte - 1, ptl); | |
4673 | cond_resched(); | |
4674 | ||
7dc74be0 DN |
4675 | return 0; |
4676 | } | |
4677 | ||
4ffef5fe DN |
4678 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
4679 | { | |
4680 | unsigned long precharge; | |
4ffef5fe | 4681 | |
26bcd64a NH |
4682 | struct mm_walk mem_cgroup_count_precharge_walk = { |
4683 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
4684 | .mm = mm, | |
4685 | }; | |
dfe076b0 | 4686 | down_read(&mm->mmap_sem); |
0247f3f4 JM |
4687 | walk_page_range(0, mm->highest_vm_end, |
4688 | &mem_cgroup_count_precharge_walk); | |
dfe076b0 | 4689 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
4690 | |
4691 | precharge = mc.precharge; | |
4692 | mc.precharge = 0; | |
4693 | ||
4694 | return precharge; | |
4695 | } | |
4696 | ||
4ffef5fe DN |
4697 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
4698 | { | |
dfe076b0 DN |
4699 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
4700 | ||
4701 | VM_BUG_ON(mc.moving_task); | |
4702 | mc.moving_task = current; | |
4703 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
4704 | } |
4705 | ||
dfe076b0 DN |
4706 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
4707 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 4708 | { |
2bd9bb20 KH |
4709 | struct mem_cgroup *from = mc.from; |
4710 | struct mem_cgroup *to = mc.to; | |
4711 | ||
4ffef5fe | 4712 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d | 4713 | if (mc.precharge) { |
00501b53 | 4714 | cancel_charge(mc.to, mc.precharge); |
854ffa8d DN |
4715 | mc.precharge = 0; |
4716 | } | |
4717 | /* | |
4718 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
4719 | * we must uncharge here. | |
4720 | */ | |
4721 | if (mc.moved_charge) { | |
00501b53 | 4722 | cancel_charge(mc.from, mc.moved_charge); |
854ffa8d | 4723 | mc.moved_charge = 0; |
4ffef5fe | 4724 | } |
483c30b5 DN |
4725 | /* we must fixup refcnts and charges */ |
4726 | if (mc.moved_swap) { | |
483c30b5 | 4727 | /* uncharge swap account from the old cgroup */ |
ce00a967 | 4728 | if (!mem_cgroup_is_root(mc.from)) |
3e32cb2e | 4729 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); |
483c30b5 | 4730 | |
615d66c3 VD |
4731 | mem_cgroup_id_put_many(mc.from, mc.moved_swap); |
4732 | ||
05b84301 | 4733 | /* |
3e32cb2e JW |
4734 | * we charged both to->memory and to->memsw, so we |
4735 | * should uncharge to->memory. | |
05b84301 | 4736 | */ |
ce00a967 | 4737 | if (!mem_cgroup_is_root(mc.to)) |
3e32cb2e JW |
4738 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); |
4739 | ||
615d66c3 VD |
4740 | mem_cgroup_id_get_many(mc.to, mc.moved_swap); |
4741 | css_put_many(&mc.to->css, mc.moved_swap); | |
3e32cb2e | 4742 | |
483c30b5 DN |
4743 | mc.moved_swap = 0; |
4744 | } | |
dfe076b0 DN |
4745 | memcg_oom_recover(from); |
4746 | memcg_oom_recover(to); | |
4747 | wake_up_all(&mc.waitq); | |
4748 | } | |
4749 | ||
4750 | static void mem_cgroup_clear_mc(void) | |
4751 | { | |
264a0ae1 TH |
4752 | struct mm_struct *mm = mc.mm; |
4753 | ||
dfe076b0 DN |
4754 | /* |
4755 | * we must clear moving_task before waking up waiters at the end of | |
4756 | * task migration. | |
4757 | */ | |
4758 | mc.moving_task = NULL; | |
4759 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 4760 | spin_lock(&mc.lock); |
4ffef5fe DN |
4761 | mc.from = NULL; |
4762 | mc.to = NULL; | |
264a0ae1 | 4763 | mc.mm = NULL; |
2bd9bb20 | 4764 | spin_unlock(&mc.lock); |
264a0ae1 TH |
4765 | |
4766 | mmput(mm); | |
4ffef5fe DN |
4767 | } |
4768 | ||
1f7dd3e5 | 4769 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) |
7dc74be0 | 4770 | { |
1f7dd3e5 | 4771 | struct cgroup_subsys_state *css; |
eed67d75 | 4772 | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ |
9f2115f9 | 4773 | struct mem_cgroup *from; |
4530eddb | 4774 | struct task_struct *leader, *p; |
9f2115f9 | 4775 | struct mm_struct *mm; |
1dfab5ab | 4776 | unsigned long move_flags; |
9f2115f9 | 4777 | int ret = 0; |
7dc74be0 | 4778 | |
1f7dd3e5 TH |
4779 | /* charge immigration isn't supported on the default hierarchy */ |
4780 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
9f2115f9 TH |
4781 | return 0; |
4782 | ||
4530eddb TH |
4783 | /* |
4784 | * Multi-process migrations only happen on the default hierarchy | |
4785 | * where charge immigration is not used. Perform charge | |
4786 | * immigration if @tset contains a leader and whine if there are | |
4787 | * multiple. | |
4788 | */ | |
4789 | p = NULL; | |
1f7dd3e5 | 4790 | cgroup_taskset_for_each_leader(leader, css, tset) { |
4530eddb TH |
4791 | WARN_ON_ONCE(p); |
4792 | p = leader; | |
1f7dd3e5 | 4793 | memcg = mem_cgroup_from_css(css); |
4530eddb TH |
4794 | } |
4795 | if (!p) | |
4796 | return 0; | |
4797 | ||
1f7dd3e5 TH |
4798 | /* |
4799 | * We are now commited to this value whatever it is. Changes in this | |
4800 | * tunable will only affect upcoming migrations, not the current one. | |
4801 | * So we need to save it, and keep it going. | |
4802 | */ | |
4803 | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | |
4804 | if (!move_flags) | |
4805 | return 0; | |
4806 | ||
9f2115f9 TH |
4807 | from = mem_cgroup_from_task(p); |
4808 | ||
4809 | VM_BUG_ON(from == memcg); | |
4810 | ||
4811 | mm = get_task_mm(p); | |
4812 | if (!mm) | |
4813 | return 0; | |
4814 | /* We move charges only when we move a owner of the mm */ | |
4815 | if (mm->owner == p) { | |
4816 | VM_BUG_ON(mc.from); | |
4817 | VM_BUG_ON(mc.to); | |
4818 | VM_BUG_ON(mc.precharge); | |
4819 | VM_BUG_ON(mc.moved_charge); | |
4820 | VM_BUG_ON(mc.moved_swap); | |
4821 | ||
4822 | spin_lock(&mc.lock); | |
264a0ae1 | 4823 | mc.mm = mm; |
9f2115f9 TH |
4824 | mc.from = from; |
4825 | mc.to = memcg; | |
4826 | mc.flags = move_flags; | |
4827 | spin_unlock(&mc.lock); | |
4828 | /* We set mc.moving_task later */ | |
4829 | ||
4830 | ret = mem_cgroup_precharge_mc(mm); | |
4831 | if (ret) | |
4832 | mem_cgroup_clear_mc(); | |
264a0ae1 TH |
4833 | } else { |
4834 | mmput(mm); | |
7dc74be0 DN |
4835 | } |
4836 | return ret; | |
4837 | } | |
4838 | ||
1f7dd3e5 | 4839 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) |
7dc74be0 | 4840 | { |
4e2f245d JW |
4841 | if (mc.to) |
4842 | mem_cgroup_clear_mc(); | |
7dc74be0 DN |
4843 | } |
4844 | ||
4ffef5fe DN |
4845 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
4846 | unsigned long addr, unsigned long end, | |
4847 | struct mm_walk *walk) | |
7dc74be0 | 4848 | { |
4ffef5fe | 4849 | int ret = 0; |
26bcd64a | 4850 | struct vm_area_struct *vma = walk->vma; |
4ffef5fe DN |
4851 | pte_t *pte; |
4852 | spinlock_t *ptl; | |
12724850 NH |
4853 | enum mc_target_type target_type; |
4854 | union mc_target target; | |
4855 | struct page *page; | |
4ffef5fe | 4856 | |
b6ec57f4 KS |
4857 | ptl = pmd_trans_huge_lock(pmd, vma); |
4858 | if (ptl) { | |
62ade86a | 4859 | if (mc.precharge < HPAGE_PMD_NR) { |
bf929152 | 4860 | spin_unlock(ptl); |
12724850 NH |
4861 | return 0; |
4862 | } | |
4863 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
4864 | if (target_type == MC_TARGET_PAGE) { | |
4865 | page = target.page; | |
4866 | if (!isolate_lru_page(page)) { | |
f627c2f5 | 4867 | if (!mem_cgroup_move_account(page, true, |
1306a85a | 4868 | mc.from, mc.to)) { |
12724850 NH |
4869 | mc.precharge -= HPAGE_PMD_NR; |
4870 | mc.moved_charge += HPAGE_PMD_NR; | |
4871 | } | |
4872 | putback_lru_page(page); | |
4873 | } | |
4874 | put_page(page); | |
4875 | } | |
bf929152 | 4876 | spin_unlock(ptl); |
1a5a9906 | 4877 | return 0; |
12724850 NH |
4878 | } |
4879 | ||
45f83cef AA |
4880 | if (pmd_trans_unstable(pmd)) |
4881 | return 0; | |
4ffef5fe DN |
4882 | retry: |
4883 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
4884 | for (; addr != end; addr += PAGE_SIZE) { | |
4885 | pte_t ptent = *(pte++); | |
02491447 | 4886 | swp_entry_t ent; |
4ffef5fe DN |
4887 | |
4888 | if (!mc.precharge) | |
4889 | break; | |
4890 | ||
8d32ff84 | 4891 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
4ffef5fe DN |
4892 | case MC_TARGET_PAGE: |
4893 | page = target.page; | |
53f9263b KS |
4894 | /* |
4895 | * We can have a part of the split pmd here. Moving it | |
4896 | * can be done but it would be too convoluted so simply | |
4897 | * ignore such a partial THP and keep it in original | |
4898 | * memcg. There should be somebody mapping the head. | |
4899 | */ | |
4900 | if (PageTransCompound(page)) | |
4901 | goto put; | |
4ffef5fe DN |
4902 | if (isolate_lru_page(page)) |
4903 | goto put; | |
f627c2f5 KS |
4904 | if (!mem_cgroup_move_account(page, false, |
4905 | mc.from, mc.to)) { | |
4ffef5fe | 4906 | mc.precharge--; |
854ffa8d DN |
4907 | /* we uncharge from mc.from later. */ |
4908 | mc.moved_charge++; | |
4ffef5fe DN |
4909 | } |
4910 | putback_lru_page(page); | |
8d32ff84 | 4911 | put: /* get_mctgt_type() gets the page */ |
4ffef5fe DN |
4912 | put_page(page); |
4913 | break; | |
02491447 DN |
4914 | case MC_TARGET_SWAP: |
4915 | ent = target.ent; | |
e91cbb42 | 4916 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
02491447 | 4917 | mc.precharge--; |
483c30b5 DN |
4918 | /* we fixup refcnts and charges later. */ |
4919 | mc.moved_swap++; | |
4920 | } | |
02491447 | 4921 | break; |
4ffef5fe DN |
4922 | default: |
4923 | break; | |
4924 | } | |
4925 | } | |
4926 | pte_unmap_unlock(pte - 1, ptl); | |
4927 | cond_resched(); | |
4928 | ||
4929 | if (addr != end) { | |
4930 | /* | |
4931 | * We have consumed all precharges we got in can_attach(). | |
4932 | * We try charge one by one, but don't do any additional | |
4933 | * charges to mc.to if we have failed in charge once in attach() | |
4934 | * phase. | |
4935 | */ | |
854ffa8d | 4936 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
4937 | if (!ret) |
4938 | goto retry; | |
4939 | } | |
4940 | ||
4941 | return ret; | |
4942 | } | |
4943 | ||
264a0ae1 | 4944 | static void mem_cgroup_move_charge(void) |
4ffef5fe | 4945 | { |
26bcd64a NH |
4946 | struct mm_walk mem_cgroup_move_charge_walk = { |
4947 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
264a0ae1 | 4948 | .mm = mc.mm, |
26bcd64a | 4949 | }; |
4ffef5fe DN |
4950 | |
4951 | lru_add_drain_all(); | |
312722cb | 4952 | /* |
81f8c3a4 JW |
4953 | * Signal lock_page_memcg() to take the memcg's move_lock |
4954 | * while we're moving its pages to another memcg. Then wait | |
4955 | * for already started RCU-only updates to finish. | |
312722cb JW |
4956 | */ |
4957 | atomic_inc(&mc.from->moving_account); | |
4958 | synchronize_rcu(); | |
dfe076b0 | 4959 | retry: |
264a0ae1 | 4960 | if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { |
dfe076b0 DN |
4961 | /* |
4962 | * Someone who are holding the mmap_sem might be waiting in | |
4963 | * waitq. So we cancel all extra charges, wake up all waiters, | |
4964 | * and retry. Because we cancel precharges, we might not be able | |
4965 | * to move enough charges, but moving charge is a best-effort | |
4966 | * feature anyway, so it wouldn't be a big problem. | |
4967 | */ | |
4968 | __mem_cgroup_clear_mc(); | |
4969 | cond_resched(); | |
4970 | goto retry; | |
4971 | } | |
26bcd64a NH |
4972 | /* |
4973 | * When we have consumed all precharges and failed in doing | |
4974 | * additional charge, the page walk just aborts. | |
4975 | */ | |
0247f3f4 JM |
4976 | walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); |
4977 | ||
264a0ae1 | 4978 | up_read(&mc.mm->mmap_sem); |
312722cb | 4979 | atomic_dec(&mc.from->moving_account); |
7dc74be0 DN |
4980 | } |
4981 | ||
264a0ae1 | 4982 | static void mem_cgroup_move_task(void) |
67e465a7 | 4983 | { |
264a0ae1 TH |
4984 | if (mc.to) { |
4985 | mem_cgroup_move_charge(); | |
a433658c | 4986 | mem_cgroup_clear_mc(); |
264a0ae1 | 4987 | } |
67e465a7 | 4988 | } |
5cfb80a7 | 4989 | #else /* !CONFIG_MMU */ |
1f7dd3e5 | 4990 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) |
5cfb80a7 DN |
4991 | { |
4992 | return 0; | |
4993 | } | |
1f7dd3e5 | 4994 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) |
5cfb80a7 DN |
4995 | { |
4996 | } | |
264a0ae1 | 4997 | static void mem_cgroup_move_task(void) |
5cfb80a7 DN |
4998 | { |
4999 | } | |
5000 | #endif | |
67e465a7 | 5001 | |
f00baae7 TH |
5002 | /* |
5003 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
aa6ec29b TH |
5004 | * to verify whether we're attached to the default hierarchy on each mount |
5005 | * attempt. | |
f00baae7 | 5006 | */ |
eb95419b | 5007 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) |
f00baae7 TH |
5008 | { |
5009 | /* | |
aa6ec29b | 5010 | * use_hierarchy is forced on the default hierarchy. cgroup core |
f00baae7 TH |
5011 | * guarantees that @root doesn't have any children, so turning it |
5012 | * on for the root memcg is enough. | |
5013 | */ | |
9e10a130 | 5014 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
7feee590 VD |
5015 | root_mem_cgroup->use_hierarchy = true; |
5016 | else | |
5017 | root_mem_cgroup->use_hierarchy = false; | |
f00baae7 TH |
5018 | } |
5019 | ||
241994ed JW |
5020 | static u64 memory_current_read(struct cgroup_subsys_state *css, |
5021 | struct cftype *cft) | |
5022 | { | |
f5fc3c5d JW |
5023 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5024 | ||
5025 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | |
241994ed JW |
5026 | } |
5027 | ||
5028 | static int memory_low_show(struct seq_file *m, void *v) | |
5029 | { | |
5030 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
4db0c3c2 | 5031 | unsigned long low = READ_ONCE(memcg->low); |
241994ed JW |
5032 | |
5033 | if (low == PAGE_COUNTER_MAX) | |
d2973697 | 5034 | seq_puts(m, "max\n"); |
241994ed JW |
5035 | else |
5036 | seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); | |
5037 | ||
5038 | return 0; | |
5039 | } | |
5040 | ||
5041 | static ssize_t memory_low_write(struct kernfs_open_file *of, | |
5042 | char *buf, size_t nbytes, loff_t off) | |
5043 | { | |
5044 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5045 | unsigned long low; | |
5046 | int err; | |
5047 | ||
5048 | buf = strstrip(buf); | |
d2973697 | 5049 | err = page_counter_memparse(buf, "max", &low); |
241994ed JW |
5050 | if (err) |
5051 | return err; | |
5052 | ||
5053 | memcg->low = low; | |
5054 | ||
5055 | return nbytes; | |
5056 | } | |
5057 | ||
5058 | static int memory_high_show(struct seq_file *m, void *v) | |
5059 | { | |
5060 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
4db0c3c2 | 5061 | unsigned long high = READ_ONCE(memcg->high); |
241994ed JW |
5062 | |
5063 | if (high == PAGE_COUNTER_MAX) | |
d2973697 | 5064 | seq_puts(m, "max\n"); |
241994ed JW |
5065 | else |
5066 | seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); | |
5067 | ||
5068 | return 0; | |
5069 | } | |
5070 | ||
5071 | static ssize_t memory_high_write(struct kernfs_open_file *of, | |
5072 | char *buf, size_t nbytes, loff_t off) | |
5073 | { | |
5074 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
588083bb | 5075 | unsigned long nr_pages; |
241994ed JW |
5076 | unsigned long high; |
5077 | int err; | |
5078 | ||
5079 | buf = strstrip(buf); | |
d2973697 | 5080 | err = page_counter_memparse(buf, "max", &high); |
241994ed JW |
5081 | if (err) |
5082 | return err; | |
5083 | ||
5084 | memcg->high = high; | |
5085 | ||
588083bb JW |
5086 | nr_pages = page_counter_read(&memcg->memory); |
5087 | if (nr_pages > high) | |
5088 | try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | |
5089 | GFP_KERNEL, true); | |
5090 | ||
2529bb3a | 5091 | memcg_wb_domain_size_changed(memcg); |
241994ed JW |
5092 | return nbytes; |
5093 | } | |
5094 | ||
5095 | static int memory_max_show(struct seq_file *m, void *v) | |
5096 | { | |
5097 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
4db0c3c2 | 5098 | unsigned long max = READ_ONCE(memcg->memory.limit); |
241994ed JW |
5099 | |
5100 | if (max == PAGE_COUNTER_MAX) | |
d2973697 | 5101 | seq_puts(m, "max\n"); |
241994ed JW |
5102 | else |
5103 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | |
5104 | ||
5105 | return 0; | |
5106 | } | |
5107 | ||
5108 | static ssize_t memory_max_write(struct kernfs_open_file *of, | |
5109 | char *buf, size_t nbytes, loff_t off) | |
5110 | { | |
5111 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
b6e6edcf JW |
5112 | unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; |
5113 | bool drained = false; | |
241994ed JW |
5114 | unsigned long max; |
5115 | int err; | |
5116 | ||
5117 | buf = strstrip(buf); | |
d2973697 | 5118 | err = page_counter_memparse(buf, "max", &max); |
241994ed JW |
5119 | if (err) |
5120 | return err; | |
5121 | ||
b6e6edcf JW |
5122 | xchg(&memcg->memory.limit, max); |
5123 | ||
5124 | for (;;) { | |
5125 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
5126 | ||
5127 | if (nr_pages <= max) | |
5128 | break; | |
5129 | ||
5130 | if (signal_pending(current)) { | |
5131 | err = -EINTR; | |
5132 | break; | |
5133 | } | |
5134 | ||
5135 | if (!drained) { | |
5136 | drain_all_stock(memcg); | |
5137 | drained = true; | |
5138 | continue; | |
5139 | } | |
5140 | ||
5141 | if (nr_reclaims) { | |
5142 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | |
5143 | GFP_KERNEL, true)) | |
5144 | nr_reclaims--; | |
5145 | continue; | |
5146 | } | |
5147 | ||
5148 | mem_cgroup_events(memcg, MEMCG_OOM, 1); | |
5149 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | |
5150 | break; | |
5151 | } | |
241994ed | 5152 | |
2529bb3a | 5153 | memcg_wb_domain_size_changed(memcg); |
241994ed JW |
5154 | return nbytes; |
5155 | } | |
5156 | ||
5157 | static int memory_events_show(struct seq_file *m, void *v) | |
5158 | { | |
5159 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
5160 | ||
5161 | seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); | |
5162 | seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); | |
5163 | seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); | |
5164 | seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); | |
5165 | ||
5166 | return 0; | |
5167 | } | |
5168 | ||
587d9f72 JW |
5169 | static int memory_stat_show(struct seq_file *m, void *v) |
5170 | { | |
5171 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
72b54e73 VD |
5172 | unsigned long stat[MEMCG_NR_STAT]; |
5173 | unsigned long events[MEMCG_NR_EVENTS]; | |
587d9f72 JW |
5174 | int i; |
5175 | ||
5176 | /* | |
5177 | * Provide statistics on the state of the memory subsystem as | |
5178 | * well as cumulative event counters that show past behavior. | |
5179 | * | |
5180 | * This list is ordered following a combination of these gradients: | |
5181 | * 1) generic big picture -> specifics and details | |
5182 | * 2) reflecting userspace activity -> reflecting kernel heuristics | |
5183 | * | |
5184 | * Current memory state: | |
5185 | */ | |
5186 | ||
72b54e73 VD |
5187 | tree_stat(memcg, stat); |
5188 | tree_events(memcg, events); | |
5189 | ||
587d9f72 | 5190 | seq_printf(m, "anon %llu\n", |
72b54e73 | 5191 | (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); |
587d9f72 | 5192 | seq_printf(m, "file %llu\n", |
72b54e73 | 5193 | (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); |
12580e4b | 5194 | seq_printf(m, "kernel_stack %llu\n", |
efdc9490 | 5195 | (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); |
27ee57c9 VD |
5196 | seq_printf(m, "slab %llu\n", |
5197 | (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + | |
5198 | stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); | |
b2807f07 | 5199 | seq_printf(m, "sock %llu\n", |
72b54e73 | 5200 | (u64)stat[MEMCG_SOCK] * PAGE_SIZE); |
587d9f72 JW |
5201 | |
5202 | seq_printf(m, "file_mapped %llu\n", | |
72b54e73 | 5203 | (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); |
587d9f72 | 5204 | seq_printf(m, "file_dirty %llu\n", |
72b54e73 | 5205 | (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); |
587d9f72 | 5206 | seq_printf(m, "file_writeback %llu\n", |
72b54e73 | 5207 | (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); |
587d9f72 JW |
5208 | |
5209 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
5210 | struct mem_cgroup *mi; | |
5211 | unsigned long val = 0; | |
5212 | ||
5213 | for_each_mem_cgroup_tree(mi, memcg) | |
5214 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)); | |
5215 | seq_printf(m, "%s %llu\n", | |
5216 | mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); | |
5217 | } | |
5218 | ||
27ee57c9 VD |
5219 | seq_printf(m, "slab_reclaimable %llu\n", |
5220 | (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); | |
5221 | seq_printf(m, "slab_unreclaimable %llu\n", | |
5222 | (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); | |
5223 | ||
587d9f72 JW |
5224 | /* Accumulated memory events */ |
5225 | ||
5226 | seq_printf(m, "pgfault %lu\n", | |
72b54e73 | 5227 | events[MEM_CGROUP_EVENTS_PGFAULT]); |
587d9f72 | 5228 | seq_printf(m, "pgmajfault %lu\n", |
72b54e73 | 5229 | events[MEM_CGROUP_EVENTS_PGMAJFAULT]); |
587d9f72 JW |
5230 | |
5231 | return 0; | |
5232 | } | |
5233 | ||
241994ed JW |
5234 | static struct cftype memory_files[] = { |
5235 | { | |
5236 | .name = "current", | |
f5fc3c5d | 5237 | .flags = CFTYPE_NOT_ON_ROOT, |
241994ed JW |
5238 | .read_u64 = memory_current_read, |
5239 | }, | |
5240 | { | |
5241 | .name = "low", | |
5242 | .flags = CFTYPE_NOT_ON_ROOT, | |
5243 | .seq_show = memory_low_show, | |
5244 | .write = memory_low_write, | |
5245 | }, | |
5246 | { | |
5247 | .name = "high", | |
5248 | .flags = CFTYPE_NOT_ON_ROOT, | |
5249 | .seq_show = memory_high_show, | |
5250 | .write = memory_high_write, | |
5251 | }, | |
5252 | { | |
5253 | .name = "max", | |
5254 | .flags = CFTYPE_NOT_ON_ROOT, | |
5255 | .seq_show = memory_max_show, | |
5256 | .write = memory_max_write, | |
5257 | }, | |
5258 | { | |
5259 | .name = "events", | |
5260 | .flags = CFTYPE_NOT_ON_ROOT, | |
472912a2 | 5261 | .file_offset = offsetof(struct mem_cgroup, events_file), |
241994ed JW |
5262 | .seq_show = memory_events_show, |
5263 | }, | |
587d9f72 JW |
5264 | { |
5265 | .name = "stat", | |
5266 | .flags = CFTYPE_NOT_ON_ROOT, | |
5267 | .seq_show = memory_stat_show, | |
5268 | }, | |
241994ed JW |
5269 | { } /* terminate */ |
5270 | }; | |
5271 | ||
073219e9 | 5272 | struct cgroup_subsys memory_cgrp_subsys = { |
92fb9748 | 5273 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 5274 | .css_online = mem_cgroup_css_online, |
92fb9748 | 5275 | .css_offline = mem_cgroup_css_offline, |
6df38689 | 5276 | .css_released = mem_cgroup_css_released, |
92fb9748 | 5277 | .css_free = mem_cgroup_css_free, |
1ced953b | 5278 | .css_reset = mem_cgroup_css_reset, |
7dc74be0 DN |
5279 | .can_attach = mem_cgroup_can_attach, |
5280 | .cancel_attach = mem_cgroup_cancel_attach, | |
264a0ae1 | 5281 | .post_attach = mem_cgroup_move_task, |
f00baae7 | 5282 | .bind = mem_cgroup_bind, |
241994ed JW |
5283 | .dfl_cftypes = memory_files, |
5284 | .legacy_cftypes = mem_cgroup_legacy_files, | |
6d12e2d8 | 5285 | .early_init = 0, |
8cdea7c0 | 5286 | }; |
c077719b | 5287 | |
241994ed JW |
5288 | /** |
5289 | * mem_cgroup_low - check if memory consumption is below the normal range | |
5290 | * @root: the highest ancestor to consider | |
5291 | * @memcg: the memory cgroup to check | |
5292 | * | |
5293 | * Returns %true if memory consumption of @memcg, and that of all | |
5294 | * configurable ancestors up to @root, is below the normal range. | |
5295 | */ | |
5296 | bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) | |
5297 | { | |
5298 | if (mem_cgroup_disabled()) | |
5299 | return false; | |
5300 | ||
5301 | /* | |
5302 | * The toplevel group doesn't have a configurable range, so | |
5303 | * it's never low when looked at directly, and it is not | |
5304 | * considered an ancestor when assessing the hierarchy. | |
5305 | */ | |
5306 | ||
5307 | if (memcg == root_mem_cgroup) | |
5308 | return false; | |
5309 | ||
4e54dede | 5310 | if (page_counter_read(&memcg->memory) >= memcg->low) |
241994ed JW |
5311 | return false; |
5312 | ||
5313 | while (memcg != root) { | |
5314 | memcg = parent_mem_cgroup(memcg); | |
5315 | ||
5316 | if (memcg == root_mem_cgroup) | |
5317 | break; | |
5318 | ||
4e54dede | 5319 | if (page_counter_read(&memcg->memory) >= memcg->low) |
241994ed JW |
5320 | return false; |
5321 | } | |
5322 | return true; | |
5323 | } | |
5324 | ||
00501b53 JW |
5325 | /** |
5326 | * mem_cgroup_try_charge - try charging a page | |
5327 | * @page: page to charge | |
5328 | * @mm: mm context of the victim | |
5329 | * @gfp_mask: reclaim mode | |
5330 | * @memcgp: charged memcg return | |
25843c2b | 5331 | * @compound: charge the page as compound or small page |
00501b53 JW |
5332 | * |
5333 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | |
5334 | * pages according to @gfp_mask if necessary. | |
5335 | * | |
5336 | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | |
5337 | * Otherwise, an error code is returned. | |
5338 | * | |
5339 | * After page->mapping has been set up, the caller must finalize the | |
5340 | * charge with mem_cgroup_commit_charge(). Or abort the transaction | |
5341 | * with mem_cgroup_cancel_charge() in case page instantiation fails. | |
5342 | */ | |
5343 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | |
f627c2f5 KS |
5344 | gfp_t gfp_mask, struct mem_cgroup **memcgp, |
5345 | bool compound) | |
00501b53 JW |
5346 | { |
5347 | struct mem_cgroup *memcg = NULL; | |
f627c2f5 | 5348 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; |
00501b53 JW |
5349 | int ret = 0; |
5350 | ||
5351 | if (mem_cgroup_disabled()) | |
5352 | goto out; | |
5353 | ||
5354 | if (PageSwapCache(page)) { | |
00501b53 JW |
5355 | /* |
5356 | * Every swap fault against a single page tries to charge the | |
5357 | * page, bail as early as possible. shmem_unuse() encounters | |
5358 | * already charged pages, too. The USED bit is protected by | |
5359 | * the page lock, which serializes swap cache removal, which | |
5360 | * in turn serializes uncharging. | |
5361 | */ | |
e993d905 | 5362 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
1306a85a | 5363 | if (page->mem_cgroup) |
00501b53 | 5364 | goto out; |
e993d905 | 5365 | |
37e84351 | 5366 | if (do_swap_account) { |
e993d905 VD |
5367 | swp_entry_t ent = { .val = page_private(page), }; |
5368 | unsigned short id = lookup_swap_cgroup_id(ent); | |
5369 | ||
5370 | rcu_read_lock(); | |
5371 | memcg = mem_cgroup_from_id(id); | |
5372 | if (memcg && !css_tryget_online(&memcg->css)) | |
5373 | memcg = NULL; | |
5374 | rcu_read_unlock(); | |
5375 | } | |
00501b53 JW |
5376 | } |
5377 | ||
00501b53 JW |
5378 | if (!memcg) |
5379 | memcg = get_mem_cgroup_from_mm(mm); | |
5380 | ||
5381 | ret = try_charge(memcg, gfp_mask, nr_pages); | |
5382 | ||
5383 | css_put(&memcg->css); | |
00501b53 JW |
5384 | out: |
5385 | *memcgp = memcg; | |
5386 | return ret; | |
5387 | } | |
5388 | ||
5389 | /** | |
5390 | * mem_cgroup_commit_charge - commit a page charge | |
5391 | * @page: page to charge | |
5392 | * @memcg: memcg to charge the page to | |
5393 | * @lrucare: page might be on LRU already | |
25843c2b | 5394 | * @compound: charge the page as compound or small page |
00501b53 JW |
5395 | * |
5396 | * Finalize a charge transaction started by mem_cgroup_try_charge(), | |
5397 | * after page->mapping has been set up. This must happen atomically | |
5398 | * as part of the page instantiation, i.e. under the page table lock | |
5399 | * for anonymous pages, under the page lock for page and swap cache. | |
5400 | * | |
5401 | * In addition, the page must not be on the LRU during the commit, to | |
5402 | * prevent racing with task migration. If it might be, use @lrucare. | |
5403 | * | |
5404 | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | |
5405 | */ | |
5406 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
f627c2f5 | 5407 | bool lrucare, bool compound) |
00501b53 | 5408 | { |
f627c2f5 | 5409 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; |
00501b53 JW |
5410 | |
5411 | VM_BUG_ON_PAGE(!page->mapping, page); | |
5412 | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | |
5413 | ||
5414 | if (mem_cgroup_disabled()) | |
5415 | return; | |
5416 | /* | |
5417 | * Swap faults will attempt to charge the same page multiple | |
5418 | * times. But reuse_swap_page() might have removed the page | |
5419 | * from swapcache already, so we can't check PageSwapCache(). | |
5420 | */ | |
5421 | if (!memcg) | |
5422 | return; | |
5423 | ||
6abb5a86 JW |
5424 | commit_charge(page, memcg, lrucare); |
5425 | ||
6abb5a86 | 5426 | local_irq_disable(); |
f627c2f5 | 5427 | mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); |
6abb5a86 JW |
5428 | memcg_check_events(memcg, page); |
5429 | local_irq_enable(); | |
00501b53 | 5430 | |
7941d214 | 5431 | if (do_memsw_account() && PageSwapCache(page)) { |
00501b53 JW |
5432 | swp_entry_t entry = { .val = page_private(page) }; |
5433 | /* | |
5434 | * The swap entry might not get freed for a long time, | |
5435 | * let's not wait for it. The page already received a | |
5436 | * memory+swap charge, drop the swap entry duplicate. | |
5437 | */ | |
5438 | mem_cgroup_uncharge_swap(entry); | |
5439 | } | |
5440 | } | |
5441 | ||
5442 | /** | |
5443 | * mem_cgroup_cancel_charge - cancel a page charge | |
5444 | * @page: page to charge | |
5445 | * @memcg: memcg to charge the page to | |
25843c2b | 5446 | * @compound: charge the page as compound or small page |
00501b53 JW |
5447 | * |
5448 | * Cancel a charge transaction started by mem_cgroup_try_charge(). | |
5449 | */ | |
f627c2f5 KS |
5450 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, |
5451 | bool compound) | |
00501b53 | 5452 | { |
f627c2f5 | 5453 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; |
00501b53 JW |
5454 | |
5455 | if (mem_cgroup_disabled()) | |
5456 | return; | |
5457 | /* | |
5458 | * Swap faults will attempt to charge the same page multiple | |
5459 | * times. But reuse_swap_page() might have removed the page | |
5460 | * from swapcache already, so we can't check PageSwapCache(). | |
5461 | */ | |
5462 | if (!memcg) | |
5463 | return; | |
5464 | ||
00501b53 JW |
5465 | cancel_charge(memcg, nr_pages); |
5466 | } | |
5467 | ||
747db954 | 5468 | static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, |
747db954 | 5469 | unsigned long nr_anon, unsigned long nr_file, |
5e8d35f8 VD |
5470 | unsigned long nr_huge, unsigned long nr_kmem, |
5471 | struct page *dummy_page) | |
747db954 | 5472 | { |
5e8d35f8 | 5473 | unsigned long nr_pages = nr_anon + nr_file + nr_kmem; |
747db954 JW |
5474 | unsigned long flags; |
5475 | ||
ce00a967 | 5476 | if (!mem_cgroup_is_root(memcg)) { |
18eca2e6 | 5477 | page_counter_uncharge(&memcg->memory, nr_pages); |
7941d214 | 5478 | if (do_memsw_account()) |
18eca2e6 | 5479 | page_counter_uncharge(&memcg->memsw, nr_pages); |
5e8d35f8 VD |
5480 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) |
5481 | page_counter_uncharge(&memcg->kmem, nr_kmem); | |
ce00a967 JW |
5482 | memcg_oom_recover(memcg); |
5483 | } | |
747db954 JW |
5484 | |
5485 | local_irq_save(flags); | |
5486 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); | |
5487 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); | |
5488 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); | |
5489 | __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); | |
18eca2e6 | 5490 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
747db954 JW |
5491 | memcg_check_events(memcg, dummy_page); |
5492 | local_irq_restore(flags); | |
e8ea14cc JW |
5493 | |
5494 | if (!mem_cgroup_is_root(memcg)) | |
18eca2e6 | 5495 | css_put_many(&memcg->css, nr_pages); |
747db954 JW |
5496 | } |
5497 | ||
5498 | static void uncharge_list(struct list_head *page_list) | |
5499 | { | |
5500 | struct mem_cgroup *memcg = NULL; | |
747db954 JW |
5501 | unsigned long nr_anon = 0; |
5502 | unsigned long nr_file = 0; | |
5503 | unsigned long nr_huge = 0; | |
5e8d35f8 | 5504 | unsigned long nr_kmem = 0; |
747db954 | 5505 | unsigned long pgpgout = 0; |
747db954 JW |
5506 | struct list_head *next; |
5507 | struct page *page; | |
5508 | ||
8b592656 JW |
5509 | /* |
5510 | * Note that the list can be a single page->lru; hence the | |
5511 | * do-while loop instead of a simple list_for_each_entry(). | |
5512 | */ | |
747db954 JW |
5513 | next = page_list->next; |
5514 | do { | |
747db954 JW |
5515 | page = list_entry(next, struct page, lru); |
5516 | next = page->lru.next; | |
5517 | ||
5518 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5519 | VM_BUG_ON_PAGE(page_count(page), page); | |
5520 | ||
1306a85a | 5521 | if (!page->mem_cgroup) |
747db954 JW |
5522 | continue; |
5523 | ||
5524 | /* | |
5525 | * Nobody should be changing or seriously looking at | |
1306a85a | 5526 | * page->mem_cgroup at this point, we have fully |
29833315 | 5527 | * exclusive access to the page. |
747db954 JW |
5528 | */ |
5529 | ||
1306a85a | 5530 | if (memcg != page->mem_cgroup) { |
747db954 | 5531 | if (memcg) { |
18eca2e6 | 5532 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, |
5e8d35f8 VD |
5533 | nr_huge, nr_kmem, page); |
5534 | pgpgout = nr_anon = nr_file = | |
5535 | nr_huge = nr_kmem = 0; | |
747db954 | 5536 | } |
1306a85a | 5537 | memcg = page->mem_cgroup; |
747db954 JW |
5538 | } |
5539 | ||
5e8d35f8 VD |
5540 | if (!PageKmemcg(page)) { |
5541 | unsigned int nr_pages = 1; | |
747db954 | 5542 | |
5e8d35f8 VD |
5543 | if (PageTransHuge(page)) { |
5544 | nr_pages <<= compound_order(page); | |
5e8d35f8 VD |
5545 | nr_huge += nr_pages; |
5546 | } | |
5547 | if (PageAnon(page)) | |
5548 | nr_anon += nr_pages; | |
5549 | else | |
5550 | nr_file += nr_pages; | |
5551 | pgpgout++; | |
c4159a75 | 5552 | } else { |
5e8d35f8 | 5553 | nr_kmem += 1 << compound_order(page); |
c4159a75 VD |
5554 | __ClearPageKmemcg(page); |
5555 | } | |
747db954 | 5556 | |
1306a85a | 5557 | page->mem_cgroup = NULL; |
747db954 JW |
5558 | } while (next != page_list); |
5559 | ||
5560 | if (memcg) | |
18eca2e6 | 5561 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, |
5e8d35f8 | 5562 | nr_huge, nr_kmem, page); |
747db954 JW |
5563 | } |
5564 | ||
0a31bc97 JW |
5565 | /** |
5566 | * mem_cgroup_uncharge - uncharge a page | |
5567 | * @page: page to uncharge | |
5568 | * | |
5569 | * Uncharge a page previously charged with mem_cgroup_try_charge() and | |
5570 | * mem_cgroup_commit_charge(). | |
5571 | */ | |
5572 | void mem_cgroup_uncharge(struct page *page) | |
5573 | { | |
0a31bc97 JW |
5574 | if (mem_cgroup_disabled()) |
5575 | return; | |
5576 | ||
747db954 | 5577 | /* Don't touch page->lru of any random page, pre-check: */ |
1306a85a | 5578 | if (!page->mem_cgroup) |
0a31bc97 JW |
5579 | return; |
5580 | ||
747db954 JW |
5581 | INIT_LIST_HEAD(&page->lru); |
5582 | uncharge_list(&page->lru); | |
5583 | } | |
0a31bc97 | 5584 | |
747db954 JW |
5585 | /** |
5586 | * mem_cgroup_uncharge_list - uncharge a list of page | |
5587 | * @page_list: list of pages to uncharge | |
5588 | * | |
5589 | * Uncharge a list of pages previously charged with | |
5590 | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | |
5591 | */ | |
5592 | void mem_cgroup_uncharge_list(struct list_head *page_list) | |
5593 | { | |
5594 | if (mem_cgroup_disabled()) | |
5595 | return; | |
0a31bc97 | 5596 | |
747db954 JW |
5597 | if (!list_empty(page_list)) |
5598 | uncharge_list(page_list); | |
0a31bc97 JW |
5599 | } |
5600 | ||
5601 | /** | |
6a93ca8f JW |
5602 | * mem_cgroup_migrate - charge a page's replacement |
5603 | * @oldpage: currently circulating page | |
5604 | * @newpage: replacement page | |
0a31bc97 | 5605 | * |
6a93ca8f JW |
5606 | * Charge @newpage as a replacement page for @oldpage. @oldpage will |
5607 | * be uncharged upon free. | |
0a31bc97 JW |
5608 | * |
5609 | * Both pages must be locked, @newpage->mapping must be set up. | |
5610 | */ | |
6a93ca8f | 5611 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) |
0a31bc97 | 5612 | { |
29833315 | 5613 | struct mem_cgroup *memcg; |
44b7a8d3 JW |
5614 | unsigned int nr_pages; |
5615 | bool compound; | |
d93c4130 | 5616 | unsigned long flags; |
0a31bc97 JW |
5617 | |
5618 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
5619 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
0a31bc97 | 5620 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); |
6abb5a86 JW |
5621 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), |
5622 | newpage); | |
0a31bc97 JW |
5623 | |
5624 | if (mem_cgroup_disabled()) | |
5625 | return; | |
5626 | ||
5627 | /* Page cache replacement: new page already charged? */ | |
1306a85a | 5628 | if (newpage->mem_cgroup) |
0a31bc97 JW |
5629 | return; |
5630 | ||
45637bab | 5631 | /* Swapcache readahead pages can get replaced before being charged */ |
1306a85a | 5632 | memcg = oldpage->mem_cgroup; |
29833315 | 5633 | if (!memcg) |
0a31bc97 JW |
5634 | return; |
5635 | ||
44b7a8d3 JW |
5636 | /* Force-charge the new page. The old one will be freed soon */ |
5637 | compound = PageTransHuge(newpage); | |
5638 | nr_pages = compound ? hpage_nr_pages(newpage) : 1; | |
5639 | ||
5640 | page_counter_charge(&memcg->memory, nr_pages); | |
5641 | if (do_memsw_account()) | |
5642 | page_counter_charge(&memcg->memsw, nr_pages); | |
5643 | css_get_many(&memcg->css, nr_pages); | |
0a31bc97 | 5644 | |
9cf7666a | 5645 | commit_charge(newpage, memcg, false); |
44b7a8d3 | 5646 | |
d93c4130 | 5647 | local_irq_save(flags); |
44b7a8d3 JW |
5648 | mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); |
5649 | memcg_check_events(memcg, newpage); | |
d93c4130 | 5650 | local_irq_restore(flags); |
0a31bc97 JW |
5651 | } |
5652 | ||
ef12947c | 5653 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); |
11092087 JW |
5654 | EXPORT_SYMBOL(memcg_sockets_enabled_key); |
5655 | ||
2d758073 | 5656 | void mem_cgroup_sk_alloc(struct sock *sk) |
11092087 JW |
5657 | { |
5658 | struct mem_cgroup *memcg; | |
5659 | ||
2d758073 JW |
5660 | if (!mem_cgroup_sockets_enabled) |
5661 | return; | |
5662 | ||
5663 | /* | |
5664 | * Socket cloning can throw us here with sk_memcg already | |
11092087 JW |
5665 | * filled. It won't however, necessarily happen from |
5666 | * process context. So the test for root memcg given | |
5667 | * the current task's memcg won't help us in this case. | |
5668 | * | |
5669 | * Respecting the original socket's memcg is a better | |
5670 | * decision in this case. | |
5671 | */ | |
5672 | if (sk->sk_memcg) { | |
5673 | BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); | |
5674 | css_get(&sk->sk_memcg->css); | |
5675 | return; | |
5676 | } | |
5677 | ||
5678 | rcu_read_lock(); | |
5679 | memcg = mem_cgroup_from_task(current); | |
f7e1cb6e JW |
5680 | if (memcg == root_mem_cgroup) |
5681 | goto out; | |
0db15298 | 5682 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) |
f7e1cb6e | 5683 | goto out; |
f7e1cb6e | 5684 | if (css_tryget_online(&memcg->css)) |
11092087 | 5685 | sk->sk_memcg = memcg; |
f7e1cb6e | 5686 | out: |
11092087 JW |
5687 | rcu_read_unlock(); |
5688 | } | |
11092087 | 5689 | |
2d758073 | 5690 | void mem_cgroup_sk_free(struct sock *sk) |
11092087 | 5691 | { |
2d758073 JW |
5692 | if (sk->sk_memcg) |
5693 | css_put(&sk->sk_memcg->css); | |
11092087 JW |
5694 | } |
5695 | ||
5696 | /** | |
5697 | * mem_cgroup_charge_skmem - charge socket memory | |
5698 | * @memcg: memcg to charge | |
5699 | * @nr_pages: number of pages to charge | |
5700 | * | |
5701 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | |
5702 | * @memcg's configured limit, %false if the charge had to be forced. | |
5703 | */ | |
5704 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
5705 | { | |
f7e1cb6e | 5706 | gfp_t gfp_mask = GFP_KERNEL; |
11092087 | 5707 | |
f7e1cb6e | 5708 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
0db15298 | 5709 | struct page_counter *fail; |
f7e1cb6e | 5710 | |
0db15298 JW |
5711 | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { |
5712 | memcg->tcpmem_pressure = 0; | |
f7e1cb6e JW |
5713 | return true; |
5714 | } | |
0db15298 JW |
5715 | page_counter_charge(&memcg->tcpmem, nr_pages); |
5716 | memcg->tcpmem_pressure = 1; | |
f7e1cb6e | 5717 | return false; |
11092087 | 5718 | } |
d886f4e4 | 5719 | |
f7e1cb6e JW |
5720 | /* Don't block in the packet receive path */ |
5721 | if (in_softirq()) | |
5722 | gfp_mask = GFP_NOWAIT; | |
5723 | ||
b2807f07 JW |
5724 | this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); |
5725 | ||
f7e1cb6e JW |
5726 | if (try_charge(memcg, gfp_mask, nr_pages) == 0) |
5727 | return true; | |
5728 | ||
5729 | try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | |
11092087 JW |
5730 | return false; |
5731 | } | |
5732 | ||
5733 | /** | |
5734 | * mem_cgroup_uncharge_skmem - uncharge socket memory | |
5735 | * @memcg - memcg to uncharge | |
5736 | * @nr_pages - number of pages to uncharge | |
5737 | */ | |
5738 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
5739 | { | |
f7e1cb6e | 5740 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
0db15298 | 5741 | page_counter_uncharge(&memcg->tcpmem, nr_pages); |
f7e1cb6e JW |
5742 | return; |
5743 | } | |
d886f4e4 | 5744 | |
b2807f07 JW |
5745 | this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); |
5746 | ||
f7e1cb6e JW |
5747 | page_counter_uncharge(&memcg->memory, nr_pages); |
5748 | css_put_many(&memcg->css, nr_pages); | |
11092087 JW |
5749 | } |
5750 | ||
f7e1cb6e JW |
5751 | static int __init cgroup_memory(char *s) |
5752 | { | |
5753 | char *token; | |
5754 | ||
5755 | while ((token = strsep(&s, ",")) != NULL) { | |
5756 | if (!*token) | |
5757 | continue; | |
5758 | if (!strcmp(token, "nosocket")) | |
5759 | cgroup_memory_nosocket = true; | |
04823c83 VD |
5760 | if (!strcmp(token, "nokmem")) |
5761 | cgroup_memory_nokmem = true; | |
f7e1cb6e JW |
5762 | } |
5763 | return 0; | |
5764 | } | |
5765 | __setup("cgroup.memory=", cgroup_memory); | |
11092087 | 5766 | |
2d11085e | 5767 | /* |
1081312f MH |
5768 | * subsys_initcall() for memory controller. |
5769 | * | |
308167fc SAS |
5770 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this |
5771 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | |
5772 | * basically everything that doesn't depend on a specific mem_cgroup structure | |
5773 | * should be initialized from here. | |
2d11085e MH |
5774 | */ |
5775 | static int __init mem_cgroup_init(void) | |
5776 | { | |
95a045f6 JW |
5777 | int cpu, node; |
5778 | ||
13583c3d VD |
5779 | #ifndef CONFIG_SLOB |
5780 | /* | |
5781 | * Kmem cache creation is mostly done with the slab_mutex held, | |
5782 | * so use a special workqueue to avoid stalling all worker | |
5783 | * threads in case lots of cgroups are created simultaneously. | |
5784 | */ | |
5785 | memcg_kmem_cache_create_wq = | |
5786 | alloc_ordered_workqueue("memcg_kmem_cache_create", 0); | |
5787 | BUG_ON(!memcg_kmem_cache_create_wq); | |
5788 | #endif | |
5789 | ||
308167fc SAS |
5790 | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, |
5791 | memcg_hotplug_cpu_dead); | |
95a045f6 JW |
5792 | |
5793 | for_each_possible_cpu(cpu) | |
5794 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | |
5795 | drain_local_stock); | |
5796 | ||
5797 | for_each_node(node) { | |
5798 | struct mem_cgroup_tree_per_node *rtpn; | |
95a045f6 JW |
5799 | |
5800 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | |
5801 | node_online(node) ? node : NUMA_NO_NODE); | |
5802 | ||
ef8f2327 MG |
5803 | rtpn->rb_root = RB_ROOT; |
5804 | spin_lock_init(&rtpn->lock); | |
95a045f6 JW |
5805 | soft_limit_tree.rb_tree_per_node[node] = rtpn; |
5806 | } | |
5807 | ||
2d11085e MH |
5808 | return 0; |
5809 | } | |
5810 | subsys_initcall(mem_cgroup_init); | |
21afa38e JW |
5811 | |
5812 | #ifdef CONFIG_MEMCG_SWAP | |
358c07fc AB |
5813 | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) |
5814 | { | |
5815 | while (!atomic_inc_not_zero(&memcg->id.ref)) { | |
5816 | /* | |
5817 | * The root cgroup cannot be destroyed, so it's refcount must | |
5818 | * always be >= 1. | |
5819 | */ | |
5820 | if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { | |
5821 | VM_BUG_ON(1); | |
5822 | break; | |
5823 | } | |
5824 | memcg = parent_mem_cgroup(memcg); | |
5825 | if (!memcg) | |
5826 | memcg = root_mem_cgroup; | |
5827 | } | |
5828 | return memcg; | |
5829 | } | |
5830 | ||
21afa38e JW |
5831 | /** |
5832 | * mem_cgroup_swapout - transfer a memsw charge to swap | |
5833 | * @page: page whose memsw charge to transfer | |
5834 | * @entry: swap entry to move the charge to | |
5835 | * | |
5836 | * Transfer the memsw charge of @page to @entry. | |
5837 | */ | |
5838 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | |
5839 | { | |
1f47b61f | 5840 | struct mem_cgroup *memcg, *swap_memcg; |
21afa38e JW |
5841 | unsigned short oldid; |
5842 | ||
5843 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5844 | VM_BUG_ON_PAGE(page_count(page), page); | |
5845 | ||
7941d214 | 5846 | if (!do_memsw_account()) |
21afa38e JW |
5847 | return; |
5848 | ||
5849 | memcg = page->mem_cgroup; | |
5850 | ||
5851 | /* Readahead page, never charged */ | |
5852 | if (!memcg) | |
5853 | return; | |
5854 | ||
1f47b61f VD |
5855 | /* |
5856 | * In case the memcg owning these pages has been offlined and doesn't | |
5857 | * have an ID allocated to it anymore, charge the closest online | |
5858 | * ancestor for the swap instead and transfer the memory+swap charge. | |
5859 | */ | |
5860 | swap_memcg = mem_cgroup_id_get_online(memcg); | |
5861 | oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg)); | |
21afa38e | 5862 | VM_BUG_ON_PAGE(oldid, page); |
1f47b61f | 5863 | mem_cgroup_swap_statistics(swap_memcg, true); |
21afa38e JW |
5864 | |
5865 | page->mem_cgroup = NULL; | |
5866 | ||
5867 | if (!mem_cgroup_is_root(memcg)) | |
5868 | page_counter_uncharge(&memcg->memory, 1); | |
5869 | ||
1f47b61f VD |
5870 | if (memcg != swap_memcg) { |
5871 | if (!mem_cgroup_is_root(swap_memcg)) | |
5872 | page_counter_charge(&swap_memcg->memsw, 1); | |
5873 | page_counter_uncharge(&memcg->memsw, 1); | |
5874 | } | |
5875 | ||
ce9ce665 SAS |
5876 | /* |
5877 | * Interrupts should be disabled here because the caller holds the | |
5878 | * mapping->tree_lock lock which is taken with interrupts-off. It is | |
5879 | * important here to have the interrupts disabled because it is the | |
5880 | * only synchronisation we have for udpating the per-CPU variables. | |
5881 | */ | |
5882 | VM_BUG_ON(!irqs_disabled()); | |
f627c2f5 | 5883 | mem_cgroup_charge_statistics(memcg, page, false, -1); |
21afa38e | 5884 | memcg_check_events(memcg, page); |
73f576c0 JW |
5885 | |
5886 | if (!mem_cgroup_is_root(memcg)) | |
5887 | css_put(&memcg->css); | |
21afa38e JW |
5888 | } |
5889 | ||
37e84351 VD |
5890 | /* |
5891 | * mem_cgroup_try_charge_swap - try charging a swap entry | |
5892 | * @page: page being added to swap | |
5893 | * @entry: swap entry to charge | |
5894 | * | |
5895 | * Try to charge @entry to the memcg that @page belongs to. | |
5896 | * | |
5897 | * Returns 0 on success, -ENOMEM on failure. | |
5898 | */ | |
5899 | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | |
5900 | { | |
5901 | struct mem_cgroup *memcg; | |
5902 | struct page_counter *counter; | |
5903 | unsigned short oldid; | |
5904 | ||
5905 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | |
5906 | return 0; | |
5907 | ||
5908 | memcg = page->mem_cgroup; | |
5909 | ||
5910 | /* Readahead page, never charged */ | |
5911 | if (!memcg) | |
5912 | return 0; | |
5913 | ||
1f47b61f VD |
5914 | memcg = mem_cgroup_id_get_online(memcg); |
5915 | ||
37e84351 | 5916 | if (!mem_cgroup_is_root(memcg) && |
1f47b61f VD |
5917 | !page_counter_try_charge(&memcg->swap, 1, &counter)) { |
5918 | mem_cgroup_id_put(memcg); | |
37e84351 | 5919 | return -ENOMEM; |
1f47b61f | 5920 | } |
37e84351 VD |
5921 | |
5922 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | |
5923 | VM_BUG_ON_PAGE(oldid, page); | |
5924 | mem_cgroup_swap_statistics(memcg, true); | |
5925 | ||
37e84351 VD |
5926 | return 0; |
5927 | } | |
5928 | ||
21afa38e JW |
5929 | /** |
5930 | * mem_cgroup_uncharge_swap - uncharge a swap entry | |
5931 | * @entry: swap entry to uncharge | |
5932 | * | |
37e84351 | 5933 | * Drop the swap charge associated with @entry. |
21afa38e JW |
5934 | */ |
5935 | void mem_cgroup_uncharge_swap(swp_entry_t entry) | |
5936 | { | |
5937 | struct mem_cgroup *memcg; | |
5938 | unsigned short id; | |
5939 | ||
37e84351 | 5940 | if (!do_swap_account) |
21afa38e JW |
5941 | return; |
5942 | ||
5943 | id = swap_cgroup_record(entry, 0); | |
5944 | rcu_read_lock(); | |
adbe427b | 5945 | memcg = mem_cgroup_from_id(id); |
21afa38e | 5946 | if (memcg) { |
37e84351 VD |
5947 | if (!mem_cgroup_is_root(memcg)) { |
5948 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5949 | page_counter_uncharge(&memcg->swap, 1); | |
5950 | else | |
5951 | page_counter_uncharge(&memcg->memsw, 1); | |
5952 | } | |
21afa38e | 5953 | mem_cgroup_swap_statistics(memcg, false); |
73f576c0 | 5954 | mem_cgroup_id_put(memcg); |
21afa38e JW |
5955 | } |
5956 | rcu_read_unlock(); | |
5957 | } | |
5958 | ||
d8b38438 VD |
5959 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) |
5960 | { | |
5961 | long nr_swap_pages = get_nr_swap_pages(); | |
5962 | ||
5963 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5964 | return nr_swap_pages; | |
5965 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | |
5966 | nr_swap_pages = min_t(long, nr_swap_pages, | |
5967 | READ_ONCE(memcg->swap.limit) - | |
5968 | page_counter_read(&memcg->swap)); | |
5969 | return nr_swap_pages; | |
5970 | } | |
5971 | ||
5ccc5aba VD |
5972 | bool mem_cgroup_swap_full(struct page *page) |
5973 | { | |
5974 | struct mem_cgroup *memcg; | |
5975 | ||
5976 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
5977 | ||
5978 | if (vm_swap_full()) | |
5979 | return true; | |
5980 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5981 | return false; | |
5982 | ||
5983 | memcg = page->mem_cgroup; | |
5984 | if (!memcg) | |
5985 | return false; | |
5986 | ||
5987 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | |
5988 | if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) | |
5989 | return true; | |
5990 | ||
5991 | return false; | |
5992 | } | |
5993 | ||
21afa38e JW |
5994 | /* for remember boot option*/ |
5995 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | |
5996 | static int really_do_swap_account __initdata = 1; | |
5997 | #else | |
5998 | static int really_do_swap_account __initdata; | |
5999 | #endif | |
6000 | ||
6001 | static int __init enable_swap_account(char *s) | |
6002 | { | |
6003 | if (!strcmp(s, "1")) | |
6004 | really_do_swap_account = 1; | |
6005 | else if (!strcmp(s, "0")) | |
6006 | really_do_swap_account = 0; | |
6007 | return 1; | |
6008 | } | |
6009 | __setup("swapaccount=", enable_swap_account); | |
6010 | ||
37e84351 VD |
6011 | static u64 swap_current_read(struct cgroup_subsys_state *css, |
6012 | struct cftype *cft) | |
6013 | { | |
6014 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
6015 | ||
6016 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | |
6017 | } | |
6018 | ||
6019 | static int swap_max_show(struct seq_file *m, void *v) | |
6020 | { | |
6021 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
6022 | unsigned long max = READ_ONCE(memcg->swap.limit); | |
6023 | ||
6024 | if (max == PAGE_COUNTER_MAX) | |
6025 | seq_puts(m, "max\n"); | |
6026 | else | |
6027 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | |
6028 | ||
6029 | return 0; | |
6030 | } | |
6031 | ||
6032 | static ssize_t swap_max_write(struct kernfs_open_file *of, | |
6033 | char *buf, size_t nbytes, loff_t off) | |
6034 | { | |
6035 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
6036 | unsigned long max; | |
6037 | int err; | |
6038 | ||
6039 | buf = strstrip(buf); | |
6040 | err = page_counter_memparse(buf, "max", &max); | |
6041 | if (err) | |
6042 | return err; | |
6043 | ||
6044 | mutex_lock(&memcg_limit_mutex); | |
6045 | err = page_counter_limit(&memcg->swap, max); | |
6046 | mutex_unlock(&memcg_limit_mutex); | |
6047 | if (err) | |
6048 | return err; | |
6049 | ||
6050 | return nbytes; | |
6051 | } | |
6052 | ||
6053 | static struct cftype swap_files[] = { | |
6054 | { | |
6055 | .name = "swap.current", | |
6056 | .flags = CFTYPE_NOT_ON_ROOT, | |
6057 | .read_u64 = swap_current_read, | |
6058 | }, | |
6059 | { | |
6060 | .name = "swap.max", | |
6061 | .flags = CFTYPE_NOT_ON_ROOT, | |
6062 | .seq_show = swap_max_show, | |
6063 | .write = swap_max_write, | |
6064 | }, | |
6065 | { } /* terminate */ | |
6066 | }; | |
6067 | ||
21afa38e JW |
6068 | static struct cftype memsw_cgroup_files[] = { |
6069 | { | |
6070 | .name = "memsw.usage_in_bytes", | |
6071 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
6072 | .read_u64 = mem_cgroup_read_u64, | |
6073 | }, | |
6074 | { | |
6075 | .name = "memsw.max_usage_in_bytes", | |
6076 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
6077 | .write = mem_cgroup_reset, | |
6078 | .read_u64 = mem_cgroup_read_u64, | |
6079 | }, | |
6080 | { | |
6081 | .name = "memsw.limit_in_bytes", | |
6082 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
6083 | .write = mem_cgroup_write, | |
6084 | .read_u64 = mem_cgroup_read_u64, | |
6085 | }, | |
6086 | { | |
6087 | .name = "memsw.failcnt", | |
6088 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
6089 | .write = mem_cgroup_reset, | |
6090 | .read_u64 = mem_cgroup_read_u64, | |
6091 | }, | |
6092 | { }, /* terminate */ | |
6093 | }; | |
6094 | ||
6095 | static int __init mem_cgroup_swap_init(void) | |
6096 | { | |
6097 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
6098 | do_swap_account = 1; | |
37e84351 VD |
6099 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, |
6100 | swap_files)); | |
21afa38e JW |
6101 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, |
6102 | memsw_cgroup_files)); | |
6103 | } | |
6104 | return 0; | |
6105 | } | |
6106 | subsys_initcall(mem_cgroup_swap_init); | |
6107 | ||
6108 | #endif /* CONFIG_MEMCG_SWAP */ |