/* Implementation of the GDB variable objects API.
- Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
- 2009 Free Software Foundation, Inc.
+ Copyright (C) 1999-2012 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
#include "expression.h"
#include "frame.h"
#include "language.h"
-#include "wrapper.h"
#include "gdbcmd.h"
#include "block.h"
#include "valprint.h"
#include "gdb_assert.h"
#include "gdb_string.h"
+#include "gdb_regex.h"
#include "varobj.h"
#include "vec.h"
#include "gdbthread.h"
#include "inferior.h"
+#include "ada-varobj.h"
+#include "ada-lang.h"
+
+#if HAVE_PYTHON
+#include "python/python.h"
+#include "python/python-internal.h"
+#else
+typedef int PyObject;
+#endif
+
+/* The names of varobjs representing anonymous structs or unions. */
+#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
+#define ANONYMOUS_UNION_NAME _("<anonymous union>")
/* Non-zero if we want to see trace of varobj level stuff. */
fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
}
-/* String representations of gdb's format codes */
+/* String representations of gdb's format codes. */
char *varobj_format_string[] =
{ "natural", "binary", "decimal", "hexadecimal", "octal" };
-/* String representations of gdb's known languages */
+/* String representations of gdb's known languages. */
char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
+/* True if we want to allow Python-based pretty-printing. */
+static int pretty_printing = 0;
+
+void
+varobj_enable_pretty_printing (void)
+{
+ pretty_printing = 1;
+}
+
/* Data structures */
/* Every root variable has one of these structures saved in its
- varobj. Members which must be free'd are noted. */
+ varobj. Members which must be free'd are noted. */
struct varobj_root
{
- /* Alloc'd expression for this parent. */
+ /* Alloc'd expression for this parent. */
struct expression *exp;
- /* Block for which this expression is valid */
+ /* Block for which this expression is valid. */
struct block *valid_block;
/* The frame for this expression. This field is set iff valid_block is
struct frame_id frame;
/* The thread ID that this varobj_root belong to. This field
- is only valid if valid_block is not NULL.
+ is only valid if valid_block is not NULL.
When not 0, indicates which thread 'frame' belongs to.
When 0, indicates that the thread list was empty when the varobj_root
was created. */
/* If 1, the -var-update always recomputes the value in the
current thread and frame. Otherwise, variable object is
- always updated in the specific scope/thread/frame */
+ always updated in the specific scope/thread/frame. */
int floating;
/* Flag that indicates validity: set to 0 when this varobj_root refers
to symbols that do not exist anymore. */
int is_valid;
- /* Language info for this variable and its children */
+ /* Language info for this variable and its children. */
struct language_specific *lang;
- /* The varobj for this root node. */
+ /* The varobj for this root node. */
struct varobj *rootvar;
/* Next root variable */
};
/* Every variable in the system has a structure of this type defined
- for it. This structure holds all information necessary to manipulate
- a particular object variable. Members which must be freed are noted. */
+ for it. This structure holds all information necessary to manipulate
+ a particular object variable. Members which must be freed are noted. */
struct varobj
{
- /* Alloc'd name of the variable for this object.. If this variable is a
+ /* Alloc'd name of the variable for this object. If this variable is a
child, then this name will be the child's source name.
- (bar, not foo.bar) */
- /* NOTE: This is the "expression" */
+ (bar, not foo.bar). */
+ /* NOTE: This is the "expression". */
char *name;
/* Alloc'd expression for this child. Can be used to create a
root variable corresponding to this child. */
char *path_expr;
- /* The alloc'd name for this variable's object. This is here for
- convenience when constructing this object's children. */
+ /* The alloc'd name for this variable's object. This is here for
+ convenience when constructing this object's children. */
char *obj_name;
- /* Index of this variable in its parent or -1 */
+ /* Index of this variable in its parent or -1. */
int index;
/* The type of this variable. This can be NULL
the value is either NULL, or not lazy. */
struct value *value;
- /* The number of (immediate) children this variable has */
+ /* The number of (immediate) children this variable has. */
int num_children;
- /* If this object is a child, this points to its immediate parent. */
+ /* If this object is a child, this points to its immediate parent. */
struct varobj *parent;
/* Children of this object. */
VEC (varobj_p) *children;
- /* Description of the root variable. Points to root variable for children. */
+ /* Whether the children of this varobj were requested. This field is
+ used to decide if dynamic varobj should recompute their children.
+ In the event that the frontend never asked for the children, we
+ can avoid that. */
+ int children_requested;
+
+ /* Description of the root variable. Points to root variable for
+ children. */
struct varobj_root *root;
- /* The format of the output for this object */
+ /* The format of the output for this object. */
enum varobj_display_formats format;
- /* Was this variable updated via a varobj_set_value operation */
+ /* Was this variable updated via a varobj_set_value operation. */
int updated;
/* Last print value. */
not fetched if either the variable is frozen, or any parents is
frozen. */
int not_fetched;
+
+ /* Sub-range of children which the MI consumer has requested. If
+ FROM < 0 or TO < 0, means that all children have been
+ requested. */
+ int from;
+ int to;
+
+ /* The pretty-printer constructor. If NULL, then the default
+ pretty-printer will be looked up. If None, then no
+ pretty-printer will be installed. */
+ PyObject *constructor;
+
+ /* The pretty-printer that has been constructed. If NULL, then a
+ new printer object is needed, and one will be constructed. */
+ PyObject *pretty_printer;
+
+ /* The iterator returned by the printer's 'children' method, or NULL
+ if not available. */
+ PyObject *child_iter;
+
+ /* We request one extra item from the iterator, so that we can
+ report to the caller whether there are more items than we have
+ already reported. However, we don't want to install this value
+ when we read it, because that will mess up future updates. So,
+ we stash it here instead. */
+ PyObject *saved_item;
};
struct cpstack
/* Private function prototypes */
-/* Helper functions for the above subcommands. */
+/* Helper functions for the above subcommands. */
static int delete_variable (struct cpstack **, struct varobj *, int);
static struct varobj *create_child (struct varobj *, int, char *);
+static struct varobj *
+create_child_with_value (struct varobj *parent, int index, const char *name,
+ struct value *value);
+
/* Utility routines */
static struct varobj *new_variable (void);
static char *cppop (struct cpstack **pstack);
+static int update_type_if_necessary (struct varobj *var,
+ struct value *new_value);
+
static int install_new_value (struct varobj *var, struct value *value,
int initial);
-/* Language-specific routines. */
+/* Language-specific routines. */
static enum varobj_languages variable_language (struct varobj *var);
enum varobj_display_formats format);
static char *value_get_print_value (struct value *value,
- enum varobj_display_formats format);
+ enum varobj_display_formats format,
+ struct varobj *var);
static int varobj_value_is_changeable_p (struct varobj *var);
static int is_root_p (struct varobj *var);
+#if HAVE_PYTHON
+
+static struct varobj *varobj_add_child (struct varobj *var,
+ const char *name,
+ struct value *value);
+
+#endif /* HAVE_PYTHON */
+
+static int default_value_is_changeable_p (struct varobj *var);
+
/* C implementation */
static int c_number_of_children (struct varobj *var);
static char *java_value_of_variable (struct varobj *var,
enum varobj_display_formats format);
+/* Ada implementation */
+
+static int ada_number_of_children (struct varobj *var);
+
+static char *ada_name_of_variable (struct varobj *parent);
+
+static char *ada_name_of_child (struct varobj *parent, int index);
+
+static char *ada_path_expr_of_child (struct varobj *child);
+
+static struct value *ada_value_of_root (struct varobj **var_handle);
+
+static struct value *ada_value_of_child (struct varobj *parent, int index);
+
+static struct type *ada_type_of_child (struct varobj *parent, int index);
+
+static char *ada_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format);
+
+static int ada_value_is_changeable_p (struct varobj *var);
+
+static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
+ struct type *new_type);
+
/* The language specific vector */
struct language_specific
{
- /* The language of this variable */
+ /* The language of this variable. */
enum varobj_languages language;
- /* The number of children of PARENT. */
+ /* The number of children of PARENT. */
int (*number_of_children) (struct varobj * parent);
- /* The name (expression) of a root varobj. */
+ /* The name (expression) of a root varobj. */
char *(*name_of_variable) (struct varobj * parent);
- /* The name of the INDEX'th child of PARENT. */
+ /* The name of the INDEX'th child of PARENT. */
char *(*name_of_child) (struct varobj * parent, int index);
/* Returns the rooted expression of CHILD, which is a variable
obtain that has some parent. */
char *(*path_expr_of_child) (struct varobj * child);
- /* The ``struct value *'' of the root variable ROOT. */
+ /* The ``struct value *'' of the root variable ROOT. */
struct value *(*value_of_root) (struct varobj ** root_handle);
- /* The ``struct value *'' of the INDEX'th child of PARENT. */
+ /* The ``struct value *'' of the INDEX'th child of PARENT. */
struct value *(*value_of_child) (struct varobj * parent, int index);
- /* The type of the INDEX'th child of PARENT. */
+ /* The type of the INDEX'th child of PARENT. */
struct type *(*type_of_child) (struct varobj * parent, int index);
- /* The current value of VAR. */
+ /* The current value of VAR. */
char *(*value_of_variable) (struct varobj * var,
enum varobj_display_formats format);
+
+ /* Return non-zero if changes in value of VAR must be detected and
+ reported by -var-update. Return zero if -var-update should never
+ report changes of such values. This makes sense for structures
+ (since the changes in children values will be reported separately),
+ or for artifical objects (like 'public' pseudo-field in C++).
+
+ Return value of 0 means that gdb need not call value_fetch_lazy
+ for the value of this variable object. */
+ int (*value_is_changeable_p) (struct varobj *var);
+
+ /* Return nonzero if the type of VAR has mutated.
+
+ VAR's value is still the varobj's previous value, while NEW_VALUE
+ is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
+ may be NULL indicating that there is no value available (the varobj
+ may be out of scope, of may be the child of a null pointer, for
+ instance). NEW_TYPE, on the other hand, must never be NULL.
+
+ This function should also be able to assume that var's number of
+ children is set (not < 0).
+
+ Languages where types do not mutate can set this to NULL. */
+ int (*value_has_mutated) (struct varobj *var, struct value *new_value,
+ struct type *new_type);
};
-/* Array of known source language routines. */
+/* Array of known source language routines. */
static struct language_specific languages[vlang_end] = {
- /* Unknown (try treating as C */
+ /* Unknown (try treating as C). */
{
vlang_unknown,
c_number_of_children,
c_value_of_root,
c_value_of_child,
c_type_of_child,
- c_value_of_variable}
+ c_value_of_variable,
+ default_value_is_changeable_p,
+ NULL /* value_has_mutated */}
,
/* C */
{
c_value_of_root,
c_value_of_child,
c_type_of_child,
- c_value_of_variable}
+ c_value_of_variable,
+ default_value_is_changeable_p,
+ NULL /* value_has_mutated */}
,
/* C++ */
{
cplus_value_of_root,
cplus_value_of_child,
cplus_type_of_child,
- cplus_value_of_variable}
+ cplus_value_of_variable,
+ default_value_is_changeable_p,
+ NULL /* value_has_mutated */}
,
/* Java */
{
java_value_of_root,
java_value_of_child,
java_type_of_child,
- java_value_of_variable}
+ java_value_of_variable,
+ default_value_is_changeable_p,
+ NULL /* value_has_mutated */},
+ /* Ada */
+ {
+ vlang_ada,
+ ada_number_of_children,
+ ada_name_of_variable,
+ ada_name_of_child,
+ ada_path_expr_of_child,
+ ada_value_of_root,
+ ada_value_of_child,
+ ada_type_of_child,
+ ada_value_of_variable,
+ ada_value_is_changeable_p,
+ ada_value_has_mutated}
};
-/* A little convenience enum for dealing with C++/Java */
+/* A little convenience enum for dealing with C++/Java. */
enum vsections
{
v_public = 0, v_private, v_protected
/* Private data */
-/* Mappings of varobj_display_formats enums to gdb's format codes */
+/* Mappings of varobj_display_formats enums to gdb's format codes. */
static int format_code[] = { 0, 't', 'd', 'x', 'o' };
-/* Header of the list of root variable objects */
+/* Header of the list of root variable objects. */
static struct varobj_root *rootlist;
-static int rootcount = 0; /* number of root varobjs in the list */
-/* Prime number indicating the number of buckets in the hash table */
-/* A prime large enough to avoid too many colisions */
+/* Prime number indicating the number of buckets in the hash table. */
+/* A prime large enough to avoid too many colisions. */
#define VAROBJ_TABLE_SIZE 227
-/* Pointer to the varobj hash table (built at run time) */
+/* Pointer to the varobj hash table (built at run time). */
static struct vlist **varobj_table;
-/* Is the variable X one of our "fake" children? */
+/* Is the variable X one of our "fake" children? */
#define CPLUS_FAKE_CHILD(x) \
((x) != NULL && (x)->type == NULL && (x)->value == NULL)
\f
return (var->root->rootvar == var);
}
-/* Creates a varobj (not its children) */
+#ifdef HAVE_PYTHON
+/* Helper function to install a Python environment suitable for
+ use during operations on VAR. */
+static struct cleanup *
+varobj_ensure_python_env (struct varobj *var)
+{
+ return ensure_python_env (var->root->exp->gdbarch,
+ var->root->exp->language_defn);
+}
+#endif
+
+/* Creates a varobj (not its children). */
/* Return the full FRAME which corresponds to the given CORE_ADDR
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
frame != NULL;
frame = get_prev_frame (frame))
{
- if (get_frame_base_address (frame) == frame_addr)
+ /* The CORE_ADDR we get as argument was parsed from a string GDB
+ output as $fp. This output got truncated to gdbarch_addr_bit.
+ Truncate the frame base address in the same manner before
+ comparing it against our argument. */
+ CORE_ADDR frame_base = get_frame_base_address (frame);
+ int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
+
+ if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
+ frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
+
+ if (frame_base == frame_addr)
return frame;
}
char *expression, CORE_ADDR frame, enum varobj_type type)
{
struct varobj *var;
- struct frame_info *fi;
- struct frame_info *old_fi = NULL;
- struct block *block;
struct cleanup *old_chain;
- /* Fill out a varobj structure for the (root) variable being constructed. */
+ /* Fill out a varobj structure for the (root) variable being constructed. */
var = new_root_variable ();
old_chain = make_cleanup_free_variable (var);
if (expression != NULL)
{
+ struct frame_info *fi;
+ struct frame_id old_id = null_frame_id;
+ struct block *block;
char *p;
enum varobj_languages lang;
struct value *value = NULL;
- int expr_len;
+ volatile struct gdb_exception except;
/* Parse and evaluate the expression, filling in as much of the
variable's data as possible. */
if (has_stack_frames ())
{
- /* Allow creator to specify context of variable */
+ /* Allow creator to specify context of variable. */
if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
fi = get_selected_frame (NULL);
else
else
fi = NULL;
- /* frame = -2 means always use selected frame */
+ /* frame = -2 means always use selected frame. */
if (type == USE_SELECTED_FRAME)
var->root->floating = 1;
p = expression;
innermost_block = NULL;
/* Wrap the call to parse expression, so we can
- return a sensible error. */
- if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
+ return a sensible error. */
+ TRY_CATCH (except, RETURN_MASK_ERROR)
{
+ var->root->exp = parse_exp_1 (&p, block, 0);
+ }
+
+ if (except.reason < 0)
+ {
+ do_cleanups (old_chain);
return NULL;
}
- /* Don't allow variables to be created for types. */
+ /* Don't allow variables to be created for types. */
if (var->root->exp->elts[0].opcode == OP_TYPE)
{
do_cleanups (old_chain);
var->format = variable_default_display (var);
var->root->valid_block = innermost_block;
- expr_len = strlen (expression);
- var->name = savestring (expression, expr_len);
+ var->name = xstrdup (expression);
/* For a root var, the name and the expr are the same. */
- var->path_expr = savestring (expression, expr_len);
+ var->path_expr = xstrdup (expression);
/* When the frame is different from the current frame,
we must select the appropriate frame before parsing
the expression, otherwise the value will not be current.
- Since select_frame is so benign, just call it for all cases. */
- if (innermost_block && fi != NULL)
+ Since select_frame is so benign, just call it for all cases. */
+ if (innermost_block)
{
+ /* User could specify explicit FRAME-ADDR which was not found but
+ EXPRESSION is frame specific and we would not be able to evaluate
+ it correctly next time. With VALID_BLOCK set we must also set
+ FRAME and THREAD_ID. */
+ if (fi == NULL)
+ error (_("Failed to find the specified frame"));
+
var->root->frame = get_frame_id (fi);
var->root->thread_id = pid_to_thread_id (inferior_ptid);
- old_fi = get_selected_frame (NULL);
+ old_id = get_frame_id (get_selected_frame (NULL));
select_frame (fi);
}
/* We definitely need to catch errors here.
If evaluate_expression succeeds we got the value we wanted.
- But if it fails, we still go on with a call to evaluate_type() */
- if (!gdb_evaluate_expression (var->root->exp, &value))
+ But if it fails, we still go on with a call to evaluate_type(). */
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ value = evaluate_expression (var->root->exp);
+ }
+
+ if (except.reason < 0)
{
/* Error getting the value. Try to at least get the
right type. */
struct value *type_only_value = evaluate_type (var->root->exp);
+
var->type = value_type (type_only_value);
}
- else
- var->type = value_type (value);
+ else
+ {
+ int real_type_found = 0;
- install_new_value (var, value, 1 /* Initial assignment */);
+ var->type = value_actual_type (value, 0, &real_type_found);
+ if (real_type_found)
+ value = value_cast (var->type, value);
+ }
/* Set language info */
lang = variable_language (var);
var->root->lang = &languages[lang];
- /* Set ourselves as our root */
+ install_new_value (var, value, 1 /* Initial assignment */);
+
+ /* Set ourselves as our root. */
var->root->rootvar = var;
- /* Reset the selected frame */
- if (fi != NULL)
- select_frame (old_fi);
+ /* Reset the selected frame. */
+ if (frame_id_p (old_id))
+ select_frame (frame_find_by_id (old_id));
}
/* If the variable object name is null, that means this
- is a temporary variable, so don't install it. */
+ is a temporary variable, so don't install it. */
if ((var != NULL) && (objname != NULL))
{
- var->obj_name = savestring (objname, strlen (objname));
+ var->obj_name = xstrdup (objname);
/* If a varobj name is duplicated, the install will fail so
- we must clenup */
+ we must cleanup. */
if (!install_variable (var))
{
do_cleanups (old_chain);
return var;
}
-/* Generates an unique name that can be used for a varobj */
+/* Generates an unique name that can be used for a varobj. */
char *
varobj_gen_name (void)
static int id = 0;
char *obj_name;
- /* generate a name for this object */
+ /* Generate a name for this object. */
id++;
obj_name = xstrprintf ("var%d", id);
return obj_name;
}
-/* Given an "objname", returns the pointer to the corresponding varobj
- or NULL if not found */
+/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
+ error if OBJNAME cannot be found. */
struct varobj *
varobj_get_handle (char *objname)
return cv->var;
}
-/* Given the handle, return the name of the object */
+/* Given the handle, return the name of the object. */
char *
varobj_get_objname (struct varobj *var)
return var->obj_name;
}
-/* Given the handle, return the expression represented by the object */
+/* Given the handle, return the expression represented by the object. */
char *
varobj_get_expression (struct varobj *var)
}
/* Deletes a varobj and all its children if only_children == 0,
- otherwise deletes only the children; returns a malloc'ed list of all the
- (malloc'ed) names of the variables that have been deleted (NULL terminated) */
+ otherwise deletes only the children; returns a malloc'ed list of
+ all the (malloc'ed) names of the variables that have been deleted
+ (NULL terminated). */
int
varobj_delete (struct varobj *var, char ***dellist, int only_children)
struct cpstack *result = NULL;
char **cp;
- /* Initialize a stack for temporary results */
+ /* Initialize a stack for temporary results. */
cppush (&result, NULL);
if (only_children)
- /* Delete only the variable children */
+ /* Delete only the variable children. */
delcount = delete_variable (&result, var, 1 /* only the children */ );
else
- /* Delete the variable and all its children */
+ /* Delete the variable and all its children. */
delcount = delete_variable (&result, var, 0 /* parent+children */ );
- /* We may have been asked to return a list of what has been deleted */
+ /* We may have been asked to return a list of what has been deleted. */
if (dellist != NULL)
{
*dellist = xmalloc ((delcount + 1) * sizeof (char *));
return delcount;
}
-/* Set/Get variable object display format */
+#if HAVE_PYTHON
+
+/* Convenience function for varobj_set_visualizer. Instantiate a
+ pretty-printer for a given value. */
+static PyObject *
+instantiate_pretty_printer (PyObject *constructor, struct value *value)
+{
+ PyObject *val_obj = NULL;
+ PyObject *printer;
+
+ val_obj = value_to_value_object (value);
+ if (! val_obj)
+ return NULL;
+
+ printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
+ Py_DECREF (val_obj);
+ return printer;
+}
+
+#endif
+
+/* Set/Get variable object display format. */
enum varobj_display_formats
varobj_set_display_format (struct varobj *var,
&& var->value && !value_lazy (var->value))
{
xfree (var->print_value);
- var->print_value = value_get_print_value (var->value, var->format);
+ var->print_value = value_get_print_value (var->value, var->format, var);
}
return var->format;
return var->format;
}
+char *
+varobj_get_display_hint (struct varobj *var)
+{
+ char *result = NULL;
+
+#if HAVE_PYTHON
+ struct cleanup *back_to = varobj_ensure_python_env (var);
+
+ if (var->pretty_printer)
+ result = gdbpy_get_display_hint (var->pretty_printer);
+
+ do_cleanups (back_to);
+#endif
+
+ return result;
+}
+
+/* Return true if the varobj has items after TO, false otherwise. */
+
+int
+varobj_has_more (struct varobj *var, int to)
+{
+ if (VEC_length (varobj_p, var->children) > to)
+ return 1;
+ return ((to == -1 || VEC_length (varobj_p, var->children) == to)
+ && var->saved_item != NULL);
+}
+
/* If the variable object is bound to a specific thread, that
is its evaluation can always be done in context of a frame
inside that thread, returns GDB id of the thread -- which
- is always positive. Otherwise, returns -1. */
+ is always positive. Otherwise, returns -1. */
int
varobj_get_thread_id (struct varobj *var)
{
return var->frozen;
}
+/* A helper function that restricts a range to what is actually
+ available in a VEC. This follows the usual rules for the meaning
+ of FROM and TO -- if either is negative, the entire range is
+ used. */
+
+static void
+restrict_range (VEC (varobj_p) *children, int *from, int *to)
+{
+ if (*from < 0 || *to < 0)
+ {
+ *from = 0;
+ *to = VEC_length (varobj_p, children);
+ }
+ else
+ {
+ if (*from > VEC_length (varobj_p, children))
+ *from = VEC_length (varobj_p, children);
+ if (*to > VEC_length (varobj_p, children))
+ *to = VEC_length (varobj_p, children);
+ if (*from > *to)
+ *from = *to;
+ }
+}
+
+#if HAVE_PYTHON
+
+/* A helper for update_dynamic_varobj_children that installs a new
+ child when needed. */
+
+static void
+install_dynamic_child (struct varobj *var,
+ VEC (varobj_p) **changed,
+ VEC (varobj_p) **type_changed,
+ VEC (varobj_p) **new,
+ VEC (varobj_p) **unchanged,
+ int *cchanged,
+ int index,
+ const char *name,
+ struct value *value)
+{
+ if (VEC_length (varobj_p, var->children) < index + 1)
+ {
+ /* There's no child yet. */
+ struct varobj *child = varobj_add_child (var, name, value);
+
+ if (new)
+ {
+ VEC_safe_push (varobj_p, *new, child);
+ *cchanged = 1;
+ }
+ }
+ else
+ {
+ varobj_p existing = VEC_index (varobj_p, var->children, index);
+
+ int type_updated = update_type_if_necessary (existing, value);
+ if (type_updated)
+ {
+ if (type_changed)
+ VEC_safe_push (varobj_p, *type_changed, existing);
+ }
+ if (install_new_value (existing, value, 0))
+ {
+ if (!type_updated && changed)
+ VEC_safe_push (varobj_p, *changed, existing);
+ }
+ else if (!type_updated && unchanged)
+ VEC_safe_push (varobj_p, *unchanged, existing);
+ }
+}
+
+static int
+dynamic_varobj_has_child_method (struct varobj *var)
+{
+ struct cleanup *back_to;
+ PyObject *printer = var->pretty_printer;
+ int result;
+
+ back_to = varobj_ensure_python_env (var);
+ result = PyObject_HasAttr (printer, gdbpy_children_cst);
+ do_cleanups (back_to);
+ return result;
+}
+
+#endif
+
+static int
+update_dynamic_varobj_children (struct varobj *var,
+ VEC (varobj_p) **changed,
+ VEC (varobj_p) **type_changed,
+ VEC (varobj_p) **new,
+ VEC (varobj_p) **unchanged,
+ int *cchanged,
+ int update_children,
+ int from,
+ int to)
+{
+#if HAVE_PYTHON
+ struct cleanup *back_to;
+ PyObject *children;
+ int i;
+ PyObject *printer = var->pretty_printer;
+
+ back_to = varobj_ensure_python_env (var);
+
+ *cchanged = 0;
+ if (!PyObject_HasAttr (printer, gdbpy_children_cst))
+ {
+ do_cleanups (back_to);
+ return 0;
+ }
+
+ if (update_children || !var->child_iter)
+ {
+ children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
+ NULL);
+
+ if (!children)
+ {
+ gdbpy_print_stack ();
+ error (_("Null value returned for children"));
+ }
+
+ make_cleanup_py_decref (children);
+
+ if (!PyIter_Check (children))
+ error (_("Returned value is not iterable"));
+
+ Py_XDECREF (var->child_iter);
+ var->child_iter = PyObject_GetIter (children);
+ if (!var->child_iter)
+ {
+ gdbpy_print_stack ();
+ error (_("Could not get children iterator"));
+ }
+
+ Py_XDECREF (var->saved_item);
+ var->saved_item = NULL;
+
+ i = 0;
+ }
+ else
+ i = VEC_length (varobj_p, var->children);
+
+ /* We ask for one extra child, so that MI can report whether there
+ are more children. */
+ for (; to < 0 || i < to + 1; ++i)
+ {
+ PyObject *item;
+ int force_done = 0;
+
+ /* See if there was a leftover from last time. */
+ if (var->saved_item)
+ {
+ item = var->saved_item;
+ var->saved_item = NULL;
+ }
+ else
+ item = PyIter_Next (var->child_iter);
+
+ if (!item)
+ {
+ /* Normal end of iteration. */
+ if (!PyErr_Occurred ())
+ break;
+
+ /* If we got a memory error, just use the text as the
+ item. */
+ if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
+ {
+ PyObject *type, *value, *trace;
+ char *name_str, *value_str;
+
+ PyErr_Fetch (&type, &value, &trace);
+ value_str = gdbpy_exception_to_string (type, value);
+ Py_XDECREF (type);
+ Py_XDECREF (value);
+ Py_XDECREF (trace);
+ if (!value_str)
+ {
+ gdbpy_print_stack ();
+ break;
+ }
+
+ name_str = xstrprintf ("<error at %d>", i);
+ item = Py_BuildValue ("(ss)", name_str, value_str);
+ xfree (name_str);
+ xfree (value_str);
+ if (!item)
+ {
+ gdbpy_print_stack ();
+ break;
+ }
+
+ force_done = 1;
+ }
+ else
+ {
+ /* Any other kind of error. */
+ gdbpy_print_stack ();
+ break;
+ }
+ }
+
+ /* We don't want to push the extra child on any report list. */
+ if (to < 0 || i < to)
+ {
+ PyObject *py_v;
+ const char *name;
+ struct value *v;
+ struct cleanup *inner;
+ int can_mention = from < 0 || i >= from;
+
+ inner = make_cleanup_py_decref (item);
+
+ if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
+ {
+ gdbpy_print_stack ();
+ error (_("Invalid item from the child list"));
+ }
+
+ v = convert_value_from_python (py_v);
+ if (v == NULL)
+ gdbpy_print_stack ();
+ install_dynamic_child (var, can_mention ? changed : NULL,
+ can_mention ? type_changed : NULL,
+ can_mention ? new : NULL,
+ can_mention ? unchanged : NULL,
+ can_mention ? cchanged : NULL, i, name, v);
+ do_cleanups (inner);
+ }
+ else
+ {
+ Py_XDECREF (var->saved_item);
+ var->saved_item = item;
+
+ /* We want to truncate the child list just before this
+ element. */
+ break;
+ }
+
+ if (force_done)
+ break;
+ }
+
+ if (i < VEC_length (varobj_p, var->children))
+ {
+ int j;
+
+ *cchanged = 1;
+ for (j = i; j < VEC_length (varobj_p, var->children); ++j)
+ varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
+ VEC_truncate (varobj_p, var->children, i);
+ }
+
+ /* If there are fewer children than requested, note that the list of
+ children changed. */
+ if (to >= 0 && VEC_length (varobj_p, var->children) < to)
+ *cchanged = 1;
+
+ var->num_children = VEC_length (varobj_p, var->children);
+
+ do_cleanups (back_to);
+
+ return 1;
+#else
+ gdb_assert (0 && "should never be called if Python is not enabled");
+#endif
+}
int
varobj_get_num_children (struct varobj *var)
{
if (var->num_children == -1)
- var->num_children = number_of_children (var);
+ {
+ if (var->pretty_printer)
+ {
+ int dummy;
- return var->num_children;
+ /* If we have a dynamic varobj, don't report -1 children.
+ So, try to fetch some children first. */
+ update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
+ 0, 0, 0);
+ }
+ else
+ var->num_children = number_of_children (var);
+ }
+
+ return var->num_children >= 0 ? var->num_children : 0;
}
/* Creates a list of the immediate children of a variable object;
- the return code is the number of such children or -1 on error */
+ the return code is the number of such children or -1 on error. */
VEC (varobj_p)*
-varobj_list_children (struct varobj *var)
+varobj_list_children (struct varobj *var, int *from, int *to)
{
- struct varobj *child;
char *name;
- int i;
+ int i, children_changed;
+
+ var->children_requested = 1;
+
+ if (var->pretty_printer)
+ {
+ /* This, in theory, can result in the number of children changing without
+ frontend noticing. But well, calling -var-list-children on the same
+ varobj twice is not something a sane frontend would do. */
+ update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
+ &children_changed, 0, 0, *to);
+ restrict_range (var->children, from, to);
+ return var->children;
+ }
if (var->num_children == -1)
var->num_children = number_of_children (var);
}
}
+ restrict_range (var->children, from, to);
return var->children;
}
+#if HAVE_PYTHON
+
+static struct varobj *
+varobj_add_child (struct varobj *var, const char *name, struct value *value)
+{
+ varobj_p v = create_child_with_value (var,
+ VEC_length (varobj_p, var->children),
+ name, value);
+
+ VEC_safe_push (varobj_p, var->children, v);
+ return v;
+}
+
+#endif /* HAVE_PYTHON */
+
/* Obtain the type of an object Variable as a string similar to the one gdb
- prints on the console */
+ prints on the console. */
char *
varobj_get_type (struct varobj *var)
{
- struct value *val;
- struct cleanup *old_chain;
- struct ui_file *stb;
- char *thetype;
- long length;
-
- /* For the "fake" variables, do not return a type. (It's type is
+ /* For the "fake" variables, do not return a type. (It's type is
NULL, too.)
Do not return a type for invalid variables as well. */
if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
return NULL;
- stb = mem_fileopen ();
- old_chain = make_cleanup_ui_file_delete (stb);
-
- /* To print the type, we simply create a zero ``struct value *'' and
- cast it to our type. We then typeprint this variable. */
- val = value_zero (var->type, not_lval);
- type_print (value_type (val), "", stb, -1);
-
- thetype = ui_file_xstrdup (stb, &length);
- do_cleanups (old_chain);
- return thetype;
+ return type_to_string (var->type);
}
/* Obtain the type of an object variable. */
return var->type;
}
+/* Is VAR a path expression parent, i.e., can it be used to construct
+ a valid path expression? */
+
+static int
+is_path_expr_parent (struct varobj *var)
+{
+ struct type *type;
+
+ /* "Fake" children are not path_expr parents. */
+ if (CPLUS_FAKE_CHILD (var))
+ return 0;
+
+ type = get_value_type (var);
+
+ /* Anonymous unions and structs are also not path_expr parents. */
+ return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (type) == TYPE_CODE_UNION)
+ && TYPE_NAME (type) == NULL);
+}
+
+/* Return the path expression parent for VAR. */
+
+static struct varobj *
+get_path_expr_parent (struct varobj *var)
+{
+ struct varobj *parent = var;
+
+ while (!is_root_p (parent) && !is_path_expr_parent (parent))
+ parent = parent->parent;
+
+ return parent;
+}
+
/* Return a pointer to the full rooted expression of varobj VAR.
If it has not been computed yet, compute it. */
char *
int attributes = 0;
if (varobj_editable_p (var))
- /* FIXME: define masks for attributes */
+ /* FIXME: define masks for attributes. */
attributes |= 0x00000001; /* Editable */
return attributes;
}
+int
+varobj_pretty_printed_p (struct varobj *var)
+{
+ return var->pretty_printer != NULL;
+}
+
char *
varobj_get_formatted_value (struct varobj *var,
enum varobj_display_formats format)
}
/* Set the value of an object variable (if it is editable) to the
- value of the given expression */
-/* Note: Invokes functions that can call error() */
+ value of the given expression. */
+/* Note: Invokes functions that can call error(). */
int
varobj_set_value (struct varobj *var, char *expression)
{
- struct value *val;
- int offset = 0;
- int error = 0;
-
+ struct value *val = NULL; /* Initialize to keep gcc happy. */
/* The argument "expression" contains the variable's new value.
- We need to first construct a legal expression for this -- ugh! */
- /* Does this cover all the bases? */
+ We need to first construct a legal expression for this -- ugh! */
+ /* Does this cover all the bases? */
struct expression *exp;
- struct value *value;
+ struct value *value = NULL; /* Initialize to keep gcc happy. */
int saved_input_radix = input_radix;
char *s = expression;
- int i;
+ volatile struct gdb_exception except;
gdb_assert (varobj_editable_p (var));
- input_radix = 10; /* ALWAYS reset to decimal temporarily */
+ input_radix = 10; /* ALWAYS reset to decimal temporarily. */
exp = parse_exp_1 (&s, 0, 0);
- if (!gdb_evaluate_expression (exp, &value))
+ TRY_CATCH (except, RETURN_MASK_ERROR)
{
- /* We cannot proceed without a valid expression. */
+ value = evaluate_expression (exp);
+ }
+
+ if (except.reason < 0)
+ {
+ /* We cannot proceed without a valid expression. */
xfree (exp);
return 0;
}
after assignment, and the first thing value_assign
does is coerce the input.
For example, if we are assigning an array to a pointer variable we
- should compare the pointer with the the array's address, not with the
+ should compare the pointer with the array's address, not with the
array's content. */
value = coerce_array (value);
- /* The new value may be lazy. gdb_value_assign, or
- rather value_contents, will take care of this.
- If fetching of the new value will fail, gdb_value_assign
- with catch the exception. */
- if (!gdb_value_assign (var->value, value, &val))
+ /* The new value may be lazy. value_assign, or
+ rather value_contents, will take care of this. */
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ val = value_assign (var->value, value);
+ }
+
+ if (except.reason < 0)
return 0;
-
+
/* If the value has changed, record it, so that next -var-update can
report this change. If a variable had a value of '1', we've set it
to '333' and then set again to '1', when -var-update will report this
variable as changed -- because the first assignment has set the
'updated' flag. There's no need to optimize that, because return value
of -var-update should be considered an approximation. */
- var->updated = install_new_value (var, val, 0 /* Compare values. */);
+ var->updated = install_new_value (var, val, 0 /* Compare values. */);
input_radix = saved_input_radix;
return 1;
}
-/* Returns a malloc'ed list with all root variable objects */
-int
-varobj_list (struct varobj ***varlist)
+#if HAVE_PYTHON
+
+/* A helper function to install a constructor function and visualizer
+ in a varobj. */
+
+static void
+install_visualizer (struct varobj *var, PyObject *constructor,
+ PyObject *visualizer)
{
- struct varobj **cv;
- struct varobj_root *croot;
- int mycount = rootcount;
+ Py_XDECREF (var->constructor);
+ var->constructor = constructor;
+
+ Py_XDECREF (var->pretty_printer);
+ var->pretty_printer = visualizer;
+
+ Py_XDECREF (var->child_iter);
+ var->child_iter = NULL;
+}
+
+/* Install the default visualizer for VAR. */
+
+static void
+install_default_visualizer (struct varobj *var)
+{
+ /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
+ if (CPLUS_FAKE_CHILD (var))
+ return;
+
+ if (pretty_printing)
+ {
+ PyObject *pretty_printer = NULL;
+
+ if (var->value)
+ {
+ pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
+ if (! pretty_printer)
+ {
+ gdbpy_print_stack ();
+ error (_("Cannot instantiate printer for default visualizer"));
+ }
+ }
+
+ if (pretty_printer == Py_None)
+ {
+ Py_DECREF (pretty_printer);
+ pretty_printer = NULL;
+ }
+
+ install_visualizer (var, NULL, pretty_printer);
+ }
+}
+
+/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
+ make a new object. */
+
+static void
+construct_visualizer (struct varobj *var, PyObject *constructor)
+{
+ PyObject *pretty_printer;
+
+ /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
+ if (CPLUS_FAKE_CHILD (var))
+ return;
+
+ Py_INCREF (constructor);
+ if (constructor == Py_None)
+ pretty_printer = NULL;
+ else
+ {
+ pretty_printer = instantiate_pretty_printer (constructor, var->value);
+ if (! pretty_printer)
+ {
+ gdbpy_print_stack ();
+ Py_DECREF (constructor);
+ constructor = Py_None;
+ Py_INCREF (constructor);
+ }
+
+ if (pretty_printer == Py_None)
+ {
+ Py_DECREF (pretty_printer);
+ pretty_printer = NULL;
+ }
+ }
- /* Alloc (rootcount + 1) entries for the result */
- *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
+ install_visualizer (var, constructor, pretty_printer);
+}
+
+#endif /* HAVE_PYTHON */
- cv = *varlist;
- croot = rootlist;
- while ((croot != NULL) && (mycount > 0))
+/* A helper function for install_new_value. This creates and installs
+ a visualizer for VAR, if appropriate. */
+
+static void
+install_new_value_visualizer (struct varobj *var)
+{
+#if HAVE_PYTHON
+ /* If the constructor is None, then we want the raw value. If VAR
+ does not have a value, just skip this. */
+ if (var->constructor != Py_None && var->value)
{
- *cv = croot->rootvar;
- mycount--;
- cv++;
- croot = croot->next;
+ struct cleanup *cleanup;
+
+ cleanup = varobj_ensure_python_env (var);
+
+ if (!var->constructor)
+ install_default_visualizer (var);
+ else
+ construct_visualizer (var, var->constructor);
+
+ do_cleanups (cleanup);
}
- /* Mark the end of the list */
- *cv = NULL;
+#else
+ /* Do nothing. */
+#endif
+}
+
+/* When using RTTI to determine variable type it may be changed in runtime when
+ the variable value is changed. This function checks whether type of varobj
+ VAR will change when a new value NEW_VALUE is assigned and if it is so
+ updates the type of VAR. */
+
+static int
+update_type_if_necessary (struct varobj *var, struct value *new_value)
+{
+ if (new_value)
+ {
+ struct value_print_options opts;
- if (mycount || (croot != NULL))
- warning
- ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
- rootcount, mycount);
+ get_user_print_options (&opts);
+ if (opts.objectprint)
+ {
+ struct type *new_type;
+ char *curr_type_str, *new_type_str;
+
+ new_type = value_actual_type (new_value, 0, 0);
+ new_type_str = type_to_string (new_type);
+ curr_type_str = varobj_get_type (var);
+ if (strcmp (curr_type_str, new_type_str) != 0)
+ {
+ var->type = new_type;
+
+ /* This information may be not valid for a new type. */
+ varobj_delete (var, NULL, 1);
+ VEC_free (varobj_p, var->children);
+ var->num_children = -1;
+ return 1;
+ }
+ }
+ }
- return rootcount;
+ return 0;
}
/* Assign a new value to a variable object. If INITIAL is non-zero,
this is the first assignement after the variable object was just
created, or changed type. In that case, just assign the value
and return 0.
- Otherwise, assign the value and if type_changeable returns non-zero,
- find if the new value is different from the current value.
- Return 1 if so, and 0 if the values are equal.
+ Otherwise, assign the new value, and return 1 if the value is
+ different from the current one, 0 otherwise. The comparison is
+ done on textual representation of value. Therefore, some types
+ need not be compared. E.g. for structures the reported value is
+ always "{...}", so no comparison is necessary here. If the old
+ value was NULL and new one is not, or vice versa, we always return 1.
The VALUE parameter should not be released -- the function will
take care of releasing it when needed. */
char *print_value = NULL;
/* We need to know the varobj's type to decide if the value should
- be fetched or not. C++ fake children (public/protected/private) don't have
- a type. */
+ be fetched or not. C++ fake children (public/protected/private)
+ don't have a type. */
gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
changeable = varobj_value_is_changeable_p (var);
+
+ /* If the type has custom visualizer, we consider it to be always
+ changeable. FIXME: need to make sure this behaviour will not
+ mess up read-sensitive values. */
+ if (var->pretty_printer)
+ changeable = 1;
+
need_to_fetch = changeable;
/* We are not interested in the address of references, and given
that in C++ a reference is not rebindable, it cannot
meaningfully change. So, get hold of the real value. */
if (value)
- {
- value = coerce_ref (value);
- release_value (value);
- }
+ value = coerce_ref (value);
if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
/* For unions, we need to fetch the value implicitly because
{
struct varobj *parent = var->parent;
int frozen = var->frozen;
+
for (; !frozen && parent; parent = parent->parent)
frozen |= parent->frozen;
explicitly asked to compare the new value with the old one. */
intentionally_not_fetched = 1;
}
- else if (!gdb_value_fetch_lazy (value))
+ else
{
- /* Set the value to NULL, so that for the next -var-update,
- we don't try to compare the new value with this value,
- that we couldn't even read. */
- value = NULL;
+ volatile struct gdb_exception except;
+
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ value_fetch_lazy (value);
+ }
+
+ if (except.reason < 0)
+ {
+ /* Set the value to NULL, so that for the next -var-update,
+ we don't try to compare the new value with this value,
+ that we couldn't even read. */
+ value = NULL;
+ }
}
}
+ /* Get a reference now, before possibly passing it to any Python
+ code that might release it. */
+ if (value != NULL)
+ value_incref (value);
+
/* Below, we'll be comparing string rendering of old and new
values. Don't get string rendering if the value is
lazy -- if it is, the code above has decided that the value
should not be fetched. */
- if (value && !value_lazy (value))
- print_value = value_get_print_value (value, var->format);
+ if (value && !value_lazy (value) && !var->pretty_printer)
+ print_value = value_get_print_value (value, var->format, var);
/* If the type is changeable, compare the old and the new values.
If this is the initial assignment, we don't have any old value
to compare with. */
if (!initial && changeable)
{
- /* If the value of the varobj was changed by -var-set-value, then the
- value in the varobj and in the target is the same. However, that value
- is different from the value that the varobj had after the previous
- -var-update. So need to the varobj as changed. */
+ /* If the value of the varobj was changed by -var-set-value,
+ then the value in the varobj and in the target is the same.
+ However, that value is different from the value that the
+ varobj had after the previous -var-update. So need to the
+ varobj as changed. */
if (var->updated)
{
changed = 1;
}
- else
+ else if (! var->pretty_printer)
{
/* Try to compare the values. That requires that both
values are non-lazy. */
changed = 1;
}
else if (var->value == NULL && value == NULL)
- /* Equal. */
+ /* Equal. */
;
else if (var->value == NULL || value == NULL)
{
}
}
+ if (!initial && !changeable)
+ {
+ /* For values that are not changeable, we don't compare the values.
+ However, we want to notice if a value was not NULL and now is NULL,
+ or vise versa, so that we report when top-level varobjs come in scope
+ and leave the scope. */
+ changed = (var->value != NULL) != (value != NULL);
+ }
+
/* We must always keep the new value, since children depend on it. */
if (var->value != NULL && var->value != value)
value_free (var->value);
var->value = value;
- if (var->print_value)
- xfree (var->print_value);
- var->print_value = print_value;
if (value && value_lazy (value) && intentionally_not_fetched)
var->not_fetched = 1;
else
var->not_fetched = 0;
var->updated = 0;
+ install_new_value_visualizer (var);
+
+ /* If we installed a pretty-printer, re-compare the printed version
+ to see if the variable changed. */
+ if (var->pretty_printer)
+ {
+ xfree (print_value);
+ print_value = value_get_print_value (var->value, var->format, var);
+ if ((var->print_value == NULL && print_value != NULL)
+ || (var->print_value != NULL && print_value == NULL)
+ || (var->print_value != NULL && print_value != NULL
+ && strcmp (var->print_value, print_value) != 0))
+ changed = 1;
+ }
+ if (var->print_value)
+ xfree (var->print_value);
+ var->print_value = print_value;
+
gdb_assert (!var->value || value_type (var->value));
return changed;
}
+/* Return the requested range for a varobj. VAR is the varobj. FROM
+ and TO are out parameters; *FROM and *TO will be set to the
+ selected sub-range of VAR. If no range was selected using
+ -var-set-update-range, then both will be -1. */
+void
+varobj_get_child_range (struct varobj *var, int *from, int *to)
+{
+ *from = var->from;
+ *to = var->to;
+}
+
+/* Set the selected sub-range of children of VAR to start at index
+ FROM and end at index TO. If either FROM or TO is less than zero,
+ this is interpreted as a request for all children. */
+void
+varobj_set_child_range (struct varobj *var, int from, int to)
+{
+ var->from = from;
+ var->to = to;
+}
+
+void
+varobj_set_visualizer (struct varobj *var, const char *visualizer)
+{
+#if HAVE_PYTHON
+ PyObject *mainmod, *globals, *constructor;
+ struct cleanup *back_to;
+
+ back_to = varobj_ensure_python_env (var);
+
+ mainmod = PyImport_AddModule ("__main__");
+ globals = PyModule_GetDict (mainmod);
+ Py_INCREF (globals);
+ make_cleanup_py_decref (globals);
+
+ constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
+
+ if (! constructor)
+ {
+ gdbpy_print_stack ();
+ error (_("Could not evaluate visualizer expression: %s"), visualizer);
+ }
+
+ construct_visualizer (var, constructor);
+ Py_XDECREF (constructor);
+
+ /* If there are any children now, wipe them. */
+ varobj_delete (var, NULL, 1 /* children only */);
+ var->num_children = -1;
+
+ do_cleanups (back_to);
+#else
+ error (_("Python support required"));
+#endif
+}
+
+/* If NEW_VALUE is the new value of the given varobj (var), return
+ non-zero if var has mutated. In other words, if the type of
+ the new value is different from the type of the varobj's old
+ value.
+
+ NEW_VALUE may be NULL, if the varobj is now out of scope. */
+
+static int
+varobj_value_has_mutated (struct varobj *var, struct value *new_value,
+ struct type *new_type)
+{
+ /* If we haven't previously computed the number of children in var,
+ it does not matter from the front-end's perspective whether
+ the type has mutated or not. For all intents and purposes,
+ it has not mutated. */
+ if (var->num_children < 0)
+ return 0;
+
+ if (var->root->lang->value_has_mutated)
+ return var->root->lang->value_has_mutated (var, new_value, new_type);
+ else
+ return 0;
+}
+
/* Update the values for a variable and its children. This is a
two-pronged attack. First, re-parse the value for the root's
expression to see if it's changed. Then go all the way
The EXPLICIT parameter specifies if this call is result
of MI request to update this specific variable, or
- result of implicit -var-update *. For implicit request, we don't
+ result of implicit -var-update *. For implicit request, we don't
update frozen variables.
- NOTE: This function may delete the caller's varobj. If it
+ NOTE: This function may delete the caller's varobj. If it
returns TYPE_CHANGED, then it has done this and VARP will be modified
to point to the new varobj. */
-VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
+VEC(varobj_update_result) *
+varobj_update (struct varobj **varp, int explicit)
{
int changed = 0;
int type_changed = 0;
int i;
- int vleft;
- struct varobj *v;
- struct varobj **cv;
- struct varobj **templist = NULL;
struct value *new;
- VEC (varobj_p) *stack = NULL;
+ VEC (varobj_update_result) *stack = NULL;
VEC (varobj_update_result) *result = NULL;
- struct frame_info *fi;
/* Frozen means frozen -- we don't check for any change in
this varobj, including its going out of scope, or
if (!(*varp)->root->is_valid)
{
- varobj_update_result r = {*varp};
+ varobj_update_result r = {0};
+
+ r.varobj = *varp;
r.status = VAROBJ_INVALID;
VEC_safe_push (varobj_update_result, result, &r);
return result;
if ((*varp)->root->rootvar == *varp)
{
- varobj_update_result r = {*varp};
+ varobj_update_result r = {0};
+
+ r.varobj = *varp;
r.status = VAROBJ_IN_SCOPE;
- /* Update the root variable. value_of_root can return NULL
+ /* Update the root variable. value_of_root can return NULL
if the variable is no longer around, i.e. we stepped out of
- the frame in which a local existed. We are letting the
+ the frame in which a local existed. We are letting the
value_of_root variable dispose of the varobj if the type
has changed. */
new = value_of_root (varp, &type_changed);
+ if (update_type_if_necessary(*varp, new))
+ type_changed = 1;
r.varobj = *varp;
-
r.type_changed = type_changed;
if (install_new_value ((*varp), new, type_changed))
r.changed = 1;
if (new == NULL)
r.status = VAROBJ_NOT_IN_SCOPE;
-
- if (r.type_changed || r.changed)
- VEC_safe_push (varobj_update_result, result, &r);
+ r.value_installed = 1;
if (r.status == VAROBJ_NOT_IN_SCOPE)
- return result;
+ {
+ if (r.type_changed || r.changed)
+ VEC_safe_push (varobj_update_result, result, &r);
+ return result;
+ }
+
+ VEC_safe_push (varobj_update_result, stack, &r);
}
+ else
+ {
+ varobj_update_result r = {0};
- VEC_safe_push (varobj_p, stack, *varp);
+ r.varobj = *varp;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
/* Walk through the children, reconstructing them all. */
- while (!VEC_empty (varobj_p, stack))
+ while (!VEC_empty (varobj_update_result, stack))
{
- v = VEC_pop (varobj_p, stack);
+ varobj_update_result r = *(VEC_last (varobj_update_result, stack));
+ struct varobj *v = r.varobj;
+
+ VEC_pop (varobj_update_result, stack);
+
+ /* Update this variable, unless it's a root, which is already
+ updated. */
+ if (!r.value_installed)
+ {
+ struct type *new_type;
+
+ new = value_of_child (v->parent, v->index);
+ if (update_type_if_necessary(v, new))
+ r.type_changed = 1;
+ if (new)
+ new_type = value_type (new);
+ else
+ new_type = v->root->lang->type_of_child (v->parent, v->index);
+
+ if (varobj_value_has_mutated (v, new, new_type))
+ {
+ /* The children are no longer valid; delete them now.
+ Report the fact that its type changed as well. */
+ varobj_delete (v, NULL, 1 /* only_children */);
+ v->num_children = -1;
+ v->to = -1;
+ v->from = -1;
+ v->type = new_type;
+ r.type_changed = 1;
+ }
+
+ if (install_new_value (v, new, r.type_changed))
+ {
+ r.changed = 1;
+ v->updated = 0;
+ }
+ }
+
+ /* We probably should not get children of a varobj that has a
+ pretty-printer, but for which -var-list-children was never
+ invoked. */
+ if (v->pretty_printer)
+ {
+ VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
+ VEC (varobj_p) *new = 0;
+ int i, children_changed = 0;
+
+ if (v->frozen)
+ continue;
+
+ if (!v->children_requested)
+ {
+ int dummy;
+
+ /* If we initially did not have potential children, but
+ now we do, consider the varobj as changed.
+ Otherwise, if children were never requested, consider
+ it as unchanged -- presumably, such varobj is not yet
+ expanded in the UI, so we need not bother getting
+ it. */
+ if (!varobj_has_more (v, 0))
+ {
+ update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
+ &dummy, 0, 0, 0);
+ if (varobj_has_more (v, 0))
+ r.changed = 1;
+ }
+
+ if (r.changed)
+ VEC_safe_push (varobj_update_result, result, &r);
+
+ continue;
+ }
+
+ /* If update_dynamic_varobj_children returns 0, then we have
+ a non-conforming pretty-printer, so we skip it. */
+ if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
+ &unchanged, &children_changed, 1,
+ v->from, v->to))
+ {
+ if (children_changed || new)
+ {
+ r.children_changed = 1;
+ r.new = new;
+ }
+ /* Push in reverse order so that the first child is
+ popped from the work stack first, and so will be
+ added to result first. This does not affect
+ correctness, just "nicer". */
+ for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
+ {
+ varobj_p tmp = VEC_index (varobj_p, type_changed, i);
+ varobj_update_result r = {0};
+
+ /* Type may change only if value was changed. */
+ r.varobj = tmp;
+ r.changed = 1;
+ r.type_changed = 1;
+ r.value_installed = 1;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
+ {
+ varobj_p tmp = VEC_index (varobj_p, changed, i);
+ varobj_update_result r = {0};
+
+ r.varobj = tmp;
+ r.changed = 1;
+ r.value_installed = 1;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
+ {
+ varobj_p tmp = VEC_index (varobj_p, unchanged, i);
+
+ if (!tmp->frozen)
+ {
+ varobj_update_result r = {0};
+
+ r.varobj = tmp;
+ r.value_installed = 1;
+ VEC_safe_push (varobj_update_result, stack, &r);
+ }
+ }
+ if (r.changed || r.children_changed)
+ VEC_safe_push (varobj_update_result, result, &r);
+
+ /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
+ because NEW has been put into the result vector. */
+ VEC_free (varobj_p, changed);
+ VEC_free (varobj_p, type_changed);
+ VEC_free (varobj_p, unchanged);
+
+ continue;
+ }
+ }
/* Push any children. Use reverse order so that the first
child is popped from the work stack first, and so
for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
{
varobj_p c = VEC_index (varobj_p, v->children, i);
+
/* Child may be NULL if explicitly deleted by -var-delete. */
if (c != NULL && !c->frozen)
- VEC_safe_push (varobj_p, stack, c);
- }
-
- /* Update this variable, unless it's a root, which is already
- updated. */
- if (v->root->rootvar != v)
- {
- new = value_of_child (v->parent, v->index);
- if (install_new_value (v, new, 0 /* type not changed */))
{
- /* Note that it's changed */
- varobj_update_result r = {v};
- r.changed = 1;
- VEC_safe_push (varobj_update_result, result, &r);
- v->updated = 0;
+ varobj_update_result r = {0};
+
+ r.varobj = c;
+ VEC_safe_push (varobj_update_result, stack, &r);
}
}
+
+ if (r.changed || r.type_changed)
+ VEC_safe_push (varobj_update_result, result, &r);
}
- VEC_free (varobj_p, stack);
+ VEC_free (varobj_update_result, stack);
+
return result;
}
\f
return delcount;
}
-/* Delete the variable object VAR and its children */
+/* Delete the variable object VAR and its children. */
/* IMPORTANT NOTE: If we delete a variable which is a child
and the parent is not removed we dump core. It must be always
- initially called with remove_from_parent_p set */
+ initially called with remove_from_parent_p set. */
static void
delete_variable_1 (struct cpstack **resultp, int *delcountp,
struct varobj *var, int only_children_p,
{
int i;
- /* Delete any children of this variable, too. */
+ /* Delete any children of this variable, too. */
for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
{
varobj_p child = VEC_index (varobj_p, var->children, i);
+
if (!child)
continue;
if (!remove_from_parent_p)
}
VEC_free (varobj_p, var->children);
- /* if we were called to delete only the children we are done here */
+ /* if we were called to delete only the children we are done here. */
if (only_children_p)
return;
- /* Otherwise, add it to the list of deleted ones and proceed to do so */
+ /* Otherwise, add it to the list of deleted ones and proceed to do so. */
/* If the name is null, this is a temporary variable, that has not
- yet been installed, don't report it, it belongs to the caller... */
+ yet been installed, don't report it, it belongs to the caller... */
if (var->obj_name != NULL)
{
cppush (resultp, xstrdup (var->obj_name));
*delcountp = *delcountp + 1;
}
- /* If this variable has a parent, remove it from its parent's list */
+ /* If this variable has a parent, remove it from its parent's list. */
/* OPTIMIZATION: if the parent of this variable is also being deleted,
(as indicated by remove_from_parent_p) we don't bother doing an
expensive list search to find the element to remove when we are
- discarding the list afterwards */
+ discarding the list afterwards. */
if ((remove_from_parent_p) && (var->parent != NULL))
{
VEC_replace (varobj_p, var->parent->children, var->index, NULL);
if (var->obj_name != NULL)
uninstall_variable (var);
- /* Free memory associated with this variable */
+ /* Free memory associated with this variable. */
free_variable (var);
}
-/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
+/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
static int
install_variable (struct varobj *var)
{
if (cv != NULL)
error (_("Duplicate variable object name"));
- /* Add varobj to hash table */
+ /* Add varobj to hash table. */
newvl = xmalloc (sizeof (struct vlist));
newvl->next = *(varobj_table + index);
newvl->var = var;
*(varobj_table + index) = newvl;
- /* If root, add varobj to root list */
+ /* If root, add varobj to root list. */
if (is_root_p (var))
{
- /* Add to list of root variables */
+ /* Add to list of root variables. */
if (rootlist == NULL)
var->root->next = NULL;
else
var->root->next = rootlist;
rootlist = var->root;
- rootcount++;
}
return 1; /* OK */
}
-/* Unistall the object VAR. */
+/* Unistall the object VAR. */
static void
uninstall_variable (struct varobj *var)
{
unsigned int index = 0;
unsigned int i = 1;
- /* Remove varobj from hash table */
+ /* Remove varobj from hash table. */
for (chp = var->obj_name; *chp; chp++)
{
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
xfree (cv);
- /* If root, remove varobj from root list */
+ /* If root, remove varobj from root list. */
if (is_root_p (var))
{
- /* Remove from list of root variables */
+ /* Remove from list of root variables. */
if (rootlist == var->root)
rootlist = var->root->next;
else
}
if (cr == NULL)
{
- warning
- ("Assertion failed: Could not find varobj \"%s\" in root list",
- var->obj_name);
+ warning (_("Assertion failed: Could not find "
+ "varobj \"%s\" in root list"),
+ var->obj_name);
return;
}
if (prer == NULL)
else
prer->next = cr->next;
}
- rootcount--;
}
}
-/* Create and install a child of the parent of the given name */
+/* Create and install a child of the parent of the given name. */
static struct varobj *
create_child (struct varobj *parent, int index, char *name)
+{
+ return create_child_with_value (parent, index, name,
+ value_of_child (parent, index));
+}
+
+/* Does CHILD represent a child with no name? This happens when
+ the child is an anonmous struct or union and it has no field name
+ in its parent variable.
+
+ This has already been determined by *_describe_child. The easiest
+ thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
+
+static int
+is_anonymous_child (struct varobj *child)
+{
+ return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
+ || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
+}
+
+static struct varobj *
+create_child_with_value (struct varobj *parent, int index, const char *name,
+ struct value *value)
{
struct varobj *child;
char *childs_name;
- struct value *value;
child = new_variable ();
- /* name is allocated by name_of_child */
- child->name = name;
+ /* Name is allocated by name_of_child. */
+ /* FIXME: xstrdup should not be here. */
+ child->name = xstrdup (name);
child->index = index;
- value = value_of_child (parent, index);
child->parent = parent;
child->root = parent->root;
- childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
+
+ if (is_anonymous_child (child))
+ childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
+ else
+ childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
child->obj_name = childs_name;
+
install_variable (child);
/* Compute the type of the child. Must do this before
calling install_new_value. */
if (value != NULL)
/* If the child had no evaluation errors, var->value
- will be non-NULL and contain a valid type. */
- child->type = value_type (value);
+ will be non-NULL and contain a valid type. */
+ child->type = value_actual_type (value, 0, NULL);
else
- /* Otherwise, we must compute the type. */
+ /* Otherwise, we must compute the type. */
child->type = (*child->root->lang->type_of_child) (child->parent,
child->index);
install_new_value (child, value, 1);
* Miscellaneous utility functions.
*/
-/* Allocate memory and initialize a new variable */
+/* Allocate memory and initialize a new variable. */
static struct varobj *
new_variable (void)
{
var->print_value = NULL;
var->frozen = 0;
var->not_fetched = 0;
+ var->children_requested = 0;
+ var->from = -1;
+ var->to = -1;
+ var->constructor = 0;
+ var->pretty_printer = 0;
+ var->child_iter = 0;
+ var->saved_item = 0;
return var;
}
-/* Allocate memory and initialize a new root variable */
+/* Allocate memory and initialize a new root variable. */
static struct varobj *
new_root_variable (void)
{
struct varobj *var = new_variable ();
- var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
+
+ var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
var->root->lang = NULL;
var->root->exp = NULL;
var->root->valid_block = NULL;
return var;
}
-/* Free any allocated memory associated with VAR. */
+/* Free any allocated memory associated with VAR. */
static void
free_variable (struct varobj *var)
{
+#if HAVE_PYTHON
+ if (var->pretty_printer)
+ {
+ struct cleanup *cleanup = varobj_ensure_python_env (var);
+ Py_XDECREF (var->constructor);
+ Py_XDECREF (var->pretty_printer);
+ Py_XDECREF (var->child_iter);
+ Py_XDECREF (var->saved_item);
+ do_cleanups (cleanup);
+ }
+#endif
+
value_free (var->value);
- /* Free the expression if this is a root variable. */
+ /* Free the expression if this is a root variable. */
if (is_root_p (var))
{
- free_current_contents (&var->root->exp);
+ xfree (var->root->exp);
xfree (var->root);
}
return make_cleanup (do_free_variable_cleanup, var);
}
-/* This returns the type of the variable. It also skips past typedefs
+/* This returns the type of the variable. It also skips past typedefs
to return the real type of the variable.
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
- except within get_target_type and get_type. */
+ except within get_target_type and get_type. */
static struct type *
get_type (struct varobj *var)
{
struct type *type;
- type = var->type;
+ type = var->type;
if (type != NULL)
type = check_typedef (type);
/* Return the type of the value that's stored in VAR,
or that would have being stored there if the
- value were accessible.
+ value were accessible.
This differs from VAR->type in that VAR->type is always
the true type of the expession in the source language.
past typedefs, just like get_type ().
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
- except within get_target_type and get_type. */
+ except within get_target_type and get_type. */
static struct type *
get_target_type (struct type *type)
{
}
/* What is the default display for this variable? We assume that
- everything is "natural". Any exceptions? */
+ everything is "natural". Any exceptions? */
static enum varobj_display_formats
variable_default_display (struct varobj *var)
{
return FORMAT_NATURAL;
}
-/* FIXME: The following should be generic for any pointer */
+/* FIXME: The following should be generic for any pointer. */
static void
cppush (struct cpstack **pstack, char *name)
{
*pstack = s;
}
-/* FIXME: The following should be generic for any pointer */
+/* FIXME: The following should be generic for any pointer. */
static char *
cppop (struct cpstack **pstack)
{
/* Common entry points */
-/* Get the language of variable VAR. */
+/* Get the language of variable VAR. */
static enum varobj_languages
variable_language (struct varobj *var)
{
case language_java:
lang = vlang_java;
break;
+ case language_ada:
+ lang = vlang_ada;
+ break;
}
return lang;
/* Return the number of children for a given variable.
The result of this function is defined by the language
- implementation. The number of children returned by this function
+ implementation. The number of children returned by this function
is the number of children that the user will see in the variable
- display. */
+ display. */
static int
number_of_children (struct varobj *var)
{
- return (*var->root->lang->number_of_children) (var);;
+ return (*var->root->lang->number_of_children) (var);
}
-/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
+/* What is the expression for the root varobj VAR? Returns a malloc'd
+ string. */
static char *
name_of_variable (struct varobj *var)
{
return (*var->root->lang->name_of_variable) (var);
}
-/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
+/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
+ string. */
static char *
name_of_child (struct varobj *var, int index)
{
var = *var_handle;
/* This should really be an exception, since this should
- only get called with a root variable. */
+ only get called with a root variable. */
if (!is_root_p (var))
return NULL;
correct in other frames, so update the expression. */
struct expression *tmp_exp = var->root->exp;
+
var->root->exp = tmp_var->root->exp;
tmp_var->root->exp = tmp_exp;
}
else
{
- tmp_var->obj_name =
- savestring (var->obj_name, strlen (var->obj_name));
+ tmp_var->obj_name = xstrdup (var->obj_name);
+ tmp_var->from = var->from;
+ tmp_var->to = var->to;
varobj_delete (var, NULL, 0);
install_variable (tmp_var);
*type_changed = 0;
}
- return (*var->root->lang->value_of_root) (var_handle);
+ {
+ struct value *value;
+
+ value = (*var->root->lang->value_of_root) (var_handle);
+ if (var->value == NULL || value == NULL)
+ {
+ /* For root varobj-s, a NULL value indicates a scoping issue.
+ So, nothing to do in terms of checking for mutations. */
+ }
+ else if (varobj_value_has_mutated (var, value, value_type (value)))
+ {
+ /* The type has mutated, so the children are no longer valid.
+ Just delete them, and tell our caller that the type has
+ changed. */
+ varobj_delete (var, NULL, 1 /* only_children */);
+ var->num_children = -1;
+ var->to = -1;
+ var->from = -1;
+ *type_changed = 1;
+ }
+ return value;
+ }
}
-/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
+/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
static struct value *
value_of_child (struct varobj *parent, int index)
{
return value;
}
-/* GDB already has a command called "value_of_variable". Sigh. */
+/* GDB already has a command called "value_of_variable". Sigh. */
static char *
my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
{
if (var->root->is_valid)
- return (*var->root->lang->value_of_variable) (var, format);
+ {
+ if (var->pretty_printer)
+ return value_get_print_value (var->value, var->format, var);
+ return (*var->root->lang->value_of_variable) (var, format);
+ }
else
return NULL;
}
static char *
-value_get_print_value (struct value *value, enum varobj_display_formats format)
+value_get_print_value (struct value *value, enum varobj_display_formats format,
+ struct varobj *var)
{
- long dummy;
struct ui_file *stb;
struct cleanup *old_chain;
- char *thevalue;
+ gdb_byte *thevalue = NULL;
struct value_print_options opts;
+ struct type *type = NULL;
+ long len = 0;
+ char *encoding = NULL;
+ struct gdbarch *gdbarch = NULL;
+ /* Initialize it just to avoid a GCC false warning. */
+ CORE_ADDR str_addr = 0;
+ int string_print = 0;
if (value == NULL)
return NULL;
stb = mem_fileopen ();
old_chain = make_cleanup_ui_file_delete (stb);
+ gdbarch = get_type_arch (value_type (value));
+#if HAVE_PYTHON
+ {
+ PyObject *value_formatter = var->pretty_printer;
+
+ varobj_ensure_python_env (var);
+
+ if (value_formatter)
+ {
+ /* First check to see if we have any children at all. If so,
+ we simply return {...}. */
+ if (dynamic_varobj_has_child_method (var))
+ {
+ do_cleanups (old_chain);
+ return xstrdup ("{...}");
+ }
+
+ if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
+ {
+ struct value *replacement;
+ PyObject *output = NULL;
+
+ output = apply_varobj_pretty_printer (value_formatter,
+ &replacement,
+ stb);
+
+ /* If we have string like output ... */
+ if (output)
+ {
+ make_cleanup_py_decref (output);
+
+ /* If this is a lazy string, extract it. For lazy
+ strings we always print as a string, so set
+ string_print. */
+ if (gdbpy_is_lazy_string (output))
+ {
+ gdbpy_extract_lazy_string (output, &str_addr, &type,
+ &len, &encoding);
+ make_cleanup (free_current_contents, &encoding);
+ string_print = 1;
+ }
+ else
+ {
+ /* If it is a regular (non-lazy) string, extract
+ it and copy the contents into THEVALUE. If the
+ hint says to print it as a string, set
+ string_print. Otherwise just return the extracted
+ string as a value. */
+
+ PyObject *py_str
+ = python_string_to_target_python_string (output);
+
+ if (py_str)
+ {
+ char *s = PyString_AsString (py_str);
+ char *hint;
+
+ hint = gdbpy_get_display_hint (value_formatter);
+ if (hint)
+ {
+ if (!strcmp (hint, "string"))
+ string_print = 1;
+ xfree (hint);
+ }
+
+ len = PyString_Size (py_str);
+ thevalue = xmemdup (s, len + 1, len + 1);
+ type = builtin_type (gdbarch)->builtin_char;
+ Py_DECREF (py_str);
+
+ if (!string_print)
+ {
+ do_cleanups (old_chain);
+ return thevalue;
+ }
+
+ make_cleanup (xfree, thevalue);
+ }
+ else
+ gdbpy_print_stack ();
+ }
+ }
+ /* If the printer returned a replacement value, set VALUE
+ to REPLACEMENT. If there is not a replacement value,
+ just use the value passed to this function. */
+ if (replacement)
+ value = replacement;
+ }
+ }
+ }
+#endif
+
get_formatted_print_options (&opts, format_code[(int) format]);
opts.deref_ref = 0;
- common_val_print (value, stb, 0, &opts, current_language);
- thevalue = ui_file_xstrdup (stb, &dummy);
+ opts.raw = 1;
+
+ /* If the THEVALUE has contents, it is a regular string. */
+ if (thevalue)
+ LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
+ else if (string_print)
+ /* Otherwise, if string_print is set, and it is not a regular
+ string, it is a lazy string. */
+ val_print_string (type, encoding, str_addr, len, stb, &opts);
+ else
+ /* All other cases. */
+ common_val_print (value, stb, 0, &opts, current_language);
+
+ thevalue = ui_file_xstrdup (stb, NULL);
do_cleanups (old_chain);
return thevalue;
varobj_editable_p (struct varobj *var)
{
struct type *type;
- struct value *value;
if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
return 0;
}
}
-/* Return non-zero if changes in value of VAR
- must be detected and reported by -var-update.
- Return zero is -var-update should never report
- changes of such values. This makes sense for structures
- (since the changes in children values will be reported separately),
- or for artifical objects (like 'public' pseudo-field in C++).
+/* Call VAR's value_is_changeable_p language-specific callback. */
- Return value of 0 means that gdb need not call value_fetch_lazy
- for the value of this variable object. */
static int
varobj_value_is_changeable_p (struct varobj *var)
{
- int r;
- struct type *type;
-
- if (CPLUS_FAKE_CHILD (var))
- return 0;
-
- type = get_value_type (var);
-
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ARRAY:
- r = 0;
- break;
-
- default:
- r = 1;
- }
-
- return r;
+ return var->root->lang->value_is_changeable_p (var);
}
/* Return 1 if that varobj is floating, that is is always evaluated in the
for getting children of the variable object.
This includes dereferencing top-level references
to all types and dereferencing pointers to
- structures.
+ structures.
+
+ If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
+ value will be fetched and if it differs from static type
+ the value will be casted to it.
- Both TYPE and *TYPE should be non-null. VALUE
+ Both TYPE and *TYPE should be non-null. VALUE
can be null if we want to only translate type.
*VALUE can be null as well -- if the parent
- value is not known.
+ value is not known.
If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
- depending on whether pointer was deferenced
+ depending on whether pointer was dereferenced
in this function. */
static void
adjust_value_for_child_access (struct value **value,
struct type **type,
- int *was_ptr)
+ int *was_ptr,
+ int lookup_actual_type)
{
gdb_assert (type && *type);
{
if (value && *value)
{
- int success = gdb_value_ind (*value, value);
- if (!success)
+ volatile struct gdb_exception except;
+
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ *value = value_ind (*value);
+ }
+
+ if (except.reason < 0)
*value = NULL;
}
*type = target_type;
/* The 'get_target_type' function calls check_typedef on
result, so we can immediately check type code. No
need to call check_typedef here. */
+
+ /* Access a real type of the value (if necessary and possible). */
+ if (value && *value && lookup_actual_type)
+ {
+ struct type *enclosing_type;
+ int real_type_found = 0;
+
+ enclosing_type = value_actual_type (*value, 1, &real_type_found);
+ if (real_type_found)
+ {
+ *type = enclosing_type;
+ *value = value_cast (enclosing_type, *value);
+ }
+ }
+}
+
+/* Implement the "value_is_changeable_p" varobj callback for most
+ languages. */
+
+static int
+default_value_is_changeable_p (struct varobj *var)
+{
+ int r;
+ struct type *type;
+
+ if (CPLUS_FAKE_CHILD (var))
+ return 0;
+
+ type = get_value_type (var);
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_ARRAY:
+ r = 0;
+ break;
+
+ default:
+ r = 1;
+ }
+
+ return r;
}
/* C */
+
static int
c_number_of_children (struct varobj *var)
{
int children = 0;
struct type *target;
- adjust_value_for_child_access (NULL, &type, NULL);
+ adjust_value_for_child_access (NULL, &type, NULL, 0);
target = get_target_type (type);
switch (TYPE_CODE (type))
break;
case TYPE_CODE_PTR:
- /* The type here is a pointer to non-struct. Typically, pointers
+ /* The type here is a pointer to non-struct. Typically, pointers
have one child, except for function ptrs, which have no children,
and except for void*, as we don't know what to show.
We can show char* so we allow it to be dereferenced. If you decide
to test for it, please mind that a little magic is necessary to
properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
- TYPE_NAME == "char" */
+ TYPE_NAME == "char". */
if (TYPE_CODE (target) == TYPE_CODE_FUNC
|| TYPE_CODE (target) == TYPE_CODE_VOID)
children = 0;
break;
default:
- /* Other types have no children */
+ /* Other types have no children. */
break;
}
static char *
c_name_of_variable (struct varobj *parent)
{
- return savestring (parent->name, strlen (parent->name));
+ return xstrdup (parent->name);
}
/* Return the value of element TYPE_INDEX of a structure
value VALUE. VALUE's type should be a structure,
- or union, or a typedef to struct/union.
+ or union, or a typedef to struct/union.
Returns NULL if getting the value fails. Never throws. */
static struct value *
{
struct value *result = NULL;
volatile struct gdb_exception e;
-
struct type *type = value_type (value);
+
type = check_typedef (type);
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
}
/* Obtain the information about child INDEX of the variable
- object PARENT.
+ object PARENT.
If CNAME is not null, sets *CNAME to the name of the child relative
to the parent.
If CVALUE is not null, sets *CVALUE to the value of the child.
struct type *type = get_value_type (parent);
char *parent_expression = NULL;
int was_ptr;
+ volatile struct gdb_exception except;
if (cname)
*cname = NULL;
if (cfull_expression)
{
*cfull_expression = NULL;
- parent_expression = varobj_get_path_expr (parent);
+ parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
}
- adjust_value_for_child_access (&value, &type, &was_ptr);
+ adjust_value_for_child_access (&value, &type, &was_ptr, 0);
switch (TYPE_CODE (type))
{
case TYPE_CODE_ARRAY:
if (cname)
- *cname = xstrprintf ("%d", index
- + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
+ *cname
+ = xstrdup (int_string (index
+ + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
+ 10, 1, 0, 0));
if (cvalue && value)
{
int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
- struct value *indval =
- value_from_longest (builtin_type_int32, (LONGEST) real_index);
- gdb_value_subscript (value, indval, cvalue);
+
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ *cvalue = value_subscript (value, real_index);
+ }
}
if (ctype)
*ctype = get_target_type (type);
if (cfull_expression)
- *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
- index
- + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
+ *cfull_expression =
+ xstrprintf ("(%s)[%s]", parent_expression,
+ int_string (index
+ + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
+ 10, 1, 0, 0));
break;
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
- if (cname)
- {
- char *string = TYPE_FIELD_NAME (type, index);
- *cname = savestring (string, strlen (string));
- }
+ {
+ const char *field_name;
- if (cvalue && value)
- {
- /* For C, varobj index is the same as type index. */
- *cvalue = value_struct_element_index (value, index);
- }
+ /* If the type is anonymous and the field has no name,
+ set an appropriate name. */
+ field_name = TYPE_FIELD_NAME (type, index);
+ if (field_name == NULL || *field_name == '\0')
+ {
+ if (cname)
+ {
+ if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
+ == TYPE_CODE_STRUCT)
+ *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
+ else
+ *cname = xstrdup (ANONYMOUS_UNION_NAME);
+ }
+
+ if (cfull_expression)
+ *cfull_expression = xstrdup ("");
+ }
+ else
+ {
+ if (cname)
+ *cname = xstrdup (field_name);
- if (ctype)
- *ctype = TYPE_FIELD_TYPE (type, index);
+ if (cfull_expression)
+ {
+ char *join = was_ptr ? "->" : ".";
- if (cfull_expression)
- {
- char *join = was_ptr ? "->" : ".";
- *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
- TYPE_FIELD_NAME (type, index));
- }
+ *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
+ join, field_name);
+ }
+ }
+
+ if (cvalue && value)
+ {
+ /* For C, varobj index is the same as type index. */
+ *cvalue = value_struct_element_index (value, index);
+ }
+ if (ctype)
+ *ctype = TYPE_FIELD_TYPE (type, index);
+ }
break;
case TYPE_CODE_PTR:
if (cvalue && value)
{
- int success = gdb_value_ind (value, cvalue);
- if (!success)
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ *cvalue = value_ind (value);
+ }
+
+ if (except.reason < 0)
*cvalue = NULL;
}
break;
default:
- /* This should not happen */
+ /* This should not happen. */
if (cname)
*cname = xstrdup ("???");
if (cfull_expression)
*cfull_expression = xstrdup ("???");
- /* Don't set value and type, we don't know then. */
+ /* Don't set value and type, we don't know then. */
}
}
c_name_of_child (struct varobj *parent, int index)
{
char *name;
+
c_describe_child (parent, index, &name, NULL, NULL, NULL);
return name;
}
if (fi)
{
CORE_ADDR pc = get_frame_pc (fi);
+
if (pc < BLOCK_START (var->root->valid_block) ||
pc >= BLOCK_END (var->root->valid_block))
scope = 0;
{
struct value *new_val = NULL;
struct varobj *var = *var_handle;
- struct frame_info *fi;
int within_scope = 0;
struct cleanup *back_to;
- /* Only root variables can be updated... */
+ /* Only root variables can be updated... */
if (!is_root_p (var))
- /* Not a root var */
+ /* Not a root var. */
return NULL;
back_to = make_cleanup_restore_current_thread ();
- /* Determine whether the variable is still around. */
+ /* Determine whether the variable is still around. */
if (var->root->valid_block == NULL || var->root->floating)
within_scope = 1;
else if (var->root->thread_id == 0)
if (within_scope)
{
+ volatile struct gdb_exception except;
+
/* We need to catch errors here, because if evaluate
expression fails we want to just return NULL. */
- gdb_evaluate_expression (var->root->exp, &new_val);
+ TRY_CATCH (except, RETURN_MASK_ERROR)
+ {
+ new_val = evaluate_expression (var->root->exp);
+ }
+
return new_val;
}
c_value_of_child (struct varobj *parent, int index)
{
struct value *value = NULL;
- c_describe_child (parent, index, NULL, &value, NULL, NULL);
+ c_describe_child (parent, index, NULL, &value, NULL, NULL);
return value;
}
c_type_of_child (struct varobj *parent, int index)
{
struct type *type = NULL;
+
c_describe_child (parent, index, NULL, NULL, &type, NULL);
return type;
}
catch that case explicitly. */
struct type *type = get_type (var);
- /* Strip top-level references. */
+ /* Strip top-level references. */
while (TYPE_CODE (type) == TYPE_CODE_REF)
type = check_typedef (TYPE_TARGET_TYPE (type));
case TYPE_CODE_ARRAY:
{
char *number;
+
number = xstrprintf ("[%d]", var->num_children);
return (number);
}
if (var->value == NULL)
{
/* This can happen if we attempt to get the value of a struct
- member when the parent is an invalid pointer. This is an
- error condition, so we should tell the caller. */
+ member when the parent is an invalid pointer. This is an
+ error condition, so we should tell the caller. */
return NULL;
}
else
gdb_assert (!value_lazy (var->value));
/* If the specified format is the current one,
- we can reuse print_value */
+ we can reuse print_value. */
if (format == var->format)
return xstrdup (var->print_value);
else
- return value_get_print_value (var->value, format);
+ return value_get_print_value (var->value, format, var);
}
}
}
static int
cplus_number_of_children (struct varobj *var)
{
+ struct value *value = NULL;
struct type *type;
int children, dont_know;
+ int lookup_actual_type = 0;
+ struct value_print_options opts;
dont_know = 1;
children = 0;
+ get_user_print_options (&opts);
+
if (!CPLUS_FAKE_CHILD (var))
{
type = get_value_type (var);
- adjust_value_for_child_access (NULL, &type, NULL);
+
+ /* It is necessary to access a real type (via RTTI). */
+ if (opts.objectprint)
+ {
+ value = var->value;
+ lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
+ || TYPE_CODE (var->type) == TYPE_CODE_PTR);
+ }
+ adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
((TYPE_CODE (type)) == TYPE_CODE_UNION))
if (kids[v_protected] != 0)
children++;
- /* Add any baseclasses */
+ /* Add any baseclasses. */
children += TYPE_N_BASECLASSES (type);
dont_know = 0;
- /* FIXME: save children in var */
+ /* FIXME: save children in var. */
}
}
else
int kids[3];
type = get_value_type (var->parent);
- adjust_value_for_child_access (NULL, &type, NULL);
+
+ /* It is necessary to access a real type (via RTTI). */
+ if (opts.objectprint)
+ {
+ struct varobj *parent = var->parent;
+
+ value = parent->value;
+ lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
+ || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
+ }
+ adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
cplus_class_num_children (type, kids);
if (strcmp (var->name, "public") == 0)
/* Compute # of public, private, and protected variables in this class.
That means we need to descend into all baseclasses and find out
- how many are there, too. */
+ how many are there, too. */
static void
cplus_class_num_children (struct type *type, int children[3])
{
- int i;
+ int i, vptr_fieldno;
+ struct type *basetype = NULL;
children[v_public] = 0;
children[v_private] = 0;
children[v_protected] = 0;
+ vptr_fieldno = get_vptr_fieldno (type, &basetype);
for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
{
- /* If we have a virtual table pointer, omit it. */
- if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
+ /* If we have a virtual table pointer, omit it. Even if virtual
+ table pointers are not specifically marked in the debug info,
+ they should be artificial. */
+ if ((type == basetype && i == vptr_fieldno)
+ || TYPE_FIELD_ARTIFICIAL (type, i))
continue;
if (TYPE_FIELD_PROTECTED (type, i))
char **cname, struct value **cvalue, struct type **ctype,
char **cfull_expression)
{
- char *name = NULL;
struct value *value;
struct type *type;
int was_ptr;
+ int lookup_actual_type = 0;
char *parent_expression = NULL;
+ struct varobj *var;
+ struct value_print_options opts;
if (cname)
*cname = NULL;
if (cfull_expression)
*cfull_expression = NULL;
- if (CPLUS_FAKE_CHILD (parent))
- {
- value = parent->parent->value;
- type = get_value_type (parent->parent);
- if (cfull_expression)
- parent_expression = varobj_get_path_expr (parent->parent);
- }
- else
- {
- value = parent->value;
- type = get_value_type (parent);
- if (cfull_expression)
- parent_expression = varobj_get_path_expr (parent);
- }
+ get_user_print_options (&opts);
+
+ var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
+ if (opts.objectprint)
+ lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
+ || TYPE_CODE (var->type) == TYPE_CODE_PTR);
+ value = var->value;
+ type = get_value_type (var);
+ if (cfull_expression)
+ parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
- adjust_value_for_child_access (&value, &type, &was_ptr);
+ adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
char *join = was_ptr ? "->" : ".";
+
if (CPLUS_FAKE_CHILD (parent))
{
/* The fields of the class type are ordered as they
particular access control type ("public","protected",
or "private"). We must skip over fields that don't
have the access control we are looking for to properly
- find the indexed field. */
+ find the indexed field. */
int type_index = TYPE_N_BASECLASSES (type);
enum accessibility acc = public_field;
+ int vptr_fieldno;
+ struct type *basetype = NULL;
+ const char *field_name;
+
+ vptr_fieldno = get_vptr_fieldno (type, &basetype);
if (strcmp (parent->name, "private") == 0)
acc = private_field;
else if (strcmp (parent->name, "protected") == 0)
while (index >= 0)
{
- if (TYPE_VPTR_BASETYPE (type) == type
- && type_index == TYPE_VPTR_FIELDNO (type))
+ if ((type == basetype && type_index == vptr_fieldno)
+ || TYPE_FIELD_ARTIFICIAL (type, type_index))
; /* ignore vptr */
else if (match_accessibility (type, type_index, acc))
--index;
}
--type_index;
- if (cname)
- *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
+ /* If the type is anonymous and the field has no name,
+ set an appopriate name. */
+ field_name = TYPE_FIELD_NAME (type, type_index);
+ if (field_name == NULL || *field_name == '\0')
+ {
+ if (cname)
+ {
+ if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
+ == TYPE_CODE_STRUCT)
+ *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
+ else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
+ == TYPE_CODE_UNION)
+ *cname = xstrdup (ANONYMOUS_UNION_NAME);
+ }
+
+ if (cfull_expression)
+ *cfull_expression = xstrdup ("");
+ }
+ else
+ {
+ if (cname)
+ *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
+
+ if (cfull_expression)
+ *cfull_expression
+ = xstrprintf ("((%s)%s%s)", parent_expression, join,
+ field_name);
+ }
if (cvalue && value)
*cvalue = value_struct_element_index (value, type_index);
if (ctype)
*ctype = TYPE_FIELD_TYPE (type, type_index);
-
- if (cfull_expression)
- *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
- join,
- TYPE_FIELD_NAME (type, type_index));
}
else if (index < TYPE_N_BASECLASSES (type))
{
*cname = xstrdup (TYPE_FIELD_NAME (type, index));
if (cvalue && value)
- {
- *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
- release_value (*cvalue);
- }
+ *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
if (ctype)
{
if (cfull_expression)
{
char *ptr = was_ptr ? "*" : "";
- /* Cast the parent to the base' type. Note that in gdb,
+
+ /* Cast the parent to the base' type. Note that in gdb,
expression like
(Base1)d
will create an lvalue, for all appearences, so we don't
need to use more fancy:
*(Base1*)(&d)
- construct. */
- *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
+ construct.
+
+ When we are in the scope of the base class or of one
+ of its children, the type field name will be interpreted
+ as a constructor, if it exists. Therefore, we must
+ indicate that the name is a class name by using the
+ 'class' keyword. See PR mi/11912 */
+ *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
ptr,
TYPE_FIELD_NAME (type, index),
ptr,
{
char *access = NULL;
int children[3];
+
cplus_class_num_children (type, children);
/* Everything beyond the baseclasses can
only be "public", "private", or "protected"
The special "fake" children are always output by varobj in
- this order. So if INDEX == 2, it MUST be "protected". */
+ this order. So if INDEX == 2, it MUST be "protected". */
index -= TYPE_N_BASECLASSES (type);
switch (index)
{
access = "protected";
break;
case 2:
- /* Must be protected */
+ /* Must be protected. */
access = "protected";
break;
default:
- /* error! */
+ /* error! */
break;
}
cplus_name_of_child (struct varobj *parent, int index)
{
char *name = NULL;
+
cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
return name;
}
cplus_value_of_child (struct varobj *parent, int index)
{
struct value *value = NULL;
+
cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
return value;
}
cplus_type_of_child (struct varobj *parent, int index)
{
struct type *type = NULL;
+
cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
return type;
}
static char *
-cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
+cplus_value_of_variable (struct varobj *var,
+ enum varobj_display_formats format)
{
/* If we have one of our special types, don't print out
- any value. */
+ any value. */
if (CPLUS_FAKE_CHILD (var))
return xstrdup ("");
name = cplus_name_of_variable (parent);
/* If the name has "-" in it, it is because we
- needed to escape periods in the name... */
+ needed to escape periods in the name... */
p = name;
while (*p != '\000')
char *name, *p;
name = cplus_name_of_child (parent, index);
- /* Escape any periods in the name... */
+ /* Escape any periods in the name... */
p = name;
while (*p != '\000')
{
return cplus_value_of_variable (var, format);
}
+
+/* Ada specific callbacks for VAROBJs. */
+
+static int
+ada_number_of_children (struct varobj *var)
+{
+ return ada_varobj_get_number_of_children (var->value, var->type);
+}
+
+static char *
+ada_name_of_variable (struct varobj *parent)
+{
+ return c_name_of_variable (parent);
+}
+
+static char *
+ada_name_of_child (struct varobj *parent, int index)
+{
+ return ada_varobj_get_name_of_child (parent->value, parent->type,
+ parent->name, index);
+}
+
+static char*
+ada_path_expr_of_child (struct varobj *child)
+{
+ struct varobj *parent = child->parent;
+ const char *parent_path_expr = varobj_get_path_expr (parent);
+
+ return ada_varobj_get_path_expr_of_child (parent->value,
+ parent->type,
+ parent->name,
+ parent_path_expr,
+ child->index);
+}
+
+static struct value *
+ada_value_of_root (struct varobj **var_handle)
+{
+ return c_value_of_root (var_handle);
+}
+
+static struct value *
+ada_value_of_child (struct varobj *parent, int index)
+{
+ return ada_varobj_get_value_of_child (parent->value, parent->type,
+ parent->name, index);
+}
+
+static struct type *
+ada_type_of_child (struct varobj *parent, int index)
+{
+ return ada_varobj_get_type_of_child (parent->value, parent->type,
+ index);
+}
+
+static char *
+ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
+{
+ struct value_print_options opts;
+
+ get_formatted_print_options (&opts, format_code[(int) format]);
+ opts.deref_ref = 0;
+ opts.raw = 1;
+
+ return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
+}
+
+/* Implement the "value_is_changeable_p" routine for Ada. */
+
+static int
+ada_value_is_changeable_p (struct varobj *var)
+{
+ struct type *type = var->value ? value_type (var->value) : var->type;
+
+ if (ada_is_array_descriptor_type (type)
+ && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
+ {
+ /* This is in reality a pointer to an unconstrained array.
+ its value is changeable. */
+ return 1;
+ }
+
+ if (ada_is_string_type (type))
+ {
+ /* We display the contents of the string in the array's
+ "value" field. The contents can change, so consider
+ that the array is changeable. */
+ return 1;
+ }
+
+ return default_value_is_changeable_p (var);
+}
+
+/* Implement the "value_has_mutated" routine for Ada. */
+
+static int
+ada_value_has_mutated (struct varobj *var, struct value *new_val,
+ struct type *new_type)
+{
+ int i;
+ int from = -1;
+ int to = -1;
+
+ /* If the number of fields have changed, then for sure the type
+ has mutated. */
+ if (ada_varobj_get_number_of_children (new_val, new_type)
+ != var->num_children)
+ return 1;
+
+ /* If the number of fields have remained the same, then we need
+ to check the name of each field. If they remain the same,
+ then chances are the type hasn't mutated. This is technically
+ an incomplete test, as the child's type might have changed
+ despite the fact that the name remains the same. But we'll
+ handle this situation by saying that the child has mutated,
+ not this value.
+
+ If only part (or none!) of the children have been fetched,
+ then only check the ones we fetched. It does not matter
+ to the frontend whether a child that it has not fetched yet
+ has mutated or not. So just assume it hasn't. */
+
+ restrict_range (var->children, &from, &to);
+ for (i = from; i < to; i++)
+ if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
+ var->name, i),
+ VEC_index (varobj_p, var->children, i)->name) != 0)
+ return 1;
+
+ return 0;
+}
+
+/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
+ with an arbitrary caller supplied DATA pointer. */
+
+void
+all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
+{
+ struct varobj_root *var_root, *var_root_next;
+
+ /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
+
+ for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
+ {
+ var_root_next = var_root->next;
+
+ (*func) (var_root->rootvar, data);
+ }
+}
\f
extern void _initialize_varobj (void);
void
memset (varobj_table, 0, sizeof_table);
add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
- &varobjdebug, _("\
-Set varobj debugging."), _("\
-Show varobj debugging."), _("\
-When non-zero, varobj debugging is enabled."),
- NULL,
- show_varobjdebug,
+ &varobjdebug,
+ _("Set varobj debugging."),
+ _("Show varobj debugging."),
+ _("When non-zero, varobj debugging is enabled."),
+ NULL, show_varobjdebug,
&setlist, &showlist);
}
-/* Invalidate the varobjs that are tied to locals and re-create the ones that
- are defined on globals.
- Invalidated varobjs will be always printed in_scope="invalid". */
+/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
+ defined on globals. It is a helper for varobj_invalidate. */
-void
-varobj_invalidate (void)
+static void
+varobj_invalidate_iter (struct varobj *var, void *unused)
{
- struct varobj **all_rootvarobj;
- struct varobj **varp;
+ /* Floating varobjs are reparsed on each stop, so we don't care if the
+ presently parsed expression refers to something that's gone. */
+ if (var->root->floating)
+ return;
- if (varobj_list (&all_rootvarobj) > 0)
+ /* global var must be re-evaluated. */
+ if (var->root->valid_block == NULL)
{
- varp = all_rootvarobj;
- while (*varp != NULL)
- {
- /* Floating varobjs are reparsed on each stop, so we don't care if
- the presently parsed expression refers to something that's gone.
- */
- if ((*varp)->root->floating)
- continue;
-
- /* global var must be re-evaluated. */
- if ((*varp)->root->valid_block == NULL)
- {
- struct varobj *tmp_var;
-
- /* Try to create a varobj with same expression. If we succeed
- replace the old varobj, otherwise invalidate it. */
- tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
- USE_CURRENT_FRAME);
- if (tmp_var != NULL)
- {
- tmp_var->obj_name = xstrdup ((*varp)->obj_name);
- varobj_delete (*varp, NULL, 0);
- install_variable (tmp_var);
- }
- else
- (*varp)->root->is_valid = 0;
- }
- else /* locals must be invalidated. */
- (*varp)->root->is_valid = 0;
+ struct varobj *tmp_var;
- varp++;
+ /* Try to create a varobj with same expression. If we succeed
+ replace the old varobj, otherwise invalidate it. */
+ tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
+ USE_CURRENT_FRAME);
+ if (tmp_var != NULL)
+ {
+ tmp_var->obj_name = xstrdup (var->obj_name);
+ varobj_delete (var, NULL, 0);
+ install_variable (tmp_var);
}
+ else
+ var->root->is_valid = 0;
}
- xfree (all_rootvarobj);
- return;
+ else /* locals must be invalidated. */
+ var->root->is_valid = 0;
+}
+
+/* Invalidate the varobjs that are tied to locals and re-create the ones that
+ are defined on globals.
+ Invalidated varobjs will be always printed in_scope="invalid". */
+
+void
+varobj_invalidate (void)
+{
+ all_root_varobjs (varobj_invalidate_iter, NULL);
}