Simon Marchi [Tue, 8 May 2018 20:45:02 +0000 (16:45 -0400)]
Define GNULIB_NAMESPACE in unittests/string_view-selftests.c
When building with x86_64-w64-mingw32-g++ (to test cross-compiling for
Windows), I get this error:
unittests/string_view-selftests.o: In function `selftests::string_view::inserters_2::test05(unsigned long long)':
/home/emaisin/src/binutils-gdb/gdb/unittests/basic_string_view/inserters/char/2.cc:60: undefined reference to `std::basic_ofstream<char, std::char_traits<char> >::rpl_close()'
This is caused by gnulib redefining "close" as "rpl_close", and
therefore messing up the declaration of basic_ofstream in the libstdc++
header. The solution would be to use gnulib namespaces [1]. Until we
use them across GDB, we can use them locally in files that are
problematic, like this one.
Andrew Burgess [Thu, 3 May 2018 16:46:14 +0000 (17:46 +0100)]
gdb/x86: Handle kernels using compact xsave format
For GNU/Linux on x86-64, if the target is using the xsave format for
passing the floating-point information from the inferior then there
currently exists a bug relating to the x87 control registers, and the
mxcsr register.
The xsave format allows different floating-point features to be lazily
enabled, a bit in the xsave format tells GDB which floating-point
features have been enabled, and which have not.
Currently in GDB, when reading the floating point state, we check the
xsave bit flags, if the feature is enabled then we read the feature
from the xsave buffer, and if the feature is not enabled, then we
supply the default value from within GDB.
Within GDB, when writing the floating point state, we first fetch the
xsave state from the target and then, for any feature that is not yet
enabled, we write the default values into the xsave buffer. Next we
compare the regcache value with the value in the xsave buffer, and, if
the value has changed we update the value in the xsave buffer, and
mark the feature enabled in the xsave bit flags.
The problem then, is that the x87 control registers were not following
this pattern. We assumed that these registers were always written out
by the kernel, and we always wrote them out to the xsave buffer (but
didn't enabled the feature). The result of this is that if the kernel
had not yet enabled the x87 feature then within GDB we would see
random values for the x87 floating point control registers, and if the
user tried to modify one of these register, that modification would be
lost.
Finally, the mxcsr register was also broken in the same way as the x87
control registers. The added complexity with this case is that the
mxcsr register is part of both the avx and sse floating point feature
set. When reading or writing this register we need to check that at
least one of these features is enabled.
This bug was present in native GDB, and within gdbserver. Both are
fixed with this commit.
gdb/ChangeLog:
* common/x86-xstate.h (I387_FCTRL_INIT_VAL): New constant.
(I387_MXCSR_INIT_VAL): New constant.
* amd64-tdep.c (amd64_supply_xsave): Only read state from xsave
buffer if it was supplied by the inferior.
* i387-tdep.c (i387_supply_fsave): Use I387_MXCSR_INIT_VAL.
(i387_xsave_get_clear_bv): New function.
(i387_supply_xsave): Only read x87 control registers from the
xsave buffer if the feature is enabled, and the state will have
been written, otherwise, provide a suitable default.
(i387_collect_xsave): Pre-clear all registers in xsave buffer,
including x87 control registers. Update control registers if they
have changed from the default value, and mark features as enabled
as required.
* i387-tdep.h (i387_xsave_get_clear_bv): Declare.
gdb/gdbserver/ChangeLog:
* i387-fp.c (i387_cache_to_xsave): Only write x87 control
registers to the cache if their values have changed.
(i387_xsave_to_cache): Provide default values for x87 control
registers when these features are available, but disabled.
* regcache.c (supply_register_by_name_zeroed): New function.
* regcache.h (supply_register_by_name_zeroed): Declare new
function.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-init-x87-values.S: New file.
* gdb.arch/amd64-init-x87-values.exp: New file.
Alan Modra [Mon, 7 May 2018 02:05:22 +0000 (11:35 +0930)]
Correct powerpc spe opcode lookup
Defining SPE2_OPCD_SEGS as 13 discounts the possibility that we'd
ever look up spe2_opcd_indices[14..16], which I think is possible.
Extend that array to size 16+1, using the macros we use to index the
array. Similarly use the index macros for PPC_OPCD_SEGS and
VLE_OPCD_SEGS.
* ppc-dis.c (PPC_OPCD_SEGS): Define using PPC_OP.
(VLE_OPCD_SEGS, SPE2_OPCD_SEGS): Similarly, using macros used to
partition opcode space for index lookup.
Ulrich Weigand [Tue, 8 May 2018 12:13:12 +0000 (14:13 +0200)]
[spu] Fix "info spu event" output formatting
The formatting of the output of the "info spu event" command changed, causing
spurious test suite failures. Use phex instead of phex_nz to get back the
expected format, and fix emission of new line characters.
Nick Clifton [Tue, 8 May 2018 11:51:06 +0000 (12:51 +0100)]
Prevent a memory exhaustion failure when running objdump on a fuzzed input file with corrupt string and attribute sections.
PR 22809
* elf.c (bfd_elf_get_str_section): Check for an excessively large
string section.
* elf-attrs.c (_bfd_elf_parse_attributes): Issue an error if the
attribute section is larger than the size of the file.
H.J. Lu [Mon, 7 May 2018 16:57:06 +0000 (09:57 -0700)]
x86: Replace AddrPrefixOp0 with AddrPrefixOpReg
This patch replaces AddrPrefixOp0 with AddrPrefixOpReg to indicate that
the size of register operand is controlled by the address size prefix.
This will be used by Intel MOVDIRI and MOVDIR64B instructions later.
gas/
* config/tc-i386.c (process_suffix): Check addrprefixopreg
instead of addrprefixop0.
opcodes/
* i386-gen.c (opcode_modifiers): Replace AddrPrefixOp0 with
AddrPrefixOpReg.
* i386-opc.h (AddrPrefixOp0): Renamed to ...
(AddrPrefixOpReg): This.
(i386_opcode_modifier): Rename addrprefixop0 to addrprefixopreg.
* i386-opc.tbl: Replace AddrPrefixOp0 with AddrPrefixOpReg.
Tom Tromey [Sat, 21 Apr 2018 17:51:34 +0000 (11:51 -0600)]
Fix decoding of ARM VFP instructions
-Wduplicated-cond pointed out that arm_record_vfp_data_proc_insn
checks "opc1 == 0x0b" twice. I filed this a while ago as
PR tdep/20362.
Based on the ARM instruction manual at
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf, I think the
instruction decoding in this function has two bugs.
In the ARM manual, "opc1" corresponds to these bits:
name bit
r 20
q 21
D 22
p 23
... where the D bit is not used for VFP instruction decoding.
So, I believe this code should use ~0x04 instead.
Second, VDIV is recognized by the bits "pqrs" being equal to "1000".
This tranlates to opc1 == 0x08 -- not 0x0b. Note that pqrs==1001 is
an undefined encoding, which is probably why opc2 is not checked here;
this code doesn't seem to really deal with undefined encodings in
general, so I've left that as is.
I don't have an ARM machine or any reasonable way to test this.
Alan Modra [Mon, 7 May 2018 02:06:07 +0000 (11:36 +0930)]
Replace uses of strncmp with memcmp
Avoids gcc pr85623 for these calls.
* cofflink.c (_bfd_coff_link_input_bfd): Use memcmp rather than
strncmp when checking for ".bf" special symbol.
* prXXigen.c (_bfd_XXi_swap_scnhdr_out): Make pe_required_section_flags
section name a char array, remove sentinal known_sections entry,
and adjust loop over known_sections to suit. Use memcmp rather
than strncmp.
Tom Tromey [Thu, 5 Apr 2018 22:09:29 +0000 (16:09 -0600)]
Add two fall-through comments in rs6000-tdep.c
This adds two fall-through comments in rs6000-tdep.c. I looked at the
PPC instruction manual and convinced myself that this was correct.
And, this isn't a semantic change. However, close review would still
be good.
Tom Tromey [Thu, 5 Apr 2018 22:01:36 +0000 (16:01 -0600)]
Add fall-through comment to i386-tdep.c
This adds a fall-through comment in i386-tdep.c. I was not sure what
to do here, so I elected to preserve the status quo. In review, John
Baldwin pointed out that: "I believe this is correct based on the diff
that added the special cases for xgetbv and xsetbv as previously ldgt
and lidt were treated the same".
Tom Tromey [Thu, 5 Apr 2018 21:39:57 +0000 (15:39 -0600)]
Add a fall-through comment to stabsread.c
This adds a fall-through comment to stabsread.c. I skimmed the stabs
manual a bit and it seems that 'p' and 'P' are similar enough that
this makes sense. Also, stabs is mostly deprecated, and the code has
been this way for a long time, so it seemed safest to keep the status
quo.
Tom Tromey [Tue, 27 Sep 2016 17:28:18 +0000 (11:28 -0600)]
Fix "obvious" fall-through warnings
This patch fixes the subset of -Wimplicit-fallthrough warnings that I
considered obvious. In most cases it was obvious from context that
falling through was desired; here I added the appropriate comment. In
a couple of cases it seemed clear that a "break" was missing.
PR python/22731:
* NEWS: Mention that breakpoint commands are writable.
* python/py-breakpoint.c (bppy_set_commands): New function.
(breakpoint_object_getset) <"commands">: Use it.
Tom Tromey [Wed, 18 Apr 2018 22:53:07 +0000 (16:53 -0600)]
Use function_view in cli-script.c
This changes some functions in cli-script.c to use function_view
rather than a function pointer and closure argument. This simplifies
the code a bit and is useful in a subsequent patch.
PR gdb/11750:
* gdb.base/define.exp: Test defining a user command inside a user
command.
* gdb.base/commands.exp (define_if_without_arg_test): Test "define".
Tom Tromey [Wed, 18 Apr 2018 21:59:04 +0000 (15:59 -0600)]
Constify prompt argument to read_command_lines
The prompt argument to read_command_lines can be const. This patch
makes this change, and also removes some fixed-sized buffers in favor
of using string_printf.
Tom Tromey [Wed, 18 Apr 2018 21:40:57 +0000 (15:40 -0600)]
Make print_command_trace varargs
I noticed some code in execute_control_command_1 that could be
simplified by making print_command_trace a printf-like function. This
patch makes this change.
Tom Tromey [Tue, 17 Apr 2018 05:13:18 +0000 (23:13 -0600)]
Use counted_command_line everywhere
Currently command lines are reference counted using shared_ptr only
when attached to breakpoints. This patch changes gdb to use
shared_ptr in commands as well. This allows for the removal of
copy_command_lines.
Note that the change to execute_user_command explicitly makes a new
reference to the command line. This will be used in a later patch.
This simplifies struct command_line based on the observation that a
given command can have at most two child bodies: an "if" can have both
"then" and "else" parts. Perhaps the names I've chosen for the
replacements here are not very good -- your input requested.
* cli/cli-decode.h (cmd_list_element): New constructor.
(~cmd_list_element): New destructor.
(struct cmd_list_element): Add initializers.
* cli/cli-decode.c (do_add_cmd): Use "new".
(delete_cmd): Use "delete".
On old kernels as specified in
kernel RFE: aarch64: ptrace: BAS: Support any contiguous range (edit)
https://sourceware.org/bugzilla/show_bug.cgi?id=20207
after this patch some other unaligned watchpoints will get reported as false
positives.
With new kernels all the watchpoints should work exactly.
There may be a regresion that it now less merges watchpoints so that with
multiple overlapping watchpoints it may run out of the 4 hardware watchpoint
registers. But as discussed in the original thread GDB needs some generic
watchpoints merging framework to be used by all the target specific code.
Even current FSF GDB code does not merge it perfectly. Also with the more
precise watchpoints one can technically merge them less. And I do not think
it matters too much to improve mergeability only for old kernels.
Still even on new kernels some better merging logic would make sense.
There remains one issue:
kernel-4.15.14-300.fc27.armv7hl
FAIL: gdb.base/watchpoint-unaligned.exp: continue
FAIL: gdb.base/watchpoint-unaligned.exp: continue
(gdb) continue
Continuing.
Unexpected error setting watchpoint: Invalid argument.
(gdb) FAIL: gdb.base/watchpoint-unaligned.exp: continue
But that looks as a kernel bug to me.
(1) It is not a regression by this patch.
(2) It is unrelated to this patch.
Joel Brobecker [Fri, 4 May 2018 18:33:19 +0000 (13:33 -0500)]
(SPARC/LEON) fix incorrect array return value printed by "finish"
Consider the code in the gdb.ada/array_return.exp testcase, which
defines a function returning an array of 2 integers:
type Data_Small is array (1 .. 2) of Integer;
function Create_Small return Data_Small;
When doing a "finish" from inside function Create_Small, we expect
GDB to tell us that the return value was "(1, 1)". However, it currently
prints the wrong value:
(gdb) finish
Run till exit from #0 pck.create_small () at /[...]/pck.adb:5
p () at /[...]/p.adb:10
10 Large := Create_Large;
Value returned is $1 = (0, 0)
This is a regression which I traced back to the following commit...
... which, despite what the subject says, is not really about
TYPE_CODE_ARRAY handling, which is a bit of an implementation detail,
but about the GNU vectors extension.
The author of the patch equated TYPE_CODE_ARRAY with vectors, which
is not correct. Vectors are TYPE_CODE_ARRAY types with the TYPE_VECTOR
flag set. So at the very minimum, the patch should have been checking
for both TYPE_CODE_ARRAY and TYPE_VECTOR.
But, that's not the only thing that did not seem right to me. When
looking at the ABI, and at the summary of the implementation in GCC
of the calling conventions for that architecture:
size argument return value
small integer <4 int. reg. int. reg.
word 4 int. reg. int. reg.
double word 8 int. reg. int. reg.
_Complex small integer <8 int. reg. int. reg.
_Complex word 8 int. reg. int. reg.
_Complex double word 16 memory int. reg.
The nice thing about the patch above is that it nicely factorized
the code that determines how arguments are passed/returns. The bad
news is that the implementation, particularly for the handling of
arrays and vectors, doesn't seem to match the summary above. Hence,
the regression we observed.
So what I did was review and re-implement some of the predicate functions
according to the summary above. Because dejagnu crashes all our Solaris
machines real bad, I can't run the dejagnu testsuite there. So what I did
was test the patch with AdaCore's testsuite against leon3-elf, no
regression. I verified that this fixes the regression above while
at the same time still passing gdb.base/gnu_vector.exp (I transposed
that testcase to our testsuite), which is the testcase that was cited
in the commit above as seeing some FAIL->PASS improvements.
... because that assertion is really the "negative" of the other conditions
written in the same "if, else if, else [assert]" block in this function.
To me, this assertion forces us to maintain two versions of the same code,
and is an unnecessary burden. In particular, the above is not the
correct condition, and the ABI summary table above shows that we need
a more complex condition to describe the situations where we expect
arguments to be passed by register.
gdb/ChangeLog:
* sparc-tdep.c (sparc_structure_return_p): Re-implement to
match the ABI as summarized in GCC's gcc/config/sparc/sparc.c.
(sparc_arg_by_memory_p): Renamed from sparc_arg_on_registers_p.
Re-implement to match the ABI as summarized in GCC's
gcc/config/sparc/sparc.c. All callers updated.
(sparc32_store_arguments): Remove assertion.
Andrew Burgess [Sun, 8 Apr 2018 23:18:34 +0000 (00:18 +0100)]
gdb/testsuite: Handle targets with lots of registers
In gdb.base/maint.exp a test calls 'maint print registers'. If the
target has lots of registers this may overflow expect's buffers,
causing the test to fail.
After this commit we process the output line at a time until we get back
to the GDB prompt, this should prevent buffer overrun while still
testing that the command works as required.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Process output from 'maint print registers'
line at a time.
Andrew Burgess [Thu, 15 Mar 2018 19:41:50 +0000 (19:41 +0000)]
gdb/testsuite: Fix broken regexp in gdbstub case
When $use_gdb_stub is true then, when we start an MI target there's a
regexp to match GDB's startup pattern. Unfortunately the pattern is
broken, and we're also missing a timeout case in the match list (which
would have helped point out that the regexp was broken).
The changes to the regexp are:
1. Remove '${run_match}' prefix, the issued command doesn't include
'${run_prefix}' so expecting '${run_match}' is wrong.
2. Replaced '\\n' with '\\\\n' in order to match literal '\n' in
GDBs output (that is, match a backslash followed by 'n', not a
newline character).
3. Replaced a '.' (matching any character) with '\.' to match a '.'
and moved the '\.' into the correct place in the regexp.
4. Replaced '\r\n' with '[\r\n]+' to match the end of a line. This
change isn't esential, but matches the other end of line patterns
within this regexp.
Here's an example of the output that the regexp should match taken
from a testfile log, the first line is the command sent to GDB, and
the remaining lines are the response from GDB:
jump *_start
&"jump *_start\n"
~"Continuing at 0x10074.\n"
^running
*running,thread-id="all"
(gdb)
gdb/testsuite/ChangeLog:
* lib/mi-support.exp (mi_run_cmd_full): Fix regexp and add a
timeout.
Alan Modra [Fri, 27 Apr 2018 00:12:11 +0000 (09:42 +0930)]
-Wstringop-truncation warnings
This patch is aimed at silencing gcc8 -Wstringop-truncation warnings.
Unfortunately adding __attribute__ ((__nonstring)) doesn't work in a
number of the places patched here, (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643) so if you have
recent glibc headers installed you'll need to configure binutils with
--disable-werror to compile using gcc8 or gcc9.
include/
* ansidecl.h: Import from gcc.
* coff/internal.h (struct internal_scnhdr): Add ATTRIBUTE_NONSTRING
to s_name.
(struct internal_syment): Add ATTRIBUTE_NONSTRING to _n_name.
bfd/
* elf-linux-core.h (struct elf_external_linux_prpsinfo32_ugid32),
(struct elf_external_linux_prpsinfo32_ugid16),
(struct elf_external_linux_prpsinfo64_ugid32),
(struct elf_external_linux_prpsinfo64_ugid16): Add ATTRIBUTE_NONSTRING
to pr_fname and pr_psargs fields. Remove GCC diagnostic pragmas.
Move comment to..
* elf.c (elfcore_write_prpsinfo): ..here. Indent nested preprocessor
directives.
* elf32-arm.c (elf32_arm_nabi_write_core_note): Add ATTRIBUTE_NONSTRING
to data.
* elf32-ppc.c (ppc_elf_write_core_note): Likewise.
* elf32-s390.c (elf_s390_write_core_note): Likewise.
* elf64-s390.c (elf_s390_write_core_note): Likewise.
* elfxx-aarch64.c (_bfd_aarch64_elf_write_core_note): Likewise.
* elf64-x86-64.c (elf_x86_64_write_core_note): Add GCC diagnostic
pragmas.
* peXXigen.c (_bfd_XXi_swap_scnhdr_out): Use strnlen to avoid
false positive gcc-8 warning.
gas/
* config/obj-evax.c (shorten_identifier): Use memcpy in place
of strncpy.
* config/obj-macho.c (obj_mach_o_make_or_get_sect): Ensure
segname and sectname fields are NUL terminated.
Andrew Burgess [Sun, 1 Apr 2018 21:02:33 +0000 (22:02 +0100)]
gdb/testsuite: Filter out some registers for riscv
On riscv the cycle counter, and instructions retired counter CSRs are
read only, this causes problems in the gdb.base/callfuncs.exp test, as
the values in these CSRs change after an inferior call, the check that
no target registers have been modified then fails.
Luckily the test already has a mechanism in place for filtering out
registers that are modified (and can't be restored) by an inferior call,
so this commit adds the problem registers into this list for riscv.
In the future we may end up needing to filter out more CSRs, but right
now, for the targets I have access too, these are the only ones causing
problems.
Simon Atanasyan [Thu, 3 May 2018 16:17:46 +0000 (17:17 +0100)]
BFD: Prevent writing the MIPS _gp_disp symbol into symbol tables
The _gp_disp is a magic symbol, always implicitly defined by the linker.
It does not make a sense to write it into symbol tables for output files.
Moreover, now if the linker gets a version script, the _gp_disp symbol
gets zero version definition index. The zero index means[1]:
"The symbol is local, not available outside the object."
But the _gp_disp symbol has GLOBAL binding. That confuses some tools
like for example the LLD linker when they get such files as inputs.
This patch fixes the problem - it prevents writing the _gp_disp symbol
in regular and dynamic symbol tables.
This was tested by running LD test suite on a mipsel-linux board.
References:
[1] "Linux Standard Base Specification", Section "10.7.2 Symbol
Version Table", p. 32
* elf32-mips.c: (elf32_mips_fixup_symbol): New function.
(elf_backend_fixup_symbol): New macro.
* elfxx-mips.c: (mips_elf_output_extsym): Discard _gp_disp
handling.
(_bfd_mips_elf_finish_dynamic_symbol): Likewise.
ld/
* testsuite/ld-mips-elf/gp-disp-sym.d: New test.
* testsuite/ld-mips-elf/gp-disp-sym.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
* testsuite/ld-mips-elf/mips16-pic-2.ad: Update for _gp_disp
symbol removal.
* testsuite/ld-mips-elf/mips16-pic-2.nd: Likewise.
* testsuite/ld-mips-elf/pic-and-nonpic-3a.dd: Likewise.
* testsuite/ld-mips-elf/tlslib-o32-hidden.got: Likewise.
* testsuite/ld-mips-elf/tlslib-o32-ver.got: Likewise.
* testsuite/ld-mips-elf/tlslib-o32.got: Likewise.
* s390-linux-nat.c
(s390_linux_nat_target::have_continuable_watchpoint): Mark with
override. Write 'true' instead of '1'.
(s390_linux_nat_target::watchpoint_addr_within_range): Remove
declaration.
Pedro Alves [Wed, 2 May 2018 23:37:32 +0000 (00:37 +0100)]
target factories, target open and multiple instances of targets
Currently, to open a target, with "target TARGET_NAME", GDB finds the
target_ops instance with "TARGET_NAME" as short name, and then calls
its target_ops::open virtual method. In reality, there's no actual
target/name lookup, a pointer to the target_ops object was associated
with the "target TARGET_NAME" command at add_target time (when GDB is
initialized), as the command's context.
This creates a chicken and egg situation. Consider the case of
wanting to open multiple remote connections. We want to be able to
have one remote target_ops instance per connection, but, if we're not
connected yet, so we don't yet have an instance to call target->open()
on...
This patch fixes this by separating out common info about a target_ops
to a separate structure (shortname, longname, doc), and changing the
add_target routine to take a reference to such an object instead of a
pointer to a target_ops, and a pointer to a factory function that is
responsible to open an instance of the corresponding target when the
user types "target TARGET_NAME".
I.e. this factory function replaces the target_ops::open virtual
method.
For static/singleton targets, nothing changes, the target_open_ftype
function pushes the global target_ops instance on the target stack.
At target_close time, the connection is tor down, but the global
target_ops object remains live.
However, targets that support being open multiple times will make
their target_open_ftype routine allocate a new target_ops instance on
the heap [e.g., new remote_target()], and push that on the stack. At
target_close time, the new object is destroyed (by the
target_ops::close virtual method).
Both the core target and the remote targets will support being open
multiple times (others could/should too, but those were my stopping
point), but not in this patch yet. We need to get rid of more globals
first before that'd be useful.
Native targets are somewhat special, given find_default_run_target &
friends. Those routines also expect to return a target_ops pointer,
even before we've open the target. However, we'll never need more
than one instance of the native target, so we can assume/require that
native targets are global/simpletons, and have the backends register a
pointer to the native target_ops. Since all native targets inherit
inf_child_target, we can centralize that registration. See
add_inf_child_target, get_native_target/set_native_target and
find_default_run_target.
Pedro Alves [Wed, 2 May 2018 23:37:27 +0000 (00:37 +0100)]
linux_nat_target: More low methods
This converts the remaining linux-nat.c hooks low_ methods like had
been started in a previous patch. The linux_nat_set_foo routines are
all gone with this.
Pedro Alves [Wed, 2 May 2018 23:37:23 +0000 (00:37 +0100)]
make-target-delegates: line break between return type and function name
Before the target_ops C++ification, this wasn't necessary simply
because the methods were wrapped in ()'s, like
'(*to_my_long_method_name) (target_ops *)',
so
std::vector<long_type_name>(*to_my_long_method_name) ()TARGET_DEFAULT_IGNORE ()
still parsed correctly. With the (*) gone, we need this.
* make-target-delegates (scan_target_h): Don't trim lines here.
Replace sequences of tabs and/or whitespace with a single
whitespace.
(top level, parsing methods): Trim each line before processing it
here.
Pedro Alves [Wed, 2 May 2018 23:37:22 +0000 (00:37 +0100)]
Convert struct target_ops to C++
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
Pedro Alves [Wed, 2 May 2018 23:37:09 +0000 (00:37 +0100)]
Eliminate target_ops::to_xclose
In the multi-target branch, I found no need for the target_close vs
target_xclose distinction. Heap-allocated targets simply delete
themselves in their target_close implementation, while
singleton/static targets don't.
The target_ops C++ification patches will add more commentary around
target_ops's destructor, but there's no destructor yet...
Pedro Alves [Wed, 2 May 2018 23:37:08 +0000 (00:37 +0100)]
Make inf_ptrace_trad Linux-only, move to separate file
There are only two inf_ptrace_trad_target users, MIPS GNU/Linux and
Alpha GNU/Linux. They both call it via linux_trad_target.
Move this code out of inf-ptrace.c to a GNU/Linux-specific new file.
Making this code be GNU/Linux-specific simplifies C++ification of
target_ops, because we can make the trad target inherit linux_nat
instead of inheriting inf_ptrace. That'll be visible in a later patch.
Note this makes linux_target_install_ops an extern function, but that
is temporary -- the function will disappear once target_ops is made a
C++ class with virtual methods, later in the series. Also, I did not
rename the functions in the new file for a similar reason. They'll be
renamed again anyway in a couple of patches.
Pedro Alves [Wed, 2 May 2018 23:37:07 +0000 (00:37 +0100)]
More procfs.c simplification
There are only two architectures using procfs.c (i386/SPARC), and none
of their corresponding nat files overrides any target method. Move
the add_target calls to procfs.c directly.
Pedro Alves [Wed, 2 May 2018 23:37:07 +0000 (00:37 +0100)]
Eliminate procfs.c:procfs_use_watchpoints
Now that procfs.c is only ever used by Solaris, and, both x86 and
SPARC Solaris support watchpoints (*), we don't need the separate
procfs_use_watchpoints function. Getting rid of it simplifies
C++ification of target_ops.
(*) and I assume that any other Solaris port would use the same kernel
debug API interfaces for watchpoints. Otherwise, we can worry about
it if it ever happens.
Tamar Christina [Tue, 1 May 2018 16:11:11 +0000 (17:11 +0100)]
Fix unintialized memory in aarch64 opcodes.
This patch fixes an issue where the memory for the opcode structure is not zero'd before
the first exit branch. So there is one failure mode for which uninitialized memory
is returned.
This causes weird failures when the return code is not checked before inst is used.
opcodes/
* aarch64-dis.c (aarch64_opcode_decode): Moved memory clear code.
Joel Brobecker [Mon, 30 Apr 2018 22:05:42 +0000 (17:05 -0500)]
[Ada/ravenscar] error during "continue" after task/thread switch
When debugging a program using the Ada ravenscar profile, resuming
a program's execution after having switched to a different task
sometimes yields the following error:
(gdb) cont
Continuing.
Cannot execute this command while the target is running.
Use the "interrupt" command to stop the target
and then try again.
In short, the Ravenscar profile is a standardized subset of Ada which
allows tasking (often mapped to threads). We often use it on baremetal
targets where there is no OS support. Thread support is implemented
as a thread target_ops layer. It sits on top of the "remote" layer,
so we can do thread debugging against baremetal targets to which GDB
is connected via "target remote".
What happens, when the user request the program to resume execution,
is the following:
- the ravenscar-thread target_ops layer gets the order to resume
the program's execution. The current thread is not the active
thread in the inferior, and the "remote" layer doesn't know
about that thread anyway. So what we do is (see ravenscar_resume):
+ switch inferior_ptid to the ptid of the actually active thread;
+ ask the layer beneath us to actually do the resume.
- Once that's done, the resuming itself is done. But execute_command
(in top.c) actually does a bit more. More precisely, it unconditionally
checks to see if the language may no longer be matching the current
frame:
check_frame_language_change ();
The problem, here, is that we haven't received the "stop" event
from the inferior, yet. This part will be handled by the event loop,
which is done later. So, checking for the language-change here
doesn't make sense, since we don't really have a frame. In our
case, the error comes from the fact that we end up trying to read
the registers, which causes the error while the remote protocol
is waiting for the event showing the inferior stopped.
This apparently used to work, but it is believed that this was only
accidental. In other words, we had enough information already cached
within GDB that we were able to perform the entire call to
check_frame_language_change without actually querying the target.
On PowerPC targets, this started to fail as a side-effect of a minor
change in the way we get to the regcache during the handling of
software-single-step (which seems fine).
This patch fixes the issue by only calling check_frame_language_change
in cases the inferior isn't running. Otherwise, it skips it, knowing
that the event loop should eventually get to it.
gdb/ChangeLog:
* top.c (execute_command): Do not call check_frame_language_change
if the inferior is running.
Tested on x86_64-linux, no regression. Also tested on aarch64-elf,
arm-elf, leon3-elf, and ppc-elf, but using AdaCore's testsuite.
Tom Tromey [Mon, 30 Apr 2018 02:52:26 +0000 (20:52 -0600)]
Remove some is_mi_like_p from breakpoint code
This removes some uses of is_mi_like_p from the breakpoint code. The
break-catch-throw.c change brings it into line with what other
breakpoint classes do. The other changes simply replace printf calls
with ui_out::text or ui_out::message calls.
* breakpoint.c (mention): Remove use of is_mi_like_p.
(print_mention_ranged_breakpoint): Likewise.
* break-catch-throw.c (print_it_exception_catchpoint): Remove use
of is_mi_like_p.
Tom Tromey [Sun, 29 Apr 2018 04:30:08 +0000 (22:30 -0600)]
Remove some uses of is_mi_like_p from py-framefilter.c
Some uses of is_mi_like_p in py-framefilter.c were not needed. In
general a call to ui_out::text, ui_out::message, or ui_out::spaces
does not need to be guarded -- these are already ignored by MI.
Tom Tromey [Mon, 30 Apr 2018 03:07:03 +0000 (21:07 -0600)]
Use new_reference for struct value
value_incref returned its argument just as a convenience, which in the
end turned out to only be used in precisely the cases where
new_reference helps. So, this patch changes value_incref to return
void and changes some value-using code to use new_reference.
I also noticed that the comments for value_incref and value_decref
were swapped, so this patch fixes those.
Tom Tromey [Mon, 30 Apr 2018 03:02:19 +0000 (21:02 -0600)]
Remove new_bfd_ref
For gdb_bfd_ref_ptr, gdb already had a convenience function like the
new gdb_ref_ptr::new_reference -- called new_bfd_ref. This patch
removes it in favor of the new common function.
While doing this I also noticed that the comment for gdb_bfd_open was
incorrect (in a way related to reference counting), so this patch
updates the comment as well.
Tom Tromey [Mon, 30 Apr 2018 02:59:21 +0000 (20:59 -0600)]
Introduce ref_ptr::new_reference
I noticed a common pattern with gdb::ref_ptr, where callers would
"incref" and then create a new wrapper object, like:
Py_INCREF (obj);
gdbpy_ref<> ref (obj);
The ref_ptr constructor intentionally does not acquire a new
reference, but it seemed to me that it would be reasonable to add a
static member function that does so.
In this patch I chose to call the function "new_reference". I
considered "acquire_reference" as well, but "new" seemed less
ambiguous than "acquire" to me.
Tom Tromey [Mon, 23 Apr 2018 19:41:27 +0000 (13:41 -0600)]
Remove long_long_align_bit gdbarch attribute
This removes the long_long_align_bit gdbarch attribute in favor of
type_align. This uncovered two possible issues.
First, arc-tdep.c claimed that long long alignment was 32 bits, but as
discussed on the list, ARC has a maximum alignment of 32 bits, so I've
added an arc_type_align function to account for this.
Second, jit.c, the sole user of long_long_align_bit, was confusing
"long long" with uint64_t. The relevant structure is defined in the
JIT API part of the manual as:
Tom Tromey [Fri, 20 Apr 2018 19:40:29 +0000 (13:40 -0600)]
Handle alignof and _Alignof
This adds alignof and _Alignof to the C/C++ expression parser, and
adds new tests to test the features. The tests are written to try to
ensure that gdb's knowledge of alignment rules stays in sync with the
compiler's.
PR exp/17095:
* gdb.dwarf2/dw2-align.exp: New file.
* gdb.cp/align.exp: New file.
* gdb.base/align.exp: New file.
* lib/gdb.exp (gdb_int128_helper): New proc.
(has_int128_c, has_int128_cxx): New caching procs.