/* Variables that describe the inferior process running under GDB:
Where it is, why it stopped, and how to step it.
- Copyright (C) 1986 Free Software Foundation, Inc.
-
-GDB is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY. No author or distributor accepts responsibility to anyone
-for the consequences of using it or for whether it serves any
-particular purpose or works at all, unless he says so in writing.
-Refer to the GDB General Public License for full details.
-
-Everyone is granted permission to copy, modify and redistribute GDB,
-but only under the conditions described in the GDB General Public
-License. A copy of this license is supposed to have been given to you
-along with GDB so you can know your rights and responsibilities. It
-should be in a file named COPYING. Among other things, the copyright
-notice and this notice must be preserved on all copies.
-
-In other words, go ahead and share GDB, but don't try to stop
-anyone else from sharing it farther. Help stamp out software hoarding!
-*/
-
-/*
- * Structure in which to save the status of the inferior. Save
- * through "save_inferior_status", restore through
- * "restore_inferior_status".
- * This pair of routines should be called around any transfer of
- * control to the inferior which you don't want showing up in your
- * control variables.
- */
-struct inferior_status {
- int pc_changed;
- int stop_signal;
- int stop_pc;
- int stop_frame_address;
- int stop_breakpoint;
- int stop_step;
- int stop_stack_dummy;
- int stopped_by_random_signal;
- int trap_expected;
- CORE_ADDR step_range_start;
- CORE_ADDR step_range_end;
- FRAME_ADDR step_frame_address;
- int step_over_calls;
- CORE_ADDR step_resume_break_address;
- int stop_after_trap;
- int stop_after_attach;
- FRAME_ADDR selected_frame_address;
- int selected_level;
- struct command_line *breakpoint_commands;
- char stop_registers[REGISTER_BYTES];
- int restore_stack_info;
-};
-
-void save_inferior_status (), restore_inferior_status ();
+ Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
+ 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#if !defined (INFERIOR_H)
+#define INFERIOR_H 1
+
+/* For bpstat. */
+#include "breakpoint.h"
+
+/* For enum target_signal. */
+#include "target.h"
+
+/* Structure in which to save the status of the inferior. Create/Save
+ through "save_inferior_status", restore through
+ "restore_inferior_status".
+
+ This pair of routines should be called around any transfer of
+ control to the inferior which you don't want showing up in your
+ control variables. */
+
+struct inferior_status;
+
+extern struct inferior_status *save_inferior_status (int);
+
+extern void restore_inferior_status (struct inferior_status *);
+
+extern struct cleanup *make_cleanup_restore_inferior_status (struct inferior_status *);
+
+extern void discard_inferior_status (struct inferior_status *);
+
+extern void write_inferior_status_register (struct inferior_status
+ *inf_status, int regno,
+ LONGEST val);
+
+/* This macro gives the number of registers actually in use by the
+ inferior. This may be less than the total number of registers,
+ perhaps depending on the actual CPU in use or program being run.
+ FIXME: This could be replaced by the new MULTI_ARCH capability. */
+
+#ifndef ARCH_NUM_REGS
+#define ARCH_NUM_REGS NUM_REGS
+#endif
+
+extern void set_sigint_trap (void);
+
+extern void clear_sigint_trap (void);
+
+extern void set_sigio_trap (void);
+
+extern void clear_sigio_trap (void);
/* File name for default use for standard in/out in the inferior. */
extern int inferior_pid;
-/* Nonzero if debugging a remote machine via a serial link or ethernet. */
+/* Is the inferior running right now, as a result of a 'run&',
+ 'continue&' etc command? This is used in asycn gdb to determine
+ whether a command that the user enters while the target is running
+ is allowed or not. */
+extern int target_executing;
+
+/* Are we simulating synchronous execution? This is used in async gdb
+ to implement the 'run', 'continue' etc commands, which will not
+ redisplay the prompt until the execution is actually over. */
+extern int sync_execution;
+
+/* This is only valid when inferior_pid is non-zero.
+
+ If this is 0, then exec events should be noticed and responded to
+ by the debugger (i.e., be reported to the user).
+
+ If this is > 0, then that many subsequent exec events should be
+ ignored (i.e., not be reported to the user).
+ */
+extern int inferior_ignoring_startup_exec_events;
+
+/* This is only valid when inferior_ignoring_startup_exec_events is
+ zero.
+
+ Some targets (stupidly) report more than one exec event per actual
+ call to an event() system call. If only the last such exec event
+ need actually be noticed and responded to by the debugger (i.e.,
+ be reported to the user), then this is the number of "leading"
+ exec events which should be ignored.
+ */
+extern int inferior_ignoring_leading_exec_events;
+
+/* Inferior environment. */
+
+extern struct environ *inferior_environ;
+
+extern void clear_proceed_status (void);
+
+extern void proceed (CORE_ADDR, enum target_signal, int);
+
+/* When set, stop the 'step' command if we enter a function which has
+ no line number information. The normal behavior is that we step
+ over such function. */
+extern int step_stop_if_no_debug;
+
+extern void kill_inferior (void);
+
+extern void generic_mourn_inferior (void);
+
+extern void terminal_ours (void);
+
+extern int run_stack_dummy (CORE_ADDR, char *);
+
+extern CORE_ADDR read_pc (void);
+
+extern CORE_ADDR read_pc_pid (int);
+
+extern CORE_ADDR generic_target_read_pc (int);
+
+extern void write_pc (CORE_ADDR);
+
+extern void write_pc_pid (CORE_ADDR, int);
+
+extern void generic_target_write_pc (CORE_ADDR, int);
+
+extern CORE_ADDR read_sp (void);
+
+extern CORE_ADDR generic_target_read_sp (void);
+
+extern void write_sp (CORE_ADDR);
+
+extern void generic_target_write_sp (CORE_ADDR);
+
+extern CORE_ADDR read_fp (void);
+
+extern CORE_ADDR generic_target_read_fp (void);
+
+extern void write_fp (CORE_ADDR);
+
+extern void generic_target_write_fp (CORE_ADDR);
+
+extern CORE_ADDR unsigned_pointer_to_address (struct type *type, void *buf);
+
+extern void unsigned_address_to_pointer (struct type *type, void *buf,
+ CORE_ADDR addr);
+extern CORE_ADDR signed_pointer_to_address (struct type *type, void *buf);
+extern void address_to_signed_pointer (struct type *type, void *buf,
+ CORE_ADDR addr);
+
+extern void wait_for_inferior (void);
+
+extern void fetch_inferior_event (void *);
+
+extern void init_wait_for_inferior (void);
+
+extern void close_exec_file (void);
-extern int remote_debugging;
+extern void reopen_exec_file (void);
+
+/* The `resume' routine should only be called in special circumstances.
+ Normally, use `proceed', which handles a lot of bookkeeping. */
+
+extern void resume (int, enum target_signal);
+
+/* From misc files */
+
+extern void do_registers_info (int, int);
+
+extern void store_inferior_registers (int);
+
+extern void fetch_inferior_registers (int);
+
+extern void solib_create_inferior_hook (void);
+
+extern void child_terminal_info (char *, int);
+
+extern void term_info (char *, int);
+
+extern void terminal_ours_for_output (void);
+
+extern void terminal_inferior (void);
+
+extern void terminal_init_inferior (void);
+
+extern void terminal_init_inferior_with_pgrp (int pgrp);
+
+/* From infptrace.c or infttrace.c */
+
+extern int attach (int);
+
+#if !defined(REQUIRE_ATTACH)
+#define REQUIRE_ATTACH attach
+#endif
+
+#if !defined(REQUIRE_DETACH)
+#define REQUIRE_DETACH(pid,siggnal) detach (siggnal)
+#endif
+
+extern void detach (int);
+
+/* PTRACE method of waiting for inferior process. */
+int ptrace_wait (int, int *);
+
+extern void child_resume (int, int, enum target_signal);
+
+#ifndef PTRACE_ARG3_TYPE
+#define PTRACE_ARG3_TYPE int /* Correct definition for most systems. */
+#endif
+
+extern int call_ptrace (int, int, PTRACE_ARG3_TYPE, int);
+
+extern void pre_fork_inferior (void);
+
+/* From procfs.c */
+
+extern int proc_iterate_over_mappings (int (*)(int, CORE_ADDR));
+
+extern int procfs_first_available (void);
+
+/* From fork-child.c */
+
+extern void fork_inferior (char *, char *, char **,
+ void (*)(void),
+ void (*)(int), void (*)(void), char *);
+
+
+extern void clone_and_follow_inferior (int, int *);
+
+extern void startup_inferior (int);
+
+/* From inflow.c */
+
+extern void new_tty_prefork (char *);
+
+extern int gdb_has_a_terminal (void);
+
+/* From infrun.c */
+
+extern void start_remote (void);
+
+extern void normal_stop (void);
+
+extern int signal_stop_state (int);
+
+extern int signal_print_state (int);
+
+extern int signal_pass_state (int);
+
+extern int signal_stop_update (int, int);
+
+extern int signal_print_update (int, int);
+
+extern int signal_pass_update (int, int);
+
+/* From infcmd.c */
+
+extern void tty_command (char *, int);
+
+extern void attach_command (char *, int);
+
+extern char *get_inferior_arg (void);
+
+extern char *set_inferior_arg (char *);
/* Last signal that the inferior received (why it stopped). */
-extern int stop_signal;
+extern enum target_signal stop_signal;
/* Address at which inferior stopped. */
extern CORE_ADDR stop_pc;
-/* Stack frame when program stopped. */
+/* Chain containing status of breakpoint(s) that we have stopped at. */
-extern FRAME_ADDR stop_frame_address;
+extern bpstat stop_bpstat;
-/* Number of breakpoint it stopped at, or 0 if none. */
+/* Flag indicating that a command has proceeded the inferior past the
+ current breakpoint. */
-extern int stop_breakpoint;
+extern int breakpoint_proceeded;
/* Nonzero if stopped due to a step command. */
/* Range to single step within.
If this is nonzero, respond to a single-step signal
- by continuing to step if the pc is in this range. */
+ by continuing to step if the pc is in this range.
-extern CORE_ADDR step_range_start; /* Inclusive */
-extern CORE_ADDR step_range_end; /* Exclusive */
+ If step_range_start and step_range_end are both 1, it means to step for
+ a single instruction (FIXME: it might clean up wait_for_inferior in a
+ minor way if this were changed to the address of the instruction and
+ that address plus one. But maybe not.). */
+
+extern CORE_ADDR step_range_start; /* Inclusive */
+extern CORE_ADDR step_range_end; /* Exclusive */
/* Stack frame address as of when stepping command was issued.
This is how we know when we step into a subroutine call,
and how to set the frame for the breakpoint used to step out. */
-extern FRAME_ADDR step_frame_address;
+extern CORE_ADDR step_frame_address;
+
+/* Our notion of the current stack pointer. */
+
+extern CORE_ADDR step_sp;
/* 1 means step over all subroutine calls.
-1 means step over calls to undebuggable functions. */
-extern int step_over_calls;
+enum step_over_calls_kind
+ {
+ STEP_OVER_NONE,
+ STEP_OVER_ALL,
+ STEP_OVER_UNDEBUGGABLE
+ };
+
+extern enum step_over_calls_kind step_over_calls;
/* If stepping, nonzero means step count is > 1
so don't print frame next time inferior stops
extern int step_multi;
-/* Save register contents here when about to pop a stack dummy frame. */
-
-extern char stop_registers[REGISTER_BYTES];
-
-/* Nonzero if pc has been changed by the debugger
- since the inferior stopped. */
-
-extern int pc_changed;
-
-
-long read_memory_integer ();
+/* Nonzero means expecting a trap and caller will handle it themselves.
+ It is used after attach, due to attaching to a process;
+ when running in the shell before the child program has been exec'd;
+ and when running some kinds of remote stuff (FIXME?). */
+
+extern int stop_soon_quietly;
+
+/* Nonzero if proceed is being used for a "finish" command or a similar
+ situation when stop_registers should be saved. */
+
+extern int proceed_to_finish;
+
+/* Save register contents here when about to pop a stack dummy frame,
+ if-and-only-if proceed_to_finish is set.
+ Thus this contains the return value from the called function (assuming
+ values are returned in a register). */
+
+extern char *stop_registers;
+
+/* Nonzero if the child process in inferior_pid was attached rather
+ than forked. */
+
+extern int attach_flag;
+\f
+/* Sigtramp is a routine that the kernel calls (which then calls the
+ signal handler). On most machines it is a library routine that
+ is linked into the executable.
+
+ This macro, given a program counter value and the name of the
+ function in which that PC resides (which can be null if the
+ name is not known), returns nonzero if the PC and name show
+ that we are in sigtramp.
+
+ On most machines just see if the name is sigtramp (and if we have
+ no name, assume we are not in sigtramp). */
+#if !defined (IN_SIGTRAMP)
+#if defined (SIGTRAMP_START)
+#define IN_SIGTRAMP(pc, name) \
+ ((pc) >= SIGTRAMP_START(pc) \
+ && (pc) < SIGTRAMP_END(pc) \
+ )
+#else
+#define IN_SIGTRAMP(pc, name) \
+ (name && STREQ ("_sigtramp", name))
+#endif
+#endif
+\f
+/* Possible values for CALL_DUMMY_LOCATION. */
+#define ON_STACK 1
+#define BEFORE_TEXT_END 2
+#define AFTER_TEXT_END 3
+#define AT_ENTRY_POINT 4
+
+#if !defined (USE_GENERIC_DUMMY_FRAMES)
+#define USE_GENERIC_DUMMY_FRAMES 0
+#endif
+
+#if !defined (CALL_DUMMY_LOCATION)
+#define CALL_DUMMY_LOCATION ON_STACK
+#endif /* No CALL_DUMMY_LOCATION. */
+
+#if !defined (CALL_DUMMY_ADDRESS)
+#define CALL_DUMMY_ADDRESS() (internal_error (__FILE__, __LINE__, "CALL_DUMMY_ADDRESS"), 0)
+#endif
+#if !defined (CALL_DUMMY_START_OFFSET)
+#define CALL_DUMMY_START_OFFSET (internal_error (__FILE__, __LINE__, "CALL_DUMMY_START_OFFSET"), 0)
+#endif
+#if !defined (CALL_DUMMY_BREAKPOINT_OFFSET)
+#define CALL_DUMMY_BREAKPOINT_OFFSET_P (0)
+#define CALL_DUMMY_BREAKPOINT_OFFSET (internal_error (__FILE__, __LINE__, "CALL_DUMMY_BREAKPOINT_OFFSET"), 0)
+#endif
+#if !defined CALL_DUMMY_BREAKPOINT_OFFSET_P
+#define CALL_DUMMY_BREAKPOINT_OFFSET_P (1)
+#endif
+#if !defined (CALL_DUMMY_LENGTH)
+#define CALL_DUMMY_LENGTH (internal_error (__FILE__, __LINE__, "CALL_DUMMY_LENGTH"), 0)
+#endif
+
+#if defined (CALL_DUMMY_STACK_ADJUST)
+#if !defined (CALL_DUMMY_STACK_ADJUST_P)
+#define CALL_DUMMY_STACK_ADJUST_P (1)
+#endif
+#endif
+#if !defined (CALL_DUMMY_STACK_ADJUST)
+#define CALL_DUMMY_STACK_ADJUST (internal_error (__FILE__, __LINE__, "CALL_DUMMY_STACK_ADJUST"), 0)
+#endif
+#if !defined (CALL_DUMMY_STACK_ADJUST_P)
+#define CALL_DUMMY_STACK_ADJUST_P (0)
+#endif
+
+/* FIXME: cagney/2000-04-17: gdbarch should manage this. The default
+ shouldn't be necessary. */
+
+#if !defined (CALL_DUMMY_P)
+#if defined (CALL_DUMMY)
+#define CALL_DUMMY_P 1
+#else
+#define CALL_DUMMY_P 0
+#endif
+#endif
+
+#if !defined PUSH_DUMMY_FRAME
+#define PUSH_DUMMY_FRAME (internal_error (__FILE__, __LINE__, "PUSH_DUMMY_FRAME"), 0)
+#endif
+
+#if !defined FIX_CALL_DUMMY
+#define FIX_CALL_DUMMY(a1,a2,a3,a4,a5,a6,a7) (internal_error (__FILE__, __LINE__, "FIX_CALL_DUMMY"), 0)
+#endif
+
+#if !defined STORE_STRUCT_RETURN
+#define STORE_STRUCT_RETURN(a1,a2) (internal_error (__FILE__, __LINE__, "STORE_STRUCT_RETURN"), 0)
+#endif
+
+
+/* Are we in a call dummy? */
+
+extern int pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
+ CORE_ADDR frame_address);
+#if !GDB_MULTI_ARCH
+#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == BEFORE_TEXT_END
+#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_before_text_end (pc, sp, frame_address)
+#endif /* Before text_end. */
+#endif
+
+extern int pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
+ CORE_ADDR frame_address);
+#if !GDB_MULTI_ARCH
+#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == AFTER_TEXT_END
+#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_after_text_end (pc, sp, frame_address)
+#endif
+#endif
+
+extern int pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
+ CORE_ADDR frame_address);
+#if !GDB_MULTI_ARCH
+#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == ON_STACK
+#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_on_stack (pc, sp, frame_address)
+#endif
+#endif
+
+extern int pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
+ CORE_ADDR frame_address);
+#if !GDB_MULTI_ARCH
+#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == AT_ENTRY_POINT
+#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_at_entry_point (pc, sp, frame_address)
+#endif
+#endif
+
+/* It's often not enough for our clients to know whether the PC is merely
+ somewhere within the call dummy. They may need to know whether the
+ call dummy has actually completed. (For example, wait_for_inferior
+ wants to know when it should truly stop because the call dummy has
+ completed. If we're single-stepping because of slow watchpoints,
+ then we may find ourselves stopped at the entry of the call dummy,
+ and want to continue stepping until we reach the end.)
+
+ Note that this macro is intended for targets (like HP-UX) which
+ require more than a single breakpoint in their call dummies, and
+ therefore cannot use the CALL_DUMMY_BREAKPOINT_OFFSET mechanism.
+
+ If a target does define CALL_DUMMY_BREAKPOINT_OFFSET, then this
+ default implementation of CALL_DUMMY_HAS_COMPLETED is sufficient.
+ Else, a target may wish to supply an implementation that works in
+ the presense of multiple breakpoints in its call dummy.
+ */
+#if !defined(CALL_DUMMY_HAS_COMPLETED)
+#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
+ PC_IN_CALL_DUMMY((pc), (sp), (frame_address))
+#endif
+
+/* If STARTUP_WITH_SHELL is set, GDB's "run"
+ will attempts to start up the debugee under a shell.
+ This is in order for argument-expansion to occur. E.g.,
+ (gdb) run *
+ The "*" gets expanded by the shell into a list of files.
+ While this is a nice feature, it turns out to interact badly
+ with some of the catch-fork/catch-exec features we have added.
+ In particular, if the shell does any fork/exec's before
+ the exec of the target program, that can confuse GDB.
+ To disable this feature, set STARTUP_WITH_SHELL to 0.
+ To enable this feature, set STARTUP_WITH_SHELL to 1.
+ The catch-exec traps expected during start-up will
+ be 1 if target is not started up with a shell, 2 if it is.
+ - RT
+ If you disable this, you need to decrement
+ START_INFERIOR_TRAPS_EXPECTED in tm.h. */
+#define STARTUP_WITH_SHELL 1
+#if !defined(START_INFERIOR_TRAPS_EXPECTED)
+#define START_INFERIOR_TRAPS_EXPECTED 2
+#endif
+#endif /* !defined (INFERIOR_H) */