]>
Commit | Line | Data |
---|---|---|
b089cc9f LJ |
1 | /* |
2 | * Copyright 2011 ArtForz | |
3 | * Copyright 2011-2013 pooler | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms of the GNU General Public License as published by the Free | |
7 | * Software Foundation; either version 2 of the License, or (at your option) | |
8 | * any later version. See COPYING for more details. | |
9 | */ | |
10 | ||
b089cc9f LJ |
11 | #include "miner.h" |
12 | ||
13 | #include <string.h> | |
14 | #include <inttypes.h> | |
15 | ||
c6427bc1 | 16 | #if defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__) |
b089cc9f LJ |
17 | #define EXTERN_SHA256 |
18 | #endif | |
19 | ||
20 | static const uint32_t sha256_h[8] = { | |
21 | 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, | |
22 | 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 | |
23 | }; | |
24 | ||
25 | static const uint32_t sha256_k[64] = { | |
26 | 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, | |
27 | 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, | |
28 | 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, | |
29 | 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, | |
30 | 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, | |
31 | 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, | |
32 | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, | |
33 | 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, | |
34 | 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, | |
35 | 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, | |
36 | 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, | |
37 | 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, | |
38 | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, | |
39 | 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, | |
40 | 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, | |
41 | 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 | |
42 | }; | |
43 | ||
44 | void sha256_init(uint32_t *state) | |
45 | { | |
46 | memcpy(state, sha256_h, 32); | |
47 | } | |
48 | ||
49 | /* Elementary functions used by SHA256 */ | |
50 | #define Ch(x, y, z) ((x & (y ^ z)) ^ z) | |
51 | #define Maj(x, y, z) ((x & (y | z)) | (y & z)) | |
52 | #define ROTR(x, n) ((x >> n) | (x << (32 - n))) | |
53 | #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) | |
54 | #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) | |
55 | #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) | |
56 | #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) | |
57 | ||
58 | /* SHA256 round function */ | |
59 | #define RND(a, b, c, d, e, f, g, h, k) \ | |
60 | do { \ | |
61 | t0 = h + S1(e) + Ch(e, f, g) + k; \ | |
62 | t1 = S0(a) + Maj(a, b, c); \ | |
63 | d += t0; \ | |
64 | h = t0 + t1; \ | |
65 | } while (0) | |
66 | ||
67 | /* Adjusted round function for rotating state */ | |
68 | #define RNDr(S, W, i) \ | |
69 | RND(S[(64 - i) % 8], S[(65 - i) % 8], \ | |
70 | S[(66 - i) % 8], S[(67 - i) % 8], \ | |
71 | S[(68 - i) % 8], S[(69 - i) % 8], \ | |
72 | S[(70 - i) % 8], S[(71 - i) % 8], \ | |
73 | W[i] + sha256_k[i]) | |
74 | ||
75 | #ifndef EXTERN_SHA256 | |
76 | ||
77 | /* | |
78 | * SHA256 block compression function. The 256-bit state is transformed via | |
79 | * the 512-bit input block to produce a new state. | |
80 | */ | |
81 | void sha256_transform(uint32_t *state, const uint32_t *block, int swap) | |
82 | { | |
83 | uint32_t W[64]; | |
84 | uint32_t S[8]; | |
85 | uint32_t t0, t1; | |
86 | int i; | |
87 | ||
88 | /* 1. Prepare message schedule W. */ | |
89 | if (swap) { | |
90 | for (i = 0; i < 16; i++) | |
91 | W[i] = swab32(block[i]); | |
92 | } else | |
93 | memcpy(W, block, 64); | |
94 | for (i = 16; i < 64; i += 2) { | |
95 | W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; | |
96 | W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; | |
97 | } | |
98 | ||
99 | /* 2. Initialize working variables. */ | |
100 | memcpy(S, state, 32); | |
101 | ||
102 | /* 3. Mix. */ | |
103 | RNDr(S, W, 0); | |
104 | RNDr(S, W, 1); | |
105 | RNDr(S, W, 2); | |
106 | RNDr(S, W, 3); | |
107 | RNDr(S, W, 4); | |
108 | RNDr(S, W, 5); | |
109 | RNDr(S, W, 6); | |
110 | RNDr(S, W, 7); | |
111 | RNDr(S, W, 8); | |
112 | RNDr(S, W, 9); | |
113 | RNDr(S, W, 10); | |
114 | RNDr(S, W, 11); | |
115 | RNDr(S, W, 12); | |
116 | RNDr(S, W, 13); | |
117 | RNDr(S, W, 14); | |
118 | RNDr(S, W, 15); | |
119 | RNDr(S, W, 16); | |
120 | RNDr(S, W, 17); | |
121 | RNDr(S, W, 18); | |
122 | RNDr(S, W, 19); | |
123 | RNDr(S, W, 20); | |
124 | RNDr(S, W, 21); | |
125 | RNDr(S, W, 22); | |
126 | RNDr(S, W, 23); | |
127 | RNDr(S, W, 24); | |
128 | RNDr(S, W, 25); | |
129 | RNDr(S, W, 26); | |
130 | RNDr(S, W, 27); | |
131 | RNDr(S, W, 28); | |
132 | RNDr(S, W, 29); | |
133 | RNDr(S, W, 30); | |
134 | RNDr(S, W, 31); | |
135 | RNDr(S, W, 32); | |
136 | RNDr(S, W, 33); | |
137 | RNDr(S, W, 34); | |
138 | RNDr(S, W, 35); | |
139 | RNDr(S, W, 36); | |
140 | RNDr(S, W, 37); | |
141 | RNDr(S, W, 38); | |
142 | RNDr(S, W, 39); | |
143 | RNDr(S, W, 40); | |
144 | RNDr(S, W, 41); | |
145 | RNDr(S, W, 42); | |
146 | RNDr(S, W, 43); | |
147 | RNDr(S, W, 44); | |
148 | RNDr(S, W, 45); | |
149 | RNDr(S, W, 46); | |
150 | RNDr(S, W, 47); | |
151 | RNDr(S, W, 48); | |
152 | RNDr(S, W, 49); | |
153 | RNDr(S, W, 50); | |
154 | RNDr(S, W, 51); | |
155 | RNDr(S, W, 52); | |
156 | RNDr(S, W, 53); | |
157 | RNDr(S, W, 54); | |
158 | RNDr(S, W, 55); | |
159 | RNDr(S, W, 56); | |
160 | RNDr(S, W, 57); | |
161 | RNDr(S, W, 58); | |
162 | RNDr(S, W, 59); | |
163 | RNDr(S, W, 60); | |
164 | RNDr(S, W, 61); | |
165 | RNDr(S, W, 62); | |
166 | RNDr(S, W, 63); | |
167 | ||
168 | /* 4. Mix local working variables into global state */ | |
169 | for (i = 0; i < 8; i++) | |
170 | state[i] += S[i]; | |
171 | } | |
172 | ||
173 | #endif /* EXTERN_SHA256 */ | |
174 | ||
175 | ||
176 | static const uint32_t sha256d_hash1[16] = { | |
177 | 0x00000000, 0x00000000, 0x00000000, 0x00000000, | |
178 | 0x00000000, 0x00000000, 0x00000000, 0x00000000, | |
179 | 0x80000000, 0x00000000, 0x00000000, 0x00000000, | |
180 | 0x00000000, 0x00000000, 0x00000000, 0x00000100 | |
181 | }; | |
182 | ||
183 | static void sha256d_80_swap(uint32_t *hash, const uint32_t *data) | |
184 | { | |
185 | uint32_t S[16]; | |
186 | int i; | |
187 | ||
188 | sha256_init(S); | |
189 | sha256_transform(S, data, 0); | |
190 | sha256_transform(S, data + 16, 0); | |
191 | memcpy(S + 8, sha256d_hash1 + 8, 32); | |
192 | sha256_init(hash); | |
193 | sha256_transform(hash, S, 0); | |
194 | for (i = 0; i < 8; i++) | |
195 | hash[i] = swab32(hash[i]); | |
196 | } | |
197 | ||
112f76b2 | 198 | extern void sha256d(unsigned char *hash, const unsigned char *data, int len) |
b089cc9f LJ |
199 | { |
200 | uint32_t S[16], T[16]; | |
201 | int i, r; | |
202 | ||
203 | sha256_init(S); | |
204 | for (r = len; r > -9; r -= 64) { | |
205 | if (r < 64) | |
206 | memset(T, 0, 64); | |
207 | memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r)); | |
208 | if (r >= 0 && r < 64) | |
209 | ((unsigned char *)T)[r] = 0x80; | |
210 | for (i = 0; i < 16; i++) | |
211 | T[i] = be32dec(T + i); | |
212 | if (r < 56) | |
213 | T[15] = 8 * len; | |
214 | sha256_transform(S, T, 0); | |
215 | } | |
216 | memcpy(S + 8, sha256d_hash1 + 8, 32); | |
217 | sha256_init(T); | |
218 | sha256_transform(T, S, 0); | |
219 | for (i = 0; i < 8; i++) | |
220 | be32enc((uint32_t *)hash + i, T[i]); | |
221 | } | |
222 | ||
223 | static inline void sha256d_preextend(uint32_t *W) | |
224 | { | |
225 | W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0]; | |
226 | W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1]; | |
227 | W[18] = s1(W[16]) + W[11] + W[ 2]; | |
228 | W[19] = s1(W[17]) + W[12] + s0(W[ 4]); | |
229 | W[20] = W[13] + s0(W[ 5]) + W[ 4]; | |
230 | W[21] = W[14] + s0(W[ 6]) + W[ 5]; | |
231 | W[22] = W[15] + s0(W[ 7]) + W[ 6]; | |
232 | W[23] = W[16] + s0(W[ 8]) + W[ 7]; | |
233 | W[24] = W[17] + s0(W[ 9]) + W[ 8]; | |
234 | W[25] = s0(W[10]) + W[ 9]; | |
235 | W[26] = s0(W[11]) + W[10]; | |
236 | W[27] = s0(W[12]) + W[11]; | |
237 | W[28] = s0(W[13]) + W[12]; | |
238 | W[29] = s0(W[14]) + W[13]; | |
239 | W[30] = s0(W[15]) + W[14]; | |
240 | W[31] = s0(W[16]) + W[15]; | |
241 | } | |
242 | ||
243 | static inline void sha256d_prehash(uint32_t *S, const uint32_t *W) | |
244 | { | |
245 | uint32_t t0, t1; | |
246 | RNDr(S, W, 0); | |
247 | RNDr(S, W, 1); | |
248 | RNDr(S, W, 2); | |
249 | } | |
250 | ||
251 | #ifdef EXTERN_SHA256 | |
252 | ||
253 | void sha256d_ms(uint32_t *hash, uint32_t *W, | |
254 | const uint32_t *midstate, const uint32_t *prehash); | |
255 | ||
256 | #else | |
257 | ||
258 | static inline void sha256d_ms(uint32_t *hash, uint32_t *W, | |
259 | const uint32_t *midstate, const uint32_t *prehash) | |
260 | { | |
261 | uint32_t S[64]; | |
262 | uint32_t t0, t1; | |
263 | int i; | |
264 | ||
265 | S[18] = W[18]; | |
266 | S[19] = W[19]; | |
267 | S[20] = W[20]; | |
268 | S[22] = W[22]; | |
269 | S[23] = W[23]; | |
270 | S[24] = W[24]; | |
271 | S[30] = W[30]; | |
272 | S[31] = W[31]; | |
273 | ||
274 | W[18] += s0(W[3]); | |
275 | W[19] += W[3]; | |
276 | W[20] += s1(W[18]); | |
277 | W[21] = s1(W[19]); | |
278 | W[22] += s1(W[20]); | |
279 | W[23] += s1(W[21]); | |
280 | W[24] += s1(W[22]); | |
281 | W[25] = s1(W[23]) + W[18]; | |
282 | W[26] = s1(W[24]) + W[19]; | |
283 | W[27] = s1(W[25]) + W[20]; | |
284 | W[28] = s1(W[26]) + W[21]; | |
285 | W[29] = s1(W[27]) + W[22]; | |
286 | W[30] += s1(W[28]) + W[23]; | |
287 | W[31] += s1(W[29]) + W[24]; | |
288 | for (i = 32; i < 64; i += 2) { | |
289 | W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; | |
290 | W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; | |
291 | } | |
292 | ||
293 | memcpy(S, prehash, 32); | |
294 | ||
295 | RNDr(S, W, 3); | |
296 | RNDr(S, W, 4); | |
297 | RNDr(S, W, 5); | |
298 | RNDr(S, W, 6); | |
299 | RNDr(S, W, 7); | |
300 | RNDr(S, W, 8); | |
301 | RNDr(S, W, 9); | |
302 | RNDr(S, W, 10); | |
303 | RNDr(S, W, 11); | |
304 | RNDr(S, W, 12); | |
305 | RNDr(S, W, 13); | |
306 | RNDr(S, W, 14); | |
307 | RNDr(S, W, 15); | |
308 | RNDr(S, W, 16); | |
309 | RNDr(S, W, 17); | |
310 | RNDr(S, W, 18); | |
311 | RNDr(S, W, 19); | |
312 | RNDr(S, W, 20); | |
313 | RNDr(S, W, 21); | |
314 | RNDr(S, W, 22); | |
315 | RNDr(S, W, 23); | |
316 | RNDr(S, W, 24); | |
317 | RNDr(S, W, 25); | |
318 | RNDr(S, W, 26); | |
319 | RNDr(S, W, 27); | |
320 | RNDr(S, W, 28); | |
321 | RNDr(S, W, 29); | |
322 | RNDr(S, W, 30); | |
323 | RNDr(S, W, 31); | |
324 | RNDr(S, W, 32); | |
325 | RNDr(S, W, 33); | |
326 | RNDr(S, W, 34); | |
327 | RNDr(S, W, 35); | |
328 | RNDr(S, W, 36); | |
329 | RNDr(S, W, 37); | |
330 | RNDr(S, W, 38); | |
331 | RNDr(S, W, 39); | |
332 | RNDr(S, W, 40); | |
333 | RNDr(S, W, 41); | |
334 | RNDr(S, W, 42); | |
335 | RNDr(S, W, 43); | |
336 | RNDr(S, W, 44); | |
337 | RNDr(S, W, 45); | |
338 | RNDr(S, W, 46); | |
339 | RNDr(S, W, 47); | |
340 | RNDr(S, W, 48); | |
341 | RNDr(S, W, 49); | |
342 | RNDr(S, W, 50); | |
343 | RNDr(S, W, 51); | |
344 | RNDr(S, W, 52); | |
345 | RNDr(S, W, 53); | |
346 | RNDr(S, W, 54); | |
347 | RNDr(S, W, 55); | |
348 | RNDr(S, W, 56); | |
349 | RNDr(S, W, 57); | |
350 | RNDr(S, W, 58); | |
351 | RNDr(S, W, 59); | |
352 | RNDr(S, W, 60); | |
353 | RNDr(S, W, 61); | |
354 | RNDr(S, W, 62); | |
355 | RNDr(S, W, 63); | |
356 | ||
357 | for (i = 0; i < 8; i++) | |
358 | S[i] += midstate[i]; | |
359 | ||
360 | W[18] = S[18]; | |
361 | W[19] = S[19]; | |
362 | W[20] = S[20]; | |
363 | W[22] = S[22]; | |
364 | W[23] = S[23]; | |
365 | W[24] = S[24]; | |
366 | W[30] = S[30]; | |
367 | W[31] = S[31]; | |
368 | ||
369 | memcpy(S + 8, sha256d_hash1 + 8, 32); | |
370 | S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0]; | |
371 | S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1]; | |
372 | S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2]; | |
373 | S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3]; | |
374 | S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4]; | |
375 | S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5]; | |
376 | S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6]; | |
377 | S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7]; | |
378 | S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8]; | |
379 | S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9]; | |
380 | S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10]; | |
381 | S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11]; | |
382 | S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12]; | |
383 | S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13]; | |
384 | S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14]; | |
385 | S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15]; | |
386 | for (i = 32; i < 60; i += 2) { | |
387 | S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16]; | |
388 | S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15]; | |
389 | } | |
390 | S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44]; | |
391 | ||
392 | sha256_init(hash); | |
393 | ||
394 | RNDr(hash, S, 0); | |
395 | RNDr(hash, S, 1); | |
396 | RNDr(hash, S, 2); | |
397 | RNDr(hash, S, 3); | |
398 | RNDr(hash, S, 4); | |
399 | RNDr(hash, S, 5); | |
400 | RNDr(hash, S, 6); | |
401 | RNDr(hash, S, 7); | |
402 | RNDr(hash, S, 8); | |
403 | RNDr(hash, S, 9); | |
404 | RNDr(hash, S, 10); | |
405 | RNDr(hash, S, 11); | |
406 | RNDr(hash, S, 12); | |
407 | RNDr(hash, S, 13); | |
408 | RNDr(hash, S, 14); | |
409 | RNDr(hash, S, 15); | |
410 | RNDr(hash, S, 16); | |
411 | RNDr(hash, S, 17); | |
412 | RNDr(hash, S, 18); | |
413 | RNDr(hash, S, 19); | |
414 | RNDr(hash, S, 20); | |
415 | RNDr(hash, S, 21); | |
416 | RNDr(hash, S, 22); | |
417 | RNDr(hash, S, 23); | |
418 | RNDr(hash, S, 24); | |
419 | RNDr(hash, S, 25); | |
420 | RNDr(hash, S, 26); | |
421 | RNDr(hash, S, 27); | |
422 | RNDr(hash, S, 28); | |
423 | RNDr(hash, S, 29); | |
424 | RNDr(hash, S, 30); | |
425 | RNDr(hash, S, 31); | |
426 | RNDr(hash, S, 32); | |
427 | RNDr(hash, S, 33); | |
428 | RNDr(hash, S, 34); | |
429 | RNDr(hash, S, 35); | |
430 | RNDr(hash, S, 36); | |
431 | RNDr(hash, S, 37); | |
432 | RNDr(hash, S, 38); | |
433 | RNDr(hash, S, 39); | |
434 | RNDr(hash, S, 40); | |
435 | RNDr(hash, S, 41); | |
436 | RNDr(hash, S, 42); | |
437 | RNDr(hash, S, 43); | |
438 | RNDr(hash, S, 44); | |
439 | RNDr(hash, S, 45); | |
440 | RNDr(hash, S, 46); | |
441 | RNDr(hash, S, 47); | |
442 | RNDr(hash, S, 48); | |
443 | RNDr(hash, S, 49); | |
444 | RNDr(hash, S, 50); | |
445 | RNDr(hash, S, 51); | |
446 | RNDr(hash, S, 52); | |
447 | RNDr(hash, S, 53); | |
448 | RNDr(hash, S, 54); | |
449 | RNDr(hash, S, 55); | |
450 | RNDr(hash, S, 56); | |
451 | ||
452 | hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5]) | |
453 | + S[57] + sha256_k[57]; | |
454 | hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4]) | |
455 | + S[58] + sha256_k[58]; | |
456 | hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3]) | |
457 | + S[59] + sha256_k[59]; | |
458 | hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2]) | |
459 | + S[60] + sha256_k[60] | |
460 | + sha256_h[7]; | |
461 | } | |
462 | ||
463 | #endif /* EXTERN_SHA256 */ | |
464 | ||
465 | #ifdef HAVE_SHA256_4WAY | |
466 | ||
467 | void sha256d_ms_4way(uint32_t *hash, uint32_t *data, | |
468 | const uint32_t *midstate, const uint32_t *prehash); | |
469 | ||
f7c584dc TP |
470 | static inline int scanhash_sha256d_4way(int thr_id, struct work *work, |
471 | uint32_t max_nonce, uint64_t *hashes_done) | |
b089cc9f | 472 | { |
ccccf3ba | 473 | uint32_t _ALIGN(128) data[4 * 64]; |
474 | uint32_t _ALIGN(32) hash[4 * 8]; | |
475 | uint32_t _ALIGN(32) midstate[4 * 8]; | |
476 | uint32_t _ALIGN(32) prehash[4 * 8]; | |
f7c584dc TP |
477 | uint32_t *pdata = work->data; |
478 | uint32_t *ptarget = work->target; | |
b089cc9f LJ |
479 | uint32_t n = pdata[19] - 1; |
480 | const uint32_t first_nonce = pdata[19]; | |
481 | const uint32_t Htarg = ptarget[7]; | |
482 | int i, j; | |
483 | ||
484 | memcpy(data, pdata + 16, 64); | |
485 | sha256d_preextend(data); | |
486 | for (i = 31; i >= 0; i--) | |
487 | for (j = 0; j < 4; j++) | |
488 | data[i * 4 + j] = data[i]; | |
489 | ||
490 | sha256_init(midstate); | |
491 | sha256_transform(midstate, pdata, 0); | |
492 | memcpy(prehash, midstate, 32); | |
493 | sha256d_prehash(prehash, pdata + 16); | |
494 | for (i = 7; i >= 0; i--) { | |
495 | for (j = 0; j < 4; j++) { | |
496 | midstate[i * 4 + j] = midstate[i]; | |
497 | prehash[i * 4 + j] = prehash[i]; | |
498 | } | |
499 | } | |
500 | ||
501 | do { | |
502 | for (i = 0; i < 4; i++) | |
503 | data[4 * 3 + i] = ++n; | |
504 | ||
505 | sha256d_ms_4way(hash, data, midstate, prehash); | |
506 | ||
507 | for (i = 0; i < 4; i++) { | |
508 | if (swab32(hash[4 * 7 + i]) <= Htarg) { | |
509 | pdata[19] = data[4 * 3 + i]; | |
510 | sha256d_80_swap(hash, pdata); | |
511 | if (fulltest(hash, ptarget)) { | |
f7c584dc | 512 | work_set_target_ratio(work, hash); |
b089cc9f LJ |
513 | *hashes_done = n - first_nonce + 1; |
514 | return 1; | |
515 | } | |
516 | } | |
517 | } | |
518 | } while (n < max_nonce && !work_restart[thr_id].restart); | |
519 | ||
520 | *hashes_done = n - first_nonce + 1; | |
521 | pdata[19] = n; | |
522 | return 0; | |
523 | } | |
524 | ||
525 | #endif /* HAVE_SHA256_4WAY */ | |
526 | ||
527 | #ifdef HAVE_SHA256_8WAY | |
528 | ||
529 | void sha256d_ms_8way(uint32_t *hash, uint32_t *data, | |
530 | const uint32_t *midstate, const uint32_t *prehash); | |
531 | ||
f7c584dc TP |
532 | static inline int scanhash_sha256d_8way(int thr_id, struct work *work, |
533 | uint32_t max_nonce, uint64_t *hashes_done) | |
b089cc9f | 534 | { |
f34c5672 TP |
535 | uint32_t _ALIGN(128) data[8 * 64]; |
536 | uint32_t _ALIGN(32) hash[8 * 8]; | |
537 | uint32_t _ALIGN(32) midstate[8 * 8]; | |
538 | uint32_t _ALIGN(32) prehash[8 * 8]; | |
f7c584dc TP |
539 | uint32_t *pdata = work->data; |
540 | uint32_t *ptarget = work->target; | |
b089cc9f LJ |
541 | uint32_t n = pdata[19] - 1; |
542 | const uint32_t first_nonce = pdata[19]; | |
543 | const uint32_t Htarg = ptarget[7]; | |
544 | int i, j; | |
545 | ||
546 | memcpy(data, pdata + 16, 64); | |
547 | sha256d_preextend(data); | |
548 | for (i = 31; i >= 0; i--) | |
549 | for (j = 0; j < 8; j++) | |
550 | data[i * 8 + j] = data[i]; | |
551 | ||
552 | sha256_init(midstate); | |
553 | sha256_transform(midstate, pdata, 0); | |
554 | memcpy(prehash, midstate, 32); | |
555 | sha256d_prehash(prehash, pdata + 16); | |
556 | for (i = 7; i >= 0; i--) { | |
557 | for (j = 0; j < 8; j++) { | |
558 | midstate[i * 8 + j] = midstate[i]; | |
559 | prehash[i * 8 + j] = prehash[i]; | |
560 | } | |
561 | } | |
562 | ||
563 | do { | |
564 | for (i = 0; i < 8; i++) | |
565 | data[8 * 3 + i] = ++n; | |
566 | ||
567 | sha256d_ms_8way(hash, data, midstate, prehash); | |
568 | ||
569 | for (i = 0; i < 8; i++) { | |
570 | if (swab32(hash[8 * 7 + i]) <= Htarg) { | |
571 | pdata[19] = data[8 * 3 + i]; | |
572 | sha256d_80_swap(hash, pdata); | |
573 | if (fulltest(hash, ptarget)) { | |
f7c584dc | 574 | work_set_target_ratio(work, hash); |
b089cc9f LJ |
575 | *hashes_done = n - first_nonce + 1; |
576 | return 1; | |
577 | } | |
578 | } | |
579 | } | |
580 | } while (n < max_nonce && !work_restart[thr_id].restart); | |
581 | ||
582 | *hashes_done = n - first_nonce + 1; | |
583 | pdata[19] = n; | |
584 | return 0; | |
585 | } | |
586 | ||
587 | #endif /* HAVE_SHA256_8WAY */ | |
588 | ||
f7c584dc | 589 | int scanhash_sha256d(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done) |
b089cc9f | 590 | { |
588f5d90 TP |
591 | uint32_t _ALIGN(128) data[64]; |
592 | uint32_t _ALIGN(32) hash[8]; | |
593 | uint32_t _ALIGN(32) midstate[8]; | |
594 | uint32_t _ALIGN(32) prehash[8]; | |
f7c584dc TP |
595 | uint32_t *pdata = work->data; |
596 | uint32_t *ptarget = work->target; | |
b089cc9f LJ |
597 | const uint32_t first_nonce = pdata[19]; |
598 | const uint32_t Htarg = ptarget[7]; | |
f7c584dc TP |
599 | uint32_t n = pdata[19] - 1; |
600 | ||
b089cc9f LJ |
601 | #ifdef HAVE_SHA256_8WAY |
602 | if (sha256_use_8way()) | |
f7c584dc | 603 | return scanhash_sha256d_8way(thr_id, work, max_nonce, hashes_done); |
b089cc9f LJ |
604 | #endif |
605 | #ifdef HAVE_SHA256_4WAY | |
606 | if (sha256_use_4way()) | |
f7c584dc | 607 | return scanhash_sha256d_4way(thr_id, work, max_nonce, hashes_done); |
b089cc9f LJ |
608 | #endif |
609 | ||
610 | memcpy(data, pdata + 16, 64); | |
611 | sha256d_preextend(data); | |
612 | ||
613 | sha256_init(midstate); | |
614 | sha256_transform(midstate, pdata, 0); | |
615 | memcpy(prehash, midstate, 32); | |
616 | sha256d_prehash(prehash, pdata + 16); | |
617 | ||
618 | do { | |
619 | data[3] = ++n; | |
620 | sha256d_ms(hash, data, midstate, prehash); | |
04f4829a | 621 | if (unlikely(swab32(hash[7]) <= Htarg)) { |
b089cc9f LJ |
622 | pdata[19] = data[3]; |
623 | sha256d_80_swap(hash, pdata); | |
624 | if (fulltest(hash, ptarget)) { | |
f7c584dc | 625 | work_set_target_ratio(work, hash); |
b089cc9f LJ |
626 | *hashes_done = n - first_nonce + 1; |
627 | return 1; | |
628 | } | |
629 | } | |
04f4829a | 630 | } while (likely(n < max_nonce && !work_restart[thr_id].restart)); |
b089cc9f LJ |
631 | |
632 | *hashes_done = n - first_nonce + 1; | |
633 | pdata[19] = n; | |
634 | return 0; | |
635 | } |